

2025 Annual Water Quality Report and Engineering Inspection

Permit #70-SDP-09-91P

Central Iowa Power Cooperative

December 3, 2025

2025 Annual Water Quality Report and Engineering Inspection **CIPCO CCR Monofill** Permit #70-SDP-09-91C

I hereby certify that this engineering document was prepared by me or under my direct personal supervision and that I am a duly licensed Professional Engineer under the laws of the State of Iowa.

Michael J. Alowitz, P.E.

License Number: 18160

My license renewal date is: December 31, 2026

Pages or sheets covered by this seal: Entire Document

Executive summary

Period of Report Coverage

This Annual Water Quality Report (AWQR) presents the data collected in October 2025 for the Central Iowa Power Cooperative (CIPCO) Coal Combustion Residue (CCR) Monofill. For most analytes, the report includes data from October 2016 onward when analysis was shifted to total metals instead of dissolved metals. Greater historical data for chloride and sulfate is included because these analytes were not previously filtered.

Report Priority

The data presented in the 2025 CIPCO AWQR is consistent with past data. Elevated concentrations remain primarily in one area identified by monitoring wells MW-15 and MW-17. The lowa Department of Natural Resources (IDNR) previously extended the post-closure period for this monofill. Changes to the monitoring network to remove some monitoring wells and analytes are proposed in this AWQR.

Site Status and Applicable Rules

The CIPCO CCR Monofill ceased receiving CCR in 2014 and closure cap construction was completed in 2015. Closure Permit #70-SDP-09-91C (Closure Permit) was issued February 1, 2016. The CCR Monofill is permitted and closed under 567 Lowa Administrative Code, Chapter 103. Figure 2 - Site Plan and Monitoring Network shows the status of the site monitoring network and topographic conditions.

The IDNR extended the post-closure period 5 years to February 2031 through a revised closure permit issued February 20, 2025.

Contents

1.	Introd	duction		1
	1.1	Backg	ground	1
	1.2	Monito	oring System	2
	1.3	Sampl	le Collection	2
	1.4	Analyt	tical Parameters	2
2.	Grou	ndwater l	Flow Conditions	2
	2.1	Horizo	ontal Groundwater Flow	2
	2.2	Vertica	al Hydraulic Gradients	3
3.	Analy	tical Res	sults	3
	3.1	Data A	Analysis	3
		3.1.1	Published Standards	3
		3.1.2	Baseline Concentrations	4
		3.1.3	UCLs	4
		3.1.4	Two-Year Average Concentration	4
	3.2	Repor	rting Limits	4
	3.3	Evalua	ation of Analytical and Field Data	4
		3.3.1	Published Standards	4
		3.3.2	Baseline Concentrations	5
		3.3.3	Trend Review	5
4.	Sumr	mary and	Recommendations	6
5.	Inspe	ections		7

Table index

Monitoring Program Summary
Monitoring Program Implementation Schedule
Monitoring Well Maintenance and Performance Revaluation Schedule (Not Applicable)
Monitoring Well Maintenance and Performance Summary
Background Summary
Summary of Well/Detected Constituent Pairs with No Immediately Preceding Control Limit Exceedances
Summary of Ongoing and Newly Identified Control Limit Exceedances
Analytical Data Summary
Historical Control Limit and Action Level Exceedances
Groundwater Quality Assessment Plan Trend Analysis
Leachate Management Summary (Not Applicable)
Gas Monitoring Summary (Not Applicable)
Groundwater Elevations October 16, 2025
Vertical Hydraulic Gradients (ft/ft) October 16, 2025

Figure index

Figure 1	Site Location Map
Figure 2	Site Map and Monitoring Network
Figure 3	Water Table Potentiometric Surface October 16, 2025
Figure 4	Uppermost Aquifer Potentiometric Surface October 16, 2025
Figure 5	Summary of Exceedances of Published Standards October 16, 2025
Figure 6	Arsenic Sample Results October 2025
Figure 7	Boron Sample Results October 2025
Figure 8	Chloride Sample Results October 2025
Figure 9	Cobalt Sample Results October 2025
Figure 10	Iron Sample Results October 2025
Figure 11	Lithium Sample Results October 2025
Figure 12	Magnesium Sample Results October 2025
Figure 13	Manganese Sample Results October 2025
Figure 14	Molybdenum Sample Results October 2025
Figure 15	Sodium Sample Results October 2025
Figure 16	Strontium Sample Results October 2025
Figure 17	Sulfate Sample Results October 2025
Figure 18	Temperature Values October 2025
Figure 19	pH Values October 2025
Figure 20	Specific Conductance Values October 2025

Appendices

Appendix A Monitoring Forms

Appendix B Laboratory Analytical Reports

Appendix C Graphs of Analytical and Monitoring Results

Appendix D Inspection Summary

Acronyms/Abbreviations

AWQR Annual Water Quality Report

CIPCO Central Iowa Power Cooperative (CIPCO

CCR Coal Combustion Residue
HA Lifetime Health Advisory

HIR Hydrogeological Investigation Report
HMSP Hydrologic Monitoring System Plan
GWQA Groundwater Quality Assessment

IAC Iowa Administrative Code

IDNR Iowa Department of Natural Resources
MCL EPA Maximum Contaminant Level

ORP Oxidation Reduction Potential

SDWR Secondary Drinking Water Regulations

SWS Statewide Standard

U Used in Table 8 to denote concentrations that are reported as non-detect.

The associated value represents half the reporting limit.

UCL Upgradient Control Limit

USEPA United States Environmental Protection Agency

1. Introduction

This Annual Water Quality Report (AWQR) and Engineering Inspection was prepared by GHD Services inc. (GHD) on behalf of Central Iowa Power Cooperative (CIPCO) for the closed Fair Station Coal Combustion Residue (CCR) Monofill (Monofill) in Muscatine County, Iowa. The Monofill ceased receiving CCR in 2014 and closure cap construction was completed in 2015. Closure Permit #70-SDP-09-91C (Closure Permit) was issued February 1, 2016.

1.1 Background

The Monofill received CCR from the Fair Station power plant in Muscatine, Iowa from 1974 through November 7, 2014. No material other than CCR and other approved materials from demolition of Fair Station have been disposed in the Monofill. Prior to 1974, the Monofill property was used for agricultural activities. Cap construction was completed in 2014 and 2015. Final seeding of the cover was completed in September 2015. The Construction Summary Report was submitted to the Iowa Department of Natural Resources (IDNR) on December 22, 2015, and the Closure Permit was issued on February 1, 2016. The closure activities did not require modification of the groundwater monitoring network.

The local geology consists of sands, silts, and clays similar to what would be expected from alluvial deposition. The 1994 Hydrogeological Investigation Report (HIR) and Hydrologic Monitoring System Plan (HMSP) concluded these deposits did not appear to be great enough in thickness or extent to form an alluvial aquifer. Over the majority of the Monofill, Pennsylvanian shale is found at depths of 15 feet below ground surface or less, underlain by Devonian limestone. On the eastern, higher elevation portion of the Monofill, depth to bedrock is greater than 15 feet.

The Monofill is located adjacent to the Pine Creek flood plain. Pine Creek enters the Mississippi River approximately ½ mile southwest of the Monofill. Water table groundwater flow is generally toward Pine Creek. The Devonian aquifer flow is generally directed west/southwest, toward Pine Creek and the Mississippi River. The location of the Monofill is shown in Figure 1.

A groundwater quality assessment (GWQA) was initiated at the Monofill site in 2012 and completed in 2013. As an outgrowth of those activities, new monitoring wells MW-17, MW-19, and MW-20 were integrated into the HMSP and the analyte list was expanded at the direction of the IDNR, as reflected in this AWQR. Monitoring well MW-19 has since been abandoned.

The December 9, 2016, AWQR for 2016 data was the last report to include dissolved (filtered) metals analysis for groundwater samples. Following an IDNR comment letter dated May 17, 2017, CIPCO applied for a variance to switch to unfiltered samples. The December 9, 2016, AWQR included a side-by-side comparison of filtered and unfiltered samples collected generally through low-flow techniques. The variance request also sought to reduce the analyte list. The variance was approved in a letter dated July 24, 2017, with the exception that arsenic and cobalt analyses remain required. The approval eliminates barium, beryllium, copper, lead, selenium, and zinc. The variance was incorporated into Revision 1 of the closure permit also issued July 24, 2017.

Due to the change to sampling total metals (unfiltered metals), it was necessary to establish new baseline concentrations for metals. Four sampling events: October 2016, August 2017, October 2017, and April 2018 formed the new baseline concentrations. Historical data reflecting total metals are no longer reported; however, the data are available in the December 9, 2016 AWQR.

The original 10-year post closure period was anticipated to end in 2026. The closure period was extended 5 years to February 1, 2031 by the IDNR in response to the 2024 AWQR based on groundwater monitoring results. The revised permit was issued February 20, 2025.

1.2 Monitoring System

Groundwater samples are collected from three water table monitoring wells (upgradient well MW-11, and downgradient wells MW-2 and MW-6), and water table monitoring wells MW-4, MW-7, and MW-10 are used for elevation monitoring only. Groundwater samples are collected from seven uppermost aquifer wells (upgradient location MW-9 and downgradient locations MW-1, MW-3, MW-5, MW-15, MW-17, and MW-20). Surface water sampling was discontinued with issuance of the Closure Permit. Figure 2 shows the locations of monitoring wells and identifies upgradient locations. Table 1 and Table 2 present the monitoring program summary and implementation schedule, respectively. Table 4 presents the monitoring well maintenance and performance summary.

Based on past groundwater analytical data, monitoring well MW-1, although hydraulically upgradient, is evaluated as a downgradient well due to apparent impacts observed. All other wells are characterized as upgradient or downgradient consistent with site data.

1.3 Sample Collection

Sampling for the 2025 AWQR was completed in October 2025. Groundwater samples were collected with low-flow pneumatic bladder pumps with dedicated tubing and dedicated (disposable) bladders except for monitoring well MW-9.

A flow-through monitoring cell was used prior to sample collection to measure pH, conductivity, temperature, dissolved oxygen, turbidity, and oxidation reduction potential (ORP). The sampling method for monitoring well MW-9 remained a disposable polyethylene bailer without a flow-cell.

1.4 Analytical Parameters

Groundwater samples collected during the sampling event were analyzed for arsenic, cobalt, iron, magnesium, manganese, chloride, and sulfate as required in Paragraph 567-103.1(4)d of the <u>lowa Administrative Code</u> (IAC). A variance granted in July 2017 eliminated the requirement for barium, beryllium, copper, lead, selenium, and zinc analyses based on historical data. Boron, lithium, molybdenum, sodium, and strontium are also analyzed per the amended HMSP. Laboratory analysis was conducted by Eurofins Environmental Testing North Central, LLC. (Eruofins) of Cedar Falls, Iowa. Eurofins provided prepared sample containers for the monitoring event.

2. Groundwater Flow Conditions

2.1 Horizontal Groundwater Flow

Static water levels were measured at each of the monitoring wells included in the monitoring system in October 2025. Table 13 presents groundwater elevations measured in wells during the October 2025 monitoring event. A water table contour map (Figure 3) was prepared using water level measurements from the October 2025 monitoring event. During this monitoring event, the inferred groundwater flow direction at the water table was toward the southwest. Figure 4 shows the potentiometric surface of the uppermost aquifer based on measurements from the October 2025 monitoring event. The apparent direction of flow in the uppermost aquifer is generally to the southwest. The flow of groundwater in both the water table and uppermost aquifer at the Monofill is toward Pine Creek located west of the Monofill.

2.2 Vertical Hydraulic Gradients

Water levels measured in monitoring well clusters MW-2/MW-3, MW-6/MW-5, MW-10/MW-9, and MW-7/MW-20 during the 2025 monitoring event were used to calculate vertical hydraulic gradients for the Monofill. The vertical hydraulic gradients were calculated by the following equation:

Water Elevation in Deep Well — Water Elevation in Shallow Well

Elevation of Middle of Saturated Zone of Shallow Well Screen - Elevation of Middle of Saturated Zone of Deep Well Screen

The calculated vertical hydraulic gradients are presented in Table 14. The results are similar to historical results for each well pair. The MW-7/MW-20 well pair historically exhibits a small gradient and may be upward or downward-directed. The downward-directed flow reported at monitoring wells MW-10/MW-9 remains the largest gradient on-site; monitoring well MW-9 is the deepest well on-site.

3. Analytical Results

Groundwater sample collection records for October 2025 are provided in Appendix A and the associated laboratory analytical reports are provided in Appendix B. Table 8 present current and historical analytical data (with total metals) collected at the Monofill for sampling locations and analytes in the current monitoring plan. Historical data with total metals was last presented in the December 9, 2016, AWQR. Appendix C includes graphs of concentration versus time for all analytes and in each monitored unit (water table and uppermost aquifer). Table 10 summarizes the annual laboratory results and basic trend analysis.

3.1 Data Analysis

Sample results are compared to multiple reference concentrations: (1) published concentration standards, (2) baseline concentrations, (3) upgradient control limits (UCLs) and, (4) where applicable, a 2-year average concentration. All comparisons are shown in the Analytical Data Summary in Appendix C. Comparison to published standards and UCLs are included graphically in Appendix C.

3.1.1 Published Standards

To evaluate the status of water quality at the Monofill, a comparison was made between the sample result and federal drinking water quality standards, as required by Paragraph 567-103.1(4)d of the IAC. Sample results were compared to the United States Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL), Lifetime Health Advisory (HA) Level, or Secondary Drinking Water Regulations (SDWR) guidelines as presented in the 2018 Edition of the Drinking Water Standards and Health Advisories, dated March 2018 (2018 Standards) (USEPA, 2018). The following definitions of the various standards are adapted from the 2018 Standards document:

- MCL The highest level for a contaminant that is allowed in drinking water. MCLs are enforceable standards.
 There is an MCL for arsenic.
- HA An estimate of acceptable drinking water levels for a chemical substance based on health effects information. The lifetime HA is the concentration of a chemical in drinking water that is not expected to cause any adverse noncarcinogenic effects for a lifetime of exposure. The lifetime HA is based on exposure of a 70-kilogram (kg) adult consuming 2 liters of water per day. An HA is not a legally enforceable federal standard, but serves as technical guidance to assist federal, state, and local officials. There is an HA for boron, manganese, molybdenum, and strontium.
- SDWR Non-enforceable federal guidelines regarding cosmetic effects (such as tooth or skin discoloration) or aesthetic effects (such as taste, odor, or color) of drinking water. An SDWR guideline exists for chloride, iron, manganese, and sulfate.

lowa Statewide Standards (SWSs) are used for comparison of cobalt and lithium results since no MCL, HA, or SDWR guideline has been established for cobalt and lithium. Under 40 Code of Federal Regulations (CFR) Part 257.95(h)(2), federal standards for lithium (0.04 milligrams per liter [mg/L]) and cobalt (0.006 mg/L) were established in 2018 for monitoring CCR sites where the federal coal ash rule is applicable. These federal standards are higher than the SWS of 0.014 mg/L and 0.003 mg/L for lithium and cobalt, respectively, in protected groundwater sources.

3.1.2 Baseline Concentrations

Baseline concentrations for total metals were established at all wells based on sample events in October 2016, August 2017, October 2017, and April 2018. For sulfate and chloride, historical values are used for baseline concentrations since these samples are not filtered and there was no difference with historical samples. Baseline values are included in Table 8.

3.1.3 UCLs

A UCL was calculated for each upgradient sampling location as the average of all previous sampling results for each analyte in each upgradient well plus two standard deviations. The calculated UCLs are presented in Tables 5 and 8. Non-detect results were conservatively represented by one-half the reporting limit for calculation of the UCL. Table 6 presents exceedances of a control limit not immediately preceded by an exceedance, where control limits are identified as published standards. Table 8 provides all associated data and Table 9 presents a graphical summary of UCL and/or published standard exceedances in the last 5 years.

3.1.4 Two-Year Average Concentration

For magnesium and sodium, no MCL, HA, SDWR guideline, or SWS is established. In order to evaluate the status of water quality at the Monofill for these compounds (magnesium and sodium), a comparison was made between the sample result and the 2-year average concentration for that parameter in each well, in accordance with Paragraph 567-103.1(4)d of the IAC. Non-detect results were represented by the reporting limit for calculating the 2-year average concentration.

3.2 Reporting Limits

In the previous year's results, there were several constituents that had elevated reporting limits at certain wells, such as arsenic (MW-15), lithium (MW-6), and molybdenum (MW-2). In these cases, the results are graphed in the usual manner at one-half the reporting limit; however, they can appear on the graphs as spikes in concentration. The 2025 data have reporting limits consistent with historical data.

3.3 Evaluation of Analytical and Field Data

3.3.1 Published Standards

No reported concentrations exceed an MCL.

HAs were exceeded for boron (five locations), manganese (three locations), and molybdenum (three locations).

SDWR guidelines were exceeded for iron (seven locations), manganese (seven locations), and sulfate (three locations).

SWSs were exceeded for cobalt (one location) and lithium (eight locations).

Figure 8 identifies the monitoring points where published standards were exceeded. Table 7 presents a summary of ongoing and newly identified exceedances of published standards

3.3.2 Baseline Concentrations

October 2025 sample results exceeded baseline concentrations for the following analytes:

- Arsenic at one location.
- Boron at seven locations.
- Chloride at five locations.
- Iron at three locations.
- Magnesium at four locations.
- Manganese at two locations.
- Molybdenum at two locations.
- Sodium at five locations.
- Strontium at five locations.
- Sulfate at two locations.

3.3.3 Trend Review

Trends can be observed in the charts in Appendix C and are summarized in Table 10. The trends are based on visual observation of charts in Appendix C. Most analytes and wells saw no trend. Monitoring wells MW-15 and MW-17 show the largest impacts in groundwater. Monitoring well MW-15 is at the toe of the perimeter berm around the monofill and monitoring well MW-17 is located downgradient, adjacent to Pine Creek.

Sulfate and chloride are often used as indicators for CCR impact on groundwater. The long-term overall trends for sulfate and chloride at the CIPCO CCR Monofill show the positive effects of closure. Monitoring well MW-2, for example, is hydraulically upgradient of the Monofill but is treated as a downgradient well due to past apparent leachate impacts. No increasing trends were noted at monitoring well MW-2 and sulfate at monitoring well MW-2 has been below the SDWR for the four sampling events since 2022.

Sulfate concentrations at uppermost aquifer monitoring wells MW-15 and MW-17 remain approximately an order of magnitude higher than the other monitoring locations. The 2025 data show monitoring well MW-17 sulfate concentration is consistent with last year's elevated concentration over recent years. The 2025 sulfate result for monitoring well MW-15 is an increase over recent years and ends a 2-year downward trend in concentration. There is no trend in monitoring well MW-15 sulfate results and an increasing trend in monitoring well MW-17. The last time the sulfate SDWR guideline was exceeded at monitoring well MW-5 was 2013; the last time at monitoring well MW-6 was 2015. Sulfate last exceeded the SDWR guideline at monitoring well MW-2 in 2021. In 2025, sulfate exceeded the SDWR at monitoring well MW-1 for the first time since 2021. For the 2025 results, the only downgradient monitoring wells exceeding their sulfate baseline concentrations were monitoring wells MW-15 and MW-17.

Chloride concentrations exhibit a long-term trend of decreasing concentrations in the Water Table and select wells in the Uppermost Aquifer. The 2025 data showed slight decreases in chloride across the monitoring network except for monitoring wells MW-3, MW-9, and MW-20 where there were slight increases in chloride concentration, due to higher reporting limits; however, all results are similar to previous years. The maximum chloride concentration reported, 17.7 mg/L at monitoring well MW-15, is less than 10 percent of the SDWR value of 250 mg/L.

Cobalt results are variable. At uppermost aquifer monitoring well MW-6, all results are above the SWS of 0.0028 mg/L, but multi-year trends of decreasing and increasing results have been observed since 2016. The October 2025 cobalt concentration in uppermost aquifer well MW-3 decreased to concentrations consistent with previous years, excluding 2024 when cobalt levels at monitoring well MW-3 exceeded the SWS for the first time since 2017.

Manganese at monitoring well MW-6 remains significantly elevated relative to all other results at the site. This was previously identified as a local geologic impact and unlikely related to the presence of the Monofill. Manganese results at uppermost aquifer well MW-3 tend to match the pattern observed in cobalt results at this well. With the

October 2025 cobalt result decreasing back to 2023 levels after the 2024 result spike being the highest recorded since 2017.

A historically increasing trend in molybdenum was evident at monitoring well MW-17 through 2021 but the last 4 years of data have been decreasing. Monitoring well MW-15 molybdenum concentration exhibits an increasing trend.

Sodium results show a long-term increasing trend at monitoring well MW-17. While the 2025 sodium concentration is lower than the 2024 concentration, the 2025 results are still greater than the 2023 results, continuing the overall increase. In monitoring well MW-15, the results have generally increased over the last few years but 2025 results did not return above 2023 levels after the 2024 decrease. Generally, a flat or decreasing trend in sodium concentrations are observed in other areas of the Site.

4. Summary and Recommendations

No MCLs were exceeded in the October 2025 groundwater monitoring event. HAs (boron, manganese, and molybdenum), SDWR guidelines (iron, manganese, and sulfate), and the SWSs (cobalt and lithium) were exceeded at locations consistent with historical results.

Overall, groundwater monitoring results are in-line with expectations and decreasing trends are seen in sulfate data, while chloride data are consistent with historical trends. Overall, decreasing concentration trends are observed more than increasing trends but for most locations and analytes, no clear trend was noted.

The groundwater monitoring network remains appropriate for assessing the Monofill's impact on groundwater. Overall, the Monofill does not appear to be impacting groundwater at concentrations of concern relative to drinking water exposure. The standards used to evaluate the Monofill's impact on groundwater are drinking water standards. Although HAs and SDWR guidelines are exceeded, the Monofill does not pose a significant risk because no drinking water receptors are located immediately downgradient of the Monofill, local users of groundwater have deep wells, and the extent of impacts appears to be limited.

Routine annual monitoring at the Monofill should continue in October 2026 with proposed changes noted below. Although surface water monitoring may be warranted in the future, at this time, it is not recommended to resume. Years of past surface water monitoring did not show an impact, and sulfate concentrations (the largest mass in terms of milligrams per liter and thus most likely to be observed at levels of impact) at monitoring well MW-17 remain within the range of historical results.

The following changes are proposed for the 2026 monitoring network following 10 years of post-closure groundwater monitoring.

- The water table aquifer is proposed for removal from the monitoring plan. This includes background monitoring well MW-11 and downgradient locations MW-2 and MW-6. The monitoring wells would not be abandoned and would be used for annual water level measurement. The water table shows significant improvement since closure. Currently exceedances of public standards across these wells include:
 - Boron at monitoring wells MW-2 and MW-6 and manganese and molybdenum at monitoring well MW-6 exceed an HA.
 - Cobalt at monitoring well MW-6 and lithium at monitoring well MW-2 exceed a SWS.
 - Iron at upgradient well MW-11 and MW-6; manganese at all three wells; and sulfate at MW-2 exceed an SDWR guideline.

The only water table well in which arsenic has been reported in monitoring well MW-6 at concentrations less than half the MCL.

 Magnesium and sodium are proposed for removal from the analyte list for all wells. The data are fairly consistent and there are no standards for comparison. These data do not improve assessment of the site. Strontium is proposed for removal from the analyte list. The HA is 4 mg/L and the highest concentration detected across the ten monitoring wells in the network over twelve sample events since October 2016 is 0.899 or less than a quarter of the HA.

5. Inspections

CIPCO continued routine inspections of the Monofill since closure. Appendix D includes a summary of the 2025 inspection activities and corrective actions. Sam Honold of CIPCO routinely inspects the Monofill property. Michael Alowitz, P.E. completed a site visit and inspection on October 31, 2025.

Overall, the cap is well vegetated. The grass growth appeared complete with only a small area showing mower damage needing reseeding. Multiple mowing events were conducted during the year. Drainage structures appeared to be performing as designed. Minor woody vegetation was identified in rip rap channels but it appeared to be less than 1 year old based on size and the channels are routinely maintained.

Mr. Alowitz observed potential animal burrows on the very western edge of the Monofill at the tree line. These were not inhabited and did not appear to impact the cap. However, the potential presence of animal burrows in this area will continue to be a point of observation.

In 2022, a significant effort was completed by CIPCO to protect the Monofill berm along Pine Creek. Two areas of historical erosion were cleared, covered with flex-a-mat, and re-seeded. This area generally appeared to be protected with the flex-a-mat performing as expected.

The access gate was found locked and secure. There was no evidence of illicit dumping. Portion of the perimeter fence were impacted by fallen trees, but the overall site security appeared intact.

CIPCO will continue multiple site visits and inspections to support Monofill maintenance.

Table 1

Monitoring Program Summary
2025 Annual Water Quality Report
CIPCO Fair Station CCR Monofill
Permit No. 70-SDP-09-91C

	Farmation	Current Monitoring	Change for next		Total # of Samples in each monitoring program since January 1, 2018			
Monitoring Well	Formation	Program	sampling event	Control Limit Exceedances	Routine (Annual)	Supplemental	Remedial Action	
				Chloride, Iron, Lithium, Magnesium,	_	_	_	
MW-1	Uppermost Aquifer	Annual	No Change	Sulfate	8	0	0	
MW-2	Water Table	Annual	No Change	Boron, Lithium, Sodium, Strontium, Sulfate	8	0	0	
MW-3	Uppermost Aquifer	Annual	No Change	Boron, Sodium, Strontium	8	0	0	
MW-5	Uppermost Aquifer	Annual	No Change	Boron, Chloride, Cobalt, Iron, Magnesium, Sodium, Sulfate	8	0	0	
MW-6	Water Table	Annual	No Change	Arsenic, Boron, Chloride, Cobalt, Manganese, Molybdenum, Sodium, Strontium	8	0	0	
MW-9	Uppermost Aquifer	Annual	No Change	Stiontuin	8	0	0	
MW-11	Water Table	Annual	No Change		8	0	0	
MW-15	Uppermost Aquifer	Annual	No Change	Boron, Chloride, Lithium, Magnesium, Molybdenum, Sodium, Sulfate	8	0	0	
MW-17	Uppermost Aquifer	Annual	No Change	Boron, Chloride, Iron, Lithium, Magnesium, Molybdenum, Sodium, Sulfate	8	0	0	
MW-20	Uppermost Aquifer	Annual	No Change	Boron, Sodium	8	0	0	
Other monitoring po	ints	•	· -		•	•	•	
MW-4	Water Table	Water Level	No Change	NA	0	0	0	
MW-7	Water Table	Water Level	No Change	NA	0	0	0	
MW-10	Water Table	Water Level	No Change	NA	0	0	0	

Monitoring Program Implementation Schedule 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

	Recen	nt Sampling Da	tes and Const	ituents	Upcoming Sampling Dates and Constituents		
Monitoring Well		Annually					
MW-1							
MW-2							
MW-3							
MW-5	Arsenic, co	balt, iron, magr	esium, mangai	nese, chloride, a	and sulfate as required in Paragraph 567—103.1(4)d of the lowa		
MW-6					eliminated the requirement to analyze for barium, beryllium, copper,		
MW-9	lead, seleniur	m, and zinc bas	ed on historic d		ım, molybdenum, sodium, and strontium are also analyzed per the		
MW-11				amen	nded HMSP.		
MW-15							
MW-17							
MW-20							

Monitoring Well Maintenance and Performance Revaluation Schedule 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

This table is not applicable to the CIPCO Fair Station CCR Monofill

Monitoring Well Maintenance and Performance Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

Well	Top of	Top of	Total		Dat	te of Measureme	ents
VVEII	Casing	Screen	Depth		10/10/2023	10/22/2024	10/16/2025
				Groundwater Level (ft)	25.41	24.66	22.42
MW-1	588.13	571.51	36	Groundwater Elevation (Ft MSL)	562.72	563.47	565.71
	0000	0		Measured Well Depth (ft)	002.72	000.17	000.7 1
				Submerged screen	N	N	N
				Groundwater Level (ft)	7.51	7.08	7.51
MW-2	559.42	546.7	12.69	Groundwater Elevation (Ft MSL)	551.91	552.34	551.91
				Measured Well Depth (ft)	33.13.		30.1.0.
				Submerged screen	Υ	Υ	Υ
				Groundwater Level (ft)	9.44	9.30	9.46
MW-3	559.17	512.69	46.41	Groundwater Elevation (Ft MSL)	549.73	549.87	549.71
				Measured Well Depth (ft)			
				Submerged screen	Υ	Υ	Υ
				Groundwater Level (ft)	9.60	9.42	9.33
MW-4	556.93	557.78	10.3	Groundwater Elevation (Ft MSL)	547.33	547.51	547.6
				Measured Well Depth (ft)			
				Submerged screen	N	N	N
				Groundwater Level (ft)	6.80	6.52	6.01
MW-5	555.54	527.24	28.3	Groundwater Elevation (Ft MSL)	548.74	549.02	549.53
				Measured Well Depth (ft)			
				Submerged screen	Υ	Y	Y
				Groundwater Level (ft)	7.99	7.68	7.25
MW-6	555.89	541.11	14.82	Groundwater Elevation (Ft MSL)	547.9	548.21	548.64
				Measured Well Depth (ft)			
				Submerged screen	Υ	Υ	Y
				Groundwater Level (ft)	3.03	3.37	2.43
MW-7	555.55	548.78	17.99	Groundwater Elevation (Ft MSL)	552.52	552.18	553.12
	000.00	0.0		Measured Well Depth (ft)	002.02	3323	333
				Submerged screen	Y	Υ	Y
				Groundwater Level (ft)	32.83	32.20	30.04
MW-9	629.13	513.59	118.67	Groundwater Elevation (Ft MSL)	596.30	596.93	599.09
	0_0	0.0.00		Measured Well Depth (ft)	000.00		000.00
				Submerged screen	Y	Y	Υ
				Groundwater Level (ft)	23.21	22.21	19.53
MW-10	629.39	597.45	32.25	Groundwater Elevation (Ft MSL)	606.18	607.18	609.86
10100-10	025.55	337.43	02.20	Measured Well Depth (ft)	000.10	007.10	000.00
				Submerged screen	Y	Υ	Υ
				Groundwater Level (ft)	7.36	6.71	9.3
MW-11	587.99	586.22	20.44	Groundwater Elevation (Ft MSL)	580.63	581.28	578.69
10100-11	307.99	300.22	20.44	Measured Well Depth (ft)	360.03	361.26	376.09
				. ,	N	N	N
				Submerged screen Groundwater Level (ft)	12.55	12.40	12.51
NAVA/ 45	EE0.66	520 F0	20.46	. ,			
MW-15	558.66	539.50	29.16	Groundwater Elevation (Ft MSL)	546.11	546.26	546.15
				Measured Well Depth (ft)		N/	
				Submerged screen	Υ	Υ	Y
		E 4 4 5 =	00.5=	Groundwater Level (ft)	12.22	12.24	12.74
MW-17	557.32	541.97	20.35	Groundwater Elevation (Ft MSL)	545.1	545.08	544.58
				Measured Well Depth (ft)			
				Submerged screen	Υ	Y	Y
				Groundwater Level (ft)	5.92	5.50	4.62
MW-20	558.92	524.52	44.4	Groundwater Elevation (Ft MSL)	553.00	553.42	554.30
				Measured Well Depth (ft)			
				Submerged screen	Υ	Υ	Υ

Table 5

Background Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

Interwell Background/Control Limit (MW-11 Water Table)

Constituent	Units	Samples	Detections	Background level	Statistical Test	Action Level	Source
Inorganics							
Arsenic (As)	mg/L	12	0	0.0016	M+/-2SD	0.01	MCL
Boron (Bo)	mg/L	12	1	0.151	M+/-2SD	6	HA
Chloride (CI)	mg/L	44	40	12.9	M+/-2SD	250	SDWR
Cobalt (Co)	mg/L	12	5	0.001205	M+/-2SD	0.0028	SWS
Iron (Fe)	mg/L	12	11	0.93	M+/-2SD	0.3	SDWR
Lithium (Li)	mg/L	12	1	0.0074	M+/-2SD	0.014	SWS
Magnesium (Mg)	mg/L	12	12	53.6	M+/-2SD	NA	
Manganese (Mn)	mg/L	12	12	0.441	M+/-2SD	0.3, 0.05	HA, SDWR
Molybdenum (Mo)	mg/L	12	0	0.001	M+/-2SD	0.04	HA
Sodium (Na)	mg/L	12	12	14.5	M+/-2SD	NA	
Strontium (St)	mg/L	12	12	0.151	M+/-2SD	4	HA
Sulfate (SO4)	mg/L	31	30	134	M+/-2SD	250	SDWR

Interwell Background/Control Limit (MW-9 Uppermost Aquifer)

Constituent	Units	Samples	Detections	Background level	Statistical Test	Action Level	Source
Inorganics							
Arsenic (As)	mg/L	12	0	0.0016	M+/-2SD	0.01	MCL
Boron (Bo)	mg/L	12	9	0.433	M+/-2SD	6	HA
Chloride (CI)	mg/L	42	8	5.9	M+/-2SD	250	SDWR
Cobalt (Co)	mg/L	12	3	0.001737	M+/-2SD	0.0028	SWS
Iron (Fe)	mg/L	12	2	0.59	M+/-2SD	0.3	SDWR
Lithium (Li)	mg/L	12	12	0.0490	M+/-2SD	0.014	SWS
Magnesium (Mg)	mg/L	12	12	35.0	M+/-2SD	NA	
Manganese (Mn)	mg/L	12	8	0.682	M+/-2SD	0.3, 0.05	HA, SDWR
Molybdenum (Mo)	mg/L	12	0	0.001	M+/-2SD	0.04	HA
Sodium (Na)	mg/L	12	12	14.3	M+/-2SD	NA	
Strontium (St)	mg/L	12	12	0.738	M+/-2SD	4	HA
Sulfate (SO4)	mg/L	31	29	36.5	M+/-2SD	250	SDWR

Summary of Well/Detected Constituent Pairs With No Immediately Preceding Control Limit Exceedances 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

Well	Constituent	Units	Most recent result	Control Limit
MW-1	Sulfate	mg/L	304	250
MW-11	Iron	mg/L	0.625	0.3

Notes:

For this table, control limit identified as published standards.

MW-11 is a background location.

Table 7

Summary of Ongoing and Newly Identified Control Limit Exceedances 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

Well	Constituent	Units	Most recent result	Background/Baseline Standard	Action Level/ Statewide Standard
MW-1	Boron	mg/L	0.310	0.284	6
	Chloride	mg/L	6.59	6.6	250
	Cobalt	mg/L	0.000934	0.000946	0.0028
	Iron	mg/L	2.64	1.69	0.3
	Lithium	mg/L	0.0635	0.0667	0.014
	Magnesium	mg/L	80.1	81.2	NA
	Manganese	mg/L	0.293	0.296	0.3/0.05
	Strontium	mg/L	0.761	0.748	4
	Sulfate	mg/L	304	370	250
MW-2	Boron	mg/L	6.98	7.36	6
	Cobalt	mg/L	0.0005U	0.000315	0.0028
	Lithium	mg/L	0.0331	0.0516	0.014
	Magnesium	mg/L	30.2	30.1	NA
	Manganese	mg/L	0.0615	0.05661	0.3/0.05
	Strontium	mg/L	0.323	0.323	4
	Sulfate	mg/L	191	703	250
MW-3	Iron	mg/L	0.203	1.05	0.3
	Lithium	mg/L	0.0336	0.0391	0.014
	Magnesium	mg/L	20.4	22.9	NA
	Manganese	mg/L	0.563	1.599	0.3/0.05
	Sodium	mg/L	24.8	33.4	NA
	Strontium	mg/L	0.860	0.772	4
MW-5	Boron	mg/L	7.05	5.63	6
10100-5	Chloride	mg/L	15.3	13.7	250
	Cobalt	mg/L	0.00118	0.003063	0.0028
	Iron	mg/L	0.343	1.09	0.3
	Lithium	mg/L	0.0183	0.0264	0.014
	Manganese	mg/L	0.249	0.592	0.3/0.05
	Strontium	mg/L	0.326	0.318	4
MW-6	Boron	mg/L	8.60	6.31	6
10100-0	Chloride	mg/L	14.2	13.2	250
	Colbalt	mg/L	0.00385	0.00481	0.0028
	Iron	mg/L	1.98	0.981	0.0020
	Lithium	mg/L	0.01U	0.0055	0.014
	Manganese	mg/L	7.46	8.29	0.3/0.05
	Molybdenmun	mg/L	0.0775	0.0679	0.3/0.03
MW-9	Boron	mg/L	0.401	0.0079	6
IVIVV-9	Lithium	mg/L	0.401	0.045	0.014
	Magnesium	mg/L	31.1	30.9	0.014 NA
	Sodium		31.1 13.2	9.2	NA NA
MW-11	Chloride	mg/L	10.6	9.2 8.6	250
IVIVV - I I		mg/L			L
	Iron	mg/L	0.625	0.556	0.3
	Magnesium	mg/L	46.7	48	NA
	Manganese	mg/L	0.202	0.302	0.3/0.05
	Sodium	mg/L	13.1	12.0	NA
	Strontium	mg/L	0.132	0.134	4

Table 7

Summary of Ongoing and Newly Identified Control Limit Exceedances 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

Well			Most recent result	Background/Baseline Standard	Action Level/ Statewide Standard	
MW-15	Boron	mg/L	41.7	28.9	6	
	Chloride	mg/L	17.7	16.9	250	
	Lithium	mg/L	0.140	0.156	0.014	
	Magnesium	mg/L	114	105	NA	
	Manganese	mg/L	0.0476	0.510	0.3/0.05	
	Molybdenum	mg/L	0.396	0.0746	0.04	
	Sodium	mg/L	96.5	85.7	NA	
	Strontium	mg/L	0.793	0.629	4	
	Sulfate	mg/L	1,420	783	250	
MW-17	Boron	mg/L	29.7	16.0	6	
	Chloride	mg/L	17.5	17.4	250	
	Iron	mg/L	1.23	2.58	0.3	
	Lithium	mg/L	0.242	0.278	0.014	
	Magnesium	mg/L	193	180	NA	
	Manganese	mg/L	0.329	0.265	0.3/0.05	
	Molybdenum	mg/L	0.0513	0.1489	0.04	
	Sodium	mg/L	77.6	58.2	NA	
	Strontium	mg/L	0.499	0.400	4	
	Sulfate	mg/L	1,180	869	250	
MW-20	Boron	mg/L	1.79	1.3	6	
	Lithium	mg/L	0.0203	0.0241	0.014	
	Sodium	mg/L	88.1	77.5	NA	
	Strontium	mg/L	0.578	0.578	4	

Note:

Non detect results are denoted by U and shown as the reporting limit. Table 8 shows 1/2 the Reporting Limit.

Table 8 Page 1 of 21

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

TOTAL ARSENIC (unfiltered) (mg/L) MCL = 0.01

		Water Table					Upp	ermost Aquif			
	Reporting	Upgradient	Downg		Upgradient				radient		
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Oct-16	0.00200	0.00100U	0.00100U	0.00460	0.00100U	0.00305	0.00100U	0.00100U	0.00684	0.00335	0.00100U
Aug-17	0.00200	0.00100U	0.00100U	0.00246	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U
Oct-17	0.00200	0.00100U	0.00100U	0.00100U	0.00100U	0.00057	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U
Apr-18	0.00200	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U
Oct-18	0.00200	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U
Oct-19	0.00200	0.00100U	0.00100U	0.00278	0.00100U	0.00100U	0.00100U	0.00100U	0.00219	0.00100U	0.00100U
Oct-20	0.00200	0.00100U	0.00100U	0.00239	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U
Oct-21	0.00200	0.00100U	0.00100U	0.00272	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U
Oct-22	0.00200	0.00100U	0.00400U	0.00400U	0.00100U	0.00100U	0.00100U	0.00100U	0.00400U	0.00400U	0.00100U
Oct-23	0.00200	0.00100U	0.00100U	0.00222	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U
Oct-24	0.00200	0.00100U	0.00100U	0.00207	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U
Oct-25	0.00200	0.00100U	0.00100U	0.00459	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U
HISTORI	C AVERAGE	0.0010	0.0013	0.0026	0.0010	0.0011	0.0010	0.0010	0.0018	0.0014	0.0010
BASELIN	E AVERAGE	0.0010	0.0010	0.0023	0.0010	0.0014	0.0010	0.0010	0.0025	0.0016	0.0010
UCL		0.0016			0.0016						

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

TOTAL BORON (unfiltered) (mg/L) HA=6

		Water Table Upgradient Downgradient			Uppermost Aquifer							
	Reporting	Upgradient	Downg	radient	Upgradient			Down	gradient			
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20	
Oct-16	0.200	0.100U	7.94	6.94	0.100U	0.263	3.39	5.76	31.2	15.2	1.29	
Aug-17	0.200	0.100U	6.48	6.75	0.217	0.260	2.52	5.28	24.9	15.6	1.27	
Oct-17	0.200	0.100U	7.71	7.07	0.219	0.321	2.40	6.31	28.4	17.9	1.39	
Apr-18	0.200	0.100U	7.31	4.48	0.100U	0.291	2.76	5.16	31.0	15.3	1.23	
Oct-18	0.200	0.100U	8.53	6.89	0.364	0.452	3.10	6.23	35.9	16.4	1.61	
Oct-19	0.200	0.100U	9.35	7.60	0.100U	0.345	2.82	6.06	44.5	17.4	1.37	
Oct-20	0.200	0.100U	7.21	6.76	0.282	0.332	3.80	6.77	44.0	25.4	1.51	
Oct-21	0.200	0.100U	7.91	6.15	0.208	0.299	2.21	5.60	29.6	26.7	1.71	
Oct-22	0.200	0.050U	8.47	7.51	0.219	0.281	2.34	6.32	36.8	25.9	1.37	
Oct-23	0.200	0.050U	7.56	8.06	0.216	0.300	1.43	6.23	37.5	19.7	1.45	
Oct-24	0.100	0.050U	6.11	7.67	0.336	0.291	1.52	6.56	39.3	33.2	1.47	
Oct-25	Varies	0.154	6.98	8.60	0.401	0.310	1.75	7.05	41.7	29.7	1.79	
HISTOR	IC AVERAGE	0.092	7.6	7.0	0.230	0.312	2.50	6.11	35.4	21.5	1.46	
BASELIN	IE AVERAGE	0.100	7.36	6.31	0.159	0.284	2.77	5.63	28.9	16.0	1.30	
	UCL	0.151			0.433							

Table 8 Page 3 of 21

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

CHLORIDE (mg/L) SDWR = 250

	Reporting				Uppermost Aquifer Upgradient Downgradient								
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20		
Aug-95	5	6	17		2.5U	2.5U	2.5U		18				
Nov-95	5	6.7	24		2.5U	2.5U	2.5U		17				
Feb-96	5	8.3	26			2.5U	2.5U		18				
Jun-96	5	6.1	24		2.5U	2.5U	2.5U		15				
Sep-96	5	9.2	19			2.5U	6.3		20				
Apr-97	5	7.6	20		2.5U	2.5U	5.7		17				
Oct-97	5	7.8	19		5.6	2.5U	2.5U		18				
Apr-98	5	11	31		2.5U	6.4	9.8		18				
Oct-98	5	7.2	24		2.5U	2.5U	5.6						
Apr-99	10	5U	18		5U	5U	5U		16				
Oct-99	10	5U	18		5U	5U	5U		17				
Apr-00	10	5U	15		5U	5U	5U		11				
Dec-00	5	7.4	19.4		2.5U	2.5U	5		16.9				
May-01	5.0	8.9	20.4		2.5U	5.5	10.2		15.5				
Jul-01	5.0	9.9	14.7		2.5U	8.6	7.1		16.9				
Oct-01	5.0	7.6	16.2		2.5U	6.3	6.9		17.9				
Jan-02	5.0	8.0	18.3		2.5U	6.0	5.2		17.3				
Oct-02	5.0	10.3	16.2		2.5U	7.2	2.5U		19.0				
Oct-03	5	12.6	18.1		5.6	6.7	2.5U		19.5				
Oct-04	5.0	6.8	14.3		2.5U	9.0	2.5U		20.2				
Oct-05	5.0	7	2.5U	14.2	2.5U	12.7	16.5	13.0	21.1				
Jan-06	5.0			15.4				15					
Apr-06	5.0			11.3				13.2					
Jul-06	5.0			11.9				13.5					
Oct-06	5.0	7.43	18.3	14.0	5.2	12.4	2.5U	13.4	23.1				
Oct-07	5.0	6.65	17.5	9.91	2.5U	13.9	2.5U	11.9	21.6				
Oct-08	5.0	6.36	15	10.5	2.5U	33.8	2.5U	11.3	21.5				

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

CHLORIDE (mg/L) SDWR = 250

	Reporting	W Upgradient	later Table	radient	Uppermost Aquifer Upgradient Downgradient						
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Oct-09	5.0	6.49	14.2	13.0	7.0	28.1	2.5U	12.2	21.9		
Oct-10	5.0	5.63	12.6	13.0	2.5U	17.3	2.5U	11.8	19.6		
Oct-11	5.0	7.56	21.3	20.6	2.5U	16.7	2.5U	15.4	21.7		
Oct-12	5.0	6.32	19.9	21.9	2.5U	14.4	2.5U	15.1	19.9		
Dec-12	5.0	9.3	25.2	22.6	2.5U	16.4	2.5U	19.2	23.8	16.1	
Oct-13	5.0	7.06	15.3	19.2	2.5U	13.6	2.5U	18.1	20.4	18.3	9.14
Jan-14	5.0									17.9	
Apr-14	5.0									16.9	5.41
Jul-14	5.0									16.6	
Oct-14	5.0										5.96
Oct-14	5.0	13.7	16.5	20.5	5.00	13.7	2.5U	20.4	23.4	19.1	7.29
Oct-15	5.0	11.2	13.4	26.8	6.00	12.7	8.96	22.8	21.6	20.2	11.5
Oct-16	5.0	9.23	36.6	15.9	5.59	12.6	2.5U	18.4	21.1	18.2	5.65
Aug-17	5.0	10.4	15.3	15.8	2.5U	10.5	2.5U	19.3	20.2	19.3	6.11
Oct-17	5.0	10.4	13.7	16.7	2.5U	13.1	2.5U	18.6	20.3	19.4	5.06
Apr-18	5.0	10.4	14.4	18.3	2.5U	11.1	5.26	18.2	19.2	19.3	6.21
Oct-18	5.0	10.2	12.3	15.9	2.5U	9.2	2.5U	17.3	19.4	18.0	2.5U
Oct-19	5.0	7.5	10.7	13.2	2.5U	7.8	2.5U	15.9	16.7	17.1	2.5U
Oct-20	5.0	2.5U	9.3	2.5U	2.5U	5.8	2.5U	2.5U	15.2	15.6	2.5U
Oct-21	5.0	9.61	9.6	15.8	2.5U	6.91	2.5U	15.5	16.6	18.2	5.36
Oct-22	5.0	9.71	8.92	13.2	2.5U	7.21	2.5U	13.8	15.2	21.0	2.5U
Oct-23	5.00	10.3	9.67	15.7	2.5U	6.30	2.5U	15.9	18.3	16.9	2.5U
Oct-24	2.00	12.4	9.96	18.6	3.45	7.30	2.36	18.8	20.4	19.0	3.71
Oct-25	5.00	10.6	8.62	14.2	2.5U	6.59	2.5U	15.3	17.7	17.5	2.5U
HISTOR	 C AVERAGE	8.3	16.9	15.6	3.2	9.2	4.1	15.4	18.8	18.1	5.08
	IE AVERAGE UCL	8.6 12.9	17.4	13.2	2.5 5.9	6.6	7.4	13.7	16.9	17.4	5.8

Table 8 Page 5 of 21

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

TOTAL COBALT (unfiltered) (mg/L) Statewide Standard = 0.0028 mg/L

			Water Table				Upp	ermost Aquif			
Date	Reporting Limit	Upgradient MW-11	Downgr MW-2	adient MW-6	Upgradient MW-9	MW-1	MW-3	Downg MW-5	gradient MW-15	MW-17	MW-20
Date	Limit	IVIVV-II	IVI VV-Z	IVI VV-O	IVI VV-9	IVI VV - I	IVI VV-3	IVI VV-5	10100-12	IVIVV-17	10100-20
Oct-16	0.000500	0.00135	0.000508	0.00523	0.000250U	0.000871	0.00464	0.00259	0.00277	0.000250U	0.000516
Aug-17	0.000500	0.000558	0.000250U	0.00500	0.000250U	0.00104	0.00772	0.00269	0.00135	0.000250U	0.00112
Oct-17	0.000500	0.00031	0.000250U	0.00522	0.00056	0.00100	0.00262	0.00423	0.00061	0.000250U	0.000490
Apr-18	0.000500	0.00106	0.000250U	0.00379	0.00229	0.000874	0.00200	0.00274	0.00182	0.000250U	0.000250U
Oct-18	0.000500	0.000250U	0.000250U	0.00324	0.000250U	0.001020	0.00089	0.00158	0.00169	0.000250U	0.000250U
Oct-19	0.000500	0.000250U	0.000250U	0.00405	0.000250U	0.001280	0.00132	0.00081	0.00218	0.000250U	0.00054
Oct-20	0.000500	0.000560	0.000250U	0.00500	0.000250U	0.001200	0.000659	0.00203	0.000810	0.000250U	0.000250U
Oct-21	0.000500	0.000250U	0.000638	0.00559	0.000250U	0.00233	0.000648	0.000840	0.000250U	0.000250U	0.000250U
Oct-22	0.000500	0.000250U	0.00100U	0.00363	0.000250U	0.000723	0.00129	0.00354	0.00100U	0.00100U	0.000250U
Oct-23	0.000500	0.000250U	0.000250U	0.00302	0.000250U	0.00149	0.00162	0.00282	0.000780	0.000250U	0.000250U
Oct-24	0.000500	0.000250U	0.000250U	0.00344	0.00108	0.00121	0.00483	0.00192	0.000250U	0.000250U	0.000250U
Oct-25	0.000500	0.000250U	0.000250U	0.00385	0.000250U	0.000934	0.00162	0.00118	0.000250U	0.000250U	0.000250U
HISTORI	C AVERAGE	0.000466	0.000366	0.004255	0.000515	0.001164	0.002488	0.002248	0.001147	0.000313	0.000388
BASELIN	E AVERAGE	0.000820	0.000315	0.004810	0.000838	0.000946	0.004245	0.003063	0.001638	0.000250	0.000594
	UCL	0.001205			0.001737						

Table 8 Page 6 of 21

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

TOTAL IRON (unfiltered) (mg/L) SDWR = 0.3

		,	Water Table				Upp	ermost Aquif	er		
	Reporting	Upgradient	Downgr	radient	Upgradient			Downg	gradient		
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Oct-16	0.100	1.03	0.223	1.16	0.050U	1.82	1.10	1.02	0.507	2.93	0.050U
Aug-17	0.100	0.476	0.207	1.09	0.050U	1.39	1.78	1.52	0.322	3.16	1.13
Oct-17	0.100	0.247	0.5U	0.872	0.798	1.74	0.398	1.16	0.5U	2.68	0.213
Apr-18	0.100	0.471	0.184	0.802	0.354	1.79	0.938	0.668	0.399	1.53	0.050U
Oct-18	0.100	0.374	0.050U	0.396	0.050U	1.41	0.249	0.210	0.129	2.50	0.117
Oct-19	0.100	0.181	0.200U	0.893	0.050U	1.80	0.125	0.200U	0.050U	3.34	0.050U
Oct-20	0.100	0.595	0.050U	0.900	0.050U	1.58	0.050U	0.176	0.050U	2.46	0.137
Oct-21	0.100	0.111	0.050U	1.80	0.050U	2.13	0.050U	0.400	0.050U	2.66	0.050U
Oct-22	0.100	0.050U	0.200U	0.739	0.050U	1.50	0.258	0.611	0.200U	2.00	0.133
Oct-23	0.100	0.255	0.050U	0.794	0.050U	3.64	0.309	0.770	0.050U	1.34	0.128
Oct-24	0.100	0.260	0.0500U	0.977	0.050U	1.92	1.67	0.738	0.123	1.43	0.162
Oct-25	Varies	0.625	0.0500U	1.98	0.050U	2.64	0.203	0.343	0.200U	1.23	0.050U
HISTORI	C AVERAGE	0.390	0.151	1.034	0.138	1.95	0.594	0.651	0.215	2.27	0.189
BASELIN	E AVERAGE	0.556	0.279	0.981	0.313	1.69	1.05	1.09	0.432	2.58	0.361
	UCL	0.93			0.59						

Table 8 Page 7 of 21

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

TOTAL LITHIUM (unfiltered) (mg/L) Statewide Standard = 0.014 mg/L

		V	Nater Table				Upp	ermost Aquif	er		
	Reporting	Upgradient	Downg	radient	Upgradient			Downg	jradient		
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Oct-16	0.0140	0.0070U	0.0571	0.0070U	0.0435	0.0663	0.0434	0.0257	0.163	0.270	0.0214
	0.0140	0.0070U	0.0515	0.0070U	0.0433	0.0643	0.0434	0.0237	0.163 0.157	0.275	0.0214
Aug-17											
Oct-17	0.0100	0.0080	0.0627	0.0050U	0.0500	0.0684	0.0416	0.0318	0.165	0.314	0.0289
Apr-18	0.0100	0.0050U	0.0351	0.0050U	0.0433	0.0677	0.0354	0.0237	0.138	0.254	0.0274
Oct-18	0.0100	0.0050U	0.0411	0.0050U	0.0448	0.0591	0.0309	0.0205	0.149	0.265	0.0207
Oct-19	0.0100	0.0050U	0.0444	0.0050U	0.0417	0.0708	0.0339	0.0258	0.204	0.302	0.0216
Oct-20	0.0100	0.0050U	0.0383	0.0050U	0.0457	0.0667	0.0361	0.0245	0.162	0.317	0.0241
Oct-21	0.0100	0.0050U	0.0406	0.0140	0.0404	0.0656	0.0410	0.0237	0.135	0.318	0.0210
Oct-22	0.0100	0.0050U	0.0200U	0.0200U	0.0405	0.0573	0.0392	0.0182	0.156	0.295	0.0190
Oct-23	0.0100	0.0050U	0.0373	0.0050U	0.0448	0.0630	0.0393	0.0197	0.166	0.289	0.0222
Oct-24	0.0100	0.0050U	0.0333	0.0050U	0.0445	0.0643	0.0348	0.0195	0.154	0.293	0.0219
Oct-25	0.0100	0.0050U	0.0331	0.0050U	0.0408	0.0635	0.0336	0.0183	0.140	0.242	0.0203
HISTOR	IC AVERAGE	0.0054	0.0412	0.0072	0.0436	0.0648	0.0371	0.023	0.157	0.286	0.0223
BASELIN	IE AVERAGE UCL	0.0062 0.0074	0.0516	0.0055	0.0450 0.0490	0.0667	0.0391	0.0264	0.156	0.278	0.024

Table 8 Page 8 of 21

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

TOTAL MAGNESIUM (unfiltered) (mg/L) No Standard Established, Use 2-Year Average

		v	Vater Table		Uppermost Aquifer							
	Reporting	Upgradient	Downg	radient	Upgradient			Down	gradient			
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20	
Oct-16	0.500	48.2	30.6	44.1	31.1	84.8	23.4	38.6	103	177	18.3	
Aug-17	0.050	48.1	29.2	45.4	30.8	77.9	21.4	39.2	105	171	18.0	
Oct-17	0.050	53.3	35.3	45.0	32.5	78.5	23.0	44.2	113	207	19.6	
Apr-18	0.0500	42.3	25.2	31.5	29.3	83.6	23.8	43.2	98.2	166	18.1	
Oct-18	0.0500	50.0	27.3	38.2	30.4	73.2	25.1	35.0	121	169	16.7	
Oct-19	0.0500	45.9	33.8	37.4	34.0	75.5	22.5	36.5	103	192	17.4	
Oct-20	0.0500	48.9	37.0	39.6	35.1	77.0	27.3	42.0	117	230	19.5	
Oct-21	0.0500	49.1	36.6	33.6	30.4	74.1	20.3	35.9	108	182	17.0	
Oct-22	0.0500	47.1	30.5	33.2	28.9	69.7	19.6	33.8	117	179	15.7	
Oct-23	0.0500	50.8	32.2	35.3	32.4	72.7	19.4	38.3	116	157	16.6	
Oct-24	0.500	45.7	27.5	30.8	30.5	72.5	18.5	34.1	126	214	15.3	
Oct-25	Varies	46.7	30.2	33.1	31.1	80.1	20.4	35.3	114	193	16.3	
2-YEA	R AVERAGE	48.3	29.9	33.1	31.5	72.6	19.0	36.2	121	186	16.0	
HISTOR	IC AVERAGE	48.0	31.3	37.3	31.4	76.6	22.1	38.0	112	186	17.4	
BASELIN	IE AVERAGE UCL	48.0 53.6	30.1	41.5	30.9 35.0	81.2	22.9	41.3	105	180	18.5	

Table 8 Page 9 of 21

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

TOTAL MANGANESE (unfiltered) (mg/L) HA=0.3, SDWR=0.05

		,	Water Table				Upp	ermost Aquif	er		
	Reporting	Upgradient	Downgi	radient	Upgradient			Downg	gradient		
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Oct-16	0.0200	0.380	0.102	8.92	0.0419	0.276	2.64	0.502	0.783	0.266	0.132
Aug-17	0.0100	0.214	0.0496	8.48	0.0477	0.271	2.74	0.521	0.476	0.244	0.123
Oct-17	0.0100	0.170	0.0397	8.71	0.505	0.306	0.463	0.776	0.205	0.293	0.102
Apr-18	0.0100	0.442	0.0330	7.05	0.882	0.331	0.553	0.568	0.575	0.255	0.0298
Oct-18	0.0100	0.102	0.0271	6.20	0.0274	0.325	0.165	0.334	0.609	0.212	0.0815
Oct-19	0.0100	0.238	0.0563	8.55	0.044	0.313	0.194	0.167	0.779	0.284	0.0759
Oct-20	0.0100	0.292	0.0525	7.73	0.0050U	0.363	0.474	0.410	0.364	0.336	0.0669
Oct-21	0.0100	0.160	0.0552	3.63	0.0477	0.466	0.339	0.147	0.0292	0.248	0.0360
Oct-22	0.0100	0.0615	0.0440	6.61	0.0050U	0.251	0.159	1.54	0.167	0.262	0.0279
Oct-23	0.0100	0.126	0.0670	5.17	0.0050U	0.399	0.708	0.598	0.253	0.354	0.0427
Oct-24	0.0100	0.244	0.0923	5.16	0.0050U	0.299	1.71	0.247	0.0741	0.257	0.0267
Oct-25	0.0100	0.202	0.0615	7.46	0.0130	0.293	0.563	0.249	0.0476	0.329	0.0259
HISTORI	C AVERAGE	0.219	0.057	6.97	0.136	0.324	0.892	0.505	0.363	0.278	0.0642
BASELIN	IE AVERAGE	0.302	0.0561	8.29	0.369	0.296	1.599	0.592	0.510	0.265	0.0967
	UCL	0.441			0.682						

Table 8 Page 10 of 21

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

TOTAL MOLYBDENUM (unfiltered) (mg/L) HA=0.04

	Reporting	Upgradient	Water Table Downgr	adient	Upgradient		Upp	ermost Aquife Downg	er radient		
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Oct-16	0.00200	0.00100U	0.00100U	0.0509	0.00100U	0.00100U	0.00100U	0.00100U	0.0907	0.198	0.00100U
Aug-17	0.00200	0.00100U	0.00100U	0.0750	0.00100U	0.00100U	0.00100U	0.00100U	0.0511	0.119	0.00100U
Oct-17	0.00200	0.00100U	0.00100U	0.0783	0.00100U	0.00100U	0.00100U	0.00100U	0.0806	0.0995	0.00100U
Apr-18	0.00200	0.00100U	0.00100U	0.0674	0.00100U	0.00100U	0.00100U	0.00100U	0.0758	0.1790	0.00100U
Oct-18	0.00200	0.00100U	0.00100U	0.0524	0.00100U	0.00100U	0.00100U	0.00100U	0.0639	0.166	0.00100U
Oct-19	0.00200	0.00100U	0.00100U	0.0933	0.00100U	0.00100U	0.00100U	0.00100U	0.4830	0.178	0.00242
Oct-20	0.00200	0.00100U	0.00100U	0.0626	0.00100U	0.00100U	0.00100U	0.00100U	0.0924	0.254	0.00240
Oct-21	0.00200	0.00100U	0.00100U	0.0220	0.00100U	0.00100U	0.00100U	0.00100U	0.104	0.301	0.00100U
Oct-22	0.00200	0.00100U	0.00400U	0.0667	0.00100U	0.00100U	0.00100U	0.00100U	0.1 79	0.127	0.00100U
Oct-23	0.00200	0.00100U	0.00100U	0.0477	0.00100U	0.00100U	0.00100U	0.00100U	0.215	0.0972	0.00100U
Oct-24	0.00200	0.00100U	0.00100U	0.0448	0.00100U	0.00100U	0.00100U	0.00100U	0.259	0.0770	0.00100U
Oct-25	0.00200	0.00100U	0.00100U	0.0775	0.00100U	0.00100U	0.00100U	0.00100U	0.396	0.0513	0.00100U
HISTORI	C AVERAGE	0.0010	0.0013	0.0616	0.0010	0.0010	0.0010	0.0010	0.174	0.154	0.0012
	E AVERAGE	0.001	0.001	0.0679	0.0010	0.0010	0.0010	0.0010	0.0746	0.149	0.0010
	UCL	0.001			0.001						

Table 8 Page 11 of 21

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

TOTAL SODIUM (unfiltered) (mg/L) No Standard Established, Use 2-Year Average

	Reporting	V Upgradient	Vater Table Downg	radient	Uppermost Aquifer Upgradient Downgradient								
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20		
Oct-16	0.500	12.4	26.9	21.8	12.0	12.3	32.4	21.1	101	56.8	80.3		
Aug-17	1.000	12.0	23.3	20.8	9.7	13.3	25.1	19.4	84.2	60.1	79.1		
Oct-17	1.000	11.1	22.6	19.7	8.18	13.2	38.7	19.6	77.4	62.5	77.7		
Apr-18	1.00	12.5	24.9	14.7	6.96	11.2	37.4	19.7	80	53.4	72.9		
Oct-18	1.00	14.3	22.7	18.0	7.90	12.2	40.7	20.1	100	61.0	89.3		
Oct-19	1.00	12.5	19.3	17.7	9.87	10.1	32.9	18.9	99.1	68.5	78.2		
Oct-20	1.00	12.9	20.0	18.7	9.84	10.8	25.9	20.8	95.1	76.5	92.0		
Oct-21	1.00	13.0	18.8	18.0	9.85	10.3	26.4	18.6	76.1	81.5	82.7		
Oct-22	1.00	13.0	18.2	17.0	11.0	10.4	45.9	18.3	91.7	81.3	82.9		
Oct-23	1.00	14.2	17.9	18.3	12.5	11.8	24.7	19.7	98.9	75.2	91.0		
Oct-24	1.00	12.8	15.4	16.9	12.5	11.4	21.2	18.3	87.2	82.4	84.0		
Oct-25	1.00	13.1	16.6	16.7	13.2	9.97	24.8	18.4	96.5	77.6	88.1		
2-YEA	R AVERAGE	13.5	16.7	17.6	12.5	11.6	23.0	19.0	93.1	78.8	87.5		
HISTORI	C AVERAGE	12.8	20.6	18.2	10.3	11.4	31.3	19.4	90.6	69.7	83.2		
BASELIN	E AVERAGE UCL	12.0 14.5	24.4	19.3	9.2 14.3	12.5	33.4	20.0	85.7	58.2	77.5		

Table 8 Page 12 of 21

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

TOTAL STRONTIUM (unfiltered) (mg/L) HA=4

		v	/ater Table		Uppermost Aquifer							
	Reporting	Upgradient	Downg	radient	Upgradient			Downg	gradient			
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20	
Oct-16	0.00100	0.127	0.327	0.413	0.574	0.719	0.781	0.287	0.620	0.379	0.534	
Aug-17	0.00100	0.138	0.338	0.424	0.653	0.711	0.743	0.310	0.645	0.405	0.592	
Oct-17	0.00100	0.142	0.363	0.365	0.649	0.691	0.734	0.318	0.583	0.397	0.557	
Apr-18	0.00100	0.128	0.263	0.288	0.741	0.871	0.828	0.357	0.668	0.420	0.628	
Oct-18	0.00100	0.134	0.290	0.330	0.648	0.656	0.585	0.273	0.543	0.342	0.517	
Oct-19	0.00100	0.138	0.357	0.358	0.668	0.757	0.676	0.320	0.766	0.430	0.565	
Oct-20	0.00100	0.137	0.358	0.328	0.612	0.761	0.730	0.320	0.778	0.494	0.591	
Oct-21	0.00100	0.151	0.397	0.263	0.586	0.780	0.899	0.373	0.651	0.506	0.584	
Oct-22	0.00100	0.138	0.319	0.278	0.626	0.711	0.741	0.335	0.652	0.441	0.567	
Oct-23	0.00100	0.146	0.330	0.273	0.594	0.646	0.840	0.315	0.645	0.424	0.544	
Oct-24	0.00100	0.132	0.313	0.249	0.706	0.790	0.880	0.368	0.717	0.580	0.616	
Oct-25	0.00100	0.132	0.323	0.293	0.634	0.761	0.860	0.326	0.793	0.499	0.578	
HISTORI	C AVERAGE	0.137	0.332	0.322	0.641	0.738	0.775	0.325	0.672	0.443	0.573	
BASELIN	IE AVERAGE UCL	0.134 0.151	0.323	0.373	0.654 0.738	0.748	0.772	0.318	0.629	0.400	0.578	

Table 8 Page 13 of 21

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

SULFATE (mg/L) SDWR=250

			Water Table		Uppermost Aquifer Upgradient Downgradient							
Date	Reporting Limit	Upgradient MW-11	MW-2	radient MW-6	Upgradient MW-9	MW-1	MW-3	MW-5	gradient MW-15	MW-17	MW-20	
Aug-95												
Nov-95												
Feb-96												
Jun-96												
Sep-96												
Apr-97												
Oct-97												
Apr-98												
Oct-98												
Apr-99												
Oct-99												
Apr-00												
Dec-00												
May-01	10	88	800		50	320	180		81			
Jul-01	10	120	170		32	150	27		250			
Oct-01	10	96	860		16	540	150		1,700			
Jan-02	10	88	980		14	470	120		1,100			
Oct-02	10	110	850		35	<i>500</i>	78		1,100			
Oct-03	10	89	1,100		17	420	66		1,400			
Oct-04	10.0	92.5	790		15.8	538	72.5		1,420			
Oct-05	10.0	130	990	380	22.0	750	94.0	370	1,900			
Jan-06	10.0			394				304				
Apr-06	10.0			361				355				
Jul-06	10.0			380				232				
Oct-06	10.0	121	798	338	16.8	456	49.5	259	1,610			
Oct-07	10.0	125	1,020	315	23.5	665	74.9	398	1,760			
Oct-08	10.0	91.8	664	184	18.4	840	116	265	1,380			

Table 8 Page 14 of 21

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

SULFATE (mg/L) SDWR=250

	Water Table					Upp	ermost Aquif	ier			
	Reporting	Upgradient	Downg	radient	Upgradient			Down	gradient		
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Oct-09	200.0	79.0	600	200	21.0	730	110	92.0	1,400		
Oct-10	100/200	102	479	193	19.3	522	137	211	1,300		
Oct-11	Varies	111	788	245	19.8	471	90	211	1,480		
Oct-12	Varies	113	801	307	16.1	457	55.7	248	1,400		
Dec-12	Varies	109	992	295	14.7	452	68.6	226	1,520	804	
Oct-13	Varies	105	551	332	17.4	452	65.3	257	1,440	957	31.3
Jan-14	100								.,	860	
Apr-14	100									828	20.4
Jul-14	100									830	
Oct-14											19.6
Oct-14	Varies	97.6	520	309	23.0	408	96.5	211	1,330	947	25.7
Oct-15	20.00	78.0	310	265	20.8	364	62.8	202	1,350	901	24.8
Oct-16	5.00	77.9	313	177	22.4	340	87.1	185	1,370	984	28.1
Aug-17	5.00	85.2	272	175	19.8	325	85.0	161	1,200	973	29.2
Oct-17	5.00	84.7	307	153	18.5	311	114	150	1,260	1,050	26.9
Apr-18	5.00	82.4	288	125	15.2	319	176	142	1,330	1,070	25.4
Oct-18	5.00	84.6	283	135	14.7	306	179	136	1,330	1,010	24.5
Oct-19	5.00	87.3	301	105	19.6	303	140	128	1,250	948	24.9
Oct-20	5.00	19.9	265	25.8	2.50U	270	21.8	22.3	1,320	949	25.8
Oct-21	5.00	89.2	318	108	21.2	275	50.2	90.8	1,140	1,140	27.0
Oct-22	5.00	75.6	216	78.1	16.6	247	54.1	59.9	929	1,060	22.6
Oct-23	5.00	74.3	206	75.6	18.8	250	24.4	62.2	1,380	1,090	26.7
Oct-24	Varies	89.0	177	89.9	31.1	244	37.1	81.5	1,260	1,190	36.5
Oct-25	Varies	89.7	191	68.3	21.5	304	37.8	65.0	1,420	1,180	29.9
HISTORI	C AVERAGE	93	555	215	20	419	88	190	1,294	988	26
BASELIN	E AVERAGE	98	703	379	28	370	119	315	783	856	108
	UCL	134			36.5						

Table 8 Page 15 of 21

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

Temperature (degrees Celsius)

	V Upgradient	Vater Table Downg	radient	Upgradient		Upp	ermost Aquif Downs	er ıradient		
Date	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Aug-95										
Nov-95										
Feb-96										
Jun-96	47.0	00.0			40.0	40.0		44.0		
Sep-96	17.0	20.0			18.0	18.0		14.0		
Apr-97 Oct-97	13.6	13.1		13.1	11.8	11.2		13.4		
Apr-98	13.0	13.1		13.1	11.8	11.2		13.4		
Oct-98		14.5				11.9				
Apr-99		14.5				11.8				
Oct-99	11.7	13.3		11.7	10.6	11.1		13.3		
Apr-00	8.5	7.5		11.0	10.0	9.0		12.0		
Dec-00	10	10.0		11	11	12		10		
May-01	10.5	13.1		11.4	13.4	12.9		12.6		
Jul-01	13.9	15.2		12.8	15.3	15.0		13.8		
Oct-01	11	12.6		9	10.5	11.4		12.6		
Jan-02	12	9.3		9	11.7	9.9		10.2		
Oct-02	10.7	12.0		8.1	10.8	10.6		11.0		
Oct-03	14.7	13		13.5	12.5	14.5		14.7		
Oct-04	12.7	14		12.7	11.5	11.9		13.2		
Oct-05	15.7	15.9	15.1	13.5		13.7	12.8	13.9		
Jan-06										
Apr-06										
Jul-06										
Oct-06 Oct-07	14.4	15.1	17.1	13.2	12.7	12.5	16.2	14.1		
Oct-08	13.5	11.8	17.1	13.2	12.7	12.5	13.5	14.1		
OCI-08	13.5	11.0	15.1		11.0	11.1	13.5	11.1		

Table 8 Page 16 of 21

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

Temperature (degrees Celsius)

radient	Upgradient	Uppermost Aquifer Upgradient Downgradient						
MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20	
16.9	13.0	13.9	12.6	16.0	13.9			
16.5	12.3	11.9	11.1	14.3	12.2			
14.5	11.5	11.5	9.7	13.9	10.9			
16.0	14.8	15.4	11.8	15.6	12.1			
12.1	11.6	11.1	11.0	13.7	12.1	12.5		
12.1	10.3	9.2	9.6	13.7	10.0	12.5	9.4	
11.7	10.5	9.2	9.0	13.0	10.0	7.4	9.4	
							40.0	
						8.7	10.3	
						14.9	40.0	
							12.3	
10.8	11.1	11.0	10.1	12.5	10.9	11.9	11.6	
16.1	11.0	11.9	14.1	14.8	15.0	14.3	12.5	
16.4	13.0	10.9	12.0	14.7	14.1	14.3	11.7	
15.7	13.1	10.7	12.9	13.5	13.1	12.8	12.9	
15.7	12.8	11.7	11.1	14.0	12.1	12.8	11.0	
7.2	10.5	10.5	10.4	9.8	10.2	8.7	9.7	
15.3	11.3	10.7	11.6	14.2	12.8	13.8	12.7	
16.9	13.1	12.3	12.2	14.4	13.4	14.5	12.8	
13.2	14.3	13.6	17.1	17.5	13.6	13.5	16.5	
	18.04	13.78	14.61	19.23	19.8	17.06	13.4	
16.35	12.46	13.34	12.07	14.86	14.86	14.17	16.99	
							12.68	
							15.88 14.11	
	16.60 17.15 17.13	17.15 14.84	17.15 14.84 13.06	17.15 14.84 13.06 14.72	17.15 14.84 13.06 14.72 16.03	17.15 14.84 13.06 14.72 16.03 20.72	17.15 14.84 13.06 14.72 16.03 20.72 15.44	

Table 8 Page 17 of 21

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

рΗ

	Water Table Upgradient Downgradient			Upgradient				gradient			
Date		MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Aug-95											
Nov-95											
Feb-96											
Jun-96											
Sep-96		6.48	6.95			6.83	7.16		7.27		
Apr-97											
Oct-97		6.70	6.14		7.12	6.60	6.14		6.95		
Apr-98											
Oct-98		8.01	8.30		8.62	8.66	7.12				
Apr-99											
Oct-99		6.92	7.01		7.19	7.01	7.44		6.40		
Apr-00		7.00	6.59		7.46	6.81	7.31		6.96		
Dec-00		6.62			7.25	5.72	6.79		6.61		
May-01		7.00	7.05		7.50	7.32	6.84		7.44		
Jul-01		6.98	6.81			6.75	7.2		7.58		
Oct-01		7.04	6.43		7.32	5.72	7.01		6.97		
Jan-02		7.01	6.47		7.32	6.78	7.20		6.90		
Oct-02		7.01	8.28		9.31	7.30	8.34		7.49		
Oct-03		7.10	6.7		7.52	6.83	7.22		6.98		
Oct-04		6.78	7.15		7.60	5.82	7.33		7.12		
Oct-05		7.84	7.05	6.30	7.90		7.49	5.84	6.81		
Jan-06											
Apr-06											
Jul-06											
Oct-06		6.68	6.26	6.16		6.13	7.24		6.68		
Oct-07		7.92	7.34	7.67	7.84	7.23	7.40	8.30	7.15		
Oct-08		7.10	6.65	6.88		6.76	7.24	7.10	6.99		

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

рΗ

Water Table Upgradient Downgradient			Upgradient							
Date	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	gradient MW-15	MW-17	MW-20
0.400	7.40	2.22	0.00	7.40	0.04	7.00	7.10	0.04		
Oct-09	7.13	6.93	6.96	7.16	6.94	7.23	7.12	6.91		
Oct-10	7.10	6.60	6.83	7.22	6.71	7.19	7.16	7.01		
Oct-11	7.11	6.56	7.00	7.30	7.08	7.24	7.28	7.07		
Oct-12										
Dec-12	6.88	6.43	6.75	7.02	6.67		6.91	6.87	6.97	
Oct-13	6.88	6.44	6.85	7.03	6.74	6.54	6.76	5.64	6.15	7.00
Jan-14									6.42	
Apr-14									6.25	7.35
Jul-14									6.72	
Oct-14										5.44
Oct-14	7.74	7.57	5.56	7.41	7.50	7.93	6.32	7.57	7.23	8.00
Oct-15	7.03	6.63	6.70	7.23	6.77	7.35	6.92	7.08	6.95	7.52
Oct-16	6.85	6.52	6.79	7.35	6.73	7.06	6.88	6.88	6.98	7.38
Aug-17	6.56	6.37	6.65	6.40	6.60	6.88	6.76	6.85	6.82	7.14
Oct-17	6.76	6.43	6.73	7.30	5.94	6.96	6.76	6.71	6.71	7.16
Apr-18	6.78	6.58	6.95	7.00	6.61	7.15	6.94	6.84	6.97	7.52
Oct-18	6.97	6.57	6.92	7.43	6.83	7.06	6.97	6.96	7.06	7.47
Oct-19	7.03	6.54	6.77	6.05	6.90	7.13	6.79	7.03	7.16	7.35
Oct-20	6.94	6.53	6.92	7.36	6.80	7.09	6.98	7.00	7.03	7.48
Oct-21	7.00	7.11		7.44	6.79	7.30	7.05	7.05	6.96	6.83
Oct-22	7.02	6.69	7.23	7.68	6.84	7.13	7.30	7.27	7.33	7.41
Oct-23	6.42	6.44	6.72	8.07	6.48	6.98	6.70	6.83	6.82	7.11
Oct-24	6.55	6.33	6.55	7.27	6.49	6.85	6.63	6.65	6.69	7.10
Oct-25	6.69	6.60	6.83	7.46	6.72	7.10	6.84	7.04	6.94	7.47

Table 8 Page 19 of 21

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

Specific Conductance (microSiemens/cm)

	V Upgradient	Water Table Upgradient Downgradient			Uppermost Aquifer Downgradient					
Date	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Aug-95										
Nov-95										
Feb-96										
Jun-96										
Sep-96										
Apr-97										
Oct-97	785	1,205		570	1,114	483		1,290		
Apr-98										
Oct-98	880	1,830		664	1,140	620				
Apr-99										
Oct-99	891	1,580		619	1,432	672		2,200		
Apr-00	847	1,461		585	1,192	821		1,917		
Dec-00	839	1,626		592	1,287	761		2.27		
May-01	895	1,903		642	1,415	927		2,080		
Jul-01	783	1,704			1,362	870		1,899		
Oct-01	897	1,710		674	1,287	846		2.35		
Jan-02	887	1,828		674	1,566	802		2,345		
Oct-02	873	1,799		625	1,566	744		2,333		
Oct-03	896	2,090		636	1,473	747.4		2,394		
Oct-04	976	1,822		719.8	1,833	817.2		2,964		
Oct-05	855	1,711	979	612		728	933	2,463		
Jan-06										
Apr-06										
Jul-06										
Oct-06	1,315	2,170	1,107	782	3,760	828	0.40	2,680		
Oct-07 Oct-08	861 908	1,751 1,537	797 764	629	1,811 2,190	716 818	943 954	246 2,583		

Table 8 Page 20 of 21

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

Specific Conductance (microSiemens/cm)

	-	Vater Table				Upp	ermost Aquif			
	Upgradient		radient	Upgradient				gradient		
Date	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Oct-09	866	1,315	880	705.00	1,980	856	911	2,570		
Oct-10	896.6	1,288	879.7	676.2	1,761	899.9	893.5	2,570		
		,			*			0.004		
Oct-11	921.4	1,740	1,047	693	1,621	820	927	2,601		
Oct-12	1,036	1,691	1,050	633	1,543	835	1,005	2,501		
Dec-12	938.2	1,985	1,082	663.3	1,517		1,022	2,708	1,917	
Oct-13	829.9	1,153	1,021	601.0	1,353	826.2	956.7	254	1,890	651.0
Jan-14									1,995	
Apr-14									2,081	700.0
Jul-14									1,979	
Oct-14										754.2
Oct-14	852	1,190	1,183	694.4	1,328	938.1	938.7	2,200	1,899	624.5
Oct-15	891.2	1,024	1,220	677.1	1,424	709.4	1,029	2,488	2,035	672.5
Oct-16	867	978	1,080	654	1,400	703	1,020	2,410	2,090	667
Aug-17	913	962	1,110	723	1,330	678	1,000	2,260	2,160	691
Oct-17	1,430	1,690	1,760	1,110	2,200	1,260	1,720	4,060	3,830	1,180
Apr-18	880	1,040	927	667	1,400	781	997	2,530	2,250	695
Oct-18	906	1,005	979	686	1,310	887	998	1,825	2,114	688
Oct-19	1,160	1,100	1,040	625	1,370	840	970	2,550	2,170	730
Oct-20	845	960	1,000	681	1,190	691	857	2,390	2,270	655
Oct-21	846	1,128		771	1,144	677	854	2,105	2,154	626
Oct-22	926	1,001	832	751	1,183	790	840	1,922	1,909	686
Oct-23	824	805	810	603	1,108	499	820	2,291	2,067	612
Oct-24	942	872	903	689	1,313	622	929	2,647	2,567	701
Oct-25	767	747	755	577	1,150	546	763	2,180	2,060	581

Table 8 Page 21 of 21

Analytical Data Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91c

Notes:

Baseline Data to be completed in 2018 for all calculations except Chloride and Sulfate.

mg/L - Milligrams per liter.

MCL - Maximum Contaminant Level.

UCL - Upgradient Control Limit.

HA - Health Advisory.

SDWR - Safe Drinking Water Regulations Guideline.

U - Value shown is 1/2 the detection limit. This value was used, where applicable, in calculation of UCL, baseline, and 2-year average.

Shaded values indicate concentration exceeds water quality criteria (e.g, the MCL, HA, SDWR limit, SWS, or 2-year average).

BOLD Bold indicates value exceeds the calculated UCL.

Italics Indicates sample result exceeds baseline concentration.

UCL, calculated as the Historic Average plus two standard deviations; based on upgradient wells only.

2-Year Average is the average concentration over the prior two years of sampling data.

Historic Average is the average based on analytical results for each well as shown. Historic dissolved metals are not included.

Baseline Average is the average concentration based four (4) quarters or four (4) initial sampling events.

Historic Control Limit and Action Level Exceedances 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

	CL; black =action level	F a I	F a I	F a I	F a I	F a I
Well	Constituent	2021	2022	2023	2024	2025
MW-1	Chloride					
	Cobalt					
	Iron					
	Lithium					
	Magnesium					
	Manganese					
	Sodium					
	Strontium					
MW-2	Sulfate					
IVIVV-Z	Boron Lithium					
	Magnesium					
	Manganese Sodium					
	Strontium					
	Sulfate					
MW-3	Boron					
10100	Cobalt					
	Iron					
	Lithium					
	Magnesium					
	Manganese					
	Sodium					
	Strontium					
	Sulfate					
MW-5	Boron					
	Chloride					
	Cobalt					
	Iron					
	Lithium					
	Magnesium					
	Manganese					
	Sodium					
	Sulfate					

Historic Control Limit and Action Level Exceedances 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

Key: gray =0	Key: gray =CL; black =action level Well Constituent			F a I I 2023	F a I I 2024	F a I I 2025
MW-6		2021	2022	2023	2024	2025
IVIVV-6	Arsenic Boron					
	Chloride					
	Cobalt					
	Iron					
	Magnesium					
	Manganese					
	Molybdenum					
	Sodium					
	Strontium					
MW-9	Lithium					
	Magnesium					
	Sodium					
MW-11	Iron					
	Magnesium					
	Manganese					
	Sodium					
MW-15	Boron					
	Chloride					
	Lithium					
	Magnesium					
	Manganese					
	Molybdenum					
	Sodium					
	Strontium					
	Sulfate					

Historic Control Limit and Action Level Exceedances 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

	Constituent	F a I	F a I	F a I	F a I	F a
Well	Constituent	2021	2022	2023	2024	2025
MW-17	Boron		-			
	Chloride					
	Iron					
	Lithium					
	Magnesium					
	Manganese					
	Molybdenum					
	Sodium					
	Sulfate					
MW-20	Boron					
	Lithium					
	Magnesium					
	Sodium					

Note:

Data shown for 5 years total.

Table 10

October 2025 Groundwater Quality Assessment Plan Trend Analysis 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

		MW-11	Water Table MW-2	MW-6	MW-9	MW-1	Up MW-3	permost Aquifer MW-5	MW-15	MW-17	MW-20
Parameter	Units	UG	DG	DG	UG	DG	DG	DG	DG	DG	DG
Arsenic	mg/L	ND	ND	0.00459	ND	ND	ND	ND	ND	ND	ND
	Trend	NA	NA	None	NA	NA	NA	NA	NA	NA	NA
Boron	mg/L Trend	0.154 None	6.98 Decreasing	8.60 Increasing	0.401 None	0.310 None	1.75 None	7.05 None	41.7 Increasing	29.7 Increasing	1.79 None
Chloride	mg/L	10.6	8.62	14.2	ND	6.59	ND	15.3	17.7	17.5	ND
	Trend	None	Decreasing	None	NA	Decreasing	NA	None	None	None	NA
Cobalt	mg/L	ND	ND	0.00385	ND	0.000934	0.00162	0.00118	ND	ND	ND
	Trend	NA	NA	Increasing	NA	None	Increasing	Decreasing	NA	NA	NA
Iron	mg/L	0.625	ND	1.980	ND	2.64	0.203	0.343	ND	1.23	ND
	Trend	Increasing	NA	Increasing	NA	Increasing	None	None	NA	Decreasing	None
Lithium	mg/L	ND	0.0331	ND	0.0408	0.0635	0.0336	0.0183	0.140	0.242	0.0203
	Trend	NA	Decreasing	NA	None	None	None	None	None	Decreasing	None
Magnesium	mg/L	46.7	30.2	33.1	31.1	80.1	20.4	35.3	114	193	16.3
	Trend	None	Decreasing	Decreasing	None	None	None	None	None	None	None
Manganese	mg/L	0.202	0.0615	7.46	0.0130	0.293	0.563	0.249	0.0476	0.329	0.0259
	Trend	None	None	None	None	None	Increasing	Decreasing	None	None	None
Molybdenum	mg/L	ND	ND	0.0775	ND	ND	ND	ND	0.396	0.0513	ND
	Trend	NA	NA	None	NA	NA	NA	NA	Increasing	Decreasing	NA
Sodium	mg/L	13.1	16.6	16.7	13.2	9.97	24.8	18.4	96.5	77.6	88.1
	Trend	None	Decreasing	Decreasing	None	None	None	None	None	Increasing	None
Strontium	mg/L	0.132	0.323	0.293	0.634	0.761	0.860	0.326	0.793	0.499	0.578
	Trend	None	Decreasing	None	None	None	Increasing	None	Increasing	Increasing	None
Sulfate	mg/L	89.7	191	68.3	21.5	304	37.8	65.0	1,420	1,180	29.9
	Trend	None	Decreasing	Decreasing	None	Decreasing	None	Decreasing	None	Increasing	None
Temperature	°C	13.69	15.70	17.13	15.69	12.35	12.62	15.99	14.86	14.70	14.11
	Trend	None	None	None	None	None	None	None	None	None	None
рН	pH Units	6.69	6.60	6.83	7.46	6.72	7.10	6.84	7.04	6.94	7.47
	Trend	None	None	None	None	None	None	None	None	None	None
Specific	μS/cm	767	747	755	577	1,150	546	763	2,180	2,060	581
Conductance	Trend	None	Decreasing	None	None	Decreasing	None	None	None	None	None

Notes:

UG - Upgradient.

mg/L - Milligrams per liter.

 $\mu S/cm$ - MicroSiemens per centimeter.

ND - Not detected.

NS - Not sampled.

NA - Not applicable; no trend observed due to predominance of non-detect results.

°C - Degrees Celsius.

Shaded values indicate concentration exceeds water quality criteria (e.g, the MCL, HA, SDWR limit, SWS, or 2-year average).

Leachate Management Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

This table is not applicable to the CIPCO Fair Station CCR Monofill

Gas Monitoring Summary 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

This table is not applicable to the CIPCO Fair Station CCR Monofill

Table 13

Groundwater Elevations ^a 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C October 16, 2025

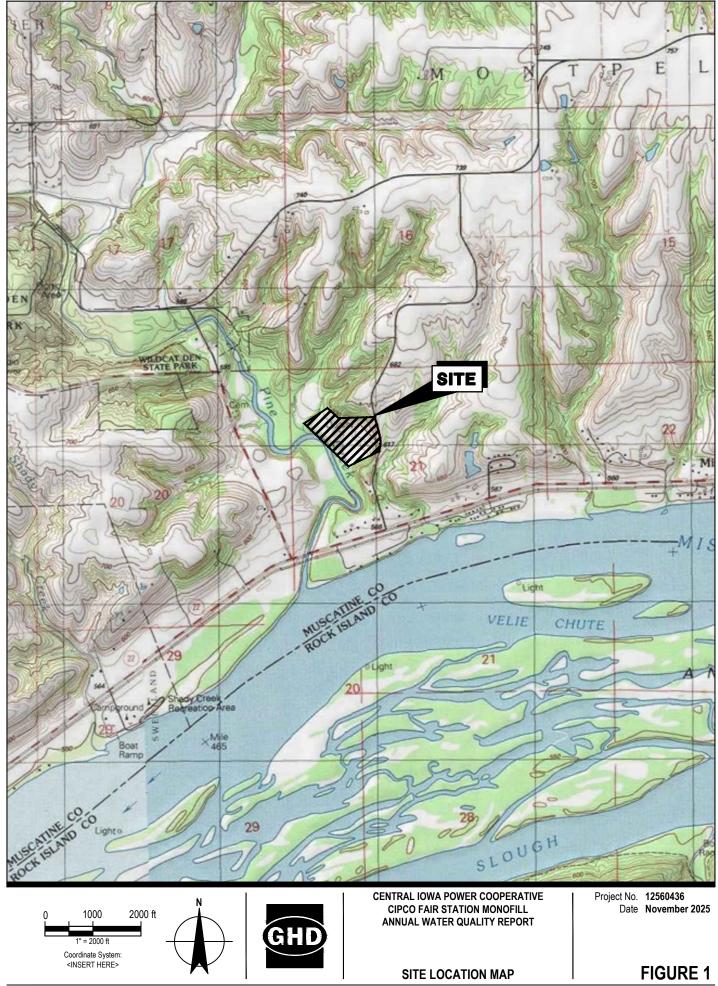
Monitoring Well	Unit	Elevation (feet)
MW-1	Uppermost Aquifer	565.71
MW-2	Water Table	551.92
MW-3	Uppermost Aquifer	549.71
MW-4	Water Table	547.59
MW-5	Uppermost Aquifer	549.53
MW-6	Water Table	548.63
MW-7	Water Table	554.34
MW-9	Uppermost Aquifer	599.09
MW-10	Water Table	609.86
MW-11	Water Table	578.69
MW-15	Uppermost Aquifer	546.14
MW-17	Uppermost Aquifer	544.58
MW-20	Uppermost Aquifer	554.30

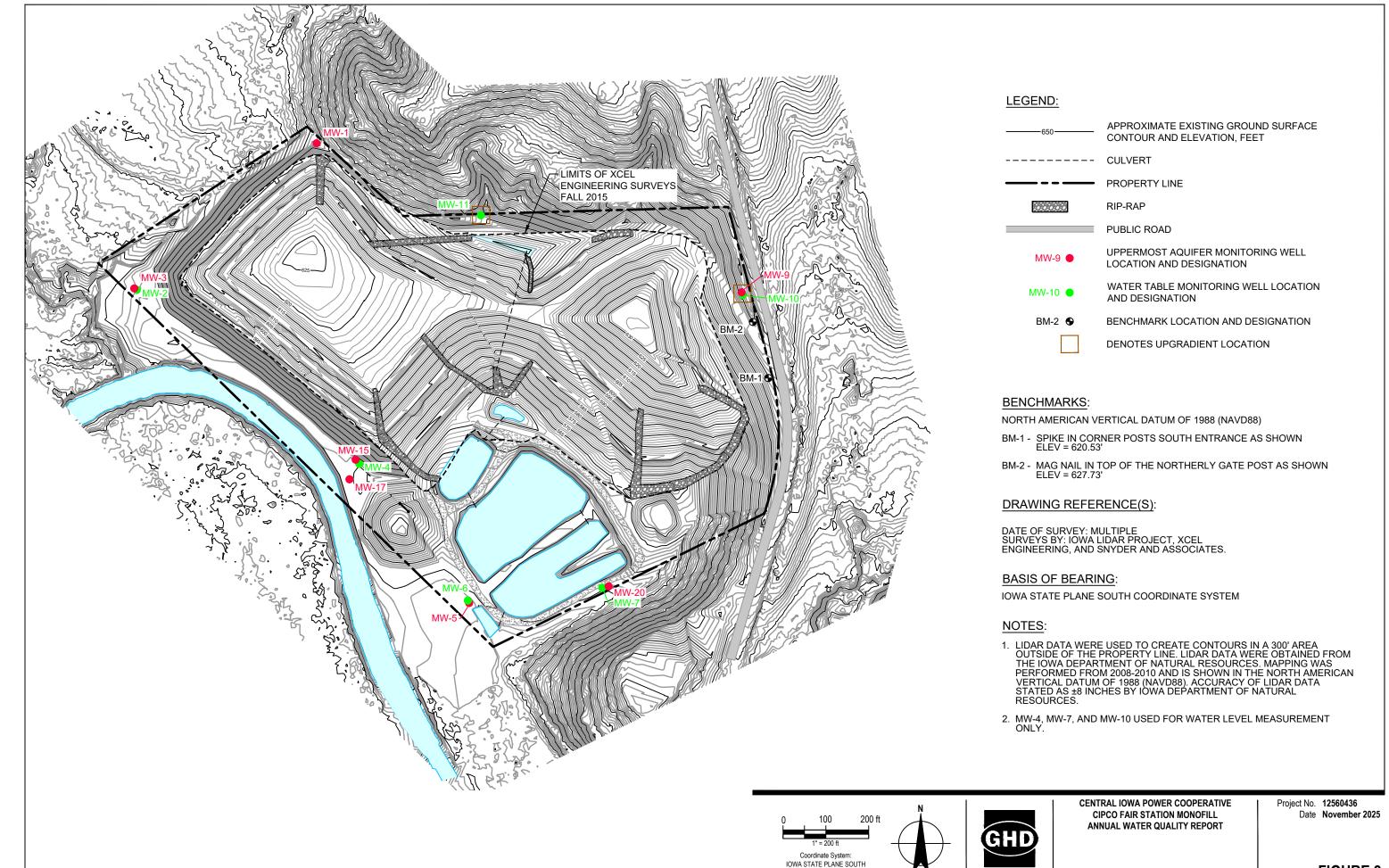
Notes:

^a All groundwater elevations in feet North American Vertical Datum 1988. CCR - Coal combustion residue.

Table 14

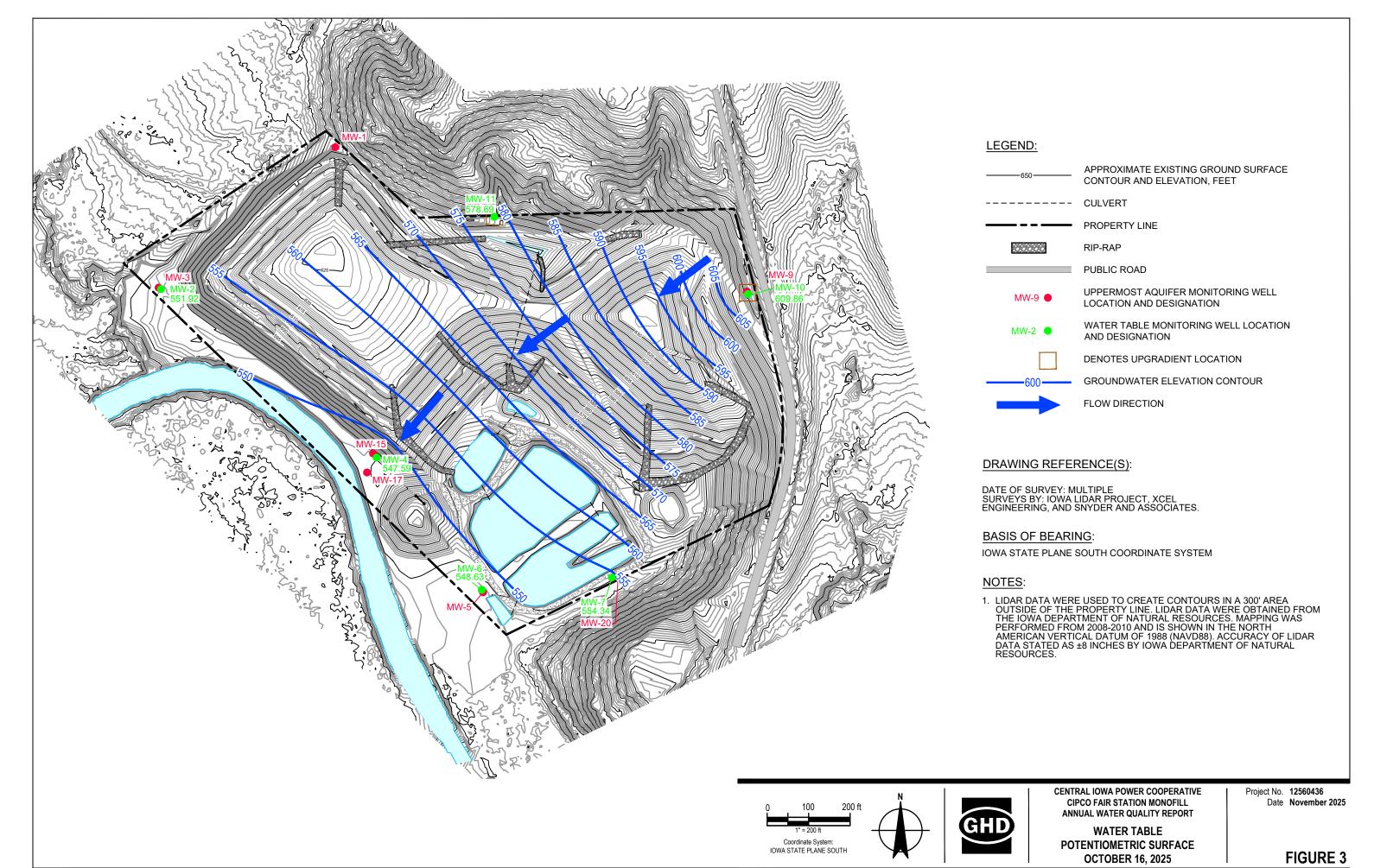
Vertical Hydraulic Grandients^a (ft/ft) 2025 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C October 16, 2025

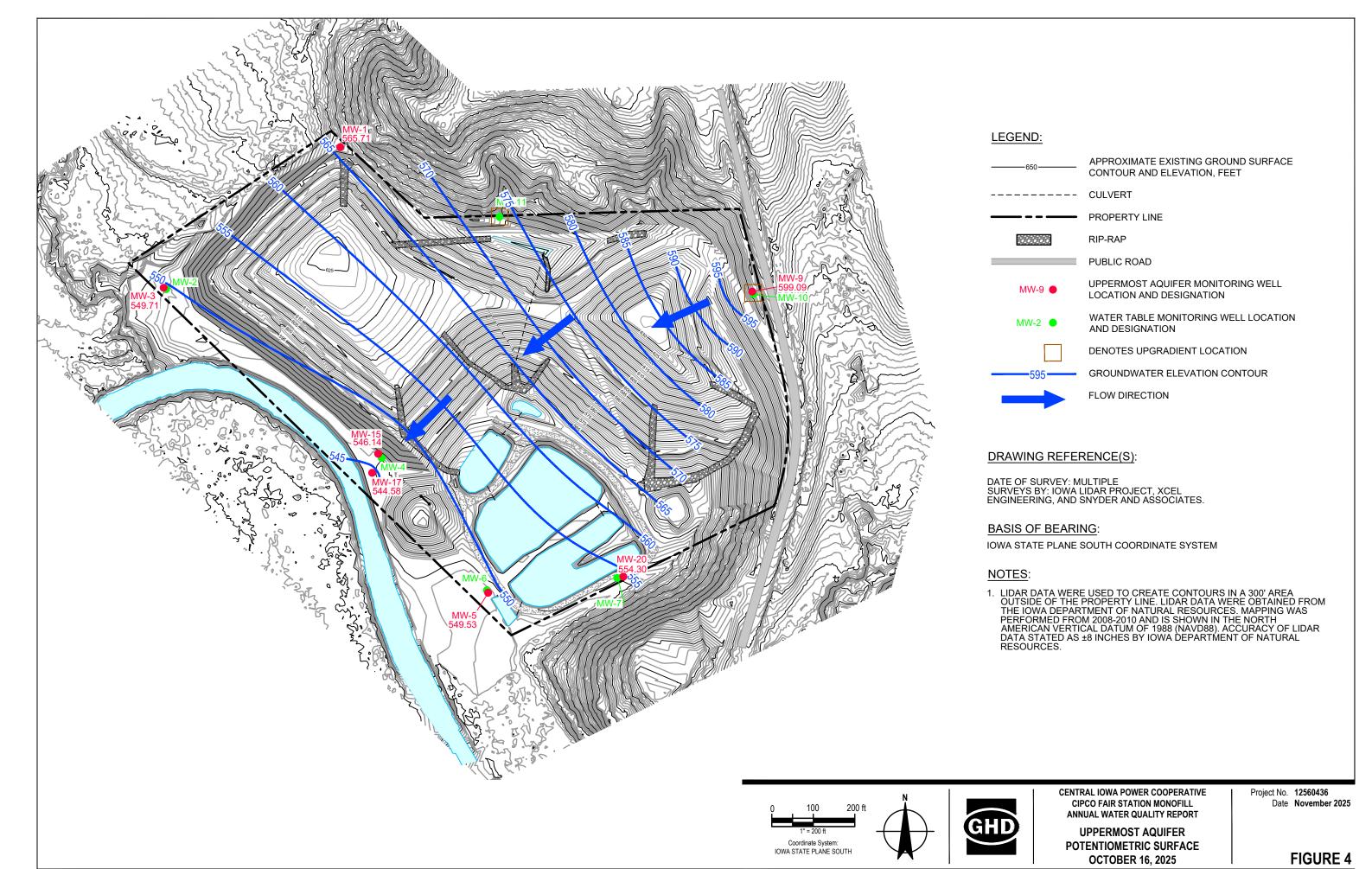

Well Cluster	Gradient
Shallow/Deep	
MW-2/MW-3	-0.061
MW-6/MW-5	0.055
MW-10/MW-9	-0.128
MW-7/MW-20	-0.002

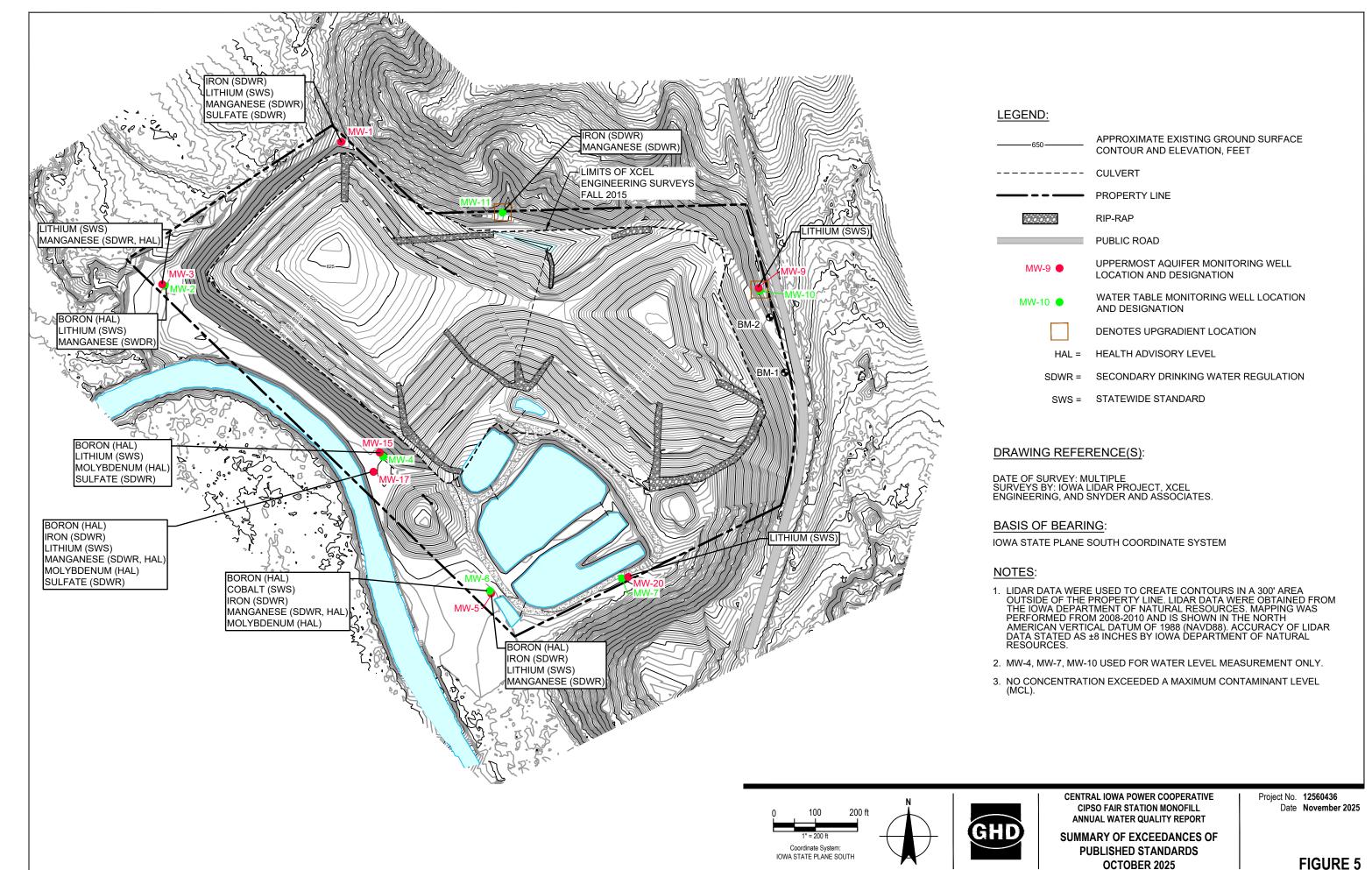

Notes:

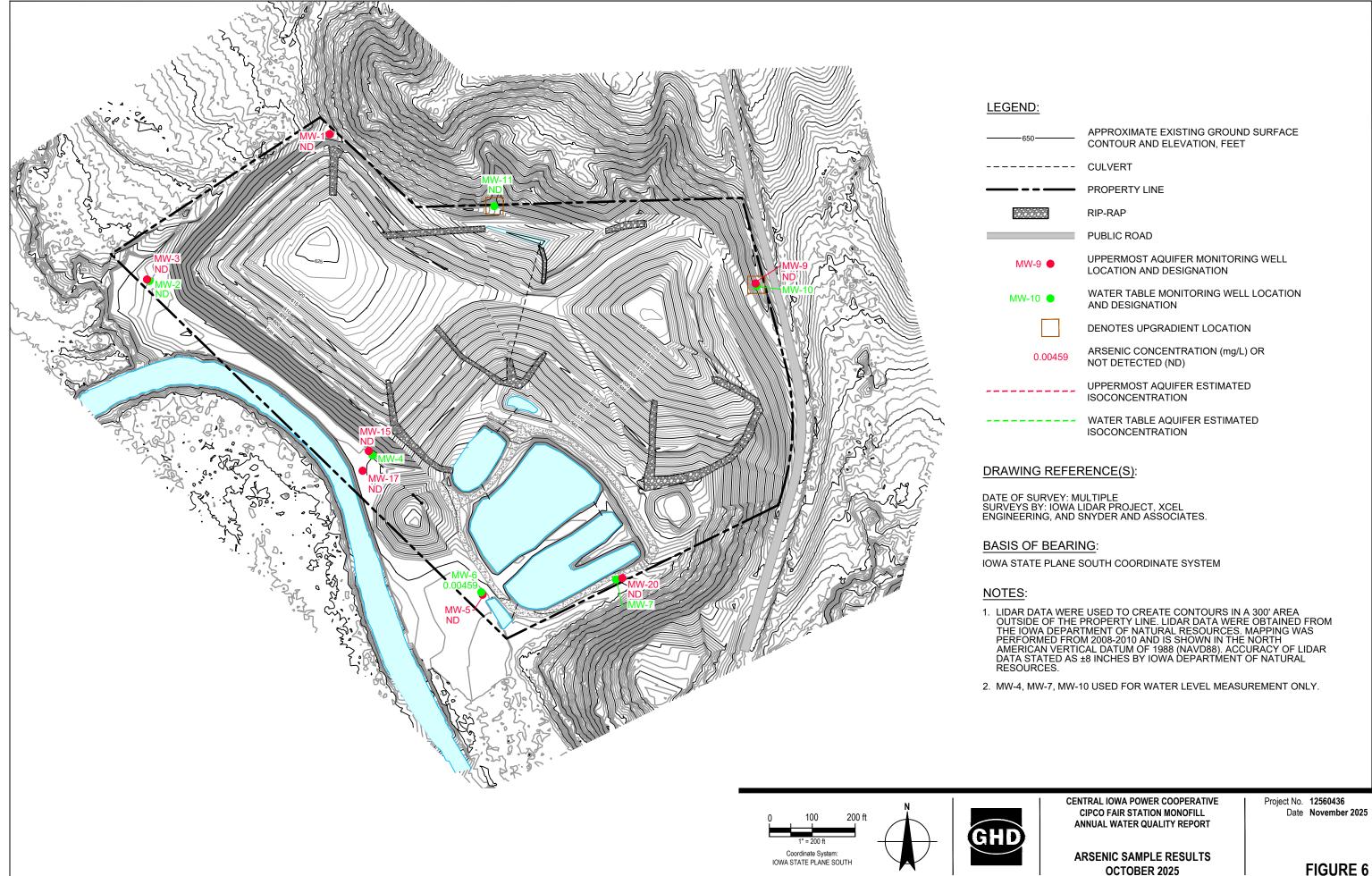
ft/ft - Foot per foot.

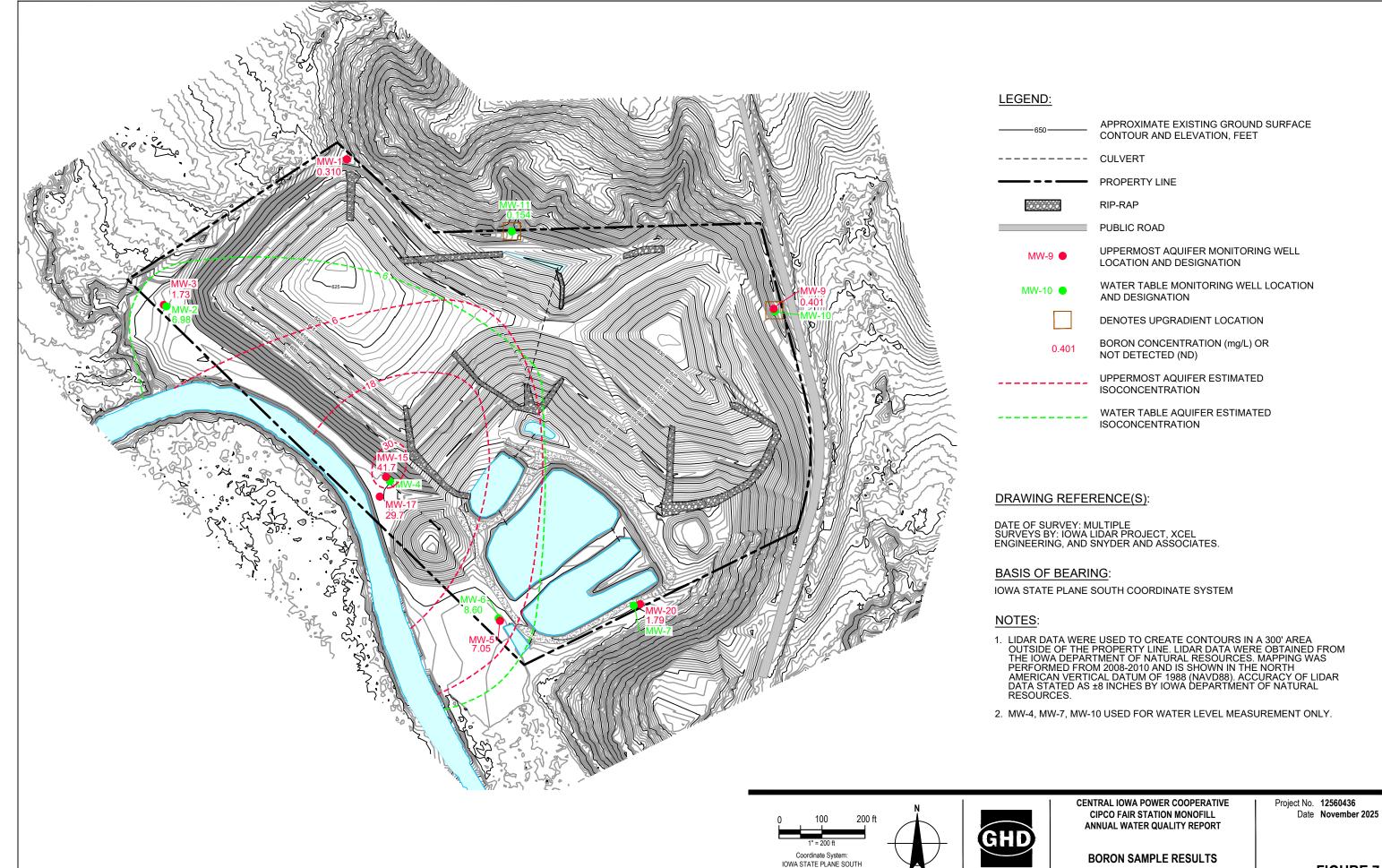
Positive hydraulic gradients indicate upward-directed flow, and negative hydraulic gradients indicate downward-directed flow.
 CCR - Coal combustion residue.

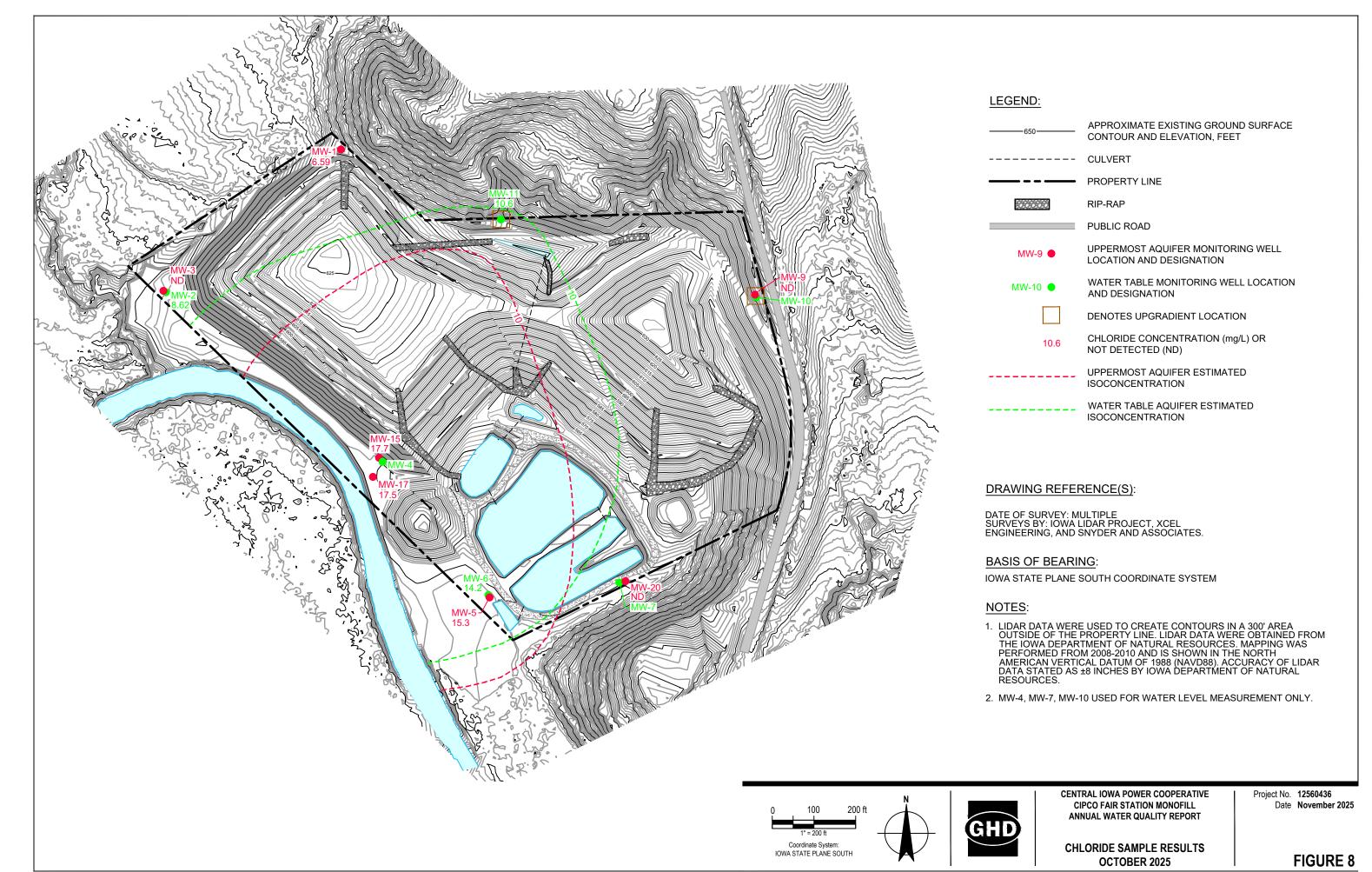

Figures

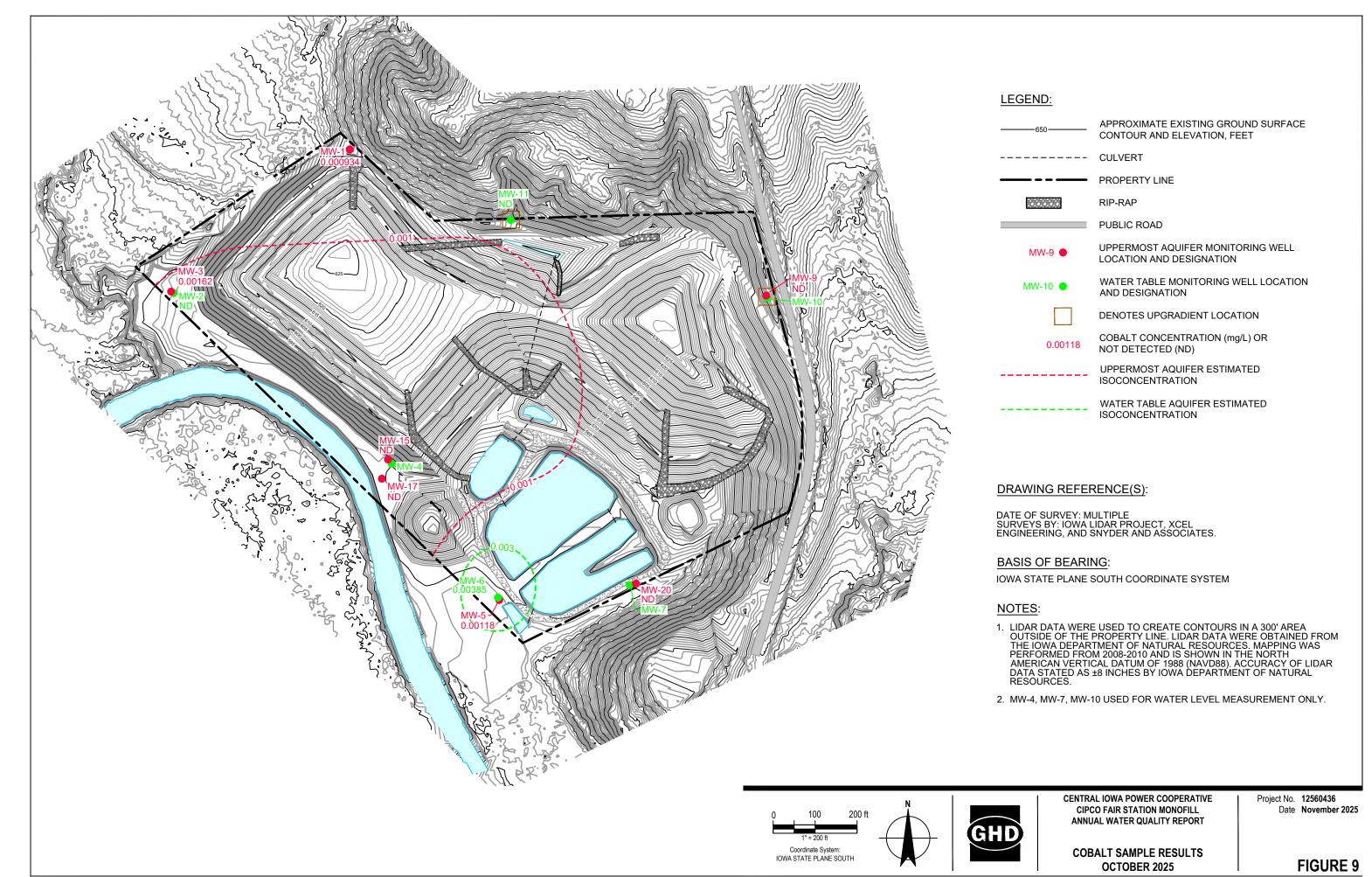


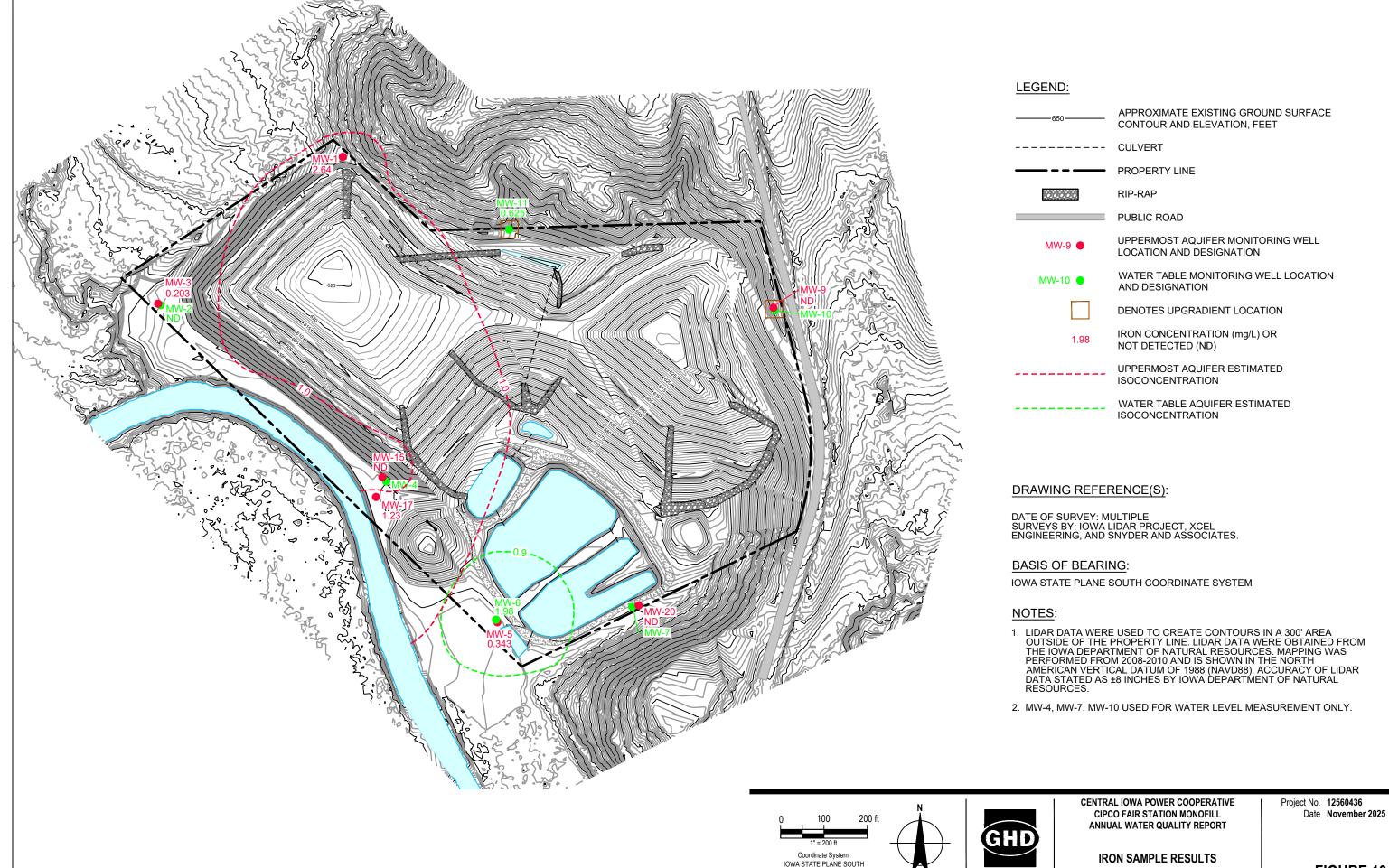



Filename: N:\US\Des Moines\Projects\563\12560436\Digital_Design\ACAD\Figures\RPT007\12560436-GHD-00-00-RPT-EN-D102_DE-007.dwg


SITE MAP AND MONITORING NETWORK

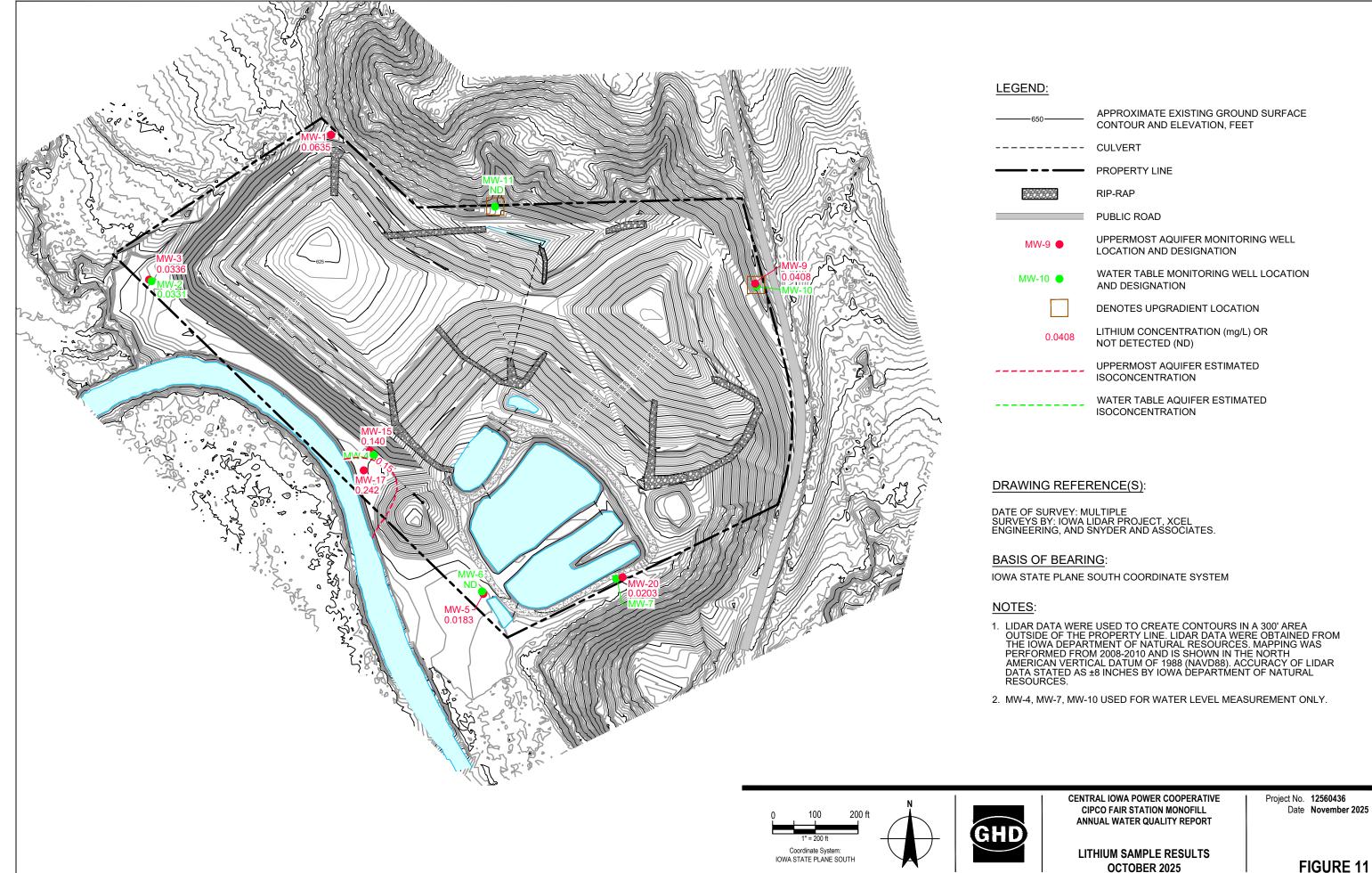


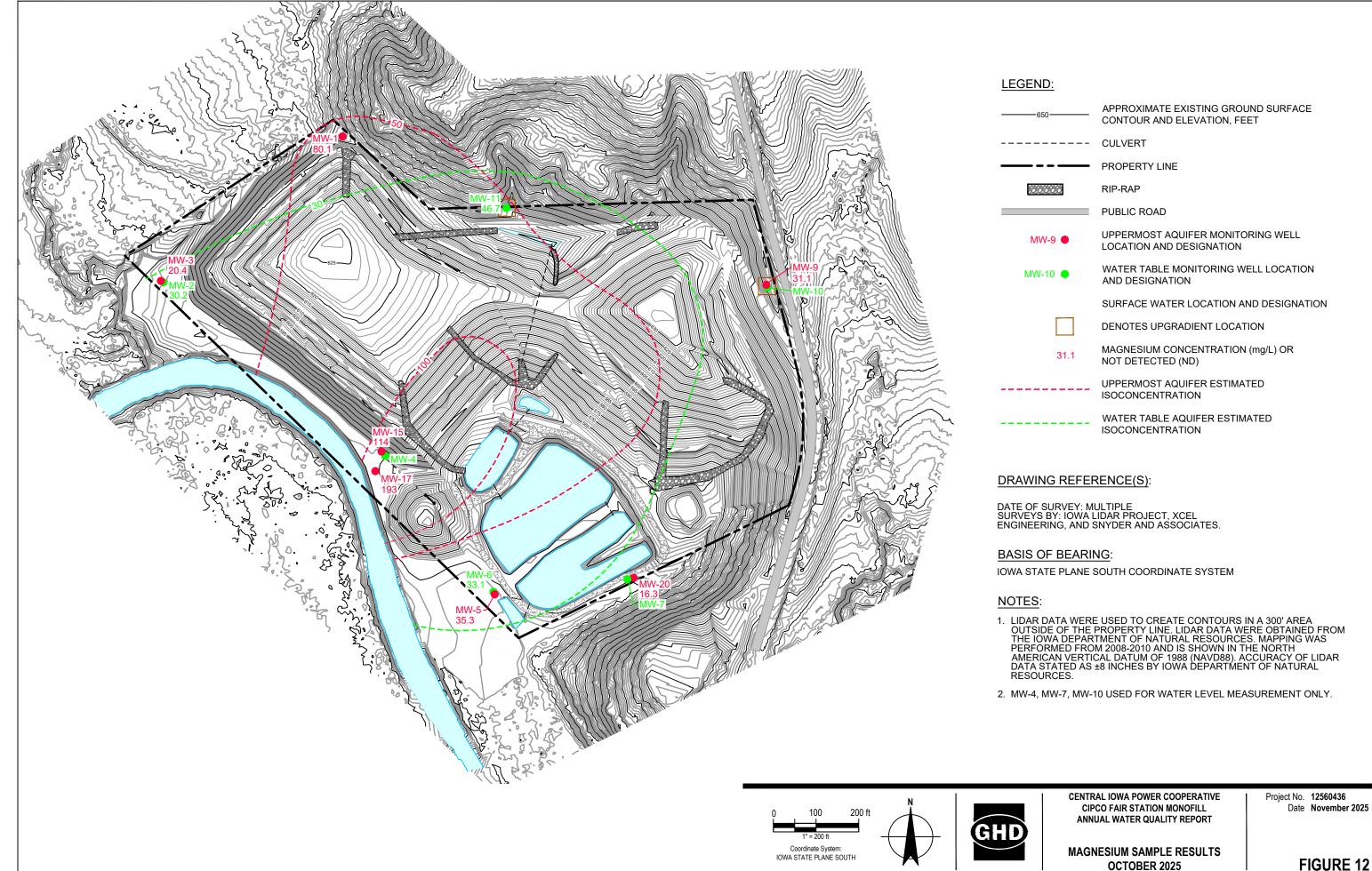


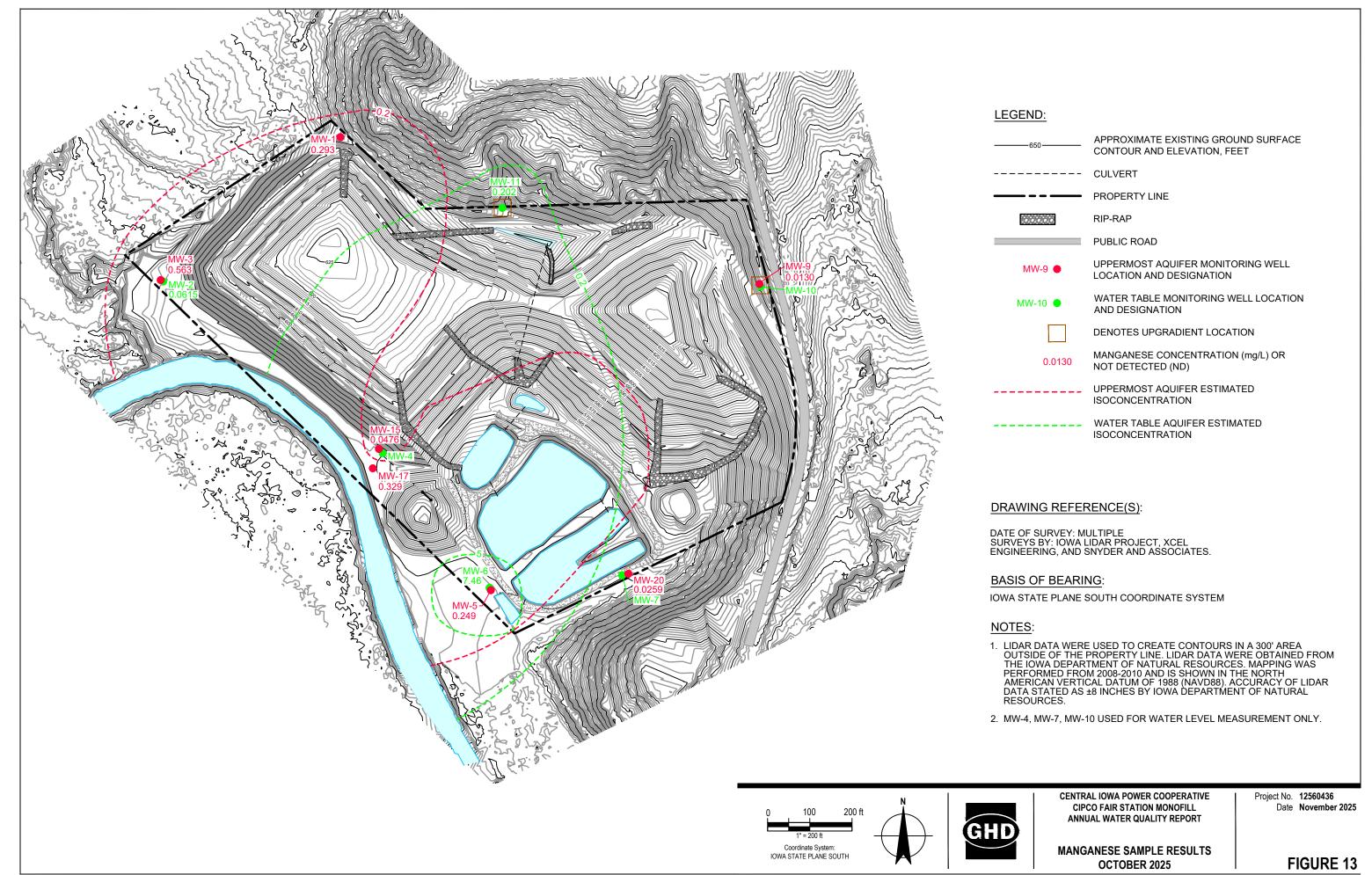


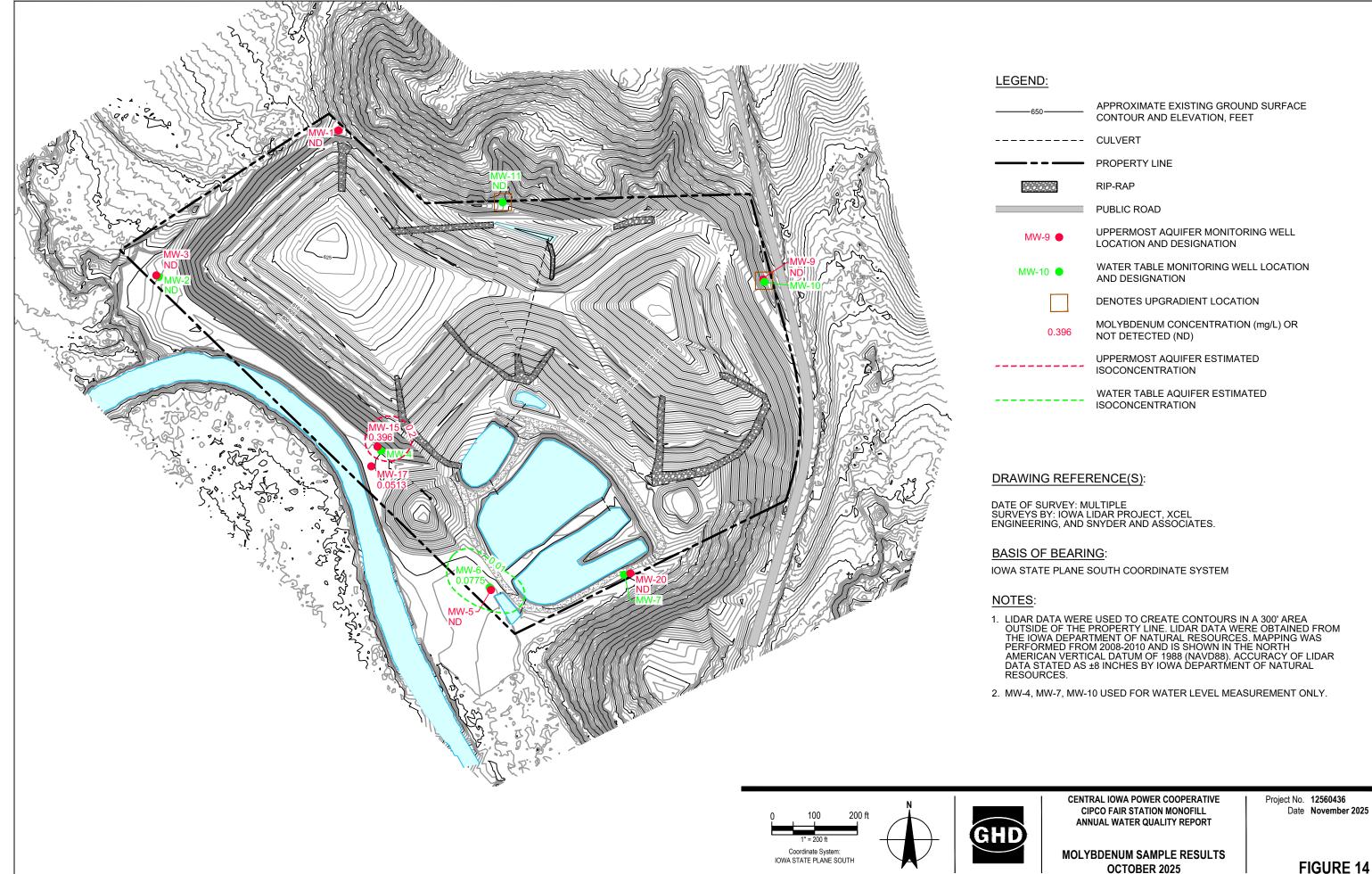
Filename: N:US/Des Moines/Projects/563/12560436/Digital_Design/ACAD/Figures/RPT007/12560436-GHD-00-00-RPT-EN-D107_DE-007.dwg

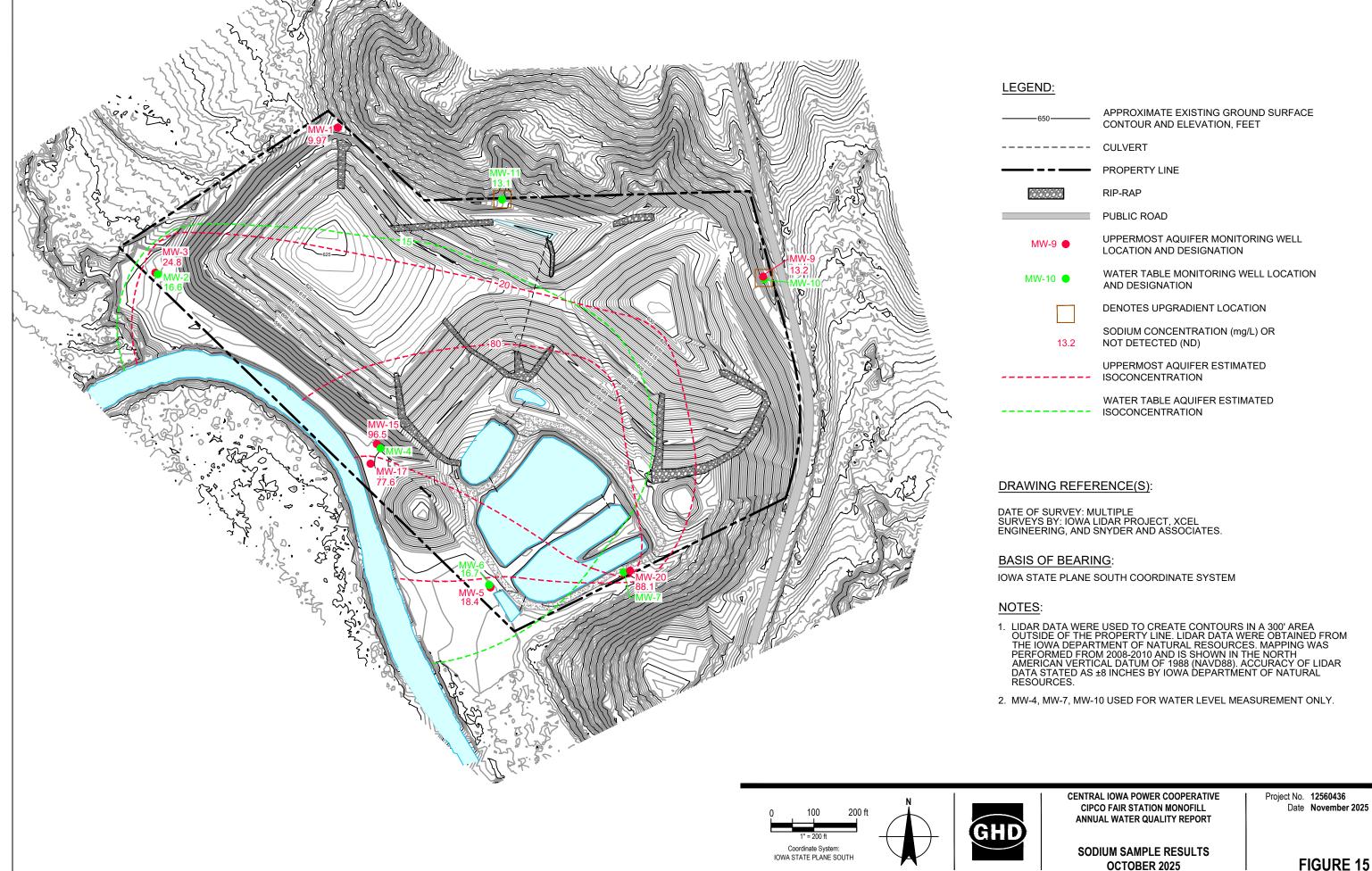
OCTOBER 2025 FIGURE 7

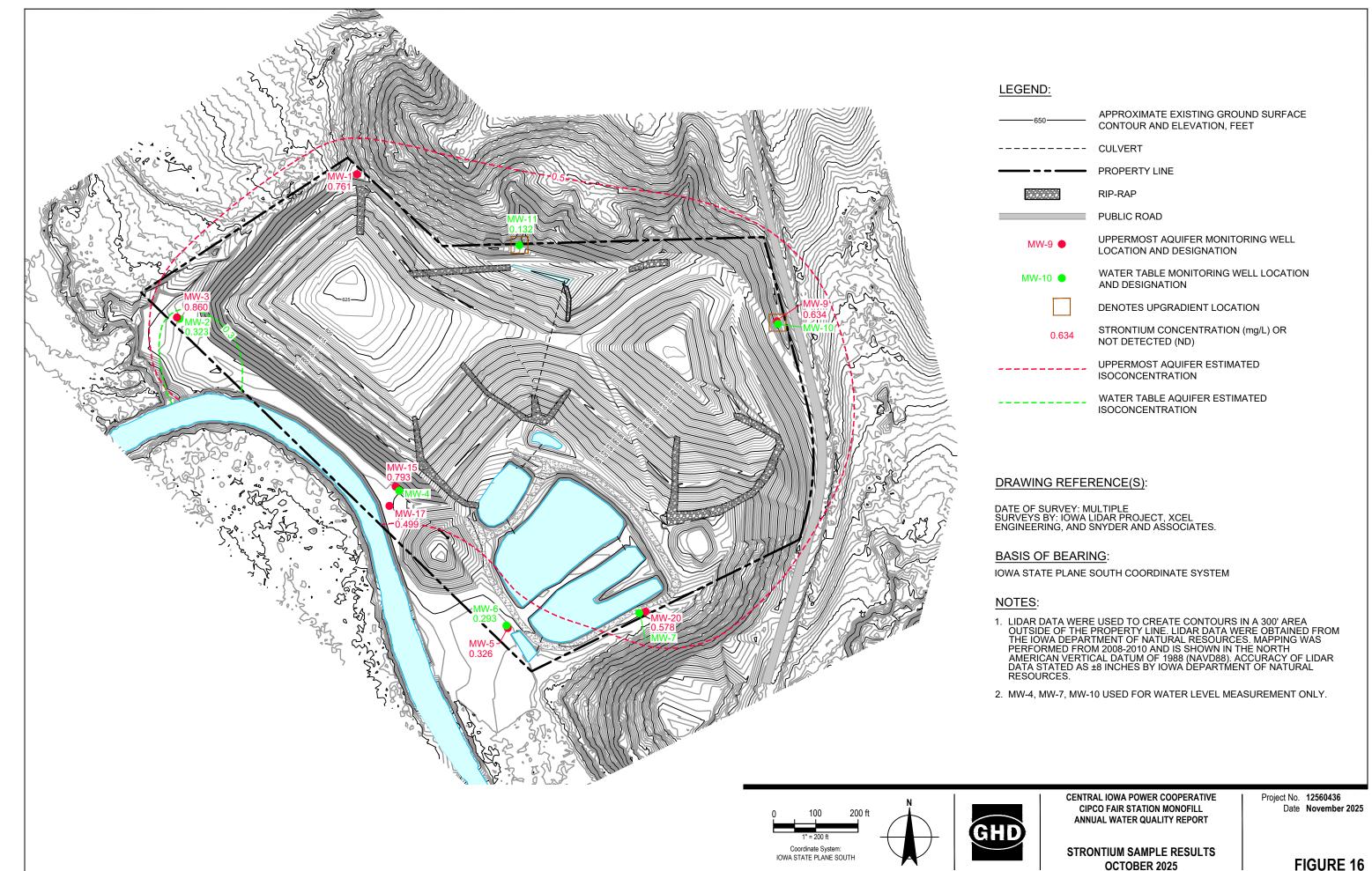


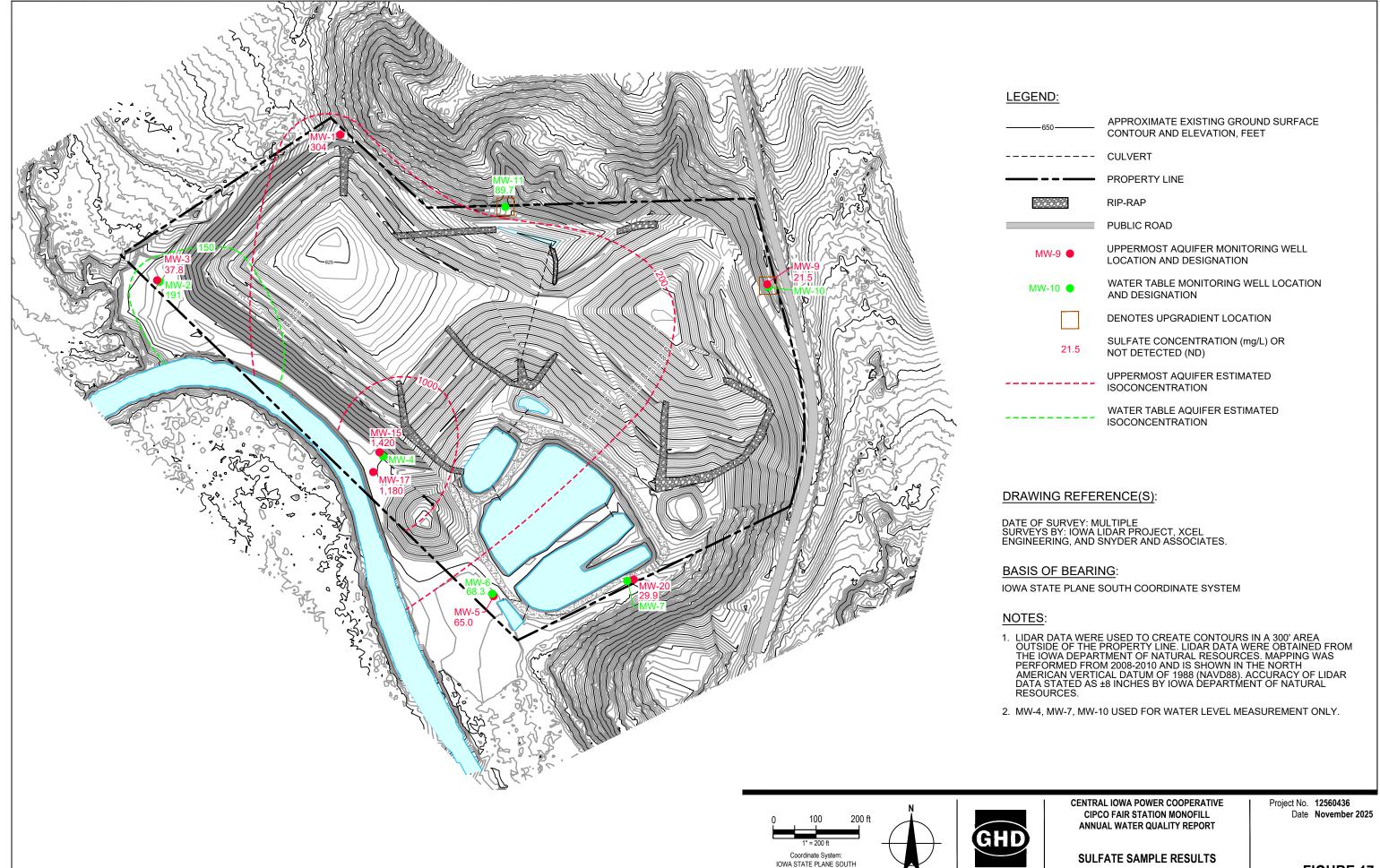


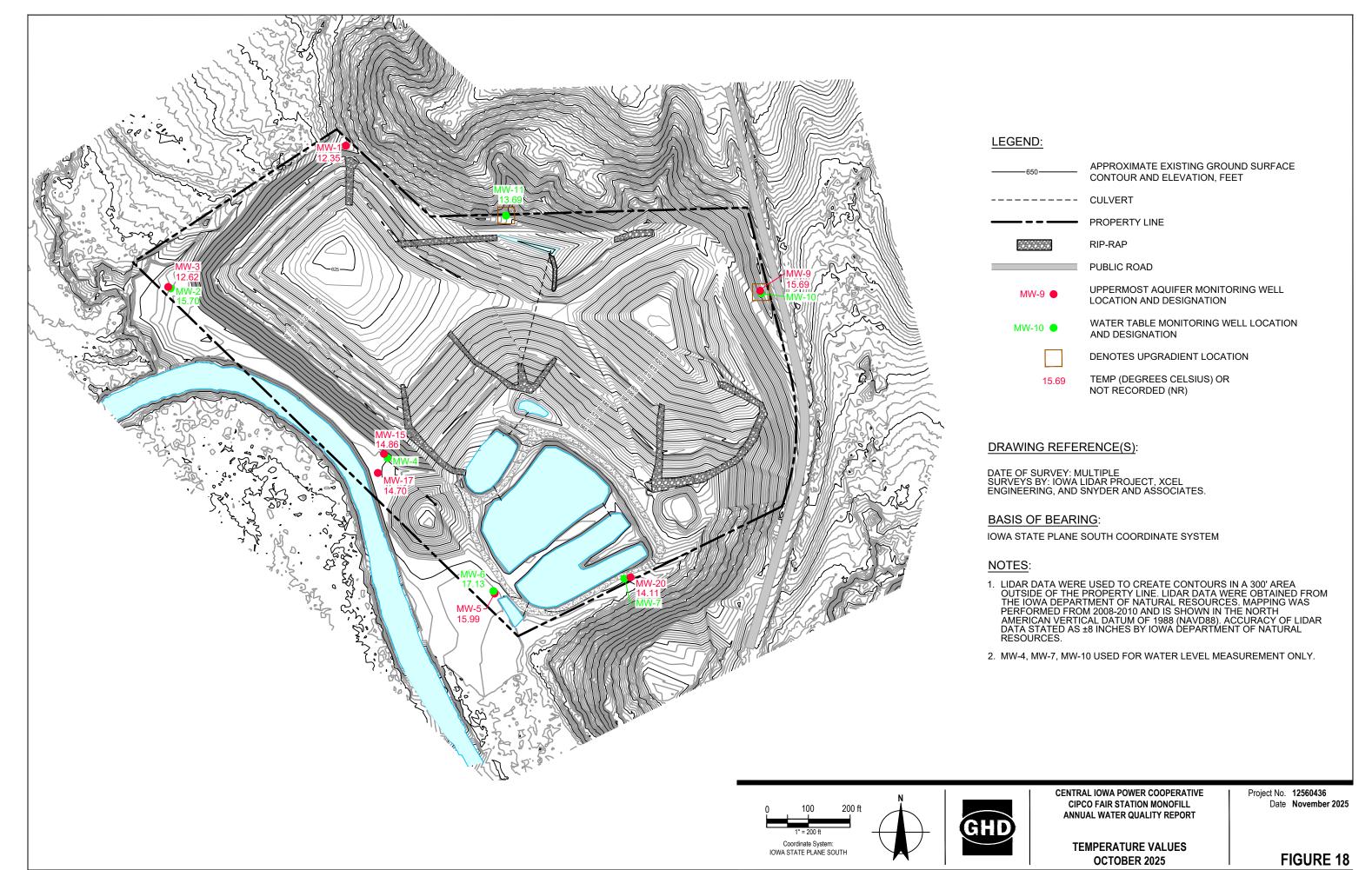


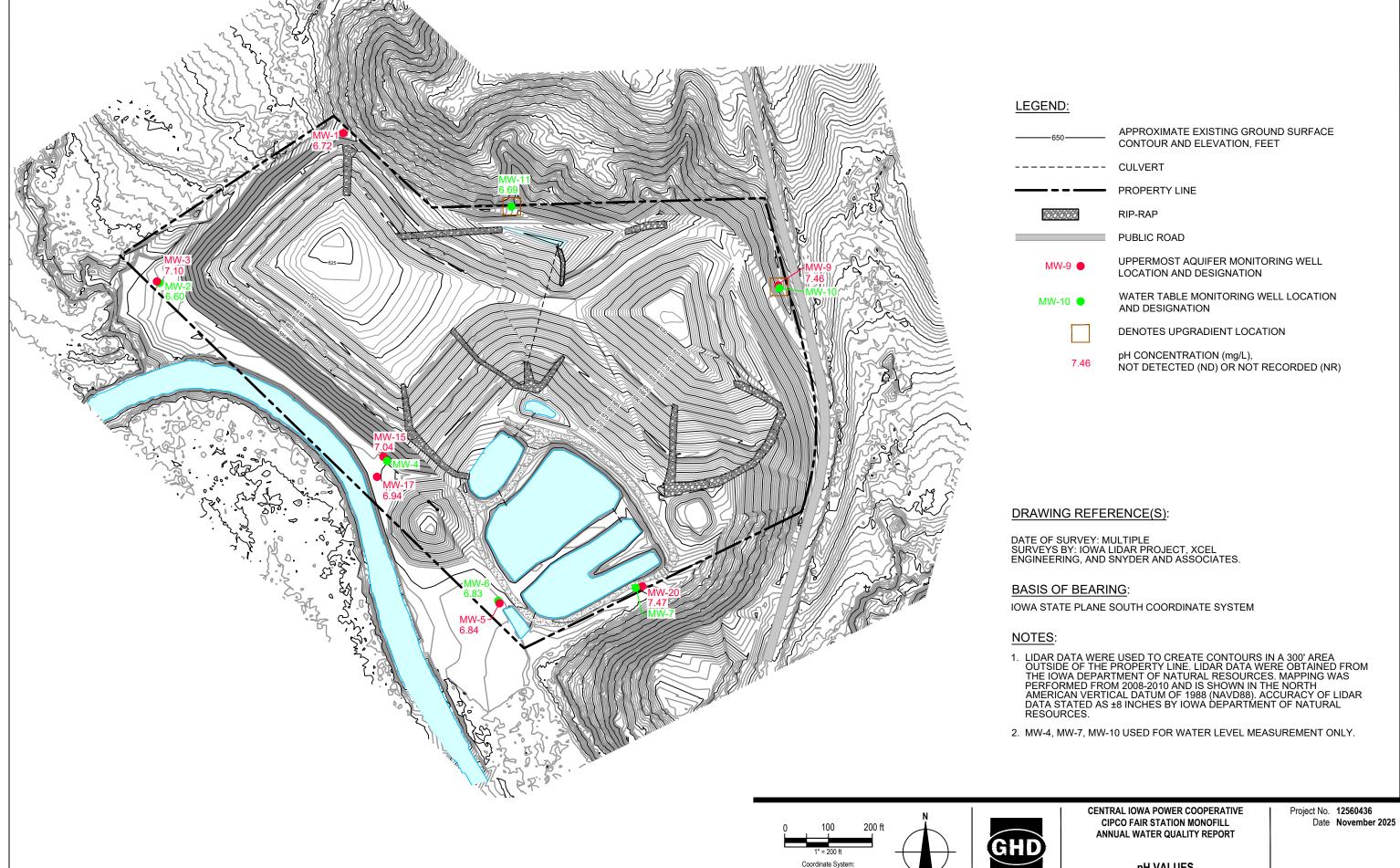

Filename: N:US\Des Moines\Projects\563\12560436\Digital_Design\ACAD\Figures\RPT007\12560436-GHD-00-00-RPT-EN-D110_DE-007.dwg

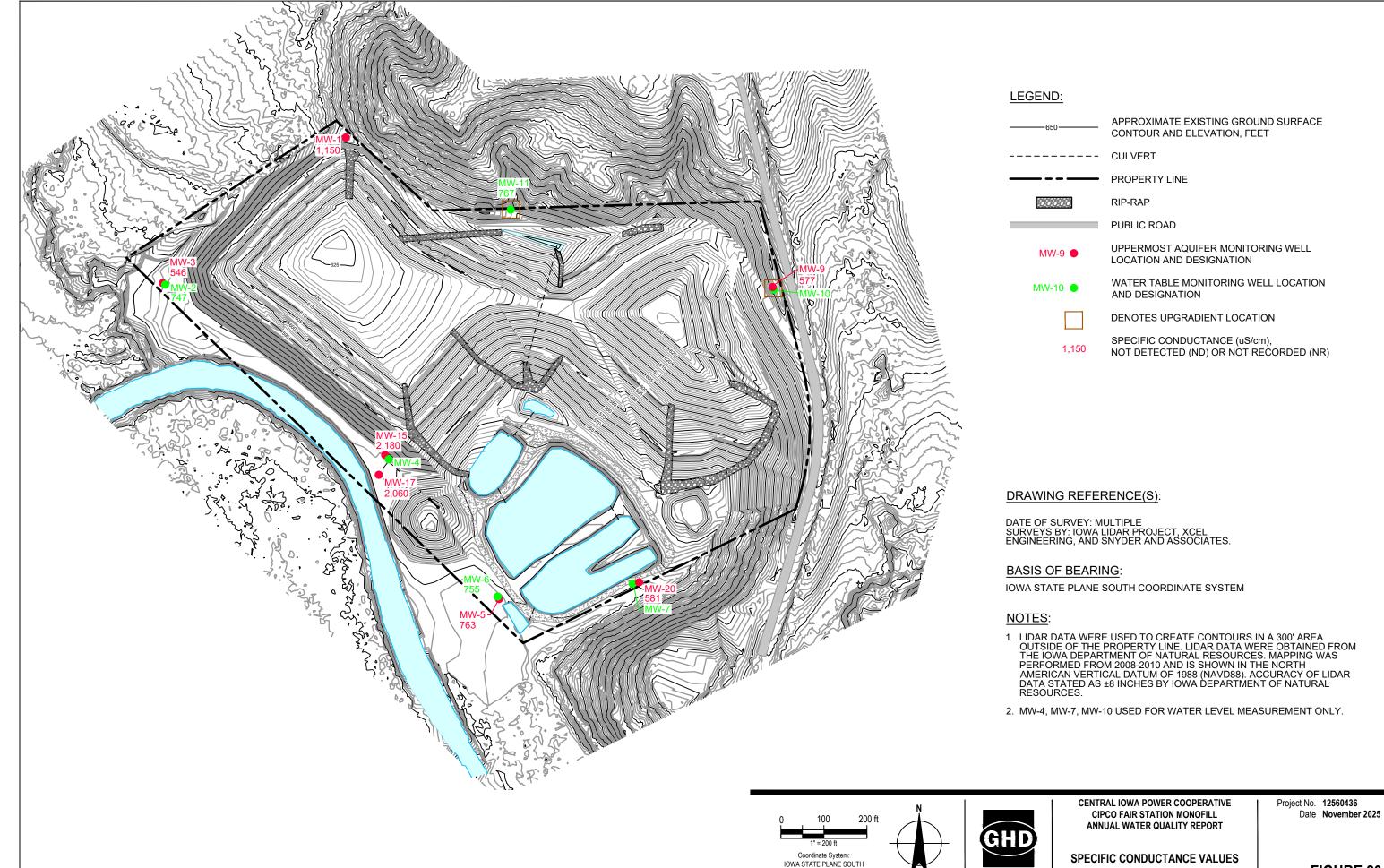

OCTOBER 2025











IOWA STATE PLANE SOUTH

Filename: N:IUSIDes Moines|Projects|563112560436|Digital_Design|ACAD|Figures|RPT007\12560436-GHD-00-00-RPT-EN-D119_DE-007.dwg

pH VALUES OCTOBER 2025

Filename: N:US/Des Moines/Projects/563/12560436/Digital_Design/ACAD/Figures/RPT007/12560436-GHD-00-00-RPT-EN-D120_DE-007.dwg

OCTOBER 2025 FIGURE 20

Appendices

Appendix A Monitoring Forms

Site Name	CIPCO Ash Disposa	l Landfill	Perr	nit No.	70-SDP-09-91P
Monitoring Well/Piezomete	r No.	MW-1		gradient owngradient	X
Name Of person sampling		Cli	nt Oberbroecl	kling	
A. MONITORING WELL/I	PIEZOMETER CONI	DITIONS			
Well/piezometer Properly If no, explain	y Capped?	Yes		nter or Litter? in	No
B. GROUNDWATER ELE	VATION MEASURE	EMENT (+/- 0.01 fe	oot, MSL)		
Elevation: Top of inner v	vell casing	588.13 ft	Ground Elevat	ion	587.23 ft
Depth of Well	36.27 ft		asing Diameter		2.0 in
Equipment Used	,	Solinst Model 101	Water Level 1	Probe	
Groundwater Leve	el (+/- 0.01 foot below	top of inner casing	g, MSL):		
	D / /T:	D 41		1 4	
	Date/Time	Depth Ground		oundwater Elevation	
		Ground	water r	Elevation	
Before Purging	10/16/2025	9:15 22.42	2 ft	565.71 ft	
* After Purging		0:00 22.42	ft	565.71 ft	_
* Before Sampling	10/16/2025 1	0:00 22.42	<u></u>	565.71 ft	_
*C. WELL PURGING					
Quantity of Water Remo	ved from Well (gallon	e)		1.22 gallons	
No. of Well Volumes (ba		· —		54 well volui	nes
Was well pumped/bailed		No			
Equipment used:					
Bailer type		Dedicated Ba			
1 /1	Pneumatic Bladder	Dedicated Pu	·	No	
If not dedicated, met	hod of cleaning	Replac	e bladder, rin	se w/water, o	ledicated tubing
*D. FIELD MEASUREME	NT				
Weather Conditions		(Overcast		
Field Measurements (after	er stabilization)				
Temperature	12.	Units Units		°C	
Equipment Used			Aquatroll 500)	
pH Equipment Used	6.7	72	A 4 11 50(<u> </u>	
Specific Cond.	11	46 Units	Aquatroll 500		
Equipment Used	1,1	Onits	Aquatroll 500	μS/cm	
Equipment obed			quadron 500	•	
Comments: ORP: 201.7	DO: 0.12 Tur	b.: 1.42	Sample T	ime: 10/1	6/2025 10:00

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Test Date / Time: 10/16/2025 9:28:10 AM

Project: CIPCO-MW-1 (2)

Operator Name: Clint Oberbroeckling

Location Name: MW-1
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 25 ft
Total Depth: 35 ft

Initial Depth to Water: 22.42 ft

Pump Type: QED Sample PRO Tubing Type: Nylon- Double

Bonded

Tubing Inner Diameter: 0.25 in

Tubing Length: 35 ft

Pump Intake From TOC: 30 ft Estimated Total Volume Pumped:

4625 ml

Flow Cell Volume: 130 ml Final Flow Rate: 300 ml/min

Final Draw Down: 0 ft

Instrument Used: Aqua TROLL 500

Serial Number: 613885

Test Notes:

Weather Conditions:

55° overcast

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10 %	+/- 10	+/- 0.33	
10/16/2025 9:28 AM	00:00	6.775 pH	12.81 °C	1,041 µS/cm	0.588 mg/L	16.05 NTU	217.2 mV	22.42 ft	300.0 ml/min
10/16/2025 9:31 AM	03:05	6.740 pH	12.56 °C	1,055 µS/cm	0.319 mg/L	10.98 NTU	213.5 mV	22.42 ft	300.0 ml/min
10/16/2025 9:34 AM	06:10	6.722 pH	12.44 °C	1,096 µS/cm	0.212 mg/L	5.342 NTU	209.9 mV	22.42 ft	300.0 ml/min
10/16/2025 9:37 AM	09:15	6.712 pH	12.38 °C	1,130 µS/cm	0.168 mg/L	1.589 NTU	207.1 mV	22.42 ft	300.0 ml/min
10/16/2025 9:40 AM	12:20	6.712 pH	12.37 °C	1,143 µS/cm	0.140 mg/L	0.563 NTU	204.4 mV	22.42 ft	300.0 ml/min
10/16/2025 9:43 AM	15:25	6.719 pH	12.35 °C	1,146 μS/cm	0.123 mg/L	1.417 NTU	201.7 mV	22.42 ft	300.0 ml/min

Samples

Sample ID:	Description:
Mw-1	ST1000

Site Name	CIPCO Ash Disp	osal Land	fill		Permit No.	70-SDP-09-91P
Monitoring Well/Piezomete	er No.		MW-2		Upgradient	
international was a resemble	_		11111		Downgradient _	X
N 00 1'			G!		-	
Name Of person sampling			Cli	nt Oberbr	oeckling	
A. MONITORING WELL/	PIEZOMETER CO	ONDITION	IS			
Well/piezometer Properl If no, explain	y Capped?		Yes		g Water or Litter? xplain	No
B. GROUNDWATER ELE	EVATION MEASU	JREMENT	(+/- 0.01 f	oot, MSL)		
Elevation: Top of inner v	well casing	5	559.43 ft	Ground El	levation	557.67 ft
Depth of Well			Inside C	asing Dian	neter (inches)	2.0 in
Equipment Used		Solinst	Model 101	Water Le	evel Probe	
Groundwater Leve	el (+/- 0.01 foot bel	low top of i	inner casing	g, MSL):		
	D-4-/T:		D41	- 4-	C	
	Date/Time	•	Deptl Ground		Groundwater Elevation	
			Ground	water	Elevation	
Before Purging	10/16/2025	14:10	7.51		551.92 ft	_
* After Purging	10/16/2025	14:50	6.67		552.76 ft	_
* Before Sampling	10/16/2025	14:50	6.67	<u>ft</u>	552.76 ft	_
*C. WELL PURGING						
Quantity of Water Remo	wed from Well (ga	llons)			0.76 gallons	
No. of Well Volumes (ba	,-				0.86 well volum	nes
Was well pumped/bailed		No	_			
Equipment used:						
Bailer type		Г	edicated B	ailer		
Pump type	Pneumatic Bladd		edicated P		No	
If not dedicated, met	thod of cleaning		Replac	e bladder	, rinse w/water, d	ledicated tubing
*D. FIELD MEASUREME	NT					
W41C4'4'				C		
Weather Conditions Field Measurements (aft	er stabilization)			Sunny		
Temperature	er staomzation)	15.70	Units		°C	
Equipment Used				Aquatrol	1 500	
рН		6.60		•		
Equipment Used				Aquatrol		
Specific Cond.		747	Units		μS/cm	
Equipment Used				Aquatrol	1 500	
Comments: ORP: 65.1	DO: 1.73	Turb.: 5	5.31	Samp	le Time: 10/10	6/2025 14:50

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Test Date / Time: 10/16/2025 2:32:02 PM

Project: CIPCO-MW-2 (2)

Operator Name: Clint Oberbroeckling

Location Name: MW-2
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 2.95 ft
Total Depth: 12.95 ft

Initial Depth to Water: 7.51 ft

Pump Type: QED Sample PRO Tubing Type: Nylon- Double

Bonded

Tubing Inner Diameter: 0.25 in

Tubing Length: 12.95 ft

Pump Intake From TOC: 7.95 ft Estimated Total Volume Pumped:

2860 ml

Flow Cell Volume: 130 ml Final Flow Rate: 300 ml/min Final Draw Down: -0.84 ft Instrument Used: Aqua TROLL 500

Serial Number: 613885

Test Notes:

Weather Conditions:

65° sunny

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 0.33	
10/16/2025	00:00	6.840 pH	15.79 °C	761.3 µS/cm	1.110 mg/L	7.193 NTU	67.2 mV	6.510 ft	300.0 ml/min
2:32 PM	00.00	0.040 pm	13.75 0	701.5 μο/οιτί	1.110 mg/L	7.1551410	07.2 1117	0.51010	300.0 111/111111
10/16/2025	02:23	6.567 pH	15.67 °C	759.5 µS/cm	1.126 mg/L	4.716 NTU	66.4 mV	6.670 ft	300.0 ml/min
2:34 PM	02.23	0.307 pm	13.07	739.5 μ3/6/11	1.120 Hig/L	4.7101010	00.4 1117	0.07011	300.0 111/111111
10/16/2025	04:46	6.589 pH	15.67 °C	739.7 µS/cm	1.671 mg/L	5.047 NTU	65.4 mV	6.670 ft	300.0 ml/min
2:36 PM	04.40	0.505 pri	13.07	700.7 μο/οιτί	1.07 T Hig/L	3.047 1110	05.4 111	0.07010	300.0 111/111111
10/16/2025	07:09	6.595 pH	15.57 °C	743.1 µS/cm	1.776 mg/L	7.030 NTU	65.5 mV	6.670 ft	300.0 ml/min
2:39 PM	07.09	0.000 pri	10.57	7 +3.1 μ3/0111	1.770 Hig/L	7.000 1410	00.0 1110	0.07010	300.0 111/111111
10/16/2025	09:32	6.601 pH	15.70 °C	746.9 µS/cm	1.728 mg/L	5.314 NTU	65.1 mV	6.670 ft	300.0 ml/min
2:41 PM	09.32	0.001 рп	13.70 C	740.9 μ3/011	1.726 Hig/L	3.314 NTO	03.1 1110	0.07011	300.0 1111/111111

Samples

Sample ID:	Description:
MW-2	ST-1450

Site Name	CIPCO Ash Disp	osal Land	fill		Permit No.	70-SDP-09-91P
Monitoring Well/Piezomete	er No.		MW-3		Upgradient	
C	-				Downgradient	X
Name Of person sampling			Cli	nt Oberbr	oeckling	
A. MONITORING WELL/	DIEZOMETED CO	MDITION	J C			
A. MONTORING WELL	I ILZOWE I EK CC	MDITIO	15			
Well/piezometer Properl If no, explain	y Capped?		Yes		g Water or Litter? xplain	
B. GROUNDWATER ELE	EVATION MEASU	JREMENT	C (+/- 0.01 f	oot, MSL)		
Elevation: Top of inner	well casing	4	559.17 ft	Ground El	levation	556.69 ft
Depth of Well	46.75 ft				neter (inches)	2.0 in
Equipment Used		Solinst	Model 101	Water Le	evel Probe	
Groundwater Leve	el (+/- 0.01 foot bel	low top of	inner casing	g, MSL):		
	D / /T'		D 41		C 1 1	
	Date/Time	;	Deptl Ground		Groundwater Elevation	
			Ground	water	Elevation	
Before Purging	10/16/2025	14:12	9.46		549.71 ft	_
* After Purging	10/16/2025	15:40	9.46		549.71 ft	_
* Before Sampling	10/16/2025	15:40	9.46	<u>ft</u>	549.71 ft	_
*C. WELL PURGING						
Quantity of Water Remo	wed from Well (ga	llone)			3 gallons	
No. of Well Volumes (b)					0.49 well volu	nes
Was well pumped/bailed		No			0015 11011 1011	
Equipment used:						
Bailer type		Ι	Dedicated B	ailer		
Pump type	Pneumatic Bladd	er I	Dedicated Pr	1	No	
If not dedicated, me	thod of cleaning		Replac	e bladder	, rinse w/water, o	dedicated tubing
*D. FIELD MEASUREME	NT					
Weather Conditions				Sunny		
Field Measurements (aft	er stabilization)			Sunny		
Temperature	or succinzation)	12.62	Units		°C	
Equipment Used				Aquatrol	1 500	
рН		7.10		•		
Equipment Used				Aquatrol	1 500	
Specific Cond.		0	Units		μS/cm	
Equipment Used				Aquatrol	1 500	
Comments: ORP: 47.4	DO: 0.09	Г urb.: 4	6.05	Samp	le Time: 10/1	6/2025 15:40

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Test Date / Time: 10/16/2025 2:57:24 PM

Project: CIPCO-MW-3 (3)

Operator Name: Clint Oberbroeckling

Location Name: MW-3
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 36.5 ft

Total Depth: 46.5 ft

Initial Depth to Water: 9.46 ft

Pump Type: QED Sample PRO Tubing Type: Nylon- Double

Bonded

Tubing Inner Diameter: 0.25 in

Tubing Length: 46.5 ft

Pump Intake From TOC: 41.5 ft Estimated Total Volume Pumped:

11385 ml

Flow Cell Volume: 130 ml Final Flow Rate: 300 ml/min

Final Draw Down: 0 ft

Instrument Used: Aqua TROLL 500

Serial Number: 613885

Test Notes:

Weather Conditions:

65° sunny

Low-Flow Readings:

LOW-I IOW IX	·								
Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 0.33	
10/16/2025 2:57 PM	00:00	7.466 pH	13.47 °C	474.0 µS/cm	0.310 mg/L	439.1 NTU	53.7 mV	9.460 ft	300.0 ml/min
10/16/2025 3:00 PM	03:27	7.153 pH	13.22 °C	478.4 µS/cm	0.352 mg/L	241.1 NTU	53.4 mV	9.460 ft	300.0 ml/min
10/16/2025 3:04 PM	06:54	7.129 pH	13.19 °C	489.9 µS/cm	0.312 mg/L	174.3 NTU	53.1 mV	9.460 ft	300.0 ml/min
10/16/2025 3:07 PM	10:21	7.113 pH	13.13 °C	500.8 µS/cm	0.253 mg/L	108.9 NTU	52.5 mV	9.460 ft	300.0 ml/min
10/16/2025 3:11 PM	13:48	7.113 pH	13.06 °C	509.6 μS/cm	0.197 mg/L	94.51 NTU	51.6 mV	9.460 ft	300.0 ml/min
10/16/2025 3:14 PM	17:15	7.109 pH	12.92 °C	518.2 µS/cm	0.167 mg/L	67.11 NTU	50.9 mV	9.460 ft	300.0 ml/min
10/16/2025 3:18 PM	20:42	7.106 pH	12.79 °C	524.2 µS/cm	0.146 mg/L	56.63 NTU	50.2 mV	9.460 ft	300.0 ml/min
10/16/2025 3:21 PM	24:09	7.099 pH	12.75 °C	530.0 µS/cm	0.128 mg/L	55.06 NTU	49.7 mV	9.460 ft	300.0 ml/min
10/16/2025 3:25 PM	27:36	7.110 pH	12.79 °C	532.5 µS/cm	0.116 mg/L	101.6 NTU	48.5 mV	9.460 ft	300.0 ml/min
10/16/2025 3:28 PM	31:03	7.110 pH	12.72 °C	534.1 μS/cm	0.111 mg/L	57.66 NTU	48.0 mV	9.460 ft	300.0 ml/min
10/16/2025 3:31 PM	34:30	7.106 pH	12.69 °C	539.7 μS/cm	0.098 mg/L	53.39 NTU	47.6 mV	9.460 ft	300.0 ml/min
10/16/2025 3:35 PM	37:57	7.098 pH	12.62 °C	545.6 μS/cm	0.087 mg/L	46.05 NTU	47.4 mV	9.460 ft	300.0 ml/min

Samples

Sample ID:	Description:
MW-3	ST-1540

Created using VuSitu from In-Situ, Inc.

Site Name	CIPCO Ash Disposal Lai	ndfill		Permit No.	70-SDP-09-91P
Monitoring Well/Piezome	eter No.	MW-4		Upgradient	
\mathcal{S}				Downgradient _	X
Name Of person sampling	2	Clin	ıt Oberk	oroeckling	
				9	
A. MONITORING WELL	L/PIEZOMETER CONDITION	ONS			
Well/piezometer Propo If no, explain	erly Capped?	Yes	Standin If yes,	ng Water or Litter? explain	No
B. GROUNDWATER EI	LEVATION MEASUREMEN	NT (+/- 0.01 fo	ot, MSL	<i>L</i>)	
Elevation: Top of inne	r well casing	556.92 ft (Ground I	Elevation	555.34 ft
Depth of Well	10.45 ft			ameter (inches)	2.0 in
Equipment Used	Solin	st Model 101	Water L	Level Probe	
Groundwater Le	evel (+/- 0.01 foot below top o	of inner casing,	, MSL):		
	Date/Time	Donth	4-2	Groundwater	
	Date/Time	Depth Groundv		Elevation	
Before Purging	10/16/2025	9.33	<u>ft</u>	547.59 ft	_
* After Purging * Before Sampling					_
Before Sampling		<u> </u>			_
*C. WELL PURGING					
Ouantity of Water Ren	noved from Well (gallons)			Water Level On	lv
-	(based on current water level)			.,,	
Was well pumped/bail					
Equipment used:					
Bailer type		Dedicated Ba	iler		
Pump type		Dedicated Pu	mp		
If not dedicated, n	nethod of cleaning				
*D. FIELD MEASUREM	IENT				
Weather Conditions					
Field Measurements (a	after stabilization)				
Temperature		Units_			
Equipment Used	<u> </u>		Aquatro	oll 500	
pH	1		A 4	-11.500	
Equipment Used Specific Cond.		Units	Aquatro	011 500	
Equipment Used	1		Aquatro	oll 500	
Z-q-r-pinem obec		•			
Comments: No sample	e				

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Site Name	CIPCO Ash Dispo	osal Landi	fill		Permit No.	70-SDP-09-91P
Monitoring Well/Piezomete	r No.		MW-5		Upgradient	
	_				Downgradient	X
Name Of person sampling			Cli	nt Oberbr	oeckling	
A. MONITORING WELL/	PIEZOMETER CO	NDITION	S			
TT 11/ 1	G 10		***	a	TT	•
Well/piezometer Properl If no, explain	y Capped?		Yes		g Water or Litter? xplain	
B. GROUNDWATER ELE	EVATION MEASU	REMENT	(+/- 0.01 fe	oot, MSL)		
Elevation: Top of inner v	well casing	5	55.54 ft	Ground El	evation	553.24 ft
Depth of Well	28.50 ft				neter (inches)	2.0 in
Equipment Used		Solinst 1	Model 101	Water Le	vel Probe	
Groundwater Leve	el (+/- 0.01 foot belo	ow top of i	nner casing	g, MSL):		
	Date/Time		Depth		Groundwater	
	Date/Time		Ground		Elevation	
			Ground	,, 4,61	Ele valion	
Before Purging	10/16/2025	11:22	6.01		549.53 ft	_
* After Purging	10/16/2025	12:15	6.01		549.53 ft	_
* Before Sampling	10/16/2025	12:15	6.01	<u>ft</u>	549.53 ft	_
*C. WELL PURGING						
Quantity of Water Remo	ved from Well (gall	lons)			3.3 gallons	
No. of Well Volumes (ba					0.90 well volu	mes
Was well pumped/bailed		No				
Equipment used:						
Bailer type		D	edicated Ba	ailer		
Pump type	Pneumatic Bladde	er D	edicated Pu	·	No	
If not dedicated, met	thod of cleaning		Replac	e bladder	, rinse w/water,	dedicated tubing
*D. FIELD MEASUREME	NT					
Weather Conditions				Sunny		
Field Measurements (after	er stabilization)			Sunny		
Temperature	,	15.99	Units		°C	
Equipment Used				Aquatrol	1 500	
pH		6.84				
Equipment Used				Aquatrol		
Specific Cond.		4	Units		μS/cm	
Equipment Used				Aquatrol	1 500	
Comments: ORP: 45.6	DO: 3.64 T	Turb.: 2	.43	Samp	le Time: 10/1	6/2025 12:15

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Test Date / Time: 10/16/2025 11:25:16 AM

Project: CIPCO-MW-5 (2)

Operator Name: Clint Oberbroeckling

Location Name: MW-5
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 18.5 ft

Total Depth: 28.5 ft

Initial Depth to Water: 6.01 ft

Pump Type: QED Sample PRO Tubing Type: Nylon- Double

Bonded

Tubing Inner Diameter: 0.25 in

Tubing Length: 28.5 ft

Pump Intake From TOC: 23.5 ft Estimated Total Volume Pumped:

12485 ml

Flow Cell Volume: 130 ml Final Flow Rate: 300 ml/min

Final Draw Down: 0 ft

Instrument Used: Aqua TROLL 500

Serial Number: 613885

Test Notes:

Weather Conditions:

65 sunny

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 0.33	
10/16/2025 11:25 AM	00:00	7.255 pH	18.12 °C	734.7 μS/cm	1.631 mg/L	6.469 NTU	73.8 mV	6.010 ft	300.0 ml/min
10/16/2025 11:28 AM	02:53	6.914 pH	18.23 °C	740.5 µS/cm	1.124 mg/L	0.952 NTU	66.5 mV	6.010 ft	300.0 ml/min
10/16/2025 11:31 AM	05:46	6.983 pH	19.31 °C	748.5 µS/cm	1.229 mg/L	0.064 NTU	51.8 mV	6.010 ft	300.0 ml/min
10/16/2025 11:33 AM	08:39	6.988 pH	20.23 °C	753.1 µS/cm	1.267 mg/L	0.023 NTU	43.8 mV	6.010 ft	300.0 ml/min
10/16/2025 11:36 AM	11:32	6.976 pH	21.10 °C	754.0 µS/cm	1.322 mg/L	0.095 NTU	38.7 mV	6.010 ft	300.0 ml/min
10/16/2025 11:39 AM	14:25	6.887 pH	22.51 °C	750.5 µS/cm	1.230 mg/L	1.686 NTU	39.5 mV	6.010 ft	300.0 ml/min
10/16/2025 11:42 AM	17:18	6.509 pH	16.74 °C	739.6 µS/cm	0.700 mg/L	6.270 NTU	57.1 mV	6.010 ft	300.0 ml/min
10/16/2025 11:45 AM	20:11	6.469 pH	16.37 °C	740.7 µS/cm	1.309 mg/L	6.136 NTU	57.4 mV	6.010 ft	300.0 ml/min
10/16/2025 11:48 AM	23:04	6.663 pH	16.44 °C	742.9 µS/cm	1.925 mg/L	4.922 NTU	46.3 mV	6.010 ft	300.0 ml/min
10/16/2025 11:49 AM	24:19	7.061 pH	16.44 °C	745.0 µS/cm	2.171 mg/L	7.389 NTU	44.0 mV	6.010 ft	300.0 ml/min
10/16/2025 11:52 AM	27:12	6.754 pH	16.20 °C	749.5 µS/cm	2.593 mg/L	3.994 NTU	42.4 mV	6.010 ft	300.0 ml/min
10/16/2025 11:55 AM	30:05	6.786 pH	16.20 °C	753.5 μS/cm	2.930 mg/L	3.336 NTU	41.7 mV	6.010 ft	300.0 ml/min

10/16/2025	32:58	6.802 pH	16.04 °C	757.5 µS/cm	3.206 mg/L	3.167 NTU	42.7 mV	6.010 ft	300.0 ml/min
11:58 AM		0.602 μπ	10.04 C	757.5 μ5/cm	3.206 Hig/L	3.167 1010	42.7 1110	6.01011	300.0 111/111111
10/16/2025	35:51	6.820 pH	16.09 °C	759.8 µS/cm	3.412 mg/L	3.363 NTU	43.2 mV	6.010 ft	300.0 ml/min
12:01 PM		0.020 pri	10.09 C	7 39.0 μ3/6/11	3.412 mg/L	3.303 1410	40.2 IIIV	0.01011	300.0 111/111111
10/16/2025	38:44	38:44 6.823 pH	15.96 °C	761.4 µS/cm	3.547 mg/L	2.520 NTU	44.8 mV	6.010 ft	300.0 ml/min
12:04 PM	30.44	0.023 pm	13.50 0	701.4 μο/οπ	5.547 Hig/L	2.520 1110	44.0 1110	0.01010	300.0 111/111111
10/16/2025	41:37	6.836 pH	15.99 °C	763.2 µS/cm	3.644 mg/L	2.432 NTU	45.6 mV	6.010 ft	300.0 ml/min
12:06 PM	41.57	0.000 pm	13.33 0	7 00.2 μο/οπ	5.044 Hig/L	2.402 1110	45.0111	0.01010	300.0 111/111111

Samples

Sample ID:	Description:
MW-5	ST-1215

Created using VuSitu from In-Situ, Inc.

Site Name	CIPCO Ash Dispo	osal Landf	ill		Permit No.	70-SDP-09-91P
Monitoring Well/Piezomete	r No.		MW-6		Upgradient	
	_				Downgradient _	X
N. 00 "			C.		-	
Name Of person sampling			Cli	<u>nt Oberb</u>	roeckling	
A. MONITORING WELL/I	PIEZOMETER CO	NDITION	S			
Well/piezometer Properly If no, explain	y Capped?		Yes	Standin If yes,	ng Water or Litter? explain	
B. GROUNDWATER ELE	VATION MEASU	REMENT	(+/- 0.01 f	oot, MSL)	
Elevation: Top of inner v	vell casing	5:	55.88 ft	Ground E	Elevation	553.47 ft
Depth of Well			Inside C	asing Dia	meter (inches)	2.0 in
Equipment Used		Solinst 1	Model 101	Water L	evel Probe	
Groundwater Leve	el (+/- 0.01 foot bel	ow top of i	nner casing	g, MSL):		
	D / /T:		D 4	,	C 1 4	
	Date/Time		Deptl Ground		Groundwater Elevation	
			Ground	water	Lievation	
Before Purging	10/16/2025	10:50	7.25	ft	548.63 ft	_
* After Purging	10/16/2025	11:15	7.25	ft	548.63 ft	_
* Before Sampling	10/16/2025	11:15	7.25	ft	548.63 ft	_
*C. WELL PURGING						
Quantity of Water Remo	ved from Well (gal	lons)			1.1 gallons	
No. of Well Volumes (ba	,-				0.86 well volum	nes
Was well pumped/bailed		No	_		0.00 11 0.11	
Equipment used:						
Bailer type		D	edicated B	ailer		
	Pneumatic Bladde		edicated Pu		No	
If not dedicated, met	hod of cleaning		Replac	e bladde	r, rinse w/water, d	edicated tubing
*D. FIELD MEASUREME	NT					
Weether Conditions				Dryamaast		
Weather Conditions Field Measurements (after	er stabilization)			Overcast		
Temperature		17.13	Units		$^{\circ}\mathrm{C}$	
Equipment Used				Aquatro	dl 500	
рН		6.83				
Equipment Used				Aquatro		
Specific Cond.		755	Units		μS/cm	
Equipment Used				Aquatro	<u> </u>	
Comments: ORP: 131.4	DO: 0.18 T	urb.: 2	.81	Sam	ple Time: 10/16	5/2025 11:15

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Test Date / Time: 10/16/2025 10:56:37 AM

Project: CIPCO - MW-6 (2)

Operator Name: Clint Oberbroeckling

Location Name: MW-6
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 5.08 ft
Total Depth: 15.08 ft

Initial Depth to Water: 7.25 ft

Pump Type: QED Sample PRO Tubing Type: Nylon- Double

Bonded

Tubing Inner Diameter: 0.25 in

Tubing Length: 15.08 ft

Pump Intake From TOC: 10.08 ft Estimated Total Volume Pumped:

4160 ml

Flow Cell Volume: 130 ml Final Flow Rate: 300 ml/min

Final Draw Down: 0 ft

Instrument Used: Aqua TROLL 500

Serial Number: 613885

Test Notes:

Weather Conditions:

65° overcast

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 0.33	
10/16/2025 10:56 AM	00:00	6.935 pH	17.18 °C	725.8 µS/cm	0.421 mg/L	43.74 NTU	138.9 mV	7.250 ft	300.0 ml/min
10/16/2025 10:59 AM	02:27	6.878 pH	17.16 °C	731.5 µS/cm	0.201 mg/L	14.27 NTU	137.1 mV	7.250 ft	300.0 ml/min
10/16/2025 11:01 AM	04:54	6.866 pH	17.14 °C	737.8 µS/cm	0.167 mg/L	6.025 NTU	137.7 mV	7.520 ft	300.0 ml/min
10/16/2025 11:03 AM	06:31	6.827 pH	17.14 °C	740.5 µS/cm	0.129 mg/L	17.91 NTU	140.9 mV	7.250 ft	300.0 ml/min
10/16/2025 11:05 AM	08:58	6.865 pH	17.17 °C	744.0 µS/cm	0.113 mg/L	6.787 NTU	136.0 mV	7.250 ft	300.0 ml/min
10/16/2025 11:08 AM	11:25	6.849 pH	17.14 °C	748.4 µS/cm	0.092 mg/L	4.570 NTU	134.3 mV	7.250 ft	300.0 ml/min
10/16/2025 11:10 AM	13:52	6.825 pH	17.13 °C	754.5 μS/cm	0.178 mg/L	2.805 NTU	131.4 mV	7.250 ft	300.0 ml/min

Samples

Sample ID:	Description:
MW-6	ST-1115

Site Name	CIPCO Ash Disposal Lai	ndfill		Permit No.	70-SDP-09-91P
Monitoring Well/Piezome	eter No	MW-7		Upgradient	
Weil's rezonic		141 44 - 7		Opgradient Downgradient	X
Name Of person sampling		Clin	t Ober	broeckling	
A. MONITORING WEL	L/PIEZOMETER CONDITIO	ONS			
Well/piezometer Propo	erly Capped?	Yes		ing Water or Litter?	
If no, explain			If yes,	explain	
B. GROUNDWATER E	LEVATION MEASUREMEN	NT (+/- 0.01 fo	ot, MSI	L)	
Elevation: Top of inne				Elevation	
Depth of Well	18.19 ft	Inside Ca	sing Di	ameter (inches)	2.0 in
Equipment Used	Solin	st Model 101	<u>Water l</u>	Level Probe	
Groundwater Le	evel (+/- 0.01 foot below top o	of inner casing,	MSL):		
	Date/Time	Depth Groundv		Groundwater Elevation	
	10/17/2025	2.42	e,		
Before Purging * After Purging	10/16/2025		<u>it</u>	554.34 ft	_
* Before Sampling					_
Defore Sampling					_
*C. WELL PURGING					
Quantity of Water Ren	noved from Well (gallons)			Water Level On	ly
No. of Well Volumes	(based on current water level)				
Was well pumped/bail	ed dry?				
Equipment used:					
Bailer type		_Dedicated Ba	iler		
Pump type		_Dedicated Pu	mp		
If not dedicated, n	nethod of cleaning				
*D. FIELD MEASUREM	MENT				
Weather Conditions					
Field Measurements (a	after stabilization)				
Temperature				W #00	
Equipment Used	<u> </u>		Aquatr	on 500	
pH Equipment Used			Aquatr		
Specific Cond.	u	Units			
Equipment Used		Omis_			
1b					
Comments: No sampl	e				

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Site Name	CIPCO Ash Dispo	osal Landf	ill		Permit No.	70-SDP-09-91P
Monitoring Well/Piezomete	er No.		MW-9		Upgradient	X
Name Of person sampling			Cli	nt Oberbr	oeckling	
A. MONITORING WELL/	PIEZOMETER CO	NDITIONS	S			
Well/piezometer Properl If no, explain	y Capped?		Yes	Standing If yes, ex	g Water or Litter? xplain	No
B. GROUNDWATER ELE	EVATION MEASU	REMENT	(+/- 0.01 f	oot, MSL)		
Elevation: Top of inner v	well casing	62	29.13 ft	Ground El	evation	627.04 ft
Depth of Well	118.67 ft				neter (inches)	2.0 in
Equipment Used		Solinst N	Model 101	Water Le	evel Probe	
Groundwater Leve	el (+/- 0.01 foot bel	ow top of in	nner casing	g, MSL):		
	Date/Time		Dont	, to	Groundwater	
	Date/11me		Deptl Ground		Elevation	
			0100110	.,	210 (401011	
Before Purging	10/16/2025	15:58	30.04		599.09 ft	_
* After Purging	10/16/2025	16:10	30.04		599.09 ft	_
* Before Sampling	10/16/2025	16:10	30.04	ft	599.09 ft	_
*C. WELL PURGING						
Quantity of Water Remo	ved from Well (gal	lons)			not full purge	
No. of Well Volumes (ba			-		1 8	
Was well pumped/bailed	l dry?	No	_			
E ' 1.						
Equipment used: Bailer type D	isposable Polyethy	ene De	edicated B	ailer	Yes	
Pump type	isposable i oryeury		edicated Pr		103	
If not dedicated, met	thod of cleaning			1		
*D. FIELD MEASUREME	NT	-				
D. TIEED IVIE. IS STEELINE						
Weather Conditions				Sunny		
Field Measurements (aft	,	15 (0	TT!4		96	
Temperature		15.69	Units	Aquatrol	°C	
pH		7.46		Aquation	1 300	
Equipment Used		.,,,		Aquatrol	1 500	
Specific Cond.		577	Units		μS/cm	
Equipment Used				Aquatrol		
Comments: ODD: 46.7	DO. 707 7	Sumb c 2	<i>E</i> 1	C	la Tima. 10/1/	(/2025 17.10
Comments: ORP: 46.7	DO: 7.97 T	Surb.: 2.	.51	Samp	le Time: 10/16	6/2025 16:10

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Test Date / Time: 10/16/2025 4:10:03 PM

Project: CIPCO-MW-9 (2)

Operator Name: Clint Oberbroeckling

Location Name: MW-9
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 108.65 ft
Total Depth: 118.65 ft

Initial Depth to Water: 30.04 ft

Pump Type: QED Sample PRO Tubing Type: Nylon- Double

Bonded

Tubing Inner Diameter: 0.25 in

Tubing Length: 118.65 ft

Pump Intake From TOC: 113.65 ft Estimated Total Volume Pumped:

0 ml

Flow Cell Volume: 130 ml Final Flow Rate: 300 ml/min

Final Draw Down: 0 ft

Instrument Used: Aqua TROLL 500

Serial Number: 613885

Test Notes:

Top cut sample then collect grab for water quality

Weather Conditions:

65° sunny

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10 %	+/- 10	+/- 5	
10/16/2025 4:10 PM	00:00	7.459 pH	15.69 °C	577.4 μS/cm	7.965 mg/L	2.514 NTU	46.7 mV	915.6 cm	300.0 ml/min

Samples

Sample ID:	Description:
MW-9	ST-1610

Created using VuSitu from In-Situ, Inc.

Site Name	CIPCO Ash Disposal Lar	sh Disposal Landfill			70-SDP-09-91P
Monitoring Well/Piezome	ter No.	MW-10		Upgradient _ Downgradient _	X
Name Of person sampling		Clin	t Oberb	roeckling	
A. MONITORING WELI	/PIEZOMETER CONDITIO	ONS			
Well/piezometer Prope If no, explain	rly Capped?	Yes		g Water or Litter? xplain	
B. GROUNDWATER EL	LEVATION MEASUREMEN	NT (+/- 0.01 fo	ot, MSL)		
Elevation: Top of inner Depth of Well Equipment Used		629.39 ft Ca Inside Ca st Model 101	sing Dia	meter (inches)	627.21 ft 2.0 in
Groundwater Le	vel (+/- 0.01 foot below top o	of inner casing,	MSL):		
	Date/Time	Depth Groundw		Groundwater Elevation	
Before Purging * After Purging * Before Sampling	10/16/2025		<u>ft</u> 	609.86 ft	- - -
*C. WELL PURGING					
	noved from Well (gallons) based on current water level) ed dry?			Water Level On	
Equipment used: Bailer type Pump type		Dedicated Ba Dedicated Pu			
If not dedicated, m	ethod of cleaning				
*D. FIELD MEASUREM	ENT				
Weather Conditions Field Measurements (a	fter stabilization)				
Temperature		Units_			
Equipment Used pH			Aquatro	11 500	
Equipment Used Specific Cond. Equipment Used			Aquatro	11 500	
Comments: No sample					

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Site Name	CIPCO Ash Dispos	al Landfill		Permit No.	70-SDP-09-91P
Monitoring Well/Piezomete	r No.	MW-11	1	Upgradient Downgradient	X
Name Of person sampling		Cli	nt Oberbro	oeckling	
A. MONITORING WELL/	PIEZOMETER CON	IDITIONS			
Well/piezometer Properly If no, explain	y Capped?	Yes		Water or Litter?	
B. GROUNDWATER ELE	VATION MEASUR	EMENT (+/- 0.01 f	oot, MSL)		
Elevation: Top of inner v		587.99 ft			586.18 ft
Depth of Well Equipment Used	20.40 ft			vel Probe	2.0 in
	el (+/- 0.01 foot belov		g, MSL):		
	Date/Time	Deptl Ground		Groundwater Elevation	
Before Purging	10/16/2025	8:30 9.30		578.69 ft	_
* After Purging * Before Sampling	10/16/2025 10/16/2025	9:00 6.45 9:00 6.45		581.54 ft 581.54 ft	_
*C. WELL PURGING					
Quantity of Water Remo No. of Well Volumes (ba Was well pumped/bailed	ased on current water	· · · · · · · · · · · · · · · · · · ·		1.38 gallons 0.76 well volum	mes
Equipment used:					
Bailer type		Dedicated B	ailer		
1 /1	Pneumatic Bladder		·	No	
If not dedicated, met	hod of cleaning	Replac	<u>e bladder,</u>	rinse w/water, o	ledicated tubing
*D. FIELD MEASUREME	NT				
Weather Conditions		(Overcast		
Field Measurements (after					
Temperature	1	3.69 Units		°C	
Equipment Used		7.00	Aquatroll	500	
pH Equipment Used	0	.69	A quatrall	500	
Specific Cond.		767 Units	Aquatroll	μS/cm	
Equipment Used		Office Child	Aquatroll		
24. pinem 0300					
Comments: ORP: 167.5	DO: 0.14 Tu	rb.: 28.65	Sampl	e Time: 10/1	6/2025 9:00

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Test Date / Time: 10/16/2025 8:42:08 AM

Project: CIPCO-MW-11 (2)

Operator Name: Clint Oberbroeckling

Location Name: MW-11
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 10.4 ft
Total Depth: 20.4 ft

Initial Depth to Water: 9.3 ft

Pump Type: QED Sample PRO Tubing Type: Nylon- Double

Bonded

Tubing Inner Diameter: 0.25 in

Tubing Length: 20.4 ft

Pump Intake From TOC: 15.4 ft Estimated Total Volume Pumped:

5207.5 ml

Flow Cell Volume: 130 ml Final Flow Rate: 300 ml/min Final Draw Down: -2.85 ft Instrument Used: Aqua TROLL 500

Serial Number: 613885

Test Notes:

Weather Conditions:

550 overcast

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10 %	+/- 10	+/- 0.33	
10/16/2025 8:42 AM	00:00	6.154 pH	15.81 °C	800.1 μS/cm	7.028 mg/L	49.15 NTU	199.2 mV	6.300 ft	150.0 ml/min
10/16/2025 8:44 AM	02:37	6.354 pH	14.55 °C	778.9 µS/cm	0.805 mg/L	49.07 NTU	186.8 mV	6.450 ft	300.0 ml/min
10/16/2025 8:47 AM	05:14	6.492 pH	14.19 °C	772.8 µS/cm	0.287 mg/L	44.98 NTU	179.8 mV	6.450 ft	300.0 ml/min
10/16/2025 8:49 AM	07:51	6.551 pH	13.81 °C	770.6 µS/cm	0.211 mg/L	38.53 NTU	176.9 mV	6.450 ft	300.0 ml/min
10/16/2025 8:52 AM	10:28	6.596 pH	13.76 °C	768.8 µS/cm	0.181 mg/L	32.09 NTU	173.2 mV	6.450 ft	300.0 ml/min
10/16/2025 8:55 AM	13:05	6.629 pH	13.75 °C	768.1 µS/cm	0.162 mg/L	36.31 NTU	171.8 mV	6.450 ft	300.0 ml/min
10/16/2025 8:57 AM	15:42	6.655 pH	13.72 °C	767.7 µS/cm	0.159 mg/L	31.47 NTU	170.0 mV	6.450 ft	300.0 ml/min
10/16/2025 9:00 AM	18:19	6.694 pH	13.65 °C	767.2 µS/cm	0.133 mg/L	38.07 NTU	166.8 mV	6.450 ft	300.0 ml/min
10/16/2025 9:00 AM	18:40	6.686 pH	13.69 °C	766.9 µS/cm	0.135 mg/L	28.65 NTU	167.5 mV	6.450 ft	300.0 ml/min

Samples

Sample ID:

MW-11

Created using VuSitu from In-Situ, Inc.

Site Name	osal Land	lfill		Permit No.	70-SDP-09-91P	
Monitoring Well/Piezomete	r No.		MW-15		Upgradient	
intermedials were received	_		1,12,7, 10		Downgradient	X
N. 00 W			C.W.			
Name Of person sampling			Cli	int Oberbi	oeckling	
A. MONITORING WELL/	PIEZOMETER CO	ONDITION	NS			
Well/piezometer Properl If no, explain	y Capped?		Yes	g Water or Litter? xplain	No	
B. GROUNDWATER ELE	EVATION MEASU	JREMEN'	Γ (+/- 0.01 f	coot, MSL)		
Elevation: Top of inner v	well casing	:	558.65 ft	Ground E	levation	556.33 ft
Depth of Well			Inside C	asing Diar	meter (inches)	2.0 in
Equipment Used		Solinst	Model 101	Water Le	evel Probe	
Groundwater Leve	el (+/- 0.01 foot bel	ow top of	inner casing	g, MSL):		
	D-4-/T:		D4	L 4.	C	
	Date/Time	;	Depti Ground		Groundwater Elevation	
			Ground	iwaici	Elevation	
Before Purging	10/16/2025	13:35	12.5	1 ft_	546.14 ft	_
* After Purging	10/16/2025	14:00	14.0		544.65 ft	
* Before Sampling	10/16/2025	14:00	14.00	<u>0 ft</u>	544.65 ft	_
*C. WELL PURGING						
Quantity of Water Remo	ved from Well (ga	llone)			0.69 gallons	
No. of Well Volumes (ba					0.25 well volum	nes
Was well pumped/bailed		No			orac well volume	
Equipment used:						
Bailer type		I	Dedicated B	ailer		
Pump type	Pneumatic Bladd	er I	Dedicated P		No	
If not dedicated, met	thod of cleaning		Replac	ce bladder	, rinse w/water, d	ledicated tubing
*D. FIELD MEASUREME	NT					
Weather Conditions				Sunny		
Field Measurements (after	er stabilization)			Sunny		
Temperature		14.86	Units		°C	
Equipment Used				Aquatrol	1 500	
рН		7.04				
Equipment Used				Aquatrol		
Specific Cond.		2,176	Units		μS/cm	
Equipment Used				Aquatrol	1 500	
Comments: ORP: 28.7	DO: 0.28	Γurb.:	0.17	Samp	ole Time: 10/10	5/2025 14:00

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Test Date / Time: 10/16/2025 1:43:48 PM

Project: CIPCO-MW-15 (2)

Operator Name: Clint Oberbroeckling

Location Name: MW-15
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 10.4 ft
Total Depth: 29.15 ft

Initial Depth to Water: 12.51 ft

Pump Type: QED Sample PRO Tubing Type: Nylon- Double

Bonded

Tubing Inner Diameter: 0.25 in

Tubing Length: 29.15 ft

Pump Intake From TOC: 19.15 ft Estimated Total Volume Pumped:

2610 ml

Flow Cell Volume: 130 ml Final Flow Rate: 300 ml/min Final Draw Down: 1.49 ft **Instrument Used: Aqua TROLL 500**

Serial Number: 613885

Test Notes:

Weather Conditions:

65° sunny

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 0.33	
10/16/2025	00:00	7.411 pH	14.73 °C	2,174 µS/cm	0.715 mg/L	1.219 NTU	34.8 mV	12.51 ft	300.0 ml/min
1:43 PM	00.00	7.411 pm	14.73 0	2,174 μ3/6111	0.7 13 mg/L	1.2151110	34.0 111	12.51 10	300.0 111/111111
10/16/2025	02:54	7.055 pH	14.41 °C	2,176 µS/cm	0.288 mg/L	1.685 NTU	31.8 mV	14.00 ft	300.0 ml/min
1:46 PM	02.34	7.000 pm	14.41 0	2,170 μ0/6/11	0.200 mg/L	1.003 1410	31.61117	14.00 11	300.0 111/111111
10/16/2025	05:48	7.043 pH	14.71 °C	2,176 µS/cm	0.372 mg/L	1.376 NTU	29.9 mV	14.00 ft	300.0 ml/min
1:49 PM	05.46	7.043 pri	14.71 C	2,176 μ3/6/11	0.372 Hig/L	1.370 1410	29.9 1110	14.00 11	300.0 111/111111
10/16/2025	08:42	7.035 pH	14.86 °C	2,176 µS/cm	0.281 mg/L	0.170 NTU	28.7 mV	14.00 ft	300.0 ml/min
1:52 PM	00.42	7.033 pri	14.00 C	2,176 μ3/6111	0.281 Hig/L	0.170 N10	20.7 1110	14.00 11	300.0 111/111111

Samples

Sample ID:	Description:
MW-15	ST-1400

Site Name	osal Lan	dfill		Permit No.	70-SDP-09-91P	
Monitoring Well/Piezometer	r No.		MW-17		Upgradient	
	-		112 11 21		Downgradient _	X
N 00 "			CI			
Name Of person sampling			Cli	int Oberbi	roeckling	
A. MONITORING WELL/I	PIEZOMETER CO	ONDITIO	NS			
Well/piezometer Properly If no, explain	y Capped?		Yes	g Water or Litter? xplain	No	
B. GROUNDWATER ELE	VATION MEASU	JREMEN	T (+/- 0.01 1	foot, MSL)		
Elevation: Top of inner w	vell casing		557.32 ft	Ground E	levation	554.53 ft
Depth of Well	20.35 ft				neter (inches)	2.0 in
Equipment Used		Solins	t Model 101	Water Le	evel Probe	
Groundwater Leve	l (+/- 0.01 foot be	low top of	inner casin	g, MSL):		
	D-4-/T:	_	D	1. 4.	C	
	Date/Time	3	Dept Ground		Groundwater Elevation	
			Ground	iwatei	Lievation	
Before Purging	10/16/2025	13:00	12.7		544.58 ft	_
* After Purging	10/16/2025	13:30	12.7		544.58 ft	_
* Before Sampling	10/16/2025	13:30	12.7	<u>4 ft</u>	544.58 ft	_
*C. WELL PURGING						
Quantity of Water Remov	ved from Well (ga	llons)			1.24 gallons	
No. of Well Volumes (ba	,-				1.00 well volum	nes
Was well pumped/bailed		No No			1.00 Well volum	
Equipment used:						
Bailer type			Dedicated B	Sailer		
Pump type	Pneumatic Bladd	ler	Dedicated P		No	
If not dedicated, met	hod of cleaning		Repla	<u>ce bladder</u>	, rinse w/water, d	ledicated tubing
*D. FIELD MEASUREMEN	NT					
Weather Conditions				Sunny		
Field Measurements (after	er stabilization)			Sunny		
Temperature	,	14.70	Units		°C	
Equipment Used				Aquatrol	11 500	
pH		6.94				
Equipment Used		2.072	TT 1.	Aquatrol		
Specific Cond.		2,063	Units		μS/cm	
Equipment Used				Aquatrol	11 300	
Comments: ORP: 51.3	DO: 1.27	Turb.:	0.94	Samp	ole Time: 10/10	6/2025 13:30

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Test Date / Time: 10/16/2025 1:08:07 PM

Project: CIPCO-MW-17 (2)

Operator Name: Clint Oberbroeckling

Location Name: MW-17
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 10.35 ft
Total Depth: 20.35 ft

Initial Depth to Water: 12.74 ft

Pump Type: QED Sample PRO Tubing Type: Nylon- Double

Bonded

Tubing Inner Diameter: 0.25 in

Tubing Length: 20.35 ft

Pump Intake From TOC: 15.35 ft Estimated Total Volume Pumped:

4710 ml

Flow Cell Volume: 130 ml Final Flow Rate: 300 ml/min

Final Draw Down: 0 ft

Instrument Used: Aqua TROLL 500

Serial Number: 613885

Test Notes:

Weather Conditions:

65° sunny

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 0.33	
10/16/2025 1:08 PM	00:00	7.017 pH	16.48 °C	2,301 µS/cm	1.310 mg/L	5.225 NTU	81.6 mV	12.74 ft	300.0 ml/min
10/16/2025 1:10 PM	02:37	6.877 pH	15.26 °C	2,327 µS/cm	0.625 mg/L	4.166 NTU	68.4 mV	12.74 ft	300.0 ml/min
10/16/2025 1:13 PM	05:14	6.925 pH	14.96 °C	2,226 µS/cm	0.873 mg/L	2.294 NTU	61.2 mV	12.74 ft	300.0 ml/min
10/16/2025 1:15 PM	07:51	6.920 pH	14.94 °C	2,160 µS/cm	1.047 mg/L	0.727 NTU	58.0 mV	12.74 ft	300.0 ml/min
10/16/2025 1:18 PM	10:28	6.923 pH	14.75 °C	2,121 µS/cm	1.125 mg/L	0.313 NTU	55.8 mV	12.74 ft	300.0 ml/min
10/16/2025 1:21 PM	13:05	6.929 pH	14.82 °C	2,088 µS/cm	1.176 mg/L	0.704 NTU	53.5 mV	12.74 ft	300.0 ml/min
10/16/2025 1:23 PM	15:42	6.943 pH	14.70 °C	2,063 µS/cm	1.272 mg/L	0.942 NTU	51.3 mV	12.74 ft	300.0 ml/min

Samples

Sample ID:	Description:
MW-17	ST-1330

Site Name	posal Lan	dfill		Permit No.	70-SDP-09-91P	
Monitoring Well/Piezomete	er No.		MW-20		Upgradient	
international was a resemble	2 1 1 0 1		112 11 20		Downgradient _	X
N 00 1'			CI		-	
Name Of person sampling			Cli	int Oberb	roeckling	
A. MONITORING WELL/	PIEZOMETER C	ONDITIO	NS			
Well/piezometer Properl If no, explain	y Capped?		Yes	ng Water or Litter? explain		
B. GROUNDWATER ELE	EVATION MEAS	UREMEN	T (+/- 0.01 1	foot, MSL)	
Elevation: Top of inner v	well casing		558.92 ft	Ground E	Elevation	555.95 ft
Depth of Well			Inside C	Casing Dia	meter (inches)	2.0 in
Equipment Used		Solins	t Model 101	Water L	evel Probe	
Groundwater Leve	el (+/- 0.01 foot be	elow top of	inner casing	g, MSL):		
	D-4-/T:	_	D	1. 4.	C 1	
	Date/Tim	e	Dept Ground		Groundwater Elevation	
			Ground	iwatei	Elevation	
Before Purging	10/16/2025	10:00	4.62	ft	554.30 ft	_
* After Purging	10/16/2025	10:35	7.01	ft	551.91 ft	_
* Before Sampling	10/16/2025	10:35	7.01	ft	551.91 ft	_
*C. WELL PURGING						
Quantity of Water Remo	wed from Well (gr	allone)			0.35 gallons	
No. of Well Volumes (ba			-		0.05 well volum	nes
Was well pumped/bailed		No No			olos wen volum	iles
Equipment used:						
Bailer type			Dedicated B	ailer		
Pump type	Pneumatic Blade		Dedicated P		No	
If not dedicated, met	thod of cleaning		Repla	ce bladde	r, rinse w/water, d	ledicated tubing
*D. FIELD MEASUREME	NT					
Weather Conditions				Overcast		
Field Measurements (aft	er stabilization)		<u> </u>	Overcast		
Temperature	or succinzucion)	14.11	Units		$^{\circ}\mathrm{C}$	
Equipment Used				Aquatro	oll 500	
рН		7.47				
Equipment Used				Aquatro		
Specific Cond.		581	Units		μS/cm	
Equipment Used				Aquatro	oll 500	
Comments: ORP: 148.3	B DO: 0.53	Turb.:	1.51	Sam	ple Time: 10/16	5/2025 10:35

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Test Date / Time: 10/16/2025 10:18:38 AM

Project: CIPCO-MW-20 (2)

Operator Name: Clint Oberbroeckling

Location Name: MW-20 Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 34.4 ft Total Depth: 44.4 ft

Initial Depth to Water: 4.62 ft

Pump Type: QED Sample PRO Tubing Type: Nylon- Double

Bonded

Tubing Inner Diameter: 0.25 in

Tubing Length: 44.4 ft

Pump Intake From TOC: 39.4 ft Estimated Total Volume Pumped:

1338.333 ml

Flow Cell Volume: 130 ml Final Flow Rate: 200 ml/min Final Draw Down: 2.39 ft Instrument Used: Aqua TROLL 500

Serial Number: 613885

Test Notes:

Weather Conditions:

610 overcast

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 3	
10/16/2025 10:18 AM	00:00	7.431 pH	14.22 °C	582.7 μS/cm	0.382 mg/L	2.293 NTU	161.6 mV	4.620 ft	100.0 ml/min
10/16/2025 10:22 AM	03:23	7.410 pH	14.18 °C	582.2 μS/cm	0.410 mg/L	2.048 NTU	155.0 mV	7.010 ft	200.0 ml/min
10/16/2025 10:25 AM	06:46	7.409 pH	14.23 °C	581.5 µS/cm	0.478 mg/L	0.951 NTU	150.5 mV	7.010 ft	200.0 ml/min
10/16/2025 10:27 AM	08:23	7.472 pH	14.11 °C	581.4 μS/cm	0.529 mg/L	1.151 NTU	148.3 mV	7.010 ft	200.0 ml/min

Samples

Sample ID:	Description:
MW-20	ST-1035

Appendix B

Laboratory Analytical Reports

14

PREPARED FOR

ANALYTICAL REPORT

Attn: Clint Oberbroeckling GHD Services Inc. 11228 Aurora Avenue Des Moines, Iowa 50322-7905

Generated 10/28/2025 3:53:05 PM

JOB DESCRIPTION

CIPCO Ash Landfill Project

JOB NUMBER

310-318398-1

Eurofins Cedar Falls 3019 Venture Way Cedar Falls IA 50613

Eurofins Cedar Falls

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 10/28/2025 3:53:05 PM

Authorized for release by Zach Bindert, Senior Project Manager Zach.Bindert@et.eurofinsus.com (319)595-2016

Λ

_

6

q

10

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Detection Summary	6
Client Sample Results	9
Definitions	19
QC Sample Results	20
QC Association	23
Chronicle	25
Certification Summary	28
Method Summary	29
Chain of Custody	30
Receipt Checklists	

4

9

10

12

13

Case Narrative

Client: GHD Services Inc.

Project: CIPCO Ash Landfill Project

Job ID: 310-318398-1 Eurofins Cedar Falls

Job Narrative 310-318398-1

The analytical test results presented in this report meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page, unless otherwise noted. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable. Regulated compliance samples (e.g. SDWA, NPDES) must comply with associated agency requirements/permits.

- Matrix-specific batch QC (e.g., MS, MSD, SD) may not be reported when insufficient sample volume is available or when site-specific QC samples are not submitted. In such cases, a Laboratory Control Sample Duplicate (LCSD) may be analyzed to provide precision data for the batch.
- For samples analyzed using surrogate and/or isotope dilution analytes, any recoveries falling outside of established acceptance criteria are re-prepared and/or re-analyzed to confirm results, unless the deviation is due to sample dilution or otherwise explained in the case narrative.

Receipt

The samples were received on 10/17/2025 4:15 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.6°C.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cedar Falls

Page 4 of 32 10/28/2025

2

Job ID: 310-318398-1

3

7

10

1 1

12

13

Sample Summary

Client: GHD Services Inc. Job ID: 310-318398-1

Project/Site: CIPCO Ash Landfill Project

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Sample Origin
310-318398-1	MW-1	Water	10/16/25 10:00	10/17/25 16:15	lowa
310-318398-2	MW-2	Water	10/16/25 14:50	10/17/25 16:15	Iowa
310-318398-3	MW-3	Water	10/16/25 15:40	10/17/25 16:15	Iowa
310-318398-4	MW-5	Water	10/16/25 12:15	10/17/25 16:15	Iowa
310-318398-5	MW-6	Water	10/16/25 11:15	10/17/25 16:15	Iowa
310-318398-6	MW-9	Water	10/16/25 16:10	10/17/25 16:15	Iowa
310-318398-7	MW-11	Water	10/16/25 09:00	10/17/25 16:15	lowa
310-318398-8	MW-15	Water	10/16/25 14:00	10/17/25 16:15	Iowa
310-318398-9	MW-17	Water	10/16/25 13:30	10/17/25 16:15	Iowa
310-318398-10	MW-20	Water	10/16/25 10:35	10/17/25 16:15	lowa

4

_

9

10

11

13

Detection Summary

Client: GHD Services Inc.

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-1 Lab Sample ID: 310-318398-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	6.59		5.00		mg/L		_	9056A	Total/NA
Sulfate	304		5.00		mg/L	5		9056A	Total/NA
Boron	0.310		0.100		mg/L	1		6020B	Total/NA
Cobalt	0.000934	(0.000500		mg/L	1		6020B	Total/NA
Iron	2.64		0.100		mg/L	1		6020B	Total/NA
Lithium	0.0635		0.0100		mg/L	1		6020B	Total/NA
Magnesium	80.1		0.500		mg/L	1		6020B	Total/NA
Manganese	0.293		0.0100		mg/L	1		6020B	Total/NA
Sodium	9.97		1.00		mg/L	1		6020B	Total/NA
Strontium	0.761		0.00100		ma/L	1		6020B	Total/NA

Client Sample ID: MW-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	8.62		5.00		mg/L	5	_	9056A	Total/NA
Sulfate	191		5.00		mg/L	5		9056A	Total/NA
Boron	6.98		0.400		mg/L	4		6020B	Total/NA
Lithium	0.0331		0.0100		mg/L	1		6020B	Total/NA
Magnesium	30.2		0.500		mg/L	1		6020B	Total/NA
Manganese	0.0615		0.0100		mg/L	1		6020B	Total/NA
Sodium	16.6		1.00		mg/L	1		6020B	Total/NA
Strontium	0.323		0.00100		mg/L	1		6020B	Total/NA

Client Sample ID: MW-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Sulfate	37.8		5.00		mg/L	5	_	9056A	Total/NA
Boron	1.75		0.100		mg/L	1		6020B	Total/NA
Cobalt	0.00162		0.000500		mg/L	1		6020B	Total/NA
Iron	0.203		0.100		mg/L	1		6020B	Total/NA
Lithium	0.0336		0.0100		mg/L	1		6020B	Total/NA
Magnesium	20.4		0.500		mg/L	1		6020B	Total/NA
Manganese	0.563		0.0100		mg/L	1		6020B	Total/NA
Sodium	24.8		1.00		mg/L	1		6020B	Total/NA
Strontium	0.860		0.00100		mg/L	1		6020B	Total/NA

Client Sample ID: MW-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	15.3		5.00		mg/L	5	_	9056A	Total/NA
Sulfate	65.0		5.00		mg/L	5		9056A	Total/NA
Boron	7.05		0.400		mg/L	4		6020B	Total/NA
Cobalt	0.00118		0.000500		mg/L	1		6020B	Total/NA
Iron	0.343		0.100		mg/L	1		6020B	Total/NA
Lithium	0.0183		0.0100		mg/L	1		6020B	Total/NA
Magnesium	35.3		0.500		mg/L	1		6020B	Total/NA
Manganese	0.249		0.0100		mg/L	1		6020B	Total/NA
Sodium	18.4		1.00		mg/L	1		6020B	Total/NA
Strontium	0.326		0.00100		mg/L	1		6020B	Total/NA

This Detection Summary does not include radiochemical test results.

Job ID: 310-318398-1

Page 6 of 32

5

7

9

11

12

13

14

Lab Sample ID: 310-318398-4

Lab Sample ID: 310-318398-2

Lab Sample ID: 310-318398-3

Client: GHD Services Inc.

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-6 Lab Sample ID: 310-318398-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	14.2		5.00		mg/L	5	_	9056A	Total/NA
Sulfate	68.3		5.00		mg/L	5		9056A	Total/NA
Arsenic	0.00459		0.00200		mg/L	1		6020B	Total/NA
Boron	8.60		0.400		mg/L	4		6020B	Total/NA
Cobalt	0.00385		0.000500		mg/L	1		6020B	Total/NA
Iron	1.98		0.100		mg/L	1		6020B	Total/NA
Magnesium	33.1		0.500		mg/L	1		6020B	Total/NA
Manganese	7.46		0.0100		mg/L	1		6020B	Total/NA
Molybdenum	0.0775		0.00200		mg/L	1		6020B	Total/NA
Sodium	16.7		1.00		mg/L	1		6020B	Total/NA
Strontium	0.293		0.00100		mg/L	1		6020B	Total/NA

Client Sample ID: MW-9

Analyte	Result Q	ualifier RL	MDL	Unit	Dil Fac	D Method	Prep Type
Sulfate	21.5	5.00		mg/L		9056A	Total/NA
Boron	0.401	0.100		mg/L	1	6020B	Total/NA
Lithium	0.0408	0.0100		mg/L	1	6020B	Total/NA
Magnesium	31.1	0.500		mg/L	1	6020B	Total/NA
Manganese	0.0130	0.0100		mg/L	1	6020B	Total/NA
Sodium	13.2	1.00		mg/L	1	6020B	Total/NA
Strontium	0.634	0.00100		mg/L	1	6020B	Total/NA

Client Sample ID: MW-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	10.6		5.00		mg/L		_	9056A	Total/NA
Sulfate	89.7		5.00		mg/L	5		9056A	Total/NA
Boron	0.154		0.100		mg/L	1		6020B	Total/NA
Iron	0.625		0.100		mg/L	1		6020B	Total/NA
Magnesium	46.7		0.500		mg/L	1		6020B	Total/NA
Manganese	0.202		0.0100		mg/L	1		6020B	Total/NA
Sodium	13.1		1.00		mg/L	1		6020B	Total/NA
Strontium	0.132		0.00100		mg/L	1		6020B	Total/NA

Client Sample ID: MW-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	17.7		5.00		mg/L	5	_	9056A	Total/NA
Sulfate	1420		20.0		mg/L	20		9056A	Total/NA
Boron	41.7		1.60		mg/L	16		6020B	Total/NA
Lithium	0.140		0.0100		mg/L	1		6020B	Total/NA
Magnesium	114		2.00		mg/L	4		6020B	Total/NA
Manganese	0.0476		0.0100		mg/L	1		6020B	Total/NA
Molybdenum	0.396		0.00200		mg/L	1		6020B	Total/NA
Sodium	96.5		1.00		mg/L	1		6020B	Total/NA
Strontium	0.793		0.00100		mg/L	1		6020B	Total/NA

Client Sample ID: MW-17

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Chloride	17.5	5.00	mg/L		9056A	Total/NA
Sulfate	1180	20.0	mg/L	20	9056A	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Cedar Falls

10/28/2025

Page 7 of 32

2

Job ID: 310-318398-1

Lab Sample ID: 310-318398-6

Lab Sample ID: 310-318398-7

Lab Sample ID: 310-318398-8

Lab Sample ID: 310-318398-9

5

_

8

9

11

12

Detection Summary

Client: GHD Services Inc.

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-17 (Continued)

Lab Sample ID: 310-318398-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	29.7		1.00		mg/L	10	_	6020B	Total/NA
Iron	1.23		0.400		mg/L	4		6020B	Total/NA
Lithium	0.242	C	.0100		mg/L	1		6020B	Total/NA
Magnesium	193		2.00		mg/L	4		6020B	Total/NA
Manganese	0.329	C	.0100		mg/L	1		6020B	Total/NA
Molybdenum	0.0513	0.0	00200		mg/L	1		6020B	Total/NA
Sodium	77.6		1.00		mg/L	1		6020B	Total/NA
Strontium	0.499	0.0	00100		mg/L	1		6020B	Total/NA

Client Sample ID: MW-20 Lab Sample ID: 310-318398-10

Analyte	Result Q	ualifier RL	MDL Unit	Dil Fac D	Method	Prep Type
Sulfate	29.9	5.00	mg/L		9056A	Total/NA
Boron	1.79	0.100	mg/L	1	6020B	Total/NA
Lithium	0.0203	0.0100	mg/L	1	6020B	Total/NA
Magnesium	16.3	0.500	mg/L	1	6020B	Total/NA
Manganese	0.0259	0.0100	mg/L	1	6020B	Total/NA
Sodium	88.1	1.00	mg/L	1	6020B	Total/NA
Strontium	0.578	0.00100	ma/L	1	6020B	Total/NA

Client: GHD Services Inc.

Job ID: 310-318398-1

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-1 Lab Sample ID: 310-318398-1

Date Collected: 10/16/25 10:00 Matrix: Water

Date Received: 10/17/25 16:15

Method: SW846 9056A -	Anions, Ion Chromato	graphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.59		5.00		mg/L			10/21/25 14:45	5
Sulfate	304		5.00		mg/L			10/21/25 14:45	5
Method: SW846 6020B -	Metals (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		ma/L		10/21/25 08:45	10/24/25 18:24	1

Method: SW846 6020B -	Metals (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/21/25 08:45	10/24/25 18:24	1
Boron	0.310		0.100		mg/L		10/21/25 08:45	10/24/25 18:24	1
Cobalt	0.000934		0.000500		mg/L		10/21/25 08:45	10/24/25 18:24	1
Iron	2.64		0.100		mg/L		10/21/25 08:45	10/24/25 18:24	1
Lithium	0.0635		0.0100		mg/L		10/21/25 08:45	10/24/25 18:24	1
Magnesium	80.1		0.500		mg/L		10/21/25 08:45	10/24/25 18:24	1
Manganese	0.293		0.0100		mg/L		10/21/25 08:45	10/24/25 18:24	1
Molybdenum	<0.00200		0.00200		mg/L		10/21/25 08:45	10/24/25 18:24	1
Sodium	9.97		1.00		mg/L		10/21/25 08:45	10/24/25 18:24	1
Strontium	0.761		0.00100		mg/L		10/21/25 08:45	10/24/25 18:24	1

Client: GHD Services Inc.

Job ID: 310-318398-1

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-2 Lab Sample ID: 310-318398-2

Date Collected: 10/16/25 14:50 Matrix: Water
Date Received: 10/17/25 16:15

Method: SW846 9056A - Anions, Ion Chromatography									
nalyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
Chloride	8.62	5.00	mg/L			10/21/25 14:56	5		
Gulfate	191	5.00	mg/L			10/21/25 14:56	5		

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/21/25 08:45	10/24/25 18:27	1
Boron	6.98		0.400		mg/L		10/21/25 08:45	10/27/25 13:12	4
Cobalt	<0.000500		0.000500		mg/L		10/21/25 08:45	10/24/25 18:27	1
Iron	<0.100		0.100		mg/L		10/21/25 08:45	10/24/25 18:27	1
Lithium	0.0331		0.0100		mg/L		10/21/25 08:45	10/24/25 18:27	1
Magnesium	30.2		0.500		mg/L		10/21/25 08:45	10/24/25 18:27	1
Manganese	0.0615		0.0100		mg/L		10/21/25 08:45	10/24/25 18:27	1
Molybdenum	<0.00200		0.00200		mg/L		10/21/25 08:45	10/24/25 18:27	1
Sodium	16.6		1.00		mg/L		10/21/25 08:45	10/24/25 18:27	1
Strontium	0.323		0.00100		mg/L		10/21/25 08:45	10/24/25 18:27	1

2

<u>ی</u>

5

9

10

12

13

Client: GHD Services Inc.

Job ID: 310-318398-1

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-3 Lab Sample ID: 310-318398-3

Date Collected: 10/16/25 15:40 Matrix: Water

Date Received: 10/17/25 16:15

Method: SW846 9056A - Anions, Ion Chromatography									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00		5.00		mg/L			10/21/25 15:31	5
Sulfate	37.8		5.00		mg/L			10/21/25 15:31	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/21/25 08:45	10/24/25 18:30	1
Boron	1.75		0.100		mg/L		10/21/25 08:45	10/24/25 18:30	1
Cobalt	0.00162		0.000500		mg/L		10/21/25 08:45	10/24/25 18:30	1
Iron	0.203		0.100		mg/L		10/21/25 08:45	10/24/25 18:30	1
Lithium	0.0336		0.0100		mg/L		10/21/25 08:45	10/24/25 18:30	1
Magnesium	20.4		0.500		mg/L		10/21/25 08:45	10/24/25 18:30	1
Manganese	0.563		0.0100		mg/L		10/21/25 08:45	10/24/25 18:30	1
Molybdenum	<0.00200		0.00200		mg/L		10/21/25 08:45	10/24/25 18:30	1
Sodium	24.8		1.00		mg/L		10/21/25 08:45	10/24/25 18:30	1
Strontium	0.860		0.00100		mg/L		10/21/25 08:45	10/24/25 18:30	1

2

4

6

8

10

11

13

4 /

Client: GHD Services Inc. Job ID: 310-318398-1

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-5 Lab Sample ID: 310-318398-4

Date Collected: 10/16/25 12:15 Matrix: Water

Date Received: 10/17/25 16:15

Method: SW846 9056A - Anions, Ion	Method: SW846 9056A - Anions, Ion Chromatography											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Chloride	15.3		5.00		mg/L			10/21/25 15:42	5			
Sulfate	65.0		5.00		mg/L			10/21/25 15:42	5			

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/21/25 08:45	10/24/25 18:33	1
Boron	7.05		0.400		mg/L		10/21/25 08:45	10/27/25 13:15	4
Cobalt	0.00118		0.000500		mg/L		10/21/25 08:45	10/24/25 18:33	1
Iron	0.343		0.100		mg/L		10/21/25 08:45	10/24/25 18:33	1
Lithium	0.0183		0.0100		mg/L		10/21/25 08:45	10/24/25 18:33	1
Magnesium	35.3		0.500		mg/L		10/21/25 08:45	10/24/25 18:33	1
Manganese	0.249		0.0100		mg/L		10/21/25 08:45	10/24/25 18:33	1
Molybdenum	<0.00200		0.00200		mg/L		10/21/25 08:45	10/24/25 18:33	1
Sodium	18.4		1.00		mg/L		10/21/25 08:45	10/24/25 18:33	1
Strontium	0.326		0.00100		mg/L		10/21/25 08:45	10/24/25 18:33	1

Client: GHD Services Inc.

Job ID: 310-318398-1

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-6 Lab Sample ID: 310-318398-5

Date Collected: 10/16/25 11:15

Date Received: 10/17/25 16:15

Matrix: Water

d Dil Fac
:54 5
:54 5
5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.00459		0.00200		mg/L		10/21/25 08:45	10/24/25 18:35	1
Boron	8.60		0.400		mg/L		10/21/25 08:45	10/27/25 13:18	4
Cobalt	0.00385		0.000500		mg/L		10/21/25 08:45	10/24/25 18:35	1
Iron	1.98		0.100		mg/L		10/21/25 08:45	10/24/25 18:35	1
Lithium	<0.0100		0.0100		mg/L		10/21/25 08:45	10/24/25 18:35	1
Magnesium	33.1		0.500		mg/L		10/21/25 08:45	10/24/25 18:35	1
Manganese	7.46		0.0100		mg/L		10/21/25 08:45	10/24/25 18:35	1
Molybdenum	0.0775		0.00200		mg/L		10/21/25 08:45	10/24/25 18:35	1
Sodium	16.7		1.00		mg/L		10/21/25 08:45	10/24/25 18:35	1
Strontium	0.293		0.00100		mg/L		10/21/25 08:45	10/24/25 18:35	1

_

3

5

7

9

10

12

13

Client: GHD Services Inc.

Job ID: 310-318398-1

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-9 Lab Sample ID: 310-318398-6

Date Collected: 10/16/25 16:10

Matrix: Water
Date Received: 10/17/25 16:15

Method: SW846 9056A - Anion	s, Ion Chromatog	ıraphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00		5.00		mg/L			10/21/25 16:06	5
Sulfate	21.5		5.00		mg/L			10/21/25 16:06	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/21/25 08:45	10/24/25 18:38	1
Boron	0.401		0.100		mg/L		10/21/25 08:45	10/24/25 18:38	1
Cobalt	<0.000500		0.000500		mg/L		10/21/25 08:45	10/24/25 18:38	1
Iron	<0.100		0.100		mg/L		10/21/25 08:45	10/24/25 18:38	1
Lithium	0.0408		0.0100		mg/L		10/21/25 08:45	10/24/25 18:38	1
Magnesium	31.1		0.500		mg/L		10/21/25 08:45	10/24/25 18:38	1
Manganese	0.0130		0.0100		mg/L		10/21/25 08:45	10/24/25 18:38	1
Molybdenum	<0.00200		0.00200		mg/L		10/21/25 08:45	10/24/25 18:38	1
Sodium	13.2		1.00		mg/L		10/21/25 08:45	10/24/25 18:38	1
Strontium	0.634		0.00100		mg/L		10/21/25 08:45	10/24/25 18:38	1

5

7

ð

10

11

13

1/

Client: GHD Services Inc.

Job ID: 310-318398-1

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-11 Lab Sample ID: 310-318398-7

Date Collected: 10/16/25 09:00 Matrix: Water
Date Received: 10/17/25 16:15

Method: SW846 9056A - Anion	s, Ion Chromatogra	aphy							
Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	10.6		5.00		mg/L			10/21/25 23:13	5
Sulfate	89.7		5.00		mg/L			10/21/25 23:13	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/21/25 08:45	10/24/25 18:41	1
Boron	0.154		0.100		mg/L		10/21/25 08:45	10/24/25 18:41	1
Cobalt	<0.000500		0.000500		mg/L		10/21/25 08:45	10/24/25 18:41	1
Iron	0.625		0.100		mg/L		10/21/25 08:45	10/24/25 18:41	1
Lithium	<0.0100		0.0100		mg/L		10/21/25 08:45	10/24/25 18:41	1
Magnesium	46.7		0.500		mg/L		10/21/25 08:45	10/24/25 18:41	1
Manganese	0.202		0.0100		mg/L		10/21/25 08:45	10/24/25 18:41	1
Molybdenum	<0.00200		0.00200		mg/L		10/21/25 08:45	10/24/25 18:41	1
Sodium	13.1		1.00		mg/L		10/21/25 08:45	10/24/25 18:41	1
Strontium	0.132		0.00100		mg/L		10/21/25 08:45	10/24/25 18:41	1

9

10

4.0

13

4 /

Client: GHD Services Inc. Job ID: 310-318398-1

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-15 Lab Sample ID: 310-318398-8

Date Collected: 10/16/25 14:00 Matrix: Water

Date Received: 10/17/25 16:15

Method: SW846 9056A - A	nions, Ion Chromatography							
Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	17.7	5.00		mg/L			10/21/25 23:25	5
Sulfate	1420	20.0		mg/L			10/22/25 09:43	20
Markhards CMO4C COOOD IN	() ((0)(10)							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/21/25 08:45	10/24/25 20:08	1
Boron	41.7		1.60		mg/L		10/21/25 08:45	10/28/25 12:57	16
Cobalt	<0.000500		0.000500		mg/L		10/21/25 08:45	10/24/25 20:08	1
Iron	<0.400		0.400		mg/L		10/21/25 08:45	10/27/25 14:45	4
Lithium	0.140		0.0100		mg/L		10/21/25 08:45	10/24/25 20:08	1
Magnesium	114		2.00		mg/L		10/21/25 08:45	10/25/25 17:58	4
Manganese	0.0476		0.0100		mg/L		10/21/25 08:45	10/24/25 20:08	1
Molybdenum	0.396		0.00200		mg/L		10/21/25 08:45	10/24/25 20:08	1
Sodium	96.5		1.00		mg/L		10/21/25 08:45	10/24/25 20:08	1
Strontium	0.793		0.00100		mg/L		10/21/25 08:45	10/24/25 20:08	1

4

6

Ω

9

10

12

Client: GHD Services Inc.

Job ID: 310-318398-1

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-17 Lab Sample ID: 310-318398-9

Date Collected: 10/16/25 13:30 Matrix: Water
Date Received: 10/17/25 16:15

Method: SW846 9056A - Anions, Ion Chromatography										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	17.5		5.00		mg/L			10/21/25 23:38	5
	Sulfate	1180		20.0		mg/L			10/22/25 09:55	20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/21/25 08:45	10/24/25 20:11	1
Boron	29.7		1.00		mg/L		10/21/25 08:45	10/28/25 13:00	10
Cobalt	<0.000500		0.000500		mg/L		10/21/25 08:45	10/24/25 20:11	1
Iron	1.23		0.400		mg/L		10/21/25 08:45	10/27/25 14:48	4
Lithium	0.242		0.0100		mg/L		10/21/25 08:45	10/24/25 20:11	1
Magnesium	193		2.00		mg/L		10/21/25 08:45	10/25/25 18:01	4
Manganese	0.329		0.0100		mg/L		10/21/25 08:45	10/24/25 20:11	1
Molybdenum	0.0513		0.00200		mg/L		10/21/25 08:45	10/24/25 20:11	1
Sodium	77.6		1.00		mg/L		10/21/25 08:45	10/24/25 20:11	1
Strontium	0.499		0.00100		mg/L		10/21/25 08:45	10/24/25 20:11	1

_

3

5

7

0

10

11

13

Client: GHD Services Inc. Job ID: 310-318398-1

Project/Site: CIPCO Ash Landfill Project

Method: SW846 9056A - Anions, Ion Chromatography

Client Sample ID: MW-20 Lab Sample ID: 310-318398-10

Date Collected: 10/16/25 10:35 Matrix: Water

Date Received: 10/17/25 16:15

Sodium

Strontium

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00		5.00		mg/L			10/21/25 23:50	5
Sulfate	29.9		5.00		mg/L			10/21/25 23:50	5
– Method: SW846 6020B - Metal	s (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/21/25 08:45	10/24/25 20:14	1
Boron	1.79		0.100		mg/L		10/21/25 08:45	10/27/25 14:51	1
Cobalt	<0.000500		0.000500		mg/L		10/21/25 08:45	10/24/25 20:14	1
Iron	<0.100		0.100		mg/L		10/21/25 08:45	10/24/25 20:14	1
Lithium	0.0203		0.0100		mg/L		10/21/25 08:45	10/24/25 20:14	1
Magnesium	16.3		0.500		mg/L		10/21/25 08:45	10/24/25 20:14	1
Manganese	0.0259		0.0100		mg/L		10/21/25 08:45	10/24/25 20:14	1
Molybdenum	<0.00200		0.00200		mg/L		10/21/25 08:45	10/24/25 20:14	1

1.00

0.00100

mg/L

mg/L

88.1

0.578

10/21/25 08:45

10/21/25 08:45

10/24/25 20:14

10/24/25 20:14

Definitions/Glossary

Client: GHD Services Inc.

Job ID: 310-318398-1

Project/Site: CIPCO Ash Landfill Project

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

Glossary

RL

RPD

TEF

TEQ

TNTC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\$	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)

Eurofins Cedar Falls

QC Sample Results

Client: GHD Services Inc. Job ID: 310-318398-1

Project/Site: CIPCO Ash Landfill Project

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 310-470922/3 **Matrix: Water**

Analysis Batch: 470922

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<1.00		1.00		mg/L			10/21/25 10:53	1
Sulfate	<1.00		1.00		mg/L			10/21/25 10:53	1

Lab Sample ID: LCS 310-470922/4

Matrix: Water

Analysis Batch: 470922

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	9.863		mg/L		99	90 - 110	
Sulfate	10.0	10.06		mg/L		101	90 - 110	

Lab Sample ID: MB 310-470984/3

Matrix: Water

Analysis Batch: 470984

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<1.00		1.00		mg/L			10/21/25 18:48	1
Sulfate	<1.00		1.00		mg/L			10/21/25 18:48	1

Lab Sample ID: LCS 310-470984/4

Matrix: Water

Analysis Batch: 470984

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	9.854		mg/L		99	90 - 110	
Sulfate	10.0	9.964		mg/L		100	90 - 110	

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 310-470690/1-A

Matrix: Water

Analysis Batch: 471347

							Prep Batch.	470090
МВ	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00200		0.00200		mg/L		10/21/25 08:45	10/24/25 17:21	1
<0.100		0.100		mg/L		10/21/25 08:45	10/24/25 17:21	1
<0.000500		0.000500		mg/L		10/21/25 08:45	10/24/25 17:21	1
<0.100		0.100		mg/L		10/21/25 08:45	10/24/25 17:21	1
<0.0100		0.0100		mg/L		10/21/25 08:45	10/24/25 17:21	1
<0.500		0.500		mg/L		10/21/25 08:45	10/24/25 17:21	1
<0.0100		0.0100		mg/L		10/21/25 08:45	10/24/25 17:21	1
<0.00200		0.00200		mg/L		10/21/25 08:45	10/24/25 17:21	1
<1.00		1.00		mg/L		10/21/25 08:45	10/24/25 17:21	1
<0.00100		0.00100		mg/L		10/21/25 08:45	10/24/25 17:21	1
	Result <0.00200 <0.100 <0.000500 <0.100 <0.0100 <0.500 <0.0100 <0.00200 <1.000		Result Qualifier RL <0.00200	Result Qualifier RL MDL <0.00200	Result Qualifier RL MDL Unit <0.00200	Result Qualifier RL MDL Unit D <0.00200	Result Qualifier RL MDL Unit D Prepared <0.00200	MB MB Result Qualifier RL MDL Unit D Prepared Analyzed <0.00200

Eurofins Cedar Falls

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client: GHD Services Inc. Job ID: 310-318398-1

Project/Site: CIPCO Ash Landfill Project

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 310-470690/2-A

Matrix: Water Analysis Batch: 471347 Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 470690

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.200	0.1885		mg/L		94	80 - 120	
Boron	0.200	0.1875		mg/L		94	80 - 120	
Cobalt	0.100	0.09338		mg/L		93	80 - 120	
Iron	0.200	0.1866		mg/L		93	80 - 120	
Lithium	0.200	0.1833		mg/L		92	80 - 120	
Magnesium	2.00	1.833		mg/L		92	80 - 120	
Manganese	0.100	0.09757		mg/L		98	80 - 120	
Molybdenum	0.200	0.1935		mg/L		97	80 - 120	
Sodium	2.00	1.942		mg/L		97	80 - 120	
Strontium	0.200	0.1853		mg/L		93	80 - 120	

Lab Sample ID: MB 310-470692/1-A

Matrix: Water

Analysis Batch: 471347

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 470692

мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/21/25 08:45	10/24/25 18:47	1
Cobalt	<0.000500		0.000500		mg/L		10/21/25 08:45	10/24/25 18:47	1
Lithium	<0.0100		0.0100		mg/L		10/21/25 08:45	10/24/25 18:47	1
Magnesium	<0.500		0.500		mg/L		10/21/25 08:45	10/24/25 18:47	1
Manganese	<0.0100		0.0100		mg/L		10/21/25 08:45	10/24/25 18:47	1
Molybdenum	<0.00200		0.00200		mg/L		10/21/25 08:45	10/24/25 18:47	1
Sodium	<1.00		1.00		mg/L		10/21/25 08:45	10/24/25 18:47	1
Strontium	< 0.00100		0.00100		mg/L		10/21/25 08:45	10/24/25 18:47	1

Lab Sample ID: MB 310-470692/1-A

Matrix: Water

Analysis Batch: 471495

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 470692

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.100		0.100		mg/L		10/21/25 08:45	10/27/25 16:43	1
Iron	<0.100		0.100		ma/l		10/21/25 08:45	10/27/25 16:43	1

Lab Sample ID: LCS 310-470692/2-A

Matrix: Water

Analysis Batch: 471347

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 470692

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.200	0.2002	-	mg/L		100	80 - 120	
Cobalt	0.100	0.09931		mg/L		99	80 - 120	
Lithium	0.200	0.1951		mg/L		98	80 - 120	
Magnesium	2.00	1.919		mg/L		96	80 - 120	
Manganese	0.100	0.1044		mg/L		104	80 - 120	
Molybdenum	0.200	0.2045		mg/L		102	80 - 120	
Sodium	2.00	2.094		mg/L		105	80 - 120	
Strontium	0.200	0.1956		mg/L		98	80 - 120	

Eurofins Cedar Falls

QC Sample Results

Client: GHD Services Inc. Job ID: 310-318398-1

Project/Site: CIPCO Ash Landfill Project

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 310-470692/2-A

Boron

Iron

Matrix: Water				Prep Type: Total/NA
Analysis Batch: 471495				Prep Batch: 470692
	Spike	LCS LCS		%Rec
Analyto	Λddod	Popult Qualifier Unit	D %Pac	limite

0.1968

0.1964

mg/L

mg/L

0.200

0.200

Client Sample ID: Lab Control Sample

80 - 120

80 - 120

98

Job ID: 310-318398-1

Client: GHD Services Inc. Project/Site: CIPCO Ash Landfill Project

HPLC/IC

Analysis Batch: 470922

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-318398-1	MW-1	Total/NA	Water	9056A	
310-318398-2	MW-2	Total/NA	Water	9056A	
310-318398-3	MW-3	Total/NA	Water	9056A	
310-318398-4	MW-5	Total/NA	Water	9056A	
310-318398-5	MW-6	Total/NA	Water	9056A	
310-318398-6	MW-9	Total/NA	Water	9056A	
MB 310-470922/3	Method Blank	Total/NA	Water	9056A	
LCS 310-470922/4	Lab Control Sample	Total/NA	Water	9056A	

Analysis Batch: 470984

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-318398-7	MW-11	Total/NA	Water	9056A	<u> </u>
310-318398-8	MW-15	Total/NA	Water	9056A	
310-318398-8	MW-15	Total/NA	Water	9056A	
310-318398-9	MW-17	Total/NA	Water	9056A	
310-318398-9	MW-17	Total/NA	Water	9056A	
310-318398-10	MW-20	Total/NA	Water	9056A	
MB 310-470984/3	Method Blank	Total/NA	Water	9056A	
LCS 310-470984/4	Lab Control Sample	Total/NA	Water	9056A	

Metals

Prep Batch: 470690

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-318398-1	MW-1	Total/NA	Water	3005A	_
310-318398-2	MW-2	Total/NA	Water	3005A	
310-318398-3	MW-3	Total/NA	Water	3005A	
310-318398-4	MW-5	Total/NA	Water	3005A	
310-318398-5	MW-6	Total/NA	Water	3005A	
310-318398-6	MW-9	Total/NA	Water	3005A	
310-318398-7	MW-11	Total/NA	Water	3005A	
MB 310-470690/1-A	Method Blank	Total/NA	Water	3005A	
LCS 310-470690/2-A	Lab Control Sample	Total/NA	Water	3005A	

Prep Batch: 470692

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-318398-8	MW-15	Total/NA	Water	3005A	
310-318398-9	MW-17	Total/NA	Water	3005A	
310-318398-10	MW-20	Total/NA	Water	3005A	
MB 310-470692/1-A	Method Blank	Total/NA	Water	3005A	
LCS 310-470692/2-A	Lab Control Sample	Total/NA	Water	3005A	

Analysis Batch: 471347

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-318398-1	MW-1	Total/NA	Water	6020B	470690
310-318398-2	MW-2	Total/NA	Water	6020B	470690
310-318398-3	MW-3	Total/NA	Water	6020B	470690
310-318398-4	MW-5	Total/NA	Water	6020B	470690
310-318398-5	MW-6	Total/NA	Water	6020B	470690
310-318398-6	MW-9	Total/NA	Water	6020B	470690
310-318398-7	MW-11	Total/NA	Water	6020B	470690

Eurofins Cedar Falls

Page 23 of 32

QC Association Summary

Client: GHD Services Inc. Job ID: 310-318398-1

Project/Site: CIPCO Ash Landfill Project

Metals (Continued)

Analysis Batch: 471347 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-318398-8	MW-15	Total/NA	Water	6020B	470692
310-318398-9	MW-17	Total/NA	Water	6020B	470692
310-318398-10	MW-20	Total/NA	Water	6020B	470692
MB 310-470690/1-A	Method Blank	Total/NA	Water	6020B	470690
MB 310-470692/1-A	Method Blank	Total/NA	Water	6020B	470692
LCS 310-470690/2-A	Lab Control Sample	Total/NA	Water	6020B	470690
LCS 310-470692/2-A	Lab Control Sample	Total/NA	Water	6020B	470692

Analysis Batch: 471367

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-318398-8	MW-15	Total/NA	Water	6020B	470692
310-318398-9	MW-17	Total/NA	Water	6020B	470692

Analysis Batch: 471495

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-318398-2	MW-2	Total/NA	Water	6020B	470690
310-318398-4	MW-5	Total/NA	Water	6020B	470690
310-318398-5	MW-6	Total/NA	Water	6020B	470690
310-318398-8	MW-15	Total/NA	Water	6020B	470692
310-318398-9	MW-17	Total/NA	Water	6020B	470692
310-318398-10	MW-20	Total/NA	Water	6020B	470692
MB 310-470692/1-A	Method Blank	Total/NA	Water	6020B	470692
LCS 310-470692/2-A	Lab Control Sample	Total/NA	Water	6020B	470692

Analysis Batch: 471614

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-318398-8	MW-15	Total/NA	Water	6020B	470692
310-318398-9	MW-17	Total/NA	Water	6020B	470692

Eurofins Cedar Falls

10/28/2025

10

12

13

Lab Sample ID: 310-318398-1

Matrix: Water

Job ID: 310-318398-1

Client Sample ID: MW-1 Date Collected: 10/16/25 10:00

Date Received: 10/17/25 16:15

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	470922	ZRI4	EET CF	10/21/25 14:45
Total/NA	Prep	3005A			470690	RLT9	EET CF	10/21/25 08:45
Total/NA	Analysis	6020B		1	471347	ZRI4	EET CF	10/24/25 18:24

Client Sample ID: MW-2 Lab Sample ID: 310-318398-2

Date Collected: 10/16/25 14:50 **Matrix: Water** Date Received: 10/17/25 16:15

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	470922	ZRI4	EET CF	10/21/25 14:56
Total/NA	Prep	3005A			470690	RLT9	EET CF	10/21/25 08:45
Total/NA	Analysis	6020B		1	471347	ZRI4	EET CF	10/24/25 18:27
Total/NA	Prep	3005A			470690	RLT9	EET CF	10/21/25 08:45
Total/NA	Analysis	6020B		4	471495	NFT2	EET CF	10/27/25 13:12

Lab Sample ID: 310-318398-3 **Client Sample ID: MW-3**

Date Collected: 10/16/25 15:40 **Matrix: Water**

Date Received: 10/17/25 16:15

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	470922	ZRI4	EET CF	10/21/25 15:31
Total/NA	Prep	3005A			470690	RLT9	EET CF	10/21/25 08:45
Total/NA	Analysis	6020B		1	471347	ZRI4	EET CF	10/24/25 18:30

Client Sample ID: MW-5 Lab Sample ID: 310-318398-4

Date Collected: 10/16/25 12:15 **Matrix: Water** Date Received: 10/17/25 16:15

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	470922	ZRI4	EET CF	10/21/25 15:42
Total/NA	Prep	3005A			470690	RLT9	EET CF	10/21/25 08:45
Total/NA	Analysis	6020B		1	471347	ZRI4	EET CF	10/24/25 18:33
Total/NA	Prep	3005A			470690	RLT9	EET CF	10/21/25 08:45
Total/NA	Analysis	6020B		4	471495	NFT2	EET CF	10/27/25 13:15

Client Sample ID: MW-6 Lab Sample ID: 310-318398-5

Date Collected: 10/16/25 11:15 **Matrix: Water** Date Received: 10/17/25 16:15

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	470922	ZRI4	EET CF	10/21/25 15:54
Total/NA	Prep	3005A			470690	RLT9	EET CF	10/21/25 08:45
Total/NA	Analysis	6020B		1	471347	ZRI4	EET CF	10/24/25 18:35
Total/NA	Prep	3005A			470690	RLT9	EET CF	10/21/25 08:45
Total/NA	Analysis	6020B		4	471495	NFT2	EET CF	10/27/25 13:18

Eurofins Cedar Falls

Lab Sample ID: 310-318398-6

Matrix: Water

Client Sample ID: MW-9

Date Collected: 10/16/25 16:10 Date Received: 10/17/25 16:15

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	470922	ZRI4	EET CF	10/21/25 16:06
Total/NA	Prep	3005A			470690	RLT9	EET CF	10/21/25 08:45
Total/NA	Analysis	6020B		1	471347	ZRI4	EET CF	10/24/25 18:38

Client Sample ID: MW-11

Date Collected: 10/16/25 09:00 Date Received: 10/17/25 16:15

Lab	Sami	ole	ID:	310	-31	8398-7	,
LUD	Ouiii			0.0	•	0000 1	

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	470984	ZRI4	EET CF	10/21/25 23:13
Total/NA	Prep	3005A			470690	RLT9	EET CF	10/21/25 08:45
Total/NA	Analysis	6020B		1	471347	ZRI4	EET CF	10/24/25 18:41

Client Sample ID: MW-15

Date Collected: 10/16/25 14:00

Date Received: 10/17/25 16:15

Lab Sample ID: 310-318398-8

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	470984	ZRI4	EET CF	10/21/25 23:25
Total/NA	Analysis	9056A		20	470984	ZRI4	EET CF	10/22/25 09:43
Total/NA	Prep	3005A			470692	RLT9	EET CF	10/21/25 08:45
Total/NA	Analysis	6020B		4	471367	ZRI4	EET CF	10/25/25 17:58
Total/NA	Prep	3005A			470692	RLT9	EET CF	10/21/25 08:45
Total/NA	Analysis	6020B		16	471614	NFT2	EET CF	10/28/25 12:57
Total/NA	Prep	3005A			470692	RLT9	EET CF	10/21/25 08:45
Total/NA	Analysis	6020B		1	471347	ZRI4	EET CF	10/24/25 20:08
Total/NA	Prep	3005A			470692	RLT9	EET CF	10/21/25 08:45
Total/NA	Analysis	6020B		4	471495	NFT2	EET CF	10/27/25 14:45

Client Sample ID: MW-17

Date Collected: 10/16/25 13:30

Date Received: 10/17/25 16:15

Lab Sample ID: 310-318398-9	Lab Sample ID: 310-3	318398-9
-----------------------------	----------------------	----------

Matrix: Water

Γ	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	470984	ZRI4	EET CF	10/21/25 23:38
Total/NA	Analysis	9056A		20	470984	ZRI4	EET CF	10/22/25 09:55
Total/NA	Prep	3005A			470692	RLT9	EET CF	10/21/25 08:45
Total/NA	Analysis	6020B		4	471367	ZRI4	EET CF	10/25/25 18:01
Total/NA	Prep	3005A			470692	RLT9	EET CF	10/21/25 08:45
Total/NA	Analysis	6020B		10	471614	NFT2	EET CF	10/28/25 13:00
Total/NA	Prep	3005A			470692	RLT9	EET CF	10/21/25 08:45
Total/NA	Analysis	6020B		1	471347	ZRI4	EET CF	10/24/25 20:11
Total/NA	Prep	3005A			470692	RLT9	EET CF	10/21/25 08:45
Total/NA	Analysis	6020B		4	471495	NFT2	EET CF	10/27/25 14:48

Lab Chronicle

Client: GHD Services Inc.

Job ID: 310-318398-1

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-20

Lab Sample ID: 310-318398-10

Matrix: Water

Date Collected: 10/16/25 10:35 Date Received: 10/17/25 16:15

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A			470984	ZRI4	EET CF	10/21/25 23:50
Total/NA	Prep	3005A			470692	RLT9	EET CF	10/21/25 08:45
Total/NA	Analysis	6020B		1	471347	ZRI4	EET CF	10/24/25 20:14
Total/NA	Prep	3005A			470692	RLT9	EET CF	10/21/25 08:45
Total/NA	Analysis	6020B		1	471495	NFT2	EET CF	10/27/25 14:51

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

5

6

8

4.0

11

13

Accreditation/Certification Summary

Client: GHD Services Inc.

Job ID: 310-318398-1

Project/Site: CIPCO Ash Landfill Project

Laboratory: Eurofins Cedar Falls

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date	
lowa	State		007	12-01-25	
The following analytes	are included in this report, but	t the laboratory is not certif	ied by the governing authority. This lis	t may include analyte	
,	are included in this report, bu oes not offer certification.	t the laboratory is not certif	ied by the governing authority. This lis	t may include analyte	
0 ,	• •	it the laboratory is not certif Matrix	ied by the governing authority. This lis Analyte	t may include analyte	

2

3

4

7

9

11

12

Method Summary

Client: GHD Services Inc.

Project/Site: CIPCO Ash Landfill Project

Method **Method Description** Laboratory Protocol SW846 EET CF 9056A Anions, Ion Chromatography 6020B Metals (ICP/MS) SW846 EET CF 3005A SW846 EET CF Preparation, Total Metals

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

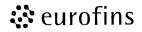
Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Job ID: 310-318398-1

4

6


7

q

10

11

13

Environment Testing America

Cooler/Sample Receipt and Temperature Loy rorm

Client Information & The Company of	
Client. GHD	
City/State Pes Moines STATE Project:	
Receipt Information	rc:
Pate/Time Received By. Brown Fatterson	
Delivery Type: UPS FedEx FedEx Ground US Mail Spee-D	ee
A Lab Courier Lab Field Services Client Drop-off Other:	
Condition of Cooler/Containers 🚅 🧎 👙 🤔 🥳 🐔 🐔 🔑	
Sample(s) received in Cooler? 🕅 Yes 🗌 No 🍴 If yes. Cooler ID.	
Multiple Coolers?	
Cooler Custody Seals Present? Yes No If yes Cooler custody seals intact? Yes No	
Sample Custody Seals Present? Yes A No If yes: Sample custody seals intact? Yes No	
Trip Blank Present? ☐ Yes 🖄 No If yes Which VOA samples are in cooler? ↓	
	(20)
Temperature Record。"上点。有了如果是否的不可以写一个的是是是是是是是是一个可以是是一个一个的。"	F
Coolant: Wet ice Blue ice Dry ice Other: NONE	
Thermometer ID: A A Correction Factor (°C): ♣Ø	
• Temp Blank Temperature 🖫 tr no temp blank, or temp blank temperature above criteria, proceed to Sample Container Temperat	ure :
Uncorrected Temp (°C): 2.6 Corrected Temp (°C). 2.6	
• Sample Container Temperature ()	
Container(s) used CONTAINER 1 CONTAINER 2	
Uncorrected Temp (°C).	
Corrected Temp (°C):	
Exceptions Noted	
1) If temperature exceeds criteria, was sample(s) received same day of sampling?	
2) If temperature is <0°C, are there obvious signs that the integrity of sample containers is compromised? (e g , bulging septa, broken/cracked bottles, frozen solid?)	
NOTE If yes, contact PM before proceeding If no, proceed with login Additional Comments	
Additional Comments ***	
Additional Comments	
Additional Comments of the second of the sec	
Additional Comments of the second of the sec	

Eurofins Cedar Falls 32

Login Sample Receipt Checklist

Client: GHD Services Inc. Job Number: 310-318398-1

Login Number: 318398 List Source: Eurofins Cedar Falls

List Number: 1

Creator: Hirsch, Preston

oreator. Import, i restori	
Question	Answer Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td>	N/A
The cooler's custody seal, if present, is intact.	N/A
Sample custody seals, if present, are intact.	N/A
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
OC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
the Field Sampler's name present on COC?	True
here are no discrepancies between the containers received and the COC.	True
Samples are received within Holding Time (excluding tests with immediate HTs)	True
sample containers have legible labels.	True
Containers are not broken or leaking.	True
ample collection date/times are provided.	True
ppropriate sample containers are used.	True
sample bottles are completely filled.	True
sample Preservation Verified.	True
here is sufficient vol. for all requested analyses, incl. any requested //IS/MSDs	True
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True
fultiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Residual Chlorine Checked.	N/A

2

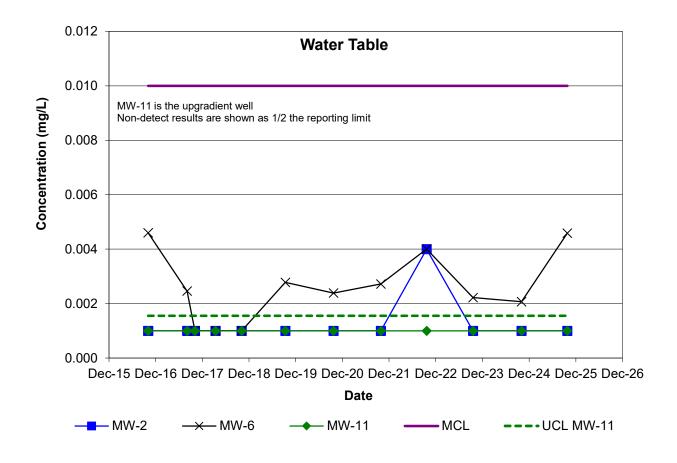
A

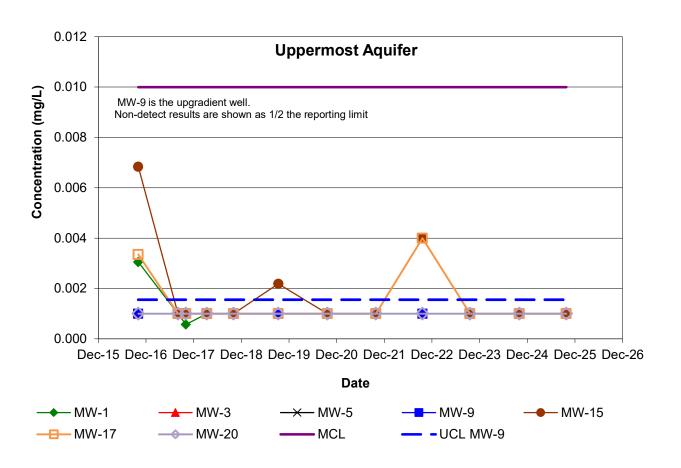
5

6

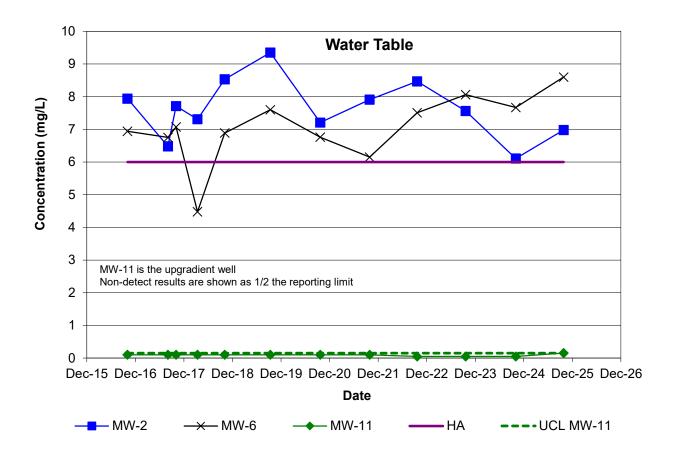
8

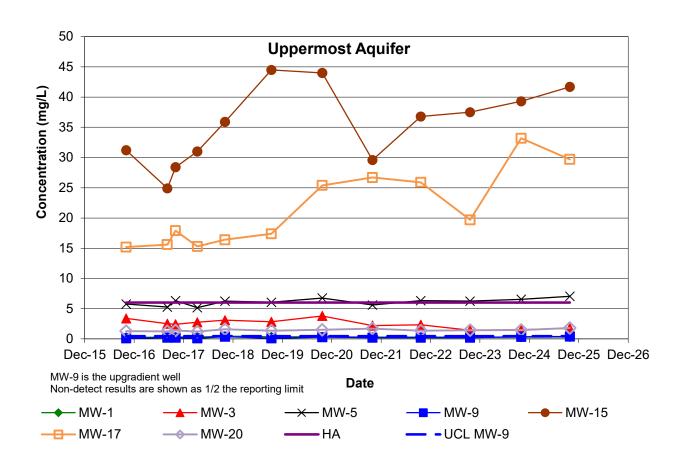
10

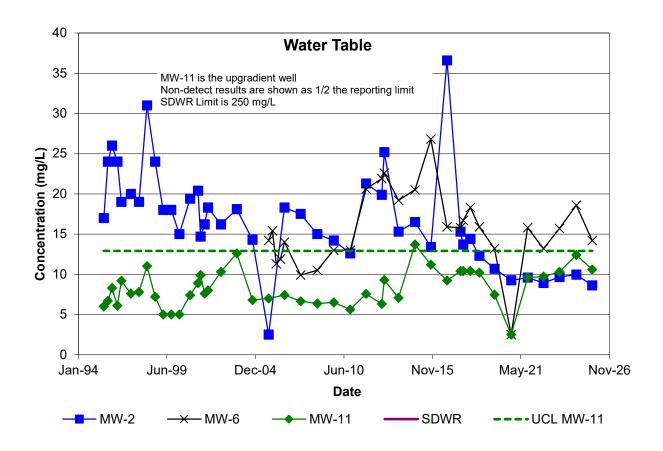

46

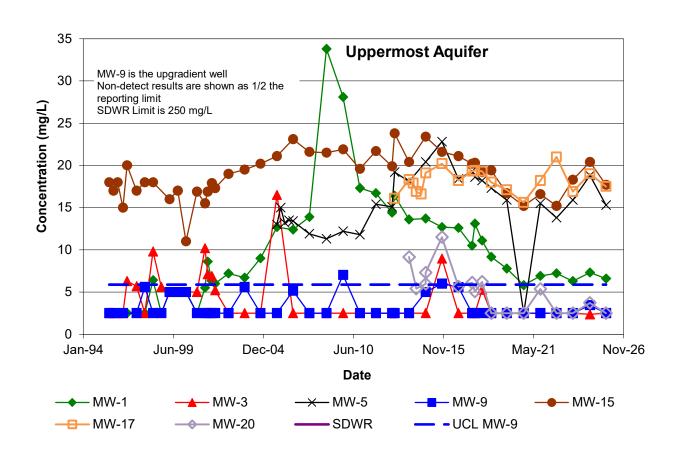

13

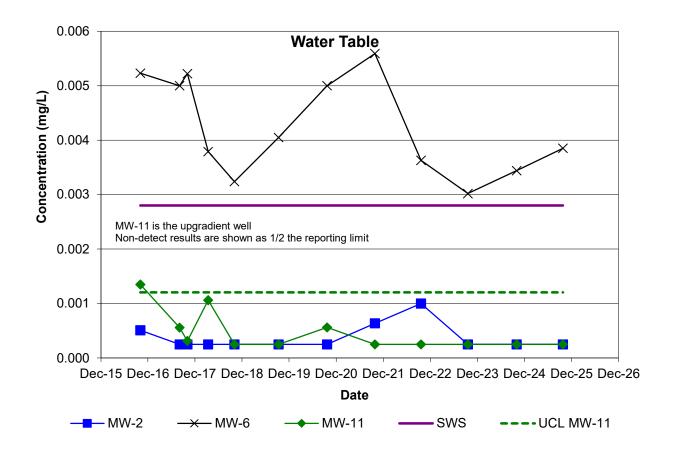
Appendix C

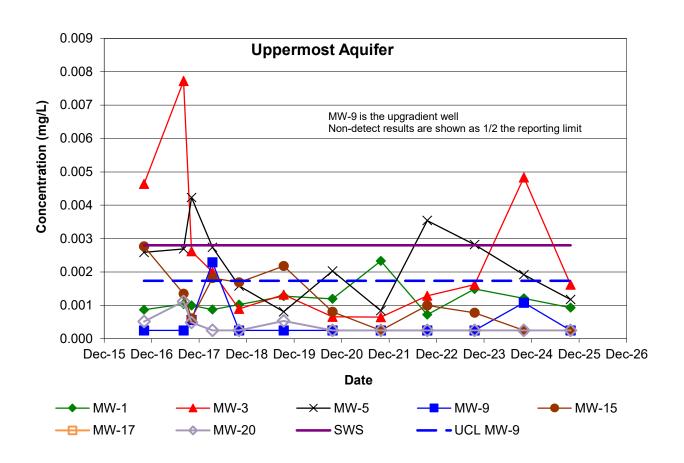

Graphs of Analytical and Monitoring Results

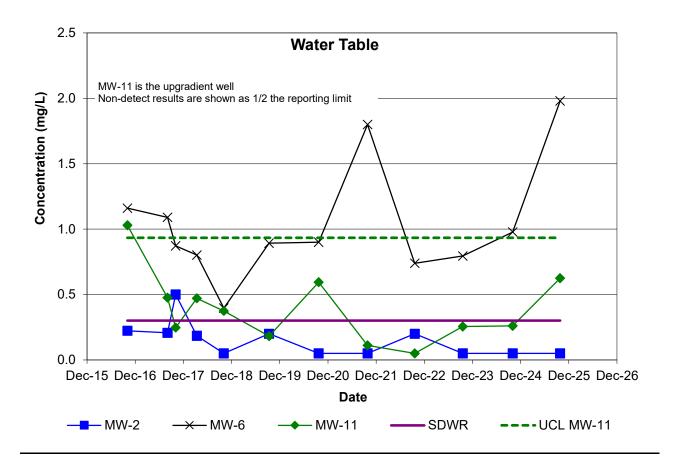

ARSENIC



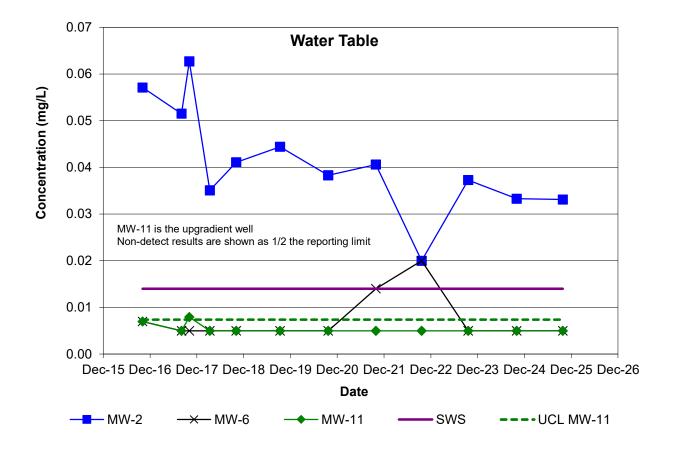

BORON

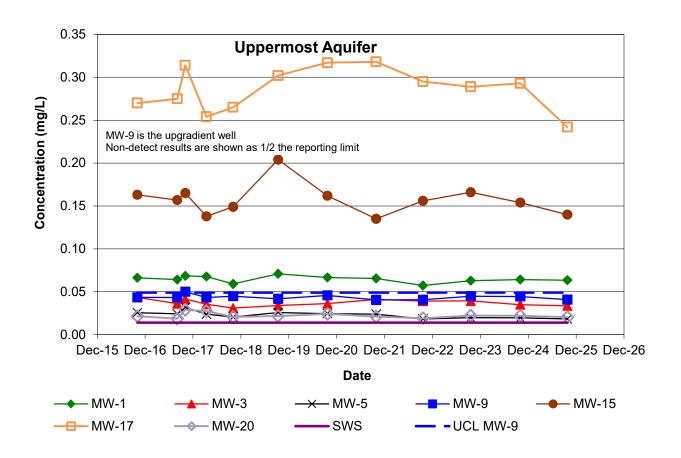


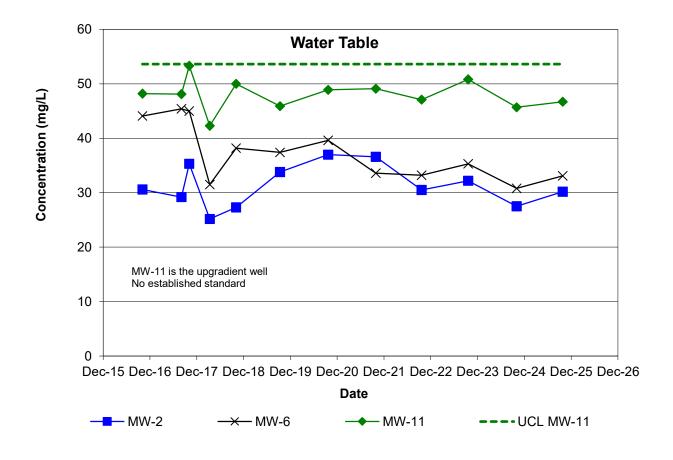

CHLORIDE

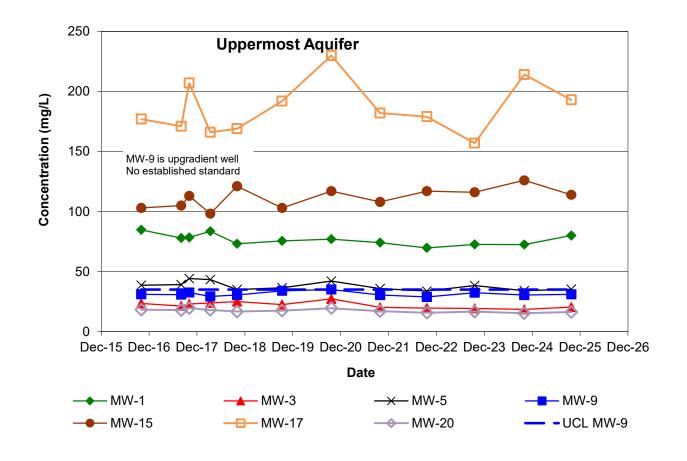


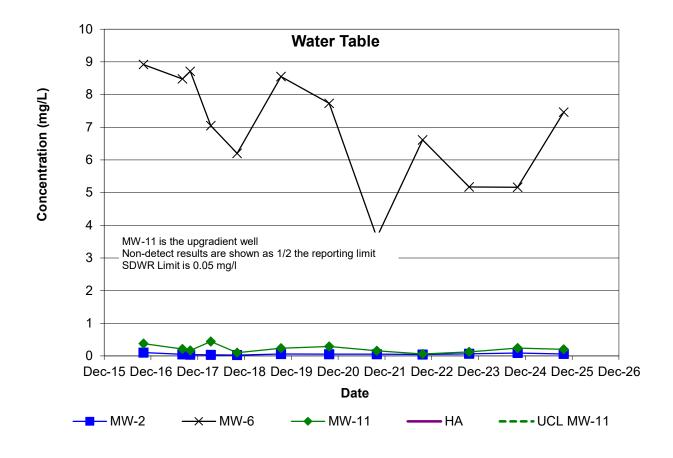
COBALT

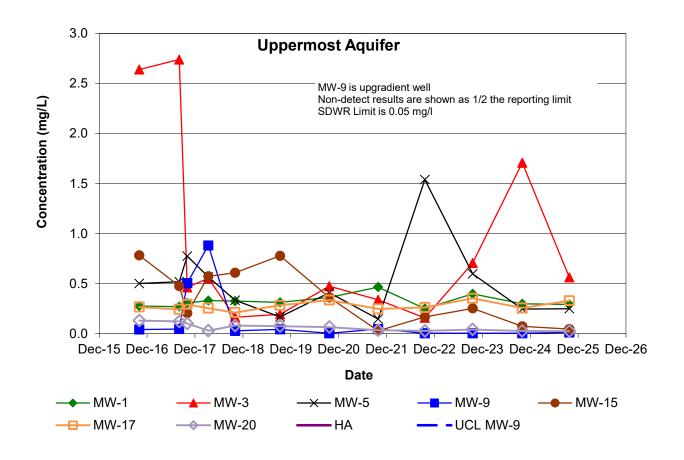


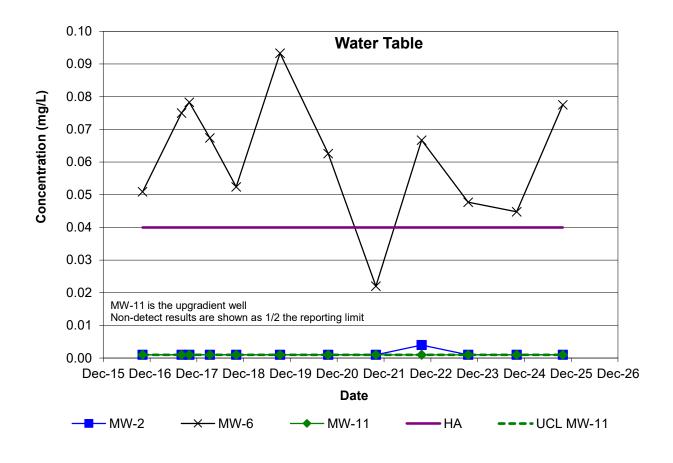

IRON

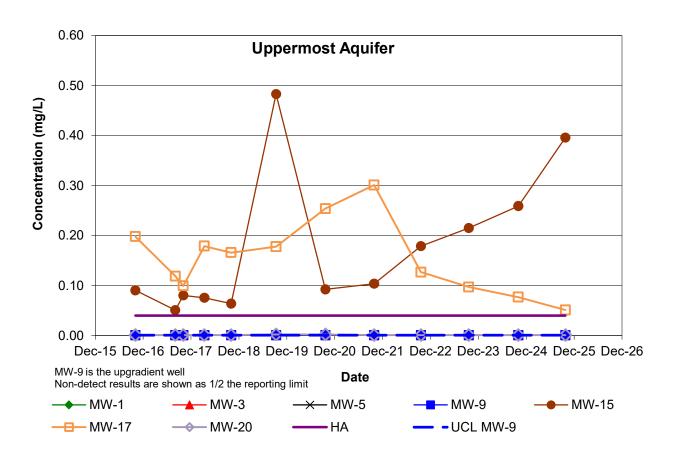


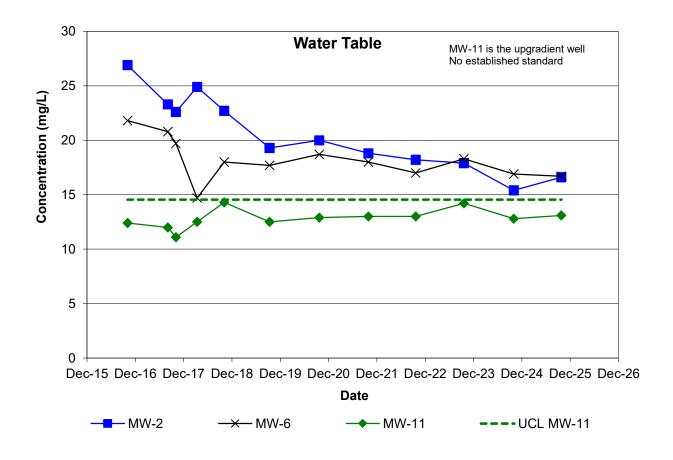

LITHIUM

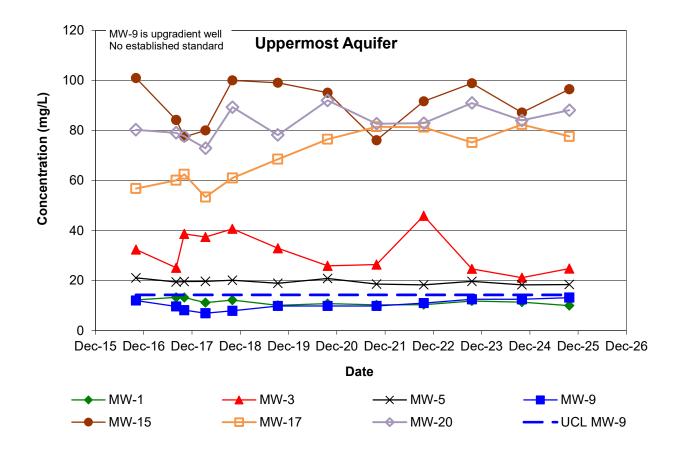


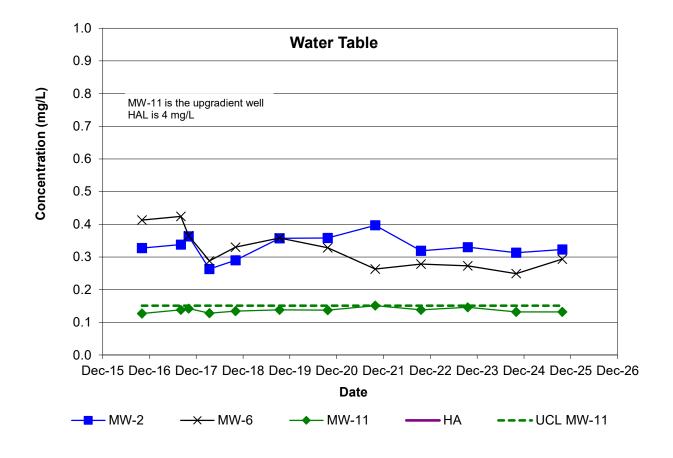

MAGNESIUM

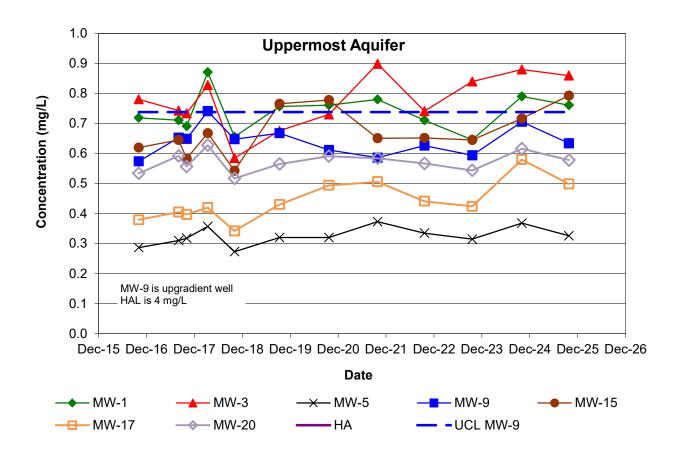


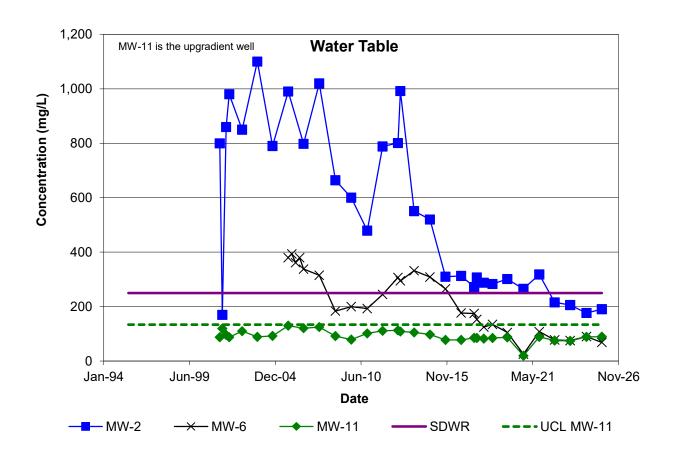

MANGANESE

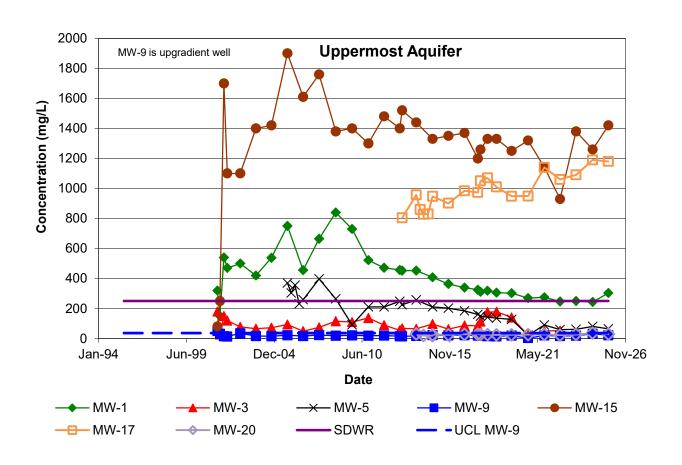


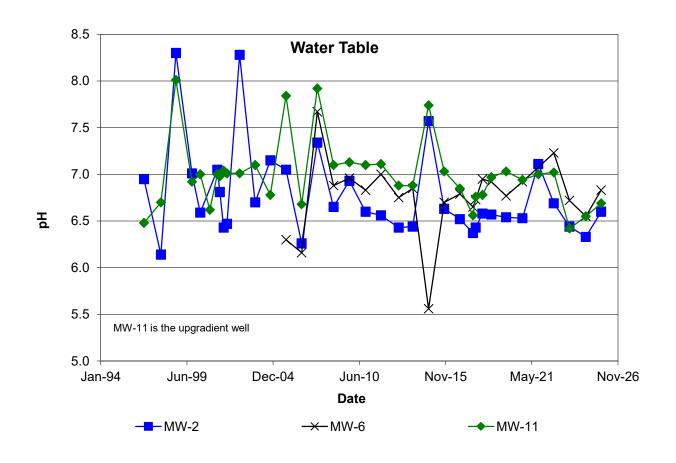

MOLYBDENUM

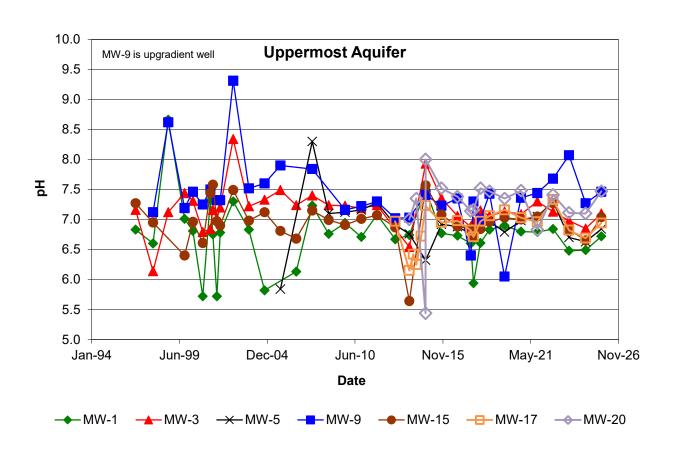



SODIUM

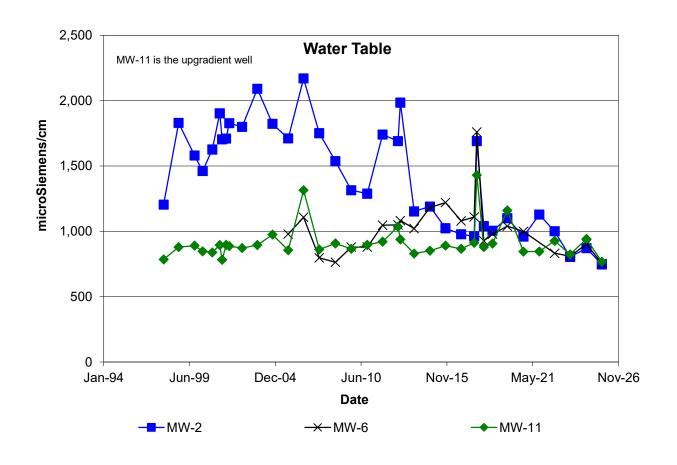


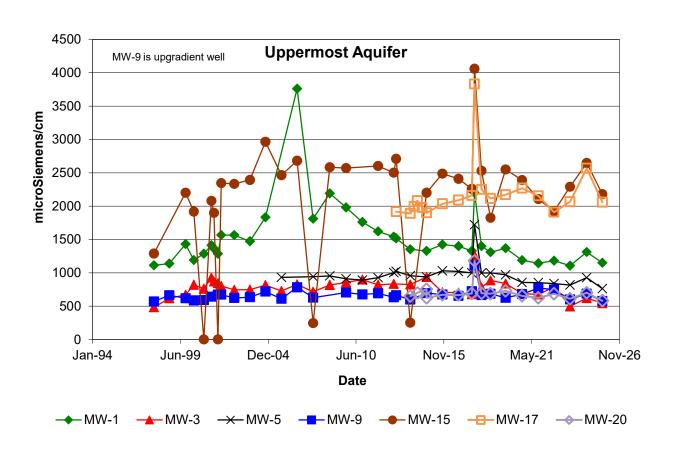

STRONTIUM

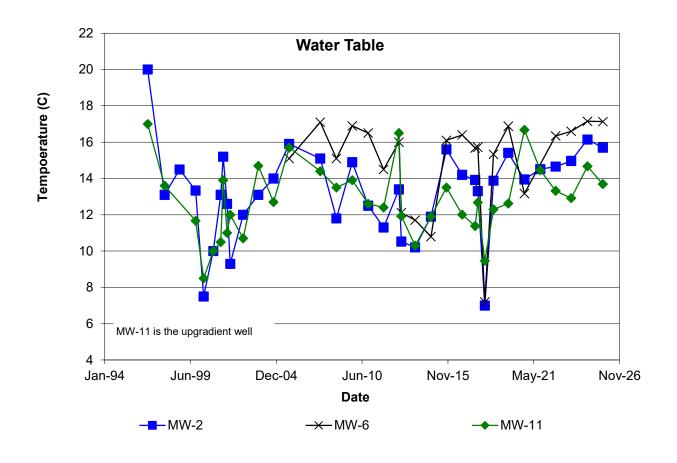


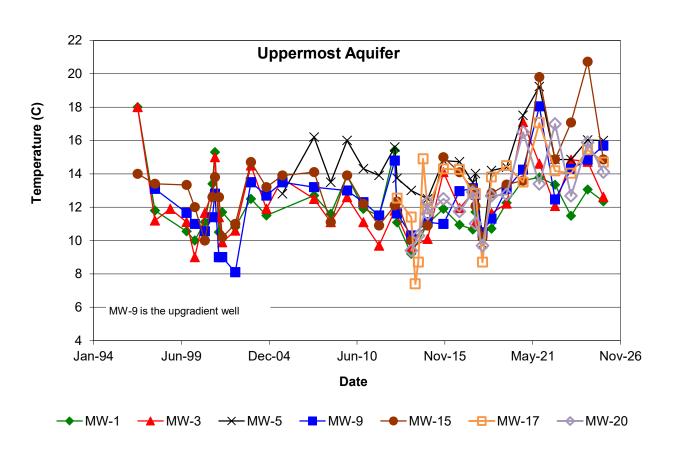


SULFATE








CONDUCTIVITY

TEMPERATURE

Appendix D

Inspection Summary

November 26, 2025

Brian Rath Iowa Department of Natural Resources Wallace State Office Building 502 East 9th Street, 4th Floor Des Moines, IA 50319-0034

Dear Brian,

This letter has been prepared to provide a summary of monthly inspections completed by Central Iowa Power Cooperative (CIPCO) of the closed Fair Station Coal Combustion Residue Landfill near Muscatine, Iowa.

BACKGROUND

2015 activities included: final capping of the ash, terrace, and rip-rap channel installation and seeding in September. Vegetation was started to be established in most areas by the end of 2015. Straw waddles were installed in areas of slow growth and areas at risk of washing out. The closure permit was issued February 1, 2016.

2025 Inspection Summary and Actions

Above average rainfall in the summer of 2025 yielded healthy vegetation growth on the cap. The site was mowed twice, in addition to general reoccurring maintenance at the site. Seeded areas from 2024 germinated as expected, filling in mower scalped areas. These areas will continue to be monitored.

The main maintenance items conducted were: seeding of mower scalped areas, fence repair, tree removal, rip-rap channel cleaning, and general vegetation management throughout the site.

Clint Oberbroeckling of GHD conducted the annual well sampling in October.

CIPCO will continue to monitor and maintain the CCR Landfill according to the IDNR standards.

Regards,

Sam Honold, PE

Manager of Generation Engineering Central Iowa Power Cooperative

→ The Power of Commitment