CON 12-1-1 Doc # 113532

109 Regency West Court Fort Dodge, IA 50501 515-955-3635 evergreen-engineers.com

May 28, 2025

GROUNDWATER QUALITY TESTING REPORT

For

GEORGIA – PACIFIC GYPSUM

Fort Dodge, Iowa

NORTH RECYCLE PILE

PERMIT #94-SDP-18-09

RECEIVED

EVERGEEN #9510

JUL 24 2025

1
The state of the s
To accommon to
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A STANDARD CONTRACTOR
*

MAY 28, 2025 GROUNDWATER TESTING REPORT For GEORGIA – PACIFIC GYPSUM NORTH RECYCLE PILE

Fort Dodge, Iowa

PERMIT #94-SDP-18-09

Georgia-Pacific Gypsum North Recycle Pile

May 28, 2025, Groundwater Testing Permit #94-SDP-18-09

Per MER Engineering correspondence dated October 12, 2022, Georgia-Pacific Gypsum proposed to make changes to the current groundwater testing at this site. This proposal would eliminate the testing for the indicator parameters listed in Table 3-2 from the HMSP and Closure / Post Closure Authorization. The proposed change in groundwater testing would include testing for the Table 3-1 parameters; total arsenic, total barium, total cadmium, total chromium, total lead, total mercury, and total zinc, as well as field tested parameters temperature, pH, and specific conductance. These metal parameters have US EPA and Iowa Statewide Groundwater Standards to adhere to. The Department approved the proposed changes per DNR correspondence dated October 18, 2022. Georgia-Pacific Gypsum completed a first round of sampling for this new list of parameters in November 2022. Four of five monitoring locations were successfully sampled and tested during the November 2022 event. Monitoring well MW4 could not be sampled as there was insufficient groundwater available at that time. A second round of this testing was proposed to be completed in March 2023. That groundwater testing was dismissed as MW4 did not contain adequate groundwater to complete the sampling. Groundwater was successfully sampled/tested at all monitoring locations in April 2023 and July 2023. The Department then suspended groundwater testing for the remainder of 2023. In December 2023, the Department reinstated groundwater testing for calendar year 2024. Three (3) rounds of groundwater testing were completed in calendar year 2024, May 1, 2024, August 6, 2024, and November 25, 2024. Per email from Brian Rath (IDNR) dated January 6, 2025, Georgia-Pacific is to continue groundwater testing and reporting until an Environmental Covenant has been submitted and approved by the Department. Georgia-Pacific completed another round of groundwater sampling / testing on May 28, 2025.

In early May 2025, groundwater levels were checked to see if groundwater was available where sampling / testing could be completed. Georgia-Pacific Gypsum completed another round of groundwater sampling / testing on May 28, 2025, at all monitoring locations at the North Recycle Pile. Arsenic was not detected at any of the five monitoring locations during this groundwater testing event. All monitoring locations had barium detected at low levels. Two monitoring locations, MW5 (22.3 μ g/L) and MW2 (88.4 μ g/L) had low level zinc detected. Monitoring well MW5 (0.786 μ g/L) had cadmium detected. No other groundwater detects were noted for the remaining parameters during this May 2025 testing event. The table below displays the parameter detects for the 1st (November 2022), 2nd (April 2023), 3rd (July 2023), 4th (May 2024), 5th (August 2024), 6th (November 2024), and 7th May 2025 rounds of testing for the new list of parameters. As can be seen below and on the next page, all parameter detects are low level with none exceeding any known US EPA or Iowa Statewide Groundwater Standards.

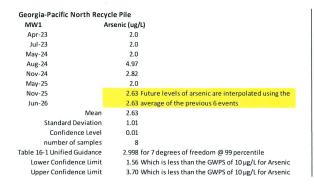
		ARSE	ENIC - SS (10	μg/L)		
DATE		MW1	MW2	M W3	MW4	M W 5
11/21/2022	(µg/L)	2.22	2.1	<2.00		<2.00
4/27/2023	(µg/L)	<2.00	<2.00	<2.00	<2.00	<2.00
7/20/2023	(µg/L)	<2.00	2.5	<2.00	<2.00	<2.00
5/1/2024	(µg/L)	<2.00	<2.00	<2.00	<2.00	<2.00
8/6/2024	(µg/L)	4.97	<2.00	<2.00	<2.00	<2.00
11/25/2024	(µg/L)	2.82	<2.00	<2.00	<2.00	<2.00
5/28/2025	(µg/L)	<2.00	<2.00	<2.00	<2.00	<2.00
		BARIL	JM - SS (2000	µg/L)		
11/21/2022	(µg/L)	11.0	13.1	16.3		11.6
4/27/2023	(µg/L)	9.1	11.4	12.9	9.6	9.22
7/20/2023	(µg/L)	9.52	11.5	15.6	9.2	10.3
5/1/2024	(µg/L)	10.1	11.0	13.7	9.18	8.17
8/6/2024	(µg/L)	10.5	11.7	12.1	9.32	9.94
11/25/2024	(µg/L)	9.84	10.9	16 . 2	9.58	10.6
5/28/2025	(µg/L)	10.1	10.3	11.9	8.59	6.96

SS is the lowa Statewide Standard (GWPS) for that parameter Bold font (2.22) with gray back shading indicates a detect.

CADMIUM - SS (5.0 µg/L)									
DATE		M W 1	M W 2	M W 3	M W 4	M W 5			
11/21/2022	(µg/L)	<0.100	<0.100	0.255		<0.100			
4/27/2023	(µg/L)	<0.200	<0.200	<0.200	<0.200	<0.200			
7/20/2023	(µg/L)	<0.200	<0.200	<0.200	<0.200	<0.200			
5/1/2024	(µg/L)	<0.200	<0.200	<0.200	<0.200	<0.200			
8/6/2024	(µg/L)	<0.200	<0.200	<0.200	<0.200	<0.200			
11/25/2024	(µg/L)	<0.200	<0.200	<0.200	<0.200	<0.200			
5/28/2025	(µg/L)	<0.200	<0.200	<0.200	<0.200	0.786			
		ZIN	C - SS (2000	μg/L)					
11/21/2022	(µg/L)	23.3	69.8	<20.00		<20.00			
4/27/2023	(µg/L)	<20.00	64.2	<20.00	<20.00	<20.00			
7/20/2023	(µg/L)	<20.00	59.8	<20.00	<20.00	<20.00			
5/1/2024	(µg/L)	<20.00	85.9	<20.00	<20.00	<20.00			
8/6/2024	(µg/L)	24.2	87.3	<20.00	<20.00	<20.00			
11/25/2024	(µg/L)	<20.00	71.1	<20.00	<20.00	<20.00			
5/28/2025	(µg/L)	<20.00	88.4	<20.00	<20.00	22.3			

SS is the lowa Statewide Standard (GWPS) for that parameter

Bold font (2.22) with gray back shading indicates a detect.


Monitoring well MW2 had some history with arsenic detects (3) that did exceed GWPS when utilizing dissolved analysis. These arsenic detects were reported to the Department during the first three quarters of calendar year 2013 groundwater testing at this site. The fourth quarter 2013 arsenic result returned from dissolved analysis as no detect. MW2 has had no arsenic detects since 2013 groundwater testing that have exceeded GWPS.

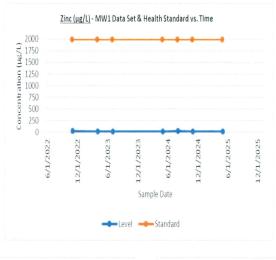
Lower Confidence (LCL) and Upper Confidence (UCL) limits were examined for groundwater parameters arsenic, barium, and zinc that have been detected with <u>Total Analysis</u> in monitoring wells MW1 and MW2. The LCL and UCL calculations are for the last six groundwater testing events and are displayed in the tables below.

Georgia-Pacific North Rec	cycle Pile
MW2	Arsenic (ug/L)
Apr-23	2.0
Jul-23	2.5
May-24	2.0
Aug-24	2.0
Nov-24	2.0
May-25	2.0
Nov-25	2.08 Future levels of arsenic are interpolated using the
Jun-26	2.08 average of the previous 6 events
Mean	2.1
Standard Deviation	0.17
Confidence Level	0.01
number of samples	8
Table 16-1 Unified Guidance	2.998 for 7 degrees of freedom @ 99 percentile
Lower Confidence Limit	1.90 Which is less than the GWPS of 10 μg/L for Arsenic
Upper Confidence Limit	2.27 Which is less than the GWPS of 10 μg/L for Arsenic

MW2	Barium (ug/L)
Apr-23	11.4
Jul-23	11.5
May-24	11.0
Aug-24	11.7
Nov-24	10.9
May-25	10.3
Nov-25	11.1 Future levels of arsenic are interpolated using the
Jun-26	11.1 average of the previous 6 events
Mean	11.1
Standard Deviation	0.43
Confidence Level	0.01
number of samples	8
Table 16-1 Unified Guidance	2.998 for 7 degrees of freedom @ 99 percentile
Lower Confidence Limit	10.67 Which is less than the GWPS of 2000 μg/L for Bariu
Upper Confidence Limit	11.58 Which is less than the GWPS of 2000 µg/L for Bariu

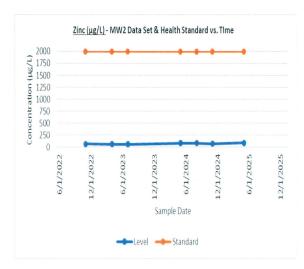
Georgia-Pacific North Rec	cycle Pile
MW2	Zinc (ug/L)
Apr-23	64.2
Jul-23	59.8
May-24	85.9
Aug-24	87.3
Nov-24	71.1
May-25	88.4
Nov-25	76.12 Future levels of arsenic are interpolated using the
Jun-26	76.12 average of the previous 6 events
Mean	76.12
Standard Deviation	10.72
Confidence Level	0.01
number of samples	8
Table 16-1 Unified Guidance	2.998 for 7 degrees of freedom @ 99 percentile
Lower Confidence Limit	64.75 Which is less than the GWPS of 2000 μg/L for Zinc
Upper Confidence Limit	87.48 Which is less than the GWPS of 2000 $\mu g/L$ for Zinc

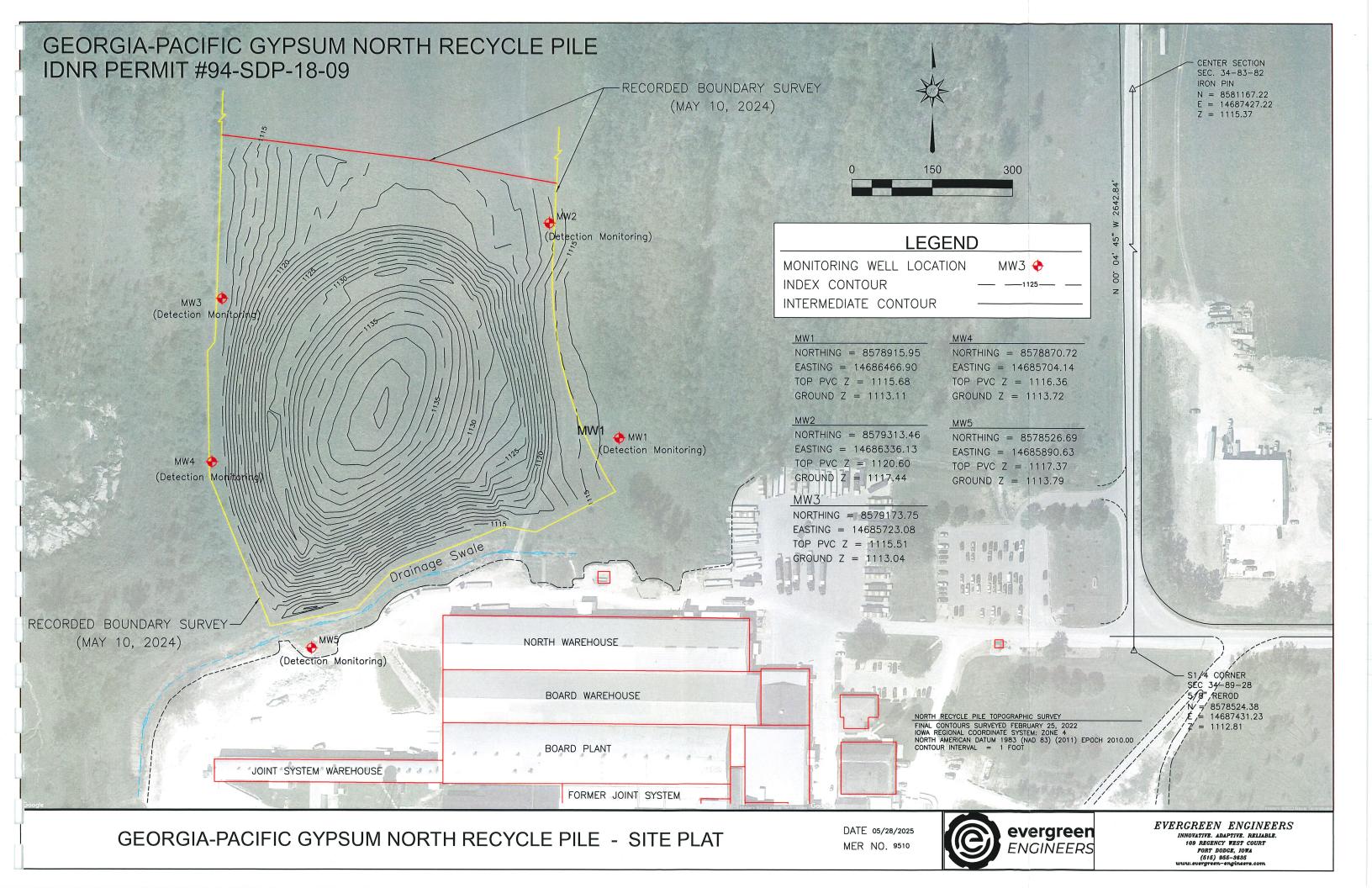
Georgia-Pacific North Rec	ycle Pile
MW1	Barium (ug/L)
Apr-23	9.1
Jul-23	9.52
May-24	10.1
Aug-24	10.5
Nov-24	9.84
May-25	6.96
Nov-25	9.34 Future levels of arsenic are interpolated using the
Jun-26	9.34 average of the previous 6 events
Mean	9.34
Standard Deviation	1.06
Confidence Level	0.01
number of samples	8
Table 16-1 Unified Guidance	2.998 for 7 degrees of freedom @ 99 percentile
Lower Confidence Limit	8.21 Which is less than the GWPS of 2000 μg/L for Barium
Upper Confidence Limit	10.47 Which is less than the GWPS of 2000 μg/L for Barium


Georgia-Pacific North Red	ycle Pile
MW1	Zinc (ug/L)
Apr-23	20.0
Jul-23	20.0
May-24	20.0
Aug-24	24.2
Nov-24	20.0
May-25	20.0
Nov-25	20.70 Future levels of arsenic are interpolated using the
Jun-26	20.70 average of the previous 6 events
Mean	20.70
Standard Deviation	1.45
Confidence Level	0.01
number of samples	8
Table 16-1 Unified Guidance	2.998 for 7 degrees of freedom @ 99 percentile
Lower Confidence Limit	19.16 Which is less than the GWPS of 2000 μg/L for Zinc
Upper Confidence Limit	22.24 Which is less than the GWPS of 2000 $\mu g/L$ for Zinc

As can be seen, all LCL and UCL calculations are well below the GWPS for arsenic, barium, and zinc in MW1 and MW2. As stated previously, monitoring well MW2 has had some arsenic levels detected by dissolved analysis which did exceed GWPS in calendar year 2013. Since that 2013 testing, there have been 2 - arsenic detects utilizing total analysis, both well below the GWPS of 10.0 μ g/L. MW2 had no arsenic detected during this May 2025 testing event. There have been no other parameter detects that have exceeded a GWPS at any of the other monitoring locations at this closed unit.

Please note below and on the next page, Health Standards have been plotted using the test data from the last seven (7) groundwater testing events utilizing Total Analysis for MW1 and MW2. The Health Standards include the detect levels for arsenic, barium, and zinc compared to their respective Groundwater Protection Standards.




The Health Standards graphs show that none of the groundwater detects for arsenic, barium, or zinc exceed the GWPS at monitoring locations MW1 or MW2. All detects are low level with none exceeding any known US EPA or lowa Statewide Groundwater Standards.

Georgia-Pacific and MER Engineering discussed these latest groundwater testing results as well as the updated Environmental Covenant guidance documents provided by Brian Rath (IDNR). Georgia-Pacific intends to pursue an Environmental Covenant (EC) for both of their closed gypsum board waste piles in calendar year 2025. The Department in their January 6, 2025 e-mail, instructed Georgia-Pacific Gypsum to continue groundwater testing and all reporting until an Environmental Covenant for this site has been approved.

Enclosed are copies of the site plat, data tables summarizing the parameters tested to date for each of the five monitoring locations, analytical results, and field data measurement data forms (542-1322).

Site Plat

(May 2025)

	•	
		-
	•	4.* -
		, , ,
		į
		i i
		1 1 5 1

Groundwater Data Tables with Detects Noted in Bold Font

(May 2025)

GEORGIA-PACIFIC NORTH RECYCLE PILE - PERMIT #94-SDP-18-09C								
ARSENIC - SS (10 μg/L)								
DATE		MW1	MW2	MW3	MW4	MW5		
2/6/2013	(μg/L)	<1.0	23.6	<1.0	<1.0	<1.0		
5/21/2013	(μg/L)	<2.0	22.8	<2.0	<2.0	<2.0		
8/14/2013	(μg/L)	<1.0	19.2	<1.0	<1.0	<1.0		
11/7/2013	(μg/L)	<2.0	<2.0	<2.0	<2.0	<2.0		
11/21/2022 (*)	(µg/L)	2.22	2.10	<2.00		<2.00		
4/27/2023	(μg/L)	<2.00	<2.00	<2.00	<2.00	<2.00		
7/20/2023	(μg/L)	<2.00	2.50	<2.00	<2.00	<2.00		
5/1/2024	(µg/L)	<2.00	<2.00	<2.00	<2.00	<2.00		
8/6/2024	(μg/L)	4.97	<2.00	<2.00	<2.00	<2.00		
11/25/2024	(μg/L)	2.82	<2.00	<2.00	<2.00	<2.00		
5/28/2025	(μg/L)	<2.00	<2.00	<2.00	<2.00	<2.00		
(

Value in Bold Font indicates a detect.

MCL = USEPA Maximum Contaminant Level

SDWS = Secondary Drinking Water Standard

SS = Iowa State Standard

11/21/2022 (*) Indicates first time in which Total Metals Analysis was completed.

GEORGIA-PACIFIC NORTH RECYCLE PILE - PERMIT #94-SDP-18-09C								
BARIUM - SS (2000 μg/L)								
DATE		MW1	MW2	MW3	MW4	MW5		
2/6/2013	(μg/L)	112	64.5	150	108	106		
5/21/2013	(µg/L)	35.8	24.8	17.3	22.7	22.3		
8/14/2013	(µg/L)	28.9	31.5	28.5	32.7	36.7		
11/7/2013	(μg/L)	18.8	15.1	27.6	19.5	19.3		
11/21/2022 (*)	(μg/L)	11.0	13.1	16.3		11.6		
4/27/2023	(μg/L)	9.1	11.4	12.9	9.6	9.22		
7/20/2023	(μg/L)	9.52	11.5	15.6	9.2	20.9		
5/1/2024	(μg/L)	10.1	11.0	13.7	9.18	8.17		
8/6/2024	(μg/L)	10.5	11.7	12.1	9.31	9.94		
11/25/2024	(μg/L)	9.84	10.9	16.2	9.58	10.6		
5/28/2025	(μg/L)	10.1	10.3	11.9	8.59	6.96		
The state of the s								

CADMIUM - SS (5.0 µg/L)							
DATE		MW1	MW2	MW3	MW4	MW5	
2/6/2013	(µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	
5/21/2013	(μg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	
8/14/2013	(μg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	
11/7/2013	(μg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	
.1/21/2022 (*)	(µg/L)	<0.100	<0.100	0.255		<0.100	
4/27/2023	(μg/L)	<0.200	<0.200	<0.200	<0.200	<0.200	
7/20/2023	(μg/L)	<0.200	<0.200	<0.200	<0.200	<0.200	
5/1/2024	(µg/L)	<0.200	<0.200	<0.200	<0.200	<0.200	
8/6/2024	(µg/L)	<0.200	<0.200	<0.200	<0.200	<0.200	
11/25/2024	(µg/L)	<0.200	<0.200	<0.200	<0.200	<0.200	
5/28/2025	(µg/L)	<0.200	<0.200	<0.200	<0.200	0.786	

GEORGIA-PACIFIC NORTH RECYCLE PILE - PERMIT #94-SDP-18-09C									
		CHRC	MIUM - SS (100						
DATE		MW1	MW2	MW3	MW4	MW5			
2/6/2013	(μg/L)	<2.0	<2.0	<2.0	<2.0	<2.0			
5/21/2013	(μg/L)	<2.0	<2.0	<2.0	<2.0	<2.0			
8/14/2013	(μg/L)	<2.0	<2.0	<2.0	<2.0	<2.0			
11/7/2013	(μg/L)	<2.0	<2.0	<2.0	<2.0	<2.0			
1/21/2022 (*)	(µg/L)	<5.0	<5.0	<5.0		<5.0			
4/27/2023	(µg/L)	<5.0	<5.0	<5.0	<5.0	<5.0			
7/20/2023	(μg/L)	<5.0	<5.0	<5.0	<5.0	<5.0			
5/1/2024	(μg/L)	<5.0	<5.0	<5.0	<5.0	<5.0			
8/6/2024	(μg/L)	<5.0	<5.0	<5.0	<5.0	<5.0			
11/25/2024	(µg/L)	<5.0	<5.0	<5.0	<5.0	<5.0			
5/28/2025	(μg/L)	<5.0	<5.0	<5.0	<5.0	<5.0			
					1	1			

GEORGIA-PACIFIC NORTH RECYCLE PILE - PERMIT #94-SDP-18-09C								
		LE	AD - SS (15 μg					
DATE		MW1	MW2	MW3	MW4	MW5		
2/6/2013	(μg/L)	<4.0	<4.0	<4.0	<4.0	<4.0		
5/21/2013	(μg/L)	<4.0	<4.0	<4.0	<4.0	<4.0		
8/14/2013	(μg/L)	<4.0	<4.0	<4.0	<4.0	<4.0		
11/7/2013	(μg/L)	<4.0	<4.0	<4.0	<4.0	<4.0		
1/21/2022 (*)	(μg/L)	<0.500	<0.500	<0.500		<0.500		
4/27/2023	(μg/L)	<0.500	<0.500	<0.500	<0.500	<0.500		
7/20/2023	(μg/L)	<0.500	<0.500	<0.500	<0.500	<0.500		
5/1/2024	(μg/L)	<0.500	<0.500	<0.500	<0.500	<0.500		
8/6/2024	(µg/L)	<0.500	<0.500	<0.500	<0.500	<0.500		
11/25/2024	(µg/L)	<0.500	<0.500	<0.500	<0.500	<0.500		
5/28/2025	(μg/L)	<0.500	<0.500	<0.500	<0.500	<0.500		
	+							
	-					 		

			.*

GEORGIA-PACIFIC NORTH RECYCLE PILE - PERMIT #94-SDP-18-09C								
		MER	CURY - SS (2.0 p					
DATE		MW1	MW2	MW3	MW4	MW5		
2/6/2013	(μg/L)	<0.20	<0.20	<0.20	<0.20	<0.20		
5/21/2013	(µg/L)	<0.20	<0.20	<0.20	<0.20	<0.20		
8/14/2013	(µg/L)	<0.20	<0.20	<0.20	<0.20	<0.20		
11/7/2013	(µg/L)	<0.20	<0.20	<0.20	<0.20	<0.20		
1/21/2022 (*)	(µg/L)	<0.200	<0.200	<0.200		<0.200		
4/27/2023	(μg/L)	<0.200	<0.200	<0.200	<0.200	<0.200		
7/20/2023	(µg/L)	<0.200	<0.200	<0.200	<0.200	<0.200		
5/1/2024	(µg/L)	<0.200	<0.200	<0.200	<0.200	<0.200		
8/6/2024	(μg/L)	<0.200	<0.200	<0.200	<0.200	<0.200		
11/25/2024	(µg/L)	<0.200	<0.200	<0.200	<0.200	<0.200		
5/28/2025	(μg/L)	<0.200	<0.200	<0.200	<0.200	<0.200		
7.7777								
157								
	 							

ZINC - SS (2000 μg/L)									
DATE		MW1	MW2	MW3	MW4	MW5			
2/6/2013	(µg/L)	163	254	194	174	152			
5/21/2013	(μg/L)	54.5	164	56.5	63.7	55.1			
8/14/2013	(µg/L)	110	172	91.9	116	109			
11/7/2013	(µg/L)	155	231	122	166	175			
1/21/2022 (*)	(µg/L)	23.3	69.8	<20.00		<20.00			
4/27/2023	(μg/L)	<20.00	64.2	<20.00	<20.00	<20.00			
7/20/2023	(μg/L)	<20.00	59.8	<20.00	<20.00	<20.00			
5/1/2024	(µg/L)	<20.00	85.9	<20.00	<20.00	<20.00			
8/6/2024	(µg/L)	24.2	87.3	<20.00	<20.00	<20.00			
11/25/2024	(μg/L)	<20.00	71.1	<20.00	<20.00	<20.00			
5/28/2025	(μg/L)	<20.00	88.4	<20.00	<20.00	22.3			

	GEORGIA-	PACIFIC NORT	H RECYCLE PILE	- PERMIT #94-SI	OP-18-09C	
			TSS			
DATE		MW1	MW2	MW3	MW4	MW5
11/15/18 (*)	(mg/L)	151	29.0	136	36.0	14.4
5/2/2019	(mg/L)	25.5	19.3	15.3	87.0	8.6
11/14/2019	(mg/L)	60.0	19.0	62.8	4.2	3.9
5/26/2020	(mg/L)	65.6	17.3	45.4	11.1	5.7
11/16/2020	(mg/L)	28.0	3.6	72.0	42.0	4.7
5/24/2021	(mg/L)	12.9	7.4	74.3	9.9	2.6
11/16/2021	(mg/L)	555	3.9	104	1600	11.8
5/24/2022	(mg/L)	34.0	8.0	105	4.0	5.1
11/21/2022	(mg/L)	36.6	10.3	138		8.3
4/27/2023	(mg/L)	25.3	10.9	15.9	10.0	3.1
7/20/2023	(mg/L)	34.5	8.3	32.5	4.4	20.9
5/1/2024	(mg/L)	31.3	11.1	15.6	8.3	17.8
8/6/2024	(mg/L)	55.4	13.9	19.8	2.5	4.2
11/25/2024	(mg/L)	32.8	9.0	44.5	56.0	13.5
5/28/2025	(mg/L)	27.8	17.1	39.4	<1.9	13.9

	pH (Fie	ld Measuremen	it) (SDWS = 6.5-	8.5)	
DATE	MW1	MW2	MW3	MW4	MW5
2/6/2013	6.92	6.68	6.74	6.77	7.03
5/21/2013	6.79	6.59	6.79	6.76	6.81
8/14/2013	6.72	6.44	6.71	6.68	6.76
11/7/2013	6.79	6.60	6.69	6.69	6.83
5/14/2014	6.78	6.51	6.62	6.67	6.74
11/3/2014	6.65	6.54	6.64	6.67	6.75
5/15/2015	6.85	6.53	6.72	6.74	6.77
11/4/2015	6.64	6.68	6.70	6.78	6.72
5/18/2016	6.83	6.48	6.69	6.62	6.58
11/1/2016	6.65	6.52	6.69	6.75	6.95
5/24/2017	6.94	6.50	6.90	6.73	6.74
11/14/2017	6.72	6.51	6.62	6.73	6.81
5/24/2018	6.94	6.67	6.96	6.79	6.82
11/15/18 (*)	6.91	6.59	6.94	6.83	6.82
5/2/2019	7.02	6.68	7.02	6.85	6.77
11/14/2019	6.70	6.58	6.75	6.90	6.74
5/26/2020	6.78	6.57	6.88	6.84	6.81
11/16/2020	6.95	6.66	6.59	6.87	7.18
5/24/2021	7.02	6.52	6.68	6.98	6.83
11/16/2021	7.26	6.78	6.60	6.99	6.87
5/24/2022	7.06	6.54	6.62	6.96	6.90
11/21/2022	7.22	6.69	6.58		6.92
4/27/2023	7.04	6.65	6.73	6.99	6.94
7/20/2023	6.86	6.59	6.59	6.79	6.95
5/1/2024	7.10	6.62	6.82	6.96	6.87
8/6/2024	6.83	6.67	6.68	6.83	6.89
11/25/2024	7.04	6.75	6.60	6.91	6.94
5/28/2025	7.14	6.73	6.8	7.03	6.85

Value in Bold Font indicates a detect.

MCL = USEPA Maximum Contaminant Level

SDWS = Secondary Drinking Water Standard

SS = Iowa State Standard

11/15/2018 (*) Indicates first time in which Total Metals Analysis was completed.

SPECIFIC CONDUCTANCE									
DATE		MW1	MW2	MW3	MW4	MW5			
2/6/2013	(mS/cm)	2.87	3.83	3.07	3.44	3.05			
5/21/2013	(mS/cm)	2.39	3.56	2.27	3.31	3.05			
8/14/2013	(mS/cm)	2.84	3.51	2.46	3.29	2.90			
11/7/2013	(mS/cm)	2.88	3.69	2.76	3.32	2.98			
5/14/2014	(mS/cm)	2.74	3.53	2.74	3.30	2.98			
11/3/2014	(mS/cm)	2.87	3.60	2.57	3.21	2.99			
5/15/2015	(mS/cm)	2.83	3.55	2.44	3.16	3.02			
11/4/2015	(mS/cm)	2.80	3.49	2.52	3.17	3.05			
5/18/2016	(mS/cm)	2.85	3.51	2.42	3.21	3.19			
11/1/2016	(mS/cm)	2.79	3.45	2.58	3.11	3.08			
5/24/2017	(mS/cm)	2.72	3.45	2.37	3.07	3.17			
11/14/2017	(mS/cm)	2.78	3.47	2.95	3.07	3.12			
5/24/2018	(mS/cm)	2.70	3.40	2.33	3.08	3.19			
11/15/18 (*)	(mS/cm)	2.72	3.46	2.30	3.08	3.22			
5/2/2019	(mS/cm)	2.72	3.37	2.25	3.02	3.16			
11/14/2019	(mS/cm)	2.78	3.41	2.62	3.01	3.15			
5/26/2020	(mS/cm)	2.70	3.32	2.36	2.93	3.02			
11/16/2020	(mS/cm)	2.65	3.26	2.65	3.05	2.88			
5/24/2021	(mS/cm)	2.57	3.13	2.64	2.95	2.72			
11/16/2021	(mS/cm)	2.71	3.25	3.11	3.04	2.73			
5/24/2022	(mS/cm)	2.64	3.26	2.77	3.01	2.83			
11/21/2022	(mS/cm)	2.71	3.23	3.02		2.65			
4/27/2023	(mS/cm)	2.59	3.10	2.61	2.96	2.64			
7/20/2023	(mS/cm)	2.59	3.18	2.75	2.93	2.60			
5/1/2024	(mS/cm)	2.68	3.13	2.89	3.02	2.97			
8/6/2024	(mS/cm)	2.71	3.23	2.71	2.91	2.66			
11/25/2024	(mS/cm)	2.70	3.32	2.93	2.98	2.66			
5/28/2025	(mS/cm)	2.83	3.16	2.72	3.03	2.75			

			TEMPERATURE	- PERMIT #94-SI :		
DATE		MW1	MW2	MW3	MW4	MW5
2/6/2013	(°C)	11.0	9.9	9.8	9.7	10.3
		10.9	11.3	8.3	10.9	9.0
5/21/2013 8/14/2013	(°C)	12.6	12.3	12.4	11.7	12.6
	(°C)	12.5	10.7	11.8	10.2	12.1
11/7/2013	(°C)	12.9	11.4	8.6	10.5	8.6
5/14/2014	(°C)	13.7	12.4	12.9	10.5	13.0
11/3/2014		13.4	11.4	8.9	10.1	8.8
5/15/2015	(°C)	14.2	12.0	13.2	10.6	12.9
11/4/2015	(°C)	12.2	11.2	9.3	10.4	9.6
5/18/2016	(°C)	14.3	11.7	13.3	10.8	13.4
11/1/2016	(°C)	12.4	11.0	9.1	10.5	9.1
5/24/2017	(°C)		11.0	11.9	10.5	12.9
11/14/2017	(°C)	12.6	11.3	9.4	11.0	10.4
5/24/2018	(°C)	12.7			10.0	12.2
11/15/18 (*)	(°C)	13.2	10.8	7.6	10.0	8.2
5/2/2019	(°C)	11.6	11.0		10.0	10.6
11/14/2019	(°C)	12.2	10.4	9.1	10.4	9.2
5/26/2020	(°C)	12.1	11.4		9.9	10.9
11/16/2020	(°C)	11.4	10.9	9.8	10.6	9.4
5/24/2021	(°C)	12.5	11.6	11.3	9.8	11.8
11/16/2021	(°C)	11.2 11.9	10.8	8.6	9.9	8.0
5/24/2022	(°C)	11.3	10.8	10.8	3.3	11.4
11/21/2022	(°C)			8.7	10.2	8.8
4/27/2023	(°C)	12.2	11.1	10.2	10.1	11.3
7/20/2023	(°C)	12.3	11.2	8.7	10.3	8.6
5/1/2024	(°C)		11.4	11.1	10.4	11.4
8/6/2024	(°C)	12.8	10.8	11.1	9.9	12.4
11/25/2024	(°C)	11.1		8.8	10.2	9
5/28/2025	(°C)	12.3	11.3	0.0	10.2	, ,

Eurofins Test America Laboratory Reports for Groundwater Testing (May 28, 2025)

ANALYTICAL REPORT

PREPARED FOR

Attn: Dave Minikis Evergreen Engineers 109 Regency West Court Fort Dodge, Iowa 50501

Generated 6/11/2025 8:29:06 AM

JOB DESCRIPTION

Georgia Pacific MW Sampling

JOB NUMBER

310-307406-1

Eurofins Cedar Falls 3019 Venture Way Cedar Falls IA 50613

See page two for job notes and contact information.

Page 1 of 23

Eurofins Cedar Falls

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 6/11/2025 8:29:06 AM

Authorized for release by Hannah Dietz, Project Manager I Hannah.Dietz@et.eurofinsus.com (319)277-2401

Laboratory Job ID: 310-307406-1

Client: Evergreen Engineers Project/Site: Georgia Pacific MW Sampling

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Detection Summary	6
Client Sample Results	7
Definitions	12
QC Sample Results	13
QC Association	15
Chronicle	17
Certification Summary	19
Method Summary	20
Chain of Custody	21
Receipt Checklists	23

Case Narrative

Client: Evergreen Engineers

Job ID: 310-307406-1

Project: Georgia Pacific MW Sampling

Eurofins Cedar Falls

Job ID: 310-307406-1

8 9

Job Narrative 310-307406-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/29/2025 8:40 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.5°C.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cedar Falls

Page 4 of 23

6/11/2025

Sample Summary

Client: Evergreen Engineers

Project/Site: Georgia Pacific MW Sampling

Job ID: 310-307406-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
310-307406-1	MW5	Water	05/28/25 09:10	05/29/25 08:40
310-307406-2	MW3	Water	05/28/25 09:30	05/29/25 08:40
310-307406-3	MW4	Water	05/28/25 09:50	05/29/25 08:40
310-307406-4	MW1	Water	05/28/25 10:15	05/29/25 08:40
310-307406-5	MW2	Water	05/28/25 10:55	05/29/25 08:40

4

Detection Summary

Client: Evergreen Engineers

Project/Site: Georgia Pacific MW Sampling

Job ID: 310-307406-1

Client Sample ID: MW5						Lab	Sa	mple ID:	310-307406-
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	/lethod	Prep Type
Barium	0.00696		0.00200		mg/L	1	6	020B	Total/NA
Cadmium	0.000786		0.000200		mg/L	1	6	020B	Total/NA
Zinc	0.0223		0.0200		mg/L	1	6	020B	Total/NA
Total Suspended Solids	13.9		1.9		mg/L	1	Į-	-3765-85	Total/NA
Client Sample ID: MW3						Lab	Sa	mple ID:	310-307406-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	/lethod	Prep Type
Barium	0.0119		0.00200		mg/L	1	6	020B	Total/NA
Total Suspended Solids	39.4		1.9		mg/L	1	1-	-3765-85	Total/NA
Client Sample ID: MW4						Lab	Sa	mple ID:	310-307406-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	/lethod	Prep Type
Barium	0.00859		0.00200		mg/L) 1	6	6020B	Total/NA
Client Sample ID: MW1						Lab	Sa	mple ID:	310-307406
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	/lethod	Prep Type
Barium	0.0101		0.00200		mg/L	1	_ ₆	6020B	Total/NA
Total Suspended Solids	27.5		7.5		mg/L	1	Į-	-3765-85	Total/NA
Client Sample ID: MW2						Lab	Sa	mple ID:	310-307406
– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	/lethod	Prep Type
Barium	0.0103		0.00200		mg/L	1	_ ₆	6020B	Total/NA
Zinc	0.0884		0.0200		mg/L	1	6	6020B	Total/NA
Total Suspended Solids	17.1		1.9						

This Detection Summary does not include radiochemical test results.

Eurofins Cedar Falls

Page 6 of 23

6/11/2025

Client: Evergreen Engineers

Project/Site: Georgia Pacific MW Sampling

Job ID: 310-307406-1

Client Sample ID: MW5

Date Collected: 05/28/25 09:10 Date Received: 05/29/25 08:40 Lab Sample ID: 310-307406-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L	_	05/30/25 09:30	06/09/25 20:46	1
Barium	0.00696		0.00200		mg/L		05/30/25 09:30	06/09/25 20:46	1
Cadmium	0.000786		0.000200		mg/L		05/30/25 09:30	06/10/25 16:32	1
Chromium	<0.00500		0.00500		mg/L		05/30/25 09:30	06/09/25 20:46	1
Lead	<0.000500		0.000500		mg/L		05/30/25 09:30	06/09/25 20:46	1
Zinc	0.0223		0.0200		mg/L		05/30/25 09:30	06/09/25 20:46	1
Method: SW846 7470A - Mercui Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	,	Qualifier	RL	MDL	Unit mg/L	D	Prepared 06/09/25 10:45	Analyzed 06/10/25 11:56	Dil Fac
Analyte	Result	Qualifier		MDL		<u>D</u>			Dil Fac
Analyte Mercury	Result <0.000200	Qualifier Qualifier		MDL		D			Dil Fac

FF

Eurofins Cedar Falls

Client: Evergreen Engineers

Project/Site: Georgia Pacific MW Sampling

Job ID: 310-307406-1

Client Sample ID: MW3

Lab Sample ID: 310-307406-2

Date Collected: 05/28/25 09:30

Matrix: Water

Date Received: 05/29/25 08:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		05/30/25 09:30	06/09/25 20:49	1
Barium	0.0119		0.00200		mg/L		05/30/25 09:30	06/09/25 20:49	1
Cadmium	<0.000200		0.000200		mg/L		05/30/25 09:30	06/10/25 16:35	1
Chromium	<0.00500		0.00500		mg/L		05/30/25 09:30	06/09/25 20:49	1
Lead	<0.000500		0.000500		mg/L		05/30/25 09:30	06/09/25 20:49	1
Zinc	<0.0200		0.0200		mg/L		05/30/25 09:30	06/09/25 20:49	1
Method: SW846 7470A - Mercur	y (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000200		0.000200		mg/L		06/09/25 10:45	06/10/25 11:58	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS	39.4		1.9		mg/L			05/30/25 11:40	1
I-3765-85)									

Client: Evergreen Engineers

Project/Site: Georgia Pacific MW Sampling

Job ID: 310-307406-1

Client Sample ID: MW4

Date Collected: 05/28/25 09:50 Date Received: 05/29/25 08:40 Lab Sample ID: 310-307406-3

Matrix: Water

Method: SW846 6020B - Metals	(ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		05/30/25 09:30	06/09/25 20:51	1
Barium	0.00859		0.00200		mg/L		05/30/25 09:30	06/09/25 20:51	1
Cadmium	<0.000200		0.000200		mg/L		05/30/25 09:30	06/10/25 16:38	1
Chromium	<0.00500		0.00500		mg/L		05/30/25 09:30	06/09/25 20:51	1
Lead	<0.000500		0.000500		mg/L		05/30/25 09:30	06/09/25 20:51	1
Zinc	<0.0200		0.0200		mg/L		05/30/25 09:30	06/09/25 20:51	1
Method: SW846 7470A - Mercur Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000200		0.000200		mg/L		06/09/25 10:45	06/10/25 12:00	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS I-3765-85)	<1.9		1.9		mg/L		Systems	05/30/25 11:40	1

K

Client: Evergreen Engineers

Project/Site: Georgia Pacific MW Sampling

Lab Sample ID: 310-307406-4

Matrix: Water

Job ID: 310-307406-1

Client Sample ID: MW1
Date Collected: 05/28/25 10:15

Date Received: 05/29/25 08:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		06/02/25 08:40	06/02/25 19:18	1
Barium	0.0101		0.00200		mg/L		06/02/25 08:40	06/02/25 19:18	1
Cadmium	<0.000200		0.000200		mg/L		06/02/25 08:40	06/02/25 19:18	1
Chromium	<0.00500		0.00500		mg/L		06/02/25 08:40	06/02/25 19:18	1
Lead	<0.000500		0.000500		mg/L		06/02/25 08:40	06/02/25 19:18	1
Zinc	<0.0200		0.0200		mg/L		06/02/25 08:40	06/02/25 19:18	1
Method: SW846 7470A - Mercury	(CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000200		0.000200		mg/L		06/09/25 10:45	06/10/25 12:03	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS I-3765-85)	27.5		7.5		mg/L			05/30/25 11:40	1

Client Sample Results

Client: Evergreen Engineers

Project/Site: Georgia Pacific MW Sampling

Job ID: 310-307406-1

Client Sample ID: MW2

Date Collected: 05/28/25 10:55 Date Received: 05/29/25 08:40 Lab Sample ID: 310-307406-5

Matrix: Water

Method:	SW846	6020B	- Metals	(ICP/MS)

		(1011110)								
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Arsenic	<0.00200		0.00200		mg/L		06/02/25 08:40	06/02/25 19:20	1
	Barium	0.0103		0.00200		mg/L		06/02/25 08:40	06/02/25 19:20	1
	Cadmium	<0.000200		0.000200		mg/L		06/02/25 08:40	06/02/25 19:20	1
	Chromium	<0.00500		0.00500		mg/L		06/02/25 08:40	06/02/25 19:20	1
	Lead	<0.000500		0.000500		mg/L		06/02/25 08:40	06/02/25 19:20	1
	Zinc	0.0884		0.0200		mg/L		06/02/25 08:40	06/02/25 19:20	1
1										

Method:	SW846	7470A	- Mercury	(CVAA)
---------	-------	-------	-----------	--------

	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Mercury	<0.000200		0.000200		mg/L		06/09/25 10:45	06/10/25 12:05	1
ì	_									

General Chemistry

General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Suspended Solids (USGS	17.1		1.9		mg/L	_	1 2 3 10 20 10 1	05/30/25 11:40	1	

I-3765-85)

Eurofins Cedar Falls

Definitions/Glossary

Client: Evergreen Engineers

Project/Site: Georgia Pacific MW Sampling

Job ID: 310-307406-1

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
Ø.	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

QC Sample Results

Client: Evergreen Engineers

Project/Site: Georgia Pacific MW Sampling

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 310-456118/1-A

Matrix: Water Analysis Batch: 457064

							Prep Batch:	456118
MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00200		0.00200		mg/L		05/30/25 09:30	06/09/25 19:34	1
<0.00200		0.00200		mg/L		05/30/25 09:30	06/09/25 19:34	- 1
<0.00500		0.00500		mg/L		05/30/25 09:30	06/09/25 19:34	1
<0.000500		0.000500		mg/L		05/30/25 09:30	06/09/25 19:34	1

mg/L

Lab Sample ID: MB 310-456118/1-A

Matrix: Water

Arsenic Barium Chromium Lead

Zinc

Analysis Batch: 457198

MB MB

MB MB

<0.0200

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	<0.000200	10gt 124.855	0.000200		mg/L	_	05/30/25 09:30	06/10/25 14:47	1

0.0200

Lab Sample ID: LCS 310-456118/2-A

Matrix: Water

Analysis Batch: 457064		Prep Batch: 45						
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit		%Rec	Limits	
Arsenic	0.200	0.2067		mg/L		103	80 - 120	
Barium	0.100	0.09861		mg/L		99	80 - 120	

Lab Sample ID: LCS 310-456118/2-A

Matrix: Water

Analysis Batch: 457198							Prep Batch: 456118
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cadmium	0.100	0.1064		mg/L	_	106	80 - 120

Lab Sample ID: MB 310-456236/1-A

Matrix: Water

Analysis Batch: 456403

Client Sample ID: Method Blank Prep Type: Total/NA

05/30/25 09:30

Prep Batch: 456236

Prep Type: Total/NA

Job ID: 310-307406-1

Prep Type: Total/NA

Prep Type: Total/NA **Prep Batch: 456118**

Prep Type: Total/NA

Client Sample ID: Method Blank

06/09/25 19:34

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Analyte	Result	Qualifier R	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200	0.0020)	mg/L	_	06/02/25 08:40	06/02/25 19:04	1
Barium	<0.00200	0.0020)	mg/L		06/02/25 08:40	06/02/25 19:04	1
Cadmium	<0.000200	0.00020	ס	mg/L		06/02/25 08:40	06/02/25 19:04	1
Chromium	<0.00500	0.0050	0	mg/L		06/02/25 08:40	06/02/25 19:04	1
Lead	<0.000500	0.00050	ס	mg/L		06/02/25 08:40	06/02/25 19:04	1
Zinc	< 0.0200	0.020	0	mg/L		06/02/25 08:40	06/02/25 19:04	1

Lab Sample ID: LCS 310-456236/2-A

Matrix: Water

Analysis Batch: 456403

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 456236

Analysis Batch. 430403							rich	Datell. 45	0230
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Arsenic	0.600	0.5761		mg/L		96	80 - 120		
Barium	0.300	0.2672		mg/L		89	80 - 120		

Eurofins Cedar Falls

Page 13 of 23

6/11/2025

QC Sample Results

Client: Evergreen Engineers

Project/Site: Georgia Pacific MW Sampling

Job ID: 310-307406-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 310-456236/2-A

Matrix: Water

Analysis Batch: 456403

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 456236

Allalysis Balcii. 430403						Prep	Daton: 45	1023
	Spike	LCS	LCS			%Rec		
Analyte	Added	Result	Qualifier U	nit D	%Rec	Limits		
Cadmium	0.300	0.2641	m	g/L	88	80 - 120		
Chromium	0.300	0.2786	m	g/L	93	80 - 120		
Lead	0.600	0.5472	m	g/L	91	80 - 120		
Zinc	0.600	0.5119	m	g/L	85	80 - 120		

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 310-456946/1-A

Matrix: Water

Analysis Batch: 457127

мв мв

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 456946

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Mercury
 <0.000200</td>
 0.000200
 mg/L
 06/09/25 10:45
 06/10/25 11:33
 1

Lab Sample ID: LCS 310-456946/2-A

Matrix: Water

Analysis Batch: 457127

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 456946

 Spike
 LCS
 LCS
 %Rec

 Analyte
 Added
 Result
 Qualifier
 Unit
 D
 %Rec
 Limits

 Mercury
 0.00167
 0.001712
 mg/L
 103
 80 - 120

Method: I-3765-85 - Residue, Non-filterable (TSS)

Lab Sample ID: MB 310-456200/1

Matrix: Water

Analysis Batch: 456200

Client Sample ID: Method Blank

Prep Type: Total/NA

 MB
 MB

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Total Suspended Solids
 <5.0</td>
 5.0
 mg/L
 05/30/25 11:40
 1

Lab Sample ID: LCS 310-456200/2

Matrix: Water

Analysis Batch: 456200

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Total Suspended Solids 100 107.0 mg/L 107 82 - 117

Eurofins Cedar Falls

QC Association Summary

Client: Evergreen Engineers

Project/Site: Georgia Pacific MW Sampling

Job ID: 310-307406-1

Me	+-	

Prep	Batch	: 45611	18
------	-------	---------	----

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-307406-1	MW5	Total/NA	Water	3005A	21 17 3
310-307406-2	MW3	Total/NA	Water	3005A	
310-307406-3	MW4	Total/NA	Water	3005A	
MB 310-456118/1-A	Method Blank	Total/NA	Water	3005A	
LCS 310-456118/2-A	Lab Control Sample	Total/NA	Water	3005A	

Prep Batch: 456236

Lab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batch
310-307406-4	MW1	4d = ⁴	Total/NA	Water	3005A	1 mg 1 from
310-307406-5	MW2		Total/NA	Water	3005A	
MB 310-456236/1-A	Method Blank		Total/NA	Water	3005A	
LCS 310-456236/2-A	Lab Control Sample		Total/NA	Water	3005A	

Analysis Batch: 456403

Lab Sample ID 310-307406-4	Client Sample ID MW1	- 1 (March	Prep Type Total/NA	Water	Method 6020B	Prep Batch 456236
310-307406-5	MW2		Total/NA	Water	6020B	456236
MB 310-456236/1-A	Method Blank		Total/NA	Water	6020B	456236
LCS 310-456236/2-A	Lab Control Sample		Total/NA	Water	6020B	456236

Prep Batch: 456946

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-307406-1	MW5	Total/NA	Water	7470A	
310-307406-2	MW3	Total/NA	Water	7470A	
310-307406-3	MW4	Total/NA	Water	7470A	
310-307406-4	MW1	Total/NA	Water	7470A	
310-307406-5	MW2	Total/NA	Water	7470A	
MB 310-456946/1-A	Method Blank	Total/NA	Water	7470A	
LCS 310-456946/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 457064

Lab Sample ID 310-307406-1	Client Sample ID MW5	Prep Type Total/NA	Matrix Water	Method 6020B	Prep Batch 456118
310-307406-2	MW3	Total/NA	Water	6020B	456118
310-307406-3	MW4	Total/NA	Water	6020B	456118
MB 310-456118/1-A	Method Blank	Total/NA	Water	6020B	456118
LCS 310-456118/2-A	Lab Control Sample	Total/NA	Water	6020B	456118

Analysis Batch: 457127

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-307406-1	MW5	Total/NA	Water	7470A	456946
310-307406-2	MW3	Total/NA	Water	7470A	456946
310-307406-3	MW4	Total/NA	Water	7470A	456946
310-307406-4	MW1	Total/NA	Water	7470A	456946
310-307406-5	MW2	Total/NA	Water	7470A	456946
MB 310-456946/1-A	Method Blank	Total/NA	Water	7470A	456946
LCS 310-456946/2-A	Lab Control Sample	Total/NA	Water	7470A	456946

Analysis Batch: 457198									
Lab Sample ID	Client Sample ID MW5	Prep Type	Matrix	Method	Prep Batch				
310-307406-1		Total/NA	Water	6020B	456118				

Eurofins Cedar Falls

Page 15 of 23

6/11/2025

QC Association Summary

Client: Evergreen Engineers

Project/Site: Georgia Pacific MW Sampling

Job ID: 310-307406-1

Metals (Continued)

Analysis Batch: 457198 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-307406-2	MW3	Total/NA	Water	6020B	456118
310-307406-3	MW4	Total/NA	Water	6020B	456118
MB 310-456118/1-A	Method Blank	Total/NA	Water	6020B	456118
LCS 310-456118/2-A	Lab Control Sample	Total/NA	Water	6020B	456118

General Chemistry

Analysis Batch: 456200

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-307406-1	MW5	Total/NA	Water	I-3765-85	
310-307406-2	MW3	Total/NA	Water	I-3765-85	
310-307406-3	MW4	Total/NA	Water	I-3765-85	
310-307406-4	MW1	Total/NA	Water	I-3765-85	
310-307406-5	MW2	Total/NA	Water	I-3765-85	
MB 310-456200/1	Method Blank	Total/NA	Water	I-3765-85	
LCS 310-456200/2	Lab Control Sample	Total/NA	Water	I-3765-85	

Eurofins Cedar Falls

Lab Chronicle

Client: Evergreen Engineers

Project/Site: Georgia Pacific MW Sampling

Lab Sample ID: 310-307406-1

Matrix: Water

Job ID: 310-307406-1

Client Sample ID: MW5
Date Collected: 05/28/25 09:10

Date Received: 05/29/25 08:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3005A			456118	WK2X	EET CF	05/30/25 09:30
Total/NA	Analysis	6020B		1	457064	NFT2	EET CF	06/09/25 20:46
Total/NA	Prep	3005A			456118	WK2X	EET CF	05/30/25 09:30
Total/NA	Analysis	6020B		1	457198	ZRI4	EET CF	06/10/25 16:32
Total/NA	Prep	7470A			456946	F5MW	EET CF	06/09/25 10:45
Total/NA	Analysis	7470A		1	457127	F5MW	EET CF	06/10/25 11:56
Total/NA	Analysis	I-3765-85		1	456200	HE7K	EET CF	05/30/25 11:40

Lab Sample ID: 310-307406-2

Matrix: Water

Date Collected: 05/28/25 09:30 Date Received: 05/29/25 08:40

Client Sample ID: MW3

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3005A			456118	WK2X	EET CF	05/30/25 09:30
Total/NA	Analysis	6020B		1	457064	NFT2	EET CF	06/09/25 20:49
Total/NA	Prep	3005A			456118	WK2X	EET CF	05/30/25 09:30
Total/NA	Analysis	6020B		1	457198	ZRI4	EET CF	06/10/25 16:35
Total/NA	Prep	7470A			456946	F5MW	EET CF	06/09/25 10:45
Total/NA	Analysis	7470A		1	457127	F5MW	EET CF	06/10/25 11:58
Total/NA	Analysis	I-3765-85		1	456200	HE7K	EET CF	05/30/25 11:40

Lab Sample ID: 310-307406-3

Matrix: Water

Client Sample ID: MW4
Date Collected: 05/28/25 09:50
Date Received: 05/29/25 08:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3005A			456118	WK2X	EET CF	05/30/25 09:30
Total/NA	Analysis	6020B		1	457064	NFT2	EET CF	06/09/25 20:51
Total/NA	Prep	3005A			456118	WK2X	EET CF	05/30/25 09:30
Total/NA	Analysis	6020B		1	457198	ZRI4	EET CF	06/10/25 16:38
Total/NA	Prep	7470A			456946	F5MW	EET CF	06/09/25 10:45
Total/NA	Analysis	7470A		1	457127	F5MW	EET CF	06/10/25 12:00
Total/NA	Analysis	I-3765-85		1	456200	HE7K	EET CF	05/30/25 11:40

Client Sample ID: MW1

Date Collected: 05/28/25 10:15

Date Received: 05/29/25 08:40

Lab	Sam	ple	ID:	310	0-307	406-4
-----	-----	-----	-----	-----	-------	-------

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3005A			456236	WK2X	EET CF	06/02/25 08:40
Total/NA	Analysis	6020B		1	456403	NFT2	EET CF	06/02/25 19:18
Total/NA	Prep	7470A			456946	F5MW	EET CF	06/09/25 10:45
Total/NA	Analysis	7470A		1	457127	F5MW	EET CF	06/10/25 12:03
Total/NA	Analysis	I-3765-85		1	456200	HE7K	EET CF	05/30/25 11:40

Eurofins Cedar Falls

Page 17 of 23

6/11/2025

Lab Chronicle

Client: Evergreen Engineers

Project/Site: Georgia Pacific MW Sampling

Client Sample ID: MW2 Lab Sample ID: 310-307406-5 Matrix: Water

Date Collected: 05/28/25 10:55 Date Received: 05/29/25 08:40

Batch Dilution Batch Batch Prepared

Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3005A			456236	WK2X	EET CF	06/02/25 08:40
Total/NA	Analysis	6020B		1	456403	NFT2	EET CF	06/02/25 19:20
Total/NA	Prep	7470A			456946	F5MW	EET CF	06/09/25 10:45
Total/NA	Analysis	7470A		1	457127	F5MW	EET CF	06/10/25 12:05
Total/NA	Analysis	I-3765-85		1	456200	HE7K	EET CF	05/30/25 11:40

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Job ID: 310-307406-1

Accreditation/Certification Summary

Client: Evergreen Engineers

Project/Site: Georgia Pacific MW Sampling

Job ID: 310-307406-1

Laboratory: Eurofins Cedar Falls

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
lowa	State	007	12-01-25

5

8

9 10

11

12

13

14

Method Summary

Client: Evergreen Engineers

Project/Site: Georgia Pacific MW Sampling

Job ID: 310-307406-1

Method	Method Description	Protocol	Laboratory	
6020B	Metals (ICP/MS)	SW846	EET CF	
7470A	Mercury (CVAA)	SW846	EET CF	
I-3765-85	Residue, Non-filterable (TSS)	USGS	EET CF	
3005A	Preparation, Total Metals	SW846	EET CF	
7470A	Preparation, Mercury	SW846	EET CF	

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. USGS = "Methods For Analysis Of Water And Fluvial Sediments", USGS, 1989

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Environment Testing America

Cooler/Sample Receipt and Temperature Log Form

Client Information	
Client:	
City/State. Fort Vocar STATEA	Project.
Receipt Information	
Date/Time DATE 975	Received By.
Received. 5 29 29	<u> </u>
Delivery Type: Sups	☐ FedEx Ground ☐ US Mail ☐ Spee-Dee
Lab Courier Lab Field Services	Client Drop-off Other:
Condition of Cooler/Containers	
Sample(s) received in Cooler? Yes No	If yes: Cooler ID:
Multiple Coolers?	If yes: Cooler # of
Cooler Custody Seals Present? Yes No	If yes: Cooler custody seals intact? Yes
Sample Custody Seals Present? Yes A No	If yes: Sample custody seals intact?☐ Yes ☐
Trip Blank Present?	If yes: Which VOA samples are in cooler? ↓
Temperature Record	
Coolant: Wet ice Blue ice Dry ice	Пон
Coolant. Privative Dide ice Diylice	Other: NONE
Thermometer ID ¹	Correction Factor (°C):
Thermometer ID ¹	Correction Factor (°C):
Thermometer ID ¹	Correction Factor (°C):
Thermometer ID Temp Blank Temperature – If no temp blank, or temp blank temperature Uncorrected Temp (°C): Sample Container Temperature	Correction Factor (°C): mperature above criteria, proceed to Sample Container Temperature Corrected Temp (°C): . 5
Thermometer ID Temp Blank Temperature – If no temp blank, or temp blank temperature – If no tempera	Correction Factor (°C):
Thermometer ID • Temp Blank Temperature – If no temp blank, or temp blank to Uncorrected Temp (°C): • Sample Container Temperature Container(s) used. Uncorrected Temp	Correction Factor (°C): mperature above criteria, proceed to Sample Container Temperature Corrected Temp (°C): . 5
Thermometer ID Temp Blank Temperature – If no temp blank, or temp blank to Uncorrected Temp (°C): Sample Container Temperature Container(s) used.	Correction Factor (°C): mperature above criteria, proceed to Sample Container Temperature Corrected Temp (°C): . 5
Thermometer ID Temp Blank Temperature – If no temp blank, or temp blank temperature Uncorrected Temp (°C): Sample Container Temperature Container(s) used. Uncorrected Temp (°C): Corrected Temp (°C):	Correction Factor (°C): mperature above criteria, proceed to Sample Container Temperature Corrected Temp (°C): . 5
Thermometer ID Temp Blank Temperature — If no temp blank, or temp blank temperature Uncorrected Temp (°C): Sample Container Temperature Container(s) used. Uncorrected Temp (°C):	Correction Factor (°C): mperature above criteria, proceed to Sample Container Temperature Corrected Temp (°C): . 5
Thermometer ID Temp Blank Temperature – If no temp blank, or temp blank temperature Uncorrected Temp (°C): Sample Container Temperature Container(s) used. Uncorrected Temp (°C): Corrected Temp (°C):	Correction Factor (°C): Imperature above criteria, proceed to Sample Container Temperature Corrected Temp (°C): CONTAINER 2 Elived same day of sampling? Yes No
Thermometer ID Temp Blank Temperature – If no temp blank, or temp blank temperature Uncorrected Temp (°C): Sample Container Temperature Container(s) used. Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted 1) If temperature exceeds criteria, was sample(s) receal of the sample o	Correction Factor (°C): Imperature above criteria, proceed to Sample Container Temperature Corrected Temp (°C): CONTAINER 2 Evived same day of sampling? Yes No ss began? Yes No tt the integrity of sample containers is compromised?
Thermometer ID Temp Blank Temperature — If no temp blank, or temp blank temperature Uncorrected Temp (°C): Sample Container Temperature Container(s) used. Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted 1) If temperature exceeds criteria, was sample(s) recean of the same o	Correction Factor (°C): Imperature above criteria, proceed to Sample Container Temperature Corrected Temp (°C): CONTAINER 2 CONTAINER 2 Prived same day of sampling? Yes No ss began? Yes No at the integrity of sample containers is compromised? Solid?)
Thermometer ID Temp Blank Temperature — If no temp blank, or temp blank temperature Uncorrected Temp (°C): Sample Container Temperature Container(s) used. Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted 1) If temperature exceeds criteria, was sample(s) recean of the same o	Correction Factor (°C): Imperature above criteria, proceed to Sample Container Temperature Corrected Temp (°C): CONTAINER 2 CONTAINER 2 Prived same day of sampling? Yes No ss began? Yes No at the integrity of sample containers is compromised? Solid?)
Thermometer ID Temp Blank Temperature — If no temp blank, or temp blank temperature Uncorrected Temp (°C): Sample Container Temperature Container(s) used. Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted 1) If temperature exceeds criteria, was sample(s) recean of the same o	Correction Factor (°C): Imperature above criteria, proceed to Sample Container Temperature Corrected Temp (°C): CONTAINER 2 CONTAINER 2 Prived same day of sampling? Yes No ss began? Yes No at the integrity of sample containers is compromised? Solid?)
Thermometer ID Temp Blank Temperature — If no temp blank, or temp blank temperature Uncorrected Temp (°C): Sample Container Temperature Container(s) used. Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted 1) If temperature exceeds criteria, was sample(s) recean of the same o	Correction Factor (°C): Imperature above criteria, proceed to Sample Container Temperature Corrected Temp (°C): CONTAINER 2 CONTAINER 2 Prived same day of sampling? Yes No ss began? Yes No at the integrity of sample containers is compromised? Solid?)
Thermometer ID Temp Blank Temperature – If no temp blank, or temp blank temperature Uncorrected Temp (°C): Sample Container Temperature Container(s) used. Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted 1) If temperature exceeds criteria, was sample(s) recean of the sample of	Correction Factor (°C): Imperature above criteria, proceed to Sample Container Temperature Corrected Temp (°C): CONTAINER 2 CONTAINER 2 Prived same day of sampling? Yes No ss began? Yes No at the integrity of sample containers is compromised? Solid?)

Document CED-P-SAM-FRM45521 Revision: 26 Date 27 Jan 2022

Eurofins Cedar Falls 3019 Venture Wav		1		7						💸 eurofins	V
Cedar Falls, 1A 50613 Phone: 319-277-2401 Fax: 319-277-2425	5	Cilalii oi Custouy Necolu	istouy ne	5						IAC11	2 2 2 2 2
Client Information	Sampler OAVE	MINIEUS	Lab PM: Dietz,	Lab PM: Dietz, Hannah E			<u> </u>	Carrier Tracking No(s)	No(s).	COC No: 310-106465-22678	2678 1
Client Contact Dave Minikis	ļ		E-Mail. Hanna	E-Mail. Hannah.Dietz@et.eurofinsus.com	eurofinsu	S.com	<i>w</i>	State of Origin:		Page: Page 1 of 1	
Company MER Engineering Inc		-DWSID:				Analys	Analysis Requested	ested		Job #:	
Address: 109 Regency West Court	Due Date Requested:	n/a								Preservation Codes. D - HNO3	odes.
City Fort Dodge	TAT Requested (days):							(
State, Zip: 1A, 50501	Compliance Project:	TANDHRU Project A Yes A No					(7.	د)			
					<u> </u>	7 1/ .	(7 42	41 41			
Email: FRS ENGIC minks@mereng com FRS ENGIC			100		erable (44 c	41 L) 1	91) 91)		81	
Project Name: Georgia Pacific MW Sampling	Project #. 31015312		6,70) 4 22)	21) 	_	enistr	
Sie GEGROIR - PACIEIC GYPSUM NORTH RECYCLE PICE	SSOW#;		lumes		اد		יוני	5		Other Octoo	
		Sample Type Sample (C=comp,	Matrix (waveer Sesolid, Owastololl,	id Filtered rform MS/W A0747, 400A	**************************************	MOND	2427 10245	51 72 12W		redmuN is)	
Sample Identification	Sample Date	Time G=grab)	BT=Tissue, A=Air)	69 ×	工		2	+			Special Instructions/Note:
MWS	5/28/25 9	9:0	Water	X	X	×	X	×			
MW 3	_	├_	Water	2	×	又	X	XX			
MUS	6	<u> </u>	Water	×	X	X	メメ	XXX			
mw/	1	L	Water	s ×	×	× ×	X	メベ			
MWZ	V	10:55 G	Water /	N N X	y X	イ	X	X X X			
					1	1	7				
							1				
						-					
Identification	X			Sample	Disposal (A fee m	ay S	assessed if san	amples ar	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	1 month) Months
		Nadiological		Special	Special Instructions/QC Requirements	/QC Req	urement	S.			
Empty Kit Relinquished by:	Ö	Date.		Time				Method o	Method of Shipment:		,
Relinquispedby Minima	Date/Time:	\$17.00	Compared	Received by	ed by:				Date/Time:		Сотрапу
	1		Company	Received by	ed by				Date/Time:		Company
1 1	Date/Time:		Сотрапу	Received by	ed by			X		21/25 840	Compagn
Cuspedy Seals Intact: Custody Seal No 2/3/595	756			Coole	Cooler Temperature(s) °C and Other Rema	e(s) °C and	Other Ren	alks: 1	~		
V	W	FR 15	GOW	EVERGATEN	345		Er	ENGINEERS	EKS		Ver 10/10/2024

Login Sample Receipt Checklist

Client: Evergreen Engineers

Job Number: 310-307406-1

Login Number: 307406

List Source: Eurofins Cedar Falls

List Number: 1

Creator: Bunker, Xavier M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4/4

DNR Field Form 542-1322

(May 28, 2025 Groundwater Testing)

Site Name Georgia Pacific North Recycle Pile Permit No. 94-SDP-18-09
Monitoring Well/Piezometer No. MW5 Upgradient X
SEQUENCE NUMBER (1) Downgradient
Monitoring Well/Piezometer No. MW5 Upgradient X SEQUENCE NUMBER (1) Downgradient Name of person sampling Evergreen Engineers – Dave Minikis
A. MONITORING WELL/PIEZOMETER CONDITIONS Well/Piezometer Properly Capped? Yes Standing Water or Litter No If no, explain If yes, explain
B. GROUNDWATER ELEVATION MEASUREMENT (±0.01 foot, MSL) Elevation: Top of inner well casing 1117.37 Ground Elevation 1113.79 ** Depth of Well 26.20 Inside Casing Diameter (in inches) 2.0 Equipment Used Electronic water depth indicator
Groundwater Level (±0.01 foot below top of inner casing, MSL):
Depth to Groundwater Groundwater Elevation
* Before Purging * After Purging * Before Sampling 05-28-25/9:10 10.70 1106.67
*C. WELL PURGING
Quantity of Water Removed from Well (gallons) gal. No. of Well Volumes (based on current water level) (0.5 gal./ft. of liquid) Was well pumped/bailed dry? n/a
Equipment used: Bailer type PVC-Disposable Dedicated Bailer? X Pump type Dedicated Pump? If not dedicated, method of cleaning
*D. FIELD MEASUREMENT
Comments Total Depth Measured - 25.65'
NOTE: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.
* Omit if only measuring groundwater elevations. ** Secure this data before beginning field work.

(June - 1989)

Site Name Georgia Pacific North Re	cycle Pile	Permit No.	94-SDP-18-09
Monitoring Well/Piezometer No.	MW3	Upgradient	X
Site Name Georgia Pacific North Remonitoring Well/Piezometer No. SEQUENCE NUMBER (2 Name of person sampling Ev)	Downgradient	
Name of person sampling Ex	vergreen Engineers	– Dave Minikis	
A. MONITORING WELL/PIEZOM Well/Piezometer Properly Capped If no, explain			or Litter <u>No</u>
B. GROUNDWATER ELEVATION Elevation: Top of inner well casin ** Depth of Well 20.02 Ir Equipment Used Electronic water	ng <u>1115.51</u> nside Casing Diame	_ Ground Elevation (in inches)	on1113.04
Groundwater Level (±0.01 foot bele	ow top of inner cas	ing, MSL):	
Date/Tir	Dep me <u>Grou</u>	oth to undwater	Groundwater <u>Elevation</u>
* Before Purging * After Purging * Before Sampling 05-28-25/	9:30	.39	1107.12
*C. WELL PURGING			
Quantity of Water Removed from We No. of Well Volumes (based on curre	ell (gallons) nt water level) _(0.	gal. 5 gal./ft. of liquid)
Was well pumped/bailed dry?n/	a		
Equipment used: Bailer type PVC-Dis Pump type If not dedicated, method of	posable	_ Dedicated Bail _ Dedicated Pum	er?X p?
*D. FIELD MEASUREMENT			
Weather Conditions C	$\frac{\text{loudy } / \pm 57^{\circ} \text{ F}}{}$		
Field Measurements (after stabilize	zation):	** .	10
Temperature 8	.8	_ UnitsC	,
Equipment UsedO	akton Multi-Parame	eter Tester 35	
pH6	.80	. 75 . 27	
Equipment UsedO	akton Multi-Parame	eter Tester 35	
Specific Cond. 2 Equipment Used 0	./2	Units $\mu S/c$	m
Equipment UsedO	<u>akton Multi-Parame</u>	eter Tester 35	
Comments Total Depth Measured	d - 20.01'		200000000000000000000000000000000000000
NOTE: Attach Laboratory Report a groundwater monitoring po	and 8-1/2" x 11" site	e plan showing loo	
* Omit if only measuring groundwater ** Secure this data before beginning fie	elevations. eld work.		

(June - 1989)

Site Moni	Name <u>Georgia Pacific</u> toring Well/Piezometer N	North Recycle Pile loMW4	Permit No Upgradient	94-SDP-18-09 X					
Name	JENCE NUMBER	(3) Evergreen Engin	Downgradient	X					
A.									
B. **	Elevation: Top of inner well casing <u>1116.36</u> Ground Elevation <u>1113.72</u>								
	Groundwater Level (±0.0	01 foot below top of inn	er casing, MSL):						
		Date/Time	Depth to Groundwater	Groundwater <u>Elevation</u>					
* * *	Before Purging After Purging Before Sampling	05-28-25/ 9:50	22.15	1094.21					
*C.	WELL PURGING								
Qu No Wa	antity of Water Removed of Well Volumes (based s well pumped/bailed dry	from Well (gallons) on current water level) ?n/a	gal. _(0.5 gal./ft. of liquid	d)					
	Equipment used:								
	Bailer typeI	PVC-Disposable	Dedicated Bai	iler? X					
	Bailer type PVC-Disposable Dedicated Bailer? X Pump type Dedicated Pump? If not dedicated, method of cleaning								
*D.									
	Weather Conditions	Cloudy /	+ 58° F	C°					
	Field Measurements (after	er stabilization):							
	Temperature	10.2	Units	C°					
	pH	7.03	rameter Tester 35						
	Equipment Used	Oakton Multi-Pa	rameter Tester 35						
	Specific Cond	3.03	Units μ	S/cm					
	Equipment Used	Oakton Multi-Pa	rameter Tester 35						
Com	ments <u>Total Depth Me</u>	asured – 32.35'							
NOTE: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.									
* Or	nit if only measuring grou	indwater elevations.							
** Se	** Secure this data before beginning field work. (June - 1989) 542-1322								

Site N	Name Georgia Paci	fic North Recycle Pile	Permit No.	94-SL	P-18-09
Moni	toring Well/Piezomete	r No. <u>MW 1</u>	Ugradient_		X
SEQU	JENCE NUMBER	(4)	Downgradi	ent	X
Name	e of person sampling _	Evergreen Er	igineers – Dave Minil	K1S	
A.	MONITORING WEL Well/Piezometer Prop If no, explain	L/PIEZOMETER CON erly Capped? Yes	NDITIONS Standing W If yes, explain	ater or Litter	No
В. ** Г	GROUNDWATER EXELUTION EXECUTION OF WEIL 65 Equipment Used	LEVATION MEASURER well casing 1115. 5.95 Inside Casin Electronic water dep	REMENT (±0.01 foot 68 Ground Ele g Diameter (in inches th indicator	, MSL) evation	1113.11
	Groundwater Level (±	0.01 foot below top of	inner casing, MSL):		
		Date/Time	Depth to Groundwater	Groundwate <u>Elevation</u>	er
*	Before Purging				
*	After Purging	05-28-25/10:15			
*	Before Sampling	<u>05-28-25/10:15</u>	57.14	1058.54	_
*C.	WELL PURGING				
No. Wa	s well pumped/bailed (ed from Well (gallons) sed on current water lev dry?n/a PVC-Disposable	_		X
	Pump type	1 , 0 310000010	Dedicated	Pump?	
	If not dedicated,	, method of cleaning _		1	
*D.	FIELD MEASUREM				
	Weather Conditions _	Cloudy / \pm 58	3° F		
	Field Measurements (after stabilization):	T T . *.	G0	
	Fauinment Lise	12.3 Oakton Multi	Units	C	·
	nH	7.14	i-i arameter rester 33		
	Equipment Use	7.14 ed <u>Oakton Mult</u> i	i-Parameter Tester 35		
	Specific Cond.	2.83 ed Oakton Multi	Units	μS/cm	
	Equipment Use	ed Oakton Multi	i-Parameter Tester 35	•	
Com	ments Total Depth Me	asured – 65.75'.			
NOT	E: Attach Laborato groundwater mo	ory Report and 8-1/2" x ponitoring points. One n	11" site plan showin nap per sampling rou	g locations of all nd.	surface and
* On	nit if only measuring gr	roundwater elevations.			
** Se	cure this data before be	eginning field work.			
(June	- 1989)				542-1322

Site Nan	ne <u>Georgia Paci</u>	tic North Recycle Pile	Permit No	94-SDP-18-09		
Monitor	ing Well/Piezometei	No. <u>MW2</u>	Ugradient	94-SDP-18-09 X		
SEQUE!	NCE NUMBER	(5) E	Downgradient	X		
Name of	person sampling	Evergreen En	gineers – Dave Minikis			
A. M W If	ONITORING WELL ell/Piezometer Propo no, explain	L/PIEZOMETER CON erly Capped? <u>Yes</u>	IDITIONS Standing Wate _ If yes, explain	r or Litter <u>No</u>		
El ** Dep	evation: Top of inne oth of Well 73	er well casing <u>1120.0</u> 3.83 Inside Casing	EMENT (±0.01 foot, M 06 Ground Elevat g Diameter (in inches) _ h indicator	SL) ion 1116.90 2.0		
Gr	roundwater Level (±	0.01 foot below top of	inner casing, MSL):			
		Date/Time	Depth to Groundwater	Groundwater <u>Elevation</u>		
* A f	efore Purging fter Purging efore Sampling	<u>05-28-25/10:55</u>	62.18	1058.42		
*C. W	ELL PURGING					
Quanti No. of Was w	ity of Water Remove Well Volumes (bas vell pumped/bailed d	ed from Well (gallons) ed on current water lev lry?n/a	gal. el) <u>(0.5 gal./ft. of liqui</u>	i)		
Equipment used: Bailer type PVC-Disposable Dedicated Bailer? X Pump type Dedicated Pump? If not dedicated, method of cleaning						
*D. FI	ELD MEASUREM	ENT				
W Fi	Equipment Use	ed Oakton Multi-	-Parameter Tester 35	C° uS/cm		
Comme	nts <u>Total Depth Me</u>	asured – 74.03'				
NOTE:			11" site plan showing loap per sampling round.	ocations of all surface and		
* Omit ** Secur	if only measuring gree this data before be	oundwater elevations.				

(June - 1989)

		,

to formation and the second and the				
A STATE OF THE STA				
processorement				
A STATE OF THE STA				
• • • • • • • • • • • • • • • • • • •				
panearrador-filiasa				
philanogeografie				
p) decapation of a large of the				
p Mitalejamidinnint riedy				
pactalogated and a strong.				
, por other contribution of the contribution o				
_POLICE TRANSPORTED TO THE PROPERTY OF THE PRO				
, Coup, and easter.				
, ethiologia (1,000),				
A FERRIAN LEGISTA LEGIS				
COMMUNICATION (HISTORY)				
ACL I. A. CONTRACTOR METERS				
and Democratical Annual Principles				