SCS ENGINEERS

Transmittal

West Des Moines, IA

PROJECT: Mahaska Co,FY26 Env Comp,IA

27224360.26

DATE: 11/23/2025

SUBJECT: Mahaska County Sanitary

Landfill, Closed MSWLF Units - 62-SDP-07-93C - 2024-2025 Biennial Water Quality Report TRANSMITTAL ID: 00001

PURPOSE: For

For your approval

VIA: Info Exchange

FROM

NAME COMPANY E		EMAIL	PHONE	
Nathan Ohrt West Des Moines, IA	SCS Engineers	NOhrt@scsengineers.com	+1-515-415-9220	

TO

NAME	COMPANY	EMAIL	PHONE
Mike Smith 502 East 9th Street Des Moines IA 50319- 0034 United States	Iowa, State of	mike.smith@dnr.iowa.gov	515-725-8200

REMARKS: Good morning Mike-

SCS Engineers, on behalf of the Mahaska County Solid Waste Management Commission, is submitting for download the 2024-2025 Biennial Water Quality Report for the closed Original/C&D and Meinders/Hartog MSWLF units at the Mahaska County Sanitary Landfill. If you have any questions or comments regarding this report, please contact me at the number below. Thank you.

Nathan Ohrt Senior Project Professional SCS Engineers West Des Moines, Iowa 319-331-9613 nohrt@scsengineers.com

Driven by Client Success

www.scsengineers.com

Transmittal

DATE: 11/23/2025
TRANSMITTAL ID: 00001

DESCRIPTION OF CONTENTS

QTY	DATED	TITLE	NOTES
1	11/23/2025	Mahaska County Sanitary Landfill, Closed MSWLF Units - 62-SDP-07-93C - 2024-2025 Biennial Water Quality Report.pdf	

COPIES:

Joe Farris (Mahaska County Solid Waste Management

Commission)

Christine Collier (SCS Engineers)
Nathan Ohrt (SCS Engineers)

Becky Jolly

SCS ENGINEERS

November 24, 2025 File No. 27224360.26

Mr. Brad Davison lowa Department of Natural Resources Land Quality Bureau 6200 Park Avenue Des Moines, Iowa 50321

Subject:

2024-2025 Biennial Water Quality Report

Mahaska County Sanitary Landfill

Original/C&D and Meinders/Hartog MSWLF Units

Permit No. 62-SDP-07-93C

Dear Brad:

SCS Engineers, on behalf of the Mahaska County Solid Waste Management Commission, has completed the required groundwater monitoring and statistical evaluation for the closed Original/C&D and Meinders/Hartog municipal solid waste landfill units at the Mahaska County Sanitary Landfill for the years 2024-2025. Services were performed in general accordance with the requirements of the 1989 lowa Administrative Code (IAC) 567-103(455B), the closure permit dated April 21, 1995 (Doc #27457), Permit Amendment #8 to the closure permit, issued February 26, 2021 (Doc #99859), which modified the groundwater monitoring requirements for the closed MSWLF units, and Permit Amendment #9, issued on August 13, 2024 (Doc #110684), that established an alternative two-year sampling and reporting schedule, with a subset of monitoring wells sampled annually and reporting occurring biennially. Please find enclosed a copy of the 2024-2025 Biennial Water Quality Report.

If you have any questions regarding this report, please contact Nathan Ohrt at (319) 331-9613.

Sincerely,

Nathan Ohrt

Senior Project Professional

Hun Olit

SCS Engineers

Timothy C. Buelow, P.E.

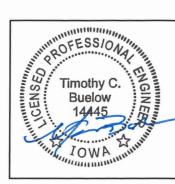
VP - Senior Project Advisor

SCS Engineers

NPO/TCB

Copies: Mr. Joe Farris, Mahaska County Solid Waste Management Commission

2024-2025 Biennial Water Quality Report


Mahaska County Sanitary Landfill Original/C&D and Meinders/Hartog MSWLF Units Permit No. 62-SDP-07-93C Oskaloosa, Iowa

SCS ENGINEERS

27224360.26 | November 2025

1690 All-State Court, Suite 100 West Des Moines, IA 50265 515-631-6160

Certification

I hereby certify that this engineering document was prepared by me or under my direct personal supervision and that I am a duly licensed Professional Engineer under the laws of the State of Lowa.

Date: 11/21/2025

Timothy C. Buelow, P.E.

License No. 14445

My license renewal date is December 31, 2025.

Pages or sheets covered by this seal:

All except Appendix B-1.

Table of Contents

Sect	ion			Page
1.0	Intro	duction		1
	1.1	Report	Priority	1
	1.2	Respon	se to DNR Correspondence	1
	1.3	Site Loc	cation	1
	1.4	Backgro	ound	1
	1.5	Samplir	ng Summary	1
2.0	Hydı	ogeologi	c Site Summary	4
	2.1	Geology	y and Hydrogeology	4
3.0	Mon	itoring W	ell Maintenance and Performance Evaluation	5
	3.1	Water L	_evel Measurements	5
	3.2	Ground	water Flow	5
	3.3	Well De	epth Evaluation	5
	3.4	Samplir	ng Point Observations	6
4.0	Eval	uation of	Water Quality Parameters	8
	4.1	Ground	water Data Evaluation	8
	4.2	Statistic	cal Evaluation	11
	4.3	QA/QC	Information	12
		4.3.1	Sample Collection and Sample Handling	13
		4.3.2	Analytical Sensitivity and Blanks	13
		4.3.3	Accuracy	13
		4.3.4	Precision	13
		4.3.5	Data Quality Summary	14
	4.4	Recomi	mendations for Future Monitoring	14
5.0	Gen	eral Com	ments	15
6.0	Refe	rences		16
			Figures	
			-	
Figur			oved Monitoring Network	
Figur	'e 2	Grour	ndwater Contours	7
			Tables	
Table	e 1	2024	-2025 Reporting Period Monitoring Summary	2
Table	e 2	Sumr	mary of Groundwater Levels and Well Performance	5
Table	e 3	2024	-2025 Well Depth Summary Table	6
Table	e 4	Statis	stically Significant Levels Above the GWPS	12
Table	e 5	2026	S-2027 AWQR Reporting Period Sampling Schedule	14

Appendices

Appendix A Field Sampling Forms

Appendix B-1 Laboratory Analytical Data Sheets

Appendix B-2 Data Validation Documentation

Appendix C 2024-2025 Analytical Data

Appendix D Mann-Kendall Trend Summary Table And Graphs
Appendix E Confidence Interval Summary Tables And Graphs

1.0 INTRODUCTION

SCS Engineers (SCS), on behalf of the Mahaska County Solid Waste Management Commission, has completed the required groundwater monitoring and statistical evaluation for the closed Original/C&D and Meinders/Hartog municipal solid waste landfill units (closed MSWLF units) at the Mahaska County Sanitary Landfill. This Biennial Water Quality Report (BWQR) was prepared in general accordance with the requirements of the 1989 lowa Administrative Code (IAC) 567-103, the closure permit dated April 25, 1995 (Doc #27457), and Permit Amendment #8 to the closure permit, issued February 26, 2021 (Doc #99859), which modified the groundwater monitoring requirements for the closed MSWLF units. Permit Amendment #9, issued on August 13, 2024 (Doc #110684), established an alternative two-year sampling and reporting schedule, with a subset of monitoring wells sampled annually and reporting occurring biennially. This report summarizes the 2024-2025 groundwater monitoring program for the closed MSWLF units.

1.1 REPORT PRIORITY

There are no items related to groundwater monitoring that require review or approval by the lowa Department of Natural Resources (DNR) at this time.

1.2 RESPONSE TO DNR CORRESPONDENCE

There is currently no correspondence from the DNR requiring a response regarding groundwater quality items.

1.3 SITE LOCATION

The closed MSWLF units are depicted in **Figure 1**, Approved Monitoring Network. The closed MSWLF units are located approximately five miles south of Oskaloosa, Iowa. The closed MSWLF units consist of the original site, located in the SE $\frac{1}{4}$ and the E $\frac{1}{2}$ of the SW $\frac{1}{4}$ of the NW $\frac{1}{4}$ of Section 18, T74N, R15W of Mahaska County, Iowa. The fill area of the original site is approximately 26.4 acres. The C&D site occupies a portion of the SW $\frac{1}{4}$ of the NE $\frac{1}{4}$ of Section 18, T74N, R15W of Mahaska County, Iowa. The fill area at the C&D site is approximately 3.3 acres. The Meinders site is located in a portion of the NW $\frac{1}{4}$ of Section 13, T74N, R16W of Mahaska County, Iowa. The fill area at the Meinders site is approximately 10.3 acres. The Hartog site is a small cell (approximately one acre) located northwest of the Meinders site.

1.4 BACKGROUND

According to the 2020 Annual Water Quality Report (Doc #99000):

The Original/C&D and Meinders/Hartog sites are closed landfill sites that currently do not accept waste. Final cover, consisting of 2-feet of clay and 1-foot of topsoil and rooting zone, were placed on the landfills in 1987. Follow up cover testing on the sites was conducted in 1992 to check material permeability and thickness. The sites were accepted for post-closure care by the DNR in 1993. The active site for the Mahaska County Sanitary landfill is located at the Binns and Stevens site.

1.5 SAMPLING SUMMARY

Groundwater monitoring, conducted in accordance with Permit Amendment #9, took place in May 2024 and May 2025. Table 1 summarizes the monitoring points and sampling conducted during this reporting period.

Table 1. 2024-2025 Reporting Period Monitoring Summary

Monitoring Well	May 2024*	May 2025
MW-1A	Beryllium, Cadmium, Cobalt, Nickel, TSS	
MW-2A	Beryllium, Cadmium, Cobalt, Nickel, TSS	
MW-8	Beryllium, Cadmium, Cobalt, Nickel, TSS	Beryllium, Cadmium, Cobalt, Nickel, TSS
MW-12	Beryllium, Cadmium, Cobalt, Nickel, TSS	
MW-15	Beryllium, Cadmium, Cobalt, Nickel, TSS	Beryllium, Cadmium, Cobalt, Nickel, TSS

TSS: Total Suspended Solids

The reporting period for this report is the 2024-2025 calendar years and includes the May 2024 and May 2025 sampling events. The field sampling forms and laboratory analytical data sheets for the May 2024 and May 2025 sampling events are included in **Appendices A and B-1**, respectively.

^{* -} Sampling in 2024 was performed before the biennial sampling frequency was established. The entirety of the data collected in 2024 was included in the statistical evaluation.

Site Map

Legend

A HMSP Monitoring Well

Approximate Monitoring Well Location Approximate Gas Probe Location

_____ Approximite Limits of Property Lines - Hartog & Meinders Site

Approximate Property Line - Original and C&D Sites

Hartog Site Waste Boundary

Meinders Site Waste Boundary Original Site Waste Boundary

C&D Site Waste Boundary

Mahaska County Sanitary Landfill Original & C&D Sites and Hartog & Meinders Oskaloosa, Iowa

Project No: 27224360.26 Drawing Date: September 2025

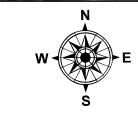


Figure 1

1,320 330

2.0 HYDROGEOLOGIC SITE SUMMARY

2.1 GEOLOGY AND HYDROGEOLOGY

Terracon Environmental, Inc. conducted a hydrogeologic investigation of the closed MSWLF unit areas in March 1994. The report entitled *Hydrogeological Assessment Report, Mahaska County Sanitary Landfill, Original, C&D, and Meinders Site* (Doc #27460), provided a detailed description of the geology for the area of the closed MSWLF units. Excerpts from the report are included below.

"... the upper portion of the landfill generally consists of glacial deposits, with exception of the alluvial deposits found in the vicinity of monitoring well nest MW7A&B. These glacial deposits consist of brown sandy lean clay (oxidized till). Pennsylvanian age shale generally underlies the glacial and alluvial deposits at the site. The stratigraphy appears to indicate the alluvial deposits have cut away and replaced a portion of the till in the southern part of the Meinders site. In general, the base of the landfilled waste appears to be overlying shale at the Meinders and the Original/C&D sites."

"Based on the groundwater levels, it appears a water table system has developed in the upper glacial and alluvial deposits. Based on the available information, it appears this system is the uppermost aquifer...Figure 15 [not included] shows groundwater flow is generally to the southwest across the Meinders site and appears to discharge to the unnamed tributary of Muchakinock Creek. Figure 15 also indicates groundwater flow across the Original/C&D site is to the south toward the unnamed tributary of Muchakinock Creek...Based on the anisotropy and the water table gradient in the glacial deposits, it is assumed that groundwater potentially impacted by the landfill would flow predominantly toward the tributaries rather than migrating into the underlying bedrock units."

The Alternative Source Demonstration Report, dated April 29, 2016 (Doc #86132), included a summary of site mining activities and the use of mine spoils in landfilling operations at the active Binns & Stevens MSWLF unit, which contributed to a documented impact on groundwater quality caused by acid mine drainage. Similar use of strip-mined areas and mine spoils for landfilling was applied in the closed MSWLF units. An excerpt of the report is included below.

Historical surface strip coal mining was conducted at the landfill site in the 1930s and continued up to about the late 1960s. Several historical aerial photographs are shown on Exhibit C-1 through C-8 in Appendix C [not included]. The aerial photographs show the approximate landfill boundaries and monitoring well locations. The 1930s aerial indicates that land use at the site was primarily agricultural. Surface strip mining is apparent on the aerial photographs from the 1940s through the 1960s.

The DNR agreed with this determination in correspondence for the closed sites dated April 9, 2020 (Doc #97431), stating the following:

The report is acceptable as received and details semi-annual groundwater sampling that took place in 2019. As in the past, multiple groundwater sampling locations had concentrations of metals in groundwater that exceeded the state maximum contaminant level (MCL). A previous report for the operating site indicates that these high metals concentrations are related to low groundwater pH, which is known to mobilize metal cations exposed as a result of past strip mining operations at the site. It is apparent that similar processes are likely operating at the closed sites.

3.0 MONITORING WELL MAINTENANCE AND PERFORMANCE EVALUATION

The hydrologic monitoring system was evaluated to assess the reliability of the monitoring wells' performance using the following tasks:

- The groundwater elevations were compared to the screened interval of the monitoring wells.
- Water level conditions in the monitoring wells were reviewed to evaluate possible changes in the hydrologic setting/flow paths.
- Well depths were measured to evaluate integrity and siltation.
- A visual inspection of well integrity was performed during the sampling event.

3.1 WATER LEVEL MEASUREMENTS

The results of the water level measurements collected during the 2024 and 2025 sampling events are presented in Table 2. Shaded cells indicate water elevations within the screened interval

Table 2. Summary of Groundwater Levels and Well Performance

Monitoring Well	Top of Screen	May 2024 Groundwater Elevation	May 2025 Groundwater Elevation
MW-1A	756.8	759.35	
MW-2A	703.8	703.68	
MW-8	682.7	691.59	692.07
MW-12	706.3	711.45	
MW-15	715.2	713.78	713.96

Notes: All measurements in feet above mean sea level.

Shaded cells indicate water levels within the screened interval.

During the 2024 and 2025 sampling events, water levels were observed to be within the screened interval in monitoring wells MW-2A and MW-15 and above the screened interval in monitoring wells MW-1A, MW-8, and MW-12. It is recommended that the current monitoring program be continued with no proposed changes.

3.2 GROUNDWATER FLOW

Groundwater contours were developed using groundwater elevation data collected during the May 2025 sampling event and are shown in **Figure 2**. The groundwater contours indicate flow generally to the south beneath the Original & C&D MSWLF units. Beneath the Meinders & Hartog MSWLF units, flow from the north and east converges into a generally southwest direction. The flow directions are generally consistent with previous evaluations of groundwater flow directions.

3.3 WELL DEPTH EVALUATION

SCS measured the well depths during the 2024-2025 sampling events. The monitoring well depths measured during this reporting period are included in Table 3.

Table 3. 2024-2025 Well Depth Summary Table

	Installed	May	2024	May 2025		
Monitoring Well	Well Depth (feet)	Measured Well Depth (feet)	Difference from Installed Depth (feet)	Measured Well Depth (feet)	Difference from Installed Depth (feet)	
MW-1A	44.6	43.4	1.2	Not measured	NA	
MW-2A	38.7	39.5	-0.8	Not measured	NA	
MW-8	27.6	27.3	0.3	27.4	0.2	
MW-12	19.1	20.2	-1.1	Not measured	NA	
MW-15	27.8	28.8	-1.0	28.9	-1.1	

The measured well depths were within 1.2 feet of the installed depths. Since the monitoring wells produced samples during this reporting period, it does not appear that siltation is adversely impacting the ability of the monitoring wells to produce samples consistently.

3.4 SAMPLING POINT OBSERVATIONS

No problems regarding the integrity of the monitoring wells were observed during this reporting period.

Groundwater Contours

Legend

Approximate Groundwater Contours Based on Field Measurments Taken on October 29-30, 2025

Approximate Monitoring Well

Approximite Limits of Property Lines - Hartog & Meinders Site

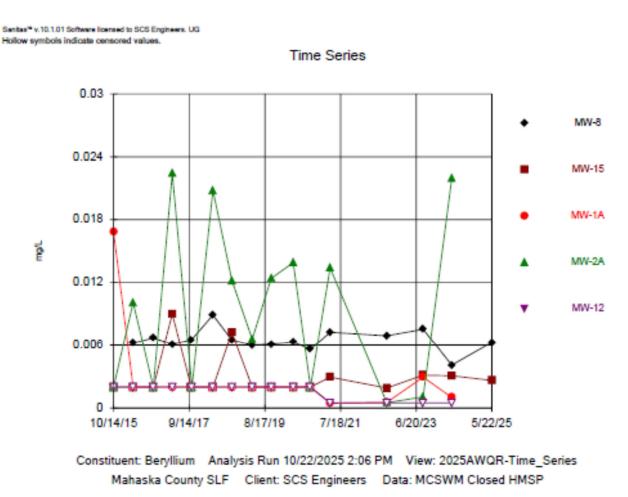
Approximate Gas Probe Location — — Hartog Site Waste Boundary Meinders Site Waste Boundary Original Site Waste Boundary

C&D Site Waste Boundary

Approximate Property Line - Original and C&D Sites

Mahaska County Sanitary Landfill Original & C&D Sites and Hartog & Meinders Oskaloosa, Iowa

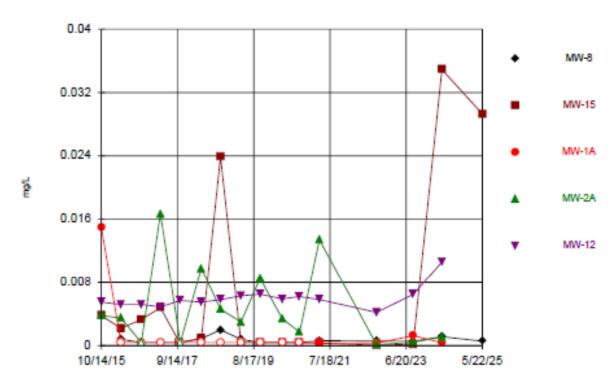
Project No: 27224360.26 Drawing Date: September 2025


Figure 2

1,320

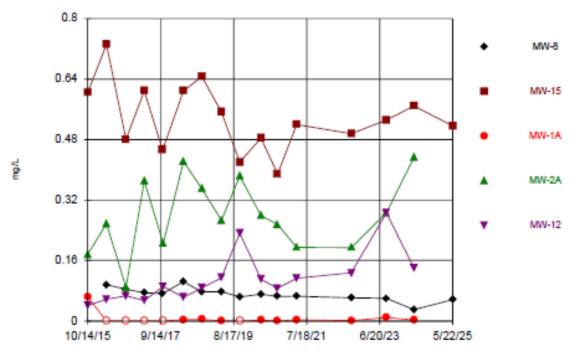
4.0 EVALUATION OF WATER QUALITY PARAMETERS

4.1 GROUNDWATER DATA EVALUATION


Analytical results for this reporting period are summarized in **Appendix C**, 2024-2025 Analytical Data. Historical laboratory analytical results prior to 2024 are available in the 2023 Annual Water Quality Report, dated October 31, 2013 (Doc #108129). Time series plots for the monitoring points at the closed MSWLF units are presented in the graphs below, followed by a discussion of the statistical findings.

The beryllium concentrations were generally steady, except for monitoring well MW-2A, where the 2022 and 2023 measured concentrations were the lowest in the historical dataset dating to 2015, while the 2024 sample was near a historical high. It is unclear what led to the elevated beryllium concentration; there was no elevated total suspended solids (TSS) concentration that may have contributed to the beryllium concentration. The beryllium concentration in monitoring well MW-2A will be reviewed in subsequent sampling events.

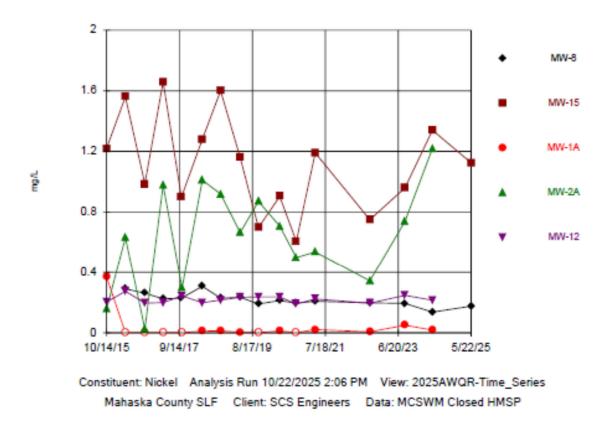
Santas* v.10.1.01 Software licensed to SCS Engineers, UG Hollow symbols indicate censored values.



Constituent: Cadmium Analysis Run 10/22/2025 2:06 PM View: 2025AWQR-Time_Series
Mahaska County SLF Client: SCS Engineers Data: MCSWM Closed HMSP

The cadmium concentrations were generally steady, except for monitoring well MW-12, which shows a slightly increasing concentration trend in recent sampling events, and a significant increase in monitoring well MW-15 in the 2024 and 2025 sampling events. As with beryllium, there was no elevated TSS concentration likely to have impacted the cadmium concentration in monitoring well MW-15. The cadmium concentration in monitoring well MW-15 will be reviewed in subsequent sampling events.

Sanitas* v.10.1.01 Software licensed to SCS Engineers. UQ Hollow symbols indicate consored values.



Constituent: Cobalt Analysis Run 10/22/2025 2:06 PM View: 2025AWQR-Time_Series

Mahaska County SLF Client: SCS Engineers Data: MCSWM Closed HMSP

Cobalt concentrations were generally stable, although the concentrations in monitoring well MW-2A increased during this reporting period to a historical high. The cobalt concentration in monitoring well MW-2A will be reviewed in subsequent sampling events.

Time Series

The nickel concentrations were generally stable, although the concentration measured in monitoring well MW-2A increased during this reporting period to a historical high. The nickel concentrations in monitoring well MW-2A will be reviewed in subsequent sampling events.

4.2 STATISTICAL EVALUATION

The statistical evaluation was performed using Mann-Kendall trend testing and confidence intervals, or confidence bands when statistically significant trends were present.

Mann-Kendall trend testing was performed at a 99% confidence level (α = 0.01). No statistically significant trends were identified. Negative Mann-Kendall statistics, although not necessarily statistically significant, indicate a decreasing concentration trend. Overall, of the constituent-monitoring well pairs analyzed, 14 of 19 (74%) had negative Mann-Kendall statistics, indicating generally stable groundwater conditions at the site. A Mann-Kendall summary table and graphs are included in **Appendix D**.

To further evaluate groundwater conditions, the measured concentrations were compared to the current lowa Statewide Standards for protected groundwater sources (Groundwater Protection Standards, GWPS). Table 4 summarizes the constituent-monitoring well pairs with concentrations measured at statistically significant levels (SSLs) above the GWPSs.

Table 4. Statistically Significant Levels Above the GWPS

	MW-1A	MW-2A	MW-8	MW-12	MW-15
Beryllium			X		
Cobalt		X	X	X	X
Nickel		X	X	X	X

The measured SSLs are similar to those from recent reporting periods. A confidence interval summary table and graphs are included in **Appendix E**.

The landfill areas (both the active Binns & Stevens site and the closed MSWLF units) were surface strip mined for coal from the 1930s to the late 1960s. The Alternative Source Demonstration Report, dated April 29, 2016 (Doc #86132), was prepared for the Binns & Stevens site to evaluate the likely source of elevated metals concentrations measured in groundwater samples. The report concluded that acid mine drainage was the likely source of the elevated metal concentrations.

Results from sampling indicate there is a high acid generating potential of the subsurface deposits and the presence of naturally occurring metals that are mobilized into site groundwater during acid mine drainage. The data collected at the site for mineralogy, metals in spoil and the ionic chemistry for groundwater support the conclusion that acid mine drainage is the source for elevated metals concentrations in monitoring wells at the site.

The DNR agreed with this determination for the closed MSWLF units in correspondence dated April 9, 2020 (Doc #97431), stating the following:

The report is acceptable as received and details semi-annual groundwater sampling that took place in 2019. As in the past, multiple groundwater sampling locations had concentrations of metals in groundwater that exceeded the state maximum contaminant level (MCL). A previous report for the operating site indicates that these high metals concentrations are related to low groundwater pH, which is known to mobilize metal cations exposed as a result of past strip mining operations at the site. It is apparent that similar processes are likely operating at the closed sites.

Based on the determination that elevated metal concentrations are due to impact from acid mine drainage rather than the closed MSWLF units, the SSLs in Table 4 are not indicative of a release from the closed MSWLF units.

4.3 QA/QC INFORMATION

The quality assurance/quality control (QA/QC) program for the closed MSWLF units follows protocols similar to those included in the Binns & Stevens MSWLF unit HMSP (Doc #75077). Data validation procedures are performed on analytical results for laboratory quality control samples, and a quality assurance assessment of the data is conducted as the data is generated. The QA review procedure provides documentation of the accuracy and precision of the analytical data and confirms that the analyses, when feasible based on the methods utilized, are sufficiently sensitive to detect constituents at levels below regulatory standards, where such standards exist. SCS then conducts QA/QC data validation of the produced data, which includes a review of sample handling, analytical

sensitivity, and blanks, accuracy, and precision. An explanation of the laboratory QA/QC and data validation procedures is described in more detail below.

4.3.1 Sample Collection and Sample Handling

Sample receipt forms were reviewed by SCS and checked to verify that samples were received in good condition and within the acceptable temperature range. Chain of custody records for the sampling event were reviewed, and it was confirmed that information was complete, custody was not breached, and samples were analyzed within the acceptable hold time. The sample collection and handling procedures met the acceptable criteria.

4.3.2 Analytical Sensitivity and Blanks

Laboratory QA/QC procedures and post-analysis data validation assist in producing data of acceptable quality and reliability. Eurofins is a certified laboratory in lowa that performed QA/QC procedures, including analyzing laboratory method blanks in association with samples collected for the project, to check for contributions to the analytical results that could be attributable to laboratory-based contamination. No method blank detections were indicated in the May 2024 and 2025 laboratory analytical data sheets.

4.3.3 Accuracy

Laboratory analytical accuracy can be assessed by evaluating the constituent recoveries from continuing calibration verification (CCV), laboratory control sample (LCS), and LCS duplicate (LCSD). LCS/LCSD samples assessed the accuracy of analytical procedures by checking the ability to recover constituents added to clean aqueous matrices. In some cases, the laboratory spiked project samples as matrix spike (MS) and MS duplicate (MSD) samples to assess the ability to recover constituents from a matrix similar to that of project samples. The post-analysis data validation conducted by SCS confirmed that the laboratory had performed QA/QC on its laboratory control samples and provided recommendations on how to proceed with data that may have been compromised. No data indicated accuracy issues during this reporting period.

4.3.4 Precision

According to <u>Practical Guide for Ground-Water Sampling</u>, Barcelona et al, November 1985, prepared in cooperation with the Robert S. Kerr Environmental Research Laboratory and the United States Environmental Protection Agency's Environmental Monitoring System Laboratory:

"Duplicate sample values which differ by less than ±50% relative difference indicate good error control."

A duplicate sample was collected during the sampling events to evaluate the precision of analytical measurements and the reproducibility of the sampling technique. Duplicate samples were chosen at random. The relative percent difference (RPD; difference between the sample and its field duplicate divided by the mean of the two) was calculated to evaluate the precision of the data. The RPD can be evaluated only if the results of the analyses for both duplicates are detected quantitatively (above the reporting limit).

The concentrations reported for the sample at monitoring point MW-8 and the duplicate sample MW-D during the May 2024 sampling event showed <50% relative difference for the analyzed constituents. This result indicates that a problem with sampling or analysis is unlikely to have occurred.

The concentrations reported for the sample at monitoring point MW-15 and the duplicate sample MW-D during the May 2025 sampling event showed <50% relative difference for the analyzed constituents. This result indicates that a problem with sampling or analysis is unlikely to have occurred.

4.3.5 **Data Quality Summary**

Based on the above QA/QC procedures and SCS's field sampling standard operating procedures (SOP), the groundwater samples collected during this reporting period are considered to be representative of site conditions at the locations and times they were obtained. Based on the QA review, no samples were rejected as unusable due to QC failures. The data validation checklists are in **Appendix B-2**, Data Validation Documentation. In general, the quality of the analytical data for this reporting period does not appear to have been compromised by analytical irregularities. Results affected by QC anomalies are qualified with the appropriate data flags, which are listed in the laboratory reports in **Appendix B-1**.

4.4 RECOMMENDATIONS FOR FUTURE MONITORING

In accordance with Permit Amendments #8 and #9, the recommended sampling schedule for the 2026-2027 reporting period is summarized in Table 5.

Table 5. 2026-2027 AWQR Reporting Period Sampling Schedule

Monitoring Well	2026 Sampling Event	2027 Sampling Event
MW-1A	Beryllium, Cadmium, Cobalt, Nickel, TSS	
MW-2A	Beryllium, Cadmium, Cobalt, Nickel, TSS	
MW-8		Beryllium, Cadmium, Cobalt, Nickel, TSS
MW-12	Beryllium, Cadmium, Cobalt, Nickel, TSS	
MW-15		Beryllium, Cadmium, Cobalt, Nickel, TSS

TSS: Total Suspended Solids

The groundwater quality at the Original/C&D and Meinders/Hartog MSWLF units is generally stable, indicating that the closed MSWLF units likely no longer pose a significant risk to human health and the environment from groundwater impacts associated with the waste in the MSWLF units.

5.0 GENERAL COMMENTS

The analysis and opinions expressed in this report are based upon data obtained from the samples collected at the indicated locations and from any other information discussed in this report. This report does not reflect any variation in subsurface stratigraphy, hydrogeology, or chemical concentrations that may occur between sampling locations or across the site. Actual subsurface conditions may vary and may not become evident without further exploration.

SCS has prepared this report for the exclusive use of our client for the specific application to the project discussed. No warranty is expressly stated or implied in this report. SCS has relied upon information furnished by others as noted in the report, and SCS accepts no responsibility for any deficiency, misstatements, or inaccuracy in this report as a result of misstatements, omissions, misrepresentations, fraudulent, or inaccurate information or data provided by others.

6.0 REFERENCES

- 1. Terracon Environmental, Inc. Hydrogeological Assessment Report, Mahaska County Sanitary Landfill, Original, C&D, and Meinders Site. March 1994 (Doc #27460)
- 2. Terracon Consultants, Inc. *Alternative Source Demonstration Report.* April 29, 2016 (Doc #86132)
- 3. Terracon Consultants, Inc. 2020 Annual Water Quality Report, Mahaska County Sanitary Landfill, Original/C&D and Meinders/Hartog Sites. November 2020. (Doc #99000)
- 4. SCS Engineers. 2023 Annual Water Quality Report, Mahaska County Sanitary Landfill, Original/C&D and Meinders/Hartog MSWLF Units. October 2023. (Doc #108129)

APPENDIX A Field Sampling Forms

Project:	Mahaska Cou	nty Sanitary L	andfill - Close	d			
Monitoring Well/Piezometer ID:			MW-1A			Date:	5/15/2024
Gradient:	Up			Sampler:	Konner Roth		
A. MW/PIEZON	METER CONDITION	ONS					
Well/Piezomet		Yes					
_itter/Standing	y Water?	No					
B. GROUNDW	ATER ELEVATION	N MEASUREM	ENT (+/- 0.01 fo	ot, MSL)			
	ll Total Depth (fe		43.4				
	ater Level (feet)		12.00				
	vater Elevation (,	759.35				
Equipment Use		Dedicated Tub	oing – Peristaltio	Pump			
C. WELL PURC					D E) (ED) (0.14)		
	FIEL	D PARAMETER	RS [stabilization o	riteriaj RECOR	D EVERY 3 MIN	UTES	
	Temperature	Dissolved	Conductivity	рН			
	(°C)	Oxygen	(µS/cm)	(S.U.)	ORP	Turbidity	
Time	10%	(mg/L)	+/- 10%	+/- 0.1	(mV)	(FNU)	
1:01 PM	Purging start tim	ne.					
1:04 PM	14.1	0.6	1858.2	7.45	-78.8	155.1	
1:07 PM	13.8	0.1	1887.0	7.62	-104.7	113.3	
1:10 PM	14.0	<0.1	1882.0	7.69	-121.4	86.2	
1:13 PM	13.8	<0.1	1888.2	7.78	-137.5	71.2	
	Parameters stab	oilized, sample c	ollected.				
Quantity of Wa	ater Removed fr	om Well (liters):	2.	1		
Was well pum	ped/bailed dry?			No)		
Γotal Amount	of Time Purged	(minutes:seco	nds):	12:00)		
Average Purge	e Rate (mL/min)):		175.00)		
D. WELL MAIN							
	require any futu	re maintenanc	e?	No			
If yes, explain:					•		
Additional Comments:	Color-Bown/blac	ck particles Od	or-None				

Project:	Mahaska Cou	nty Sanitary L	andfill - Close	d			
Monitoring Well/Piezometer ID:		MW-2A			Date:	5/15/2024	
Gradient:	Down			Sampler:	Konner Roth		
A. MW/PIEZON	IETER CONDITION	ONS					
Well/Piezomet	er Capped?	Yes					
itter/Standing	Water?	No					
B. GROUNDWA	ATER ELEVATION	N MEASUREM	ENT (+/- 0.01 fo	ot, MSL)			
Measured We	l Total Depth (fe	eet):	39.5				
nitial Static W	ater Level (feet)):	8.79				
	vater Elevation (· /	703.68				
Equipment Use	d:	Dedicated Tub	oing – Peristaltic	Pump			
. WELL PURC							
	FIEL	D PARAMETER	RS [stabilization o	riteria] RECOR	D EVERY 3 MIN	UTES	
	_		Specific				
	Temperature	Dissolved	Conductivity	pH (S.H.)	ODD	T. mbi alita	
Time	(°C) 10%	Oxygen (mg/L)	(µS/cm) +/- 10%	(S.U.) +/- 0.1	ORP (mV)	Turbidity (FNU)	
11:47 AM			17- 1076	-7- 0.1	(1114)	(1140)	
11:47 AM 11:50 AM	Purging start tim	1.3	2033.2	3.91	168.2	45.9	
11:53 AM	12.7	0.2	2034.0	3.96	159.1	26.8	
11:56 AM	12.6	<0.1	2038.8	3.98	156.0	20.6	
11:59 AM	12.6	<0.1	2036.1	3.99	154.0	18.4	
	12.0	0	2000.1	0.00	101.0	10.1	
	Parameters stab	oilized sample c	ollected				
Duantity of Mar				2.4	2		
	ater Removed fr	om vveli (liters).	2.2			
	ped/bailed dry?			No			
	of Time Purged	•	nds):	12:00			
Average Purge	e Rate (mL/min)	:		183.3	3		
). WELL MAIN							
Does the well	require any futu	re maintenanc	e?	No			
If yes,							
explain:							
Additional	Color-Cloudy O	dor-Sulfur					

Project:			andfill - Closed	d			
	ell/Piezometer ID):	MW-8			Date:	5/15/2024
Gradient:	Down			Sampler:	Konner Roth		
A. MW/PIEZON	METER CONDITION	ONS					
Well/Piezome	ter Capped?	Yes					
₋itter/Standino	g Water?	No					
B. GROUNDW	ATER ELEVATION	N MEASUREM	ENT (+/- 0.01 fo	ot, MSL)			
/leasured We	ll Total Depth (fe	eet):	27.3	•			
nitial Static W	/ater Level (feet)):	8.68				
nitial Ground	water Elevation (· ,	691.59				
Equipment Use	ed:	Dedicated Tub	oing – Peristaltic	Pump			
C. WELL PUR	GING						
	FIEL	D PARAMETER	RS [stabilization c	riteria] RECOR	D EVERY 3 MIN	UTES	
			Specific				
	Temperature	Dissolved	Conductivity	рН			
	(°C)	Oxygen	(µS/cm)	(S.U.)	ORP	Turbidity	
Time	10%	(mg/L)	+/- 10%	+/- 0.1	(mV)	(FNU)	
10:07 AM	Purging start tim						
10:10 AM	12.0	1.9	1692.5	3.72	237.9	3.8	
10:13 AM	12.0	1.4	1636.9	3.73	249.7	3.9	
10:16 AM	11.9	1.3	1592.0	3.72	258.7	4.8	
10:19 AM	11.6	1.2	1571.8	3.71	265.8	5.6	
	Parameters stab	oilized. sample c	ollected.				
Quantity of \//		•		2.	1		-
	ater Removed fr	om vven (mers).				
· · · · · · · · · · · · · · · · · · ·	ped/bailed dry?			N ₁			
	of Time Purged	,	nds):	12:0			
Average Purg	e Rate (mL/min)	:		175.0	0		
). WELL MAIN							
Does the well	require any futu	re maintenanc	e?	No			
If yes, explain:							
Additional Comments:	Color-Clear Ode	or-None					

Project:			andfill - Closed	l			
	ell/Piezometer ID): 	MW-12			Date:	5/15/2024
Gradient:	Down			Sampler:	Konner Roth		
	METER CONDITION		T				
Vell/Piezomet .itter/Standing		Yes No					
			FNT (:/ 0.04 f-	4 8401)			
	Il Total Depth (fe		ENT (+/- 0.01 foo 20.2	ot, WSL)			
	ater Level (feet)		4.01				
	vater Elevation (711.45				
quipment Use			ping – Peristaltic	Pump			
. WELL PURC				<u> </u>			
· WEEL I OIL		D PARAMETER	RS [stabilization ci	riteria] RECORI	D EVERY 3 MIN	UTES	
Time	Temperature (°C) 10%	Dissolved Oxygen (mg/L)	Specific Conductivity (µS/cm) +/- 10%	pH (S.U.) +/- 0.1	ORP (mV)	Turbidity (FNU)	
			17- 1070	17- 0.1	(IIIV)	(1140)	
12:26 PM 12:29 PM	Purging start tim	1.0	2049.6	5.75	84.1	5.5	_
12:32 PM	14.0	0.2	2049.0	5.78	82.9	5.6	
12:35 PM	14.2	<0.1	2042.1	5.78	86.5	7.1	
12:38 PM	14.0	<0.1	2041.8	5.78	90.0	7.8	
Nas well pum Γotal Amount	Parameters state Removed from ped/bailed dry?	om Well (liters):	2.0 No 12:00)		
Average Purge	e Rate (mL/min)	:		166.67	•		
). WELL MAIN					_		
lf yes, explain:	require any futu	re maintenanc	e?	No			
Additional Comments:	Color-Clear Odo	or-None					

Project:	Mahaska Cou	nty Sanitary L	andfill - Close	d			
Monitoring Well/Piezometer ID:		MW-15			Date:	5/15/2024	
Gradient:	Down			Sampler:	Konner Roth		
A. MW/PIEZON	METER CONDITION	ONS					
Vell/Piezomet	ter Capped?	Yes					
_itter/Standing	Water?	No					
B. GROUNDW	ATER ELEVATION	N MEASUREM	ENT (+/- 0.01 fo	ot, MSL)			
Measured We	ll Total Depth (fe	eet):	28.8				
nitial Static W	ater Level (feet)):	19.23				
	vater Elevation	,	713.78				
Equipment Use	d:	Dedicated Tub	oing – Peristaltic	Pump			
. WELL PUR							
	FIEL	D PARAMETER	RS [stabilization o	riteria] RECOR	D EVERY 3 MIN	UTES	
			Specific				
	Temperature	Dissolved	Conductivity	pH	ODD	Turbidity	
Time	(°C) 10%	Oxygen (mg/L)	(µS/cm) +/- 10%	(S.U.) +/- 0.1	ORP (mV)	(FNU)	
9:23 AM			17- 1070	17- 0.1	(1114)	(1140)	
9:23 AM 9:26 AM	Purging start tim 15.2	ne. 0.5	4633.0	4.72	157.2	24.6	
9:29 AM	15.1	0.3	4604.9	4.72	138.2	18.6	
9:32 AM	15.1	<0.1	4601.9	4.80	131.3	11.9	
9:35 AM	15.0	<0.1	4587.9	4.81	127.8	8.9	
0.00 /	10.0	0	1001.0	1.01	127.0	0.0	
	Parameters stab	nilized sample c	ollected				
2					7		
-	ater Removed fr	om vvell (liters):	1.7			
•	ped/bailed dry?			12:00			
	of Time Purged						
Average Purge	e Rate (mL/min)):		141.67	7		
). WELL MAIN							
Does the well	require any futu	re maintenanc	e?	No			
If yes,							
explain:							
Additional Comments:	Color-Yellow tint	Odor-None					

Project:	Mahaska Cou	nty Sanitary L	andfill - Closed	t			
Monitoring Well/Piezometer ID:		MW-8			Date:	5/22/2025	
Gradient:	Down			Sampler:	Garrett Horak		
A. MW/PIEZO	METER CONDITION	ONS					
Well/Piezome	eter Capped?	Yes					
_itter/Standin	g Water?	No					
B. GROUNDW	ATER ELEVATION	N MEASUREM	IENT (+/- 0.01 fo	ot, MSL)			
	ell Total Depth (fe		27.4	•			
nitial Static V	Vater Level (feet)):	8.20				
nitial Ground	water Elevation	(ft-amsl):	692.07				
Equipment Use	ed:	Dedicated Tul	oing – Peristaltic	Pump			
C. WELL PUR	GING						
	FIEL	D PARAMETEI	RS [stabilization c	riteria] RECOR	D EVERY 3 MIN	UTES	
			Specific				
	Temperature	Dissolved	Conductivity	pН			
- -	(°C) 10%	Oxygen	(μS/cm) +/- 10%	(S.U.) +/- 0.1	ORP	Turbidity	
Time		(mg/L)	+ /- 10%	+/- 0.1	(mV)	(FNU)	
11:07 AM	Purging start tim		555.4	2.50	10.1	21.0	
11:10 AM	12.5	1.1	555.4	6.56	40.1	21.3	
11:13 AM 11:16 AM	12.7 12.6	1.1 1.0	707.6 1030.5	6.47 6.28	54.7 84.3	30.3 57.0	
11:16 AM	14.9	7.6	3539.8	5.21	140.1	207.9	
TT. 19 AIVI	14.9	7.0	3339.6	5.21	140.1	207.9	
	Parameters stat	ollized, sample o	collected.				
Quantity of W	ater Removed fr	om Well (liters):	1.7	7		
Was well pun	nped/bailed dry?			No			
•	of Time Purged	(minutes:seco	nds):	12:00)		
	ge Rate (mL/min)	•	•	141.67			
D. WELL MAII	` '						
	require any futu	re maintenanc	e?	No			
If yes,	Toquilo arry rutu	TO MAINTENANC	O.	110			
explain:							
Additional	Color: Clear						
Comments:	Odor: None						
Commonto.	1						

Project:	Mahaska Cou	nty Sanitary L	andfill - Close	d			
Monitoring Well/Piezometer ID:		MW-15			Date:	5/22/2025	
Gradient:	Down			Sampler:	Garrett Horak		
A. MW/PIEZO	METER CONDITI	ONS					
Well/Piezome	eter Capped?	Yes					
_itter/Standin	g Water?	No					
B. GROUNDW	ATER ELEVATION	N MEASUREM	IENT (+/- 0.01 fo	ot, MSL)			
	ell Total Depth (f		28.9	•			
nitial Static V	Vater Level (feet):	19.05				
nitial Ground	water Elevation	(ft-amsl):	713.96				
Equipment Use	ed:	Dedicated Tul	oing – Peristaltic	Pump			
C. WELL PUR	GING						
	FIEL	D PARAMETE	RS [stabilization c	riteria] RECOR	D EVERY 3 MINI	JTES	
			Specific				
	Temperature	Dissolved	Conductivity	pН			
-	(°C) 10%	Oxygen	(μS/cm) +/- 10%	(S.U.) +/- 0.1	ORP	Turbidity	
Time		(mg/L)	+ /- 10%	+/- 0.1	(mV)	(FNU)	
9:47 AM	Purging start tim		22117		070.0	0.5	
9:50 AM	10.9	0.5	3014.7	3.43	273.6	3.5	
9:53 AM	11.0	1.1 7.2	2964.8	3.58	231.5	8.3 32.7	
9:56 AM 9:59 AM	13.8 12.5	0.5	525.2 501.6	6.81 6.59	53.5 23.7	13.3	
9.59 AIVI	12.5	0.5	0.100	0.59	23.1	13.3	
	Parameters stat	ollized, sample d	collected.				
Quantity of W	ater Removed fr	om Well (liters):	1.9)		
Was well pun	nped/bailed dry?			No)		
Total Amount	of Time Purged	(minutes:seco	nds):	12:00)		
	ge Rate (mL/min)	`	•	158.33	3		
D. WELL MAII	, ,						
	require any futu	re maintenanc	e?	No	T		
If yes,	Toquito arry rata	. o manitoriant	<u>. </u>	110	1		
explain:							
Additional	Color: Clear						
Comments:	Odor: None						
Jonninonio.	1						

APPENDIX B-1 Laboratory Analytical Data Sheets

ANALYTICAL REPORT

PREPARED FOR

Attn: Nathan Ohrt SCS Engineers 1690 All State Court Suite 100 West Des Moines, Iowa 50265 Generated 5/30/2024 2:33:57 PM

JOB DESCRIPTION

Mahaska Co LF Closed Units 1st 2024 HMSP

JOB NUMBER

310-281475-1

Eurofins Cedar Falls 3019 Venture Way Cedar Falls IA 50613

Eurofins Cedar Falls

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

manylying

Generated 5/30/2024 2:33:57 PM

Authorized for release by Mary Yang, Project Management Assistant I Mary.Yang@ET.EurofinsUS.com (319)277-2401

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Detection Summary	6
Client Sample Results	7
Definitions	13
QC Sample Results	14
QC Association	16
Chronicle	17
Certification Summary	19
Method Summary	20
Chain of Custody	21
Receipt Chacklists	23

5

7

9

10

12

13

14

Case Narrative

Client: SCS Engineers Job ID: 310-281475-1

Project: Mahaska Co LF Closed Units 1st 2024 HMSP

Job ID: 310-281475-1 Eurofins Cedar Falls

Job Narrative 310-281475-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/16/2024 4:15 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.9°C.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cedar Falls

3

Page 4 of 23 5/30/2024

Sample Summary

Client: SCS Engineers Job ID: 310-281475-1

Project/Site: Mahaska Co LF Closed Units 1st 2024 HMSP

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
310-281475-1	MW-1A	Water	05/15/24 13:22	05/16/24 16:15
310-281475-2	MW-2A	Water	05/15/24 12:09	05/16/24 16:15
310-281475-3	MW-8	Water	05/15/24 10:38	05/16/24 16:15
310-281475-4	MW-12	Water	05/15/24 12:47	05/16/24 16:15
310-281475-5	MW-15	Water	05/15/24 09:45	05/16/24 16:15
310-281475-6	MW-D	Water	05/15/24 10:38	05/16/24 16:15

Detection Summary

Client: SCS Engineers Job ID: 310-281475-1

Project/Site: Mahaska Co LF Closed Units 1st 2024 HMSP

Client Sample ID: MW-1A Lab Sample ID: 310-281475-1

Analyte	Result	Qualifier	RL MDI	. Unit	Dil Fac	D	Method	Prep Type
Beryllium	0.00102	0.00	0.000330	mg/L	1	_	6020B	Total/NA
Cadmium	0.000362	0.0002	0.000100	mg/L	1		6020B	Total/NA
Cobalt	0.00328	0.0008	0.000170	mg/L	1		6020B	Total/NA
Nickel	0.0188	0.00	0.00210	mg/L	1		6020B	Total/NA
Total Suspended Solids	80.0	1	5.0 11.1	mg/L	1		I-3765-85	Total/NA

Client Sample ID: MW-2A

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Beryllium	0.0219		0.00100	0.000330	mg/L	1	_	6020B	Total/NA
Cadmium	0.00110		0.000200	0.000100	mg/L	1		6020B	Total/NA
Cobalt	0.433		0.000500	0.000170	mg/L	1		6020B	Total/NA
Nickel	1.22		0.00500	0.00210	mg/L	1		6020B	Total/NA
Total Suspended Solids	24.9		1.88	1.39	mg/L	1		I-3765-85	Total/NA

Client Sample ID: MW-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Beryllium	0.00405		0.00100	0.000330	mg/L	1	_	6020B	Total/NA
Cadmium	0.00110		0.000200	0.000100	mg/L	1		6020B	Total/NA
Cobalt	0.0302		0.000500	0.000170	mg/L	1		6020B	Total/NA
Nickel	0.138		0.00500	0.00210	mg/L	1		6020B	Total/NA

Client Sample ID: MW-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cadmium	0.0106		0.000200	0.000100	mg/L	1	_	6020B	Total/NA
Cobalt	0.139		0.000500	0.000170	mg/L	1		6020B	Total/NA
Nickel	0.215		0.00500	0.00210	mg/L	1		6020B	Total/NA
Total Suspended Solids	2.38		1.88	1.39	mg/L	1		I-3765-85	Total/NA

Client Sample ID: MW-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Beryllium	0.00308		0.00100	0.000330	mg/L	1	_	6020B	Total/NA
Cadmium	0.0349		0.000200	0.000100	mg/L	1		6020B	Total/NA
Cobalt	0.569		0.000500	0.000170	mg/L	1		6020B	Total/NA
Nickel	1.34		0.00500	0.00210	mg/L	1		6020B	Total/NA
Total Suspended Solids	18.0		7.50	5.55	mg/L	1		I-3765-85	Total/NA

Client Sample ID: MW-D

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Beryllium	0.00413		0.00100	0.000330	mg/L		_	6020B	Total/NA
Cadmium	0.00118		0.000200	0.000100	mg/L	1		6020B	Total/NA
Cobalt	0.0303		0.000500	0.000170	mg/L	1		6020B	Total/NA
Nickel	0.136		0.00500	0.00210	mg/L	1		6020B	Total/NA
Total Suspended Solids	46.0		5.00	3.70	ma/L	1		I-3765-85	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Cedar Falls

5/30/2024

Page 6 of 23

_

5

-

6

7

Lab Sample ID: 310-281475-2

Lab Sample ID: 310-281475-3

Lab Sample ID: 310-281475-4

Lab Sample ID: 310-281475-5

Lab Sample ID: 310-281475-6

9

10

12

13

Client: SCS Engineers Job ID: 310-281475-1

Project/Site: Mahaska Co LF Closed Units 1st 2024 HMSP

Lab Sample ID: 310-281475-1 **Client Sample ID: MW-1A**

Date Collected: 05/15/24 13:22 **Matrix: Water**

Date Received: 05/16/24 16:15

I-3765-85)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	0.00102		0.00100	0.000330	mg/L		05/20/24 09:30	05/29/24 16:26	1
Cadmium	0.000362		0.000200	0.000100	mg/L		05/20/24 09:30	05/24/24 21:18	1
Cobalt	0.00328		0.000500	0.000170	mg/L		05/20/24 09:30	05/24/24 21:18	1
Nickel	0.0188		0.00500	0.00210	mg/L		05/20/24 09:30	05/24/24 21:18	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS	80.0		15.0	11.1	mg/L			05/20/24 13:20	1

Eurofins Cedar Falls

Client: SCS Engineers Job ID: 310-281475-1

Project/Site: Mahaska Co LF Closed Units 1st 2024 HMSP

Client Sample ID: MW-2A Lab Sample ID: 310-281475-2

Date Collected: 05/15/24 12:09 Matrix: Water

Date Received: 05/16/24 16:15

I-3765-85)

Method: SW846 6020B - Metals (I	•	0 115	ъ.			_			5
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Beryllium	0.0219		0.00100	0.000330	mg/L		05/20/24 09:30	05/29/24 16:36	1
Cadmium	0.00110		0.000200	0.000100	mg/L		05/20/24 09:30	05/24/24 21:29	1
Cobalt	0.433		0.000500	0.000170	mg/L		05/20/24 09:30	05/24/24 21:29	1
Nickel	1.22		0.00500	0.00210	mg/L		05/20/24 09:30	05/24/24 21:29	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS	24.9		1.88	1.39	mg/L			05/20/24 13:20	1

Eurofins Cedar Falls

Client: SCS Engineers Job ID: 310-281475-1

Project/Site: Mahaska Co LF Closed Units 1st 2024 HMSP

Client Sample ID: MW-8 Lab Sample ID: 310-281475-3

Date Collected: 05/15/24 10:38 Matrix: Water

Date Received: 05/16/24 16:15

I-3765-85)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	0.00405		0.00100	0.000330	mg/L		05/20/24 09:30	05/29/24 16:40	1
Cadmium	0.00110		0.000200	0.000100	mg/L		05/20/24 09:30	05/24/24 21:31	1
Cobalt	0.0302		0.000500	0.000170	mg/L		05/20/24 09:30	05/24/24 21:31	1
Nickel	0.138		0.00500	0.00210	mg/L		05/20/24 09:30	05/24/24 21:31	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (LISGS	<1.88		1 88	1 30	ma/l			05/20/24 13:20	

Eurofins Cedar Falls

Page 9 of 23

Client: SCS Engineers Job ID: 310-281475-1

Project/Site: Mahaska Co LF Closed Units 1st 2024 HMSP

Client Sample ID: MW-12 Lab Sample ID: 310-281475-4

Date Collected: 05/15/24 12:47 Matrix: Water

Date Received: 05/16/24 16:15

I-3765-85)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	<0.00100		0.00100	0.000330	mg/L		05/20/24 09:30	05/29/24 16:43	1
Cadmium	0.0106		0.000200	0.000100	mg/L		05/20/24 09:30	05/24/24 21:34	1
Cobalt	0.139		0.000500	0.000170	mg/L		05/20/24 09:30	05/24/24 21:34	1
Nickel	0.215		0.00500	0.00210	mg/L		05/20/24 09:30	05/24/24 21:34	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS	2 38		1.88	1.39	ma/L			05/20/24 13:20	

5/30/2024

3

4

6

8

9

11

13

Client: SCS Engineers Job ID: 310-281475-1

Project/Site: Mahaska Co LF Closed Units 1st 2024 HMSP

Client Sample ID: MW-15 Lab Sample ID: 310-281475-5

Date Collected: 05/15/24 09:45 Matrix: Water

Date Received: 05/16/24 16:15

I-3765-85)

Method: SW846 6020B - Metals (I	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	- Resuit	Qualifier							DII Fac
Beryllium	0.00308		0.00100	0.000330	mg/L		05/20/24 09:30	05/29/24 16:47	1
Cadmium	0.0349		0.000200	0.000100	mg/L		05/20/24 09:30	05/24/24 21:36	1
Cobalt	0.569		0.000500	0.000170	mg/L		05/20/24 09:30	05/24/24 21:36	1
Nickel	1.34		0.00500	0.00210	mg/L		05/20/24 09:30	05/24/24 21:36	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS	18.0		7.50	5.55	mg/L			05/20/24 13:20	1

Eurofins Cedar Falls

4

6

R

9

10

12

Client: SCS Engineers Job ID: 310-281475-1

Project/Site: Mahaska Co LF Closed Units 1st 2024 HMSP

Client Sample ID: MW-D Lab Sample ID: 310-281475-6

Date Collected: 05/15/24 10:38 Matrix: Water

Date Received: 05/16/24 16:15

I-3765-85)

Method: SW846 6020B - Metals (I Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	0.00413		0.00100	0.000330		<u>-</u>	05/20/24 09:30	05/29/24 16:50	1
Cadmium	0.00118		0.000200	0.000100	mg/L		05/20/24 09:30	05/24/24 21:47	1
Cobalt	0.0303		0.000500	0.000170	mg/L		05/20/24 09:30	05/24/24 21:47	1
Nickel	0.136		0.00500	0.00210	mg/L		05/20/24 09:30	05/24/24 21:47	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS	46.0		5.00	3.70	mg/L			05/20/24 13:20	1

Eurofins Cedar Falls

5/30/2024

3

5

7

8

9

11

13

Definitions/Glossary

Client: SCS Engineers Job ID: 310-281475-1

Project/Site: Mahaska Co LF Closed Units 1st 2024 HMSP

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

Glossary

RL RPD

TEF

TEQ

TNTC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)

Eurofins Cedar Falls

2

1

4

-5

8

40

11

13

Client: SCS Engineers Job ID: 310-281475-1

Project/Site: Mahaska Co LF Closed Units 1st 2024 HMSP

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 310-422060/1-A

Analysis Batch: 422792

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 422060

	INID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	<0.00100		0.00100	0.000330	mg/L		05/20/24 09:30	05/24/24 21:05	1
Cadmium	<0.000200		0.000200	0.000100	mg/L		05/20/24 09:30	05/24/24 21:05	1
Cobalt	<0.000500		0.000500	0.000170	mg/L		05/20/24 09:30	05/24/24 21:05	1
Nickel	<0.00500		0.00500	0.00210	mg/L		05/20/24 09:30	05/24/24 21:05	1

MD MD

Lab Sample ID: LCS 310-422060/2-A

Matrix: Water

Analysis Batch: 422792

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 422060**

		Spike	LCS	LCS				%Rec	
Aı	nalyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ca	admium	0.100	0.09772		mg/L		98	80 - 120	
Co	obalt	0.100	0.09697		mg/L		97	80 - 120	
Ni	ckel	0.200	0.2023		mg/L		101	80 - 120	

Lab Sample ID: LCS 310-422060/2-A

Matrix: Water

Analysis Batch: 423058

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 422060

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Beryllium 0.100 0.09697 80 - 120 mg/L

Sample Sample

0.00102

Result Qualifier

Lab Sample ID: 310-281475-1 MS

Matrix: Water

Analysis Batch: 422792

Client Sample ID: MW-1A

Prep Type: Total/NA

Prep Batch: 422060

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cadmium	0.000362		0.100	0.09418	-	mg/L		94	75 - 125
Cobalt	0.00328		0.100	0.09965		mg/L		96	75 - 125
Nickel	0.0188		0.200	0.2226		mg/L		102	75 - 125

MS MS

0.1019

Result Qualifier

Unit

mg/L

Spike

Added

0.100

Lab Sample ID: 310-281475-1 MS

Matrix: Water

Analyte

Beryllium

Analysis Batch: 423058

Client Sample ID: MW-1A

Prep Type: Total/NA Prep Batch: 422060

%Rec Limits

75 - 125

101

Lab Sample ID: 310-281475-1 MSD

Matrix: Water

Analysis Batch: 422792

Client Sample ID: MW-1A

Prep Type: Total/NA

Prep Batch: 422060

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	0.000362		0.100	0.09635		mg/L		96	75 - 125	2	20
Cobalt	0.00328		0.100	0.1001		mg/L		97	75 - 125	0	20
Nickel	0.0188		0.200	0.2239		mg/L		103	75 - 125	1	20

Page 14 of 23

QC Sample Results

Client: SCS Engineers Job ID: 310-281475-1

Project/Site: Mahaska Co LF Closed Units 1st 2024 HMSP

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: 310-281475-1 MSD

Matrix: Water

Analysis Batch: 423058

Client Sample ID: MW-1A

Prep Type: Total/NA Prep Batch: 422060

RPD RPD Limit Limits

Sample Sample Spike MSD MSD Result Qualifier Result Qualifier Analyte Added Unit %Rec Beryllium 0.00102 0.100 0.1017 mg/L 101 75 - 125 0 20

Method: I-3765-85 - Residue, Non-filterable (TSS)

Lab Sample ID: MB 310-422220/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 422220

MB MB

Result Qualifier RL MDL Unit Dil Fac D Prepared Analyzed 5.00 05/20/24 13:20 <5.00 3.70 mg/L Total Suspended Solids

Lab Sample ID: LCS 310-422220/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 422220

LCS LCS %Rec Spike Analyte Added Result Qualifier Unit %Rec Limits Total Suspended Solids 100 97.00 mg/L 97 81 - 116

QC Association Summary

Client: SCS Engineers Job ID: 310-281475-1

Project/Site: Mahaska Co LF Closed Units 1st 2024 HMSP

Metals

Prep Batch: 422060

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-281475-1	MW-1A	Total/NA	Water	3005A	
310-281475-2	MW-2A	Total/NA	Water	3005A	
310-281475-3	MW-8	Total/NA	Water	3005A	
310-281475-4	MW-12	Total/NA	Water	3005A	
310-281475-5	MW-15	Total/NA	Water	3005A	
310-281475-6	MW-D	Total/NA	Water	3005A	
MB 310-422060/1-A	Method Blank	Total/NA	Water	3005A	
LCS 310-422060/2-A	Lab Control Sample	Total/NA	Water	3005A	
310-281475-1 MS	MW-1A	Total/NA	Water	3005A	
310-281475-1 MSD	MW-1A	Total/NA	Water	3005A	

Analysis Batch: 422792

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-281475-1	MW-1A	Total/NA	Water	6020B	422060
310-281475-2	MW-2A	Total/NA	Water	6020B	422060
310-281475-3	MW-8	Total/NA	Water	6020B	422060
310-281475-4	MW-12	Total/NA	Water	6020B	422060
310-281475-5	MW-15	Total/NA	Water	6020B	422060
310-281475-6	MW-D	Total/NA	Water	6020B	422060
MB 310-422060/1-A	Method Blank	Total/NA	Water	6020B	422060
LCS 310-422060/2-A	Lab Control Sample	Total/NA	Water	6020B	422060
310-281475-1 MS	MW-1A	Total/NA	Water	6020B	422060
310-281475-1 MSD	MW-1A	Total/NA	Water	6020B	422060

Analysis Batch: 423058

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-281475-1	MW-1A	Total/NA	Water	6020B	422060
310-281475-2	MW-2A	Total/NA	Water	6020B	422060
310-281475-3	MW-8	Total/NA	Water	6020B	422060
310-281475-4	MW-12	Total/NA	Water	6020B	422060
310-281475-5	MW-15	Total/NA	Water	6020B	422060
310-281475-6	MW-D	Total/NA	Water	6020B	422060
LCS 310-422060/2-A	Lab Control Sample	Total/NA	Water	6020B	422060
310-281475-1 MS	MW-1A	Total/NA	Water	6020B	422060
310-281475-1 MSD	MW-1A	Total/NA	Water	6020B	422060

General Chemistry

Analysis Batch: 422220

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-281475-1	MW-1A	Total/NA	Water	I-3765-85	
310-281475-2	MW-2A	Total/NA	Water	I-3765-85	
310-281475-3	MW-8	Total/NA	Water	I-3765-85	
310-281475-4	MW-12	Total/NA	Water	I-3765-85	
310-281475-5	MW-15	Total/NA	Water	I-3765-85	
310-281475-6	MW-D	Total/NA	Water	I-3765-85	
MB 310-422220/1	Method Blank	Total/NA	Water	I-3765-85	
LCS 310-422220/2	Lab Control Sample	Total/NA	Water	I-3765-85	

Eurofins Cedar Falls

Page 16 of 23

3

4

6

8

9

11

12

13

Lab Chronicle

Client: SCS Engineers Job ID: 310-281475-1

Project/Site: Mahaska Co LF Closed Units 1st 2024 HMSP

Client Sample ID: MW-1A

Date Collected: 05/15/24 13:22 Date Received: 05/16/24 16:15 Lab Sample ID: 310-281475-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3005A			422060	KM3E	EET CF	05/20/24 09:30
Total/NA	Analysis	6020B		1	423058	NFT2	EET CF	05/29/24 16:26
Total/NA	Prep	3005A			422060	KM3E	EET CF	05/20/24 09:30
Total/NA	Analysis	6020B		1	422792	NFT2	EET CF	05/24/24 21:18
Total/NA	Analysis	I-3765-85		1	422220	HE7K	EET CF	05/20/24 13:20

Client Sample ID: MW-2A

Date Collected: 05/15/24 12:09

Date Received: 05/16/24 16:15

Lab Sample ID: 310-281475-2

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3005A			422060	КМЗЕ	EET CF	05/20/24 09:30
Total/NA	Analysis	6020B		1	423058	NFT2	EET CF	05/29/24 16:36
Total/NA	Prep	3005A			422060	KM3E	EET CF	05/20/24 09:30
Total/NA	Analysis	6020B		1	422792	NFT2	EET CF	05/24/24 21:29
Total/NA	Analysis	I-3765-85		1	422220	HE7K	EET CF	05/20/24 13:20

Client Sample ID: MW-8

Date Collected: 05/15/24 10:38

Date Received: 05/16/24 16:15

Lab Sample ID: 310-281475-3

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3005A			422060	KM3E	EET CF	05/20/24 09:30
Total/NA	Analysis	6020B		1	423058	NFT2	EET CF	05/29/24 16:40
Total/NA	Prep	3005A			422060	KM3E	EET CF	05/20/24 09:30
Total/NA	Analysis	6020B		1	422792	NFT2	EET CF	05/24/24 21:31
Total/NA	Analysis	I-3765-85		1	422220	HE7K	EET CF	05/20/24 13:20

Client Sample ID: MW-12

Date Collected: 05/15/24 12:47

Date Received: 05/16/24 16:15

Lab Sample ID: 310-281475	5-4
---------------------------	-----

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3005A			422060	КМЗЕ	EET CF	05/20/24 09:30
Total/NA	Analysis	6020B		1	423058	NFT2	EET CF	05/29/24 16:43
Total/NA	Prep	3005A			422060	KM3E	EET CF	05/20/24 09:30
Total/NA	Analysis	6020B		1	422792	NFT2	EET CF	05/24/24 21:34
Total/NA	Analysis	I-3765-85		1	422220	HE7K	EET CF	05/20/24 13:20

Lab Chronicle

Client: SCS Engineers Job ID: 310-281475-1

Project/Site: Mahaska Co LF Closed Units 1st 2024 HMSP

Client Sample ID: MW-15

Date Received: 05/16/24 16:15

Lab Sample ID: 310-281475-5 Date Collected: 05/15/24 09:45

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor **Number Analyst** Lab or Analyzed Total/NA 3005A 05/20/24 09:30 Prep 422060 KM3E EET CF Total/NA 6020B Analysis 1 423058 NFT2 EET CF 05/29/24 16:47 Total/NA Prep 3005A 422060 KM3E EET CF 05/20/24 09:30 Total/NA Analysis 6020B 1 422792 NFT2 EET CF 05/24/24 21:36 Total/NA I-3765-85 EET CF 05/20/24 13:20 Analysis 1 422220 HE7K

Client Sample ID: MW-D

Lab Sample ID: 310-281475-6

Matrix: Water

Date Collected: 05/15/24 10:38 Date Received: 05/16/24 16:15

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3005A			422060	КМЗЕ	EET CF	05/20/24 09:30
Total/NA	Analysis	6020B		1	423058	NFT2	EET CF	05/29/24 16:50
Total/NA	Prep	3005A			422060	KM3E	EET CF	05/20/24 09:30
Total/NA	Analysis	6020B		1	422792	NFT2	EET CF	05/24/24 21:47
Total/NA	Analysis	I-3765-85		1	422220	HE7K	EET CF	05/20/24 13:20

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Accreditation/Certification Summary

Client: SCS Engineers Job ID: 310-281475-1

Project/Site: Mahaska Co LF Closed Units 1st 2024 HMSP

Laboratory: Eurofins Cedar Falls

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
lowa	State	007	12-01-25

3

4

6

8

10

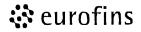
11

12

Method Summary

Client: SCS Engineers Job ID: 310-281475-1

Project/Site: Mahaska Co LF Closed Units 1st 2024 HMSP


Method	Method Description	Protocol	Laboratory
6020B	Metals (ICP/MS)	SW846	EET CF
I-3765-85	Residue, Non-filterable (TSS)	USGS	EET CF
3005A	Preparation, Total Metals	SW846	EET CF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. USGS = "Methods For Analysis Of Water And Fluvial Sediments", USGS, 1989

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Environment Testing America

Cooler/Sample Receipt and Temperatur

Client Information	Jan 1 att 1 1 1 1 1	Si).	to y garage	~ /s 1 2 d	(j. 1)	e officeally a
Client: SCS						
City/State: CITY		STATE	Project:			
Receipt Information	their Training	THE WAT	" : Sill (1) : 11	12 Jan 18 18 18 18 18 18 18 18 18 18 18 18 18	· Alleria Milli	LINT THE RE
Date/Time	DATE	TIME				
Received:	S-14.24	1615	Received By	· MC_		
Delivery Type: 🔲 UP	S	(☐ FedEx Gro	ound 🔲	US Mail	Spee-Dee
⊠ Qal	o Courier 🗌 Lab Fi	ield Services	Client Drop		Other:	
Condition of Cooler/Co	ntainers (1848)	4. 4.	· · · · · · · · · · · · · · · · · · ·	AT 1. 1. "	VITT THINK	10 m 10 m
Sample(s) received in	Cooler? Des	□ No	If yes: Coo	ler ID:		
Multiple Coolers?	🗋 Yes	J. Ho	If yes: Coo	ler # of		
Cooler Custody Seals No	Present?	IX No	If yes: Coo	ler custody sea	als intact? [Yes 🗌
Sample Custody Seals No	s Present?	2 4No	<i>If yes:</i> Sam	ple custody se	eals intact?[Yes 🗌
Trip Blank Present?	☐ Yes	No	<i>If yes:</i> Whic	ch VOA sampl	es are in co	oler? ↓
		-				
Temperature Record	Minter Control	A STEEL	4 - 4 , 1, 1, 1, 5,	dest + 2 i	V ***** :1 * :	Bur Lasa Más 19.
						WA WA " A MAN
Coolant: X Wet ice	Blue ice	Dry ice	Other:			ONE
Thermometer ID:	X		Correction F		O	
• Temp Blank Tempera	ture – It no temp blank,	or temp blank te	mperature above	criteria, proceed i	to Gample Con	tainer Temperature
Uncorrected Temp (°C	•		Corrected T			2.9
• Sample Container Ter	nperature // 🔣 👯	14 Mar. (0. 17 Mar.)	1771A "F III		走。2. 野歌川	Jehr vol a
Container(s) used:	CONTAINER 1			CONTAINER 2		
Uncorrected Temp (°C):				neggen neggen og getter til det en sterre til de		
Corrected Temp (°C):						
Exceptions Noted:	Mar of the thirty	Att his harmon	TOTAL TO A	L'a ai d	L. Marielland	ALLEGARE TO THE
If temperature exceed a) If yes: Is there	eeds criteria, was sa e evidence that the c	. , ,		y of sampling?	☐ Yes ☐ Yes	☐ No ☐ No
	0°C, are there obvio a, broken/cracked b			of sample cont	alners is co	mpromised?
NOTE If yes, contact Additional Comments	t PM before proceedle	ng. If no, proce	eed with login ቸርት ከመጀለ ጉረ	40.	TORGEN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

		<u> </u>				

Document. CED-P-SAM-FRM45521 Revision 26 Date 27 Jan 2022

Eurofins TestAmerica, Cedar Falls

3019 Venture Way

& eurofins

TestAmerica Laboratories Inc d/b/a Eurofins TestAmerica Form No CA-C-WI-002 Rev 4.23, dated 4/16/2019 Sample Specific Notes Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Date/Time S-[6-24 For Lab Use Only Lab Sampling Walk in Client Job / SDG No ŏ Therm ID No Date/Time Date/Time COC No Archive for Corrid Company Company Company | Disposal by Lab Carrier. Date Cooler Temp (°C) Obs d Received in Laboratory by Site Contact: Joe Farris × Total Suspended Solids × × × × × Other × × × × × × Nickel × × × × × × MedoC Received by Received by × × × × × × Lab Contact աուաբեշ √ RCRA × × × × × × Filtered Sample (Y / N) Perform MS / MSD (Y / N) > Z > Z > Z × > z Date/Time 5/16/24 14:00 ☐ NPDES Possible Hazard Identification Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the # of Cont. Date/Time Date/Time Matrix D_W 3 ≥ ≥ 3 ≥ ≶ Analysis Turnaround Time Project Manager Nathan Ohrt Type (C=Comp G=Grab) Email nohrt@scsengineers com დ Ø ഗ Ø ഗ Regulatory Program ഗ 2 weeks 2 days 1 day CALENDAR DAYS Other._ Sample Time 5/15/24 12:09 5/15/24/12:47 5115/24 13:22 5182/24 09:45 Cell 319-331 9613 5/15/24/10:38 5/15/24 10:38 Preservation Used 1= Ice, 2= HCI, 3= H2SO4, 4=HNO3, 5=NaOH, 6= Other Custody Seal No Sample Date Company Company Comments Section if the lab is to dispose of the sample Special Instructions/QC Requirements & Comments **2** Site Mahaska County Landfill Closed Units Sample Identification Cedar Falls 1A 50613-6907 phone 319 277 2401 fax 319 277 2425 Yes Client Contact ole Tesar MW-12 MW-15 MW-1A MW-2A MW-8 MW-D Project Name 1st 2024 HMSF Custody Seals Intact: Relinquished by Relinquished by SCS Engineers Relinquished by Non-Hazard Nathan Ohrt # O d

Login Sample Receipt Checklist

Client: SCS Engineers Job Number: 310-281475-1

Login Number: 281475 List Source: Eurofins Cedar Falls

List Number: 1

Creator: Costello, Mackenzie K

Creator: Costello, Mackenzie K		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

1

g

10

12

13

ANALYTICAL REPORT

PREPARED FOR

Attn: Nathan Ohrt SCS Engineers 1690 All State Court Suite 100 West Des Moines, Iowa 50265 Generated 5/30/2025 12:58:53 PM

JOB DESCRIPTION

1st 2025 C&D HMSP Sampling Mahaska County Landfill, Closed Units

JOB NUMBER

310-307182-1

Eurofins Cedar Falls 3019 Venture Way Cedar Falls IA 50613

Eurofins Cedar Falls

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 5/30/2025 12:58:53 PM

Authorized for release by Samuel Miller, Project Management Assistant I Samuel.Miller@et.eurofinsus.com (319)595-2008

2

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Detection Summary	6
Client Sample Results	7
Definitions	10
QC Sample Results	11
QC Association	12
Chronicle	13
Certification Summary	14
Method Summary	15
Chain of Custody	16
Receipt Checklists	18

5

6

8

9

10

12

13

Case Narrative

Client: SCS Engineers

Project: 1st 2025 C&D HMSP Sampling

Eurofins Cedar Falls Job ID: 310-307182-1

Job Narrative 310-307182-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/23/2025 4:45 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -0.3°C.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

5/30/2025

Job ID: 310-307182-1

Sample Summary

Client: SCS Engineers

Project/Site: 1st 2025 C&D HMSP Sampling

Job ID: 310-307182-1

SDG: Mahaska County Landfill, Closed Units

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
310-307182-1	MW-8	Water	05/22/25 11:30	05/23/25 16:45
310-307182-2	MW-15	Water	05/22/25 10:26	05/23/25 16:45
310-307182-3	MW-D	Water	05/22/25 10:52	05/23/25 16:45

4

5

8

9

a a

12

13

Detection Summary

Client: SCS Engineers

Project/Site: 1st 2025 C&D HMSP Sampling

Job ID: 310-307182-1

SDG: Mahaska County Landfill, Closed Units

Client Sample ID: MW-8 Lab Sample ID: 310-307182-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Beryllium	0.00626		0.00100	0.000330	mg/L	1	_	6020B	Total/NA
Cadmium	0.000573		0.000200	0.000100	mg/L	1		6020B	Total/NA
Cobalt	0.0567		0.000500	0.000170	mg/L	1		6020B	Total/NA
Nickel	0.176		0.00500	0.00230	mg/L	1		6020B	Total/NA

Client Sample ID: MW-15 Lab Sample ID: 310-307182-2

Analyte	Result (Qualifier	RL MDL	Unit	Dil Fac	D	Method	Prep Type
Beryllium	0.00276	0.001	0.000330	mg/L	1	_	6020B	Total/NA
Cadmium	0.0269	0.0002	0.000100	mg/L	1		6020B	Total/NA
Cobalt	0.490	0.0005	0.000170	mg/L	1		6020B	Total/NA
Nickel	1.08	0.005	0.00230	mg/L	1		6020B	Total/NA
Total Suspended Solids	10.5	3.	75 2.63	mg/L	1		I-3765-85	Total/NA

Client Sample ID: MW-D Lab Sample ID: 310-307182-3

Analyte	Result Qualif	fier RL	MDL	Unit	Dil Fac D	Method	Prep Type
Beryllium	0.00250	0.00100	0.000330	mg/L		6020B	Total/NA
Cadmium	0.0317	0.000200	0.000100	mg/L	1	6020B	Total/NA
Cobalt	0.543	0.000500	0.000170	mg/L	1	6020B	Total/NA
Nickel	1.17	0.00500	0.00230	mg/L	1	6020B	Total/NA
Total Suspended Solids	12.3	3.75	2.63	mg/L	1	I-3765-85	Total/NA

5/30/2025

3

-

7

10

13

Client: SCS Engineers Job ID: 310-307182-1

Project/Site: 1st 2025 C&D HMSP Sampling SDG: Mahaska County Landfill, Closed Units

Client Sample ID: MW-8 Lab Sample ID: 310-307182-1

Date Collected: 05/22/25 11:30 Matrix: Water Date Received: 05/23/25 16:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	0.00626		0.00100	0.000330	mg/L		05/28/25 09:20	05/29/25 16:39	1
Cadmium	0.000573		0.000200	0.000100	mg/L		05/28/25 09:20	05/29/25 16:39	1
Cobalt	0.0567		0.000500	0.000170	mg/L		05/28/25 09:20	05/29/25 16:39	1
Nickel	0.176		0.00500	0.00230	mg/L		05/28/25 09:20	05/29/25 16:39	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS I-3765-85)	<1.88		1.88	1.31	mg/L			05/27/25 10:05	1

Client: SCS Engineers Job ID: 310-307182-1

Project/Site: 1st 2025 C&D HMSP Sampling SDG: Mahaska County Landfill, Closed Units

Client Sample ID: MW-15

Lab Sample ID: 310-307182-2 Date Collected: 05/22/25 10:26 **Matrix: Water** Date Received: 05/23/25 16:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	0.00276		0.00100	0.000330	mg/L		05/28/25 09:20	05/29/25 16:42	1
Cadmium	0.0269		0.000200	0.000100	mg/L		05/28/25 09:20	05/29/25 16:42	1
Cobalt	0.490		0.000500	0.000170	mg/L		05/28/25 09:20	05/29/25 16:42	1
Nickel	1.08		0.00500	0.00230	mg/L		05/28/25 09:20	05/29/25 16:42	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS I-3765-85)	10.5		3.75	2.63	mg/L			05/27/25 09:08	1

Client: SCS Engineers

Job ID: 310-307182-1

Project/Site: 1st 2025 C&D HMSP Sampling

SDG: Mahaska County Landfill, Closed Units

Client Sample ID: MW-D Lab Sample ID: 310-307182-3

Date Collected: 05/22/25 10:52

Date Received: 05/23/25 16:45

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	0.00250		0.00100	0.000330	mg/L		05/28/25 09:20	05/29/25 16:45	1
Cadmium	0.0317		0.000200	0.000100	mg/L		05/28/25 09:20	05/29/25 16:45	1
Cobalt	0.543		0.000500	0.000170	mg/L		05/28/25 09:20	05/29/25 16:45	1
Nickel	1.17		0.00500	0.00230	mg/L		05/28/25 09:20	05/29/25 16:45	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS I-3765-85)	12.3		3.75	2.63	mg/L			05/27/25 09:08	1

3

5

_

8

0

10

12

13

Definitions/Glossary

Client: SCS Engineers Job ID: 310-307182-1

Project/Site: 1st 2025 C&D HMSP Sampling SDG: Mahaska County Landfill, Closed Units

Glossary

RER

RPD

TEF

TEQ

TNTC

RL

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

C.CCCa.,	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
\$	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control

Eurofins Cedar Falls

5/30/2025

Matrix: Water

Project/Site: 1st 2025 C&D HMSP Sampling

Job ID: 310-307182-1 SDG: Mahaska County Landfill, Closed Units

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 310-455834/1-A

Analysis Batch: 456144

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 455834

		11.10							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	<0.00100		0.00100	0.000330	mg/L		05/28/25 09:20	05/29/25 15:34	1
Cadmium	<0.000200		0.000200	0.000100	mg/L		05/28/25 09:20	05/29/25 15:34	1
Cobalt	<0.000500		0.000500	0.000170	mg/L		05/28/25 09:20	05/29/25 15:34	1
Nickel	<0.00500		0.00500	0.00230	mg/L		05/28/25 09:20	05/29/25 15:34	1
	Beryllium Cadmium Cobalt	Analyte Result Beryllium <0.00100	Seryllium	Analyte Result Qualifier RL Beryllium <0.00100	Analyte Result Qualifier RL MDL Beryllium <0.00100	Analyte Result Qualifier RL MDL Unit Beryllium <0.00100	Analyte Result Qualifier RL MDL Unit D Beryllium <0.00100	Analyte Result Qualifier RL MDL Unit D Prepared Beryllium <0.00100	Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Beryllium <0.00100

Lab Sample ID: LCS 310-455834/2-A

Matrix: Water

Analysis Batch: 456144

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 455834

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Beryllium	0.100	0.09849		mg/L		98	80 - 120	
Cadmium	0.100	0.09778		mg/L		98	80 - 120	
Cobalt	0.100	0.09873		mg/L		99	80 - 120	
Nickel	0.200	0.2008		mg/L		100	80 - 120	

Method: I-3765-85 - Residue, Non-filterable (TSS)

Lab Sample ID: MB 310-455727/1

Matrix: Water

Analysis Batch: 455727

MB MB

MR MR

Result Qualifier RL MDL Unit Analyte Prepared Analyzed Dil Fac Total Suspended Solids <5.00 5.00 3.50 mg/L 05/27/25 09:08

Lab Sample ID: LCS 310-455727/2

Matrix: Water

Analysis Batch: 455727

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Suspended Solids	100	107.0		mg/L	_	107	82 - 117	

Lab Sample ID: MB 310-455740/1

Matrix: Water

Analysis Batch: 455740

MB MB

Result Qualifier RL MDL Unit Analyzed Dil Fac **Total Suspended Solids** <5.00 5.00 3.50 05/27/25 10:05

Lab Sample ID: LCS 310-455740/2

Matrix: Water

Analysis Patch: 455740

Alialysis Dalcil. 433740								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Suspended Solids	 100	105.0		ma/l		105	82 _ 117	

Eurofins Cedar Falls

QC Association Summary

Client: SCS Engineers

Project/Site: 1st 2025 C&D HMSP Sampling

Job ID: 310-307182-1 SDG: Mahaska County Landfill, Closed Units

Metals

Prep Batch: 455834

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-307182-1	MW-8	Total/NA	Water	3005A	
310-307182-2	MW-15	Total/NA	Water	3005A	
310-307182-3	MW-D	Total/NA	Water	3005A	
MB 310-455834/1-A	Method Blank	Total/NA	Water	3005A	
LCS 310-455834/2-A	Lab Control Sample	Total/NA	Water	3005A	

Analysis Batch: 456144

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-307182-1	MW-8	Total/NA	Water	6020B	455834
310-307182-2	MW-15	Total/NA	Water	6020B	455834
310-307182-3	MW-D	Total/NA	Water	6020B	455834
MB 310-455834/1-A	Method Blank	Total/NA	Water	6020B	455834
LCS 310-455834/2-A	Lab Control Sample	Total/NA	Water	6020B	455834

General Chemistry

Analysis Batch: 455727

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-307182-2	MW-15	Total/NA	Water	I-3765-85	
310-307182-3	MW-D	Total/NA	Water	I-3765-85	
MB 310-455727/1	Method Blank	Total/NA	Water	I-3765-85	
LCS 310-455727/2	Lab Control Sample	Total/NA	Water	I-3765-85	

Analysis Batch: 455740

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-307182-1	MW-8	Total/NA	Water	I-3765-85	
MB 310-455740/1	Method Blank	Total/NA	Water	I-3765-85	
LCS 310-455740/2	Lab Control Sample	Total/NA	Water	I-3765-85	

4

5

0

9

<u>11</u>

12

14

Eurofins Cedar Falls

Lab Chronicle

Client: SCS Engineers Job ID: 310-307182-1

Project/Site: 1st 2025 C&D HMSP Sampling SDG: Mahaska County Landfill, Closed Units

Client Sample ID: MW-8

Date Received: 05/23/25 16:45

Lab Sample ID: 310-307182-1 Date Collected: 05/22/25 11:30 **Matrix: Water**

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3005A			455834	QTZ5	EET CF	05/28/25 09:20
Total/NA	Analysis	6020B		1	456144	NFT2	EET CF	05/29/25 16:39
Total/NA	Analysis	I-3765-85		1	455740	E6KR	EET CF	05/27/25 10:05

Client Sample ID: MW-15

Date Received: 05/23/25 16:45

Lab Sample ID: 310-307182-2 Date Collected: 05/22/25 10:26

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3005A			455834	QTZ5	EET CF	05/28/25 09:20
Total/NA	Analysis	6020B		1	456144	NFT2	EET CF	05/29/25 16:42
Total/NA	Analysis	I-3765-85		1	455727	HE7K	EET CF	05/27/25 09:08

Client Sample ID: MW-D

Lab Sample ID: 310-307182-3 Date Collected: 05/22/25 10:52

1

455727 HE7K

EET CF

05/27/25 09:08

Matrix: Water

Date Received: 05/23/25 16:45

Analysis

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor Number Analyst Lab or Analyzed Total/NA Prep 3005A 455834 QTZ5 EET CF 05/28/25 09:20 Total/NA Analysis 6020B 456144 NFT2 EET CF 05/29/25 16:45 1

Laboratory References:

Total/NA

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

I-3765-85

Eurofins Cedar Falls

5/30/2025

Accreditation/Certification Summary

Client: SCS Engineers Job ID: 310-307182-1

Project/Site: 1st 2025 C&D HMSP Sampling SDG: Mahaska County Landfill, Closed Units

Laboratory: Eurofins Cedar Falls

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
lowa	State	007	12-01-25

3

4

__

7

Ō

10

11

13

Method Summary

Client: SCS Engineers

Project/Site: 1st 2025 C&D HMSP Sampling

Job ID: 310-307182-1

SDG: Mahaska County Landfill, Closed Units

Method	Method Description	Protocol	Laboratory
6020B	Metals (ICP/MS)	SW846	EET CF
I-3765-85	Residue, Non-filterable (TSS)	USGS	EET CF
3005A	Preparation, Total Metals	SW846	EET CF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. USGS = "Methods For Analysis Of Water And Fluvial Sediments", USGS, 1989

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

9

3

4

6

7

10

11

13

Environment Testing America

Cooler/Sample Receipt and Temperature Log Form

City/State. CITY V. Ces	Moins STATE	Project:
Receipt Information Date/Time Received:	5-23-25 1646	Received By: PH
Delivery Type	FedEx	☐ FedEx Ground ☐ US Mail ☐ Spee-Devices ☐ Client Drop-off ☐ Other
Condition of Cooler/Contai		vices Client Drop-off Other
Sample(s) received in Co		lo If yes: Cooler ID:
Multiple Coolers?	☐ Yes	
Cooler Custody Seals Pre		•
No Sample Custody Seals Pr No	esent? Yes /	lo If yes: Sample custody seals intact? Yes
Trip Blank Present?	☐ Yes	No If yes: Which VOA samples are in cooler? ↓
Uncorrected Temp (°C): • Sample Container Tempe Container(s) used:	rature CONTAINER 1	Container 2
Uncorrected Temp	10 ggop	
(°C):	-6.5	
Corrected Temp (°C):	-0.3	
Exceptions Noted		***
1 '	s criteria, was sample(s Idence that the chilling) received same day of sampling?
(e g., bulging septa, b	roken/cracked bottles, t	
NOTE. If yes, contact PI	M before proceeding. If no	, proceed with login
Additional Comments		

Document CED-P-SAM-FRM45521 Revision: 26 Date 27 Jan 2022

General temperature criteria is 0 to 6°C Bacteria temperature criteria is 0 to 10°C

Page 17 of 18

Login Sample Receipt Checklist

Client: SCS Engineers

Job Number: 310-307182-1

SDG Number: Mahaska County Landfill, Closed Units

ODO Namber. Manaska County Landini, Glosed Office

List Source: Eurofins Cedar Falls

5/30/2025

Login Number: 307182 List Number: 1

Creator: Hirsch, Preston

Creator: Hirscn, Preston		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

APPENDIX B-2 Data Validation Documentation

Completed by: Semir Omerovic Date of Sampling: 5/15/2024 Lab Report Date: 5/30/2024 Site Name: Mahaska County Sanitary Landfill - Closed MSWLF units Project Type: HMSP - 2024 Annual Sampling Event Lab Report Number: 310-281475 OK NO N/A NOTES **Sample Collection and Sample Handling** Chain of Custody Temperature Х Preservation Condition Χ Χ Case Narrative Χ **Holding Times Analytical Sensitivity and Blanks Method Blank Detections Trip Blank Detections** ICV/CCV LCS/LCSD Χ MS/MSD Χ Surrogates (organics only) Precision QA/QC Sample RPDs The measured concentrations for sample MW-8 and duplicate **Field Duplicates**

sample MW-D had <50% RPD for analyzed parameters.

Accuracy

Completed by: Nathan Ohrt Date of Sampling: 5/22/2025 Lab Report Date: 5/30/2025 Site Name: Mahaska County Sanitary Landfill - Closed MSWLF units Project Type: HMSP - 2025 Annual Sampling Event Lab Report Number: 310-307182 OK NO N/A NOTES **Sample Collection and Sample Handling** Х Χ Х Χ Х

Accuracy
ICV/CCV
LCS/LCSD
MS/MSD
Surrogates (organics only)
Precision

Chain of Custody Temperature

Preservation Condition

Case Narrative

Holding Times

Analytical Sensitivity and Blanks Method Blank Detections **Trip Blank Detections**

QA/QC Sample RPDs	Х		
Field Duplicates	х		The measured concentrations for sample MW-15 and duplicate sample MW-D had <50% RPD for analyzed parameters.

Χ

APPENDIX C 2024-2025 Analytical Data

SCS ENGINEERS

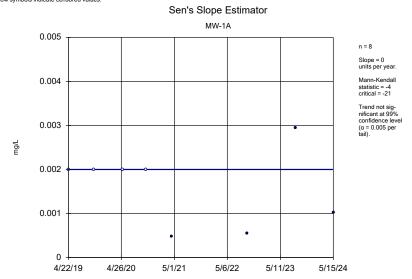
Summary of Groundwater Chemistry

Mahaska County Solid Waste Management Commission - 62-SDP-07-93C

	Sample	MW-1A	MW-2A	MW-8	MW-12	MW-15
Total Metals Constituents	Date	DNG	DNG	DNG	DNG	DNG
Beryllium, mg/L (CAS NO - 7440-41-7)	5/15/2024	0.00102	0.0219	0.00405	< 0.001	0.00308
	5/15/2024	N/A	N/A	0.00413	N/A	N/A
	5/22/2025	N/A	N/A	0.00626	N/A	0.0025
	5/22/2025	N/A	N/A	N/A	N/A	0.00276
Cadmium, mg/L (CAS NO - 7440-43-9)	5/15/2024	0.000362	0.0011	0.0011	0.0106	0.0349
	5/15/2024	N/A	N/A	0.00118	N/A	N/A
	5/22/2025	N/A	N/A	0.000573	N/A	0.0317
	5/22/2025	N/A	N/A	N/A	N/A	0.0269
Cobalt, mg/L (CAS NO - 7440-48-4)	5/15/2024	0.00328	0.433	0.0302	0.139	0.569
	5/15/2024	N/A	N/A	0.0303	N/A	N/A
	5/22/2025	N/A	N/A	0.0567	N/A	0.543
	5/22/2025	N/A	N/A	N/A	N/A	0.49
Nickel, mg/L (CAS NO - 7440-02-0)	5/15/2024	0.0188	1.22	0.138	0.215	1.34
	5/15/2024	N/A	N/A	0.136	N/A	N/A
	5/22/2025	N/A	N/A	0.176	N/A	1.17
	5/22/2025	N/A	N/A	N/A	N/A	1.08
Total Suspended Solids, mg/L (CAS NO - TSS)	5/15/2024	80	24.9	< 1.88	2.38	18
	5/15/2024	N/A	N/A	46	N/A	N/A
	5/22/2025	N/A	N/A	< 1.88	N/A	12.3
	5/22/2025	N/A	N/A	N/A	N/A	10.5

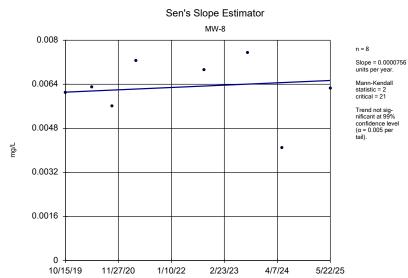
Note: * indicates 'J flag'. Detection is below the reporting limit, but greater than the MDL (Method Detection Limit). The concentration is estimated.

Denotes Detection.
Denotes Confirmed Outlier. Statistically Excluded.

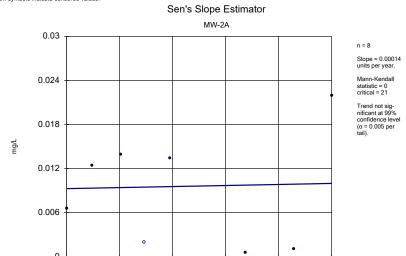

 $Sampling\ performed\ over\ multiple\ dates\ is\ recorded\ on\ the\ first\ date\ sampled.\ Refer\ to\ field\ forms\ for\ exact\ sample\ date.$

APPENDIX D Mann-Kendall Trend Summary Table and Graphs

Trend Test


	Mahaska County SLF	Client: SCS Engineers	Data: MCSWM-Clos	sed_2025_AWQR_	AWRS	Printed 10/22/2025, 2:17 PM				
Constituent	<u>Well</u>	Slope	<u>Calc.</u>	<u>Critical</u>		Sig.	<u>N</u>	%NDs	<u>Alpha</u>	Method
Beryllium (mg/L)	MW-1A	0	-4	-21		No	8	50	0.01	NP
Beryllium (mg/L)	MW-2A	0.00014	0	21		No	8	12.5	0.01	NP
Beryllium (mg/L)	MW-8	0.00007	56 2	21		No	8	0	0.01	NP
Beryllium (mg/L)	MW-15	0.000118	86 9	21		No	8	37.5	0.01	NP
Cadmium (mg/L)	MW-1A	-0.00000	3749 -6	-21		No	8	50	0.01	NP
Cadmium (mg/L)	MW-2A	-0.00069	984 -10	-21		No	8	0	0.01	NP
Cadmium (mg/L)	MW-8	0.00004	411 13	21		No	8	37.5	0.01	NP
Cadmium (mg/L)	MW-12	0.00001	691 0	21		No	8	0	0.01	NP
Cadmium (mg/L)	MW-15	0	1	21		No	8	50	0.01	NP
Cobalt (mg/L)	MW-1A	0.000718	83 13	21		No	8	12.5	0.01	NP
Cobalt (mg/L)	MW-2A	0.001038	8 0	21		No	8	0	0.01	NP
Cobalt (mg/L)	MW-8	-0.00202	28 -18	-21		No	8	0	0.01	NP
Cobalt (mg/L)	MW-12	0.00717	5 8	21		No	8	0	0.01	NP
Cobalt (mg/L)	MW-15	0.02332	16	21		No	8	0	0.01	NP
Nickel (mg/L)	MW-1A	0.004172	2 13	21		No	8	25	0.01	NP
Nickel (mg/L)	MW-2A	0.01322	2	21		No	8	0	0.01	NP
Nickel (mg/L)	MW-8	-0.00603	31 -12	-21		No	8	0	0.01	NP
Nickel (mg/L)	MW-12	-0.00316	69 -3	-21		No	8	0	0.01	NP
Nickel (mg/L)	MW-15	0.08565	14	21		No	8	0	0.01	NP

Sanitas™ v.10.1.01 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.


Constituent: Beryllium Analysis Run 10/22/2025 2:15 PM View: 2025_AWQR-Mann_Kendall Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS

Sanitas™ v.10.1.01 Software licensed to SCS Engineers. UG

Constituent: Beryllium Analysis Run 10/22/2025 2:15 PM View: 2025_AWQR-Mann_Kendall Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS

Sanitas™ v.10.1.01 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

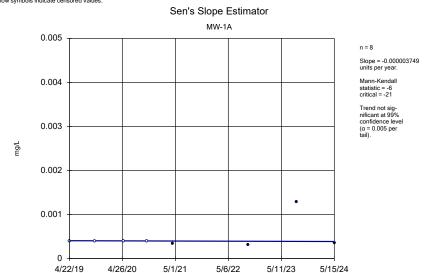
Constituent: Beryllium Analysis Run 10/22/2025 2:15 PM View: 2025_AWQR-Mann_Kendall Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS

5/6/22

5/11/23


5/15/24

5/1/21

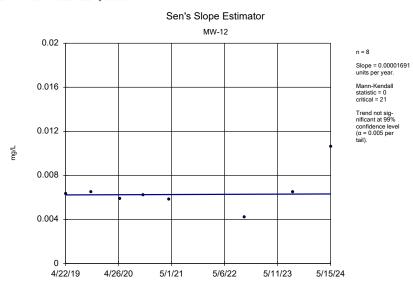

Sanitas™ v.10.1.01 Software licensed to SCS Engineers. UG

4/22/19

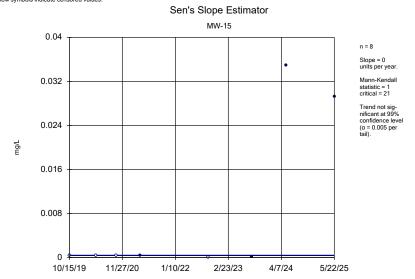
4/26/20

Constituent: Beryllium Analysis Run 10/22/2025 2:15 PM View: 2025_AWQR-Mann_Kendall Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS

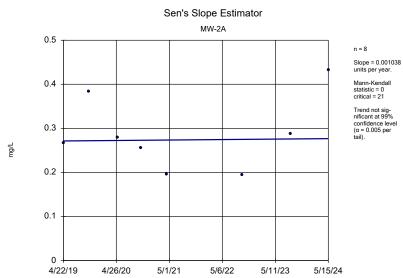
Constituent: Cadmium Analysis Run 10/22/2025 2:15 PM View: 2025_AWQR-Mann_Kendall Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed 2025 AWQR AWRS



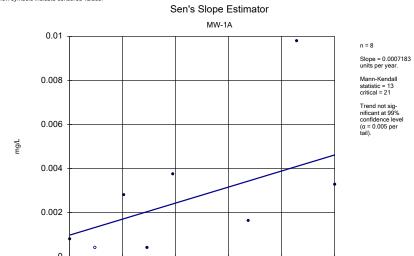
Constituent: Cadmium Analysis Run 10/22/2025 2:15 PM View: 2025_AWQR-Mann_Kendall Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS


Constituent: Cadmium Analysis Run 10/22/2025 2:15 PM View: 2025_AWQR-Mann_Kendall Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS

Sanitas™ v.10.1.01 Software licensed to SCS Engineers. UG


Constituent: Cadmium Analysis Run 10/22/2025 2:15 PM View: 2025_AWQR-Mann_Kendall Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS

Sanitas™ v.10.1.01 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.


Constituent: Cadmium Analysis Run 10/22/2025 2:15 PM View: 2025_AWQR-Mann_Kendall Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS

Sanitas™ v.10.1.01 Software licensed to SCS Engineers. UG

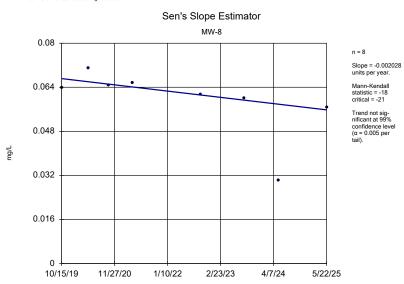
Constituent: Cobalt Analysis Run 10/22/2025 2:15 PM View: 2025_AWQR-Mann_Kendall Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS

Sanitas™ v.10.1.01 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

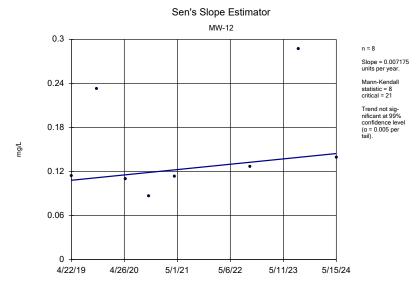
Constituent: Cobalt Analysis Run 10/22/2025 2:15 PM View: 2025_AWQR-Mann_Kendall Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed 2025 AWQR AWRS

5/6/22

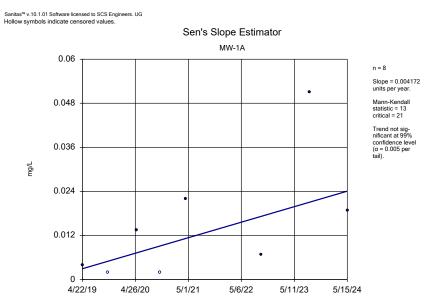
5/11/23

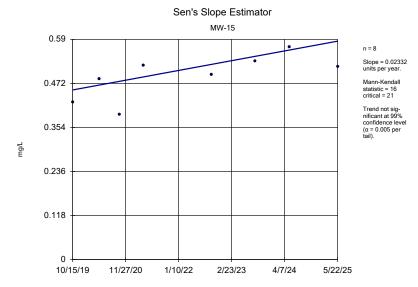

5/15/24

5/1/21

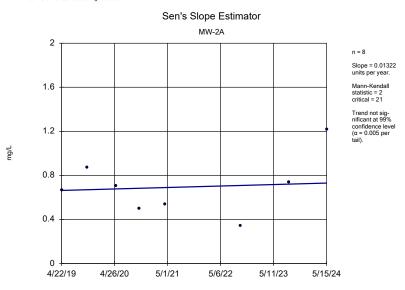

Sanitas™ v.10.1.01 Software licensed to SCS Engineers. UG

4/22/19

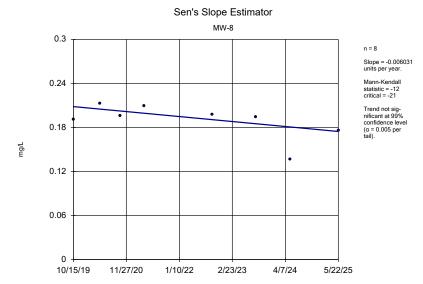

4/26/20

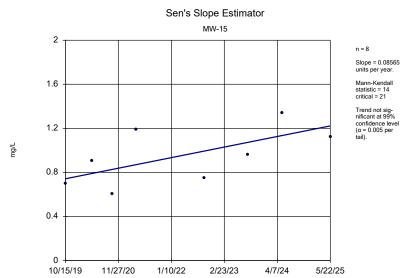

Constituent: Cobalt Analysis Run 10/22/2025 2:15 PM View: 2025_AWQR-Mann_Kendall Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS

Constituent: Cobalt Analysis Run 10/22/2025 2:15 PM View: 2025_AWQR-Mann_Kendall Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS

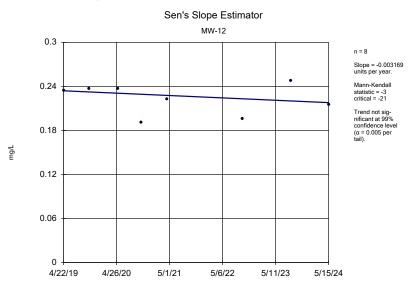


Constituent: Nickel Analysis Run 10/22/2025 2:15 PM View: 2025_AWQR-Mann_Kendall Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS


Constituent: Cobalt Analysis Run 10/22/2025 2:15 PM View: 2025_AWQR-Mann_Kendall Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS


Constituent: Nickel Analysis Run 10/22/2025 2:15 PM View: 2025_AWQR-Mann_Kendall Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS

Sanitas™ v.10.1.01 Software licensed to SCS Engineers. UG

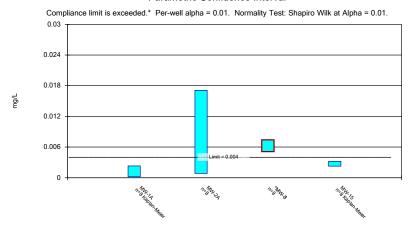

Constituent: Nickel Analysis Run 10/22/2025 2:15 PM View: 2025_AWQR-Mann_Kendall Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS

Sanitas™ v.10.1.01 Software licensed to SCS Engineers. UG

Constituent: Nickel Analysis Run 10/22/2025 2:15 PM View: 2025_AWQR-Mann_Kendall Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS

Sanitas™ v.10.1.01 Software licensed to SCS Engineers. UG

Constituent: Nickel Analysis Run 10/22/2025 2:15 PM View: 2025_AWQR-Mann_Kendall Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS

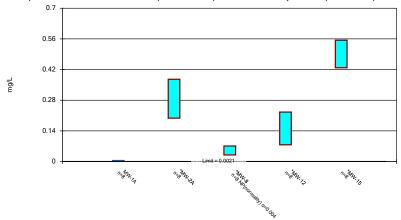

APPENDIX E Confidence Interval Summary Tables and Graphs

Confidence Interval

Constituent Beryllium (mg/L) Beryllium (mg/L) Beryllium (mg/L) Beryllium (mg/L) Cadmium (mg/L) Cadmium (mg/L) Cadmium (mg/L) Cadmium (mg/L) Cadmium (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Nickel (mg/L) Nickel (mg/L) Nickel (mg/L) Nickel (mg/L) Nickel (mg/L)

	Mahaska Cou	nty SLF Client: S	SCS Engineers [Data: MCSWM-0	Closed_2	2025_AW	QR_AWRS	Printed 10/22/2025,	2:23 PM	
W	<u>/ell</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	Transform	<u>Alpha</u>	Method
M	W-1A	0.002313	0.0001829	0.004	No	8	50	No	0.01	Param.
M	W-2A	0.01709	0.0008505	0.004	No	8	12.5	No	0.01	Param.
M	W-8	0.007404	0.005108	0.004	Yes	8	0	No	0.01	Param.
M	W-15	0.003217	0.002263	0.004	No	8	37.5	No	0.01	Param.
M	W-1A	0.00129	0.000319	0.005	No	8	50	No	0.004	NP (normality)
M	W-2A	0.008887	0	0.005	No	8	0	No	0.01	Param.
M	W-8	0.00114	0.0004	0.005	No	8	37.5	No	0.004	NP (normality)
M	W-12	0.008423	0.004576	0.005	No	8	0	No	0.01	Param.
M	W-15	0.0349	0.00005	0.005	No	8	50	No	0.004	NP (normality)
M	W-1A	0.006134	0	0.0021	No	8	12.5	No	0.01	Param.
M	W-2A	0.3758	0.1981	0.0021	Yes	8	0	No	0.01	Param.
M	W-8	0.0709	0.03025	0.0021	Yes	8	0	No	0.004	NP (normality)
M	W-12	0.2257	0.07662	0.0021	Yes	8	0	No	0.01	Param.
M	W-15	0.5538	0.4281	0.0021	Yes	8	0	No	0.01	Param.
M	W-1A	0.03138	0	0.1	No	8	25	No	0.01	Param.
M	W-2A	0.9795	0.4148	0.1	Yes	8	0	No	0.01	Param.
M	W-8	0.2146	0.1639	0.1	Yes	8	0	No	0.01	Param.
M	W-12	0.2442	0.2009	0.1	Yes	8	0	No	0.01	Param.
М	W-15	1.219	0.6731	0.1	Yes	8	0	No	0.01	Param.

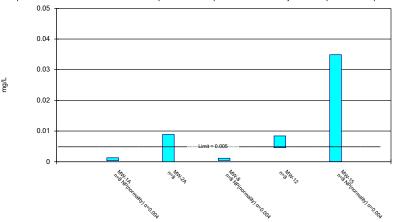
Parametric Confidence Interval


Constituent: Beryllium Analysis Run 10/22/2025 2:21 PM View: 2025_AWQR-Confidence_Interval

Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS

Sanitas™ v.10.1.01 Software licensed to SCS Engineers. UG

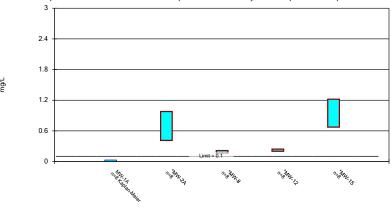
Parametric and Non-Parametric (NP) Confidence Interval


Compliance limit is exceeded.* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk at Alpha = 0.01.

Constituent: Cobalt Analysis Run 10/22/2025 2:21 PM View: 2025_AWQR-Confidence_Interval Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk at Alpha = 0.01.


Constituent: Cadmium Analysis Run 10/22/2025 2:21 PM View: 2025_AWQR-Confidence_Interval Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS

Sanitas™ v.10.1.01 Software licensed to SCS Engineers. UG

Sanitas™ v.10.1.01 Software licensed to SCS Engineers. UG

Parametric Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk at Alpha = 0.01.

Constituent: Nickel Analysis Run 10/22/2025 2:21 PM View: 2025_AWQR-Confidence_Interval Mahaska County SLF Client: SCS Engineers Data: MCSWM-Closed_2025_AWQR_AWRS