

Connect. Create. Contribute.

2025 Annual Water Quality Report

Leversee Road Ash Disposal Site Cedar Falls Utilities Cedar Falls, Iowa

Permit Number: 07-SDP-11-89P

Final

November 2025

Deliverable: 2025 Annual Water Quality Report

Project: Leversee Road Ash Disposal Site

Client: Cedar Falls Utilities

Location: Cedar Falls, lowa

Permit Number: 07-SDP-11-89P

Date: November 2025

Prepared by: Stanley Consultants

I hereby certify that this report was prepared by me or under my direct personal supervision and that I am duly registered under the laws of the State of Iowa.

Trenton Shilling Humphrey

Name Signature

11/19/2025 P27585 December 31, 2025

Date Registration Number Expiration Date

Professional Seal:

Table of Contents

1.0	FACILITY INFORMATION AND SAMPLING APPROACH	1-1
1.1	Introduction	1-
1.2	Background	1-1
1.3	Site Geology	
1.4 1.5	Special Waste Disposal	
2.0	Groundwater Monitoring Analyses SAMPLING RESULTS	
2.1	Groundwater Analysis	
	·	
2.2	Groundwater Parameters 2.2.1 Chloride	
	2.2.2 Sulfate	
	2.2.3 pH	
	2.2.4 Aluminum.	
	2.2.5 Arsenic	
	2.2.6 Barium	2-17
	2.2.7 Beryllium	
	2.2.8 Boron	
	2.2.9 Calcium	
	2.2.10 Cobalt	
	2.2.11 Copper	
	2.2.13 Lead	
	2.2.14 Lithium	
	2.2.15 Magnesium	
	2.2.16 Manganese	
	2.2.17 Molybdenum	
	2.2.18 Selenium	
	2.2.19 Sodium	
	2.2.20 Zinc	
	2.2.21 ProUCL Trends	
2.3	Monitoring Well Maintenance and Performance Evaluation	
3.0	SUMMARY	3-1
Tal	oles	
	e 2-1: Groundwater Levels	2-1
	e 2-2: Monitoring Program Summary 2025 Annual Water Quality Report	
	e 2-3: Monitoring Program Implementation Schedule 2025 Annual Water Quality Report	
	e 2-4: Monitoring Well Maintenance and Performance Revaluation Schedule 2025 Annual Water Qua	lity Repor
	e 2-5: Monitoring Well Maintenance and Performance Summary 2025 Annual Water Quality Report	
	e 2-6: Background Summary Well MW-3S 2025 Annual Water Quality Report	
Table	e 2-7: Summary of Well/Detected Constituent Pairs With No Immediately Preceding Control Limit Exc	
	2025 Annual Water Quality Report	2-8

2025 Annual Water Quality Report | Final

	mary of Ongoing and Newly Identified Control Limit Exceedances 2025 Annu	, ,
Table 2-9: 2025	Annual Water Quality Report Groundwater Sampling Results	2-10
	roundwater Monitoring Data Summary for MW-1	
	025 Groundwater Monitoring Data Summary for MW-2	
Table 2-10-3: 20	025 Groundwater Monitoring Data Summary for MW-3S	2-13
	025 Groundwater Monitoring Data Summary for MW-4S	
	025 Groundwater Monitoring Data Summary for MW-5S	
Table 2-11: Sun	nmary of Cedar Falls Utilities Leversee Road Ash Disposal Site 2015 through 2	
		2-22
APPENDIX A	FIGURES	A-1
APPENDIX B	HISTORICAL SAMPLING RESULTS, 1995 – 2014	B-1
APPENDIX C	HISTORICAL CALCULATIONS AND GRAPHS, 1995 – 2014	C-1
APPENDIX D	2015 – 2024 SAMPLE DATA GRAPHS	D-1
APPENDIX E	FIELD AND LABORATORY REPORTS	E-1
APPENDIX F	SEMI-ANNUAL INSPECTION REPORTS	F-1

1.0 Facility Information and Sampling Approach

1.1 Introduction

This report has been prepared to comply with Permit Number 07-SDP-11-89P-CCR - Cedar Falls Utilities (CFU) Leversee Road Ash Disposal Site Section X., Special Provisions, Subsection 6. It has been prepared in accordance with Iowa Administrative Code (IAC) Chapter 567, Sections 103.1(2) f, 103.1(4) d, and 103.1(4) e. The IAC requires that an Annual Water Quality Report (AWQR) summarizing the effects the facility is having on groundwater and surface water quality be submitted to the Iowa Department of Natural Resources (DNR) by November 30 each year. This report fulfills that requirement.

1.2 Background

The Leversee Road Ash Disposal Site (site) is located in the northeast corner of the City of Cedar Falls immediately west of the Waterloo Municipal Airport. The site is located in the southeast quarter of the southeast quarter of Section 6, Township 89 North, and Range 13 West in Black Hawk County. The site is between two Canadian National Railroad Right-of-Ways. The site is owned by the City of Cedar Falls and governed by the Board of Trustees of the Municipal Electric Utility of the City of Cedar Falls. A Site Location Map is provided on Figure 1 in Appendix A.

The site covers approximately nine acres and has been in use for coal combustion residue (chiefly ash) disposal since 1976. The source of the ash is the Streeter Station Power Plant in Cedar Falls. Fill dirt and concrete rubble have also been disposed at the site. Approximately 112,000 tons of wastes have been disposed at the site during its lifetime.

The Sanitary Disposal Project Permit number for the site is 07-SDP-11-89P-CCR. The operating permit for the facility was issued on August 11, 2010. The facility permit was applicable for ten years (April 11, 2020). Because the site is a coal combustion residue (CCR) disposal facility, it is subject to the rules specific to such facilities as delineated in IAC 567-103. The permit for the facility includes provisions specific to CCR facilities as outlined in 567-103. Five permit amendments were issued by DNR for this operating permit:

- Amendment #1, dated January 5, 2011, revised the maximum waste elevation of the site to 884 feet (consistent with the 2006 Stanley Consultants design described in Section 2.2);
- Amendment #2, dated June 10, 2011, authorized planting of a test plot of Ecolotrees in accordance with the May 7, 2010, request submitted by CFU, and the supporting documentation from Dr. Lou Licht, with Ecolotree;
- Amendment #3, dated October 17, 2011, increased the approved maximum waste elevation of the site to 894.26 feet (consistent with the 2012 Closure Plan described in Section 2.2);
- **>** An unnumbered amendment, dated May 22, 2013, deleted two special provisions from the groundwater monitoring section of the permit; and
- Amendment #4, dated July 30, 2015, modified the groundwater monitoring program by adding new sampling parameters and required that collected samples should not be filtered prior to analyses.

On October 3, 2015, CFU sent notice of closure of the site to the DNR. As such, the DNR issued a Sanitary Disposal Project Closure Permit for Coal Combustion Residue Monofills for the site on April 11, 2016 (revised on August 17, 2016). The site was closed according to the Closure and Post-Closure Plan (dated August 2016) approved by the DNR on August 19, 2016.

The monitoring system at the site consists of five monitoring wells in accordance with the conditions of the operating and closure permit. It previously included six shallow and three deep wells and one surface water monitoring point. There were also three leachate piezometers within the waste disposal footprint. These leachate piezometers were removed, in accordance with the previous permit, during December 1999. The active well locations are shown on Figure 2.

While active the facility had a stormwater NPDES permit. As it is now closed that permit is no longer necessary. Cedar Falls Utilities filed a stormwater NPDES Notice of Termination during September 2020.

1.3 Site Geology

Geology in the site area consists of 60 to 75 feet of alluvial sand and gravel deposits overlying silty clay glacial till. Beneath the till is Cedar Valley limestone, which is Devonian in age. Both the alluvial deposits and the underlying limestone are aquifers. The glacial till unit, with an approximate thickness of 20 feet, acts as an aquitard effectively separating the alluvial aquifer from the limestone aquifer. Accordingly, only the alluvial aquifer is monitored at the site.

Groundwater flow beneath the site is directly affected by fluctuations in the stage of the Cedar River, which is in direct hydraulic communication with the alluvial aquifer. Comparison of historic water levels in the deep and shallow wells at the site indicates there is generally little or no measurable vertical hydraulic gradient in the alluvial aquifer, although this can vary depending on river stage. Based on pump tests conducted during the 1992 hydrogeologic evaluation of the site, the hydraulic conductivity of the alluvial aquifer is approximately 0.01 to 0.02 centimeters per second (cm/sec).

While the site meets the definition of a protected groundwater source (IAC 567-137.2) due to the approximated hydraulic conductivity (at least 0.44 meters per day) and total dissolved solids concentration (less than 2,500 milligrams per liter), the Iowa Statewide Standards for Non-Protected Groundwater Sources are a more appropriate comparison for the site. Covenant restrictions have been placed on the site and properties adjacent to the site to prohibit installation of drinking water wells. Due to these restrictions, the groundwater under the site and the surrounding area will not be a usable groundwater source. Therefore, both of the Iowa Statewide Standards for Protected and Non-Protected Groundwater Sources will be used in this report.

1.4 Special Waste Disposal

During its operation, the site was authorized to accept coal combustion residue and non-regulated waste concrete, sand, clay, and topsoil. The site did not accept special wastes as defined in the IAC.

1.5 Groundwater Monitoring Analyses

Quarterly sampling of the site was begun by Shive-Hattery Engineers in April 1995 and completed in March 1996. This data has previously been submitted to the DNR. Stanley Environmental, Inc. conducted subsequent semi-annual sampling, through fall 1998. Annual testing required under the current permit was begun in the fall of 1999 by Stanley Environmental, Inc. and that report was also submitted to the DNR. Annual sampling and reporting has been conducted by several different entities since that time (mainly Stanley Consultants).

Groundwater levels were determined concurrent with each of the quarterly sampling events and were determined monthly beginning with the first semi-annual sampling event (October 1996) and continuing through the end of 1998. This information was included in the 1998 Annual Report. Figures showing the groundwater potentiometric surface were submitted with each of the previous sampling reports. Water level measurements have been taken concurrent with the required annual monitoring events and reported as required since that time.

In accordance with Exception #1 in the 2013 AWQR response letter from the DNR, dated December 27, 2013, CFU performed additional sampling in 2014 by adding aluminum, antimony, bicarbonate, boron, cadmium, calcium, chromium, fluoride, lithium, mercury, molybdenum, nickel, potassium, sodium, strontium, thallium, and vanadium to the list of parameters specified in IAC 567 – 103.1(2)(f). The results for these additional parameters were provided to DNR in previous annual reports. In its December 18, 2020 review of the 2020 AWQR DNR stated that repetition of those results is no longer necessary in subsequent reporting.

CFU performed unfiltered laboratory testing of the 2014 samples in accordance with Mr. Michael Leat's email with the subject of "Leversee Rd landfill CFU" and dated September 20, 2014. These results are shown on Tables B-1 through B-6. For comparison purposes some of the parameters were also determined using filtered samples. Where the unfiltered results were below detection limits, no filtered testing was performed (e.g. arsenic, beryllium, and selenium).

Summary tables of the sampling results, from April 1995 through October 2014, for each of the five wells were provided to DNR in previous annual reports and are not repeated here. Graphs for the same time period were provided to DNR in previous annual reports and are not repeated here.

Quarterly sampling data were evaluated in accordance with IAC 567-103 to calculate control limits for the site. These results were presented in the 1996 Annual Groundwater Monitoring Report, which has previously been provided to DNR. Control limits were determined as described in that report for each parameter with at least one positive detection. In 2013 and 2014, the control limits for Well MW-3 were recalculated using quarterly sampling data from the 1996 Annual Groundwater Monitoring Report and each of the annual sampling data up to the 2013 and 2014 events, respectively.

For the past control limit calculations, one half of the laboratory reporting limit was substituted for values reported as less than the laboratory reporting limit. Values reporting as not determined (ND) were not taken into consideration for these calculations. For constituents that were not detected in any of the upgradient wells in any of the quarterly events, the control limit was set by default at the reporting limit. A copy of the calculations and background analytical information used in determination of the historical control limits

for all of the up gradient wells at the facility were provided to DNR in previous annual reports and are not repeated here.

CFU started a new sampling procedure for the 2015 sampling event involving low flow sampling and unfiltered samples to comply with Amendment #4 as well as Items #5 and #6 in the response letter from DNR, both dated July 30, 2015. The current control limits are calculated using the 2015-2016 quarterly sampling data, and data from all of the subsequent annual sampling events (see Appendix D). The results of the sampling conducted since October 2015 are discussed in Sections 2 and 3 of this AWQR.

2.0 Sampling Results

2.1 Groundwater Analysis

Water level measurements were taken during the October 15, 2025, sampling event. The results are summarized in Table 2-1. The potentiometric surface observed during the October 15, 2025, sampling event is shown on Figure 2 in Appendix A. Based on evaluation of the water level observations, groundwater flow on October 30, 2024, was generally toward the south, generally consistent with previous observations. Thus, Well MW-3 is considered the up gradient well, Wells MW-1 and MW-4 are down gradient wells, and Wells MW-2 and MW-5 are cross gradient wells at the facility.

The October 2025 measured groundwater elevations were approximately 2.0 feet higher than the 2024 measurements. Groundwater levels at the site fluctuate in response to water levels in the Cedar River. River levels this year were generally higher than those observed during 2024.

Top of Groundwater Well Casing **Well Depth Water Level** Gradient **Elevation** Identification Elevation **Function** Number Feet Feet **Feet** Feet MW-1 858.41 20.45 8.42 849.99 Down MW-2 Cross 861.12 23.45 10.85 850.27 MW-3S 868.55 32.28 18.15 850.40 Up MW-3D 868.80 58.90 18.35 850.45 MW-4S 858.98 20.11 8.91 850.07 Down MW-4D 859.19 72.00 9.15 850.04 MW-5S 868.10 20.10 18.00 Cross 850.10 MW-5D 868.72 54.45 18.62 850.10 MW-6 868.49 25.32 18.18 850.31

Table 2-1: Groundwater Levels

Note: Original MW-5 was damaged during closure construction in 2017. A new well was constructed to replace it at the same location.

Given the new sampling strategy employed since 2015, the control limits for Well MW-3 have been recalculated using the sampling events from the October 2015 sampling event to present. For calculation purposes, one half of the laboratory detection limit was substituted for values reported as below detection. A copy of the calculations and background analytical information used in determination of the current control limits for Well MW-3 at the facility is included in Appendix D. These control limits are also included in Table 2-2 for comparison purposes when applicable.

The control limits for some of the parameters changed as a result of the inclusion of the data from the most recent sampling. Most of the changes were minor, resulting in small increases to control limits.

A summary of the available groundwater monitoring information from 2015 to present for the five wells currently included in the monitoring network is included in Tables E-1 through E-5 in Appendix E and shown on the graphs in Appendix F. Field and laboratory reports for the 2025 sampling event are included in Appendix G.

When available, health-based values including the Primary Maximum Contaminant Level (MCL), or aesthetic values including the Secondary MCL (as appropriate) for these constituents are included in the Tables 2-2 and E-1 through E-5 for use in evaluating the analytical results. Additionally, as available, the State of Iowa Statewide Standards for a Protected and Non-Protected Groundwater Source are included in these tables.

The laboratory results were obtained in compliance with the State of Iowa Laboratory Certification Program according to 567 IAC Chapter 83. The reporting limits, control limits, MCLs, and sampling results are listed in milligrams per liter (mg/L), except for pH that is listed in standard pH units.

2.2 Groundwater Parameters

For the 2025 sampling event, the results for each parameter are discussed in the following paragraphs. Only the parameters specified under IAC 567 – 103.1(2)(f), Special Provisions X.6.e of the Site's Permit, and pH are discussed below for the results listed in Table 2-2. A summary of the available groundwater monitoring information from 2015 to present for the five wells currently included in the monitoring network is included in Tables E-1 through E-5 in Appendix E and shown on the graphs in Appendix F.

A statistical analysis was also completed to determine potential outliers from the 2025 event as well as trends in groundwater concentrations. The statistical analysis was completed using ProUCL Version 5.1. ProUCL is a statistical program developed by the Environmental Protection Agency. Outlier analysis was completed using the Dixon Outlier Test to determine whether any results from 2025 were outliers at a 95% confidence interval while the Mann-Kendall test was used to determine if there are increasing or decreasing trends at a 95% confidence interval for each well-constituent pair. Statistical analysis was not completed on any well-constituent pair in which at least 50% of the results were not detected above reporting limits.

2.2.1 Chloride

Chloride was observed in all five wells during the 2025 sampling event. In all cases the chloride levels were less than the Secondary MCL of 250 mg/L. None of the observed levels of chloride exceeded the 2025 Control Limit of 74.963 mg/L. Sampling wells MW-1, MW-3S, and MW-5S expressed slightly higher chloride levels in 2025 than 2024 results, while well MW-2 and MW-4S was slightly lower in 2025 compared to 2024. Trends will continue to be monitored in 2026.

2.2.2 Sulfate

Sulfate was observed in all five wells during the 2025 sampling event. The results were all below the Secondary MCL of 250 mg/L. The observed levels of sulfate exceeded the Control Limit of 27.24 mg/L in sampling wells MW-1, MW-2, MW-4S, and MW-5S, while MW-3S was below the Control Limit. This represents one less exceedance than last year.

Sulfate has been observed in all of the wells during past sampling events.

The results from the wells will continue to be evaluated over the next several sampling events to determine if they are indicative of a trend of consistent exceedances. If future sampling events continue to demonstrate an upward trend, the effects will be evaluated at that time.

2.2.3 pH

For the 2025 sampling event, the field and laboratory pH measurements for all of the wells were within the Secondary MCL range of 6.5 to 8.5. The field measured pH values for all of the wells were within Control Limit ranges. The laboratory measured pH in in all five sampling wells were within the Control Limit range of 7.23-7.74 in 2025, compared to only one (MW-3S) in 2024. Trends will continue to be monitored in 2026.

Table 2 Monitoring Program Summary 2025 Annual Water Quality Report Leversee Road Ash Disposal Site Permit No. 07-SDP-11-89P

		Current Monitoring	Change for next		Total # of Sam	oles in each monito January 1, 2018	oring program since		
Monitoring Well	Formation	Program	sampling event	Control Limit Exceedances	Routine	Supplemental	Remedial Action		
MW-1	Aluvial Sand and Gravel	Routine	NC	SO4,Al,Ba,B,Co,Fe,Li,Mo	8	0	0		
MW-2	Aluvial Sand and Gravel	Routine	NC	SO4,B,Co,Fe,Mn,Mo	8	0	0		
MW-3S	Aluvial Sand and Gravel	Background	NC	None	8	0	0		
MW-3D	Aluvial Sand and Gravel	Water Level Only	NC	N/A	0	0	0		
MW-4S	Aluvial Sand and Gravel	Routine	NC	SO4,B,Ca,Co,Li,Mn,Mo,	8	0	0		
MW-4D	Aluvial Sand and Gravel	Water Level Only	NC	N/A	0	0	0		
MW-5S	Aluvial Sand and Gravel	Routine	NC	SO4,Ba,B,Ca,Li,Mn,Mo	9	9 0			
MW-5D	Aluvial Sand and Gravel	Water Level Only	NC	N/A	0	0 0			
MW-6	Aluvial Sand and Gravel	Water Level Only	NC	N/A	0	0	0		

Comments: A slight decrease in control limit exceedanses was observed from the 2025 sampling event results. No Exceedanses were observed in the up-gradient well (MW-3S) during the 2025 sampling.

This worksheet;

- 1) Provides a summary of the monitoring points and in which phase of monitoring they are in,
- 2) Verifies conformance with the approved HMSP network,
- 3) Gives a summary of the monitored aquifer,
- 4) Provides the size of the dataset,
- 5) Provides a summary of current contaminants above background and whether they exceed a Control Limit
- 6) States the phase for the next sampling event,
- 7) Mentions additional site sampling that may be occurring on a temporary basis to achieve a delineation or remedial action goal, and
- 8) Provides any deviations to current HMSP.

Table 3

Monitoring Program Implementation Schedule 2025 Annual Water Quality Report

Leversee Road Ash Disposal Site

Permit No. 07-SDP-11-89P

				Recent S	Sampling Dates and Cor	nstituents				Planned
Monitoring Well	3/8/2018	10/26/2018	10/23/2019	10/22/2020	10/26/2021	10/13/2022	10/31/2023	10/30/2024	10/15/2025	October 2026
MW-1		List A, List B	List A, List B	List A, List B	List A, List B	List A, List B	List A, List B			
MW-2		List A, List B	List A, List B	List A, List B	List A, List B	List A, List B	List A, List B			
MW-3S		List A, List B	List A, List B	List A, List B	List A, List B	List A, List B	List A, List B			
MW-3D		None	None	None	None	None	None	None	None	None
MW-4S		List A, List B	List A, List B	List A, List B	List A, List B	List A, List B	List A, List B			
MW-4D		None	None	None	None	None	None	None	None	None
MW-5S	List A, List B	List A, List B	List A, List B	List A, List B	List A, List B	List A, List B				
MW-5D		None	None	None	None	None	None	None	None	None
MW-6		None	None	None	None	None	None	None	None	None

List A: Chloride, Sulfate, pH (Field), pH (laboratory), Specific Conductance, Temperature

List B: Aluminum, Arsenic, Barium, Beryllium, Boron, Calcium, Cobalt, Copper, Iron, Lead, Lithium, Magnesium, Manganese, Molybdenum, Selenium, Sodium, Zinc

This worksheet tracks compliance with permitted sampling frequencies and required parameters and to aid in scheduling.

Table 4

Monitoring Well Maintenance and Performance Revaluation Schedule 2025 Annual Water Quality Report

Leversee Road Ash Disposal Site

Permit No. 07-SDP-11-89P

Compliance with:	Monitoring Calendar Years														
Compliance with.	2018	2019	2020	2021	2022	2023	2024	2025	2026						
567 IAC 114.21(2)"a" high and low water	Commisted	Camanlatad	Campulatad	Commissor	Camanlatad	Camanlatad	Commission	Camanlatad	Calaadulad						
levels (add required frequency)	Completed	Completed	Completed	Completed	Completed	Completed	Completed	Completed	Scheduled						
567 IAC 114.21(2)"b" changes in the	Commisted	Campulatad	Campulatad	Commissor	Camanlatad	Camanlatad	Commisted	Camanlatad	Calaadulad						
hydrologic setting and flow paths	Completed	Completed	Completed	Completed	Completed	Completed	Completed	Completed	Scheduled						
567 IAC 114.21(2)"c" well depths	Completed	Completed	Completed	Completed	Completed	Completed	Completed	Completed	Scheduled						
567 IAC 114.21(2)"d" in-situ permeability	Not continue	Nick coult calcie	Nick coultrals	Niet enelieelele	Niet enelleele	Niek enellierleie	Niet enelleelele	Niet enelleele	Niet enelleele						
tests	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable	Not applicable						

Comments: Monitoring wells MW-1, MW-2, MW-4S, and MW-S were bailed by Cedar Falls Utilities (CFU) employess on October 2, 2025 and MW-3S on October 13, 2025. Bi-annual inspections were completed by CFU over March 04, 2025 and March 12, 2025 and September 25, 2025. Prior to sampling on October 15, 2025 Terracon cleaned MW-2 and MW-4S using a stiff-bristled brush attached to a 1-inch polyvinyl chloride (PVC) casing.

This worksheet;

- 1) Summarizes compliance, and
- 2) Aids in scheduling future tasks.

Table 5 Monitoring Well Maintenance and Performance Summary 2025 Annual Water Quality Report Leversee Road Ash Disposal Site Permit No. 07-SDP-11-89P

Well	Top of	Top of	Total		Date of Me	asurements	Maximum Depth	Baseline Permeablity
	Casing	Screen	Depth		10/30/2024	10/15/2025	Discrepancy (ft)	(cm/s/date)
				Groundwater Level (ft)	9.90	8.42		
N 41 A / 1	050.44	040.4	20.45	Groundwater Elevation (Ft MSL)	848.51	849.99	0.25	0.01 - 0.02
MW-1	858.41	848.1	20.45	Measured Well Depth (ft)	20.20	20.45	0.25	6/1/1992
				Submerged screen	Y	Υ		
				Groundwater Level (ft)	12.35	10.85		
N 41 A / 2	064.43	047.0	22.45	Groundwater Elevation (Ft MSL)	848.78	850.28	0.03	0.01 - 0.02
MW-2	861.13	847.8	23.45	Measured Well Depth (ft)	23.42	23.45	0.03	6/1/1992
				Submerged screen	Y	Υ		
				Groundwater Level (ft)	19.65	18.15		
N 4147 2C	000 55	0.46 5	32.28	Groundwater Elevation (Ft MSL)	848.90	850.40	0.24	0.01 - 0.02
MW-3S	868.55	868.55 846.5		Measured Well Depth (ft)	32.07	32.28	0.21	6/1/1992
				Submerged screen	Υ	Υ		
				Groundwater Level (ft)	19.90	18.35		
	0.00.0	040 5	50.00	Groundwater Elevation (Ft MSL)	848.90	850.45	0.00	0.01 - 0.02
MW-3D	1W-3D 868.8 819.5	58.90	Measured Well Depth (ft)	58.90	58.90	0.00	6/1/1992	
				Submerged screen	Υ	Υ		
				Groundwater Level (ft)	10.00	8.91		
N 4147 4C	050.00	848.68	20.11	Groundwater Elevation (Ft MSL)	848.98	850.07	0.01	0.01 - 0.02
MW-4S	858.98	848.68	20.11	Measured Well Depth (ft)	20.10	20.11	0.01	6/1/1992
				Submerged screen	Υ	Υ		
				Groundwater Level (ft)	10.60	9.15		
MW-4D	050.40	798.3	72.00	Groundwater Elevation (Ft MSL)	848.59	850.04	0.67	0.01 - 0.02
WW-4D	859.19	798.3	72.00	Measured Well Depth (ft)	71.33	72.00	0.67	6/1/1992
				Submerged screen	Y	Υ		
				Groundwater Level (ft)	19.47	18.00		
N 4\\ A / E C	000 1	050.5	20.10	Groundwater Elevation (Ft MSL)	848.63	850.1	7.50	0.01 - 0.02
MW-5S	868.1	850.5	20.10	Measured Well Depth (ft)	27.60	20.10	-7.50	6/1/1992
				Submerged screen	N	N		
				Groundwater Level (ft)	21.10	18.62		
NAVA (E D	868.72	024.62	F 4 4 F	Groundwater Elevation (Ft MSL)	847.62	850.1	0.42	0.01 - 0.02
MW-5D	808.72	824.62	54.45	Measured Well Depth (ft)	54.02	54.45	0.43	6/1/1992
				Submerged screen	Υ	Υ		
				Groundwater Level (ft)	19.65	18.18		
N 41 A / C	060.40	052.10	25.22	Groundwater Elevation (Ft MSL)	848.84	850.31	0.00	0.01 - 0.02
MW-6	868.49	853.19	25.32	Measured Well Depth (ft)	25.4	25.32	-0.08	6/1/1992
				Submerged screen	N	N		

All wells were constructed with 10 ft. screens. Acccordingly the top of the screens in the shallower wells (those not anotated with a "D") will be at or near the water table elevation during most conditions. Water level elevations for 2025 were between 1.09-2.48 feet higher than those of 2024. The direction of groundwater flow was more southeasterly than 2024, but has not changed significantly compared with past evaluations, and was generally toward the Cedar River. Based on a comparison of deep versus shallow wells, there is a slight upward gradient at the site.

This worksheet;

- 1) Summarizes data used to evaluate Monitoring Well Maintenance and Performance, and
- 2) Identifies monitoring wells that have submerged screens.

Background Summary Well MW-3S 2025 Annual Water Quality Report Leversee Road Ash Disposal Site Permit No. 07-SDP-11-89P

Parameter	Reporting Limits and							Sampling Date							Mean	Standard	Control L	imit
Parameter	Units	10/9/2015	3/16/2016	6/23/2016	10/10/2016	10/20/2017	10/26/2018	10/23/2019	10/22/2020	10/26/2021	10/13/2022	10/31/2023	10/30/2024	10/15/2025	iviean	Deviation	Upper	Lower
Chloride	5 mg/L	6.22	4.83	6.23	4.95	5.34	21.7	45.5	88.4	31.9	9.4	12.0	52.4	44.0	25.608	24.677	74.963	
Sulfate	2-20 mg/L	16.30	16.10	19.70	16.90	17.2	26.4	19.3	20.3	13.5	10.4	21.2	26.3	13.9	18.269	4.487	27.244	
pH (Field)	0.1 SU		7.43	7.53	7.12	6.47	6.9	7.29	7.28	7.37	7.37	7.42	7.41	7.35	7.245	0.282	7.809	6.681
pH (Laboratory)	0.1 SU	7.55	7.68	7.60	7.50	7.6	7.2	7.4	7.4	7.5	7.5	7.6	7.3	7.5	7.487	0.128	7.743	7.231
Specific Conductance	5 μS/cm		1,390.0	540.0	1,120.0	680	718	560	629	466	434	521	560	620	686.500	271.544	1,229.6	
Temperature	0.5 °C		13.10	12.70	14.80	12.38	13	9.93	11.97	9.82	11.62	10.6	13.00	12.50	12.118	1.382	14.882	9.355
								•										
Aluminum	0.0500-0.100 mg/L	0.0408	0.0104	0.0766	0.0884	0.02500	0.01350	0.01350	0.00600	0.00850	0.03300	0.07710	0.02500	0.02500	0.03406	0.02739	0.08884	
Arsenic	0.00100-0.00200 mg/L	0.001030	0.000680	0.001070	0.000884	0.00100	0.00029	0.000866	0.000440	0.000984	0.000836	0.001170	0.001000	0.001000	0.0008650	0.0002455	0.0013560	
Barium	0.00200-0.00250 mg/L	0.0344	0.0319	0.0311	0.0384	0.0491	0.0487	0.0526	0.0560	0.0495	0.0430	0.0424	0.0486	0.0505	0.04432	0.00784	0.06000	
Beryllium	0.00100 mg/L	0.000020	0.000111	0.000118	0.000111	0.00050	0.00010	0.000135	0.000135	0.000135	0.000135	0.000165	0.000500	0.000500	0.0002045	0.0001651	0.0005346	
Boron	0.0500-1.00 mg/L	0.0677	0.0497	0.0454	0.0519	0.1000	0.130	0.119	0.040	0.029	0.0290	0.0824	0.0500	0.1060	0.06924	0.03323	0.13570	
Calcium	0.200-2.00 mg/L	70.80	76.80	69.20	90.00	110.00	104	117	111	78	63.0	60.4	89.8	103.0	87.900	18.831	125.561	
Cobalt	0.000500-0.00100 mg/L	0.000443	0.000079	0.000516	0.000230	0.00025	0.000088	0.0000455	0.0000455	0.0004010	0.000232	0.000331	0.000250	0.000250	0.0002432	0.0001459	0.0005349	
Copper	0.00200-0.00500 mg/L	0.000243	0.000610	0.001050	0.000061	0.0025	0.00080	0.00100	0.00075	0.00070	0.00090	0.00226	0.00250	0.00250	0.0012210	0.0008555	0.0029321	
Iron	0.100 mg/L	0.1800	0.0197	0.1950	0.0781	0.0500	0.0330	0.0330	0.0250	0.0180	0.0735	0.1430	0.1150	0.0500	0.07795	0.05892	0.19579	
Lead	0.000500 mg/L	0.000296	0.000106	0.000502	0.000106	0.00025	0.000125	0.000135	0.000055	0.000356	0.000120	0.000317	0.000250	0.000250	0.0002205	0.0001227	0.0004659	
Lithium	0.0100 mg/L	0.166000	0.003275	0.003275	0.003275	0.0250	0.0014	0.00135	0.00125	0.00125	0.00271	0.00125	0.00500	0.00500	0.0045029	0.0072114	0.0189256	
Magnesium	0.0500-0.200 mg/L	20.40	18.50	20.80	21.60	27.2	26.8	29.5	27.0	18.9	14.7	15.6	20.6	25.2	22.062	4.504	31.070	
Manganese	0.00250-0.0100 mg/L	0.0456	0.0055	0.0401	0.0217	0.0126	0.00651	0.00407	0.00200	0.01130	0.0234	0.0338	0.0456	0.0050	0.01978	0.01580	0.05138	
Molybdenum	0.00200-0.0100 mg/L	0.000106	0.000107	0.002635	0.000053	0.0010	0.0003	0.00055	0.00055	0.00065	0.00060	0.00046	0.00100	0.0010	0.0006958	0.0006436	0.0019830	1
Selenium	0.00250-0.00500 mg/L	0.001670	0.000565	0.000428	0.000895	0.0025	0.00045	0.00050	0.00050	0.00048	0.00048	0.00070	0.00250	0.00250	0.0010898	0.0008346	0.0027590	٦
Sodium	0.200-0.500 mg/L	2.08	2.24	2.54	2.42	2.69	4.52	4.68	19.20	43.90	43.9	39.1	25.4	14.9	15.967	16.115	48.197	
Zinc	0.0100-0.0200 mg/L	0.00348	0.00261	0.00136	0.00261	0.0100	0.0050	0.0050	0.0050	0.0050	0.0050	0.0032	0.0100	0.0100	0.005249	0.002835	0.010920	7

Comments: Control limits are mean plus (or minus as noted) two standard deviations for all data 2015 to present, except lithium. Lithium result from 10/09/2015 is assumed to be an outlier and has not been included in the calculations. Only very minor changes in the control limits were obtained by including the 2025 data in the calculations, although the control limit did increase.

This worksheet;

1) Summarizes the size and quality of the data record of the

background data,

- 2) Summarizes the current statistical method,
- 3) Examines how background levels were determined,
- 4) Examines whether background levels are reasonable, 5) Identifies background water quality that is impacted.

Table 7
Summary of Well/Detected Constituent Pairs With No Immediately Preceding Control Limit Exceedances 2025 Annual
Water Quality Report
Leversee Road Ash Disposal Site
Permit No. 07-SDP-11-89P

Well	Constituent	Units	Most Recent Result	Control Limit
	Sulfate	mg/L	85.4	27.24
	Aluminum	mg/L	0.0892	0.08884
	Barium	mg/L	0.0714	0.0600
MW-1	Boron	mg/L	2.41	0.136
	Iron	mg/L	0.343	0.196
	Lithium	mg/L	0.0875	0.0189
	Molybdenum	mg/L	0.148	0.002
	Sulfate	mg/L	29	27.24
	Barium	mg/L	0.0618	0.0600
	Boron	mg/L	0.298	0.136
MW-2	Cobalt	mg/L	0.000556	0.000535
	Iron	mg/L	0.521	0.196
	Manganese	mg/L	0.313	0.051
	Molybdenum	mg/L	0.0542	0.002
MW-3S	None	-	-	=
	Sulfate	mg/L	106	27.24
	Boron	mg/L	2.78	0.136
MW-4S	Cobalt	mg/L	0.000885	0.000535
10100-43	Lithium	mg/L	0.033	0.0189
	Manganese	mg/L	0.485	0.051
	Molybdenum	mg/L	0.0527	0.002
	Sulfate	mg/L	105	27.24
	Barium	mg/L	0.0869	0.0600
	Boron	mg/L	2.76	0.136
MW-5S	Calcium	mg/L	138	125.56
10100-55	Cobalt	mg/L	0.00101	0.000535
	Lithium	mg/L	0.0561	0.0189
	Manganese	mg/L	0.365	0.051
	Molybdenum	mg/L	0.1	0.002

This worksheet presents a summary of background comparisons for well constituents pairs that are in the routine monitoring program. If exceedances are confirmed an investigation of a new release is necessary.

Table 8
Summary of Ongoing and Newly Identified Control Limit Exceedances 2025 Annual Water Quality Report
Leversee Road Ash Disposal Site
Permit No. 07-SDP-11-89P

Parameter		Number of Exceedances (2	2025)
		Statewide Standards for a	Statewide Standards for a
	Control Limit	Protected Groundwater	Non-Protected
		Source	Groundwater Source
Chloride	0	0	0
Sulfate	4	0	0
pH (Field)	0	0	0
pH (Laboratory)	4	0	0
Specific Conductance	0	0	0
Temperature	0	0	0
Aluminum	1	0	0
Arsenic	0	0	0
Barium	3	0	0
Beryllium	0	0	0
Boron	4	0	0
Calcium	1	0	0
Cobalt	4	0	0
Copper	0	0	0
Iron	2	0	0
Lead	0	0	0
Lithium	3	3	1
Magnesium	0	0	0
Manganese	3	3	0
Molybdenum	4	4	0
Selenium	0	0	0
Sodium	0	0	0
Zinc	0	0	0

Table 9 2025 Annual Water Quality Report Groundwater Sampling Results Leversee Road Ash Disposal Site Permit No. 07-SDP-11-89P

Parameter	Reporting Limits and Units	Control Lim	its (mg/L)**	Primary MCL (mg/L)**	Secondary MCL (mg/L)**	Iowa Statewide Standard for a Protected Groundwater Source (mg/L)	Iowa Statewide Standard for a Non-Protected Groundwater Source (mg/L)	Up Gradient		ntification N	lumber ross Gradien	t
		Upper	Lower					MW-3S	MW-1	MW-2	MW-4S	MW-5S
Chloride	5 mg/L	74.96	1	1	250			44.0	29.4	10.4	15.4	28
Sulfate	2 – 20 mg/L	27.2	1		250			13.9	85.4	29	106	105
pH (Field)	0.1 SU	7.81	6.68		6.5 – 8.5			7.35	7.3	7.24	7.09	7.02
pH (Laboratory)	0.1 SU	7.74	7.23		6.5 – 8.5			7.5	7.5	7.4	7.3	7.3
Specific Conductance	5 μS/cm	1230						620	701.0	557	734	751
Temperature	0.5 °C	14.88	9.35					12.50	13.6	13.6	13.73	12.52
Aluminum	0.05 - 0.1 mg/L	0.0888			0.05 to 2.0			<0.0500	0.0892	<0.0500	<0.0500	<0.0500
Arsenic	0.001 – 0.002 mg/L	0.00136		0.01		0.01	0.05	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200
Barium	0.002 – 0.0250 mg/L	0.0600		2		2	10	0.0505	0.0714	0.0618	0.0548	0.0869
Beryllium	0.001 mg/L	0.00053		0.004		0.004	0.07	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100
Boron	0.2 – 5 mg/L	0.136				6	30	0.106	2.410	0.298	2.78	2.760
Calcium	0.2 – 4 mg/L	125.6						103.0	101.0	105	123	138
Cobalt	0.0005 – 0.001 mg/L	0.000535				0.0028	0.014	<0.000500	<0.000500	0.000556	0.000885	0.00101
Copper	0.002 – 0.005 mg/L	0.00293		1.3*	1	1.3	6.6	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500
Iron	0.1 – 1 mg/L	0.196			0.3			<0.100	0.343	0.521	0.124	0.135
Lead	0.0005 mg/L	0.000466		0.015 H		0.015	0.075	<0.000500	0.000653	<0.000500	<0.000500	<0.000500
Lithium	0.0100 mg/L	0.0189				0.014	0.07	<0.0100	0.0875	0.0117	0.033	0.0561
Magnesium	0.05 – 0.2 mg/L	31.1						25.2	20.6	20.5	27.7	28.7
Manganese	0.0025 – 0.01 mg/L	0.0514			0.05	0.3	4.9	<0.0100	0.0347	0.313	0.485	0.365
Molybdenum	0.002 – 0.01 mg/L	0.00198				0.04	0.2	<0.00200	0.1480	0.0542	0.0527	0.0837
Selenium	0.0025 – 0.005 mg/L	0.0028		0.05		0.05	0.25	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500
Sodium	0.2 – 1.0 mg/L	48.197	1		20***			14.9	45.6	9.71	28.8	17
Zinc	0.01 – 0.02 mg/L	0.0109			5	2	10	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200

Notes: Control limits are those calculated after the current sampling event

Laboratory results and reporting limits as reported by TestAmerica Inc., Cedar Falls, Iowa

Bold results exceed the current Control Limit, Primary MCL, Secondary MCL, and/or Statewide Standards

Blanks Indicate None

^{* =} Action level for corrosion control

^{** =} mg/L except for pH, Specific Conductance, and Temperature

^{*** =} USEPA Health Advisory Level

Table 10-1
Groundwater Monitoring Data Summary for MW-1
Cedar Falls Utilities Leversee Road Ash Disposal Site
Permit No. 07-SDP-11-89P

		Control Limit	ts (mg/L)**	Primary MCL	Secondary MCL	Iowa Statewide	Iowa Statewide							Sampling Da	te					
Parameter	Reporting Limits and Units	Upper	Lower	(mg/L)**	(mg/L)**	Standard for a Protected	Standard for a Non-Protected	10/9/2015	3/16/2016	6/23/2016	10/10/2016	10/20/2017	10/26/2018	10/23/2019	10/22/2020	10/26/2021	10/13/2022	10/31/2023	10/30/2024	10/15/2025
Chloride	5 mg/L	74.96			250	11010000		9.58	9.92	9.43	5.39	14.1	33.3	31.9	24.4	30.8	25.0	34.5	27.0	29.4
Sulfate	2 -20 mg/L	27.2			250			247	416	184	7.19	234	387	165	63.5	92.3	220	139	199	85.4
pH (Field)	0.1 SU	7.81	6.68		6.5 - 8.5			NA	7.02	7.43	NA	6.23	6.64	7.06	7.21	7.23	7.31	7.1	7.02	7.25
pH (Laboratory)	0.1 SU	7.74	7.23		6.5 - 8.5			7.14	6.96	7.33	7.2	7.6	6.8	7.2	7.2	7.3	7.0	7.3	7.1	7.5
Specific Conductance	5 μS/cm	1230						ND	1,920	880	180	994	1462	869	617	594	1042	918	888	701
Temperature	0.5 °C	14.88	9.35					ND	12.3	14.4	18.2	13.6	14.3	11.6	12.47	11.14	12.13	12.2	14.6	13.58
Aluminum	0.0500-0.100 mg/L	0.089			0.05 to 0.2			0.0395	0.130	0.139	0.0395	<0.0500	<0.0270	<0.0270	0.0308	0.0567	0.0398	0.0666	<0.0500	0.0892
Arsenic	0.00100-0.00200 mg/L	0.00136		0.010		0.01	0.05	0.00123	0.000952	0.00111	0.00139	<0.00200	0.00128	0.00114	<0.000880	0.00103	0.000918	0.00117	<0.00200	<0.00200
Barium	0.00200-0.00250 mg/L	0.0600		2.0		2	10	0.0822	0.0875	0.0500	0.0444	0.0673	0.227	0.0902	0.0802	0.0958	0.138	0.0902	0.0939	0.0714
Beryllium	0.00100 mg/L	0.00053		0.004		0.004	0.07	<0.0000390	<0.000221	<0.000235	<0.000221	<0.00100	<0.000190	<0.000270	<0.000270	<0.000270	<0.000270	<0.000330	<0.00100	<0.00100
Boron	0.200-2.00 mg/L	0.136				6	30	6.82	9.85	8.69	0.416	8.18	12.4	6.14	2.33	3.31	5.66	5.66	4.14	2.41
Calcium	0.200-2.00 mg/L	125.6						134	166	99.6	51.9	115	205	125	116	109	177	97.5	128	101
Cobalt	0.000500-0.00100 mg/L	0.000535				0.0028	0.014	0.000167	0.000603	0.000405	0.000578	<0.000500	0.000428	0.000139	0.000535	0.000298	0.000470	0.000214	<0.000500	<0.000500
Copper	0.00200-0.00500 mg/L	0.00293		1.3*	1.0	1.3	6.6	<0.000485	0.00181	0.00118	0.00140	<0.00500	<0.00160	<0.00200	<0.00150	<0.00140	<0.00180	<0.00180	<0.00500	<0.00500
Iron	0.100 mg/L	0.196			0.3			0.0885	0.167	0.224	0.0428	<0.100	<0.0660	<0.0660	0.0654	0.0778	0.107	0.118	0.162	0.343
Lead	0.000500 mg/L	0.000466		0.015 H		0.015	0.075	0.000434	0.00106	0.000613	<0.000211	0.00128	<0.000250	<0.000270	0.000168	0.00109	<0.000240	<0.000240	<0.000500	0.000653
Lithium	0.0100 mg/L	0.0189				0.014	0.07	0.0175	0.227	0.202	0.0317	0.231	0.282	0.191	0.0517	0.0605	0.153	0.137	0.161	0.0875
Magnesium	0.0500-0.200 mg/L	31.1						31.2	24.9	22.8	5.91	21.6	41.0	31.2	27.8	24.6	33.5	20.8	24.8	20.6
Manganese	0.00250-0.0100 mg/L	0.0514			0.05	0.3	4.9	0.0111	0.0390	0.0156	0.0799	0.0103	0.0286	0.00833	0.0326	0.0175	0.0446	0.0141	0.0347	0.0347
Molybdenum	0.00200-0.0100 mg/L	0.00198				0.04	0.2	0.248	0.196	0.207	0.254	0.373	0.350	0.412	0.187	0.192	0.176	0.163	0.243	0.148
Selenium	0.00250-0.00500 mg/L	0.0028		0.05		0.05	0.25	<0.00334	0.00505	0.00126	<0.000630	<0.00500	0.00378	<0.00100	<0.00100	<0.000960	0.0335	0.00276	<0.00500	<0.00500
Sodium	0.200-0.500 mg/L	48.197						35.4	43.5	40.7	3.84	50.9	65.0	59.3	8.38	27.8	59.2	83.2	65.9	45.6
Zinc	0.0100-0.0200 mg/L	0.0109			5.0	2	10	<0.00695	0.00606	<0.00271	<0.00521	<0.0200	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.00640	<0.0200	<0.0200

ND means Not Determined

Laboratory Results as reported by Test America, Cedar Falls, Iowa

Bold results exceed the current Control Limit, Primary MCL, Secondary MCL, or Statewide Standards

Blanks Indicate None

^{* =} Action Level for Corrosion Control

^{** =} mg/L except for pH, Specific Conductance, and Temperature

Table 10-2
2025 Groundwater Monitoring Data Summary for MW-2
Cedar Falls Utilities Leversee Road Ash Disposal Site
Permit No. 07-SDP-11-89P

Parameter	Reporting Limits and	Control Limit	s (mg/L)**	Primary MCL	Secondary MCL	Iowa Statewide Standard for a Protected	Iowa Statewide Standard for a Non-Protected							Sampling	Date					
raiametei	Units	Upper	Lower	(mg/L)**	(mg/L)**	Groundwater Source (mg/L)	Groundwater Source (mg/L)	10/9/2015	3/16/2016	6/23/2016	10/10/2016	10/20/2017	10/26/2018	10/23/2019	10/22/2020	10/26/2021	10/13/2022	10/31/2023	10/30/2024	10/15/2025
Chloride	5 mg/L	74.96			250			5.65	2.70	3.72	5.77	5.84	25.9	12.6	10.8	8.76	7.84	11.1	17.3	10.4
Sulfate	2 -20 mg/L	27.2			250			32.1	61.9	89.9	13.1	99.9	104	145	37.7	11.8	27.6	26.1	205	29.0
pH (Field)	0.1 SU	7.81	6.68		6.5 - 8.5			NA	7.24	7.49	6.92	6.17	6.82	6.98	7.18	7.48	7.43	7.27	7.30	7.24
pH (Laboratory)	0.1 SU	7.74	7.23		6.5 - 8.5			7.43	7.45	7.51	7.2	7.3	7.2	7.1	7.3	7.5	7.4	7.6	7.1	7.4
Specific Conductance	5 μS/cm	1230						ND	2,850	660	810	779	873	826	491	308	316	524	532	557
Temperature	0.5 °C	14.88	9.35					ND	12.1	14.8	17.2	13.82	15.1	12.5	13.46	10.71	11.66	11.6	16.25	13.60
Aluminum	0.0500-0.100 mg/L	0.089			0.05 to 0.2			0.0467	0.0572	0.0907	0.0369	<0.0500	<0.0270	<0.0270	<0.0120	<0.0170	0.0173	<0.0170	0.0995	<0.0500
Arsenic	0.00100-0.00200 mg/L	0.00136		0.010		0.01	0.05	<0.000945	0.000871	0.000839	0.00118	<0.00200	<0.000570	<0.000750	<0.000880	<0.000750	<0.000750	0.000675	0.00241	<0.00200
Barium	0.00200-0.00250 mg/L	0.0600		2.0		2	10	0.0561	0.0697	0.0584	0.0628	0.0887	0.0919	0.118	0.0580	0.0399	0.0703	0.0497	0.0801	0.0618
Beryllium	0.00100 mg/L	0.00053		0.004		0.004	0.07	<0.0000390	<0.000221	<0.000235	<0.000221	<0.00100	<0.000190	<0.000270	<0.000270	<0.000270	<0.000270	<0.000330	<0.00100	<0.00100
Boron	0.0500-1.00 mg/L	0.136				6	30	0.472	0.996	1.24	1.41	1.8	1.31	3.13	1.11	0.0823	0.417	0.151	<0.100	0.298
Calcium	0.200-2.00 mg/L	125.6						78.4	96.2	94.6	90.2	129	121	167	99.1	68.5	96.7	78.2	93.4	105
Cobalt	0.000500-0.00100 mg/L	0.000535				0.0028	0.014	0.000360	0.000706	0.000465	0.000533	<0.000500	0.000173	0.000124	<0.0000910	<0.000190	<0.000190	<0.000170	0.00223	0.000556
Copper	0.00200-0.00500 mg/L	0.00293		1.3*	1.0	1.3	6.6	<0.000485	0.00146	0.00100	<0.00122	<0.00500	<0.00160	<0.00200	<0.00150	<0.00140	<0.00180	<0.00180	<0.00500	<0.00500
Iron	0.100-0.200 mg/L	0.196			0.3			0.175	0.504	0.264	0.247	0.108	0.136	0.127	<0.0500	<0.0360	0.0378	0.138	2.12	0.521
Lead	0.000500 mg/L	0.000466		0.015 H		0.015	0.075	0.000494	0.000799	0.000571	<0.000211	<0.000500	<0.000250	<0.000270	<0.000110	0.000929	<0.000240	<0.000240	0.00172	<0.000500
Lithium	0.0100 mg/L	0.0189				0.014	0.07	<0.00881	0.0254	0.0136	0.0207	<0.0500	0.0191	0.0197	0.0131	0.00779	0.0127	0.0111	0.0132	0.0117
Magnesium	0.0500-0.200 mg/L	31.1						17.4	17.7	24.0	13.2	25.1	19.8	32.8	19.8	12.8	18.7	18.2	18.4	20.5
Manganese	0.00250-0.0100 mg/L	0.0514			0.05	0.3	4.9	0.0471	0.0948	0.0411	0.248	0.0143	0.0921	0.136	0.0889	0.0411	0.0932	0.0402	1.29	0.313
Molybdenum	0.00200-0.0100 mg/L	0.00198				0.04	0.2	0.0702	0.100	0.0429	0.154	0.047	0.108	0.0503	0.0867	0.0755	0.0495	0.0563	0.0539	0.0542
Selenium	0.00250-0.00500 mg/L	0.0028		0.05		0.05	0.25	<0.00334	0.00120	0.00119	<0.000630	<0.00500	<0.000900	<0.00100	<0.00100	<0.000960	0.00784	0.00147	<0.00500	<0.00500
Sodium	0.200-0.500 mg/L	48.197						2.44	2.86	2.41	4.74	4.36	27.0	11.3	9.38	7.5	9.23	9.35	11.00	9.71
Zinc	0.0100-0.0200 mg/L	0.0109			5.0	2	10	<0.00695	0.00550	<0.00271	<0.00521	<0.0200	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.00640	0.0415	<0.0200

ND means Not Determined

Laboratory Results as reported by Test America, Cedar Falls, Iowa

Bold results exceed the current Control Limit, Primary MCL, Secondary MCL, or Statewide Standards

Blanks Indicate None

^{* =} Action Level for Corrosion Control

^{** =} mg/L except for pH, Specific Conductance, and Temperature

Table 10-3
2025 Groundwater Monitoring Data Summary for MW-3S
Cedar Falls Utilities Leversee Road Ash Disposal Site
Permit No. 07-SDP-11-89P

Parameter	Reporting Limits and Units	Control Limits (mg/L)**		L)** Primary MCL (mg/L)**	Secondary MCL (mg/L)**	Iowa Statewide Standard for a Protected Groundwater Source	Iowa Statewide Standard for a Non-Protected Groundwater Source			Sampling Date										
		Upper	Lower			(mg/L)	(mg/L)	10/9/2015	3/16/2016	6/23/2016	10/10/2016	10/20/2017	10/26/2018	10/23/2019	10/22/2020	10/26/2021	10/13/2022	10/31.2023	10/30/2024	10/15/2025
Chloride	5 mg/L	74.96			250			6.22	4.83	6.23	4.95	5.34	21.7	45.5	88.4	31.9	9.44	12.0	34.5	44.0
Sulfate	2 -20 mg/L	27.2			250			16.3	16.1	19.7	16.9	17.2	26.4	19.3	20.3	13.5	10.4	21.2	139	13.9
pH (Field)	0.1 SU	7.81	6.68		6.5 - 8.5			NA	7.43	7.53	7.12	6.47	6.90	7.29	7.28	7.37	7.37	7.42	7.41	7.35
pH (Laboratory)	0.1 SU	7.74	7.23		6.5 - 8.5			7.55	7.68	7.60	7.5	7.6	7.2	7.4	7.4	7.5	7.5	7.6	7.3	7.5
Specific Conductance	5 μS/cm	1230						ND	1,390	540	1,120	680	718	560	629	466	434	512	560	620
Temperature	0.5 °C	14.88	9.35					ND	13.1	12.7	14.8	12.38	13.0	9.93	11.97	9.82	11.62	10.6	13.00	12.50
Aluminum	0.0500-0.100 mg/L	0.089			0.05 to 0.2			0.0408	<0.0208	0.0766	0.0884	<0.0500	<0.0270	<0.0270	<0.0120	<0.0170	0.033	0.0771	0.0666	<0.0500
Arsenic	0.00100-0.00200 mg/L	0.00136		0.010		0.01	0.05	0.00103	0.000680	0.00107	0.000884	<0.00200	<0.000570	0.000866	<0.000880	0.000984	0.000836	0.00117	0.00117	<0.00200
Barium	0.00200-0.00250 mg/L	0.0600		2.0		2	10	0.0344	0.0319	0.0311	0.0384	0.0491	0.0487	0.0526	0.0560	0.0495	0.043	0.0424	0.0902	0.0505
Beryllium	0.00100 mg/L	0.00053		0.004		0.004	0.07	<0.0000390	<0.000221	<0.000235	<0.000221	<0.00100	<0.000190	<0.000270	<0.000270	<0.000270	<0.000270	<0.000330	<0.000330	<0.00100
Boron	0.0500-1.00 mg/L	0.136				6	30	0.0677	0.0497	0.0454	0.0519	<0.200	0.130	0.119	<0.0800	<0.0580	<0.0580	0.0824	<0.100	0.106
Calcium	0.200-2.00 mg/L	125.6						70.8	76.8	69.2	90.0	110	104	117	111	77.7	63	60.4	97.5	103
Cobalt	0.000500-0.00100 mg/L	0.000535				0.0028	0.014	0.000443	0.0000790	0.000516	0.000230	<0.000500	0.0000880	<0.0000910	<0.0000910	0.000401	0.000232	0.000331	0.000214	<0.000500
Copper	0.00200-0.00500 mg/L	0.00293		1.3*	1.0	1.3	6.6	<0.000485	<0.00122	0.00105	<0.000122	<0.00500	<0.00160	<0.00200	<0.00150	<0.00140	<0.00180	0.00226	<0.00180	<0.00500
Iron	0.100 mg/L	0.196			0.3			0.180	<0.0394	0.195	0.0781	<0.100	<0.0660	<0.0660	<0.0500	<0.0360	0.0735	0.143	0.118	<0.100
Lead	0.000500 mg/L	0.000466		0.015 H		0.015	0.075	0.000296	<0.000211	0.000502	<0.000211	<0.000500	<0.000250	<0.000270	<0.000110	0.000356	<0.000240	0.000317	<0.000240	<0.000500
Lithium	0.0100 mg/L	0.0189				0.014	0.07	0.166	<0.00655	<0.00655	<0.00655	<0.0500	<0.00280	<0.00270	<0.00250	<0.00250	0.00271	<0.00250	0.137	<0.0100
Magnesium	0.0500-0.200 mg/L	31.1						20.4	18.5	20.8	21.6	27.2	26.8	29.5	27.0	18.9	14.7	15.6	20.8	25.2
Manganese	0.00250-0.0100 mg/L	0.0514			0.05	0.3	4.9	0.0456	0.00550	0.0401	0.0217	0.0126	0.00651	0.00407	<0.00400	0.0113	0.0234	0.0338	0.0141	<0.0100
Molybdenum	0.00200-0.0100 mg/L	0.00198				0.04	0.2	0.000106	0.000107	<0.00527	<0.000105	<0.00200	<0.000680	<0.00110	<0.00110	<0.00103	<0.00120	<0.000910	0.163	<0.00200
Selenium	0.00250-0.00500 mg/L	0.0028		0.05		0.05	0.25	<0.00334	0.00113	<0.000856	0.000895	<0.00500	<0.000900	<0.00100	<0.00100	<0.000960	<0.000960	<0.00140	0.00276	<0.00500
Sodium	0.200-0.500 mg/L	48.197						2.08	2.24	2.54	2.42	2.69	4.52	4.68	19.2	43.9	43.9	39.1	83.2	14.9
Zinc	0.0100-0.0200 mg/L	0.0109			5.0	2	10	<0.00695	<0.00521	<0.00271	<0.00521	<0.0200	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.00640	<0.00640	<0.0200

ND means Not Determined

Laboratory Results as reported by Test America, Cedar Falls, Iowa

Bold results exceed the current Control Limit, Primary MCL, Secondary MCL, or Statewide Standards

Blanks Indicate None

^{* =} Action Level for Corrosion Control

^{** =} mg/L except for pH, Specific Conductance, and Temperature

Table 10-4
2025 Groundwater Monitoring Data Summary for MW-4S
Cedar Falls Utilities Leversee Road Ash Disposal Site
Permit No. 07-SDP-11-89P

Parameter	Reporting Limits and Units	Control Limits (mg/L)**		ng/L)** Primary MCL (mg/L)**	Secondary MCL (mg/L)**	lowa Statewide Standard for a Protected Groundwater	Iowa Statewide Standard for a Non-Protected Groundwater							Sampling Dat	ee												
		Upper	Lower			Source (mg/L)	Source (mg/L)	10/9/2015	3/16/2016	6/23/2016	10/10/2016	10/20/2017	10/26/2018	10/23/2019	10/22/2020	10/26/2021	10/13/2022	10/31/2023	10/30/2024	10/15/2025							
Chloride	5-20 mg/L	74.96			250			9.20	281	11.5	6.29	6.81	9.38	18.3	17.5	9.72	9.63	12.2	17.6	15.4							
Sulfate	2-20 mg/L	27.2			250			191	428	322	38.8	92	242	86	209	84.4	70.9	81.7	185	106							
pH (Field)	0.1 SU	7.81	6.68		6.5 - 8.5			NA	7.12	7.41	NA	6.68	6.92	7.13	7.10	7.16	7.06	7.08	6.93	7.09							
pH (Laboratory)	0.1 SU	7.74	7.23		6.5 - 8.5			6.96	7.04	7.11	7.1	7.5	7.1	7.3	7.2	7.2	7.2	7.3	7.0	7.3							
Specific Conductance	5 μS/cm	1230						ND	3,010	1,210	6,730	690	1192	705	936	590	611	691	905	734							
Temperature	0.5 °C	14.88	9.35					ND	12.4	15.3	18.0	14.2	13.8	11.93	12.62	11.58	12.95	12	13.68	13.73							
Aluminum	0.0500-0.100 mg/L	0.089			0.05 to 0.2			<0.00846	0.0404	<0.0497	0.0208	<0.0500	<0.135	<0.0270	<0.0120	<0.0170	0.0231	<0.0170	<0.0500	<0.0500							
Arsenic	0.00100-0.00200 mg/L	0.00136		0.010		0.01	0.05	<0.000945	<0.000672	0.000506	0.000678	<0.00200	<0.000570	0.000795	<0.000880	<0.000750	<0.000750	0.000712	<0.00200	<0.00200							
Barium	0.00200-0.00250 mg/L	0.0600		2.0		2	10	0.0923	0.119	0.0773	0.0364	0.0362	0.101	0.0594	0.0781	0.0696	0.0579	0.0493	0.0996	0.0548							
Beryllium	0.00100 mg/L	0.00053		0.004		0.004	0.07	<0.0000390	<0.000221	<0.000235	<0.000221	<0.00100	<0.000190	<0.000270	<0.000270	<0.000270	<0.000270	<0.000330	<0.00100	<0.00100							
Boron	0.200-5.00 mg/L	0.136				6	30	0.0677	0.0497	0.0454	0.0519	<0.200	0.130	0.119	<0.0800	<0.0580	<0.0580	0.0824	5.66	2.78							
Calcium	0.200-4.00 mg/L	125.6						162	187	120	93.0	88.2	139	115	148	115	107	103	148	123							
Cobalt	0.000500-0.00100 mg/L	0.000535				0.0028	0.014	0.000409	0.000949	0.000595	0.000371	<0.000500	0.000135	0.000099	0.000175	<0.000190	0.000318	<0.000170	0.00222	0.000885							
Copper	0.00200-0.00500 mg/L	0.00293		1.3*	1.0	1.3	6.6	<0.000485	<0.00122	0.00101	<0.000122	<0.00500	<0.00160	<0.00200	<0.00150	<0.00140	<0.00180	<0.00180	<0.00500	<0.00500							
Iron	0.100-1.0 mg/L	0.196			0.3			<0.0511	<0.394	0.176	0.0746	<0.100	<0.0660	<0.0660	<0.0500	<0.0360	0.0622	0.218	0.886	0.124							
Lead	0.000500 mg/L	0.000466		0.015 H		0.015	0.075	<0.0000967	0.000439	0.000411	<0.000211	<0.000500	<0.000250	<0.000270	<0.000110	0.00038	<0.000240	<0.000240	<0.000500	<0.000500							
Lithium	0.0100 mg/L	0.0189				0.014	0.07	0.0930	0.183	0.283	0.0575	0.128	0.286	0.0715	0.203	0.0585	0.0427	0.0259	0.0808	0.0330							
Magnesium	0.0500-0.200 mg/L	31.1						21.7	27.1	22.7	10.8	17.6	27.9	24.1	30.8	28.1	24.3	27.2	32.0	27.7							
Manganese	0.00250-0.0100 mg/L	0.0514			0.05	0.3	4.9	0.651	0.145	0.122	0.111	0.0369	0.0403	0.0219	0.0298	0.02	0.0925	0.0196	1.32	0.485							
Molybdenum	0.00200-0.0100 mg/L	0.00198				0.04	0.2	0.0213	0.00705	0.0237	0.0281	0.0264	0.0397	0.0228	0.0268	0.0525	0.0461	0.054	0.0431	0.0527							
Selenium	0.00250-0.00500 mg/L	0.0028		0.05		0.05	0.25	<0.00334	0.00775	0.00265	0.00113	<0.00500	<0.000900	<0.00100	<0.00100	<0.000960	<0.000960	<0.00140	<0.00500	<0.00500							
Sodium	0.200-0.500 mg/L	48.197						32.4	43.5	105	11.5	36.2	57.5	20.1	73.5	15.8	13.6	10.7	55.0	28.8							
Zinc	0.0100-0.0200 mg/L	0.0109			5.0	2	10	<0.00695	<0.00521	<0.00271	<0.00521	<0.0200	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.00640	<0.0200	<0.0200							

ND means Not Determined

Laboratory Results as reported by Test America, Cedar Falls, Iowa

 $\textbf{Bold} \ \text{results exceed the current Control Limit, Primary MCL, Secondary MCL, or Statewide Standards}$

Blanks Indicate None

^{* =} Action Level for Corrosion Control

^{** =} mg/L except for pH, Specific Conductance, and Temperature

Table 10-5
2025 Groundwater Monitoring Data Summary for MW-5S
Cedar Falls Utilities Leversee Road Ash Disposal Site
Permit No. 07-SDP-11-89P

Parameter	Reporting Limits and Units	Control Limits (mg/L)**		Primary MCL (mg/L)**	, I , I	Iowa Statewide Standard for a Protected Groundwater Source	lowa Statewide Standard for a Non-Protected Groundwater Source	a Sampling Date												
		Upper	Lower			(mg/L)	(mg/L)	10/9/2015	3/16/2016	6/23/2016	10/10/2016	3/8/2018	10/26/2018	10/23/2019	10/22/2020	10/26/2021	10/13/2022	10/31/2023	10/30/2024	10/15/2025
Chloride	5 mg/L	74.96			250			4.12	4.07	5.61	3.31	7.34	4.34	19.3	12.5	15.5	8.82	16.8	26.7	28.0
Sulfate	2 -20 mg/L	27.2			250			32.0	32.7	154	149	53	57.4	71.9	205	14.3	39.7	80.6	230	105
pH (Field)	0.1 SU	7.81	6.68		6.5 - 8.5			NA	6.9	7.02	6.99	ND	6.74	7.13	6.96	6.88	7.07	7.12	7.08	7.02
pH (Laboratiory)	0.1 SU	7.74	7.23		6.5 - 8.5			7.18	7.38	7.12	7.0	7.1	7.3	7.3	7.1	7.3	7.3	7.3	7.2	7.3
Specific Conductance	5 μS/cm	1230						ND	3,120	1,260	2,910	ND	702	676	816	502	543	724	860	751
Temperature	0.5 °C	14.88	9.35					ND	11.7	13.2	15.2	ND	11.8	9.36	11.35	9.76	11.56	10.4	13.20	12.52
Aluminum	0.0500-0.100 mg/L	0.089			0.05 to 0.2			<0.00846	<0.0208	<0.0497	0.0704	0.115	0.0564	0.0393	<0.0120	0.0235	0.0419	<0.0170	<0.0500	<0.0500
Arsenic	0.00100-0.00200 mg/L	0.00136		0.01		0.01	0.05	0.00101	<0.000672	0.000581	<0.000672	0.00138	<0.000570	0.00085	<0.000880	<0.000750	<0.000750	0.000653	<0.00200	<0.00200
Barium	0.00200-0.00250 mg/L	0.0600		2.0		2	10	0.0705	0.0573	0.0898	0.0803	0.108	0.110	0.0847	0.0922	0.07	0.0794	0.0722	0.1080	0.0869
Beryllium	0.00100 mg/L	0.00053		0.004		0.004	0.07	<0.0000390	<0.000221	<0.000235	<0.000221	<0.000125	<0.000190	<0.000270	<0.000270	<0.000270	<0.000270	<0.000330	<0.00100	<0.00100
Boron	0.200-1.00 mg/L	0.136				6	30	2.66	0.933	3.68	3.47	7.10	2.42	4.37	22.3	0.14	0.329	1.04	1.77	2.76
Calcium	0.200-2.00 mg/L	125.6						91.5	93.5	132	176	120	108	150	195	122	119	118	175	138
Cobalt	0.000500-0.00100 mg/L	0.000535				0.0028	0.014	0.000388	0.000164	0.000609	0.000996	0.00101	0.000324	0.000308	0.000153	0.000471	0.000359	0.000181	0.000624	0.00101
Copper	0.00200-0.00500 mg/L	0.00293		1.3*	1.0	1.3	6.6	<0.000485	<0.00122	0.000691	<0.00122	<0.00219	<0.00160	<0.00200	<0.00150	0.00142	<0.00180	<0.00180	<0.00500	<0.00500
Iron	0.100-0.200 mg/L	0.196			0.3			0.875	<0.0788	0.0762	<0.0394	0.375	0.253	0.117	0.0564	0.112	0.24	0.0786	0.228	0.135
Lead	0.000500 mg/L	0.000466		0.015 H		0.015	0.075	<0.0000967	<0.000211	0.000356	<0.000211	0.000826	0.000665	0.000347	0.000210	0.000946	0.000719	0.000253	<0.000500	<0.000500
Lithium	0.0100 mg/L	0.0189				0.014	0.07	0.0933	0.0589	0.0469	0.0309	0.138	0.0591	0.0176	0.198	0.0277	0.0255	0.0496	0.0234	0.0561
Magnesium	0.0500-0.200 mg/L	31.1						15.4	15.3	26.5	27.3	17.7	15.7	28.7	34.5	24.7	23.2	27.8	38.0	28.7
Manganese	0.00250-0.0100 mg/L	0.0514			0.05	0.3	4.9	0.227	0.109	0.0714	0.240	0.0801	0.0324	0.0222	0.0130	0.0228	0.0325	0.0170	0.343	0.365
Molybdenum	0.00200-0.0100 mg/L	0.00198				0.04	0.2	0.154	0.139	0.105	0.0488	0.426	0.264	0.0806	0.182	0.0778	0.0938	0.0621	0.0327	0.0837
Selenium	0.00250-0.00500 mg/L	0.0028		0.05		0.05	0.25	<0.00334	0.00111	<0.000856	0.00127	0.00148	<0.000900	0.00183	0.00180	<0.000960	0.00130	<0.00140	<0.00500	<0.00500
Sodium	0.200-0.500 mg/L	48.197						7.73	6.54	5.76	10.5	5.52	3.62	4.82	7.02	5.01	4.91	5.72	10.8	17.0
Zinc	0.0100-0.0200 mg/L	0.0109			5.0	2	10	<0.00695	<0.00521	0.00426	<0.00521	<0.0115	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.00640	<0.0200	<0.0200

ND means Not Determined

Laboratory Results as reported by Test America, Cedar Falls, Iowa

Bold results exceed the current Control Limit, Primary MCL, Secondary MCL, or Statewide Standards

Blanks Indicate None

^{* =} Action Level for Corrosion Control

^{** =} mg/L except for pH, Specific Conductance, and Temperature

2.2.4 Aluminum

Aluminum was identified above the laboratory detection limit of 0.050 mg/L in sampling well MW-1 during the 2025 sampling event, compared to being below the detection limit in 2024. No other samples were observed above the laboratory detection limit, decreasing from two detections in 2024. The observed level of aluminum in well MW-1 fell within the Secondary MCL range of 0.05 to 2.0 mg/L, while being slightly over the Control Limit of 0.089 mg/L. If future sampling events demonstrate a trend, the effects will be evaluated at that time.

2.2.5 Arsenic

Arsenic was not observed in any of the five of the wells during the 2025 sampling event above the laboratory detection limit of 0.0020 mg/L, a decrease from two detections in 2025. Overall trends continue to show minimal detections above the laboratory detection limits. Trends will continue to be monitored in 2026.

2.2.6 **Barium**

Barium was observed in all of the sampling wells during the 2025 sampling event. While the barium levels in sampling wells MW-1, MW-2, and MW-5S exceeded the current Control Limit of 0.0600 mg/L, the measured levels in all of the wells were less than the Primary MCL of 2 mg/L as well as the Iowa Statewide Standards for Protected and Non-Protected Groundwater Sources of 2 mg/L and 10 mg/L, respectively.

Barium has been observed in all of the wells at various times but always at levels that were less than the Primary MCL of 2 mg/L as well as the Iowa Statewide Standards for Protected and Non-Protected Groundwater Sources of 2 mg/L and 10 mg/L, respectively.

Since the measured levels of barium were one to two significant figures less than the MCL and Iowa Statewide Standards for Protected and Non-Protected Groundwater Sources, the barium levels measured since the October 9, 2015, sampling event are not considered significant.

2.2.7 Beryllium

Beryllium was not identified above the laboratory detection limits in any of the sampling wells during the 2025 sampling event. The 2025 laboratory detection limits for beryllium did not exceed the Primary MCL of 0.004 mg/L or the Iowa Statewide Standards for Protected and Non-Protected Groundwater Source of 0.004 mg/L and 0.07 mg/L, respectively.

Since the measured levels of beryllium have been less than the Control Limit, MCL, and Iowa Statewide Standards for Protected and Non-Protected Groundwater Sources, the beryllium levels measured since the October 9, 2015, sampling event are not considered significant.

2.2.8 **Boron**

Boron was observed at levels exceeding the Control Limit in four of the sampling wells during the 2025 sampling event. Sampling well MW-3S did not exceed the current Control Limit. The observed levels in MW-1, MW-2, MW-4S, and MW-5 did not exceed the Iowa Statewide Standards for Protected Groundwater Sources.

The 2025 results are express similar trends in sampling wells MW-2 and MW-3S, while MW-1 and MW-4S returned towards their previously consistent trends after elevated levels in 2024. MW-5S continues to express a slightly increasing trend dating back to the 2021 sampling event, though still well below the Iowa Statewide Standards for Protected Groundwater Sources

The results will continue to be evaluated over the next sampling events to determine if they are indicative of a trend in boron levels at the site. If future sampling events demonstrate a trend, the effects will be evaluated at that time.

2.2.9 Calcium

Calcium was observed in all of the sampling wells during the 2025 sampling event. One of the observed wells, MW-5S, exceeded the Control Limit of 125.6 mg/L. 2025 results represented a moderate decrease of calcium across sampling wells MW-1, MW-4S, and MW-5S, while a slight increase in MW-2 and MW-3S.

Because calcium is naturally occurring in native Iowa soils and groundwater, it is not clear where the calcium is coming from. It is possible that the calcium observed is coming from substrate soils. Calcium is a component of water hardness and does not have health-based standards or guidelines. Its presence at the levels observed at the site is not considered significant. Despite this, the results from the wells will continue to be evaluated during the future sampling events to determine if they are indicative of a trend of consistent exceedances or steady increases of calcium levels at the site. If future sampling events demonstrate a trend, the effects will be evaluated at that time.

2.2.10 Cobalt

Cobalt was identified above the laboratory detection limit of 0.00050 mg/L in three of the wells during the 2025 sampling event. The detected levels of cobalt exceeded the Control Limit of 0.000535 mg/L in wells MW-2 and MW-4, and MW-5S. None of the sampling wells exceeded the Iowa Statewide Standards for Protected and Non-Protected Groundwater Sources of 0.0028 mg/L and 0.014 mg/L, respectively.

Cobalt has historically been observed in all of the wells at various times depending on the laboratory reporting limit, but not at levels of significant concern, and always less than the Iowa Statewide Standards for Protected and Non-Protected Groundwater Sources.

Since the measured levels of cobalt were less than the Iowa Statewide Standards for Protected and Non-Protected Groundwater Sources, the cobalt levels measured since the October 9, 2015, sampling event are not considered significant at this time. If future sampling events demonstrate an upward trend, the effects will be evaluated at that time.

2.2.11 Copper

Copper was not identified above the laboratory detection limit in any of the five sampling wells during the 2025 sampling event. These results reflected a continuing trend in copper concentrations over past events. Past measured levels of copper did not exceed the Primary and Secondary MCLs of 1.3 mg/L and 1.0 mg/L or the Iowa Statewide Standards for Protected and Non-Protected Groundwater Sources of 1.3 mg/L and 6.6 mg/L, respectively.

Because there is not a history of copper exceedances at the site and the past measured levels were at least three significant figures less than the MCLs and Iowa Statewide Standards for Protected and Non-Protected Groundwater Sources, the copper levels measured since October 9, 2015, sampling event are not considered significant.

2.2.12 Iron

Iron was observed in four of the sampling wells during the 2025 sampling event. The levels observed were greater than the Control Limit in wells MW-1 and MW-2, while MW-4S and MW-5S were below the Control Limit. Wells MW-1 and MW-2 also exceeded the Secondary MCL for the parameter. The statistical analysis indicated no trend at MW-2, MW-4S, and MW-5S. The iron concentration of 0.343 mg/L is an upper tail statistical outlier.

There is not a consistent trend of iron exceedances at the site, and iron is naturally occurring in native Iowa soils. It is possible that the iron observed is coming from substrate soils. These results are not considered a concern at this time. If future sampling events demonstrate an upward trend, the effects will be evaluated at that time.

2.2.13 Lead

Lead was observed above the laboratory detection limit in one of the sampling wells, MW-1, during the 2025 sampling event. The lead levels observed in MW-1 exceeded the Control Limit but were well below the Primary MCL of 0.015 mg/L, and Statewide Standards for Protected and Non-Protected Groundwater Source of 0.015 mg/L and 0.075 mg/L, respectively. The statistical analysis indicated no trend at MW-1, and MW-5S.

Because there is not a history of lead exceedances at the site and the measured levels were one to two significant figures less than the MCL and Iowa Statewide Standards for Protected and Non-Protected Groundwater Sources, the lead levels measured since the October 9, 2015, sampling event are not considered significant.

2.2.14 Lithium

Lithium was observed in four of the sampling wells during the 2025 sampling event. Lithium exceeded the Control Limit in wells MW-1, MW-4S, and MW-5S. MW-2 was detected below the Control Limit. The observed levels in wells MW-1, MW-4S, and MW-5S were also greater than the Iowa Statewide Standard for Protected Groundwater Sources of 0.014 mg/L. The levels observed in well MW-1 also exceeded the Iowa Statewide Standard for Non-Protected Groundwater Sources of 0.07 mg/L.

These results are generally consistent with previous sampling events, with overall trends have shown a slow decline in sample concentrations across the sampling wells.

The control limit for lithium for this event was calculated without including the value measured in October 2015 for the up gradient well, MW-3, which was likely an outlier. That value will be excluded in future calculations.

Because of the exceedances of the Iowa Statewide Standards for Protected and Non-Protected Groundwater Sources since October 9, 2015, the results from the wells will continue to be evaluated over the next several sampling events to determine if they are indicative of a trend of consistent exceedances or steady increases of lithium levels at the site. If future sampling events demonstrate a trend, the effects will be evaluated at that time.

2.2.15 Magnesium

Magnesium was observed in all of the sampling wells during the 2025 sampling event. None of the observed levels from the wells exceeded the Control Limit of 31.1 mg/L.

Historically, magnesium has been observed in all of the wells during each sampling event.

Magnesium is naturally occurring in native Iowa soils. It is possible that the magnesium observed is coming from substrate soils. Magnesium is a naturally occurring substance in groundwater. It is a component of water hardness and does not have health-based standards or guidelines. Its presence at the levels observed at the site is not considered significant. Despite this, the results from the wells will continue to be evaluated during future sampling events to determine if they are indicative of a trend of consistent exceedances or steady increases of magnesium levels at the site. If future sampling events demonstrate a trend, the effects will be evaluated at that time.

2.2.16 Manganese

Manganese was observed in four of the sampling wells during the 2025 sampling event. Three of the wells, MW-2, MW-4S, and MW-5S, observed levels that exceeded the Control Limit and the Secondary MCL. These three wells also exceeded the Iowa Statewide Standards for Protected Groundwater Sources of 0.3 mg/L. None of the wells exceeded the Iowa Statewide Standards for Non-Protected Groundwater Sources.

Sample results from wells MW-1 and MW-3S are consistent with past observations, while wells MW-2, MW-4S, and MW-5S remained elevated when compared to previous sampling events.

Manganese can be found in Iowa soils. It is possible that the manganese is coming from substrate soils. As such, the results from the wells will continue to be evaluated over the future sampling events to determine if they are indicative of a trend of consistent exceedances or steady increases of manganese levels at the site. If future sampling events demonstrate a trend, the effects will be evaluated at that time.

2.2.17 Molybdenum

Molybdenum was observed in four of the sampling wells during the 2025 sampling event, with each of the wells exceeding the Control Limit of 0.00198 mg/L. Sampling wells, MW-1, MW-2, MW-4S, and MW-5S also exceeded the Iowa Statewide Standards for Protected Groundwater Sources of 0.04 mg/L. None of the wells exceeded the Iowa Statewide Standards for Non-Protected Groundwater Sources of 0.2 mg/L. These results are consistent with past observations, with results at MW-3S returning to the consistent trend observed prior to 2024.

Because of the exceedances of the Iowa Statewide Standards for Protected and Non-Protected Groundwater Sources since October 9, 2015, the results from the wells will continue to be evaluated during future

sampling events to determine if they are indicative of a trend of consistent exceedances or steady increases of molybdenum levels at the site. If future sampling events demonstrate a trend, the effects will be evaluated at that time.

2.2.18 Selenium

Selenium was not observed in any of the sampling wells, above the laboratory detection limit during the 2025 sampling event. These results are consistent with past observations predominantly expressing concentrations below laboratory detection limits.

Because there is not a history of selenium exceedances at the site and the measured levels were one to two significant figures less than the MCL and Iowa Statewide Standards for Protected and Non-Protected Groundwater Sources, the selenium levels measured since the October 9, 2015, are not considered significant.

2.2.19 **Sodium**

Sodium was observed in all five of the sampling wells during the 2025 sampling event. None of the sampling wells exceeded the 2025 Control Limit of 48.197 mg/L.

Sodium does not have a Primary or Secondary MCL. However, USEPA has established a Health Advisory Level for sodium in drinking water of 20 mg/L. The values for wells MW-1 and MW-4S exceeded the Health Advisory Level.

Accordingly, the results from the wells will continue to be evaluated over future sampling events to determine if they are indicative of a trend of consistent exceedances or steady increases of sodium levels at the site. If future sampling events demonstrate a trend, the effects will be evaluated at that time.

2.2.20 Zinc

Zinc was not identified above the laboratory detection limit of 0.0100 mg/L in any of the sampling wells during the 2025 sampling event. These results are consistent with past observations predominantly expressing concentrations below laboratory detection limits.

All of the zinc measurements since the October 9, 2015, sampling event have been below the Secondary MCL of 5 mg/L as well as the Iowa Statewide Standards for Protected and Non-Protected Groundwater Sources of 2 mg/L and 10 mg/L, respectively. Since the measured levels of zinc were two to three significant figures less than the MCL and Statewide Standards, the zinc levels measured since the October 9, 2015, sampling event are not considered significant.

2.2.21 ProUCL Trends

Trends were determined using the Mann-Kendall test in ProUCL. The Mann-Kendall test has three potential trends: 1) an increasing trend that signifies that the concentrations are increasing at a significance level was above 95%, 2) a decreasing trend that signifies that the concentrations are decreasing at a significance level of 95% and, 3) no trend if the Mann-Kendall statistic is 0 or the confidence level is below 95%. Similar to the outlier analysis, statistical analysis was not performed for well-constituent pairs that

had at least 50% non-detects in the data set. Table 2-1 summarizes the 2025 trends for applicable well-constituent pairs with an additional discussion for each parameter that trend analysis could be completed for.

Table 2-11: Summary of Cedar Falls Utilities Leversee Road Ash Disposal Site 2015 through 2025 Groundwater Trends

Chemical	Upgradient		Downgradient and Crossgradient								
Constituent	MW-3	MW-1	MW-2	MW-4	MW-5						
Aluminum	NA	NT	NA	NA	NA						
Arsenic	NT	NT	NA	NA	NA						
Barium	↑	NT	NT	NT	NT						
Beryllium	NA	NA	NA	NA	NA						
Boron	NT	\	NT	↑	NT						
Calcium	NT	NT	NT	NT	NT						
Chloride	↑	↑	↑	NT	1						
Cobalt	NT	NT	NT	NT	NT						
Copper	NA	NA	NA	NA	NA						
Iron	NA	NA	NT	NT	NT						
Lead	NA	NT	NA	NA	NT						
Lithium	NA	NT	NT	\	NT						
Magnesium	NT	NT	NT	↑	1						
Manganese	NT	NT	NT	NT	NT						
Molybdenum	NA	+	NT	↑	\						
Selenium	NA	NA	NA	NA	NA						
Sodium	1	NT	↑	NT	NT						
Sulfate	NT	NT	NT	NT	NT						
Zinc	NA	NA	NA	NA	NA						

Notes:

 $NA-Not \ analyzed \ due to at least 50\% non-detects in the data set from 2015-2025$

NT - No trend from 2015-2025

^{↑ -} An increasing trend at the 95% confidence interval from 2015-2025

[↓] A decreasing trend at the 95% confidence interval from 2015-2025

2.3 Monitoring Well Maintenance and Performance Evaluation

Based on observations of water levels at the site as summarized in Table 2-1 of this report, the current well locations and screened intervals are appropriate to adequately monitor the site. The up-gradient monitoring point, MW-3, is functioning as a valid background and up gradient sampling point.

A comparison of the 2025 water levels and flow paths with past years indicates that waste disposal activities and/or well operations have not resulted in changes in the hydrologic setting and resultant flow paths at the site.

Wells MW-1, MW-2, MW-3, MW-4 and MW-5 at the site appear to be functioning as required and are appropriately placed both horizontally and vertically to effectively and reliably monitor the site. MW-2 was damaged during the closure construction in 2017 but was repaired and is able to produce water. MW-5 was damaged during the closure construction in 2017. A new MW-5 was constructed and has been sampled annually since the 2018 event. MW-5 sampling during 2025 was recorded to a depth of 20.10 feet. In 2024 the well depth was 27.60 feet. Terracon and Stanley Consultants field staff tried two different measuring probes to see if a false bottom had been created. CFU had been informed of the nearly seven and a half feet difference. CFU will need to televise this well and determine if it had filled with sediment or collapsed.

Prior to sampling on October 15, 2025 Terracon cleaned MW-2 and MW-4S using a stiff-bristled brush attached to a 1-inch polyvinyl chloride (PVC) casing. During the 2010 sampling event, the wells were cleaned before taking any samples. During the 2012 sampling event, root hair masses were noted at a depth of 23 feet for Well MW-3 and 21 feet from Well MW-5. Due to the low water table and the root hair mass, no samples were collected for Well MW-5 in 2012. During the summer of 2013, cleaning was conducted on Wells MW-3 and MW-5 before the sampling event. Root hairs were encountered in Well MW-2 during the 2013 sampling event. Well depth measurements for Wells MW-1, MW-2, MW-3, and MW-4 show no indication of significant sediment accumulation in these wells, however cleaning to remove accumulated biomass has been recommended in the past. Based on this, in August 2014, CFU had the wells cleaned. After cleaning, the wells were pumped or baled until the removed water was clear and devoid of root debris. Root hairs were encountered in Well MW-2. No root hairs were observed in Wells MW-1 and MW-4. Light amounts of root hairs were encountered in Wells MW-3 and MW-5. In 2015 the wells were cleaned as needed before the sampling event.

Three leachate piezometers were removed from the site during 1999. Prior to their removal these were monitored for evidence of groundwater presence in the waste. No evidence of groundwater mounding was observed at the site. The nature of the waste materials and disposal methods are such that the potential for groundwater mounding is considered very low.

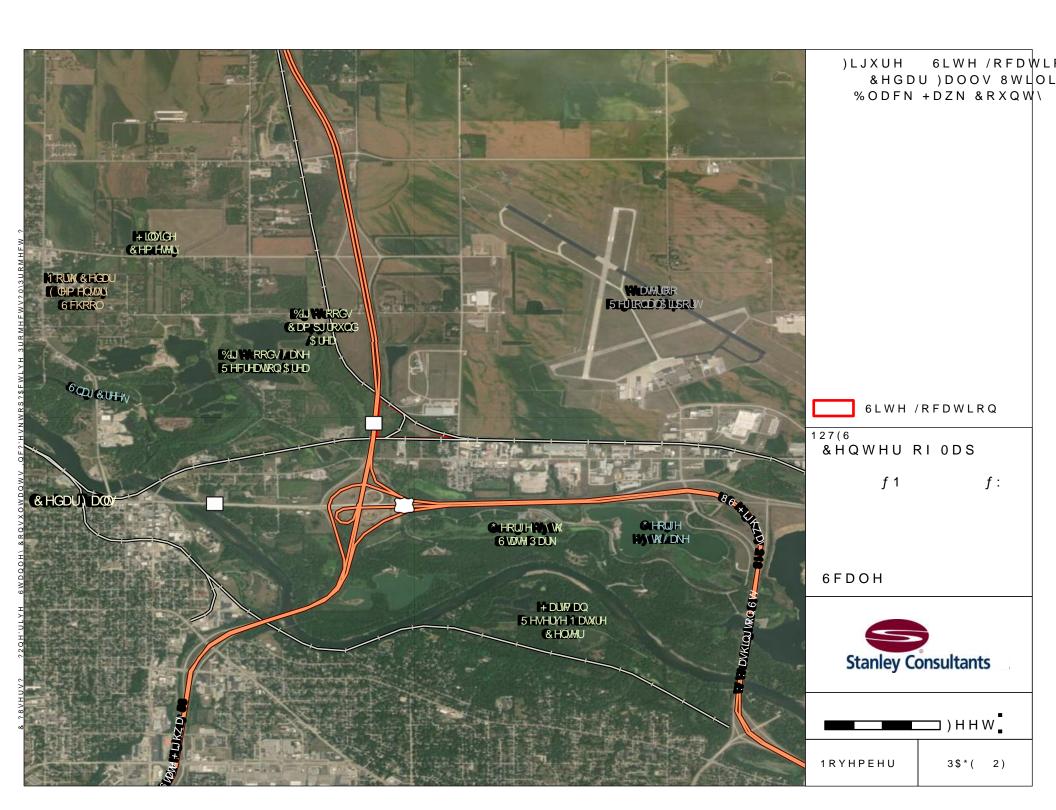
All of the wells are water table wells. Accordingly, some portion of the screened interval in each is exposed to the atmosphere by design. This generally does not adversely affect the performance or utility of the wells, although it may contribute to the observed root growth.

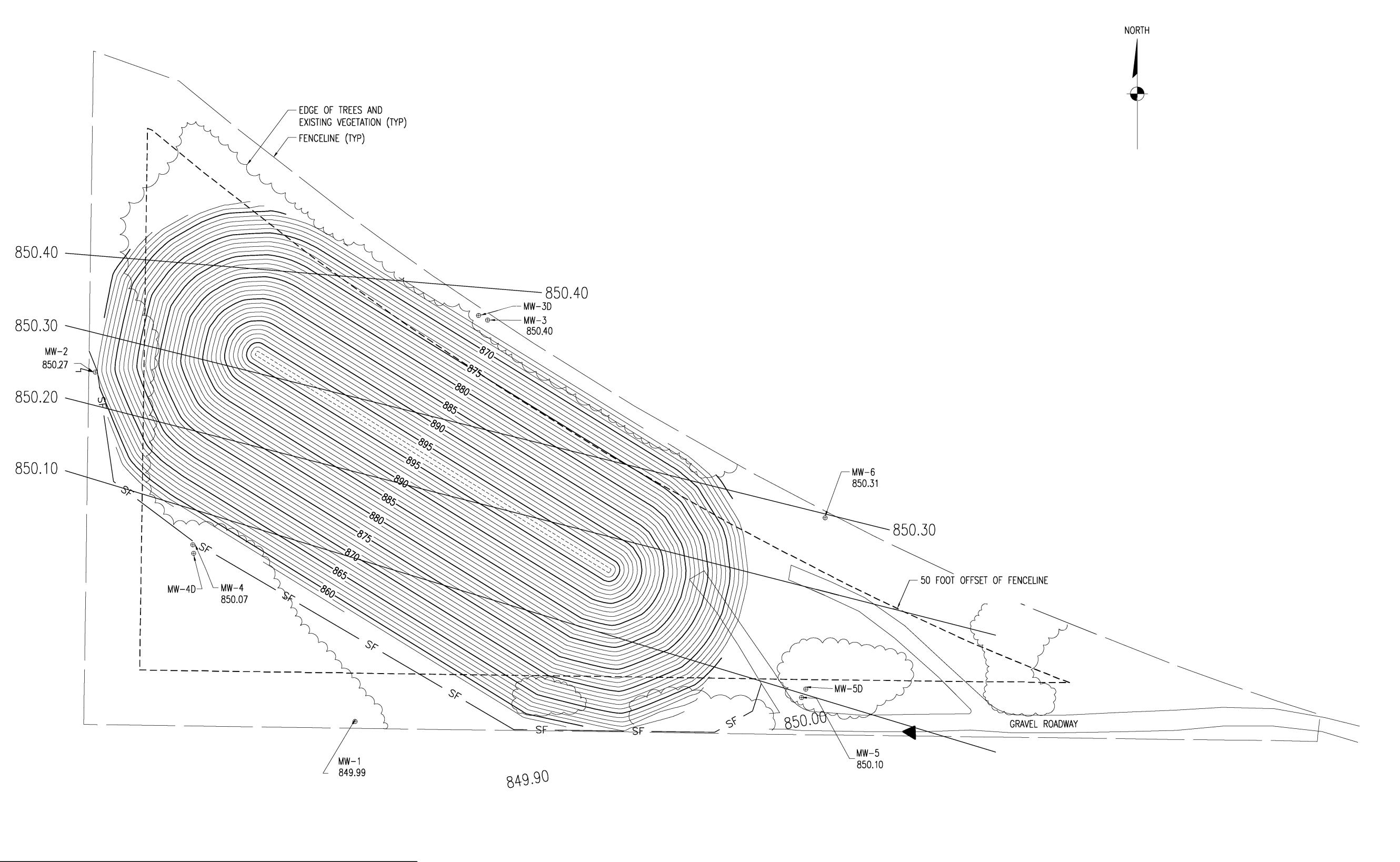
All of the casing elevations were surveyed previously. The current elevations are shown in Table 2-1 and Appendix A.

3.0 Summary

The results of the sampling for 2025 of the designated monitoring wells as detailed in this report indicate the site is having a minor effect on the groundwater quality surrounding the site. There were no exceedances of Primary MCLs. Sample wells MW-1 and MW-2 exceeded the Secondary MCL for iron. Wells MS-2, MW-4S, and MW-5S exceeded the Secondary MCL for manganese. The HAL for sodium was exceeded in Wells MW-1 and MW-4S.

In comparison to the Iowa Statewide Standards for Protected Groundwater Sources, there were three exceedances (MW-1, MW-4S, MW-5S) for lithium, three exceedances (MW-2, MW-4S, MW-5S) for manganese, and four exceedances (MW-1, MW-2, MW-4S, MW-5S) for molybdenum. There were three exceedances (MW-1, MW-4S, MW-5S) for lithium of the Iowa Statewide Standards for Non-Protected Groundwater Sources. Other constituent levels observed in the monitoring wells were below their respective health-based standards and guidelines.


The number of control limit exceedances for the 2025 sampling event is generally consistent with past events, and expressing a noticeable decrease in exceedances compared to the 2024 event. This return to trend is observable across all five sampling wells. If future sampling events demonstrate an increasing trend in exceedances, the effects will be evaluated at that time.


Surface runoff is adequately controlled at the site and the closure cover has been constructed over the fill materials. As such, the site is not having an adverse effect on surface water quality.

Well MW-5 was replaced during 2018 and was included in that years and all subsequent sampling activities. No changes in the monitoring program or onsite management practices are recommended at this time. Continued cleaning and purging of the wells to remove accumulated root growth prior to or concurrent with each sampling event is recommended as needed. Well MW-5 will need to be televised and or scoped to determine the difference in well depth. Since MW-5 location is still functioning and within the groundwater zone, Stanley Consultants at this time does not recommend a replacement well for this location.

Appendix A Figures

	GROUNDWATER LEVELS 2025										
WELL NUMBER	GRADIENT FUNCTION	TOP OF CASING ELEVATION	WELL DEPTH	WATER LEVEL	GROUNDWATER ELEVATION						
		FEET	FEET	FEET	FEET						
MW-1	DOWN	858.41	20.45	8.42	849.99						
MW-2	CROSS	861.12	23.45	10.85	850.27						
MW-3	UP	868.55	32.28	18.15	850.40						
MW-4	DOWN	858.98	20.11	8.91	850.07						
MW-5	CROSS	868.10	20.10	18.00	850.10						

SYMBOL LEGEND:

 1081	MINOR EXISTING GRADE CONTOUR
1080	MAJOR EXISTING GRADE CONTOUR
1081	MINOR GROUNDWATER CONTOUR
1080	MAJOR GROUNDWATER CONTOUR
	50 FOOT OFFSET OF FENCELINE
	EDGE OF TREE AND VEGETATION
	EXISTING FEATURE
	FENCELINE
	ROADWAY
\bigoplus	WELLS

NOTES:

- THE CONTOURS SHOWN ARE FORM A TOPOGRAPHIC SURVEY DRAWING CREATED BY CLAPSADDLE-GARBER ASSOCIATES, INC. PERFORMED AND DATED 16 AUGUST 2017.
- 2. GROUNDWATER ELEVATIONS SHOWN WERE TAKEN BY TERRACON CONSULTANTS, INC., ON OCTOBER 13, 2022.
- 3. GROUNDWATER ELEVATIONS SHOWN WERE TAKEN BY TERRACON CONSULTANTS, INC., ON OCTOBER 31, 2023.

5 ISSUED WITH REPORT TSH HSB HSB DEC 20 4 ISSUED WITH REPORT TSH HSB HSB DEC 20 3 ISSUED WITH REPORT TLO HSB HSB NOV 20 2 ISSUED WITH REPORT TLO HSB HSB NOV 20	NO	O. REVISIONS	DWN	APVD	APVD	DATE
5 ISSUED WITH REPORT TSH HSB HSB DEC 20 4 ISSUED WITH REPORT TSH HSB HSB DEC 20 3 ISSUED WITH REPORT TLO HSB HSB NOV 20	1	1 ISSUED WITH REPORT	HSB	HSB	TJM	NOV 2018
5 ISSUED WITH REPORT TSH HSB HSB DEC 20 4 ISSUED WITH REPORT TSH HSB HSB DEC 20	2	2 ISSUED WITH REPORT	TLO	HSB	HSB	NOV 2020
5 ISSUED WITH REPORT TSH HSB HSB DEC 20	3	3 ISSUED WITH REPORT	TLO	HSB	HSB	NOV 2021
5 HOD HOD TO SEE	4	4 ISSUED WITH REPORT	TSH	HSB	HSB	DEC 2022
6 ISSUED WITH REPORT TSH HSB HSB DEC 21	5	5 ISSUED WITH REPORT	TSH	HSB	HSB	DEC 2023
	6	6 ISSUED WITH REPORT	TSH	HSB	HSB	DEC 2024
7 ISSUED WITH REPORT TSH HSB HSB DEC 21	7	7 ISSUED WITH REPORT	TSH	HSB	HSB	DEC 2025

2658 Crosspark Road, Suite 100, Coralville, Iowa 52241-3212 www.stonleyconsultonts.com

CEDAR FALLS UTILITIES (CFU)
ANNUAL WATER QUALITY REPORT (AQWR)
CEDAR FALLS, IA

2025 AWQR LEVERSEE ROAD AS DISPOSAL SITE GROUNDWATER SURFACE MAP

DESIGNED_HSB DRAWN_TS Humphrey	SCALE 1" = 50':					
CHECKED T Schley	NO.	REV.				
APPROVED HSB APPROVED	FIGURF 2	6				
DATE NOVEMBER 19, 2025	I HOUNE Z					

Appendix B Historical Sampling Results, 1995 – 2014

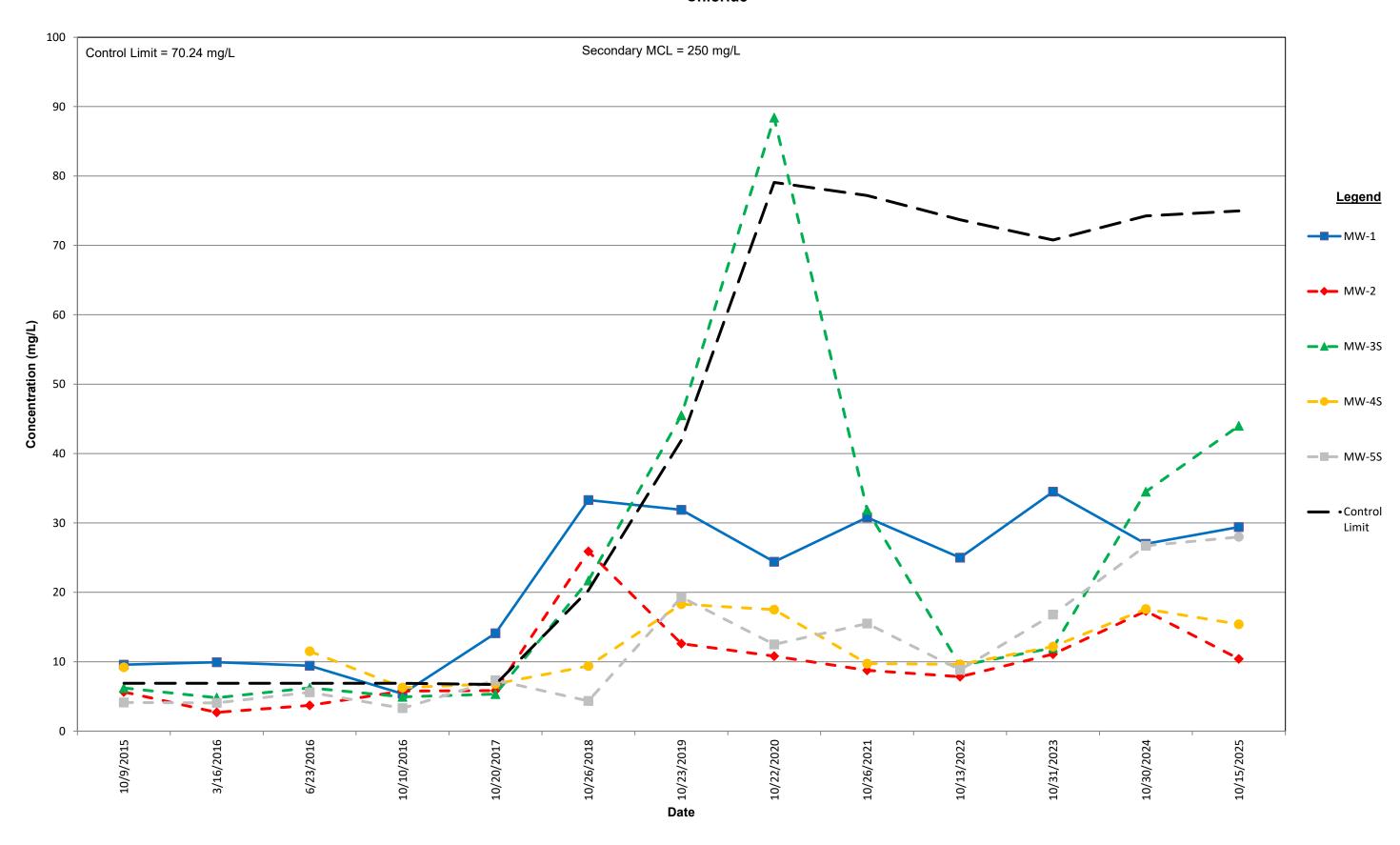
Refer to previous submissions for this information.

Appendix C Historical Calculations and Graphs, 1995 – 2014

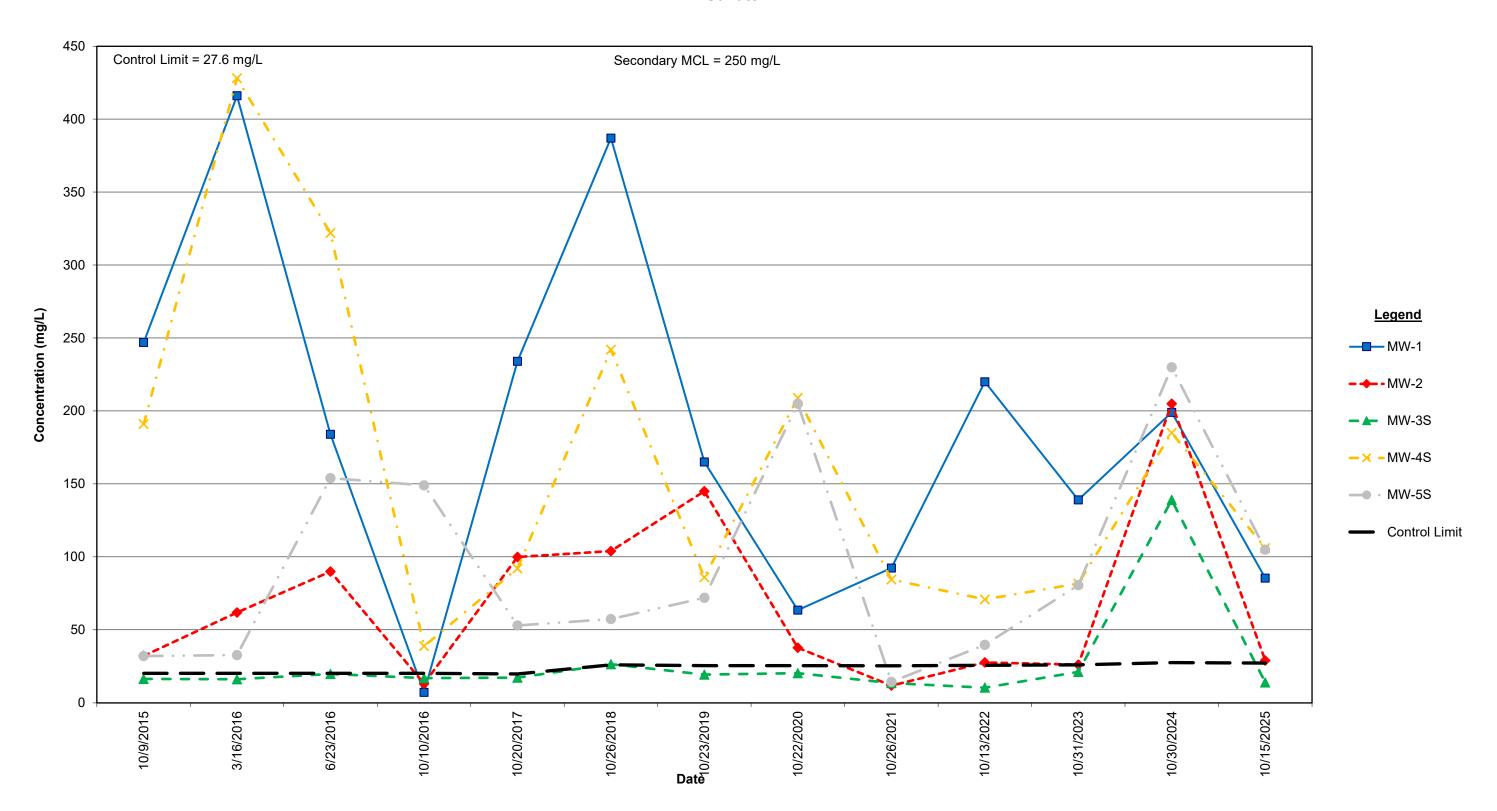
Refer to previous submissions for this information.

Appendix D 2015 – 2024 Sample Data Graphs

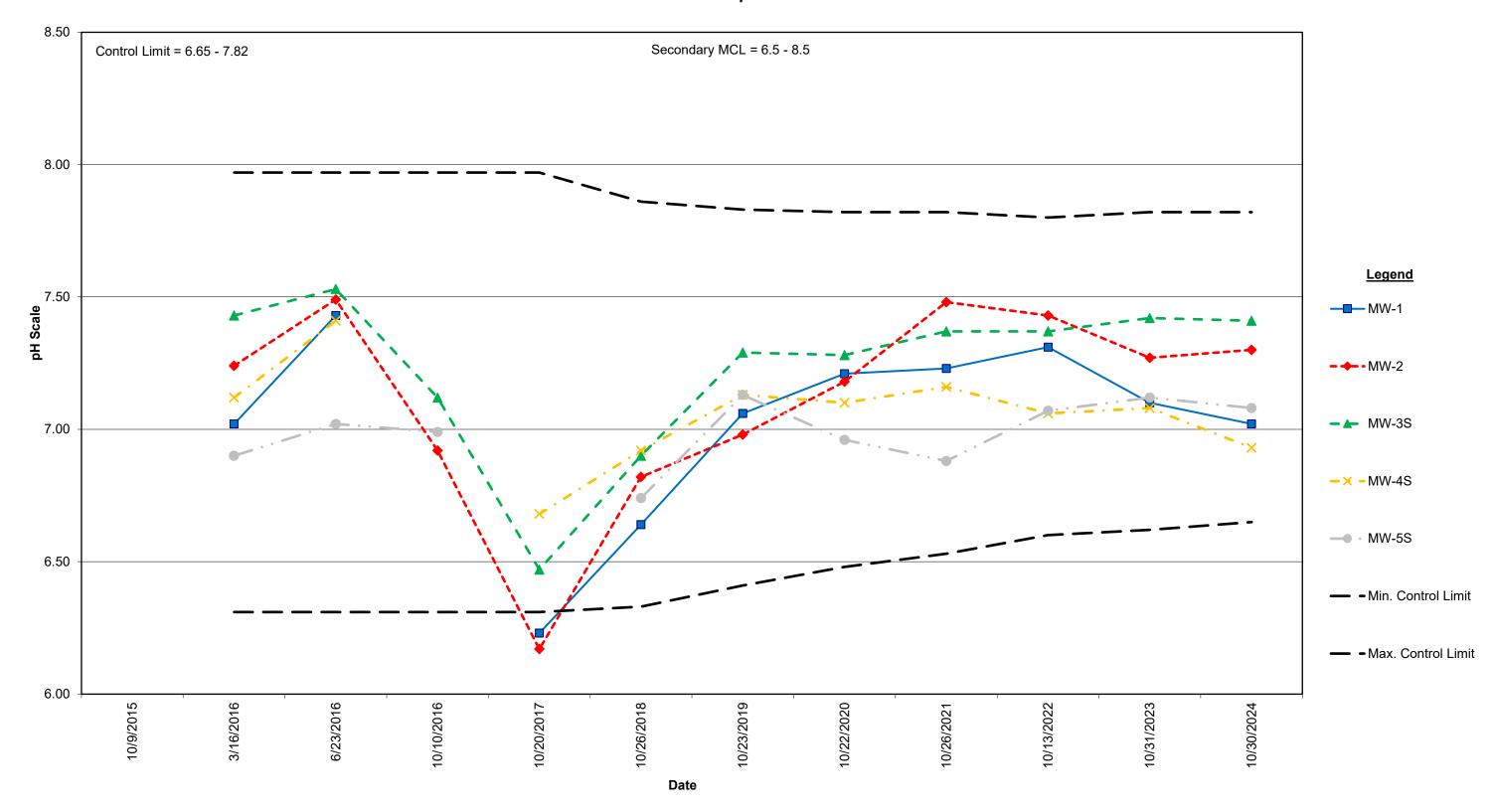
The following section includes graphical representations of the analytical results for the five wells in the current monitoring network for the sampling events since October 2015. These graphs show the samples recorded below the laboratory detection limit as half the detection limit with a range to indicate the minimum and maximum values (zero and the detection limit).

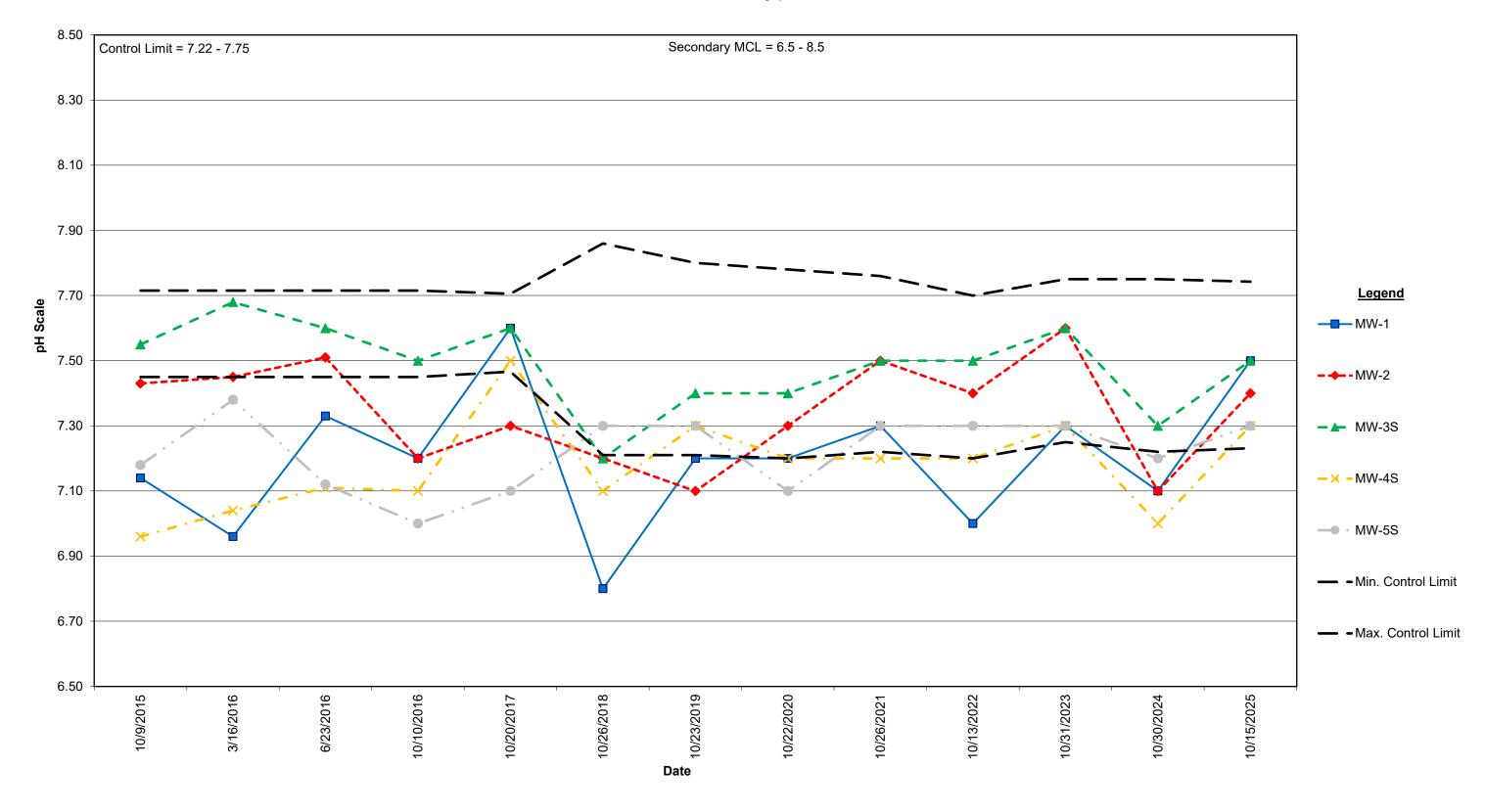

Parameters with levels testing below the laboratory detection/reporting limits for since 2015 are not included in the graphs attached. Parameters not graphed include:

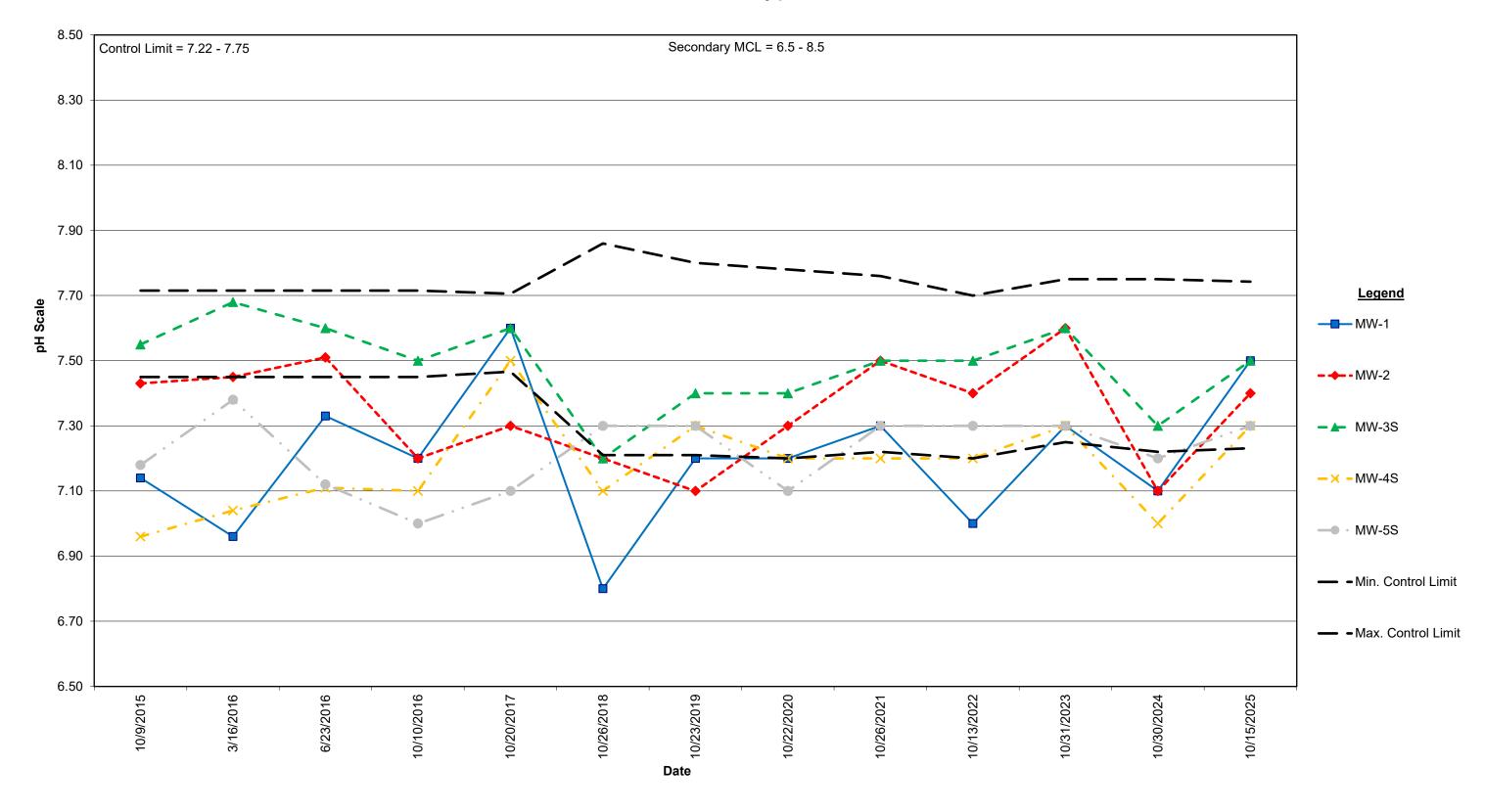
Beryllium

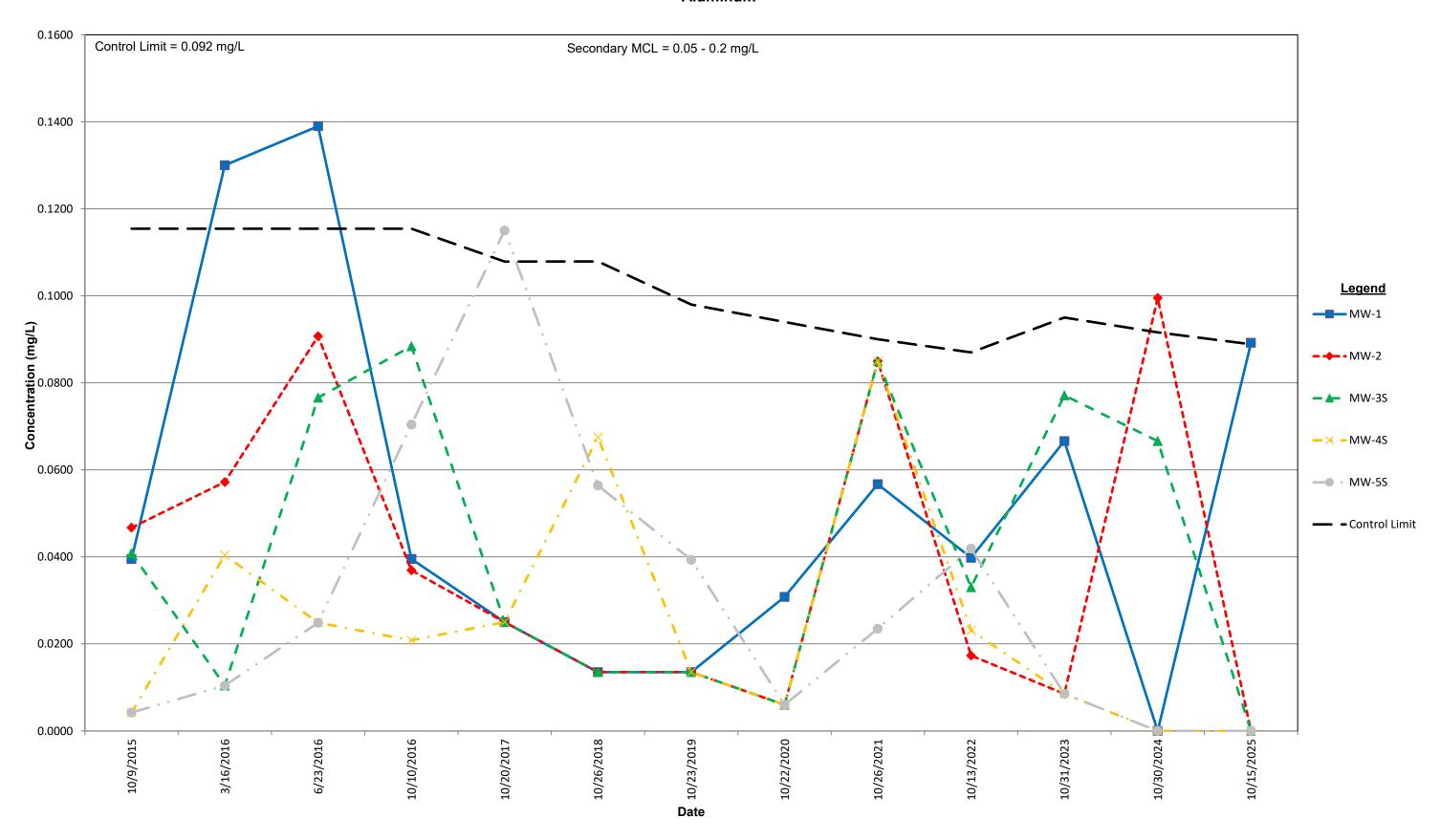

Chloride	10/9/2015	3/16/2016	6/23/2016	10/10/2016	10/20/2017	10/26/2018	10/23/2019	10/22/2020	10/26/2021	10/13/2022	10/31/2023	10/30/2024	10/15/2025
MW-1	9.58	9.92	9.43	5.39	14.1	33.30	31.9	24.4	30.8	25	34.5	27	29.4
MW-2 MW-3S	5.65 6.22	2.7 4.83	3.72 6.23	5.77 4.95	5.84 5.34	25.9 21.7	12.6 45.5	10.8 88.4	8.76 31.9	7.84 9.44	11.1 12	17.3 34.5	10.4 44
MW-4S	9.2	4.03	11.5	6.29	6.81	9.38	18.3	17.5	9.72	9.63	12.2	17.6	15.4
MW-5S Control Limit	4.12 6.895	4.07 6.895	5.61 6.895	3.31 6.895	7.34 6.72307237	4.34 20.3	19.3 41.9	12.5 79.09	15.5 77.18	8.82 73.7	16.8 70.77	26.7 74.243	28 74.963
Secondary MCL	250	250	250	250	250	250	250	250	250	250	250	250	250
FIELD pH													
MW-1	10/9/2015	3/16/2016 7.02	6/23/2016 7.43	10/10/2016	10/20/2017 6.23	10/26/2018 6.64	10/23/2019 7.06	10/22/2020 7.21	10/26/2021 7.23	10/13/2022 7.31	10/31/2023 7.1	10/30/2024 7.02	10/15/2025 7.25
MW-2		7.24	7.49	6.92	6.17	6.82	6.98	7.18	7.48	7.43	7.27	7.3	7.24
MW-3S MW-4S		7.43 7.12	7.53 7.41	7.12	6.47 6.68	6.90 6.92	7.29 7.13	7.28 7.10	7.37 7.16	7.37 7.06	7.42 7.08	7.41 6.93	7.35 7.09
MW-5S		6.90	7.02	6.99		6.74	7.13	6.96	6.88	7.07	7.12	7.08	7.02
Min. Control Limit Max. Control Limit		6.31 7.97	6.31 7.97	6.31 7.97	6.31 7.97	6.33 7.86	6.41 7.83	6.48 7.82	6.53 7.82	6.60 7.80	6.62 7.82	6.65 7.82	6.68 7.81
LABORATORY pH													
MW-1	10/9/2015	3/16/2016	6/23/2016	10/10/2016	10/20/2017	10/26/2018	10/23/2019	10/22/2020	10/26/2021			10/30/2024	10/15/2025
MW-2	7.14 7.43	6.96 7.45	7.33 7.51	7.20 7.20	7.60 7.30	6.80 7.20	7.20 7.10	7.20 7.30	7.30 7.50	7.00 7.40	7.3 7.6	7.1 7.1	7.5 7.40
MW-3S	7.55	7.68	7.60	7.50	7.60	7.20	7.40	7.40	7.50	7.50	7.6	7.3 7	7.5 7.3
MW-4S MW-5S	6.96 7.18	7.04 7.38	7.11 7.12	7.10 7.00	7.50 7.1	7.10 7.30	7.30 7.30	7.20 7.10	7.20 7.30	7.20 7.30	7.3 7.3	7.2	7.3 7.3
Min. Control Limit Max. Control Limit	7.45 7.72	7.45 7.72	7.45 7.72	7.45 7.72	7.47 7.71	7.21 7.86	7.21 7.80	7.20 7.78	7.22 7.76	7.20 7.70	7.25 7.75	7.22 7.75	7.23 7.74
wax. Control Littlit	1.12	1.12	1.12	1.12	7./1	7.86	7.80	7.78	7.76	7.70	1./5	1./5	7.74
Sulfate													
MANA/ 1	10/9/2015	3/16/2016	6/23/2016	10/10/2016	10/20/2017	10/26/2018	10/23/2019	10/22/2020	10/26/2021	10/13/2022	10/31/2023	10/30/2024	10/15/2025
MW-1 MW-2	247 32.1	416 61.9	184 89.9	7.19 13.1	234 99.9	387 104	165 145	63.5 37.7	92.3 11.8	220 27.6	139 26.1	199 205	85.4 29.00
MW-3S MW-4S	16.3 191	16.1 428	19.7 322	16.9 38.8	17.2 92	26.4 242	19.3 86	20.3 209	13.5 84.4	10.4 70.9	21.2 81.7	139 185	13.9 106
MW-5S	32	32.7	154	149	53	57.4	71.9	205	14.3	39.7	80.6	230	105
Control Limit	20.140 250	20.140 250	20.140 250	20.140 250	19.8248791	26.000 250	25.500 250	25.400 250	25.300 250	25.700 250	26 250	27.598 250	27.24 250
Secondary MCL	230	250	250	250	250	250	250	250	250	230	250	250	230
Barium													
		3/16/2016		10/10/2016	10/20/2017			10/22/2020		10/13/2022		10/30/2024	10/15/2025
MW-1 MW-2	0.0822 0.0561	0.0875 0.0697	0.05 0.0584	0.0444 0.0628	0.0673 0.0887	0.227 0.0919	0.0902 0.118	0.0802 0.058	0.0958 0.0399	0.138 0.0703	0.0902 0.0497	0.0939 0.0801	0.0714 0.06
MW-3S	0.0344	0.0319	0.0311	0.0384	0.0491	0.0487	0.0526	0.056	0.0495	0.043	0.0424	0.0902	0.0505
MW-4S MW-5S	0.0923 0.0705	0.119 0.0573	0.0773 0.0898	0.0364 0.0803	0.0362 0.108	0.101 0.11	0.0594 0.0847	0.0781 0.0922	0.0696 0.07	0.0579 0.0794	0.0493 0.0722	0.0996 0.108	0.0548 0.0869
Control Limit	0.03964	0.03964	0.03964	0.03964	0.05012376	0.0538	0.0576	0.0614	0.0615	0.0606	0.0597	0.05969	0.0600
Primary MCL	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2	2
Boron													
	10/9/2015	3/16/2016	6/23/2016	10/10/2016	10/20/2017	10/26/2018	10/23/2019	10/22/2020	10/26/2021			10/30/2024	10/15/2025
MW-1 MW-2	10/9/2015 6.82 0.472	3/16/2016 9.85 0.996	6/23/2016 8.69 1.24	10/10/2016 0.416 1.41	10/20/2017 8.18 1.8	10/26/2018 12.4 1.31	10/23/2019 6.14 3.13	10/22/2020 2.33 1.11	10/26/2021 3.31 0.0823	10/13/2022 5.66 0.417	10/31/2023 5.66 0.151	10/30/2024 4.14 <0.100	10/15/2025 2.41 0.30
MW-1 MW-2 MW-3S	6.82 0.472 0.0677	9.85 0.996 0.0497	8.69 1.24 0.0454	0.416 1.41 0.0519	8.18 1.8 0.1	12.4 1.31 0.13	6.14 3.13 0.119	2.33 1.11 0.04	3.31 0.0823 0.029	5.66 0.417 0.029	5.66 0.151 0.0824	4.14 <0.100 5.66	2.41 0.30 0.106
MW-1 MW-2	6.82 0.472	9.85 0.996	8.69 1.24	0.416 1.41	8.18 1.8	12.4 1.31	6.14 3.13	2.33 1.11	3.31 0.0823	5.66 0.417	5.66 0.151	4.14 <0.100	2.41 0.30
MW-1 MW-2 MW-3S MW-4S MW-4S Control Limit	6.82 0.472 0.0677 5.98 2.66 0.0705	9.85 0.996 0.0497 10.6 0.933 0.0705	8.69 1.24 0.0454 14.2 3.68 0.0705	0.416 1.41 0.0519 3.62 3.47 0.0705	8.18 1.8 0.1 3.95 7.1 0.10294932	12.4 1.31 0.13 10.8 2.42 0.136	6.14 3.13 0.119 2.3 4.37 0.146	2.33 1.11 0.04 13.3 22.3 0.142	3.31 0.0823 0.029 2.13 0.14 0.14	5.66 0.417 0.029 2.15 0.329 0.137	5.66 0.151 0.0824 1.9 1.04 0.135	4.14 <0.100 5.66 6.01 1.77 0.13173	2.41 0.30 0.106 2.78 2.76 0.136
MW-1 MW-2 MW-35 MW-45 MW-55	6.82 0.472 0.0677 5.98 2.66	9.85 0.996 0.0497 10.6 0.933	8.69 1.24 0.0454 14.2 3.68	0.416 1.41 0.0519 3.62 3.47	8.18 1.8 0.1 3.95 7.1	12.4 1.31 0.13 10.8 2.42	6.14 3.13 0.119 2.3 4.37	2.33 1.11 0.04 13.3 22.3	3.31 0.0823 0.029 2.13 0.14	5.66 0.417 0.029 2.15 0.329	5.66 0.151 0.0824 1.9 1.04	4.14 <0.100 5.66 6.01 1.77	2.41 0.30 0.106 2.78 2.76
MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0	12.4 1.31 0.13 10.8 2.42 0.136 6.0	6.14 3.13 0.119 2.3 4.37 0.146 6.0	2.33 1.11 0.04 13.3 22.3 0.142 6.0	3.31 0.0823 0.029 2.13 0.14 0.14 6.0	5.66 0.417 0.029 2.15 0.329 0.137 6.0	5.66 0.151 0.0824 1.9 1.04 0.135	4.14 <0.100 5.66 6.01 1.77 0.13173	2.41 0.30 0.106 2.78 2.76 0.136 6
MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0 30.0	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0 30.0	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0 30.0	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0	2.33 1.11 0.04 13.3 22.3 0.142 6.0 30.0	3.31 0.0823 0.029 2.13 0.14 0.14 6.0 30.0	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0	5.66 0.151 0.0824 1.9 1.04 0.135 6	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30	2.41 0.30 0.106 2.78 2.76 0.136 6 30
MW-1 MW-2 MW-3S MW-4S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0 30.0	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0	2.33 1.11 0.04 13.3 22.3 0.142 6.0 30.0	3.31 0.0823 0.029 2.13 0.14 0.14 6.0 30.0	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0	5.66 0.151 0.0824 1.9 1.04 0.135 6	4.14 <0.100 5.66 6.01 1.77 0.13173	2.41 0.30 0.106 2.78 2.76 0.136 6
MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW Calcium MW-1 MW-2	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0 30.0 3/16/2016 166 96.2	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0 30.0 6/23/2016 99.6 94.6	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0 30.0 10/10/2016 51.9 90.2	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0	2.33 1.11 0.04 13.3 22.3 0.142 6.0 30.0	3.31 0.0823 0.029 2.13 0.14 0.14 6.0 30.0	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0	5.66 0.151 0.0824 1.9 1.04 0.135 6 30 10/31/2023 97.5 78.2	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30 10/30/2024 128 93.4	2.41 0.30 0.106 2.78 2.76 0.136 6 30
MW-1 MW-2 MW-35 MW-45 MW-55 Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0 30.0 3/16/2016 166	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0 30.0	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0 30.0	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0	2.33 1.11 0.04 13.3 22.3 0.142 6.0 30.0	3.31 0.0823 0.029 2.13 0.14 0.14 6.0 30.0	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0	5.66 0.151 0.0824 1.9 1.04 0.135 6 30 10/31/2023 97.5	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30	2.41 0.30 0.106 2.78 2.76 0.136 6 30
MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW Calcium MW-1 MW-2 MW-3S MW-4S MW-5S	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0 10/9/2015 134 78.4 70.8 162 91.5	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0 30.0 3/16/2016 166 96.2 76.8 187 93.5	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0 30.0 6/23/2016 99.6 94.6 69.2 120	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0 30.0 10/10/2016 51.9 90.2 90 93 176	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0 10/20/2017 115 129 110 88.2 120	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0 10/26/2018 205 121 104 139 108	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0 10/23/2019 125 167 117 115	2.33 1.11 0.04 13.3 22.3 0.142 6.0 30.0 10/22/2020 116 99.1 111 148 195	3.31 0.0823 0.029 2.13 0.14 0.14 6.0 30.0 10/26/2021 109 68.5 77.7 115	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0 10/13/2022 177 96.7 63 107	5.66 0.151 0.0824 1.9 1.04 0.135 6 30 10/31/2023 97.5 78.2 60.4 103 118	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30 10/30/2024 128 93.4 97.5 148 175	2.41 0.30 0.106 2.78 2.76 0.136 6 30 10/15/2025 101 105.00 103 123.00
MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW Calcium MW-1 MW-2 MW-3S MW-4S	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0 10/9/2015 134 78.4 70.8	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0 30.0 3/16/2016 166 96.2 76.8 187	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0 30.0 6/23/2016 99.6 94.6 69.2 120	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0 30.0 10/10/2016 51.9 90.2 90 93 176	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0 10/20/2017 115 129 110 88.2	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0 10/26/2018 205 121 104 139	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0 10/23/2019 125 167 117 115	2.33 1.11 0.04 13.3 22.3 0.142 6.0 30.0 10/22/2020 116 99.1 111 148	3.31 0.0823 0.029 2.13 0.14 0.14 6.0 30.0 10/26/2021 109 68.5 77.7 115	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0 10/13/2022 177 96.7 63 107	5.66 0.151 0.0824 1.9 1.04 0.135 6 30 10/31/2023 97.5 78.2 60.4 103	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30 10/30/2024 128 93.4 97.5 148	2.41 0.30 0.106 2.78 2.76 0.136 6 30 10/15/2025 101 105.00 103 123.00
MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW Calcium MW-1 MW-2 MW-3S MW-4S MW-5S	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0 10/9/2015 134 78.4 70.8 162 91.5	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0 30.0 3/16/2016 166 96.2 76.8 187 93.5	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0 30.0 6/23/2016 99.6 94.6 69.2 120	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0 30.0 10/10/2016 51.9 90.2 90 93 176	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0 10/20/2017 115 129 110 88.2 120	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0 10/26/2018 205 121 104 139 108	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0 10/23/2019 125 167 117 115	2.33 1.11 0.04 13.3 22.3 0.142 6.0 30.0 10/22/2020 116 99.1 111 148 195	3.31 0.0823 0.029 2.13 0.14 0.14 6.0 30.0 10/26/2021 109 68.5 77.7 115	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0 10/13/2022 177 96.7 63 107	5.66 0.151 0.0824 1.9 1.04 0.135 6 30 10/31/2023 97.5 78.2 60.4 103 118	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30 10/30/2024 128 93.4 97.5 148 175	2.41 0.30 0.106 2.78 2.76 0.136 6 30 10/15/2025 101 105.00 103 123.00
MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW Calcium MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Cobalt	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0 10/9/2015 134 78.4 70.8 162 91.5 93.1	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0 30.0 3/16/2016 96.2 76.8 187 93.5 93.1	8.69 1.24 0.0454 14.2 3.688 0.0705 6.0 30.0 6/23/2016 99.6 69.2 120 132 93.1	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0 30.0 10/10/2016 51.9 90.2 90 93 176 93.1	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0 10/20/2017 115 129 110 88.2 120 113.758316	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0 10/26/2018 205 121 104 139 108 118.5	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0 10/23/2019 125 167 117 115 150 127.3	2,33 1.11 0.04 13.3 22.3 0.142 6.0 30.0 10/22/2020 116 99.1 111 148 195 129.9	3.31 0.0823 0.029 2.13 0.14 4.0.14 6.0 30.0 10/26/2021 10/99 68.5 77.7 115 122 127.5	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0 10/13/2022 177 96.7 63 107 119 127	5.66 0.151 0.0824 1.9 1.04 0.135 6 30 10/31/2023 97.5 78.2 60.4 103 118 126.1	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30 10/30/2024 128 93.4 97.5 148 175 124.776	2,41 0.30 0.106 2.78 2.76 0.136 6 30 10/15/2025 101 105.00 103 123.00 125.561
MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW Calcium MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0 10/9/2015 134 78.4 70.8 162 91.5 93.1	9.85 0.996 0.0497 10.6 0.933 0.705 6.0 30.0 3/16/2016 166 96.2 76.8 187 93.5	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0 30.0 6/23/2016 99.6 94.6 69.2 120 132 93.1	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0 30.0 10/10/2016 51.9 90.2 90 93 176 93.1	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0 10/20/2017 115 129 110 88.2 120 113.758316	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0 10/26/2018 205 121 104 139 108 118.5	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0 10/23/2019 125 167 117 115 127.3	2.33 1.11 0.04 13.3 22.3 0.142 6.0 30.0 10/22/2020 116 99.1 111 148 195 129.9	3.31 0.0823 0.029 2.13 0.14 6.0 30.0 10/26/2021 109 68.5 77.7 115 122 127.5	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0 10/13/2022 177 96.7 63 107 119 127	5.66 0.151 0.0824 1.9 1.04 0.135 6 30 10/31/2023 97.5 78.2 60.4 103 118 126.1	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30 10/30/2024 128 93.4 97.5 148 175 124.776	2.41 0.30 0.106 2.78 2.76 0.136 6 30 10/15/2025 101 105.00 103 123.00 125.561
MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW Calcium MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Cobalt MW-1 MW-1 MW-2 MW-3S	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0 10/9/2015 134 78.4 70.8 162 91.5 93.1	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0 30.0 3/16/2016 166 96.2 76.8 187, 93.5 93.1	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0 30.0 6/23/2016 99.6 69.2 1220 1220 132 93.1	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0 30.0 10/10/2016 51.9 90.2 90 93 176 93.1 10/10/2016 0.000578 0.000533 0.00023	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0 10/20/2017 115 129 110 88.2 120 113.758316	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0 10/26/2018 205 121 104 139 108 118.5	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0 10/23/2019 125 167 117 115 150 127.3 10/23/2019 0.000139 0.000124	2.33 1.11 0.04 13.3 22.3 0.142 6.0 30.0 10/22/2020 116 99.1 111 148 195 129.9	3.31 0.0823 0.029 2.13 0.14 6.0 30.0 10/26/2021 10/9 68.5 77.7 115 122 127.5 10/26/2021 0.000298 0.000095	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0 10/13/2022 177 96.7 63 107 119 127	5.66 0.151 0.0824 1.9 1.04 0.135 6 30 10/31/2023 97.5 78.2 60.4 103 118 126.1 10/31/2023 0.000214 0.000085 0.000331	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30 10/30/2024 128 93.4 97.5 148 175 124.776 10/30/2024 <0.000500 0.00223 0.000214	2.41 0.30 0.106 2.78 2.76 0.136 6 30 10/15/2025 101 105.00 103 123.00 125.561 10/15/2025 <0.000500 0.000556 <0.000500
MW-1 MW-2 MW-3S MW-4S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW Calcium MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Cobalt MW-1 MW-2	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0 10/9/2015 134 78.4 70.8 162 91.5 93.1	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0 30.0 3/16/2016 96.2 76.8 187 93.5 93.1	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0 30.0 6/23/2016 99.6 94.6 69.2 120 132 93.1	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0 30.0 10/10/2016 51.9 90.2 90 93 176 93.1	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0 10/20/2017 115 129 110 88.2 120 113.758316	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0 10/26/2018 205 121 104 139 108 118.5	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0 10/23/2019 125 167 117 115 127.3	2.33 1.11 0.04 13.3 22.3 0.142 6.0 30.0 10/22/2020 116 99.1 111 148 195 129.9	3.31 0.0823 0.029 2.13 0.14 6.0 30.0 10/26/2021 109 68.5 77.7 115 122 127.5	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0 10/13/2022 177 96.7 63 107 119 127	5.66 0.151 0.0824 1.9 1.04 0.135 6 30 10/31/2023 97.5 78.2 60.4 103 118 126.1 10/31/2023 0.000214	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30 10/30/2024 128 93.4 97.5 148 175 124.776	2.41 0.30 0.106 2.78 2.76 0.136 6 30 10/15/2025 101 105.00 103 123.00 125.561
MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW Calcium MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Cobalt MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0 10/9/2015 134 78.4 70.8 162 91.5 93.1 10/9/2015 0.000167 0.000368 0.000449 0.000388	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0 30.0 3/16/2016 166 96.2 76.8 187 93.1 3/16/2016 0.000603 0.000706 0.000079 0.000949 0.000164	8.69 1.24 0.0454 14.2 3.688 0.0705 6.0 30.0 6/23/2016 99.6 69.2 120 132 93.1 6/23/2016 0.000405 0.000465 0.000656 0.000659	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0 30.0 10/10/2016 51.9 90.2 90 93 176 93.1 10/10/2016 0.000578 0.000533 0.00023 0.000371 0.000966	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0 10/20/2017 115 129 110 88.2 120 113.758316 10/20/2017 0.00025 0.00025 0.00025 0.00025 0.00025 0.000101 0.00061765	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0 10/26/2018 205 121 104 139 108 118.5 10/26/2018 0.000428 0.000173 0.000088 0.000135 0.000324 0.000324	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0 10/23/2019 125 167 117 115 150 127.3 10/23/2019 0.000139 0.000124 0.0000455 0.000099 0.000308 0.000578	2.33 1.11 0.04 13.3 22.3 0.142 6.0 30.0 10/22/2020 116 99.1 111 148 195 129.9 10/22/2020 0.000535 0.0000455 0.0000455 0.000175 0.000153	3.31 0.0823 0.029 2.13 0.14 0.14 6.0 30.0 10/26/2021 109 68.5 77.7 115 122 127.5 10/26/2021 0.000298 0.000095 0.0000401 0.000471 0.000578	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0 10/13/2022 177 96.7 63 107 119 127 10/13/2022 0.00047 0.00095 0.000232 0.000318 0.000359 0.000359	5.66 0.151 0.0824 1.9 1.04 0.135 6 30 10/31/2023 97.5 78.2 60.4 103 118 126.1 10/31/2023 0.000214 0.000085 0.00031 0.000085	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30 10/30/2024 128 93.4 97.5 148 175 124.776 10/30/2024 <0.000500 0.00223 0.000214 0.000224 0.000624 0.000624 0.000624	2.41 0.30 0.106 2.78 2.76 0.136 6 30 10/15/2025 101 105.00 103 123.00 125.561 10/15/2025 <0.000500 0.000556 <0.000500 0.00085 0.001010 0.000535
MW-1 MW-2 MW-3S MW-4S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW Calcium MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Cobalt MW-1 MW-2 MW-3 MW-3 MW-3 MW-3 MW-3 MW-3 MW-3 MW-3	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0 10/9/2015 134 78.4 70.8 162 91.5 93.1	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0 30.0 3/16/2016 96.2 76.8 187 93.5 93.1	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0 30.0 6/23/2016 99.6 94.6 69.2 120 132 93.1	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0 30.0 10/10/2016 51.9 90.2 93 176 93.1 10/10/2016 0.000578 0.000533 0.00023 0.000371 0.000996	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0 10/20/2017 115 129 110 88.2 120 113.758316 10/20/2017 0.00025 0.00025 0.00025 0.00025 0.00025	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0 10/26/2018 205 121 104 139 108 118.5 10/26/2018 0.000428 0.000173 0.000088	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0 10/23/2019 125 167 117 115 150 127.3 10/23/2019 0.000139 0.000124 0.000045 0.000099	2.33 1.11 0.04 13.3 22.3 0.142 6.0 30.0 10/22/2020 116 99.1 111 148 195 129.9 10/22/2020 0.000535 0.0000455 0.0000455	3.31 0.0823 0.029 2.13 0.14 6.0 30.0 10/26/2021 109 68.5 77.7 115 122 127.5 10/26/2021 0.000298 0.000095 0.000045 0.000401	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0 10/13/2022 177 96.7 63 107 119 127 10/13/2022 0.00047 0.000095 0.00032	5.66 0.151 0.0824 1.9 1.04 0.135 6 30 10/31/2023 97.5 78.2 60.4 103 118 126.1 10/31/2023 0.000214 0.000085 0.000331	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30 10/30/2024 128 93.4 97.5 148 175 124.776 10/30/2024 <0.000500 0.00223 0.000214 0.00222 0.000624	2.41 0.30 0.106 2.78 2.76 0.136 6 30 10/15/2025 101 105.00 103 123.00 125.561 10/15/2025 <0.000500 0.000556 <0.000500 0.000885 0.001010
MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW Calcium MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Cobalt MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0 10/9/2015 134 78.4 78.8 162 91.5 93.1 10/9/2015 0.000167 0.00036 0.000449 0.000388 0.000663 0.000683	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0 30.0 3/16/2016 166 96.2 76.8 187 93.5 93.1	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0 30.0 6/23/2016 94.6 69.2 120 1322 93.1 6/23/2016 0.000405 0.000405 0.000516 0.000595 0.000609	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0 30.0 10/10/2016 51.9 90.2 90 93 176 93.1 10/10/2016 0.000578 0.000533 0.00023 0.000371 0.000996 0.000663 0.0028	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0 10/20/2017 115 129 110 88.2 120 113.758316 10/20/2017 0.00025 0.00025 0.00025 0.00025 0.000101 0.00061765 0.0028	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0 10/26/2018 205 121 104 139 108 118.5 10/26/2018 0.000428 0.000173 0.000428 0.000135 0.000324 0.0006	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0 10/23/2019 125 167 117 115 150 127.3 10/23/2019 0.000139 0.000124 0.0000452 0.000059 0.000308 0.000578 0.000578	2.33 1.11 0.04 13.3 22.3 0.142 6.0 30.0 10/22/2020 116 99.1 111 148 195 129.9 10/22/2020 0.000535 0.0000455 0.000153 0.000153 0.000153	3.31 0.0823 0.029 2.13 0.14 6.0 30.0 10/26/2021 109 68.5 77.7 115 122 127.5 10/26/2021 0.000298 0.000045 0.00041 0.00047 0.00058	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0 10/13/2022 177 96.7 63 107 119 127 10/13/2022 0.00047 0.00095 0.000232 0.00038 0.000389 0.00058	5.66 0.151 0.0824 1.9 1.04 0.135 6 30 10/31/2023 97.5 78.2 60.4 103 118 126.1 10/31/2023 0.000214 0.000085 0.00031 0.000085 0.000181 0.000559 0.0028	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30 10/30/2024 128 93.4 97.5 148 175 124.776 10/30/2024 <0.000500 0.00223 0.000214 0.000222 0.0005462 0.0005462 0.00028	2.41 0.30 0.106 2.78 2.76 0.136 6 30 10/15/2025 101 105.00 103 123.00 125.561 10/15/2025 <0.000500 0.000585 <0.000500 0.000585 0.001010 0.000585 0.000280
MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW Calcium MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Cobalt MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0 10/9/2015 134 78.4 70.8 162 91.5 93.1 10/9/2015 0.000167 0.00036 0.000443 0.000449 0.000388 0.000663 0.0028 0.014	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0 30.0 3/16/2016 1666 96.2 76.8 187 93.5 93.1 3/16/2016 0.000603 0.000706 0.000079 0.000949 0.000144 0.000663 0.0028 0.014	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0 30.0 6/23/2016 99.6 69.2 120 132 93.1 6/23/2016 0.000405 0.000465 0.000595 0.000663 0.000663 0.0028 0.014	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0 30.0 10/10/2016 51.9 90.2 90 93 176 93.1 10/10/2016 0.000578 0.000533 0.00023 0.00031 0.0009663 0.0028 0.014	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0 10/20/2017 115 129 110 88.2 120 113.758316 10/20/2017 0.00025 0.00025 0.00025 0.00025 0.00025 0.00101 0.00061765 0.0028 0.014	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0 10/26/2018 205 121 104 139 108 118.5 10/26/2018 0.000428 0.000173 0.000088 0.000135 0.000324 0.0006 0.0028 0.014	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0 10/23/2019 125 167 117 115 150 127.3 10/23/2019 0.000124 0.000045 0.000039 0.000038 0.000578 0.00028 0.014	2,33 1.11 0.04 13.3 22.3 0.142 6.0 30.0 10/22/2020 116 99.1 111 148 195 129.9 10/22/2020 0.000535 0.0000455 0.0000455 0.000153 0.000556 0.0028 0.014	3.31 0.0823 0.029 2.13 0.14 6.0 30.0 10/26/2021 10/96/2021 10/26/2021 0.000298 0.000095 0.000045 0.00041 0.00041 0.00041 0.00041	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0 10/13/2022 17 177 96.7 63 107 119 127 10/13/2022 0.00047 0.00095 0.000232 0.000318 0.00038 0.00048 0.00038 0.00048	5.66 0.151 0.0824 1.9 1.04 0.135 6 30 10/31/2023 97.5 78.2 60.4 103 118 126.1 10/31/2023 0.000214 0.000085 0.000331 0.000085 0.000181 0.000559 0.0028 0.014	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30 10/30/2024 128 93.4 97.5 148 175 124.776 10/30/2024 <0.000500 0.00223 0.000214 0.00222 0.000624 0.00228 0.0014	2,41 0.30 0.106 2.78 2.76 0.136 6 30 10/15/2025 101 105.00 103 123.00 125.561 10/15/2025 <0.000500 0.000556 <0.000500 0.00085 0.001010 0.000855 0.001010 0.000850 0.0014
MW-1 MW-2 MW-3S MW-4S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW Calcium MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Cobalt MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Tobalt MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0 10/9/2015 134 78.4 78.8 162 91.5 93.1 10/9/2015 0.000167 0.00036 0.000449 0.000388 0.000663 0.000683	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0 30.0 3/16/2016 1666 96.2 76.8 187 93.5 93.1 3/16/2016 0.000603 0.000706 0.000079 0.000949 0.000144 0.000663 0.0028 0.014	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0 30.0 6/23/2016 94.6 69.2 120 1322 93.1 6/23/2016 0.000405 0.000405 0.000516 0.000595 0.000609	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0 30.0 10/10/2016 51.9 90.2 90 93 176 93.1 10/10/2016 0.000578 0.000533 0.00023 0.000371 0.000996 0.000663 0.0028	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0 10/20/2017 115 129 110 88.2 120 113.758316 10/20/2017 0.00025 0.00025 0.00025 0.00025 0.000101 0.00061765 0.0028	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0 10/26/2018 205 121 104 139 108 118.5 10/26/2018 0.000428 0.000173 0.000088 0.000135 0.000324 0.0006 0.0028 0.014	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0 10/23/2019 125 167 117 115 150 127.3 10/23/2019 0.000139 0.000124 0.0000452 0.000059 0.000308 0.000578 0.000578	2.33 1.11 0.04 13.3 22.3 0.142 6.0 30.0 10/22/2020 116 99.1 111 148 195 129.9 10/22/2020 0.000535 0.0000455 0.000153 0.000153 0.000153	3.31 0.0823 0.029 2.13 0.14 6.0 30.0 10/26/2021 10/96/2021 10/26/2021 0.000298 0.000095 0.000045 0.00041 0.00041 0.00041 0.00041	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0 10/13/2022 177 96.7 63 107 119 127 10/13/2022 0.00047 0.00095 0.000232 0.00038 0.000389 0.00058	5.66 0.151 0.0824 1.9 1.04 0.135 6 30 10/31/2023 97.5 78.2 60.4 103 118 126.1 10/31/2023 0.000214 0.000085 0.000331 0.000085 0.000181 0.000559 0.0028 0.014	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30 10/30/2024 128 93.4 97.5 148 175 124.776 10/30/2024 <0.000500 0.00223 0.000214 0.000222 0.0005462 0.0005462 0.00028	2.41 0.30 0.106 2.78 2.76 0.136 6 30 10/15/2025 101 105.00 103 123.00 125.561 10/15/2025 <0.000500 0.000585 <0.000500 0.000585 0.001010 0.000585 0.000280
MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW Calcium MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Cobalt MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Protected GW Statewide Standard Non-Protected GW Magnesium MW-1 MW-2 MW-1 MW-1 MW-2	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0 10/9/2015 134 78.4 70.8 162 91.5 93.1 10/9/2015 0.000167 0.00038 0.000443 0.00049 0.000388 0.000663 0.0028 0.014	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0 30.0 3/16/2016 1666 96.2 76.8 187 93.1 3/16/2016 0.000603 0.000706 0.000079 0.000949 0.000164 0.00063 0.0028 0.014 3/16/2016 24.9 17.7	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0 30.0 6/23/2016 99.6 69.2 120 120 0.00405 0.000465 0.000663 0.0028 0.014 6/23/2016	0.416 1.41 1.00519 3.62 3.47 0.0705 6.0 30.0 10/10/2016 51.9 90.2 90 93 176 93.1 10/10/2016 0.000578 0.00053 0.00023 0.000371 0.000996 0.000663 0.0028 0.014	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0 10/20/2017 115 129 110 88.2 120 113.758316 10/20/2017 0.00025 0.00025 0.00025 0.00025 0.00101 0.0061765 0.0028 0.014 10/20/2017 21.6 25.1	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0 10/26/2018 205 121 104 139 108 118.5 10/26/2018 0.000428 0.000135 0.000324 0.0006 0.0028 0.014 10/26/2018	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0 10/23/2019 125 167 117 115 150 127.3 10/23/2019 0.000139 0.000124 0.000045 0.000059 0.00038 0.014 10/23/2019 31.2 32.8	2.33 1.11 0.04 13.3 22.3 0.142 6.0 30.0 10/22/2020 116 99.1 111 148 195 129.9 10/22/2020 0.000535 0.0000455 0.000153 0.000153 0.000153 0.000153 0.000153 10/022/2020 0.0028 0.014	3.31 0.0823 0.029 2.13 0.14 6.0 30.0 10/26/2021 109 68.5 77.7 1152 127.5 10/26/2021 0.000298 0.00095 0.000401 0.00041 0.00041 10.00041	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0 10/13/2022 177 96.7 63 107 119 127 10/13/2022 0.00047 0.00095 0.00028 0.0014 10/13/2022 3.3.5 18.7	5.66 0.151 0.0824 1.9 1.04 0.135 6 30 10/31/2023 97.5 78.2 60.4 103 118 126.1 10/31/2023 0.000214 0.000085 0.00031 0.000559 0.0028 0.014 10/31/2023 20.8 18.2	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30 10/30/2024 128 93.4 97.5 148 175 124.776 10/30/2024 <0.000500 0.00223 0.000214 0.000224 0.000540 0.00228 0.014 10/30/2024 24.8 18.4	2.41 0.30 0.106 2.78 2.76 0.136 6 30 10/15/2025 101 105.00 103 123.00 125.561 10/15/2025 <0.000500 0.000556 <0.000500 0.00085 0.001010 0.000535 0.00120 100280 0.014
MW-1 MW-2 MW-3S MW-4S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW Calcium MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Cobalt MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Protected GW Statewide Standard Non-Protected GW Magnesium MW-1	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0 10/9/2015 134 78.4 70.8 162 91.5 93.1 10/9/2015 0.000167 0.00036 0.000449 0.000388 0.000663 0.0014 10/9/2015 10/9/2015	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0 30.0 3/16/2016 96.2 76.8 187 93.5 93.1 3/16/2016 0.000603 0.000706 0.00079 0.000643 0.0014 3/16/2016 24.9	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0 30.0 6/23/2016 99.6 69.2 120 1322 93.1 6/23/2016 0.000405 0.000516 0.000595 0.000609 0.000663 0.0014	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0 30.0 10/10/2016 51.9 90.2 90 93 176 93.1 10/10/2016 0.000578 0.000533 0.00023 0.000371 0.00096 0.000663 0.0028 0.014	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0 10/20/2017 115 129 110 88.2 120 113.758316 10/20/2017 0.00025 0.00025 0.00025 0.00010 0.00061765 0.0028 0.014	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0 10/26/2018 205 121 104 139 108 118.5 10/26/2018 0.000428 0.000173 0.000428 0.000135 0.000628 0.00014	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0 10/23/2019 125 167 117 115 150 0.227,33 10/23/2019 0.000139 0.000124 0.000045 0.000578 0.00058 0.0014 10/23/2019 31.2	2.33 1.11 0.04 13.3 22.3 0.142 6.0 30.0 10/22/2020 116 99.1 111 148 195 129.9 10/22/2020 0.000535 0.0000455 0.000153 0.000455 0.000153 0.000566 0.0028 0.014	3.31 0.0823 0.029 2.13 0.14 6.0 30.0 10/26/2021 109 68.5 77.7 115 122 127.5 10/26/2021 0.000298 0.00045 0.00045 0.00045 0.00045 0.00045 10.00041	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0 10/13/2022 177 96.7 63 107 119 127 10/13/2022 0.00047 0.00095 0.000232 0.00038 0.0014 10/13/2022 33.5	5.66 0.151 0.0824 1.9 1.04 0.135 6 30 10/31/2023 97.5 78.2 60.4 103 118 126.1 10/31/2023 0.000214 0.00085 0.000311 0.000559 0.00181 0.000559 0.0014 10/31/2023 0.014	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30 10/30/2024 128 93.4 97.5 148 175 124.776 10/30/2024 <0.000500 0.00223 0.000214 0.00022 0.000542 0.0005462 0.0014 10/30/2024 24.8	2.41 0.30 0.106 2.78 2.76 0.136 6 30 10/15/2025 101 105.00 103 123.00 125.561 10/15/2025 <0.000500 0.00056 <0.000500 0.000885 0.001010 0.000885 0.001010 0.000885 0.00104 10/15/2025 20.60
MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW Calcium MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Cobalt MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Protected GW Magnesium MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Magnesium MW-1 MW-2 MW-3S MW-4S MW-5S	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0 10/9/2015 134 78.4 70.8 162 91.5 93.1 10/9/2015 0.000167 0.00036 0.000449 0.000388 0.00049 10/9/2015 31.2 17.4 20.4 21.7 15.4	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0 30.0 3/16/2016 166 96.2 76.8 187 93.1 3/16/2016 0.00063 0.00070 0.000063 0.00070 0.000949 0.000164 24.9 17.7 18.5 27.1 15.3	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0 30.0 6/23/2016 99.6 69.2 120 132 93.1 6/23/2016 0.000455 0.000651 0.000653 0.000630 0.000630 0.0014 6/23/2016 22.8 24 20.8 22.7 26.5	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0 30.0 10/10/2016 51.9 90.2 90 93 176 93.1 10/10/2016 0.000578 0.00053 0.00023 0.000371 0.000966 0.000663 0.0028 0.014 10/10/2016 5.91 13.2 21.6 10.8 27.3	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0 10/20/2017 115 129 110 88.2 120 113.758316 10/20/2017 0.00025 0.00025 0.00025 0.00025 0.00101 0.0061765 0.0028 0.014 10/20/2017 21.6 25.1 27.2 17.6 17.7	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0 10/26/2018 205 121 104 139 108 118.5 10/26/2018 0.000428 0.00173 0.000324 0.0006 0.0028 0.014 10/26/2018 41 19.8 26.8 27.9 15.7	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0 10/23/2019 125 167 117 115 150 127.3 10/23/2019 0.000139 0.000124 0.000045 0.000088 0.0014 10/23/2019 31.2 32.8 29.5 24.1 28.7	2.33 1.11 0.04 13.3 22.3 0.142 6.0 30.0 10/22/2020 116 99.1 111 148 195 129.9 10/22/2020 0.000535 0.0000455 0.000153 0.000155 0.000153 0.000155 0.00154 10/22/2020 27.8 19.8 27 30.8 34.5	3.31 0.0823 0.029 2.13 0.14 0.14 6.0 30.0 10/26/2021 10/26/2021 0.000298 0.000491 0.000471 0.000578 0.0028 0.014 10/26/2021 24.6 12.8 18.9 28.1 24.7	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0 10/13/2022 177 96.7 107 119 127 10/13/2022 0.00047 0.00095 0.00028 0.0014 10/13/2022 33.5 18.7 14.7 24.3 23.2	5.66 0.151 0.0824 1.9 1.04 0.135 6 30 10/31/2023 97.5 78.2 60.4 103 118 126.1 10/31/2023 0.000214 0.000085 0.00031 0.000559 0.0028 0.014 10/31/2023 20.8 18.2 15.6 27.2 27.8	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30 10/30/2024 128 93.4 97.5 148 97.5 124.776 10/30/2024 <0.000500 0.00223 0.000214 0.00222 0.000624 0.0028 0.014 10/30/2024 24.8 18.4 20.8 32 38	2.41 0.30 0.106 2.78 2.76 0.136 6 30 10/15/2025 101 105.00 103 123.00 125.561 10/15/2025 <0.000500 0.000556 <0.000500 0.000556 0.001010 0.000535 0.001010 1000885 0.001010 1000885 0.001010 1000556 20.60 20.50 25.2 27.70 28.70
MW-1 MW-2 MW-3S MW-4S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW Calcium MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Cobalt MW-1 MW-2 MW-3S MW-4S MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Protected GW Magnesium MW-1 MW-2 MW-3S MW-4S MW-4S MW-3S MW-4S MW-4S	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0 10/9/2015 134 78.4 70.8 162 91.5 93.1 10/9/2015 0.000167 0.00036 0.000449 0.00049 0.00038 0.0014 10/9/2015 10/9/2015 31.2 17.4 20.4 21.7	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0 30.0 3/16/2016 166 96.2 76.8 187 93.5 93.1 3/16/2016 0.000603 0.000706 0.000079 0.00014 0.00063 0.002 3/16/2016 24.9 17.7 18.5 27.1	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0 30.0 6/23/2016 99.6 69.2 120 1322 93.1 6/23/2016 0.000405 0.000516 0.000595 0.000663 0.0026 0.014	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0 30.0 10/10/2016 51.9 90.2 90 93 176 93.1 10/10/2016 0.000578 0.000533 0.00023 0.000371 0.00096 0.00663 0.0028 0.014	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0 10/20/2017 115 129 110 88.2 120 113.758316 10/20/2017 0.00025 0.00025 0.00025 0.00025 0.00025 0.0011 0.00061765 0.0028 0.014	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0 10/26/2018 205 121 104 139 108 118.5 10/26/2018 0.000428 0.000173 0.000428 0.000135 0.000324 0.0006 0.0028 0.014 10/26/2018 41 19.8 26.8 27.9	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0 10/23/2019 125 167 117 115 150 0.223/2019 0.000139 0.000124 0.000045 0.00039 0.00038 0.000578 0.0028 0.014 10/23/2019 31.2 32.8 22.8 22.5	2.33 1.11 0.04 13.3 22.3 0.142 6.0 30.0 10/22/2020 116 99.1 111 148 195 129.9 10/22/2020 0.000535 0.0000455 0.000153 0.000455 0.000153 0.000566 0.0028 0.014	3.31 0.0823 0.029 2.13 0.14 6.0 30.0 10/26/2021 109 68.5 77.7 115 122 127.5 10/26/2021 0.000298 0.000045 0.000451 0.000471 0.000578 0.00041 10/26/2021 24.6 12.8 13.8 14.8 1	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0 10/13/2022 177 96.7 63 107 119 127 10/13/2022 0.00047 0.00095 0.00032 0.00038 0.0014 10/13/2022 33.5 18.7 14.7 14.7	5.66 0.151 0.0824 1.9 1.04 0.135 6 30 10/31/2023 97.5 78.2 60.4 103 118 126.1 10/31/2023 0.000214 0.00085 0.000311 0.000559 0.0028 0.014 10/31/2023 20.8 18.2 15.6 27.2	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30 10/30/2024 128 93.4 97.5 148 175 124.776 10/30/2024 <0.000500 0.00223 0.000214 0.000222 0.000542 0.000540 0.00222 0.000542 10/30/2024 10/30/2024 10/30/2024 10/30/2024 30.00340 3	2.41 0.30 0.106 2.78 2.76 0.136 6 30 10/15/2025 101 105.00 103 123.00 125.561 10/15/2025 <0.000500 0.000556 <0.000500 0.000556 0.000500 0.000550 0.000885 0.001010 0.000535 0.001201 0.000535 0.00280 0.014
MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW Calcium MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Cobalt MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Protected GW Magnesium MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Magnesium MW-1 MW-2 MW-3S MW-4S MW-5S	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0 10/9/2015 134 78.4 70.8 162 91.5 93.1 10/9/2015 0.000167 0.00036 0.000449 0.000388 0.00049 10/9/2015 31.2 17.4 20.4 21.7 15.4	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0 30.0 3/16/2016 166 96.2 76.8 187 93.1 3/16/2016 0.00063 0.00070 0.000063 0.00070 0.000949 0.000164 24.9 17.7 18.5 27.1 15.3	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0 30.0 6/23/2016 99.6 69.2 120 132 93.1 6/23/2016 0.000455 0.000651 0.000653 0.000630 0.000630 0.0014 6/23/2016 22.8 24 20.8 22.7 26.5	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0 30.0 10/10/2016 51.9 90.2 90 93 176 93.1 10/10/2016 0.000578 0.00053 0.00023 0.000371 0.000966 0.000663 0.0028 0.014 10/10/2016 5.91 13.2 21.6 10.8 27.3	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0 10/20/2017 115 129 110 88.2 120 113.758316 10/20/2017 0.00025 0.00025 0.00025 0.00025 0.00101 0.0061765 0.0028 0.014 10/20/2017 21.6 25.1 27.2 17.6 17.7	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0 10/26/2018 205 121 104 139 108 118.5 10/26/2018 0.000428 0.00173 0.000324 0.0006 0.0028 0.014 10/26/2018 41 19.8 26.8 27.9 15.7	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0 10/23/2019 125 167 117 115 150 127.3 10/23/2019 0.000139 0.000124 0.000045 0.000088 0.0014 10/23/2019 31.2 32.8 29.5 24.1 28.7	2.33 1.11 0.04 13.3 22.3 0.142 6.0 30.0 10/22/2020 116 99.1 111 148 195 129.9 10/22/2020 0.000535 0.0000455 0.000153 0.000155 0.000153 0.000155 0.00154 10/22/2020 27.8 19.8 27 30.8 34.5	3.31 0.0823 0.029 2.13 0.14 0.14 6.0 30.0 10/26/2021 10/26/2021 0.000298 0.000491 0.000471 0.000578 0.0028 0.014 10/26/2021 24.6 12.8 18.9 28.1 24.7	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0 10/13/2022 177 96.7 107 119 127 10/13/2022 0.00047 0.00095 0.00028 0.0014 10/13/2022 33.5 18.7 14.7 24.3 23.2	5.66 0.151 0.0824 1.9 1.04 0.135 6 30 10/31/2023 97.5 78.2 60.4 103 118 126.1 10/31/2023 0.000214 0.000085 0.00031 0.000559 0.0028 0.014 10/31/2023 20.8 18.2 15.6 27.2 27.8	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30 10/30/2024 128 93.4 97.5 148 97.5 124.776 10/30/2024 <0.000500 0.00223 0.000214 0.00222 0.000624 0.0028 0.014 10/30/2024 24.8 18.4 20.8 32 38	2.41 0.30 0.106 2.78 2.76 0.136 6 30 10/15/2025 101 105.00 103 123.00 125.561 10/15/2025 <0.000500 0.000556 <0.000500 0.000556 0.001010 0.000535 0.001010 1000535 0.0014 10/15/2025 20.60 20.50 25.2 27.70 28.70
MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW Calcium MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Cobalt MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Statewide Standard Protected GW Statewide Standard Non-Protected GW Magnesium MW-1 MW-2 MW-3S MW-4S MW-4S MW-5S Control Limit Statewide Standard Non-Protected GW Magnesium MW-1 MW-2 MW-3S MW-4S MW-3S MW-4S MW-3S MW-4S MW-3S MW-4S MW-5S Control Limit	6.82 0.472 0.0677 5.98 2.66 0.0705 6.0 30.0 10/9/2015 134 78.4 78.8 162 91.5 93.1 10/9/2015 0.000167 0.00036 0.000443 0.000449 0.000388 0.000663 0.0028 0.014 10/9/2015 31.2 17.4 20.4 21.7 15.4 22.603	9.85 0.996 0.0497 10.6 0.933 0.0705 6.0 30.0 3/16/2016 166 96.2 76.8 187 93.5 93.1 3/16/2016 0.000603 0.000706 0.000949 0.000144 0.00063 0.0028 0.014 3/16/2016 24.9 17.7 18.5 27.1 15.3 22.603	8.69 1.24 0.0454 14.2 3.68 0.0705 6.0 30.0 6/23/2016 99.6 69.2 120 1322 93.1 6/23/2016 0.000405 0.000595 0.000609 0.00063 0.0014 6/23/2016 22.8 24 20.8 22.7 26.5 22.603	0.416 1.41 0.0519 3.62 3.47 0.0705 6.0 30.0 10/10/2016 51.9 90.2 90 93 176 93.1 10/10/2016 0.000578 0.00053 0.00023 0.000371 0.000966 0.000663 0.0028 0.014 10/10/2016 5.91 13.2 21.6 10.8 27.3	8.18 1.8 0.1 3.95 7.1 0.10294932 6.0 30.0 10/20/2017 115 129 110 88.2 120 113.758316 10/20/2017 0.00025 0.00025 0.00025 0.00025 0.00101 0.0061765 0.0028 0.014 10/20/2017 21.6 25.1 27.2 17.6 17.7	12.4 1.31 0.13 10.8 2.42 0.136 6.0 30.0 10/26/2018 205 121 104 139 108 118.5 10/26/2018 0.000428 0.000173 0.000428 0.000135 0.000324 0.0006 10/26/2018 41 19.8 26.8 27.9 15.7 29.1	6.14 3.13 0.119 2.3 4.37 0.146 6.0 30.0 10/23/2019 125 167 117 115 150 127.3 10/23/2019 0.000139 0.000124 0.000459 0.00059 0.00059 0.00059 0.00059 0.00059 0.00059 0.00044 10/23/2019 31.2 32.8 29.5 24.1 28.7 31.3	2.33 1.11 0.04 13.3 22.3 0.142 6.0 30.0 10/22/2020 116 99.1 111 148 195 129.9 10/22/2020 0.000535 0.0000455 0.000153 0.000155 0.000153 0.000155 0.00154 10/22/2020 27.8 19.8 27 30.8 34.5	3.31 0.0823 0.029 2.13 0.14 6.0 30.0 10/26/2021 109 68.5 77.7 115 122 127.5 10/26/2021 0.000298 0.000451 0.000471 0.00052 0.014 10/26/2021 10/26/2021 24.6 12.8 18.9 28.1 24.7 31.3	5.66 0.417 0.029 2.15 0.329 0.137 6.0 30.0 10/13/2022 177 96,7 63 107 119 127 10/13/2022 0.00047 0.00095 0.00028 0.0014 10/13/202 33.5 18.7 14.7 24.3 23.2 31.7	5.66 0.151 0.0824 1.9 1.04 0.135 6 30 10/31/2023 97.5 78.2 60.4 103 118 126.1 10/31/2023 0.000214 0.00085 0.00031 10.000085 0.00181 0.000559 0.0018 10/31/2023 20.8 18.2 27.8 31.5	4.14 <0.100 5.66 6.01 1.77 0.13173 6 30 10/30/2024 128 93.4 97.5 148 97.5 124.776 10/30/2024 <0.000500 0.00223 0.000214 0.00222 0.000624 0.0028 0.014 10/30/2024 24.8 18.4 20.8 32 38	2.41 0.30 0.106 2.78 2.76 0.136 6 30 10/15/2025 101 105.00 103 123.00 125.561 10/15/2025 <0.000500 0.000556 <0.000500 0.000556 0.001010 0.000535 0.001010 1000535 0.0014 10/15/2025 20.60 20.50 25.2 27.70 28.70

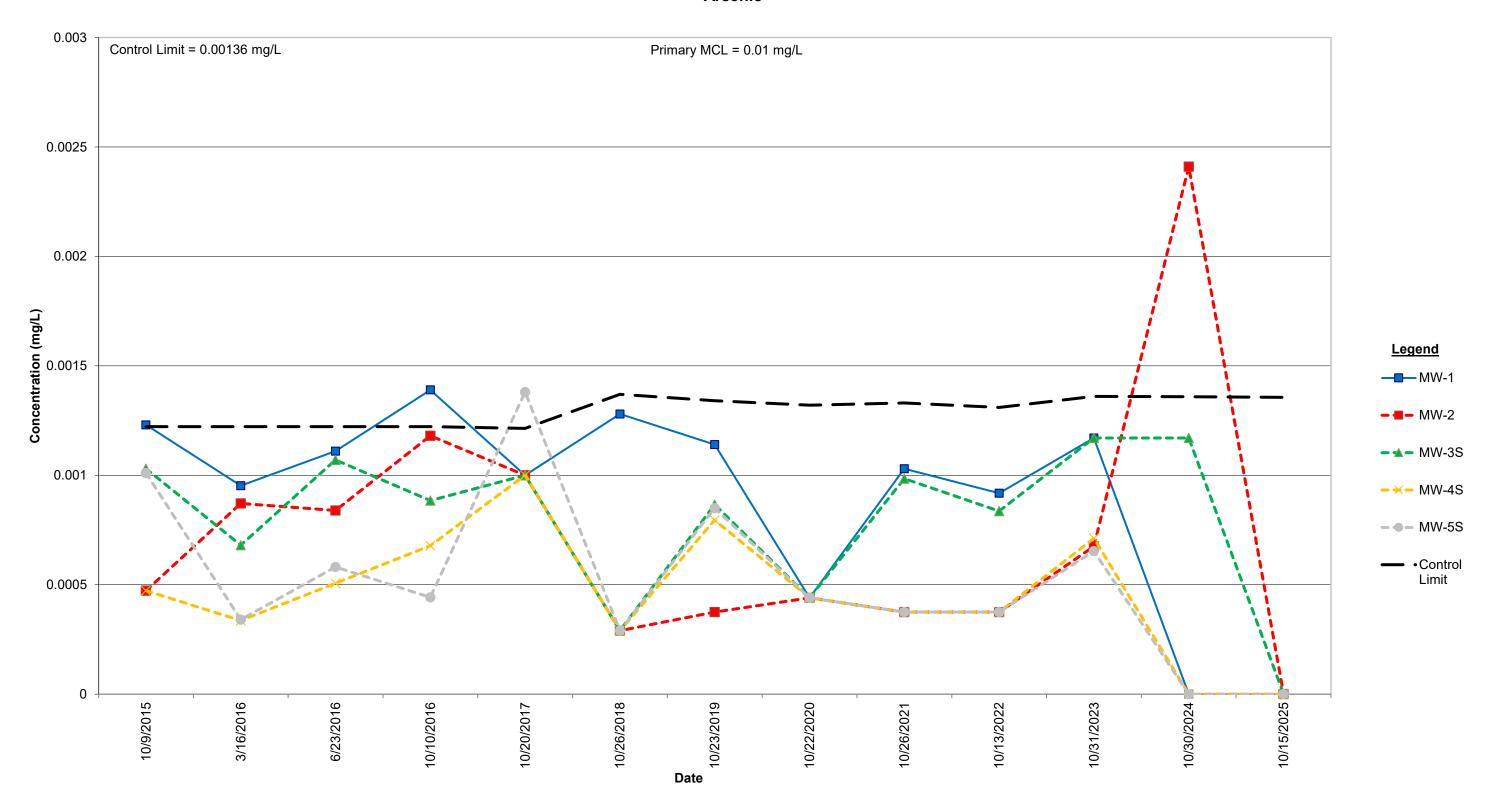
MW-2 MW-35 MW-45 MW-55 Secondary MCL Control Limit Statewide Standard Protected GW	0.0471 0.0456 0.651 0.227 0.05 0.05988 0.3	0.0055 0.145 0.109 0.05 0.05988	0.0411 0.0401 0.122 0.0714 0.05 0.05988 0.3	0.248 0.0217 0.111 0.24 0.05 0.05988 0.3	0.0143 0.0126 0.0369 0.0801 0.05 0.05604796 0.3	0.0921 0.00651 0.0403 0.0324 0.05 0.0535	0.136 0.00407 0.0219 0.0222 0.05 0.0512 0.3	0.0889 0.002 0.0298 0.013 0.05 0.0491 0.3	0.0411 0.0113 0.02 0.0228 0.05 0.0468 0.3	0.0932 0.0234 0.0925 0.0325 0.05 0.0463 0.3	0.0402 0.0338 0.0196 0.017 0.05 0.048 0.3	1.29 0.0141 1.32 0.343 0.05 0.05268 0.3	0.3130 <0.0100 0.4850 0.3650 0.0500 0.0514 0.3
Sodium MW-1 MW-2 MW-3S MW-4S MW-4S Control Limit	10/9/2015 35.4 2.44 2.08 32.4 7.73 2.67	2.86 2.24 43.5	6/23/2016 40.7 2.41 2.54 105 5.76 2.67	10/10/2016 3.84 4.74 2.42 11.5 10.5 2.67	10/20/2017 50.9 4.36 2.69 36.2 5.52 2.8247389	10/26/2018 65 27 4.52 57.5 3.62 4.38	10/23/2019 59.3 11.3 4.68 20.1 4.82 5.05	10/22/2020 8.38 9.38 19.2 73.5 7.02 15.91	10/26/2021 27.8 7.5 43.9 15.8 5.01 35.85	10/13/2022 59.2 9.23 43.9 13.6 4.91 45.38	10/31/2023 83.2 9.35 39.1 10.7 5.72 49.7	10/30/2024 65.9 11 83.2 55 10.8 49.596	10/15/2025 45.6 9.71 14.9 28.8 17.0 48.197
Aluminum MW-1 MW-2 MW-35 MW-45 MW-5S Control Limit	10/9/2015 0.0395 0.0467 0.0408 0.00423 0.00423 0.11544	0.1300 0.0572 0.0104 0.04040 0.01040	6/23/2016 0.1390 0.0907 0.0766 0.02485 0.02485 0.11544	10/10/2016 0.0395 0.0369 0.0884 0.02080 0.0704 0.11544	10/20/2017 0.0250 0.0250 0.0250 0.0250 0.1150 0.1078684	10/26/2018 0.0135 0.0135 0.0135 0.0675 0.0564 0.1079	10/23/2019 0.0135 0.0135 0.0135 0.0135 0.0393 0.0980	10/22/2020 0.0308 0.0060 0.0060 0.0060 0.0060 0.0940	10/26/2021 0.0567 0.0850 0.0850 0.0850 0.0235 0.0900	10/13/2022 0.0398 0.0173 0.0330 0.0231 0.0419 0.0870	10/31/2023 0.0666 0.0085 0.0771 0.0085 0.0085 0.095	10/30/2024 <0.0500 0.0995 0.0666 <0.0500 <0.0500 0.09158	10/15/2025 0.0892 <0.0500 <0.0500 <0.0500 <0.0500 0.0888
Arsenic MW-1 MW-2 MW-3S MW-4S MW-5S Control Limit Primary MCL	10/9/2015 0.00123 0.0004725 0.00103 0.0004725 0.00101 0.0012217	0.000952 0.000871 0.00068 0.000336 0.00034	6/23/2016 0.00111 0.000839 0.00107 0.000506 0.000581 0.0012217	10/10/2016 0.00139 0.00118 0.000884 0.000678 0.000442 0.0012217	10/20/2017 0.001 0.001 0.001 0.001 0.00138 0.00121433	10/26/2018 0.00128 0.00029 0.00029 0.00029 0.00029 0.00137	10/23/2019 0.00114 0.000375 0.000866 0.000795 0.00085 0.00134	10/22/2020 0.00044 0.00044 0.00044 0.00044 0.00044 0.00132	10/26/2021 0.00103 0.000375 0.000984 0.000375 0.000375 0.00133	10/13/2022 0.000918 0.000375 0.000836 0.000375 0.000375 0.00131	10/31/2023 0.00117 0.000675 0.00117 0.000712 0.000653 0.00136	10/30/2024 <0.00200 0.00241 0.00117 <0.00200 <0.00200 0.0013583	10/15/2025 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 0.0014 0.010
Copper MW-1 MW-2 MW-35 MW-45 MW-5S Control Limit	10/9/2015 0.0002425 0.0002425 0.0002425 0.0002425 0.0002425 0.001248	0.00181 0.00146 0.00061 0.00061	6/23/2016 0.00118 0.001 0.00105 0.00101 0.000691 0.001248	0.00140 0.00061 0.0007 0.00061 0.00061	10/20/2017 0.0025 0.0025 0.0025 0.0025 0.0011 0.00263685	10/26/2018 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008	10/23/2019 0.001 0.001 0.001 0.001 0.001 0.00237	10/22/2020 0.00075 0.00075 0.00075 0.00075 0.00075 0.000226	10/26/2021 0.0007 0.0007 0.0007 0.0007 0.00142 0.00217	10/13/2022 0.0009 0.0009 0.0009 0.0009 0.0009 0.00211	10/31/2023 0.0009 0.0009 0.00226 0.0009 0.0009	10/30/2024 <0.00500 <0.00500 <0.00180 <0.00500 <0.00500 0.002721	10/15/2025 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 0.00293
Iron MW-1 MW-2 MW-35 MW-45 MW-55 Control Limit	10/9/2015 0.0885 0.175 0.18 0.0875 0.875 0.2632	0.167 0.504 0.0835 0.252 0.04175	6/23/2016 0.224 0.264 0.195 0.176 0.0762 0.2632	10/10/2016 0.0428 0.247 0.0781 0.0746 0.03905 0.2632	10/20/2017 0.05 0.108 0.05 0.05 0.375 0.24526887	10/26/2018 0.033 0.136 0.033 0.033 0.253 0.232	10/23/2019 0.033 0.127 0.033 0.033 0.117 0.219	10/22/2020 0.0654 0.025 0.025 0.025 0.0564 0.209	10/26/2021 0.0778 0.018 0.018 0.018 0.112 0.2	10/13/2022 0.107 0.0378 0.0735 0.0622 0.24 0.194	10/31/2023 0.008 0.138 0.143 0.0218 0.0786 0.202	10/30/2024 0.162 2.12 0.118 0.886 0.228 0.20178	10/15/2025 0.343 0.521 0.343 0.124 0.135 0.19579
Lead MW-1 MW-2 MW-35 MW-45 MW-55 Control Limit	10/9/2015 0.000434 0.000494 0.000296 0.00004835 0.00004835	0.00106 0.000799 0.0001055 0.000439 0.0001055	6/23/2016 0.000613 0.000571 0.000502 0.000411 0.000356 0.00058	10/10/2016 0.0001055 0.0001055 0.0001055 0.0001055 0.0001055 0.00058	10/20/2017 0.00128 0.00025 0.00025 0.00025 0.000826 0.00054487	10/26/2018 0.00013 0.00013 0.00013 0.00013 0.00065 0.00051	10/23/2019 0.000135 0.000135 0.000135 0.000135 0.000347 0.000488	10/22/2020 0.000168 0.000055 0.000055 0.000055 0.00021 0.000472	10/26/2021 0.00109 0.000929 0.000356 0.00038 0.000946 0.000493	10/13/2022 0.00012 0.00012 0.00012 0.00012 0.000719 0.000475	10/31/2023 0.00012 0.00012 0.000317 0.00012 0.000253 0.00048	10/30/2024 <0.000500 0.00172 <0.000240 <0.000500 <0.000500 0.0004728	10/15/2025 0.000653 <0.000500 <0.000500 <0.000500 <0.000500 0.000466
Lithium MW-1 MW-2 MW-35 MW-45 MW-55 Control Limit	10/9/2015 0.0175 0.004405 0.166 0.093 0.0933 0.18488	0.227 0.0254 0.003275 0.183 0.0589	6/23/2016 0.202 0.0136 0.003275 0.283 0.0469 0.18488	10/10/2016 0.0317 0.0207 0.003275 0.0575 0.0309 0.18488	10/20/2017 0.231 0.025 0.025 0.128 0.138 0.16712024	10/26/2018 0.282 0.0191 0.0014 0.286 0.0591 0.153	10/23/2019 0.191 0.0197 0.00135 0.0715 0.0176 0.142	10/22/2020 0.0517 0.0131 0.00125 0.203 0.198 0.022	10/26/2021 0.0605 0.00779 0.00125 0.0585 0.0277 0.02	10/13/2022 0.153 0.0127 0.00271 0.0427 0.0255 0.019	10/31/2023 0.137 0.0111 0.00125 0.0259 0.0496 0.0188	10/30/2024 0.161 0.0132 0.137 0.0808 0.0234 0.0188804	10/15/2025 0.0875 0.0117 <0.0100 0.0330 0.0561 0.0189
Molybdenum MW-1 MW-2 MW-35 MW-45 MW-55 Control Limit	10/9/2015 0.248 0.0702 0.000106 0.0213 0.154 0.002931	0.196 0.1 0.000107 0.00705 0.139	6/23/2016 0.207 0.0429 0.002635 0.0237 0.105 0.002931	10/10/2016 0.254 0.154 0.0000525 0.0281 0.0488 0.002931	10/20/2017 0.373 0.047 0.001 0.0264 0.426 0.00276522	10/26/2018 0.35 0.108 0.00034 0.0397 0.264 0.00255	10/23/2019 0.412 0.0503 0.00055 0.0228 0.0806 0.00239	10/22/2020 0.187 0.0867 0.00055 0.0268 0.182 0.00227	10/22/2021 0.192 0.0755 0.0005 0.0525 0.0778 0.00217	10/13/2022 0.176 0.0495 0.0006 0.0461 0.0938 0.0209	10/31/2023 0.163 0.0563 0.000455 0.054 0.0621 0.00201	10/30/2024 0.243 0.0539 0.163 0.0431 0.0327 0.0019977	10/15/2025 0.14800 0.05420 <0.00200 0.05270 0.08370 0.00198
Selenium MW-1 MW-2 MW-35 MW-45 MW-55 Control Limit	10/9/2015 0.00167 0.00167 0.00167 0.00167 0.00167 0.001853	0.00505 0.0012 0.00113 0.00775 0.00111	0.00126 0.00119	10/10/2016 0.000315 0.000315 0.000895 0.00113 0.00127 0.001853	10/20/2017 0.0025 0.0025 0.0025 0.0025 0.00148 0.00276143	10/26/2018 0.00378 0.00045 0.00045 0.00045 0.00045 0.00255	10/23/2019 0.0005 0.0005 0.0005 0.0005 0.00183 0.00247	10/22/2020 0.0005 0.0005 0.0005 0.0005 0.0018 0.00235	10/26/2021 0.00048 0.00048 0.00048 0.00048 0.00048 0.00225	10/13/2022 0.0335 0.00784 0.00048 0.00048 0.0013 0.00216	10/31/2023 0.00276 0.00147 0.0007 0.0007 0.0007 0.00209	10/30/2024 <0.00500 <0.00500 0.00276 <0.00500 <0.00500 0.002489	10/15/2025 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 0.00276
Zinc MW-1 MW-2 MW-35 MW-45 MW-55 Control Limit	10/9/2015 <0.00695 <0.00695 <0.00695 <0.00695 <0.00695 0.01	0.00606 0.00550 <0.00521 <0.00521 <0.00521	6/23/2016 <0.00271 <0.00271 <0.00271 <0.00271 0.00426 0.00402	10/10/2016 <0.00521 <0.00521 <0.00521 <0.00521 <0.00521 <0.00521 0.00402	10/20/2017 <0.0200 <0.0200 <0.0200 <0.0200 <0.0115 0.0102	10/26/2018 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 0.00983	10/23/2019 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 0.0096	10/22/2020 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 0.0093	10/26/2021 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 0.009132	10/13/2022 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 0.008959	10/31/2023 <0.00640 <0.00640 <0.00640 <0.00640 <0.00640 0.0087	10/30/2024 <0.0200 0.0415 <0.00640 <0.0200 <0.0200 0.001	10/15/2025 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 0.01092

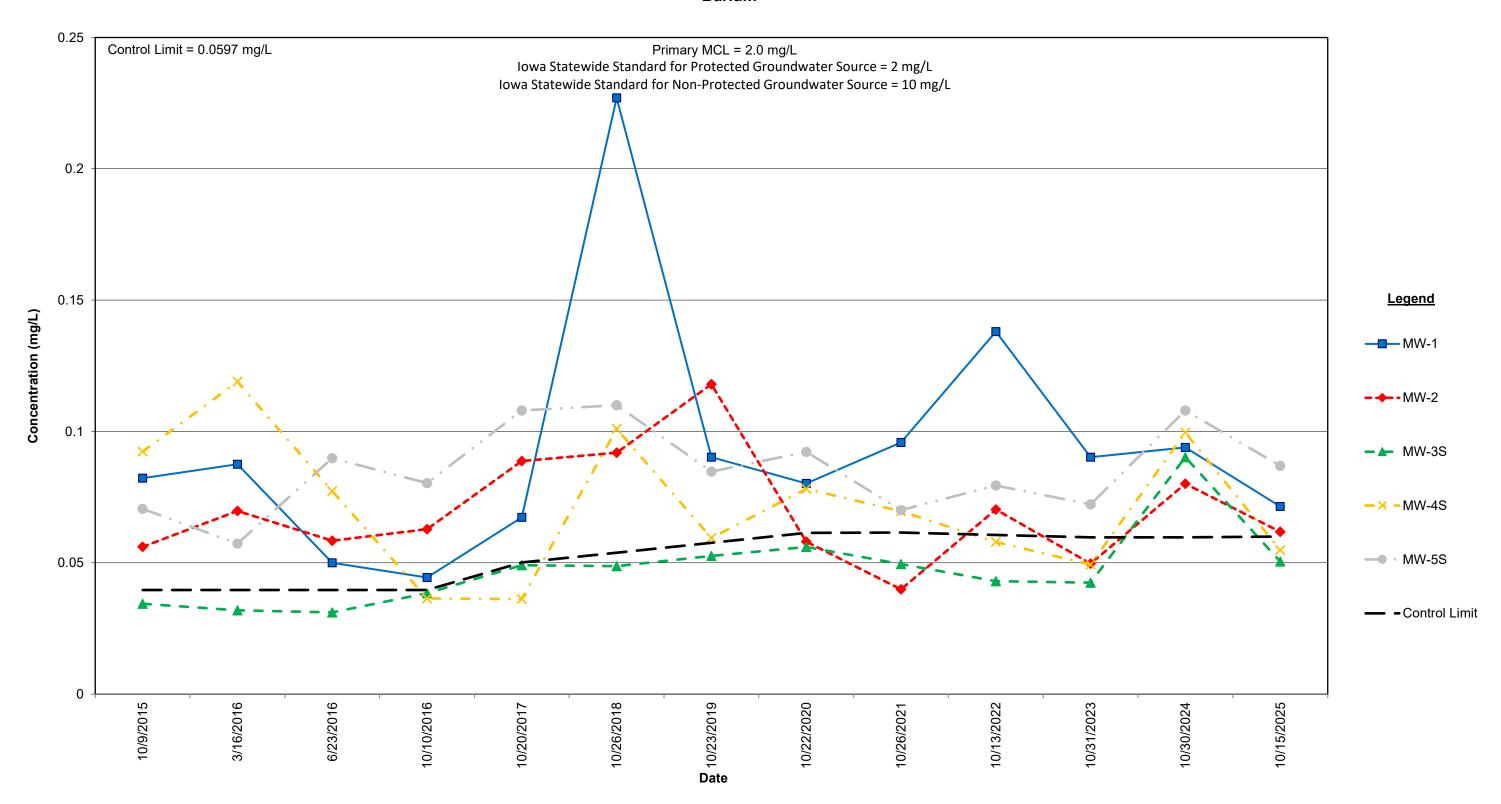

Chloride

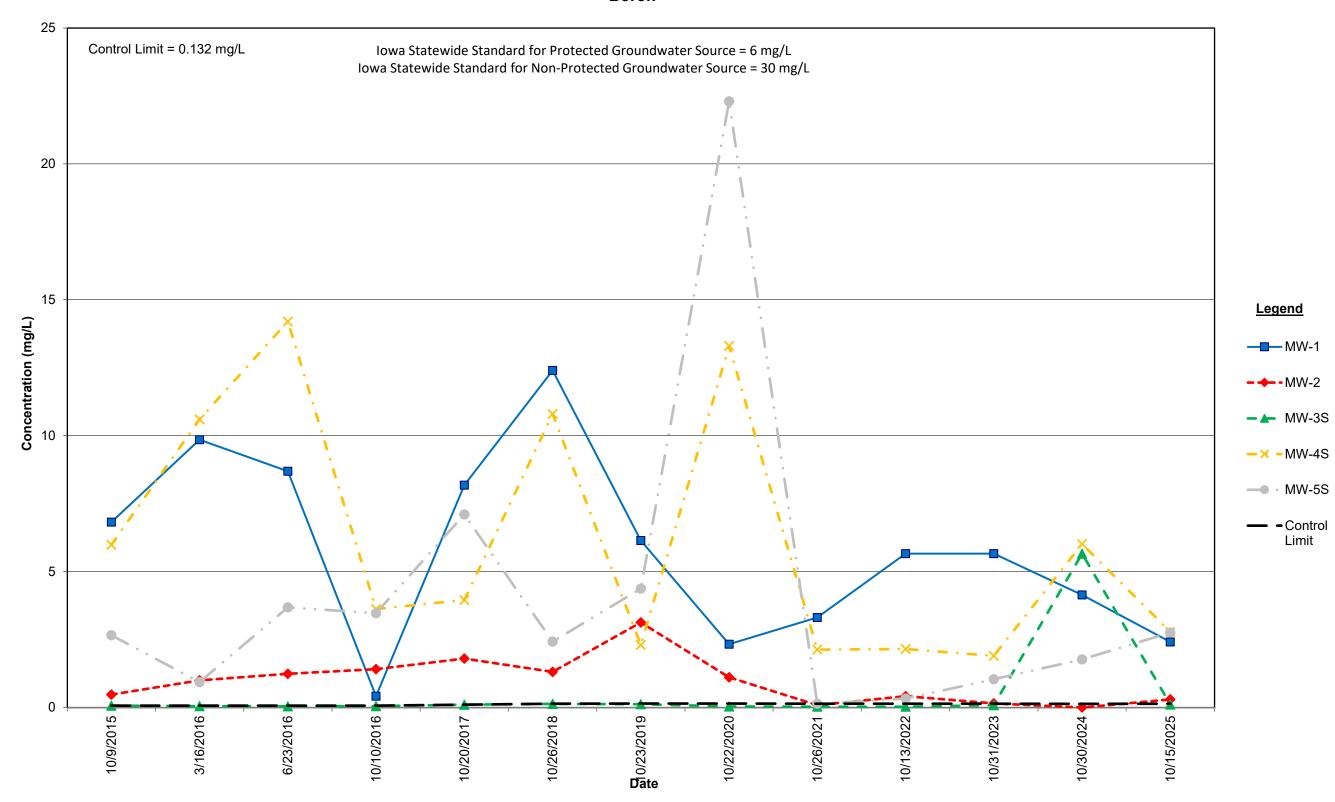

Sulfate


Field pH

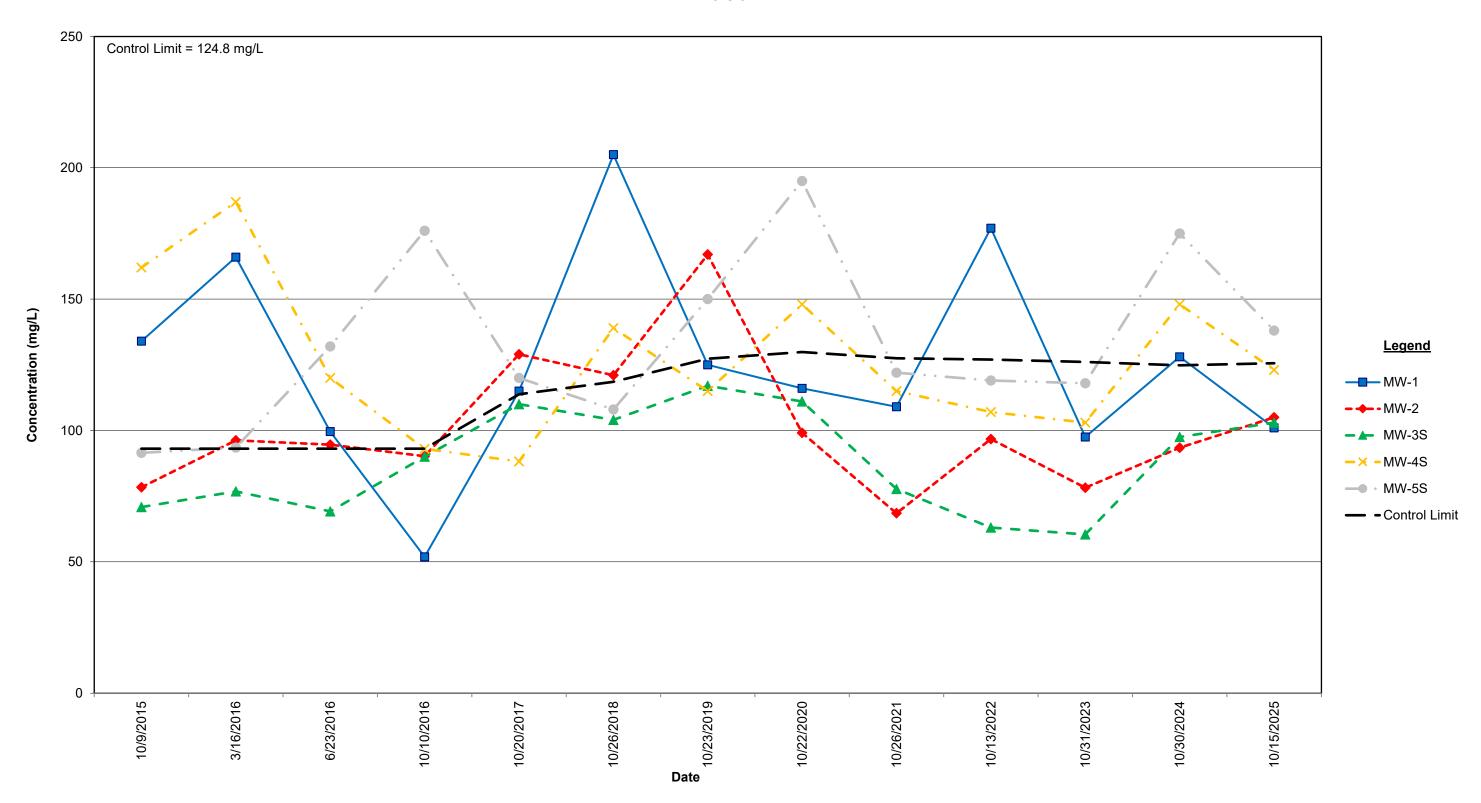

Laboratory pH


Laboratory pH

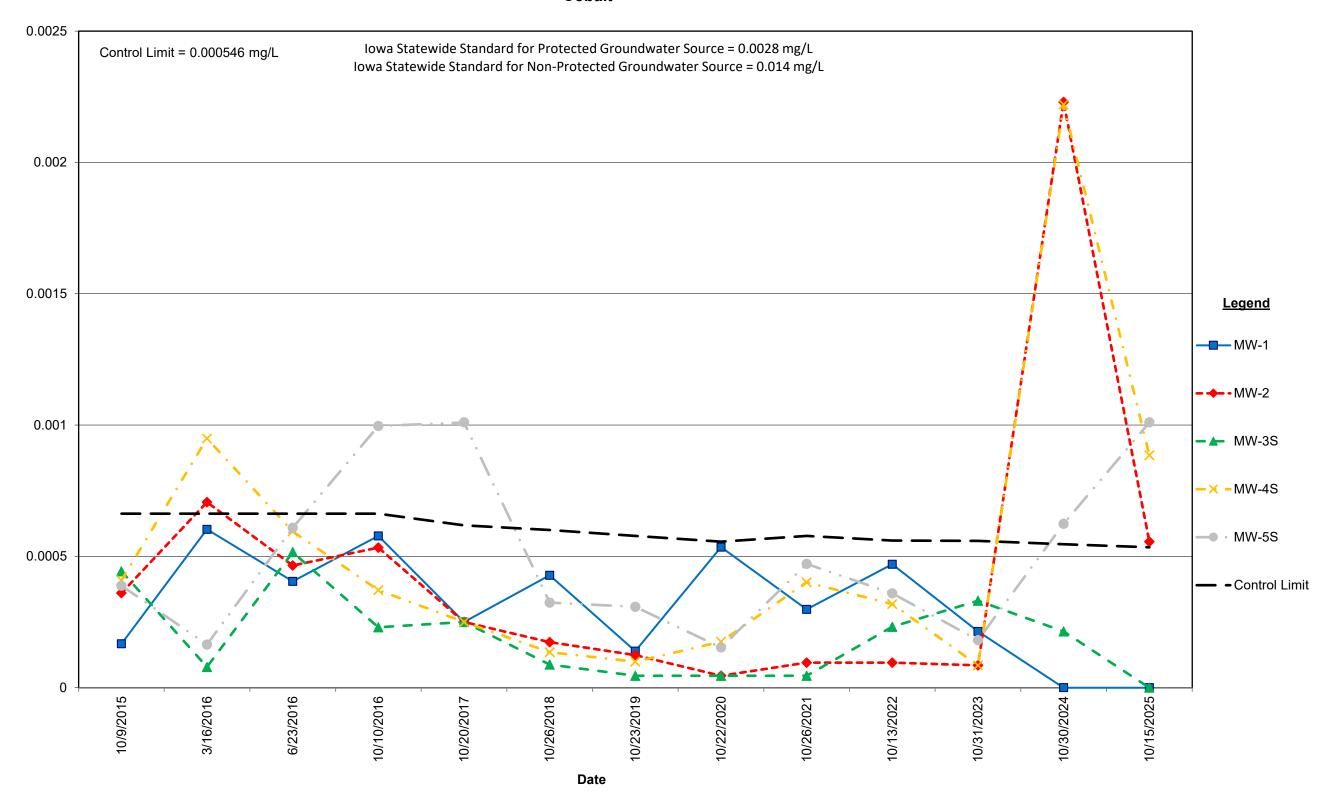

Aluminum

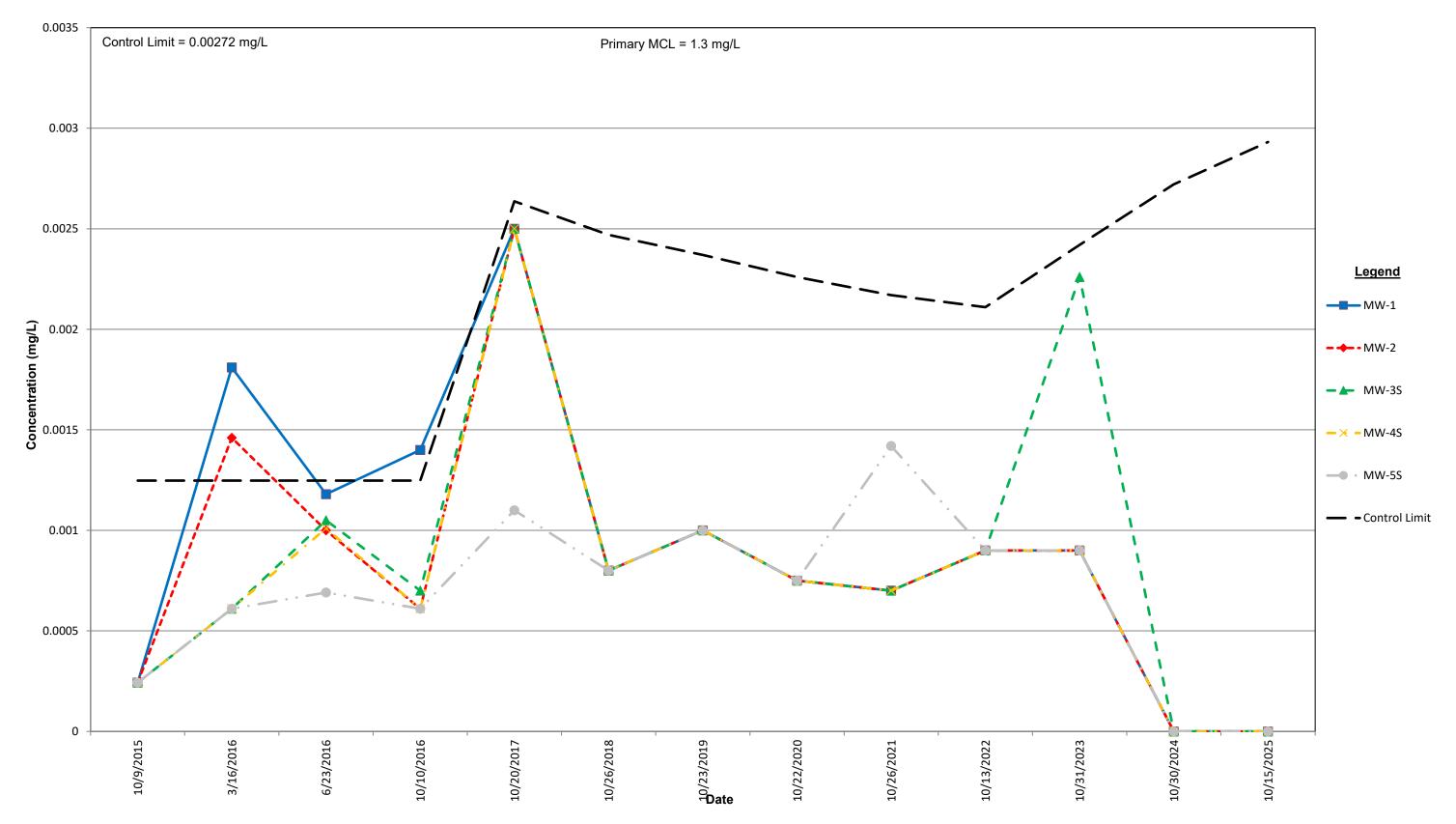


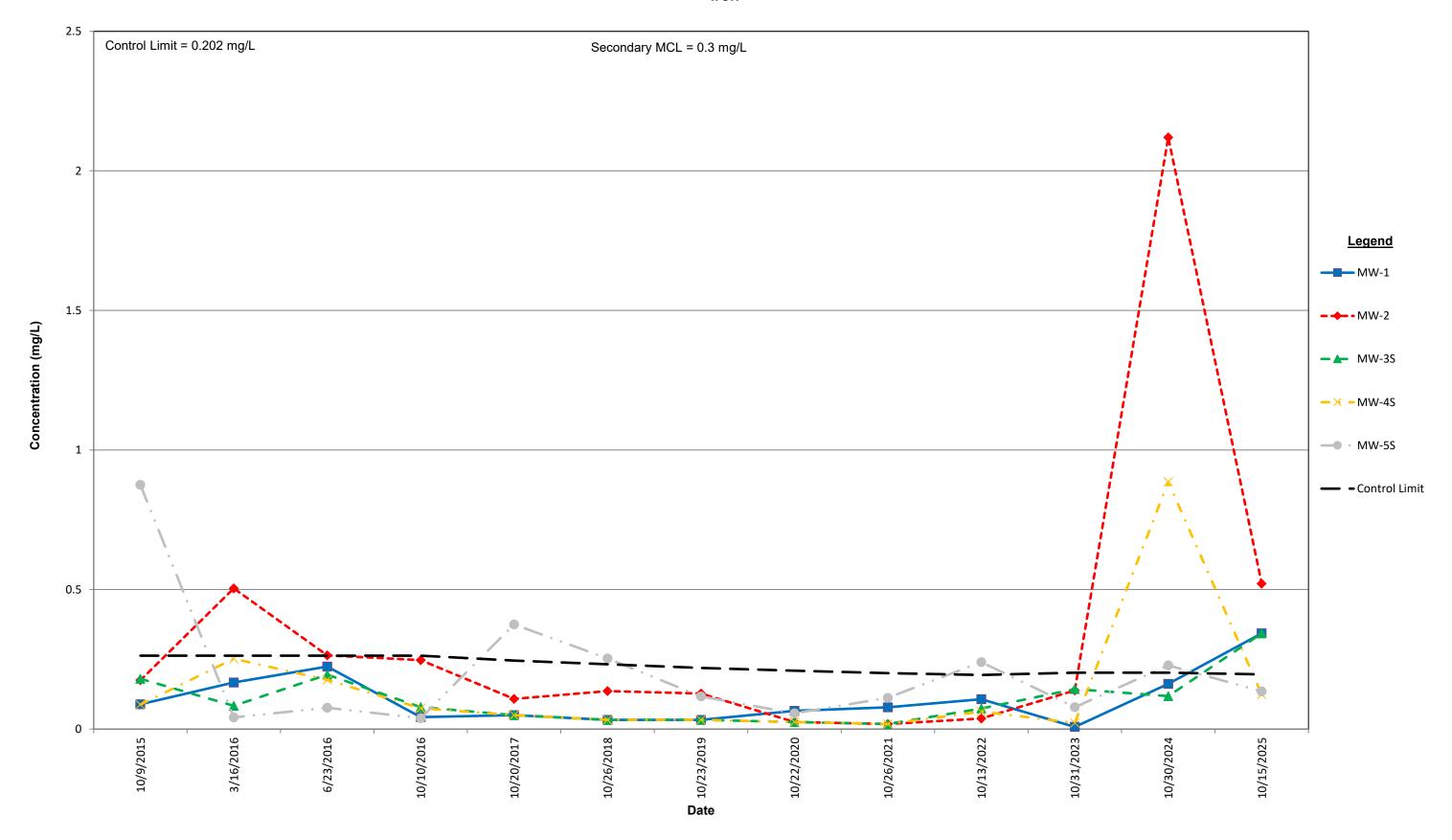
Arsenic

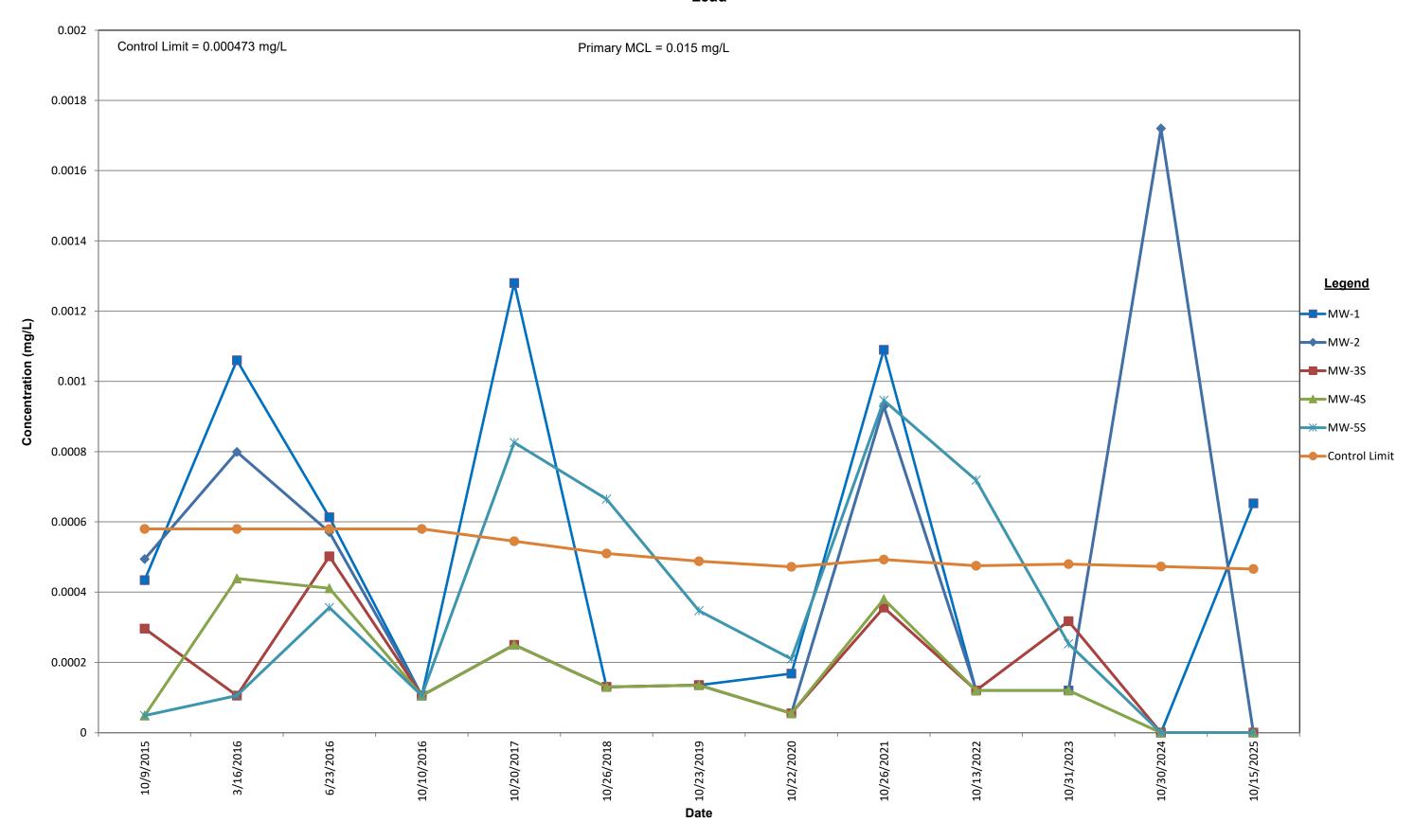


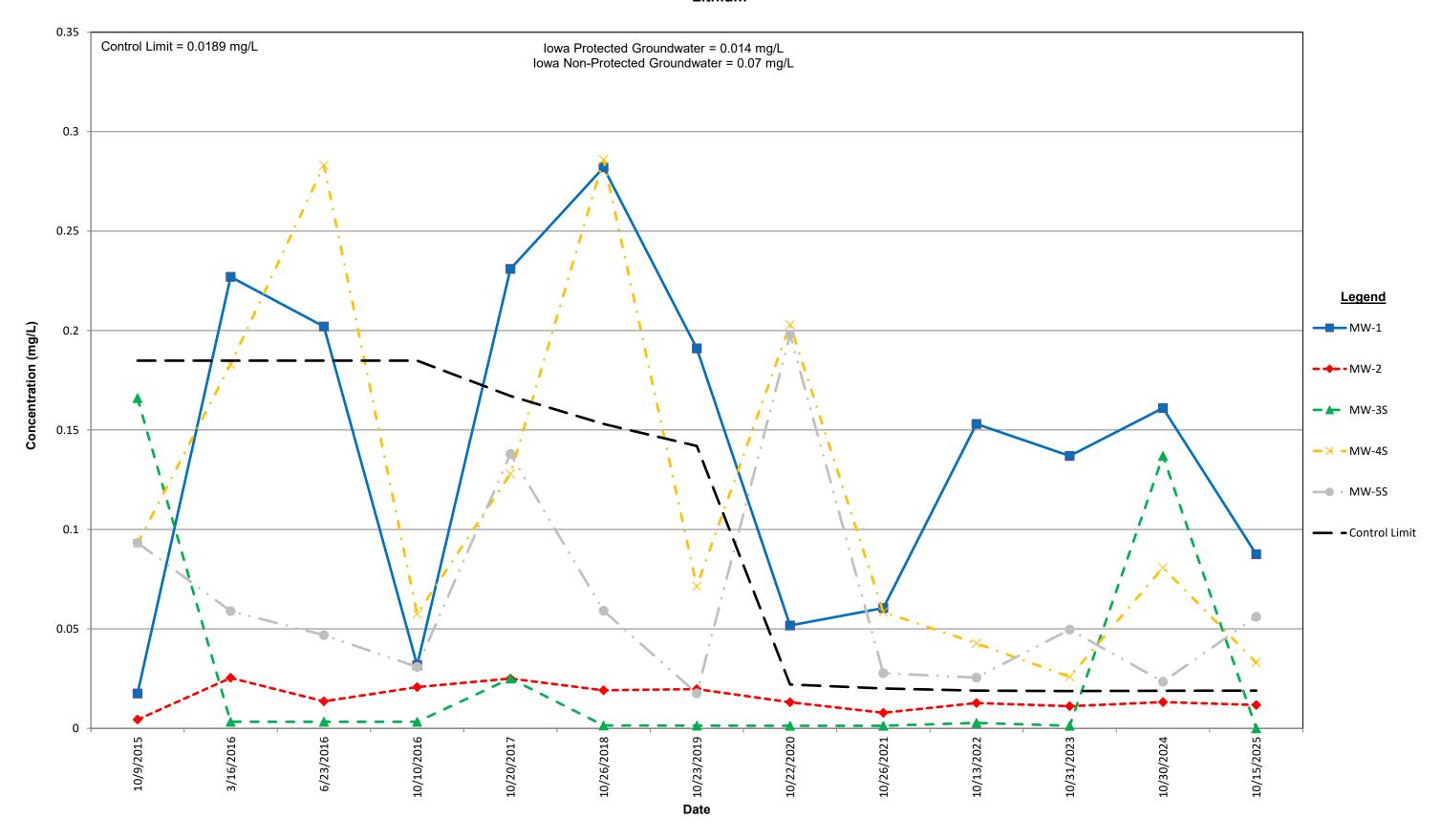
Barium

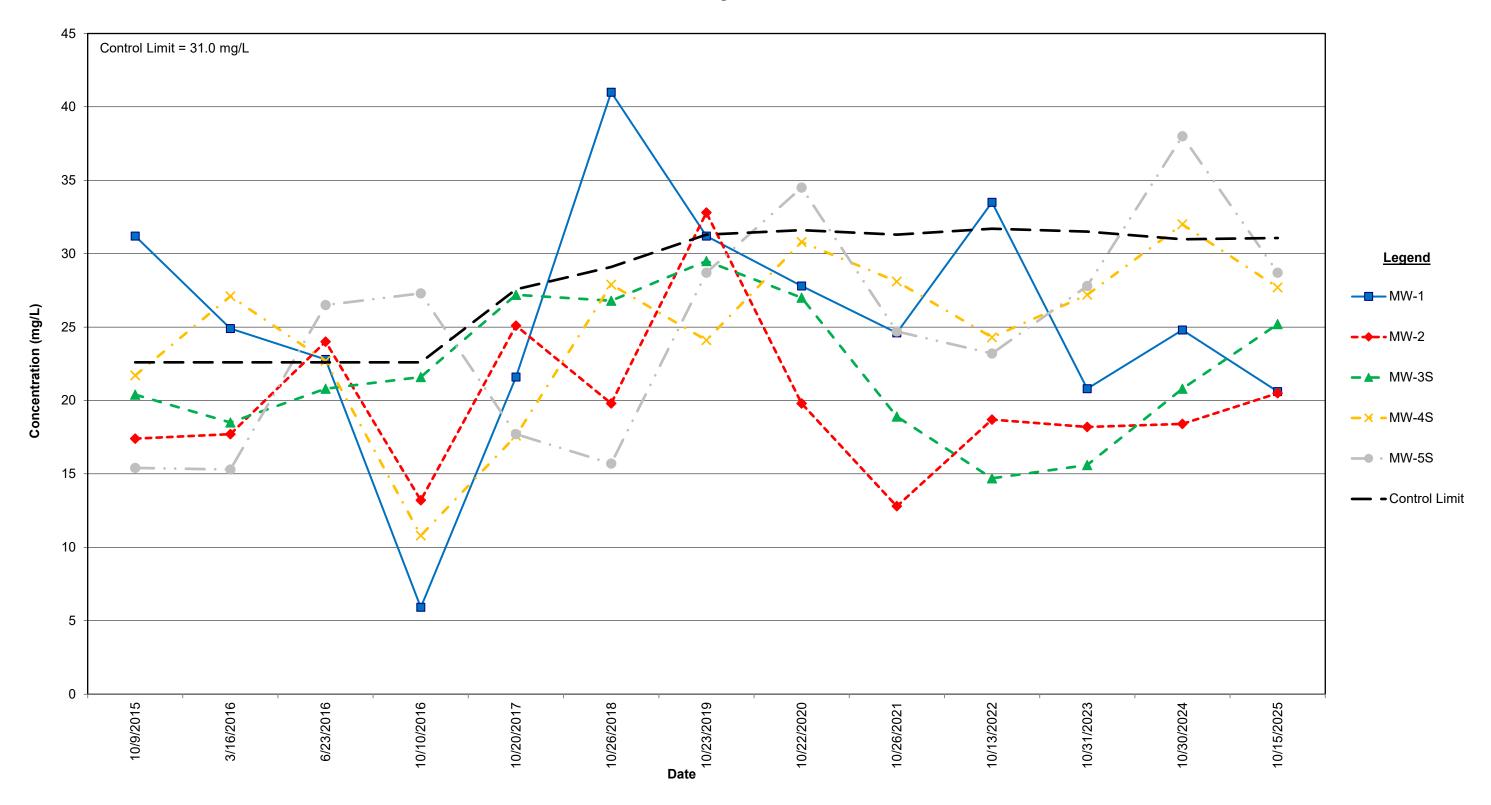


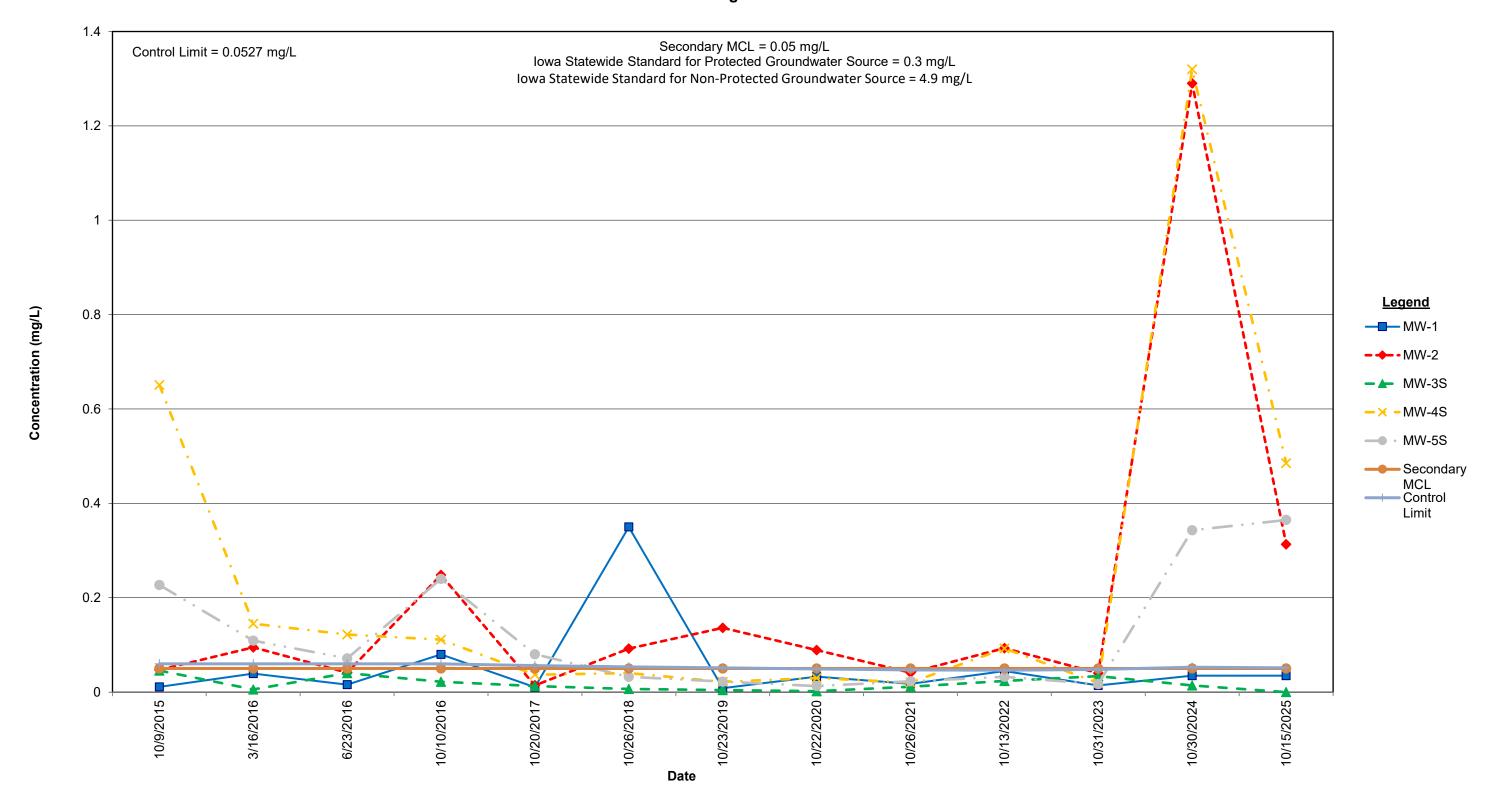


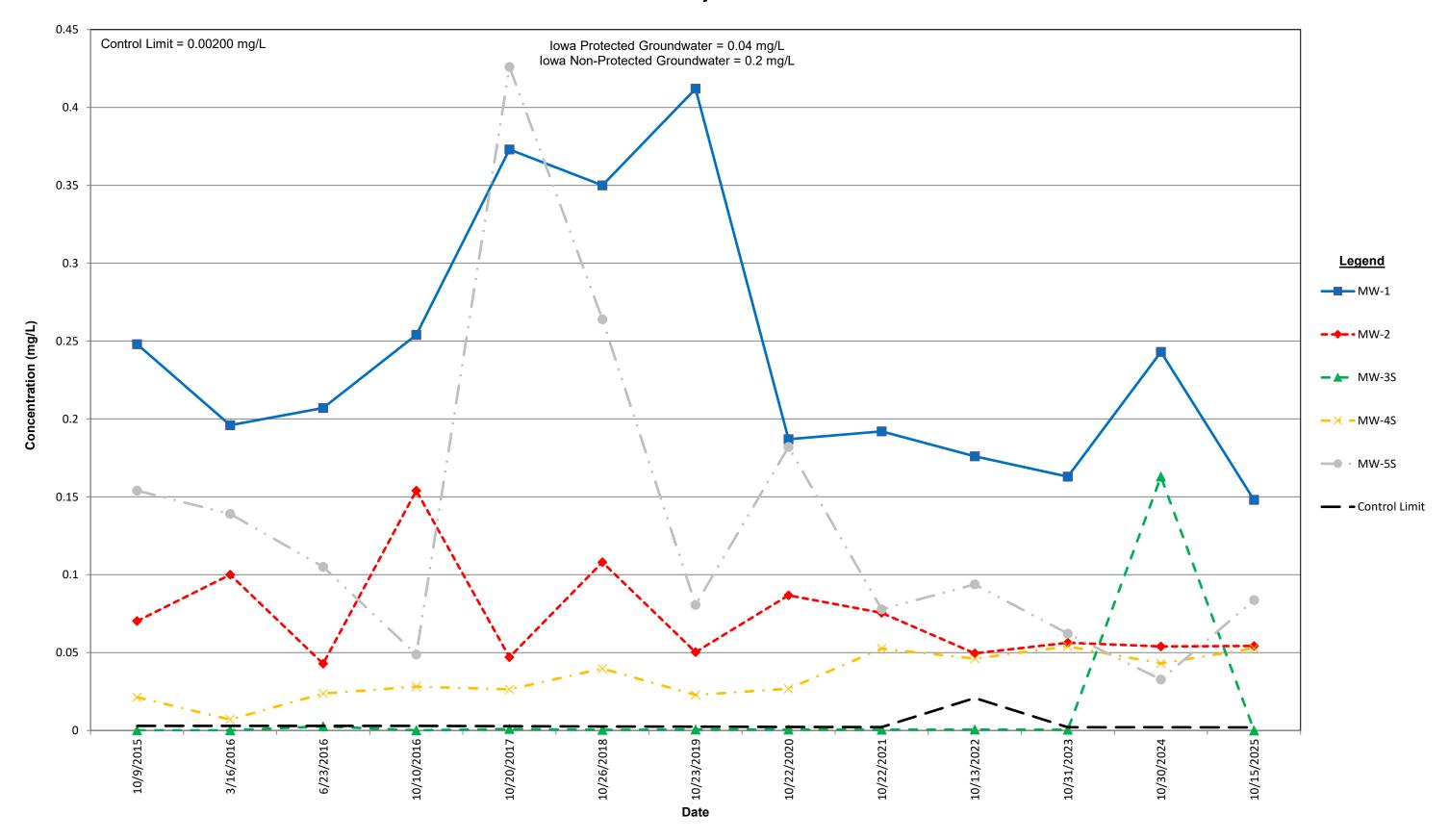

Calcium

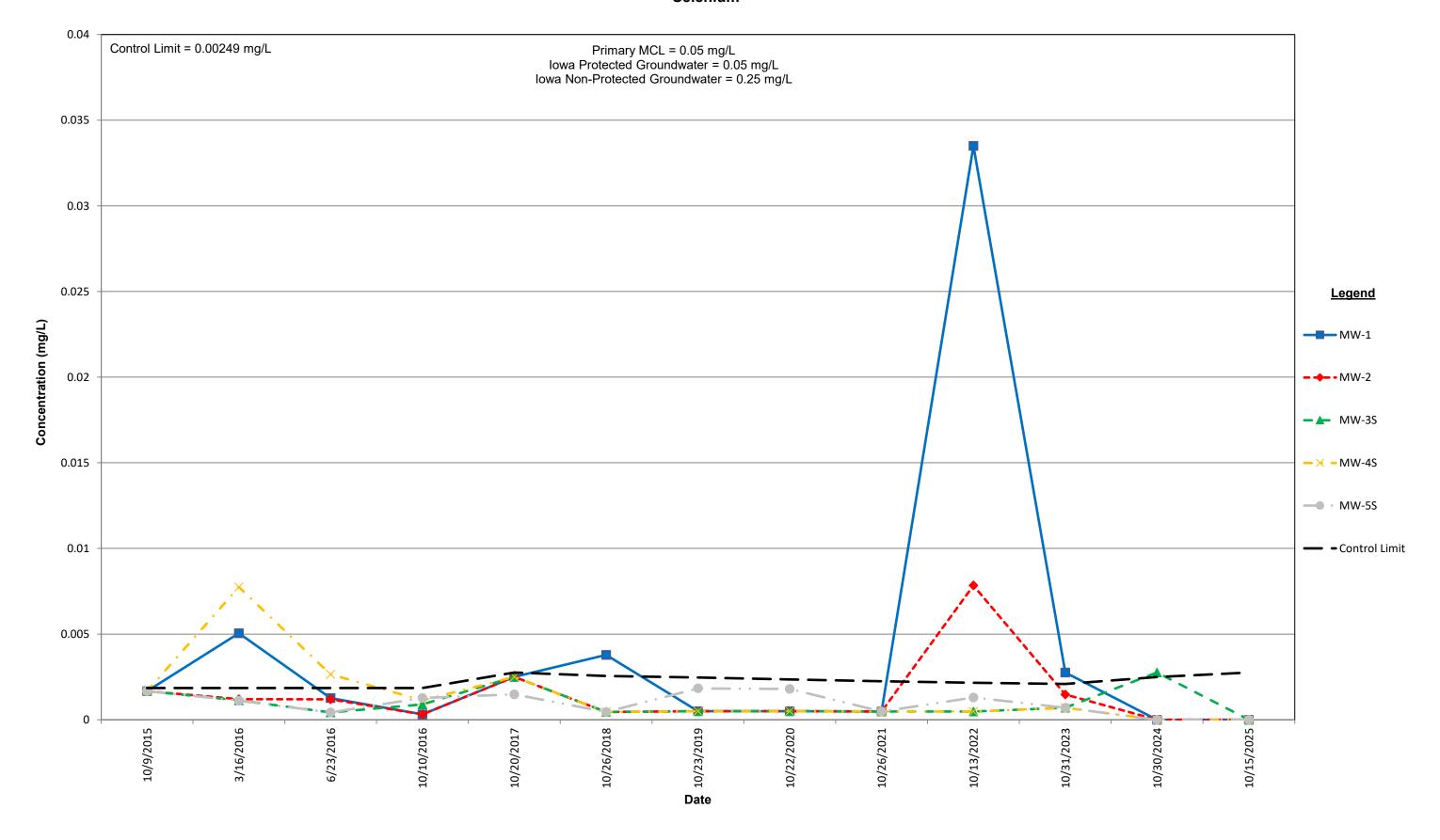


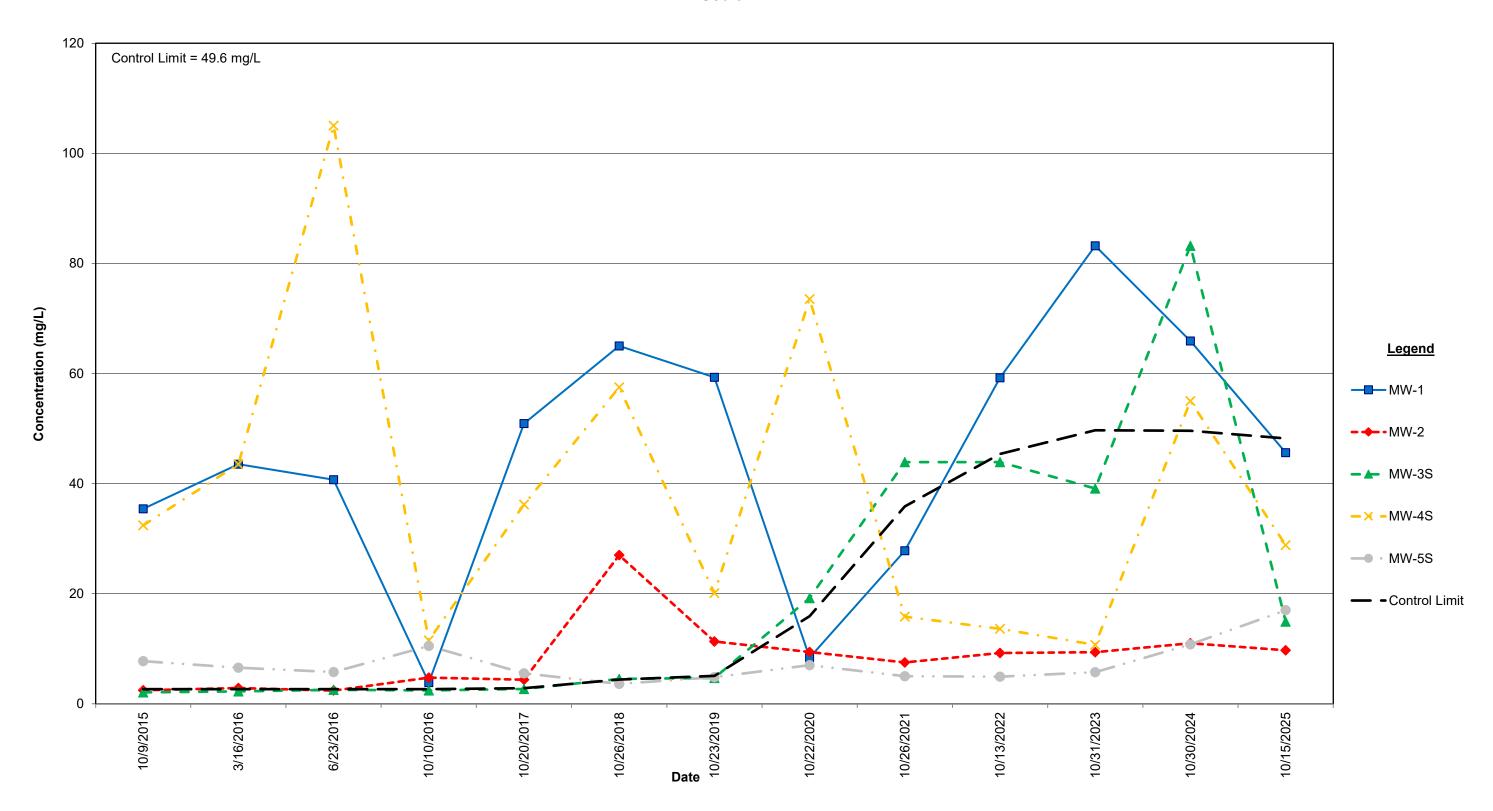

Cobalt

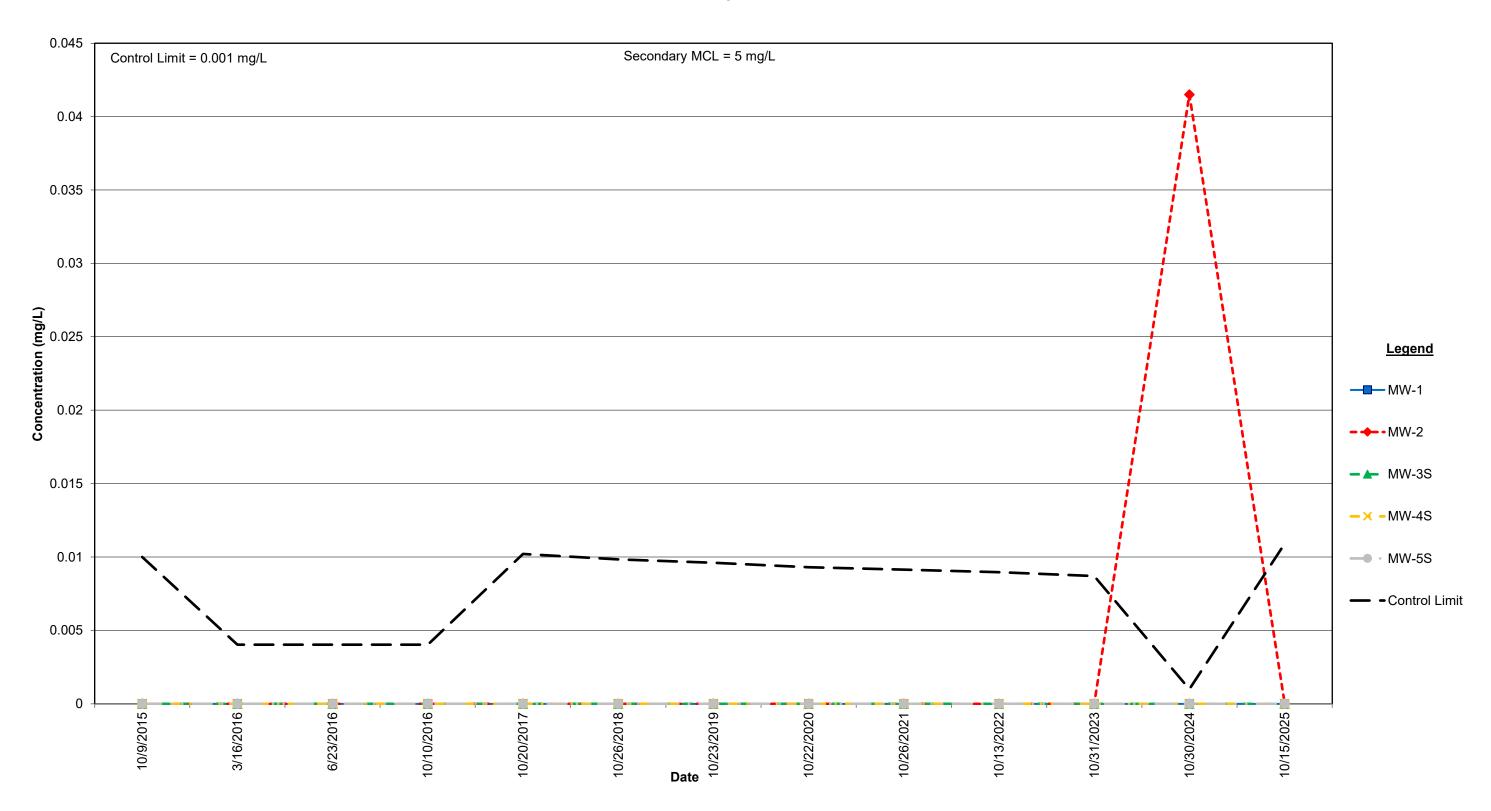





Magnesium


Manganese


Molybdenum



Selenium

Sodium

Appendix E Field and Laboratory Reports

October 24, 2025

Cedar Falls Utilities Utility Parkway, P.O. Box 769 Cedar Falls, Iowa 50613

Attn: Mr. David Ames

P: (319) 268-5300

RE: Groundwater Sampling Services Report

Leversee Road Ash Disposal Site

Leversee Road

Cedar Falls, Iowa 50613

Terracon Project No. 13257063

Dear Mr. Ames,

Terracon Consultants, Inc. (Terracon) is pleased to submit this Groundwater Sampling Services Report for the above-referenced site. The sampling services were completed in accordance with Terracon Proposal No. P13257063, dated June 26, 2025. The following is a summary of the sampling services, reported information, and field observations.

Terracon performed the sampling services on October 15, 2025, with assistance from Cedar Falls Utilities (CFU) personnel Mr. David Ames. Mr. Trenton Humphrey with Stanley Consultants was also in attendance to observe the sampling activities. According to Mr. Ames, CFU personnel bailed monitoring wells MW-1, MW-2, MW-4S, and MW-5S on October 2, 2025, and MW-3S on October 3, 2025. During bailing of the wells, Mr. Ames identified root hairs in MW-2 and MW-4S. As a result, Terracon cleaned MW-2 and MW-4S using a stiff-bristled brush attached to a 1-inch polyvinyl chloride (PVC) casing. Terracon scrubbed the inside of the 2-inch well casing several times from top to bottom to remove the root hairs. After scrubbing, Terracon utilized a high-volume submersible pump and disposable tubing to purge the water and root hairs from the wells.

Terracon collected depth to water and total well depth levels from the five sampled wells. In addition, depth to water and total well depth levels were also collected for the four deep wells, which included MW-3D, MW-4D, MW-5D, and MW-6.

Groundwater samples were collected from MW-1, MW-2, MW-3S, MW-4S, and MW-5S using a peristaltic pump and disposable polyethylene and silicon tubing dedicated to each well. Parameters were collected from each of the wells using a direct-read YSI meter, which included temperature, pH, and specific conductance. The field readings are included on the attached groundwater measurement forms.

The groundwater samples were placed in laboratory-provided containers, labeled, and placed on ice in a cooler. The samples and completed chain-of-custody form were transported to the Eurofins Environmental Testing in Cedar Falls, Iowa for analysis of pH by Environmental Protection Agency (EPA) Method 4500, select metals by EPA Method 200.8/245.2, and chloride and sulfate by EPA Method 300. The sample results are included in the attached laboratory analytical report.

During the well inspection, Mr. Ames noticed that MW-2 is bent, will no longer accept a 2inch bailer for purging the well, and he had to use a 1-inch bailer instead. Additionally, Terracon discovered during the sampling of MW-5S that there appears to be a blockage approximately seven feet from the bottom of the well, or the well has filled in with approximately seven feet of sediment since the 2024 sampling event. Additional investigation into these two wells may be warranted prior to or during the 2026 event.

If you have questions or comments, please contact Rob Bergman at (319) 277-4016 or via email at Rob.Bergman@terracon.com.

Sincerely,

Terracon Consultants, Inc.

Jesse Nelson Rob Bergman

Jesse M. Nelson, REM, CGP Rob Bergman Senior Environmental Scientist Senior Scientist

Attachments: Groundwater Measurement Forms Laboratory Analytical Report

GROUNDWATER SAMPLING AND/OR GROUNDWATER ELEVATION MEASUREMENT FORM

Site Name Cedar Falls Utilities Leversee Road Ash Disposal Site	Permit No. 07-SDP-11-89P-CCR
Monitoring Well/Piezometer No. MW-1	
Upgradient	Downgradient
Name of person sampling Conner Bohlen, Terracon, 3105 Capi	ital Way Cedar Falls, Iowa 50613

A. MONITORING WELL/PIEZOMETER CONDITIONS

Date/Time

10/15/25

If not dedicated, method of cleaning New tubing was used for each well and then disposed

Before Purging

*After Purging
*Before Purging

Well/Piezometer Properly Capped? (please check)		■ YES	□ NO	
If no, explain				
Standing Water or Litter? (please check)		☐ YES	■ NO	
If yes, explain				
B. GROUNDWATER ELEVATION MEASUREMENT (±	0.01 foot, MSL)			
Elev	ation:			
Top of inner well casing 858.41	Ground Eleva	tion		
Depth of Well ^{20.45}	Inside Casing	Diameter (i	n inches) ²	
Equipment Used Slope Indicator Electronic Water Level Indicator	or			
Groundwater Level (+ 0.01 foot below top of inner ca	sing MSL):			

Depth to Groundwater

8.42

Groundwater Elevation

837.96

*C. WELL PURGING				
Quantity of Water Removed from Well (gallons	6.60 (Performed by CFU on October 2, 2025)			
No. of Well Volumes (based on current water level) 3.36				
Was well pumped/bailed dry? No				
Equipment used:				
Bailer type NA	Dedicated Bailer? NA			
Pump type Geotech Geopump Peristaltic Pump	Dedicated Pump? No			

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, nina.koger@dnr.iowa.gov

*D. FIELD MEASUREMENT	
Weather Conditions 57° Fahrenheit, Overcast and raining	
Field Measurements (after stabilization):	
Temperature ^{13.58}	Units Celcius
Equipment Used YSI - 556	
pH ^{7.25}	
Equipment Used YSI - 556	
Specific Conductance 701	Units uS
Equipment Used YSI - 556	

	Comments	
Well was developed by CFU thirteen days	prior to sampling. Terracon purged ap	prox. four gallons of water prior to sample collection
Samples were collected and submitted	to Eurofins Environmental Testing in Ce	edar Falls in sample containers supplied by Eurofins
	CERTIFICATION	
-	believe the information reported	d above is true, accurate and complete.
Signature		Date
Telephone 319-277-4016	Fax 319-277-4320	Email RPBergman@Terracon.com
NOTE: Attach Laboratory Report ar monitoring points. One map per san		ocations of all surface and groundwater

Please mail completed form to: lowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, nina.koger@dnr.iowa.gov

^{*}Omit if only measuring groundwater elevations.

GROUNDWATER SAMPLING AND/OR GROUNDWATER ELEVATION MEASUREMENT FORM

Site Name Cedar Falls Utilities Leversee Road Ash Disposal Site	Permit No. 07-SDP-11-89P-CCR
Monitoring Well/Piezometer No. MW-2	
Upgradient	Downgradient
Name of person sampling Conner Bohlen, Terracon, 3105 Capi	tal Way Cedar Falls, Iowa 50613

A. MONITORING WELL/PIEZOMETER CONDITIONS							
Well/Piezometer Properly Capped? (please check)	■ YES	□ NO					
If no, explain							
Standing Water or Litter? (please check)	☐ YES	■ NO					
If yes, explain							
D. COCUMDWATER ELEVATION MEACUREMENT / .	And food MOLA						
B. GROUNDWATER ELEVATION MEASUREMENT (± 0							
Eleva	tion:						
Top of inner well casing 861.12	Ground Elevation						
Depth of Well ^{23.45} Inside Casing Diameter (in inches) ²							
Equipment Used Slope Indicator Electronic Water Level Indicator							
Groundwater Level (± 0.01 foot below top of inner cas	sing, MSL):						
Date/Time	Depth to Groundwater	Groundwater Elevation					

*C. WELL PURGING				
Quantity of Water Removed from Well (gallons	6.07 (Performed by CFU on October 2, 2025)			
No. of Well Volumes (based on current water le	evel) ^{2.95}			
Was well pumped/bailed dry? No				
E	quipment used:			
Bailer type NA	Dedicated Bailer? NA			
Pump type Geotech Geopump Peristaltic Pump Dedicated Pump? No				
If not dedicated, method of cleaning New tubing	was used for each well and then disposed			

10.85

850.27

10/15/25

Before Purging

*After Purging
*Before Purging

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, nina.koger@dnr.iowa.gov

*D. FIELD MEASUREMENT	
Weather Conditions 57° Fahrenheit, Overcast and raining	
Field Measurements (after stabilization):	
Temperature ^{13.60}	Units Celcius
Equipment Used YSI - 556	
pH ^{7.24}	
Equipment Used YSI - 556	
Specific Conductance 557	Units uS
Equipment Used YSI - 556	

	Comments		
Well was purged by CFU thirteen days	prior to sampling. Terracon purged app	prox. four gallons of water prior to sample co	ollection.
Samples were collected and submitted	to Eurofins Environmental Testing in Co	edar Falls in sample containers supplied by I	Eurofins.
I certify under penalty of law	CERTIFICATION I believe the information reported	d above is true, accurate and comple	ete.
Signature	·	Date	
Telephone 319-277-4016	Fax 319-277-4320	Email RPBergman@Terracon.com	
		ocations of all surface and groundwa	ter

Please mail completed form to: lowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, nina.koger@dnr.iowa.gov

^{*}Omit if only measuring groundwater elevations.

GROUNDWATER SAMPLING AND/OR GROUNDWATER ELEVATION MEASUREMENT FORM

Site Name Cedar Falls Utilitie	s Utilities Leversee Road Ash Disposal Site		Permit No. 07-SDP-11-89P-CCR		
Monitoring Well/Piezome	eter No. MW-3D				
Upgradient		Downgradient			
Name of person sampling	g Conner Bohlen, Terracon, 310	05 Capital Way Cedar Falls, Iowa	50613		
A. MONITORING WELL/F	PIEZOMETER CONDITION	NS			
Well/Piezometer Properl	y Capped? (please chec	k) • Y	res 🗌 no		
If no, explain					
Standing Water or Litter	? (please check)		YES ■ NO		
If yes, explain					
B. GROUNDWATER ELE	VATION MEASUREMENT	Γ (+ 0.01 foot, MSL)			
		Elevation:			
Top of inner well casing 868.80		Ground Elevation	Ground Elevation		
Depth of Well 58.90		Inside Casing Dian	Inside Casing Diameter (in inches) ²		
Equipment Used Slope Ind	icator Electronic Water Level Inc	dicator			
Groundwater Level (<u>+</u> 0.0	01 foot below top of inne	r casing, MSL):			
	Date/Time	Depth to Groundwat	ter Groundwater Elevation		
Before Purging					
*After Purging	10/15/25	18.35	850.45		
*Before Purging					

*C. WELL PURGING	
Quantity of Water Removed from	ı Well (gallons)
No. of Well Volumes (based on c	urrent water level)
Was well pumped/bailed dry?	
	Equipment used:
Bailer type	Dedicated Bailer?
Pump type	Dedicated Pump?
If not dedicated, method of clear	ning

Please mail completed form to: lowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, nina.koger@dnr.iowa.gov

*D. FIELD MEASUREMENT	
Weather Conditions	
Field Measurements (after stabilization):	
Temperature	Units
Equipment Used	
рН	
Equipment Used	
Specific Conductance	Units
Equipment Used	·

	Comments		
I certify under penalty of law	CERTIFICATION I believe the information reported		, accurate and complete.
Signature		_	Date
Telephone 319-277-4016	Fax 319-277-4320		man@Terracon.com
NOTE: Attach Laboratory Report and monitoring points. One map per sar		ocations of all	surface and groundwater

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. **Questions? Call or Email:** Nina Koger Environmental Engineer Sr., 515-725-8309, nina.koger@dnr.iowa.gov

^{*}Omit if only measuring groundwater elevations.

GROUNDWATER SAMPLING AND/OR GROUNDWATER ELEVATION MEASUREMENT FORM

Site Name Cedar Falls Utilities Leversee Road Ash Disposal Site	Permit No. 07-SDP-11-89P-CCR	
Monitoring Well/Piezometer No. MW-3S		
Upgradient	Downgradient	
Name of person sampling Conner Bohlen, Terracon, 3105 Capital Way Cedar Falls, Iowa 50613		

A. MONITORING WELL/PIEZOMETER CONDITIONS				
Well/Piezometer Properly Capped? (please check)	■ YES □ NO			
If no, explain				
Standing Water or Litter? (please check)	☐ YES ■ NO			
If yes, explain				
·	·			
B. GROUNDWATER ELEVATION MEASUREMENT (± 0.01 foot, MSL)				
Elevation:				
Top of inner well casing 868.55	Ground Elevation			
Depth of Well ^{32.28}	Inside Casing Diameter (in inches) ²			
Equipment Used Slope Indicator Electronic Water Level Indicator				
Groundwater Level (+ 0.01 foot below top of inner cas	ing MSL):			

Groundwater Level (<u>+</u> 0.01 foot below top of inner casing, MSL):			
	Date/Time	Depth to Groundwater	Groundwater Elevation
Before Purging			
*After Purging	10/15/25	18.15	850.40
*Before Purging			

*C. WELL PURGING	
Quantity of Water Removed from Well (gallons	6.60 (Performed by CFU on October 3, 2025)
No. of Well Volumes (based on current water le	evel) ^{2.86}
Was well pumped/bailed dry? No	
Ec	quipment used:
Bailer type NA	Dedicated Bailer? NA
Pump type Geotech Geopump Peristaltic Pump	Dedicated Pump? No

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, nina.koger@dnr.iowa.gov

*D. FIELD MEASUREMENT	
Weather Conditions 57° Fahrenheit, Overcast and raining	
Field Measurements (after stabilization):	
Temperature ^{12.50}	Units Celcius
Equipment Used YSI - 556	
pH ^{7.35}	
Equipment Used YSI - 556	
Specific Conductance 620	Units uS
Equipment Used YSI - 556	

	Commen	its	
Well was purged by CFU twelve d	ays prior to sampling. Terracon purge	ged approx. four gallons of water prior to sample collection	n.
Samples were collected and subm	nitted to Eurofins Environmental Testi	ing in Cedar Falls in sample containers supplied by Eurofi	1S.
I certify under penalty of	CERTIFICATE I law I believe the information re	TION eported above is true, accurate and complete.	
Signature		Date	
Telephone 319-277-4016	Fax ³¹⁹⁻²⁷⁷⁻⁴³²⁰	Email RPBergman@Terracon.com	
	•	owing locations of all surface and groundwater	

Please mail completed form to: lowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, nina.koger@dnr.iowa.gov

^{*}Omit if only measuring groundwater elevations.

GROUNDWATER SAMPLING AND/OR GROUNDWATER ELEVATION MEASUREMENT FORM

Site Name Cedar Falls Utilities	Leversee Road Ash Disposal Site		Permit No. 07	7-SDP-11-89P-CCR
Monitoring Well/Piezomet	er No. ^{MW-4D}			
Upgradient		Downgradien	t	
Name of person sampling	Conner Bohlen, Terracon, 3105 Cap	oital Way Cedar Falls	s, Iowa 50613	
A MONITORING WELL/DI	EZOMETER CONDITIONS			
A. MONITORING WELL/PI			□ VE0	
Well/Piezometer Properly	Capped? (please check)		■ YES	□ NO
If no, explain			T	
Standing Water or Litter?	(please check)		☐ YES	■ NO
If yes, explain				
B. GROUNDWATER ELEV	ATION MEASUREMENT (<u>+</u> (
	Eleva	tion:		
Top of inner well casing 8	59.19	Ground Eleva	ition	
Depth of Well ^{72.00}		Inside Casing	Inside Casing Diameter (in inches) ²	
Equipment Used Slope Indicator Electronic Water Level Indicator				
Groundwater Level (<u>+</u> 0.01 foot below top of inner casing, MSL):				
<u>, </u>	Date/Time	Depth to Grou	ndwater	Groundwater Elevation
Before Purging		•		
*After Purging	10/15/25	9.15		850.04
*Before Purging				
*C. WELL PURGING				
C. WELL PURGING				

*C. WELL PURGING		
Quantity of Water Removed from Well (gallons)		
No. of Well Volumes (based on current water level)		
Was well pumped/bailed dry?		
Equipment used:		
Bailer type	Dedicated Bailer?	
Pump type	Dedicated Pump?	
If not dedicated, method of cleaning		

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, nina.koger@dnr.iowa.gov

*D. FIELD MEASUREMENT	
Weather Conditions	
Field Measurements (after stabilization):	
Temperature	Units
Equipment Used	
рН	
Equipment Used	
Specific Conductance	Units
Equipment Used	·

	Commen	its	
I certify under penalty of la	CERTIFICA w I believe the information re		, accurate and complete.
Signature			Date
Telephone 319-277-4016	Fax 319-277-4320		man@Terracon.com
NOTE: Attach Laboratory Report monitoring points. One map per s		owing locations of all s	surface and groundwater

Please mail completed form to: lowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, nina.koger@dnr.iowa.gov

^{*}Omit if only measuring groundwater elevations.

GROUNDWATER SAMPLING AND/OR GROUNDWATER ELEVATION MEASUREMENT FORM

Site Name Cedar Falls Utilities Leversee Road Ash Disposal Site	Permit No. 07-SDP-11-89P-CCR	
Monitoring Well/Piezometer No. MW-4S		
Upgradient	Downgradient	
Name of person sampling Conner Bohlen, Terracon, 3105 Capital Way Cedar Falls, Iowa 50613		

A. MONITORING WELL/PIEZOMETER CONDITIONS			
Well/Piezometer Properly Capped? (please check)	■ YES	□ NO	
If no, explain			
Standing Water or Litter? (please check)	☐ YES	■ NO	
If yes, explain			
B. CROUNDWATER ELEVATION MEACUREMENT (0.04 for the MOL \		
B. GROUNDWATER ELEVATION MEASUREMENT (<u>+</u> 0.01 foot, MSL)			
Elevation:			
Top of inner well casing 858.98 Ground Elevation			
Depth of Well ^{20.11} Inside Casing Diameter (in inches) ²			
Equipment Used Slope Indicator Electronic Water Level Indicator			
Groundwater Level (± 0.01 foot below top of inner casing, MSL):			
Groundwater Level (+ 0.01 foot below top of inner ca	Sing, MSL):		

*C. WELL PURGING		
Quantity of Water Removed from Well (gallons	6.60 (Performed by CFU on October 2, 2025)	
No. of Well Volumes (based on current water level) ^{3.61}		
Was well pumped/bailed dry? No		
Equipment used:		
Bailer type NA	Dedicated Bailer? NA	
Pump type Geotech Geopump Peristaltic Pump	Dedicated Pump? No	
If not dedicated, method of cleaning New tubing	was used for each well and then disposed	

8.91

850.07

10/15/25

Before Purging

*After Purging
*Before Purging

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, nina.koger@dnr.iowa.gov

*D. FIELD MEASUREMENT	
Weather Conditions 57° Fahrenheit, Overcast and raining	
Field Measurements (after stabilization):	
Temperature ^{13.73}	Units Celcius
Equipment Used YSI - 556	
pH ^{7.09}	
Equipment Used YSI - 556	
Specific Conductance 734	Units uS
Equipment Used YSI - 556	

	Comments		
Well was purged by CFU thirteen days	prior to sampling. Terracon purged app	prox. four gallons of water prior to sample co	ollection.
Samples were collected and submitted	to Eurofins Environmental Testing in Co	edar Falls in sample containers supplied by I	Eurofins.
I certify under penalty of law	CERTIFICATION I believe the information reported	d above is true, accurate and comple	ete.
Signature	·	Date	
Telephone 319-277-4016	Fax 319-277-4320	Email RPBergman@Terracon.com	
		ocations of all surface and groundwa	ter

Please mail completed form to: lowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, nina.koger@dnr.iowa.gov

^{*}Omit if only measuring groundwater elevations.

GROUNDWATER SAMPLING AND/OR GROUNDWATER ELEVATION MEASUREMENT FORM

Site Name Cedar Falls Utilities	Leversee Road Ash Disposal Site	9	Permit No. 0	7-SDP-11-89P-CCR
Monitoring Well/Piezometer No. MW-5D				
Upgradient		Downgradie	ent	
Name of person sampling	Conner Bohlen, Terracon, 3105	Capital Way Cedar Fa	alls, Iowa 50613	
A. MONITORING WELL/P	EZOMETER CONDITIONS	S		
Well/Piezometer Properly	Capped? (please check)	■ YES	□ NO
If no, explain				
Standing Water or Litter?	(please check)		☐ YES	■ NO
If yes, explain				
B. GROUNDWATER ELEV	ATION MEASUREMENT	(+ 0.01 foot, MSL)	
		evation:	,	
Top of inner well casing 868.72 Ground Elevation				
Depth of Well 54.45		Inside Casii	Inside Casing Diameter (in inches) ²	
Equipment Used Slope Indicator Electronic Water Level Indicator				
Groundwater Level (<u>+</u> 0.01 foot below top of inner casing, MSL):				
	Date/Time	Depth to Gro	undwater	Groundwater Elevation
Before Purging				
*After Purging	10/15/25	18.	.62	850.10
*Before Purging				

*C. WELL PURGING		
Quantity of Water Removed from Well (gallons)		
No. of Well Volumes (based on current water leve	el)	
Was well pumped/bailed dry?		
Equipment used:		
Bailer type	Dedicated Bailer?	
Pump type	Dedicated Pump?	
If not dedicated, method of cleaning		

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, nina.koger@dnr.iowa.gov

*D. FIELD MEASUREMENT	
Weather Conditions	
Field Measurements (after stabilization):	
Temperature	Units
Equipment Used	
рН	
Equipment Used	
Specific Conductance	Units
Equipment Used	·

	Commen	its	
I certify under penalty of la	CERTIFICA w I believe the information re		, accurate and complete.
Signature			Date
Telephone 319-277-4016	Fax 319-277-4320		man@Terracon.com
NOTE: Attach Laboratory Report monitoring points. One map per s		owing locations of all s	surface and groundwater

Please mail completed form to: lowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, nina.koger@dnr.iowa.gov

^{*}Omit if only measuring groundwater elevations.

GROUNDWATER SAMPLING AND/OR GROUNDWATER ELEVATION MEASUREMENT FORM

Site Name Cedar Falls Utilities Leversee Road Ash Disposal Site	Permit No. 07-SDP-11-89P-CCR	
Monitoring Well/Piezometer No. MW-5S		
Upgradient	Downgradient	
Name of person sampling Conner Bohlen, Terracon, 3105 Capi	ital Way Cedar Falls, Iowa 50613	
		_

A. MONITORING WELL/PIEZOMETER CONDITIONS

Date/Time

10/15/25

Before Purging

*After Purging
*Before Purging

Well/Piezometer Properly Capped? (please check)		■ YES	□ NO	
If no, explain				
Standing Water or Litter? (please check)		☐ YES	■ NO	
If yes, explain				
B. GROUNDWATER ELEVATION MEASUREMENT (+ 0	01 foot MSL)			
Elevation MEASUREMENT (- 0				
Top of inner well casing 868.10	Ground Eleva	tion		
Depth of Well ^{20.10}	Inside Casing	Diameter (ir	n inches) ²	
Equipment Used Slope Indicator Electronic Water Level Indicator				
Groundwater Level (± 0.01 foot below top of inner cas	ing, MSL):			

Depth to Groundwater

18.00

Groundwater Elevation

850.10

*C. WELL PURGING	
Quantity of Water Removed from Well (gallons	6.60 (Performed by CFU on October 2, 2025)
No. of Well Volumes (based on current water le	evel) ^{19.29}
Was well pumped/bailed dry? No	
E	quipment used:
Bailer type NA	Dedicated Bailer? NA
Pump type Geotech Geopump Peristaltic Pump	Dedicated Pump? No
If not dedicated, method of cleaning New tubing v	was used for each well and then disposed

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, nina.koger@dnr.iowa.gov

*D. FIELD MEASUREMENT	
Weather Conditions 57° Fahrenheit and Overcast and raining	
Field Measurements (after stabilization):	
Temperature ^{12.52}	Units Celcius
Equipment Used YSI - 556	
pH ^{7.02}	
Equipment Used YSI - 556	
Specific Conductance 751	Units uS
Equipment Used YSI - 556	

	Comments		
Well was purged by CFU thirteen days p	rior to sampling. Terracon purged appr	rox. four gallons of water prior to sample colle	ction.
Samples were collected and submitted t	to Eurofins Environmental Testing in Ce	edar Falls in sample containers supplied by Eur	ofins.
	CERTIFICATION		
I certify under penalty of law l	I believe the information reported	d above is true, accurate and complete.	
Signature	,	Date	
Telephone 319-277-4016	Fax ³¹⁹⁻²⁷⁷⁻⁴³²⁰	Email RPBergman@Terracon.com	
NOTE : Attach Laboratory Report an monitoring points. One map per san		ocations of all surface and groundwater	•

Please mail completed form to: lowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, nina.koger@dnr.iowa.gov

^{*}Omit if only measuring groundwater elevations.

GROUNDWATER SAMPLING AND/OR GROUNDWATER ELEVATION MEASUREMENT FORM

Site Name Cedar Falls Utilities Leversee Road Ash Disposal Site			Permit No. 07-SDP-11-89P-CCR			
Monitoring Well/Piezom	eter No. MW-6					
Upgradient		Downgradier	nt			
Name of person sampling	ng Conner Bohlen, Terracon, 31	.05 Capital Way Cedar Fal	ls, Iowa 50613			
A MONITORING WELL	PIEZOMETER CONDITIO	NS				
Well/Piezometer Proper			■ YES	□ NO		
If no, explain	y capped: (piedde oned	Sit)	<u> </u>			
Standing Water or Litter	? (please check)		☐ YES	■ NO		
If yes, explain	· (produce cricon)					
n you, explain						
B. GROUNDWATER ELE	EVATION MEASUREMEN					
		Elevation:				
Top of inner well casing	868.49	Ground Elev	ation			
Depth of Well ^{25.32}		Inside Casin	g Diameter	(in inches) ²		
Equipment Used Slope Inc	dicator Electronic Water Level In	dicator				
Groundwater Level (<u>+</u> 0,	.01 foot below top of inne	er casing, MSL):				
	Date/Time	Depth to Grou	ındwater	Groundwater Elevation		
Before Purging						
*After Purging	10/15/25	18.1	8	850.31		
*Before Purging						

*C. WELL PURGING	
Quantity of Water Removed from Well (gallons)	
No. of Well Volumes (based on current water lev	el)
Was well pumped/bailed dry?	
Equ	ipment used:
Bailer type	Dedicated Bailer?
Pump type	Dedicated Pump?
If not dedicated, method of cleaning	

Please mail completed form to: lowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, nina.koger@dnr.iowa.gov

*D. FIELD MEASUREMENT	
Weather Conditions	
Field Measurements (after stabilization):	
Temperature	Units
Equipment Used	
рН	
Equipment Used	
Specific Conductance	Units
Equipment Used	·

	Commen	its	
I certify under penalty of la	CERTIFICA w I believe the information re		, accurate and complete.
Signature			Date
Telephone 319-277-4016	Fax 319-277-4320		man@Terracon.com
NOTE: Attach Laboratory Report monitoring points. One map per s		owing locations of all s	surface and groundwater

Please mail completed form to: lowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, nina.koger@dnr.iowa.gov

^{*}Omit if only measuring groundwater elevations.

ANALYTICAL REPORT

PREPARED FOR

Attn: David Ames Cedar Falls Utilities PO BOX 769 Cedar Falls, Iowa 50613-0769

Generated 10/22/2025 12:53:04 PM

JOB DESCRIPTION

Cedar Falls Ash Landfill

JOB NUMBER

310-318109-1

Eurofins Cedar Falls 3019 Venture Way Cedar Falls IA 50613

Eurofins Cedar Falls

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report was automatically generated by Eurofins Cedar Falls LIMS system, after peer review by each individual department. If you notice any issues please contact your project manager or call the lab at 319-277-2401.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 10/22/2025 12:53:04 PM

Authorized for release by Hannah Dietz, Project Manager I Hannah.Dietz@et.eurofinsus.com (319)277-2401

Page 2 of 11 10/22/2025

2

4

6

7

Case Narrative

Client: Cedar Falls Utilities Project: Cedar Falls Ash Landfill

Job ID: 310-318109-1 Eurofins Cedar Falls

Job Narrative 310-318109-1

The analytical test results presented in this report meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page, unless otherwise noted. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable. Regulated compliance samples (e.g. SDWA, NPDES) must comply with associated agency requirements/permits.

- Matrix-specific batch QC (e.g., MS, MSD, SD) may not be reported when insufficient sample volume is available or when site-specific QC samples are not submitted. In such cases, a Laboratory Control Sample Duplicate (LCSD) may be analyzed to provide precision data for the batch.
- For samples analyzed using surrogate and/or isotope dilution analytes, any recoveries falling outside of established acceptance criteria are re-prepared and/or re-analyzed to confirm results, unless the deviation is due to sample dilution or otherwise explained in the case narrative.

Receipt

The samples were received on 10/15/2025 2:10 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 8.6°C.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cedar Falls

10/22/2025

Page 3 of 11

2

Job ID: 310-318109-1

4

5

c

Sample Summary

Client: Cedar Falls Utilities Job ID: 310-318109-1

Project/Site: Cedar Falls Ash Landfill

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Sample Origin
310-318109-1	MW-5S	Ground Water	10/15/25 09:00	10/15/25 14:10	lowa
310-318109-2	MW-1	Ground Water	10/15/25 09:30	10/15/25 14:10	lowa
310-318109-3	MW-4S	Ground Water	10/15/25 09:55	10/15/25 14:10	lowa
310-318109-4	MW-2	Ground Water	10/15/25 10:25	10/15/25 14:10	lowa
310-318109-5	MW-3S	Ground Water	10/15/25 11:00	10/15/25 14:10	Iowa

3

4

5

Lab Sample ID: 310-318109-1

Matrix: Ground Water

Job ID: 310-318109-1

Client Sample ID: MW-5S

Date Collected: 10/15/25 09:00 Date Received: 10/15/25 14:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Sulfate	105		5.00		mg/L		10/16/25 22:09	5	ZRI4
Chloride	28.0		5.00		mg/L		10/16/25 22:09	5	ZRI4
Method: 200.8 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Arsenic	<0.00200		0.00200		mg/L		10/21/25 17:42	1	NFT2
Beryllium	<0.00100		0.00100		mg/L		10/21/25 17:42	1	NFT2
Cadmium	<0.000200		0.000200		mg/L		10/21/25 17:42	1	NFT2
Chromium	<0.00500		0.00500		mg/L		10/21/25 17:42	1	NFT2
Lead	<0.000500		0.000500		mg/L		10/21/25 17:42	1	NFT2
Selenium	< 0.00500		0.00500		mg/L		10/21/25 17:42	1	NFT2
Silver	<0.00100		0.00100		mg/L		10/21/25 17:42	1	NFT2
Method: 245.2 - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Mercury	<0.000200		0.000200		mg/L		10/21/25 10:46	1	RLT9
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Analyzed	Dil Fac	Analyst
pH (SM 4500 H+ B)	7.3	HF	1.0		SU		10/16/25 01:45	1	ZJX4

Client Sample ID: MW-1 Lab Sample ID: 310-318109-2 Date Collected: 10/15/25 09:30

Matrix: Ground Water

Date Received: 10/15/25 14:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Sulfate	85.4		5.00		mg/L		10/16/25 22:44	5	ZRI4
Chloride	29.4		5.00		mg/L		10/16/25 22:44	5	ZRI4
Method: 200.8 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Arsenic	<0.00200		0.00200		mg/L		10/21/25 17:45	1	NFT2
Beryllium	<0.00100		0.00100		mg/L		10/21/25 17:45	1	NFT2
Cadmium	<0.000200		0.000200		mg/L		10/21/25 17:45	1	NFT2
Chromium	<0.00500		0.00500		mg/L		10/21/25 17:45	1	NFT2
Lead	0.000653		0.000500		mg/L		10/21/25 17:45	1	NFT2
Selenium	<0.00500		0.00500		mg/L		10/21/25 17:45	1	NFT2
Silver	<0.00100		0.00100		mg/L		10/21/25 17:45	1	NFT2
Method: 245.2 - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Mercury	<0.000200		0.000200		mg/L		10/21/25 10:48	1	RLT9
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Analyzed	Dil Fac	Analyst
pH (SM 4500 H+ B)	7.5	HF	1.0		SU		10/16/25 01:40	1	ZJX4

Lab Sample ID: 310-318109-3

Matrix: Ground Water

Job ID: 310-318109-1

Client Sample ID: MW-4S

Date Collected: 10/15/25 09:55 Date Received: 10/15/25 14:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Sulfate	106		5.00		mg/L		10/16/25 22:55	5	ZRI4
Chloride	15.4		5.00		mg/L		10/16/25 22:55	5	ZRI4
Method: 200.8 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Arsenic	<0.00200		0.00200		mg/L		10/21/25 17:51	1	NFT2
Beryllium	<0.00100		0.00100		mg/L		10/21/25 17:51	1	NFT2
Cadmium	<0.000200		0.000200		mg/L		10/21/25 17:51	1	NFT2
Chromium	<0.00500		0.00500		mg/L		10/21/25 17:51	1	NFT2
Lead	<0.000500		0.000500		mg/L		10/21/25 17:51	1	NFT2
Selenium	<0.00500		0.00500		mg/L		10/21/25 17:51	1	NFT2
Silver	<0.00100		0.00100		mg/L		10/21/25 17:51	1	NFT2
Method: 245.2 - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Mercury	<0.000200		0.000200		mg/L		10/21/25 10:50	1	RLT9
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Analyzed	Dil Fac	Analyst
pH (SM 4500 H+ B)	7.3	HF	1.0		SU		10/16/25 01:44	1	ZJX4

Client Sample ID: MW-2

Date Collected: 10/15/25 10:25

Lab Sample ID: 310-318109-4

Matrix: Ground Water

Date Received: 10/15/25 10:25

Date Received: 10/15/25 14:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Sulfate	29.0		5.00		mg/L		10/16/25 23:07	5	ZRI4
Chloride	10.4		5.00		mg/L		10/16/25 23:07	5	ZRI4
Method: 200.8 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Arsenic	<0.00200		0.00200		mg/L		10/21/25 17:54	1	NFT2
Beryllium	<0.00100		0.00100		mg/L		10/21/25 17:54	1	NFT2
Cadmium	<0.000200		0.000200		mg/L		10/21/25 17:54	1	NFT2
Chromium	<0.00500		0.00500		mg/L		10/21/25 17:54	1	NFT2
Lead	<0.000500		0.000500		mg/L		10/21/25 17:54	1	NFT2
Selenium	<0.00500		0.00500		mg/L		10/21/25 17:54	1	NFT2
Silver	<0.00100		0.00100		mg/L		10/21/25 17:54	1	NFT2
Method: 245.2 - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Mercury	<0.000200		0.000200		mg/L		10/21/25 10:52	1	RLT9
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Analyzed	Dil Fac	Analyst
pH (SM 4500 H+ B)	7.4	HF	1.0		SU		10/16/25 01:42	1	ZJX4

Client Sample Results

Client: Cedar Falls Utilities Job ID: 310-318109-1

Project/Site: Cedar Falls Ash Landfill

Client Sample ID: MW-3S

Lab Sample ID: 310-318109-5

Matrix: Ground Water

Dil Fac Analyst

1 ZJX4

Analyzed

10/16/25 01:43

Date Collected: 10/15/25 11:00 Date Received: 10/15/25 14:10

General Chemistry

pH (SM 4500 H+ B)

Analyte

Method: 300.0 - Anions, Ion Chrom	atography								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Sulfate	13.9		5.00		mg/L		10/16/25 23:18	5	ZRI4
Chloride	44.0		5.00		mg/L		10/16/25 23:18	5	ZRI4
Method: 200.8 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Arsenic	<0.00200		0.00200		mg/L		10/21/25 18:02	1	NFT2
Beryllium	<0.00100		0.00100		mg/L		10/21/25 18:02	1	NFT2
Cadmium	<0.000200		0.000200		mg/L		10/21/25 18:02	1	NFT2
Chromium	<0.00500		0.00500		mg/L		10/21/25 18:02	1	NFT2
Lead	<0.000500		0.000500		mg/L		10/21/25 18:02	1	NFT2
Selenium	<0.00500		0.00500		mg/L		10/21/25 18:02	1	NFT2
Silver	<0.00100		0.00100		mg/L		10/21/25 18:02	1	NFT2
Method: 245.2 - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Mercury	<0.000200		0.000200		mg/L		10/21/25 11:35	1	RLT9

RL

1.0

RL Unit

SU

Result Qualifier

7.5 HF

10/22/2025

5

7

Accreditation/Certification and Definitions Summary

Client: Cedar Falls Utilities Job ID: 310-318109-1

Project/Site: Cedar Falls Ash Landfill

Laboratory: Eurofins Cedar Falls

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
lowa	State	007	12-01-25

Qualifiers

General Chemistry

Qualifier	Qualifier Description	on
-----------	------------------------------	----

HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
1C	Result is from the primary column on a dual-column method.
2C	Result is from the confirmation column on a dual-column method.
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)
EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit
MRL Method Reporting Limit
NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

 NEG
 Negative / Absent

 POS
 Positive / Present

 PQL
 Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

SDL Sample Detection Limit
SDL Sample Detection Limit
SDL Sample Detection Limit

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Cedar Falls

10/22/2025

2

Method Summary

Client: Cedar Falls Utilities

Project/Site: Cedar Falls Ash Landfill

Method **Method Description** Laboratory Protocol 300.0 Anions, Ion Chromatography EPA EET CF 200.8 Metals (ICP/MS) EET CF EPA Mercury (CVAA) EET CF 245.2 EPA SM 4500 H+ B SM EET CF

- 5

Job ID: 310-318109-1

EET CF

EPA

EPA

4

_

_

Protocol References:

200.8

245.1

EPA = US Environmental Protection Agency

Preparation, Total Metals

Preparation, Mercury

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Environment Testing America

Cooler/Sample Receipt and Temperature L $\overline{\ \ }$. $\ \ \Box$.

Client Information
Client: Terralon
City/State: City State Project. //297
Receipt Information
Date/Time DATE TIME Received By://
Received. / 2// 2/ 1// 1
Delivery Type [.] UPS FedEx FedEx Ground US Mail Spee-Dee
☐ Lab Courier ☐ Lab Field Services ☐ Client Drop-off ☐ Other
Condition of Cooler/Containers
Sample(s) received in Cooler? Yes No If yes Cooler ID.
Multiple Coolers?
Cooler Custody Seals Present? Yes No If yes: Cooler custody seals intact? Yes
Sample Custody Seals Present? Yes No If yes: Sample custody seals intact? Yes No
Trip Blank Present? ☐ Yes ☐ No If yes: Which VOA samples are in cooler? ↓
Temperature Record ** (*** 1380 15 11 11 15 15 15 15 15 15 15 15 15 15
Thermometer ID: BB Correction Factor (°C).
• Temp Blánk Temperature - it no temp blánk, or temp blánk temperature ábőve criteria, proceed to Sample Container Temperature
Uncorrected Temp (°C): Solution Corrected Temp (°C): Corrected Temp (°C):
• Sample Container Temperature
Container(s) used. CONTAINER 1 CONTAINER 2
Uncorrected Temp (°C):
Corrected Temp (°C).
Exceptions Noted . * * * * * * * * * * * * * * * * * *
1) If temperature exceeds criteria, was sample(s) received same day of sampling? Yes No a) If yes: Is there evidence that the chilling process began? Yes No
2) If temperature is <0°C, are there obvious signs that the integrity of sample containers is compromised? (e g , bulging septa, broken/cracked bottles, frozen solid?)
NOTE If yes, contact PM before proceeding If no, proceed with login Additional Comments 1

Document CED-P-SAM-FRM45521 Revision. 26 Date 27 Jan 2022 **Chain of Custody Record**

Address

Environment Testing America

	Regu	latory Pro	gram:] wd[NPDES	Г	RCRA	a [Other										TAL-82	210
Client Contact		anager: [1. Jan.	_	Am	>45	Date:	10	115	12	5		COC No	
Company Name Cedar Falls Utilities		du d. u															130	hun	/ of/_ COCs	
Address I Utility Porkway Pobox 769		Analysis T				Т	П	T		Т	П	Т	П	T	П		TT		Sampler: Lorner Osobles	3
City/State/Zip Ledor Tails, IA, 50613	☐ CALEN	DAR DAYS		RKING DAY	s														For Lab Use Only:	
Phone 319 - 268 5300	TA	T if different fr	om Below			1													Walk-ın Client:	
Fax.		2	weeks					- 1											Lab Sampling	
Project Name Leversee Rud Ash fordfill		1	week (da		515	-		200						1 1	- 1				
Site Cadar Falls Ash Lordf 11		2	. days		7	9 2		2	2/2										Job/SDG No 13257063	
PO#		1	day		2.4	d Z	アチ	eta15	<u> </u>		l									
			Sample			Sp		0	17 15		-								and the	
	Sample	Sample	Type (C=Comp,		# of	Filtered :		5	اتحال											
Sample Identification	Date	Time	G=Grab)	Matrix	Cont.	E I	5												Sample Specific Notes	
MW-55	15/25	0100	G	Cw	2	N	X	X	$X \mid X$											
MW-1 sugaritations	- Marian Anna	0930	G	GW	2	n'	X	X	$X \mid X$											
MW-45	ADDONAL SERVICE	0955	6	GW	2	N	X	XI:	$\chi X $											-
o Mw-2	on-sectoristics.	1025	6	6w	2	M	X	$\times $	$\langle X $											
Page 4w-3S	Office Control	1100	6	G want	2	,V	Х	X i	\times											
							7 1													
of																			2.7	
			***************************************				\mathbf{I}								\Box		11			
						\top	11	T	$\exists \exists$	\exists	\top			1			$\top \uparrow$			
						\top	11	\exists			\top								1	
			***************************************				11				_				T		T			
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3;	5=NaOH;	6= Other	and the second s			5						1.38							A Maria Mari	
Possible Hazard Identification:							ampi	e Dis	posal	(Af	ee m	ay be	asse	ssed	if sar	npies	are re	tained	longer than 1 month)	
Are any samples from a listed EPA Hazardous Waste? Pleas Comments Section if the lab is to dispose of the sample	se List any t	=PA Waste	Codes for	the samp	ole in the	۱ ۹														
Non-Hazard Flammable Skin Irritant	Poison	В	Unkno	own		\dashv	□R	eturn	to Client	:		☐ Di:	sposal t	y Lab			Archive	for	Months	
Special Instructions/QC Requirements & Comments:	<i></i>	ı		······································							A	1						***************************************		
Pleuse email results to	13.6	berym	rance t	erra	lun	10	m		4	-		-		me	256	9 Ct		net	net	
Custody Seals Intact: Yes No	Custody S			-					Cooler	Tem	p (°C) Obs	s'd		C	orr'd _			Therm ID No	
Custody Seals Intact: Yes No Relinquished by Conner Mohlen	Company:	Terra	con 10	Date/Til	me S/W/) R	leceiv	ed by			-			Co	mpar	ıy.			Date/Time 14/0	,
Relinquished by:	Company.	4		Date/Ti			eceiv	_	.62					Co	mpar	ıy.			Date/Time	
Relinquished by	Company			Date/Ti		4	acon:	od :c	Lahar	aton:	he			C-	mean				Date/Time	
NO	Company.			Date/ III	iiie		eceiv	eu in	Labor	atory	Uy.				mpar	ıy			Ug15/25 LWb	
2									77										W J	

ANALYTICAL REPORT

PREPARED FOR

Attn: David Ames Cedar Falls Utilities PO BOX 769 Cedar Falls, Iowa 50613-0769

Generated 11/17/2025 2:09:58 PM Revision 1

JOB DESCRIPTION

Cedar Falls Ash Landfill

JOB NUMBER

310-318109-1

Eurofins Cedar Falls 3019 Venture Way Cedar Falls IA 50613

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report was automatically generated by Eurofins Cedar Falls LIMS system, after peer review by each individual department. If you notice any issues please contact your project manager or call the lab at 319-277-2401.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 11/17/2025 2:09:58 PM Revision 1

Authorized for release by Hannah Dietz, Project Manager I Hannah.Dietz@et.eurofinsus.com (319)277-2401

Eurofins Cedar Falls is a laboratory within Eurofins Environment Testing North Central, LLC, a company within Eurofins Environment Testing Group of Companies

Client: Cedar Falls Utilities Project/Site: Cedar Falls Ash Landfill Laboratory Job ID: 310-318109-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Client Sample Results	6
Chronicle	10
Definitions	12
Certification Summary	13
Method Summary	14
Chain of Custody	15
Receipt Checklists	17

4

6

R

9

10

Case Narrative

Client: Cedar Falls Utilities Project: Cedar Falls Ash Landfill

Eurofins Cedar Falls Job ID: 310-318109-1

> Job Narrative 310-318109-1

REVISION

The report being provided is a revision of the original report sent on 11/14/2025. The report (revision 1) is being revised due to sodium added.

The analytical test results presented in this report meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page, unless otherwise noted. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable. Regulated compliance samples (e.g. SDWA, NPDES) must comply with associated agency requirements/permits.

- Matrix-specific batch QC (e.g., MS, MSD, SD) may not be reported when insufficient sample volume is available or when sitespecific QC samples are not submitted. In such cases, a Laboratory Control Sample Duplicate (LCSD) may be analyzed to provide precision data for the batch.
 - For samples analyzed using surrogate and/or isotope dilution analytes, any recoveries falling outside of established acceptance criteria are re-prepared and/or re-analyzed to confirm results, unless the deviation is due to sample dilution or otherwise explained in the case narrative.

Receipt

The samples were received on 10/15/2025 2:10 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 8.6°C.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cedar Falls

Job ID: 310-318109-1

3

Sample Summary

Client: Cedar Falls Utilities

Project/Site: Cedar Falls Ash Landfill

Client Sample ID Sample Origin Lab Sample ID Matrix Collected Received 310-318109-1 MW-5S **Ground Water** 10/15/25 09:00 10/15/25 14:10 Iowa 310-318109-2 MW-1 **Ground Water** 10/15/25 09:30 10/15/25 14:10 lowa MW-4S 310-318109-3 **Ground Water** 10/15/25 09:55 10/15/25 14:10 Iowa MW-2 310-318109-4 **Ground Water** 10/15/25 10:25 10/15/25 14:10 lowa 310-318109-5 MW-3S 10/15/25 11:00 10/15/25 14:10 Iowa **Ground Water**

_1

Job ID: 310-318109-1

4

0

10

10

Eurofins Cedar Falls

Job ID: 310-318109-1

Client: Cedar Falls Utilities

Project/Site: Cedar Falls Ash Landfill

Client Sample ID: MW-5S

Lab Sample ID: 310-318109-1

Date Collected: 10/15/25 09:00 **Matrix: Ground Water** Date Received: 10/15/25 14:10

Method: EPA 300.0 - Anions, I	on Chromat	ography							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	105		5.00		mg/L			10/16/25 22:09	5
Chloride	28.0		5.00		mg/L			10/16/25 22:09	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/17/25 08:30	10/21/25 17:42	1
Beryllium	<0.00100		0.00100		mg/L		10/17/25 08:30	10/21/25 17:42	1
Cadmium	<0.000200		0.000200		mg/L		10/17/25 08:30	10/21/25 17:42	1
Chromium	<0.00500		0.00500		mg/L		10/17/25 08:30	10/21/25 17:42	1
Lead	<0.000500		0.000500		mg/L		10/17/25 08:30	10/21/25 17:42	1
Selenium	<0.00500		0.00500		mg/L		10/17/25 08:30	10/21/25 17:42	1
Silver	<0.00100		0.00100		mg/L		10/17/25 08:30	10/21/25 17:42	1
Barium	0.0869		0.00200		mg/L		10/17/25 08:30	10/21/25 17:42	1
Calcium	138		0.500		mg/L		10/17/25 08:30	10/21/25 17:42	1
Iron	0.135		0.100		mg/L		10/17/25 08:30	10/21/25 17:42	1
Magnesium	28.7		0.500		mg/L		10/17/25 08:30	10/21/25 17:42	1
Copper	<0.00500		0.00500		mg/L		10/17/25 08:30	10/21/25 17:42	1
Lithium	0.0561		0.0100		mg/L		10/17/25 08:30	10/21/25 17:42	1
Molybdenum	0.0837		0.00200		mg/L		10/17/25 08:30	10/21/25 17:42	1
Boron	2.76		0.400		mg/L		10/17/25 08:30	11/14/25 12:31	4
Aluminum	<0.0500		0.0500		mg/L		10/17/25 08:30	10/21/25 17:42	1
Zinc	<0.0200		0.0200		mg/L		10/17/25 08:30	10/21/25 17:42	1
Manganese	0.365		0.0100		mg/L		10/17/25 08:30	10/21/25 17:42	1
Cobalt	0.00101		0.000500		mg/L		10/17/25 08:30	10/21/25 17:42	1
Sodium	17.0		1.00		mg/L		10/17/25 08:30	10/21/25 17:42	1

Method: EPA 245.2 - Merc	ury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000200		0.000200		mg/L		10/20/25 13:00	10/21/25 10:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SM 4500 H+ B)	7.3	HF	1.0		SU			10/16/25 01:45	1

Client Sample ID: MW-1 Lab Sample ID: 310-318109-2

29.4

Date Collected: 10/15/25 09:30 Date Received: 10/15/25 14:10

pH (SM 4500 H+ B)

Chloride

Date Received. 10/13/25 14.10											
Method: EPA 300.0 - Anions, Id	on Chromatography										
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac				
Sulfate	85.4	5.00	mg/L			10/16/25 22:44	5				

5.00

mg/L

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200	0.00200		mg/L		10/17/25 08:30	10/21/25 17:45	1
Beryllium	<0.00100	0.00100		mg/L		10/17/25 08:30	10/21/25 17:45	1
Cadmium	<0.000200	0.000200		mg/L		10/17/25 08:30	10/21/25 17:45	1
Chromium	<0.00500	0.00500		mg/L		10/17/25 08:30	10/21/25 17:45	1
Lead	0.000653	0.000500		mg/L		10/17/25 08:30	10/21/25 17:45	1
Selenium	<0.00500	0.00500		mg/L		10/17/25 08:30	10/21/25 17:45	1

Eurofins Cedar Falls

Matrix: Ground Water

10/16/25 22:44

Client: Cedar Falls Utilities

Project/Site: Cedar Falls Ash Landfill

Client Sample ID: MW-1

Date Collected: 10/15/25 09:30 Date Received: 10/15/25 14:10 Lab Sample ID: 310-318109-2

Matrix: Ground Water

Method: EPA 200.8 - N	Metals (ICP/MS) (Continue	ed)					
Analyte	Result Qualifie	r RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
Silver	<0.00100	0.00100	mg/L		10/17/25 08:30	10/21/25 17:45	-
Barium	0.0714	0.00200	mg/L		10/17/25 08:30	10/21/25 17:45	
Calcium	101	0.500	mg/L		10/17/25 08:30	10/21/25 17:45	
Iron	0.343	0.100	mg/L		10/17/25 08:30	10/21/25 17:45	
Magnesium	20.6	0.500	mg/L		10/17/25 08:30	10/21/25 17:45	
Copper	<0.00500	0.00500	mg/L		10/17/25 08:30	10/21/25 17:45	•
Lithium	0.0875	0.0100	mg/L		10/17/25 08:30	10/21/25 17:45	
Molybdenum	0.148	0.00200	mg/L		10/17/25 08:30	10/21/25 17:45	
Boron	2.41	0.100	mg/L		10/17/25 08:30	10/21/25 17:45	
Aluminum	0.0892	0.0500	mg/L		10/17/25 08:30	10/21/25 17:45	
Zinc	<0.0200	0.0200	mg/L		10/17/25 08:30	10/21/25 17:45	•
Manganese	0.0347	0.0100	mg/L		10/17/25 08:30	10/21/25 17:45	
Cobalt	<0.000500	0.000500	mg/L		10/17/25 08:30	10/21/25 17:45	
Sodium	45.6	1.00	mg/L		10/17/25 08:30	10/21/25 17:45	•

Method: EPA 245.2 - Mercury (CVAA) Analyte Result Qualifier MDL Unit RL Prepared Analyzed Dil Fac Mercury <0.000200 0.000200 10/20/25 13:00 10/21/25 10:48 mg/L **General Chemistry** Analyte **Result Qualifier** RL **RL** Unit Prepared Analyzed Dil Fac pH (SM 4500 H+ B) 7.5 HF 1.0 SU 10/16/25 01:40

Client Sample ID: MW-4S

Date Collected: 10/15/25 09:55

Lab Sample ID: 310-318109-3

Matrix: Ground Water

Date Received: 10/15/25 14:10

Method: EPA 300.0 - Anions, Ion Chromatography										
	Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Sulfate	106		5.00		mg/L			10/16/25 22:55	5
	Chloride	15.4		5.00		mg/L			10/16/25 22:55	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/17/25 08:30	10/21/25 17:51	1
Beryllium	<0.00100		0.00100		mg/L		10/17/25 08:30	10/21/25 17:51	1
Cadmium	<0.000200		0.000200		mg/L		10/17/25 08:30	10/21/25 17:51	1
Chromium	<0.00500		0.00500		mg/L		10/17/25 08:30	10/21/25 17:51	1
Lead	<0.000500		0.000500		mg/L		10/17/25 08:30	10/21/25 17:51	1
Selenium	<0.00500		0.00500		mg/L		10/17/25 08:30	10/21/25 17:51	1
Silver	<0.00100		0.00100		mg/L		10/17/25 08:30	10/21/25 17:51	1
Barium	0.0548		0.00200		mg/L		10/17/25 08:30	10/21/25 17:51	1
Calcium	123		0.500		mg/L		10/17/25 08:30	10/21/25 17:51	1
Iron	0.124		0.100		mg/L		10/17/25 08:30	10/21/25 17:51	1
Magnesium	27.7		0.500		mg/L		10/17/25 08:30	10/21/25 17:51	1
Copper	<0.00500		0.00500		mg/L		10/17/25 08:30	10/21/25 17:51	1
Lithium	0.0330		0.0100		mg/L		10/17/25 08:30	10/21/25 17:51	1
Molybdenum	0.0527		0.00200		mg/L		10/17/25 08:30	10/21/25 17:51	1
Boron	2.78		0.100		mg/L		10/17/25 08:30	10/21/25 17:51	1
Aluminum	<0.0500		0.0500		mg/L		10/17/25 08:30	10/21/25 17:51	1
Zinc	<0.0200		0.0200		mg/L		10/17/25 08:30	10/21/25 17:51	1

Eurofins Cedar Falls

Client: Cedar Falls Utilities

Project/Site: Cedar Falls Ash Landfill

Client Sample ID: MW-4S

Date Collected: 10/15/25 09:55 Date Received: 10/15/25 14:10 Lab Sample ID: 310-318109-3

Prepared

Matrix: Ground Water

Analyzed

10/16/25 01:44

Job ID: 310-318109-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.485		0.0100		mg/L		10/17/25 08:30	10/21/25 17:51	1
Cobalt	0.000885		0.000500		mg/L		10/17/25 08:30	10/21/25 17:51	1
Sodium	28.8		1.00		mg/L		10/17/25 08:30	10/21/25 17:51	1
Method: EPA 245.2 - Me	rcury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000200		0.000200		mg/L		10/20/25 13:00	10/21/25 10:50	1

Lab Sample ID: 310-318109-4 **Client Sample ID: MW-2 Matrix: Ground Water**

RL

1.0

RL Unit

SU

Date Collected: 10/15/25 10:25

Result Qualifier

7.3 HF

Date Received: 10/15/25 14:10

Analyte

pH (SM 4500 H+ B)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	29.0		5.00		mg/L			10/16/25 23:07	5
Chloride	10.4		5.00		mg/L			10/16/25 23:07	5
Method: EPA 200.8 - Met	als (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/17/25 08:30	10/21/25 17:54	1
Beryllium	<0.00100		0.00100		mg/L		10/17/25 08:30	10/21/25 17:54	1
Cadmium	<0.000200		0.000200		mg/L		10/17/25 08:30	10/21/25 17:54	1
Chromium	<0.00500		0.00500		mg/L		10/17/25 08:30	10/21/25 17:54	1
Lead	<0.000500		0.000500		mg/L		10/17/25 08:30	10/21/25 17:54	1
Selenium	<0.00500		0.00500		mg/L		10/17/25 08:30	10/21/25 17:54	1
Silver	<0.00100		0.00100		mg/L		10/17/25 08:30	10/21/25 17:54	1
Barium	0.0618		0.00200		mg/L		10/17/25 08:30	10/21/25 17:54	1
Calcium	105		0.500		mg/L		10/17/25 08:30	10/21/25 17:54	1
Iron	0.521		0.100		mg/L		10/17/25 08:30	10/21/25 17:54	1
Magnesium	20.5		0.500		mg/L		10/17/25 08:30	10/21/25 17:54	1
Copper	<0.00500		0.00500		mg/L		10/17/25 08:30	10/21/25 17:54	1
Lithium	0.0117		0.0100		mg/L		10/17/25 08:30	10/21/25 17:54	1
Molybdenum	0.0542		0.00200		mg/L		10/17/25 08:30	10/21/25 17:54	1
Boron	0.298		0.100		mg/L		10/17/25 08:30	10/21/25 17:54	1
Aluminum	<0.0500		0.0500		mg/L		10/17/25 08:30	10/21/25 17:54	1
Zinc	<0.0200		0.0200		mg/L		10/17/25 08:30	10/21/25 17:54	1
Manganese	0.313		0.0100		mg/L		10/17/25 08:30	10/21/25 17:54	1
Cobalt	0.000556		0.000500		mg/L		10/17/25 08:30	10/21/25 17:54	1
Sodium	9.71		1.00		mg/L		10/17/25 08:30	10/21/25 17:54	1
Method: EPA 245.2 - Mer	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000200		0.000200		mg/L		10/20/25 13:00	10/21/25 10:52	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SM 4500 H+ B)	7.4	HF	1.0		SU			10/16/25 01:42	1

Eurofins Cedar Falls

Client Sample Results

Client: Cedar Falls Utilities Job ID: 310-318109-1

Project/Site: Cedar Falls Ash Landfill

Client Sample ID: MW-3S Lab Sample ID: 310-318109-5

Date Collected: 10/15/25 11:00 **Matrix: Ground Water**

Date Received: 10/15/25 14:10

Analyte

pH (SM 4500 H+ B)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Sulfate	13.9		5.00		mg/L			10/16/25 23:18	
Chloride	44.0		5.00		mg/L			10/16/25 23:18	
Method: EPA 200.8 -	Metals (ICP/MS)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	<0.00200		0.00200		mg/L		10/17/25 08:30	10/21/25 18:02	
Beryllium	<0.00100		0.00100		mg/L		10/17/25 08:30	10/21/25 18:02	
Cadmium	<0.000200		0.000200		mg/L		10/17/25 08:30	10/21/25 18:02	
Chromium	<0.00500		0.00500		mg/L		10/17/25 08:30	10/21/25 18:02	
_ead	<0.000500		0.000500		mg/L		10/17/25 08:30	10/21/25 18:02	
Selenium	<0.00500		0.00500		mg/L		10/17/25 08:30	10/21/25 18:02	
Silver	<0.00100		0.00100		mg/L		10/17/25 08:30	10/21/25 18:02	
Barium	0.0505		0.00200		mg/L		10/17/25 08:30	10/21/25 18:02	
Calcium	103		0.500		mg/L		10/17/25 08:30	10/21/25 18:02	
ron	<0.100		0.100		mg/L		10/17/25 08:30	10/21/25 18:02	
Magnesium	25.2		0.500		mg/L		10/17/25 08:30	10/21/25 18:02	
Copper	<0.00500		0.00500		mg/L		10/17/25 08:30	10/21/25 18:02	
₋ithium	<0.0100		0.0100		mg/L		10/17/25 08:30	10/21/25 18:02	
Molybdenum	<0.00200		0.00200		mg/L		10/17/25 08:30	10/21/25 18:02	
Boron	0.106		0.100		mg/L		10/17/25 08:30	10/21/25 18:02	
Aluminum	<0.0500		0.0500		mg/L		10/17/25 08:30	10/21/25 18:02	
Zinc	<0.0200		0.0200		mg/L		10/17/25 08:30	10/21/25 18:02	
Manganese	<0.0100		0.0100		mg/L		10/17/25 08:30	10/21/25 18:02	
Cobalt	<0.000500		0.000500		mg/L		10/17/25 08:30	10/21/25 18:02	
Sodium	14.9		1.00		mg/L		10/17/25 08:30	10/21/25 18:02	
Method: EPA 245.2 -	Mercury (CVAA)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.000200	-	0.000200		mg/L		10/20/25 13:00	10/21/25 11:35	

RL

1.0

RL Unit

SU

Prepared

Analyzed

10/16/25 01:43

Result Qualifier

7.5 HF

Client: Cedar Falls Utilities

Project/Site: Cedar Falls Ash Landfill

Client Sample ID: MW-5S

Date Collected: 10/15/25 09:00 Date Received: 10/15/25 14:10

Lab Sample ID: 310-318109-1

Matrix: Ground Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0		5	470621	ZRI4	EET CF	10/16/25 22:09
Total/NA	Prep	200.8			470387	RLT9	EET CF	10/17/25 08:30
Total/NA	Analysis	200.8		4	473623	NFT2	EET CF	11/14/25 12:31
Total/NA	Prep	200.8			470387	RLT9	EET CF	10/17/25 08:30
Total/NA	Analysis	200.8		1	470906	NFT2	EET CF	10/21/25 17:42
Total/NA	Prep	245.1			470611	RLT9	EET CF	10/20/25 13:00
Total/NA	Analysis	245.2		1	470872	RLT9	EET CF	10/21/25 10:46
Total/NA	Analysis	SM 4500 H+ B		1	470257	ZJX4	EET CF	10/16/25 01:45

Client Sample ID: MW-1

Date Collected: 10/15/25 09:30

Date Received: 10/15/25 14:10

Matrix: Ground Water

Duan Tuna	Batch	Batch	D	Dilution	Batch	Amalust	1 -1-	Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0		5	470621	ZRI4	EET CF	10/16/25 22:44
Total/NA	Prep	200.8			470387	RLT9	EET CF	10/17/25 08:30
Total/NA	Analysis	200.8		1	470906	NFT2	EET CF	10/21/25 17:45
Total/NA	Prep	245.1			470611	RLT9	EET CF	10/20/25 13:00
Total/NA	Analysis	245.2		1	470872	RLT9	EET CF	10/21/25 10:48
Total/NA	Analysis	SM 4500 H+ B		1	470257	ZJX4	EET CF	10/16/25 01:40

Client Sample ID: MW-4S Lab Sample ID: 310-318109-3 Date Collected: 10/15/25 09:55 **Matrix: Ground Water**

Date Received: 10/15/25 14:10

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0			470621	ZRI4	EET CF	10/16/25 22:55
Total/NA	Prep	200.8			470387	RLT9	EET CF	10/17/25 08:30
Total/NA	Analysis	200.8		1	470906	NFT2	EET CF	10/21/25 17:51
Total/NA	Prep	245.1			470611	RLT9	EET CF	10/20/25 13:00
Total/NA	Analysis	245.2		1	470872	RLT9	EET CF	10/21/25 10:50
Total/NA	Analysis	SM 4500 H+ B		1	470257	ZJX4	EET CF	10/16/25 01:44

Lab Sample ID: 310-318109-4 Client Sample ID: MW-2 Date Collected: 10/15/25 10:25 **Matrix: Ground Water**

Date Received: 10/15/25 14:10

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0			470621	ZRI4	EET CF	10/16/25 23:07
Total/NA	Prep	200.8			470387	RLT9	EET CF	10/17/25 08:30
Total/NA	Analysis	200.8		1	470906	NFT2	EET CF	10/21/25 17:54
Total/NA	Prep	245.1			470611	RLT9	EET CF	10/20/25 13:00
Total/NA	Analysis	245.2		1	470872	RLT9	EET CF	10/21/25 10:52
Total/NA	Analysis	SM 4500 H+ B		1	470257	ZJX4	EET CF	10/16/25 01:42

Eurofins Cedar Falls

Lab Chronicle

Client: Cedar Falls Utilities Job ID: 310-318109-1

Project/Site: Cedar Falls Ash Landfill

Client Sample ID: MW-3S

Date Collected: 10/15/25 11:00 Date Received: 10/15/25 14:10 Lab Sample ID: 310-318109-5

Matrix: Ground Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0			470621	ZRI4	EET CF	10/16/25 23:18
Total/NA	Prep	200.8			470387	RLT9	EET CF	10/17/25 08:30
Total/NA	Analysis	200.8		1	470906	NFT2	EET CF	10/21/25 18:02
Total/NA	Prep	245.1			470615	RLT9	EET CF	10/20/25 13:00
Total/NA	Analysis	245.2		1	470872	RLT9	EET CF	10/21/25 11:35
Total/NA	Analysis	SM 4500 H+ B		1	470257	ZJX4	EET CF	10/16/25 01:43

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Definitions/Glossary

Client: Cedar Falls Utilities Job ID: 310-318109-1

Project/Site: Cedar Falls Ash Landfill

Qualifiers

General Chemistry

Qualifier Description

HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Cedar Falls

Accreditation/Certification Summary

Client: Cedar Falls Utilities Job ID: 310-318109-1

Project/Site: Cedar Falls Ash Landfill

Laboratory: Eurofins Cedar Falls

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		am	Identification Number	Expiration Date			
lowa	State		007	12-01-25			
0 ,	•		certified by the governing authori	ty. This list may include analyt			
0 ,	s are included in this repor does not offer certification.		certified by the governing authori	ity. This list may include analyt			
0 ,	•		certified by the governing authori Analyte	ity. This list may include analyt			

3

4

0

9

10

44

Method Summary

Client: Cedar Falls Utilities

Project/Site: Cedar Falls Ash Landfill

Job ID: 310-318109-1

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	EPA	EET CF
200.8	Metals (ICP/MS)	EPA	EET CF
245.2	Mercury (CVAA)	EPA	EET CF
SM 4500 H+ B	pH	SM	EET CF
200.8	Preparation, Total Metals	EPA	EET CF
245.1	Preparation, Mercury	EPA	EET CF

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

2

3

4

7

8

9

10

Environment Testing America

Cooler/Sample Receipt and Temperature L 🗓 . जाग

Client Information	
Client: Terralon	
City/State: City/State: STATE STATE	Project. ///297
Receipt Information ' 🌸 🌭 🖺 とせんかく 🏌 **	
Date/Time DATE TIME Received. 1018 25 44/0	Received By:
Delivery Type ⁻ UPS FedEx	☐ FedEx Ground ☐ US Mail ☐ Spee-Dee
☐ Lab Courier ☐ Lab Field Services	Client Drop-off Other
Condition of Cooler/Containers	·> * 6.
Sample(s) received in Cooler? 🗂 Yes 🗌 No	If yes: Cooler ID.
Multiple Coolers? Yes No	If yes: Cooler # of
Cooler Custody Seals Present?	If yes: Cooler custody seals intact? Yes
Sample Custody Seals Present? Yes No	If yes: Sample custody seals intact? Yes
Trıp Blank Present? Yes No	If yes: Which VOA samples are in cooler? ↓
Temperature Record *。 やが はなべ さいじょう	不是一点。
Coolant.	Other: NONE
Thermometer ID: BB	Correction Factor (°C).
• Temp Blank Temperature - If no temp blank, or temp blank te	mperature above criteria, proceed to Sample Container Temperature
Uncorrected Temp (°C):	Corrected Temp (°C): 6,6
• Sample Container Temperature 🐫 🤔 💮 👌 🔒	· 教師 山下水道 10 10 10 10 10 10 10 10 10 10 10 10 10
Container(s) used.	CONTAINER 2
Uncorrected Temp (°C):	
Corrected Temp (°C).	
Exceptions Noted	and the first that he are the first of the
If temperature exceeds criteria, was sample(s) rece a) If yes: Is there evidence that the chilling process	
(e g , bulging septa, broken/cracked bottles, frozen	·
NOTE If yes, contact PM before proceeding. If no, proceeding. Additional Comments:	eed with login

Document CED-P-SAM-FRM45521 Revision. 26 Date 27 Jan 2022

Chain of Custody Record

653526 eurofins Environment Testing

																			1 America
	Regu	latory Pro	gram: [] bw [NPDES		RCR	Α	Other										TAL-8210
Çlient Contact		anager: 🛴		Am					Dans		Ame:	Dat	e:/C	2/1	5/.	25			COC No
Company Name Ledar Falls Utilities		durd, u							,								30hi	40	/ of/_ COCs
Address 1 Utility Porkway Pobox 769		Analysis T				Т					T			T					Sampler: Corner Osoblen
City/State/Zip Ledor Fails, IA 50613	☐ CALEN	DAR DAYS	☑ wo	RKING DAY	'S		1												For Lab Use Only:
Phone 3/9 - 268 5300	TA	T if different fro	om Below			;													Walk-ın Client:
Fax.	1 🗆		weeks								11							ll	Lab Sampling
Project Name Leversee Rud Ash Landfill		1	week (- 1.		5 3	-		ω					-					
Site / edar F-alls Ash Lond + 11	1 6		days	da	アー		3	8	270										Job / SDG No 13257063
PO#			day			교 등	+	6/61	70										
			Sample		7	Sa	7	61	44	1	11			-					
	Sample	Sample	Type		# of	De C	-	5	713									ll	
Sample Identification	Date	Time	(C=Comp, G=Grab)	Matrix	Cont.		h H		7										Sample Specific Notes
MW-55 101	10/20	0100	7	CW	2			7				***************************************							
	15/25		<u> (</u> -	1		\mathbb{H}	1	Δ	실실	_	-			+	\vdash	-+	_	Н	
MW-1		0930	<u> (-</u>	Cow	2	n	Δ	Χ	ХД		++	4		_	\perp				
MW-45		0955	6	GW	2	N	X	X	XX										
o Mw-2		1025	6	CW	2	M	X	\times	X[X]			1							
Page 4w-3S		1100	6	G war	2	.V	X	X	\times										
0							1				11			1			1		
of						\vdash	1		+	-	+	+		+	+	\dashv			
17						$oxed{+}$	+	\vdash	\dashv	+	++	_		+		-	+		
						-	1	\dashv		_	++	_	-	_	+				
						4	_		\dashv	_	14								
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3;	5=NaOH;	6= Other _	angerige There-besides are a tolerous		n Kanadhara												1	ΙŞ	and the state of t
Possible Hazard Identification:						s	ampl	e Di	sposal	(A fe	e may	be ass	esse	d if s	ampl	es are	retai	ned	longer than 1 month)
Are any samples from a listed EPA Hazardous Waste? Pleas Comments Section if the lab is to dispose of the sample	e List any f	EPA Waste	Codes for	the samp	ole in the	€													
Non-Hazard Flammable Skin Irritant	Poison	ı B	Unkn	own		\dashv	Пе	Return	to Client		_	Disposa	ıl hv i a	ah		Ar	chive fo	or .	Months
Special Instructions/QC Requirements & Comments:											A	1	0, 20						
Pleuse emuil results to	Bub	berym	ona 1	terra	lun	10	m		4	0	davi	J.,	In	205	@	4	- n	et	net
	Custody S	ieal No								Temp	(°C) (Dbs'd_			Corr	d		_	Therm ID No
Custody Seals Intact: Yes No Relinquished by Conner Bohkin	Company:	Terrai	con 10	Date/Ti	me/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\) R	leceiv	ed b	ير رُتلا		-		Company ⁻						Date/Time /4/0
Selinquished by:	Company ⁻			Date/Ti			eceiv	_				-	C	Compa	any ⁻				Date/Time
Relinquished by	Company.	•	•	Date/Ti	me	R	eceiv	ed ir	Labora	tory	by.		_	Compa	any [.]				Date/Time
<u> </u>	L								\checkmark	<u> </u>									1415/25 LMb

Client: Cedar Falls Utilities

Job Number: 310-318109-1

Login Number: 318109 List Source: Eurofins Cedar Falls

List Number: 1

Creator: Robison, Jessie

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
ls the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Appendix F Semi-Annual Inspection Reports

Leversee Road Ash Landfill Spring Inspection April 01, 2025

The spring inspection of the Leversee Road Landfill was completed over two days on March 04, 2025, and March 12, 2025.

There has been substantial activity at the landfill since the annual inspection and AWQR in October 2024. Cedar Falls Utilities Gas and Water Construction were on site for approximately two weeks at the end of January and the beginning of February this year during a warm spell with temperatures in the upper forties to middle fifties with a good firm frost in the ground.

The entire fence line of the landfill was grubbed of trees and shrubs exposing the fence to view. Approximately seventy-five truckloads of wooded materials were taken to the local city composting facility.

The fence has been deemed in enough disrepair over the last two inspections to conclude that replacement is necessary. Walk-throughs were performed with two contractors to measure the fence-line and solicit bid for replacement. Internal discussions and advice from outside counsel recommended a fence consisting of four-foot-high commercial galvanized material with a sixteen-foot single panel entry gate and a ten-foot double swing gate at the western boundary of the property to allow for access to the exterior perimeter of the fence for maintenance.

The overall condition of the cap is unremarkable with no erosion evident and sufficient vegetation rooted. There are noticeably young trees starting to grow sporadically over the cap that will need to be removed this summer. Grounds has already been consulted to formulate a plan. The tall foliage around the base of the cap was mowed down in mid-February.

Removal of the trees along the fence perimeter have exposed two mounds of fill which will need to be levelled before replacement of the fence can begin, and much of the site has mulch debris from the tree removal that grounds will rake up this spring. The south side of the landfill has had deep ruts made from vehicle traffic after the frost thawed. Those will also need to be smoothed out.

The wells were observed as being intact, locked, and untampered with. The new fence will be moved in approximately six feet to allow access on the outside perimeter for maintenance however, it will have to be moved back out to the property line around the perimeter wells. It

should be noted that the wells now have complete unobstructed access due to removal of the vegetation and sampling with be much easier in the future.

Maintenance Performed:

- 1. The perimeter of the landfill and roadway were mowed.
- 2. The entire fence-line was grubbed of trees and vegetation this winter/ spring.
- 3. Assessment of a replacement fence and bids to replace were solicited.

Recommendations:

- 1. Remove volunteer trees on the cap.
- 2. Grade the mounds of fill left on the site after capping.
- 3. Rake the remaining tree mulch on the site and repair ruts.
- 4. Completely replace the fence with new four-foot-high commercial fence.

David S. Ames

David Ames MSc, CEP-IT Environmental Compliance Coordinator Cedar Falls Utilities

Leversee Road Ash Landfill Fall Inspection September 25, 2025

The Fall inspection of the Leversee Road Landfill was completed on Thursday, September 25, 2025. The weather was mostly sunny, 78 degrees and slightly windy. The entrance gate was found locked, and no foul activity was noticed. The project to replace the perimeter fence has been completed.

All wells were inspected and were in good repair. The well casings have been repainted a bright yellow and all locks were found to locked and functional in preparation for purging the wells next week. Terracon will perform annual well sampling for the AWQR on October 15'th.

A drive around the perimeter fence showed no unauthorized entry with no damage to the fence. There is no vegetation encroaching on the fence line, and no trees that look ready for imminent shedding of branches.

The perimeter fence has been replaced with a four-foot-high galvanized commercial grade chain link, approximately thirty-two-hundred feet long. There are two gates, a sixteen-foot entry gate that was placed about twenty feet inset of the old gate, and a ten-foot access gate on the west end of the landfill near MW-2.

The condition of the cap is excellent with mowed vegetation. There is no evidence of trees other than a minor number of small saplings which will get mowed over the next time the grounds department is there. The vegetation consists of a mixture of alfalfa, brome, fescue, and orchard grass with a mix of small woody brush.

Grass has been seeded around the entire perimeter of the fence due to the removal of vegetation and disturbance of the topsoil. Half of this grass has taken root and is growing well. The rest will need to be re-seeded at least twice, before winter, and this spring.

Maintenance Performed:

- 1. Entire fence line was replaced.
- 2. Wells were repainted a bright yellow.
- 3. Cap and surrounding vegetation were mowed.
- 4. Perimeter fence line was seeded.

Recommendations:

- 1. Perform more frequent inspections to detect problems with falling trees.
- 2. Re-seed the perimeter fence line to promote establishment of grasses.

David Ames

David Ames MSc, CEP-IT Environmental Compliance Coordinator Cedar Falls Utilities

