

2024 Annual Water Quality Report

John Deere Dubuque Works Landfill Dubuque, Iowa

January 2025

Permit No. 31-SDP-01-75C

Prepared For:

John Deere Dubuque Works Dubuque, Iowa

Prepared By:

TRC 999 Fourier Drive, Suite 101 Madison, Wisconsin 53717

Erica Lawson Project Manager Lydia Auner Project Geologist

CERTIFICATION AND PROJECT SUMMARY

I hereby certify that this engineering document was prepared by me, or under my direct supervision, and that I am a duly licensed Professional Engineer under the laws of the State of Iowa.
JOHN RICE 15628
John M. Rice, P.E. 1-31-2025 Date
License number: P15628
My license renewal date is: 12/31/2026
Pages or sheets covered by this seal: Entire document

Project title: 2024 Annual Water Quality Report

John Deere Dubuque Works Landfill

Dubuque, Iowa

Authorized contact: John Deere Dubuque Works

18600 South John Deere Road

Dubuque, Iowa 52001

James Hensley

Telephone: (563) 589-5998

E-mail: HensleyJamesM@JohnDeere.com

Consultant: TRC Environmental Corporation

999 Fourier Drive, Suite 101 Madison, Wisconsin 53717 Project Manager: Erica Lawson Telephone: (608) 566-4957

E-mail: ELawson@trccompanies.com

Site location: North ½ of the Southwest ¼ of Section 27, Township 90

North, Range 2 East, Dubuque County, Iowa

EXECUTIVE SUMMARY

This 2024 Annual Water Quality Report (AWQR) was prepared by TRC Environmental Corporation (TRC) on behalf of the John Deere Dubuque Works (JDDW) industrial waste landfill in Dubuque, Iowa. The purpose of this report is to evaluate the effect of the facility on groundwater quality and describe the general post closure conditions of the landfill. The report is based upon the results of semiannual sampling, semiannual site inspections, and monthly leachate system monitoring. The annual leachate collection system performance evaluation (LCSPE) is included as a supplement to the AWQR.

Period of Report Coverage

This 2024 AWQR is for the period of November 2023 to October 2024. Semiannual groundwater and leachate sampling events occurred in April 2024 and October 2024. In addition, monthly leachate system monitoring occurred during the period of report coverage.

Report Priority

There are not currently any actions or activities on hold pending lowa Department of Natural Resources (IDNR) review or comment.

Site Status and Applicable Rules

The JDDW industrial waste landfill is permanently closed and no longer receives waste. Landfill operations began in 1974 and the final cover construction was completed in 2012. The landfill waste stream consisted primarily of powerhouse ash generated by JDDW and the landfill was developed in two phases, which are identified as Stage 1 and Stage 2.

This AWQR was prepared in accordance with the requirements of Chapters 567 Iowa Administrative Code (IAC) 115.26(8)(d), 567 IAC 115.26(14), and the special requirements of the Closure Permit No. 31-SDP-01-75C, which was issued by the IDNR on May 24, 2012 and amended most recently on August 17, 2023 (IDNR, 2023).

Recent Changes to Groundwater and Leachate Monitoring

The following changes to the groundwater and leachate monitoring were implemented within the 2023 reporting period (refer to report text for further details):

- As required by the Closure Permit amendment dated August 17, 2023 (IDNR, 2023), additional parameters were added for groundwater monitoring starting in Fall 2023.
- The same additional parameters were also added for the leachate and underliner sampling starting in Fall 2023, following a request from the IDNR for the leachate to be sampled for the same parameters as the underliner and groundwater monitoring points in their response letter to the 2022 AWQR.
- Additional sample points for the leachate and underliner liquid were included starting in Fall 2023.
- Leachate system monitoring procedures were revised during 2023.

Past Changes to Report Format and Statistical Methods

Starting with the 2021 AWQR, the statistical methods for evaluating groundwater results were revised and the report format was updated, as requested by the IDNR. Due to the updated statistical methods, the municipal landfill report template was used; however, some adjustments were made to the report format based on the site-specific monitoring plan and permit requirements.

TABLE OF CONTENTS

CER	ΓIFICA	TION AND PROJECT SUMMARY	i
EXEC	CUTIVE	SUMMARY	ii
ACR	ONYM	S AND ABBREVIATIONS	vi
1.0	SITE	BACKGROUND AND MONITORING PROGRAM	1
	1.1	Site Location and Facility Information	1
	1.2	Hydrogeology and Monitoring Well Network	
		1.2.1 Monitoring Well Top of Casing Elevations	1
	1.3	Groundwater Monitoring Program	2
	1.4	Leachate Collection System Overview	3
	1.5	Leachate and Underliner Sampling	3
2.0	SITE	INSPECTION AND SURFACE WATER QUALITY	4
	2.1	Current Site Conditions	4
	2.2	Potential Impacts on Surface Water	4
3.0	MON	IITORING WELL PERFORMANCE EVALUATION	5
	3.1	Water Levels and Flow Direction	5
	3.2	Well Depths	5
	3.3	Recharge Rates	5
	3.4	Conclusions	6
4.0	GRO	UNDWATER MONITORING STAGES AND STATISTICAL METHODS	7
	4.1	Background Levels and Identification of SSIs	7
	4.2	Groundwater Protection Standards and Identification of SSLs	8
5.0	LEA	CHATE COLLECTION SYSTEM PERFORMANCE EVALUATION	9
	5.1	Monthly Monitoring Procedures	9
	5.2	System Conditions	9
	5.3	System Maintenance	10
	5.4	System Monitoring Results	10
	5.5	Conclusions and Recommendations	11
6.0	GRO	UNDWATER AND LEACHATE SYSTEM SAMPLING AND RESULTS	12
	6.1	Groundwater and Leachate Sampling	
	6.2	Quality Assurance/Quality Control Summary	
		6.2.1 Turbidity	12
	6.3	Groundwater Results	
		6.3.1 Exceedances of Background Without Immediately Preceding SSIs	
		6.3.2 SSIs	
		6.3.3 SSLs	
		6.3.4 Phenols and VOCs	
		6.3.5 Parameters Added in October 2023	
	6.4	Discussion of Leachate, Underliner, and Groundwater Results	
_	6.5	Conclusions and Recommendations	
7.0	REF	ERENCES	16

TABLES

Table 1: Monitoring Program Summary

Table 2: Monitoring Program Implementation Schedule

Table 3: Monitoring Well Maintenance and Performance Reevaluation Schedule

Table 4a: Monitoring Well Maintenance and Performance Summary

Table 4b: Monthly Groundwater Elevation Measurements

Table 5: Background and GWPS Summary

Table 6: Summary of Detections with No Immediately Preceding SSIs

Table 7: Summary of Ongoing and Newly Identified SSIs

Table 8: Summary of Ongoing and Newly Identified SSLs (Not Applicable)

Table 9a: MW-1 Groundwater Monitoring Results
Table 9b: MW-2 Groundwater Monitoring Results
Table 9c: MW-3 Groundwater Monitoring Results

Table 9d: Underliner Monitoring Results

Table 9e: Combined Leachate Monitoring Results

Table 9f: 2024 Monitoring Results

Table 10: Historic SSI and SSL since January 1, 2021
Table 11: Corrective Action Trend Analysis (Not Applicable)

Table 12: Leachate Management Summary

Table 13: Gas Monitoring Summary (Not Applicable)

FIGURES

Figure 1: Site Location Map

Figure 2: Potentiometric Surface Map – April 2024 Figure 3: Potentiometric Surface Map – October 2024

APPENDICES

Appendix A: Correspondence Appendix B: Field Notes

Appendix C: Background Levels Appendix D: Laboratory Reports

Appendix E: Groundwater Results Graphs

Appendix F: Data Validation

Appendix G: Leachate Collection System Evaluation Graphs

ACRONYMS AND ABBREVIATIONS

AWQR Annual Water Quality Report
GWPS Groundwater protection standard
HMSP Hydrologic Monitoring System Plan

IAC Iowa Administrative Code

IDNR Iowa Department of Natural Resources

JDDW John Deere Dubuque Works

MCL USEPA Maximum Contaminant Level RCRA Resource Conservation and Recovery Act

RL Reporting limit

SSI Statistically significant increase above background

SSL Statistically significant level above groundwater protection standard

USEPA United States Environmental Protection Agency

1.0 Site Background and Monitoring Program

1.1 Site Location and Facility Information

The JDDW industrial waste landfill covers approximately 12 acres and is located in the North ½ of the Southwest ¼ of Section 27, Township 90 North, Range 2 East in Dubuque County, Iowa (Figure 1). The facility began operations in 1974 and is owned and operated by JDDW. The landfill was developed in two phases, which are identified as Stage 1 and Stage 2. The landfill waste stream consisted primarily of powerhouse ash generated by JDDW. The landfill is permanently closed and no longer receives waste, with the final cover construction completed in 2012.

1.2 Hydrogeology and Monitoring Well Network

A hydrogeologic investigation report titled "Hydrogeologic Investigation at the John Deere Dubuque Works Sanitary Landfill" was prepared in February 1990 by James Montgomery Associates (JMA) (JMA, 1990). Select descriptions of the site geology from the hydrogeologic investigation report are provided below:

"...the upland area is covered with silty clay material approximately 18 feet thick. This layer thins to the southwest where only three feet of cover material is found. Underlying the silty clay material are carbonate rocks of Ordovician age..."

"The uppermost bedrock unit at the landfill site is the Ordovician-aged Galena Group of the Decorah Formation. This unit is composed of uniformly bedded carbonate rocks (limestones and dolomites) and is the principal source of potable water in the area."

The approved groundwater monitoring well network at the JDDW closed industrial waste landfill consists of one upgradient groundwater monitoring well (MW-1) and two downgradient wells (MW-2 and MW-3), as shown on Figure 2. The wells were installed in 1989 and the boring logs and well construction forms are included in Appendices B and C, respectively, of the hydrogeologic investigation report (JMA, 1990) (see discussion of top of casing elevations below). The wells were originally referred to as piezometers named PZ-1, PZ-2, and PZ-3.

Based on the boring logs, the monitoring wells are installed in bedrock described as dolomite with increasing shale content with depth. The wells are installed to total depths of approximately 124 to 196 feet below ground surface and are constructed with 30-foot screens. The well screens are fully submerged; groundwater elevations are typically at least 15 feet higher than the top of screen elevations based on measurements collected since 1991. A slug test was performed for MW-1 (referred to as PZ-1 at the time), and the hydraulic conductivity calculated from the slug test was 5.76 x 10-6 feet per second (JMA, 1990).

1.2.1 Monitoring Well Top of Casing Elevations

The monitoring wells were resurveyed during Fall 2023, as reported and discussed in the 2023 AWQR. The elevations from the Fall 2023 survey are used in this report. In addition, it has been assumed that the total depths of the monitoring wells are the same as the depths used prior to the Fall 2023 resurvey.

The top of casing elevations used prior to the Fall 2023 survey differed from those on the well construction forms included in the hydrogeologic investigation report due to (1) a reduction in top of casing elevation by 0.02 ft for each well when the dedicated pumps were removed in early October 2017, and (2) different top of casing elevations noted for MW-2 between different sources of information. Prior to the October 2017 removal of the dedicated pumps, a top of casing elevation of 848.77 feet was used for calculating the groundwater elevations for MW-2, consistent with the well diagrams included in previous AWQRs at least as early as 1995. However, the top of casing elevation for MW-2 was noted as 848.78 feet on Table 2-1 of the hydrogeologic investigation report, and as 848.98 feet on the well construction form included in the hydrogeologic investigation report.

1.3 Groundwater Monitoring Program

Groundwater monitoring is performed in accordance with the revised Closure Permit (IDNR, 2023), which was most recently amended on August 17, 2023 to include supplemental sampling and analysis of monitoring points MW-1, MW-2, and MW-3 for additional parameters (sulfate, total dissolved solids [TDS], total boron, total calcium, total lithium, and total molybdenum). The groundwater monitoring program is summarized in the table below. The monitoring program is described in more detail in the Hydrologic Monitoring System Plan (HMSP), which was updated in April 2024. An overview of the monitoring program is provided in Table 1, and the monitoring program implementation schedule is summarized in Table 2.

JDDW Landfill Groundwater Monitoring Program

Semi-Annual (April and October)		
рН	Nitrates, as Nitrogen	Barium (total) ⁽¹⁾
Conductivity	Ammonia, as Nitrogen	Iron (total) ⁽¹⁾
Temperature	Fluoride	Magnesium (total) ⁽¹⁾
Color	Chloride	Boron (total) ⁽⁴⁾
Odor	Chemical Oxygen Demand	Calcium (total) ⁽⁴⁾
Turbidity (visual and measured)(2)	Sulfate ⁽⁴⁾	Lithium (total) ⁽⁴⁾
	Total Dissolved Solids (TDS)(4)	Molybdenum (total) ⁽⁴⁾
Annual (October)		
Total phenols		
Every 5 Years (October 2018, 2023	3, etc.)	
Volatile Organic Compounds (VOCs) ⁽³⁾	

Notes

- (1) The analysis of metals (barium, iron, and magnesium) at the site historically included only dissolved-phase concentrations. Following review of the 2016 AWQR, the IDNR requested that JDDW test for total (unfiltered) metals rather than dissolved (filtered) metals. Analysis of total metals began in October 2017. In May 2018, the IDNR approved the variance requested for the analysis of total metals instead of dissolved metals. Because trends in groundwater quality had been primarily based on dissolved metals, JDDW continued to collect both filtered and unfiltered samples until a statistically significant correlation was determined between these two data sets in October 2019. The collection of dissolved (filtered) metals samples was discontinued after the October 2019 sampling event. As of the 2019 AWQR, background levels for metals have been calculated based on total metals results.
- (2) The April 2024 HMSP was updated to include measured values for turbidity, as requested by the IDNR in their review of the 2020 AWQR.
- (3) Annual sampling for Total Organic Halogens (TOX) was previously completed for the landfill. In May 2018, IDNR approved removing TOX from the sampling program, and replacing TOX with analysis for VOCs every 5 years.
- (4) Parameter added starting in Fall 2023 based on the revised Closure Permit (IDNR, 2023).

1.4 Leachate Collection System Overview

The leachate collection system consists of leachate collection piping and a 10,000-gallon underground leachate collection tank. The piping includes an 8-inch-diameter vertical perforated standpipe surrounded by crushed rock located within Stage 1 and a similar standpipe design in Stage 2. Each standpipe functions as a leachate collection well and is connected to a separate, solid 4-inch-diameter gravity drain line that discharges to the leachate collection tank. In addition, a 4-inch-diameter perforated underliner gravity drain pipe is laid within the underliner (one pipe for each stage) and is connected to a solid pipe that conveys liquid collected within the underliner to the leachate collection tank. The leachate drain lines drain freely while the leachate collection system wet valves are open, as during typical operation of the leachate collection system. The underliner drain lines were designed to drain freely at all times as a secondary leachate collection system. The leachate collection tank contains a submersible pump that pumps leachate to the pond adjacent to building X-18 farther southeast of the landfill for discharge through NPDES Outfall #008 to the Little Maquoketa River.

1.5 Leachate and Underliner Sampling

Prior to Fall 2023, the semiannual sampling typically included one sample referred to as "Combined Leachate" collected from the leachate collection tank (which receives liquid from the leachate drain lines and underliner drain lines from Stages 1 and 2) and one sample from the Stage 1 underliner drain line (while the leachate drain valves are open, as during typical operating conditions), which has often been referred to previously as "Underliner." The Stage 2 underliner drain line had not been sampled as there has been no record of flow observed from the line while the leachate valves are open (as during typical operation).

To better understand the composition of the leachate and underliner liquid from Stage 1 and Stage 2, TRC proposed to collect samples from additional sampling points starting in Fall 2023, which has been continued through 2024. The current sampling of leachate and underliner liquids includes the following:

- Stage 1 and Stage 2 leachate drain lines while the leachate drain valves are open (as during typical operating conditions)
- Stage 1 and Stage 2 underliner drain lines while the leachate drain valves are open, if flowing. (Note, the Stage 2 underliner drain line does not typically have flow while the leachate valves are open and has not been sampled.)
- Stage 1 and Stage 2 underliner drain lines after the leachate valves have been closed (which prevents leachate from draining via the leachate drain lines and allows leachate levels to back up into the standpipe within each stage).
- Liquid from the leachate collection tank, which receives liquid from the leachate drain lines and underliner drain lines from Stages 1 and 2. This sample is referred to as "Combined Leachate."

The leachate and underliner liquid samples collected in 2024 were analyzed for the same parameters as the groundwater monitoring points. In their response letter to the 2022 AWQR, the IDNR requested that leachate be sampled for the same parameters as the underliner and groundwater monitoring points.

2.0 Site Inspection and Surface Water Quality

A documentation report titled "Closure Compliance Report" was submitted to the IDNR by IIW, P.C. on November 13, 2012 (IIW, 2012). On January 13, 2013, the IDNR approved the closure of the landfill. The final grades within the limits of the landfill were constructed per the requirements of the landfill closure plan. The final cover configuration includes a 2-foot thick compacted clay layer and a 2-foot thick cover soil layer to support vegetative growth. The final cover was designed to promote surface water runoff from the facility and to minimize infiltration through the cover.

2.1 Current Site Conditions

The semi-annual facility inspection reports for April and October 2024 are included in Appendix B. Inspection findings include the following:

- The landfill cover is in good condition and does not display significant signs of erosion or rutting. During the April and October inspections, small animal burrows were noted at various locations across the landfill cap.
- Standing water was not present during the April or October inspection.
- The fence and gates surrounding the landfill are in good working condition with a working lock and signs are present along the perimeter.
- The gravel road leading to the pump house is in good condition.
- The Stage 1 and Stage 2 leachate standpipe covers need to be replaced.

2.2 Potential Impacts on Surface Water

The closure permit for the landfill (no. 31-SDP-01-75C) does not require surface water monitoring to be performed¹. However, the permit does require that the final cover be maintained to minimize erosion, and that JDDW repair areas of erosion or damage (if any) to the cover that are noted during site inspections. Erosion was not observed during the April or October 2024 inspections.

It is the understanding of TRC that JDDW completes monitoring for the entire facility in accordance with their storm water pollution prevention plan (SWPPP).

3.0 Monitoring Well Performance Evaluation

Monitoring well performance is evaluated in accordance with Chapter 567 IAC 115.21(2) and the revised Closure Permit (IDNR, 2023). This evaluation is intended to confirm that the site monitoring wells are adequately functioning and can provide data useable in assessing the groundwater flow and groundwater quality near the site.

The monitoring well maintenance and performance reevaluation schedule is summarized in Table 3.

3.1 Water Levels and Flow Direction

The revised Closure Permit (IDNR, 2023) Section X, Paragraph 4, Item I requires the collection of monthly water level measurements for each monitoring well. Additionally, Chapter 567 IAC 115.21(2)"a" and "b" require:

- a) A biennial examination of high and low water levels accompanied by a discussion of the acceptability of well location (vertically and horizontally) and exposure of the screened interval to the atmosphere.
- b) A biennial evaluation of water level conditions in the monitoring wells to ensure that the effects of waste disposal or well operation have not resulted in changes in the hydrologic setting and resultant flow paths.

Groundwater elevations measured during the semiannual groundwater monitoring events are presented in Table 4a. Monthly groundwater elevations are provided in Table 4b. The groundwater elevations have remained above the screened portion of each monitoring well. Potentiometric contour maps based on groundwater elevations measured by TRC in April 2024 and October 2024 are shown on Figures 2 and 3, respectively. The direction of groundwater flow is toward the southeast from MW-1 to MW-2 and MW-3, which is consistent with previous observations.

3.2 Well Depths

Chapter 567 IAC 115.21(2)"c" requires annual measurement of well depths to ensure that wells are physically intact and not filling with sediment. Well depths were measured during the Spring and Fall 2024 monitoring events (Table 4a), and the depths were within the expected measurement tolerance given the depths of the wells.

3.3 Recharge Rates

In accordance with the variance granted December 20, 2021, the permit holder is authorized to evaluate well recharge rates (i.e., low flow purge rates during groundwater sampling) in lieu of the in-situ permeability testing required by 567 IAC 115.21(2)"d" to determine if well deterioration is occurring.

Low flow purge rates were documented in the field notes during both semiannual sampling events (Appendix B). Low flow sampling methods were first implemented in October 2017 following the removal of dedicated pumps from the monitoring wells. The purge rates from October 2024 are

compared to baseline purge rates from October 2017 in Table 4a. The October 2024 purge rates are consistent with proper well function.

3.4 Conclusions

Based on this evaluation, the monitoring well network is performing adequately and can provide data usable in assessing the groundwater flow and groundwater quality near the site. No changes are recommended for the monitoring well network.

4.0 Groundwater Monitoring Stages and Statistical Methods

Historically, groundwater results from the downgradient wells were compared to upper control limits calculated as the mean plus two standard deviations of the upgradient (background) well results, as required by the closure permit (Section X, Paragraph 4[n]) and specified in 567 IAC 115.26(6)².

Although the control limit calculation methods are still specified in the closure permit and 567 IAC 115, the IDNR recommended in their 2020 AWQR response letter that "more aggressive statistics" be implemented to evaluate the groundwater results. For statistical method examples, the IDNR letter referred to the U.S. Environmental Protection Agency Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at Resource Conservation and Recovery Act (RCRA) Facilities (USEPA, 2009) and the municipal solid waste regulations under IAC 567—113.10(455B).

The USEPA Unified Guidance provides statistical methods for the following stages of monitoring: detection monitoring, assessment monitoring, and corrective action monitoring. During detection monitoring, if at least one parameter indicates a statistically significant increase (SSI) above background levels, the facility moves into compliance/assessment monitoring. Compliance/assessment monitoring is intended to assess the extent of contamination and evaluate compliance with groundwater protection standards (GWPS). If groundwater results indicate a statistically significant level (SSL) above a GWPS, the facility is subject to corrective action and monitoring is used to track the progress of remedial activities.

As of the 2021 AWQR, the evaluation of groundwater results at this site was revised to follow the stages of monitoring outlined in the USEPA Unified Guidance. Additionally, the statistical methods used for establishing background levels were updated starting with the 2021 Annual Report, as described below. Background levels and groundwater protection standards (GWPS) are presented in Table 5.

4.1 Background Levels and Identification of SSIs

The background levels used for this 2024 Annual Report are based on groundwater results through October 2022, as described below and documented in the 2023 AWQR. Interwell background levels were developed based on the groundwater results from upgradient well MW-1. The USEPA Unified Guidance recommends using a minimum of 8 to 10 independent background samples temporarily until additional background sampling can be conducted and provides an overall recommendation to establish background sample sizes as large as feasible (USEPA, 2009). For most parameters, the most recent 20 results as of October 2022 were used to evaluate background levels. For metals, all available total metals results as of October 2022 were used, amounting to 11 rounds. The methods used to calculate background levels are noted in Table 5 and detailed documentation of the background level evaluation was provided in the 2023 AWQR. These background levels will be updated for the 2025 Annual Report, after two years of use. Background levels will be established for the new parameters added in Fall 2023 once a minimum of 8 to 10 independent background sample results are available, per the USEPA Unified Guidance (USEPA, 2009).

² Field measurements of pH were compared to both upper and lower control limits, calculated as the mean plus or minus two standard deviations, respectively, of the upgradient well measurements.

The background levels are used for direct comparison of the results from the two downgradient monitoring wells (MW-2 and MW-3). If a downgradient result exceeds the background value, resampling may be conducted to confirm the exceedance as a statistically significant increase (SSI) above background. The proposed resampling scheme is a 1-of-2 plan, meaning that a groundwater result above background will qualify as an SSI if the next sample result also exceeds the background level. If the resampling result is below the background level, the original exceedance of background is not considered an SSI. If the downgradient result exceeding the background value is within its normal range, resampling is not required. Per a conversation with the IDNR in December 2021, if the result exceeding background is suspected to be due to sampling error or lab error, resampling must be conducted within 90 days of the original sampling. If the exceedance is not thought to be due to such an error, the result from the next semiannual sampling event may be used to confirm or disconfirm the exceedance as an SSI.

4.2 Groundwater Protection Standards and Identification of SSLs

The groundwater protection standards applicable to the site are MCLs, if established, or lowa's statewide standards for protected groundwater sources. GWPS are established for seven constituents in the monitoring program as of Fall 2023: fluoride, ammonia, nitrate, barium, lithium, molybdenum, and boron. The GWPS for these constituents are summarized in Table 5 and are greater than the background levels for the parameters with established background levels. Graphs of the background levels and groundwater protection standards are provided in Appendix C for the parameters with established background levels.

If an SSI is identified for a constituent for which a GWPS is established, additional evaluation must be conducted to determine whether the constituent is detected at a statistically significant level (SSL) above the GWPS. If no individual results for that constituent and well exceed the GWPS, then further statistical evaluation is not required. If at least one individual result exceeds the GWPS, the lower confidence limit of the data must be calculated and compared to the GWPS. If the lower confidence limit of the result is greater than the GWPS, the result is considered to be an SSL and the facility may be subject to corrective action.

5.0 Leachate Collection System Performance Evaluation

5.1 Monthly Monitoring Procedures

Origin Design (formerly known as IIW, P.C.) of Dubuque, Iowa completes monthly monitoring of the landfill's leachate collection system, including measurements of leachate discharge volume, flow rates, and leachate levels in the Stage 1 and Stage 2 leachate standpipes.

During the 2023 reporting period, TRC worked with Origin Design to gain a better understanding of the leachate collection system maintenance and monthly monitoring procedures performed. As a result, several changes were made to the monthly leachate collection system monitoring protocols and data collection during the 2023 reporting period, as summarized below:

• Leachate levels in standpipes

- The leachate standpipes are an extension of the leachate collection system and are not able to be used for measuring the head of leachate on the liner. When the leachate valves are turned off and leachate is allowed to back up in the standpipes and levels equilibrate, the elevation of the leachate in the standpipe is understood to reflect the elevation of the saturated waste and is now recorded as such on the monthly monitoring forms. (These measurements were previously recorded as leachate elevations and were used to calculate reported head on liner, but they do not actually represent the leachate head on the liner.)
- It was recommended that the leachate valves be turned off the day prior to measuring the leachate levels in the standpipes ("elevation of saturated waste" measurements) to allow sufficient time for levels to equilibrate. In addition, it was recommended that equilibration of the leachate levels be confirmed prior to recording a measurement. These changes were implemented by July 2023.
- **Underliner flow rates:** Starting in June 2023, monthly flow measurements were also made for the underliner drain line flow rates in Stage 1 and Stage 2, both while the leachate valves were open and after they had been closed the day prior.

5.2 System Conditions

Existing known issues with the leachate collection system include:

- A blockage is present within the Stage 1 standpipe at a depth of approximately 80-81 feet below the top of the standpipe. Based on televising of the standpipe performed on April 11, 2023, by Superior Jetting, Inc., the blockage appeared to be gravel, which is thought to be gravel used as the gravel pack around the standpipe, presumably which has entered the standpipe by way of a breach in the standpipe. Future jetting of the Stage 1 standpipe is not recommended due to this potential for additional damage to occur to the standpipe.
- "Debris or damaged pipe" was noted in the Stage 1 leachate drain line during the video inspection on April 11, 2023.

5.3 System Maintenance

Leachate collection system maintenance performed during the 2024 reporting period is summarized below. Televising was not performed during the 2024 reporting period.

- March 26, 2024: Jetting of the Stage 1 and Stage 2 leachate drains.
- August 19, 2024: Jetting of the Stage 2 vertical standpipe and the Stage 1 and Stage 2 leachate drains, as well as approximately halfway down the Stage 1 vertical standpipe.

5.4 System Monitoring Results

The monthly elevations of saturated waste, leachate drain line flow rates, and underliner drain line flow rates are summarized in Table 12. The leachate monitoring data is also presented with the total monthly precipitation on the graphs in Appendix G.

The monthly volume of leachate pumped to the NPDES Outfall #008 is summarized in Table 12. A total of approximately 1,603,084 gallons were discharged between October 2023 and October 2024, which equates to an annual average discharge rate of approximately 3.2 gpm.

The elevation of saturated waste in Stage 1 was below the obstruction during November 2023 through April 2024, but was above the obstruction for the rest of the monitoring period. The increase in the elevation of saturated waste may be correlated to a period of higher precipitation starting in April 2024. The Stage 1 leachate flow rate was also relatively low during November 2023 through April 2024, then increased between April and August 2024, which may also be correlated with precipitation. The Stage 1 underliner flow rates were generally similar whether measured with the leachate valve open or closed, with the exception of measurements in July, September, and October 2024, when the underliner flow rate was higher after the leachate valves were closed. The general similarity of the Stage 1 underliner flow rates whether the leachate valves are open or closed may be considered indicative of a lack of connection between the leachate and underliner drain systems.

The elevation of saturated waste measurements for Stage 2 fluctuated throughout the year and do not appear to correlate with precipitation. The Stage 2 leachate flow rates were fairly consistent during the monitoring period and also do not appear to correlate with precipitation. Consistent with previous observations, the Stage 2 underliner drain line did not have any observed flow while the leachate drain valve was open (as during normal operating conditions), but did have flow when the leachate valve was closed. The Stage 2 underliner flow rates measured when the leachate valve was closed were relatively low during November 2023 through April 2024 (0.14 to 0.24 gpm), then higher during May 2024 through October 2024 (0.83 to 1.15 gpm). The presence of flow in the underliner drain line only when the leachate valve is closed may indicate a connection between the underdrain and leachate collection system. However, regardless of the valve setting, it appears that both leachate and underliner liquid are being effectively collected. Note that the leachate valves are typically open during normal operating conditions, and the underliner drain lines were designed to be a secondary leachate collection system for the landfill.

5.5 Conclusions and Recommendations

Based on the results of current and historical studies and monthly system monitoring, the leachate collection system meets the requirements in the facility closure permit and 567 IAC 115.26 (12)(b)(2).

Routine video inspection (televising) of the Stage 1 and Stage 2 standpipes is recommended to be completed annually to identify potential blockages and/or structural issues. Televising of the remainder of the system (leachate drain lines and underliner drain lines) and jetting is recommended as needed, such as if video inspection indicates debris or blockages or flow rates decrease significantly and are suspected to be due to blockages.

However, jetting is not recommended for the Stage 1 standpipe due to the potential that additional jetting may impact the structural integrity of the standpipe.

6.0 Groundwater and Leachate System Sampling and Results

6.1 Groundwater and Leachate Sampling

Semiannual groundwater and leachate sampling was completed at the JDDW Landfill in the Spring and Fall of 2024 by TRC. The Spring sampling was completed during April 11 and 12, 2024, and the Fall sampling was completed during October 28 and 29, 2024. The groundwater and leachate sampling forms for both semiannual sampling events are included in Appendix B. Samples were analyzed by Eurofins Cedar Falls. The laboratory reports are included in Appendix D. Summary tables of results for each monitoring point sampled historically are included in Tables 9a through 9e, and a summary of the results from 2024 is included in Table 9f. Graphs of the groundwater results for the historical parameters are included in Appendix E.

6.2 Quality Assurance/Quality Control Summary

TRC completed a limited data validation of the laboratory results for the groundwater samples, leachate samples, and equipment blanks collected during the semiannual sampling events. The data were found to be usable with qualification, as described in the data validation reviews (Appendix F).

Samples collected for quality assurance and quality control included one duplicate sample and one equipment blank for each semiannual sampling event. The April and October 2024 duplicate samples were collected from MW-2. An equipment blank was collected during both sampling events to assess whether pump decontamination procedures between wells was adequate. Target analytes were not detected in the equipment blank samples.

6.2.1 Turbidity

Following review of the 2020 AWQR, the IDNR requested that turbidity measurements be included in future reports and requested an evaluation of the effect that turbidity may have on metals results that exceed background. During both semiannual sampling events, turbidity measurements were made for each groundwater sample using a turbidity meter, and visual observations of turbidity were also recorded on the groundwater sampling field forms (Appendix B). No visual turbidity was observed for the groundwater samples collected in April or October 2024. Sample turbidity measurements from April and October 2024 indicated low turbidity values ranging from 1.64 to 8.05 nephelometric turbidity units (NTU).

The metals in the monitoring program with established background levels include total barium, total iron, and total magnesium. Of these constituents, only total magnesium in MW-3 has routinely been detected at concentrations greater than the background level. Given that the results for total and dissolved magnesium in MW-3 are generally similar, including during the five rounds of monitoring when both dissolved and total magnesium were analyzed, it is unlikely that turbidity has a significant effect on the magnesium results.

6.3 Groundwater Results

6.3.1 Exceedances of Background Without Immediately Preceding SSIs

There were two exceedances of background levels without immediately preceding SSIs during the reporting period: chloride in MW-2 in April 2024, and specific conductance in MW-2 in October 2024. The chloride background exceedance in MW-2 in April 2024 was not confirmed as an SSI by the October 2024 sampling. Table 6 provides a summary of constituents detected or measured in the most recent sampling event (October 2024) that do not have immediately preceding SSIs.

6.3.2 SSIs

Table 7 summarizes the SSIs identified during the most recent sampling event (October 2024). A summary of the historic SSIs starting in 2021 is shown in Table 10. Due to the change in statistical methods starting with the 2021 AWQR, SSIs were not evaluated for prior to 2021. The SSIs identified in October 2024 include the following constituents:

- Chloride (MW-3)
- Nitrate (MW-2 and MW-3)
- Total magnesium (MW-3)
- Specific conductance (MW-3)

The concentrations of these constituents are generally consistent with results from recent years (see concentration vs. time graphs in Appendix E). Of the constituents with SSIs in 2024, only nitrate has an applicable health-based GWPS (MCL or statewide standard). The nitrate results do not exceed the health-based GWPS, so calculation of a lower confidence limit is not necessary. Due to the identified SSIs, wells MW-2 and MW-3 are still considered to be in assessment monitoring.

6.3.3 SSLs

No SSLs above GWPS were identified during the 2024 sampling events.

6.3.4 Phenois and VOCs

The Closure Permit requires annual sampling for total phenols and sampling every five years for VOCs.³ Samples were most recently collected for total phenols during the October 2024 event and for VOCs during the October 2023 event. Neither VOCs nor phenols were detected in the monitoring wells or in the leachate when sampled most recently. The absence of VOCs and phenols in groundwater and leachate continues to support the conceptual model that these are not constituents of concern from the waste disposed in the landfill.

³ VOCs were sampled for in 2023 and are due to be sampled again in 2028.

6.3.5 Parameters Added in October 2023

As discussed previously, the following parameters were added to the monitoring program in Fall 2023, as required by the updated Closure Permit (IDNR, 2023): sulfate, TDS, boron (total), calcium (total), lithium (total), and molybdenum (total). Groundwater sample results from the 2024 sampling are included in Table 9f along with the 2024 sample results from the leachate collection system and underliner drains. Groundwater results for these newer parameters were below the GWPS, where applicable. Sulfate, TDS, and calcium were detected in groundwater samples from each of the three monitoring wells. GWPS are not established for these parameters. Boron was detected in MW-3 at a concentration below the GWPS and was not detected in MW-1 or MW-2. Lithium and molybdenum were not detected in the groundwater samples. The concentrations of sulfate, TDS, and boron detected in MW-3 appear to be elevated relative to background (MW-1) concentrations.

6.4 Discussion of Leachate, Underliner, and Groundwater Results

A discussion of groundwater, leachate, and underliner results is provided below. The 2024 sample results for leachate, underliner, and groundwater are summarized in Table 9f.

The results for leachate and underliner samples collected from the same stage are generally similar for most parameters, which indicates that the underliner liquid from each stage is primarily composed of leachate from that stage. Additionally, the Stage 1 underliner sample results were generally similar for most parameters whether the leachate valves were open (allowing leachate to drain freely) or closed (causing leachate to back up in the collection system), indicating that the composition of the Stage 1 underliner liquid does not vary much based on whether the leachate is draining freely. Because the Stage 2 underliner drain typically does not have any flow during normal operating conditions (leachate valves open and leachate draining freely), the Stage 2 underliner has only been sampled after the leachate valves have been closed.

In general, higher concentrations of the target analytes were detected in the Stage 2 leachate and underliner samples than in the Stage 1 leachate or underliner samples, including analytes indicative of fly ash such as sulfate and boron.

Groundwater results from MW-3 included SSIs for several parameters in 2024, including chloride, nitrate, magnesium, and specific conductance. Additionally, several of the parameters added in Fall 2023 were detected in MW-3 at concentrations higher than those from upgradient well MW-1 (for example, TDS, boron, and sulfate); however, background levels have not yet been established for these newer parameters. In general, the parameters detected at elevated levels in MW-3 are also present in the landfill leachate and underliner samples at higher concentrations. For example, boron was detected at concentrations of approximately 2.3 mg/L in MW-3 in 2024, compared to concentrations of approximately 22 mg/L in the Stage 2 leachate and underliner samples.

Groundwater results from MW-2 have indicated SSIs for nitrate since Fall 2022. No other SSIs were detected for MW-2 during the 2024 reporting period. Given that nitrate is the only SSI observed for MW-2, nitrate levels in MW-2 are higher than those in MW-3 despite MW-3 having generally higher concentrations of other parameters, and results for other analytes in MW-2 do not seem to be indicative of impacts from the landfill (for example, boron was not detected and sulfate concentrations were lower than those in background well MW-1), the elevated levels of nitrate may be due to a source other than the landfill fill materials.

6.5 Conclusions and Recommendations

The results of the semi-annual monitoring and inspection indicate that the landfill monitoring network continues to provide usable data. Groundwater results are below the GWPS for the parameters for which they are established. Most constituents detected at elevated concentrations in groundwater from downgradient monitoring well MW-3 are consistent with those reported in the leachate and underliner samples. The elevated nitrate concentrations detected in MW-2 may be related to a source other than the landfill fill materials. No changes to monitoring are proposed at this time.

7.0 References

- IIW, P.C. 2012. John Deere Dubuque Works Sanitary Landfill Closure Compliance Report. November 13.
- Iowa Department of Natural Resources (IDNR). 2023. Sanitary Disposal Project Closure Permit, Permit Number 31-SDP-01-75C. August 17 (revised issuance date for Amendment #5).
- James Montgomery and Associates (JMA). 1990. Hydrogeological Investigation at the John Deere Dubuque Works Sanitary Landfill. February.
- U. S. Environmental Protection Agency (USEPA). 2009. Statistical Analysis of Groundwater Monitoring at RCRA Facilities Unified Guidance. EPA 530/R-09-007. March.

Table 1: Monitoring Program Summary 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C

				Constituents Each Mo		tal # of Samples Monitoring Pro arting April 202	gram	
Monitoring Well	Formation	Current Monitoring Program	Change for Next Sampling Event	Constituents w/ SSI during Reporting Period	during Reporting Period	Detection	Assessment	Corrective Action
MW-1	Dolomite with shale	Background	-	-	-	-	-	-
MW-2	Dolomite with shale	Assessment	-	Nitrate as nitrogen	-	1	7	0
MW 3	Dolomite with shale	Assessment	-	Chloride, nitrate as nitrogen, total magnesium, specific conductance	-	1	7	0

Notes:

SSI = statistically significant increase above background level

SSL = statistically significant level above groundwater protection standard

- = None or not applicable

Footnotes:

1. The total # of samples in each monitoring program includes only the results since April 2021 as they are the first results evaluated using the updated statistical methods.

Updated by: L. Auner, 12/30/2024

Checked by: M. Holicky 1/9/2025

Table 2: Monitoring Program Implementation Schedule 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C

	·				coming Sampling	_	nic Compounds OCs)
Monitoring Well	October 2023	April 2024	October 2024	April 2025	April 2025 October 2025		Next Event
MW-1	List A+B, total phenols, VOCs	List A+B	List A+B, total phenols	List A+B	List A+B, total phenols	October 2023	October 2028
MW-2	List A+B, total phenols, VOCs	List A+B	List A+B, total phenols	List A+B	List A+B, total phenols	October 2023	October 2028
MW-3	List A+B, total phenols, VOCs	List A+B	List A+B, total phenols	List A+B	List A+B, total phenols	October 2023	October 2028

Notes:

Updated by: L. Auner, 12/30/2024 Checked by: E. Lawson, 1/16/2025

List A (semi-annual): ammonia as nitrogen, total barium, chemical oxygen demand, chloride, conductivity,

fluoride, total iron, total magnesium, nitrates as nitrogen, pH, temperature, turbidity

List B (additional parameters per IDNR request, starting in October 2023): sulfate, total dissolved solids, total boron, total calcium, total lithium, total molybdenum

Table 3: Monitoring Well Maintenance and Performance Reevaluation Schedule 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C

	Monitoring Calendar Years						
Compliance with:	2023	2024	2025	2026	2027		
Monthly water level measurements (Closure Permit, Section X, Paragraph 4[i])	Completed	Completed	Scheduled	Scheduled	Scheduled		
567 IAC 115.21(2)"a" high and low water levels (biennial)	Completed	Completed	Scheduled	Scheduled ¹	Scheduled		
567 IAC 115.21(2)"b" changes in the hydrologic setting and flow paths (biennial)	Completed	Completed	Scheduled	Scheduled ¹	Scheduled		
567 IAC 115.21(2)"c" well depths (annual)	Completed	Completed	Scheduled	Scheduled	Scheduled		
Documentation of purge rates during low flow sampling (Closure Permit, Section X, Paragraph 4[m])	Completed	Completed	Scheduled	Scheduled	Scheduled		

Footnotes:

1. Evaluation of high and low water levels and changes in the hydrologic setting and flow paths are only required biennially; however, these are typically evaluated annually.

Updated by: L. Auner, 12/30/2024 Checked by: E. Lawson, 1/16/2025

Table 4a: Monitoring Well Maintenance and Performance Summary 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C

	Wel	l Constructi	on Informati	on			te of rements			Flow Sampling Rate Comparis	-
Well	Top of Casing Elevation (ft MSL) ⁽¹⁾	Top of Screen Elevation (ft MSL) ⁽²⁾	Bottom of Screen Elevation (ft MSL) ⁽²⁾	Total Depth (ft btoc) ⁽³⁾	Description	4/11/2024	10/28/2024	Maximum Depth Discrepancy (ft)	Baseline Purge Rate (mL/min), 10/16/2017	Most Recent Purge Rate (mL/min), 10/28/2024	% Change
MW-1	842.05	673.27	643.27	198.78	Depth to Water (ft btoc)	134.83	134.91				
					Groundwater Elevation (ft MSL)	707.22	707.14	0.00	125	150	9%
					Depth to Bottom (ft btoc)	198.80	198.78	0.02			
					Submerged Screen (Y/N)	Y	Υ	1			
MW-2	848.49	681.77	651.77	196.72	Depth to Water (ft btoc)	150.6	151.31				
					Groundwater Elevation (ft MSL)	697.89	697.18	0.00	115	150	13%
					Depth to Bottom (ft btoc)	196.72	196.72	0.00			
					Submerged Screen (Y/N)	Y	Υ	1			
MW-3	774.06	677.00	647.00	127.06	Depth to Water (ft btoc)	75.14	74.16				
					Groundwater Elevation (ft MSL)	698.92	699.90	0.02	200	250	11%
					Depth to Bottom (ft btoc)	127.08	127.06	0.02			
					Submerged Screen (Y/N)	Y	Υ				

Notes:

ft MSL = feet above mean sea level

Y/N = Yes/No

Updated by: L. Auner, 12/30/2024 Checked by: M. Holicky 1/9/2025

Footnotes:

- 1. Top of casing elevations were resurveyed on 9/26/2023.
- 2. Top and bottom of screen elevations were adjusted based on 9/26/2023 top of casing surveyed elevations (assuming total depth of well and screen length has not changed).
- 3. Total well depths assumed to be the same as prior to 9/26/2023 resurvey.

	MW	<i>I</i> -1	MV	V-2	MW	<i>I</i> -3
Date	Depth to Groundwater (ft)	Water Elevation (ft)	Depth to Groundwater (ft)	Water Elevation (ft)	Depth to Groundwater (ft)	Water Elevation (ft)
10/16/1991	132.85	711.82	147.92	700.85	72.45	701.60
11/13/1991	132.72	711.95	147.83	700.94	73.64	700.41
12/18/1991	132.86	711.81	147.93	700.84	74.26	699.79
1/15/1992	132.61	712.06	147.63	701.14	73.52	700.53
2/12/1992	132.77	711.90	147.76	701.01	73.61	700.44
3/21/1992	132.73	711.94	147.71	701.06	73.56	700.49
4/15/1992	132.62	712.05	148.39	700.38	74.02	700.03
5/15/1992	132.79	711.88	148.56	700.21	74.16	699.89
6/11/1992	132.87	711.80	148.75	700.02	74.29	699.76
7/17/1992	132.39	712.28	148.77	700.00	74.11	699.94
8/22/1992	132.75	711.92	149.06	699.71	74.25	699.80
9/23/1992	132.96	711.71	149.14	699.63	75.25	698.80
10/8/1992	132.73	711.94	149.14	699.63	74.06	699.99
11/17/1992	133.02	711.65	148.76	700.01	74.09	699.96
12/26/1992	133.28	711.39	148.92	699.85	74.23	699.82
1/19/1993	133.47	711.20	149.10	699.67	74.36	699.69
2/19/1993	133.43	711.24	148.98	699.79	74.30	699.75
3/19/1993	133.56	711.11	141.25	707.52	74.50	699.55
4/8/1993	134.16	710.51	149.66	699.11	74.87	699.18
5/15/1993	133.55	711.12	149.25	699.52	74.66	699.39
6/16/1993	133.54	711.13	149.35	699.42	74.75	699.30
7/9/1993	133.65	711.02	149.52	699.25	74.76	699.29
8/20/1993	133.71	710.96	149.73	699.04	74.74	699.31
9/10/1993	133.83	710.84	149.78	698.99	74.75	699.30
10/14/1993	134.29	710.38	150.11	698.66	75.01	699.04
4/13/1994	134.55	710.12	150.30	698.47	75.16	698.89
9/15/1994	133.75	710.92	149.65	699.12	74.71	699.34
3/16/1995	133.67	711.00	148.96	699.81	74.26	699.79
9/14/1995	133.16	711.51	148.87	699.90	73.71	700.34
3/16/1996	133.51	711.16	149.03	699.74	74.03	700.02
9/17/1996	133.15	711.52	148.82	699.95	74.10	699.95
3/21/1997	134.33	710.34	150.22	698.55	75.20	698.85
9/18/1997	133.70	710.97	150.49	698.28	75.08	698.97
10/15/1997	133.28	711.39	150.07	698.70	74.93	699.12
10/31/1997	133.54	711.13	150.32	698.45	75.07	698.98
12/13/1997	133.34	711.33	149.90	698.87	75.00	699.05
1/14/1998	133.91	710.76	150.33	698.44	75.29	698.76
2/20/1998	134.20	710.47	150.48	698.29	75.35	698.70
3/19/1998	134.22	710.45	150.42	698.35	75.30	698.75
4/15/1998	134.02	710.65	150.13	698.64	75.05	699.00
5/14/1998	134.25	710.42	150.29	698.48	75.15	698.90
6/17/1998	134.40	710.27	150.51	698.26	75.28	698.77
7/17/1998	134.05	710.62	150.47	698.30	75.16	698.89
8/22/1998	133.98	710.69	150.48	698.29	75.02	699.03
9/22/1998	133.97	710.70	150.47	698.30	74.91	699.14
10/14/1998	133.11	711.56	149.98	698.79	74.60	699.45
11/6/1998	132.95	711.72	149.87	698.90	74.55	699.50
12/17/1998	133.65	711.02	149.55	699.22	74.17	699.88
1/13/1999	134.33	710.34	150.00	698.77	74.45	699.60
2/13/1999	134.23	710.44	149.82	698.95	74.40	699.65
3/13/1999	134.32	710.35	149.87	698.90	74.45	699.60

	MW	<i>I</i> -1	MV	I-2	MV	<i>I</i> -3
Date	Depth to Groundwater (ft)	Water Elevation (ft)	Depth to Groundwater (ft)	Water Elevation (ft)	Depth to Groundwater (ft)	Water Elevation (ft)
4/14/1999	133.75	710.92	149.40	699.37	74.21	699.84
5/14/1999	134.18	710.49	149.78	698.99	74.50	699.55
6/11/1999	134.10	710.57	149.78	698.99	74.48	699.57
7/13/1999	134.25	710.42	149.96	698.81	74.65	699.40
8/14/1999	134.35	710.32	150.10	698.67	74.75	699.30
9/14/1999	134.38	710.29	150.22	698.55	74.81	699.24
10/28/1999	133.70	710.97	149.88	698.89	74.62	699.43
11/13/1999	133.86	710.81	149.90	698.87	74.69	699.36
12/14/1999	133.70	710.97	149.85	698.92	74.60	699.45
1/14/2000	134.22	710.45	150.26	698.51	74.91	699.14
2/16/2000	134.20	710.47	150.40	698.37	75.05	699.00
3/15/2000	134.36	710.31	150.31	698.46	74.95	699.10
4/11/2000	134.09	710.58	150.23	698.54	75.01	699.04
5/12/2000	133.91	710.76	150.13	698.64	74.86	699.19
6/6/2000	133.85	710.82	150.16	698.61	74.86	699.19
7/19/2000	133.38	711.29	150.08	698.69	74.51	699.54
8/22/2000	133.18	711.49	149.82	698.95	74.15	699.90
9/21/2000	133.26	711.41	149.61	699.16	73.98	700.07
10/25/2000	132.53	712.14	149.03	699.74	73.70	700.35
11/11/2000	132.79	711.88	149.08	699.69	73.81	700.24
11/16/2000	132.40	712.27	148.83	699.94	73.61	700.44
12/16/2000	132.85	711.82	148.94	699.83	73.78	700.27
2/21/2001	133.22	711.45	149.02	699.75	73.93	700.12
3/14/2001	133.40	711.27	149.07	699.70	73.98	700.07
5/16/2001	132.91	711.76	148.83	699.94	73.96	700.09
6/15/2001	133.30	711.37	149.11	699.66	74.14	699.91
8/24/2001	133.42	711.25	149.01	699.76	74.33	699.72
9/22/2001	133.76	710.91	149.29	699.48	74.53	699.52
11/20/2001	133.61	711.06	149.30	699.47	74.47	699.58
12/12/2001	134.08	710.59	149.67	699.10	74.70	699.35
1/18/2002	133.48	711.19	149.18	699.59	74.93	699.12
2/21/2002	134.29	710.38	149.98	698.79	74.83	699.22
3/21/2002	134.29	710.38	150.06	698.71	75.03	699.02
4/17/2002	134.28	710.39	149.99	698.78	74.95	699.10
5/18/2002	134.44	710.23	150.27	698.50	75.10	698.95
6/18/2002	134.69	709.98	150.53	698.24	75.23	698.82
7/18/2002	134.94	709.73	150.71	698.06	75.34	698.71
8/22/2002	135.06	709.61	150.86	697.91	75.44	698.61
9/18/2002	135.09	709.58	151.06	697.71	75.55	698.50
10/17/2002	134.78	709.89	150.75	698.02	75.46	698.59
11/15/2002	134.81	709.86	150.72	698.05	75.44	698.61
12/13/2002	134.68	709.99	150.59	698.18	75.31	698.74
1/23/2003	135.42	709.25	151.09	697.68	75.72	698.33
2/20/2003	135.51	709.16	151.17	697.60	75.71	698.34
3/19/2003	135.72	708.95	151.43	697.34	75.92	698.13
4/18/2003	135.58	709.09	151.38	697.39	75.87	698.18
5/23/2003	135.59	709.08	151.44	697.33	75.77	698.28
6/18/2003	135.68	708.99	151.60	697.17	75.82	698.23
7/19/2003	135.89	708.78	151.82	696.95	75.92	698.13
8/15/2003	135.78	708.89	151.76	697.01	75.87	698.18
9/18/2003	135.77	708.90	151.77	697.00	75.79	698.26

	MW	<i>I</i> -1	MW	<i>I-</i> 2	MW	<i>I</i> -3
Date	Depth to Groundwater (ft)	Water Elevation (ft)	Depth to Groundwater (ft)	Water Elevation (ft)	Depth to Groundwater (ft)	Water Elevation (ft)
10/23/2003	135.32	709.35	151.41	697.36	75.69	698.36
11/14/2003	135.10	709.57	151.24	697.53	75.50	698.55
12/17/2003	134.74	709.93	150.80	697.97	75.16	698.89
1/14/2004	134.98	709.69	150.86	697.91	75.11	698.94
2/4/2004	134.95	709.72	150.91	697.86	75.19	698.86
3/12/2004	134.16	710.51	150.35	698.42	74.79	699.26
4/20/2004	133.63	711.04	150.20	698.57	73.92	700.13
5/20/2004	131.82	712.85	149.19	699.58	71.54	702.51
6/16/2004	130.53	714.14	148.02	700.75	70.59	703.46
7/13/2004	128.58	716.09	145.72	703.05	69.91	704.14
8/11/2004	127.89	716.78	144.73	704.04	70.06	703.99
9/17/2004	127.95	716.72	144.77	704.00	70.47	703.58
10/23/2004	127.06	717.61	144.43	704.34	70.36	703.69
11/19/2004	127.47	717.20	144.83	703.94	70.55	703.50
12/15/2004	127.80	716.87	145.01	703.76	70.49	703.56
1/21/2005	127.93	716.74	145.33	703.44	70.59	703.46
2/19/2005	128.65	716.02	146.04	702.73	71.02	703.03
3/16/2005	127.83	716.84	145.71	703.06	70.91	703.14
4/2/2005	128.02	716.65	145.95	702.82	71.10	702.95
5/6/2005	127.99	716.68	146.02	702.75	71.22	702.83
6/3/2005	128.69	715.98	146.49	702.28	71.52	702.53
7/14/2005	128.96	715.71	146.69	702.08	71.56	702.49
8/12/2005	129.45	715.22	147.11	701.66	71.87	702.18
9/9/2005	129.67	715.00	147.37	701.40	72.03	702.02
10/23/2005	129.24	715.43	147.03	701.74	71.90	702.15
11/10/2005	129.61	715.06	147.27	701.50	72.04	702.01
12/2/2005	129.50	715.17	147.19	701.58	71.81	702.24
1/14/2006	130.03	714.64	147.46	701.31	71.90	702.15
2/10/2006	130.03	714.64	147.36	701.41	71.70	702.35
3/4/2006	130.24	714.43	147.49	701.28	71.85	702.20
4/6/2006	129.88	714.79	147.09	701.68	71.50	702.55
5/25/2006	130.09	714.58	146.36	702.41	70.99	703.06
6/22/2006	128.71	715.96	146.01	702.76	70.73	703.32
7/14/2006	128.38	716.29	145.72	703.05	70.63	703.42
8/12/2006	127.28	717.39	144.89	703.88	69.69	704.36
9/9/2006	127.88	716.79	144.35	704.42	69.71	704.34
10/12/2006	126.83	717.84	144.32	704.45	70.08	703.97
11/11/2006	126.41	718.26	144.04	704.73	69.35	704.70
12/8/2006	126.22	718.45	143.88	704.89	69.95	704.10
1/13/2007	127.56	717.11	144.47	704.30	70.43	703.62
2/13/2007	127.45	717.22	145.13	703.64	70.80	703.25
3/15/2007	127.64	717.03	145.34	703.43	70.72	703.33
4/13/2007	128.18	716.49	145.90	702.87	70.98	703.07
5/12/2007	127.09	717.58	145.58	703.19	70.76	703.29
6/5/2007	127.30	717.37	145.73	703.04	70.74	703.31
7/14/2007	127.89	716.78	146.31	702.46	71.05	703.00
8/10/2007	128.25	716.42	146.63	702.14	71.20	702.85
9/7/2007	129.18	715.49	147.53	701.24	71.90	702.15
10/6/2007	128.42	716.25	146.73	702.04	71.12	702.93
11/9/2007	128.12	716.55	146.13	702.64	71.05	703.00
12/7/2007	128.46	716.21	146.35	702.42	71.21	702.84

	MW	<i>I</i> -1	MW	I-2	MW	<i>I</i> -3
Date	Depth to Groundwater (ft)	Water Elevation (ft)	Depth to Groundwater (ft)	Water Elevation (ft)	Depth to Groundwater (ft)	Water Elevation (ft)
1/4/2008	128.55	716.12	146.32	702.45	71.25	702.80
1/31/2008	129.14	715.53	146.83	701.94	71.51	702.54
3/13/2008	129.21	715.46	146.82	701.95	71.43	702.62
4/11/2008	128.93	715.74	146.52	702.25	71.62	702.43
5/14/2008	129.11	715.56	146.67	702.10	71.69	702.36
6/25/2008	129.78	714.89	147.21	701.56	72.06	701.99
7/17/2008	129.95	714.72	147.30	701.47	72.09	701.96
8/14/2008	130.28	714.39	147.53	701.24	72.28	701.77
9/13/2008	130.73	713.94	147.87	700.90	72.62	701.43
10/15/2008	130.03	714.64	147.09	701.68	72.22	701.83
11/26/2008	130.95	713.72	147.77	701.00	72.91	701.14
12/20/2008	131.40	713.27	148.23	700.54	73.24	700.81
1/17/2009	131.17	713.50	147.93	700.84	73.07	700.98
2/17/2009	131.23	713.44	148.11	700.66	73.22	700.83
3/27/2009	132.18	712.49	148.81	699.96	73.71	700.34
4/19/2009	131.94	712.73	148.53	700.24	73.83	700.22
5/19/2009	131.39	713.28	148.05	700.72	71.48	702.57
6/16/2009	131.67	713.00	148.25	700.52	71.68	702.37
7/18/2009	131.51	713.16	148.26	700.51	71.51	702.54
8/21/2009	131.84	712.83	148.63	700.14	72.16	701.89
9/15/2009	132.16	712.51	148.79	699.98	72.55	701.50
10/27/2009	131.84	712.83	148.43	700.34	72.87	701.18
11/27/2013	131.95	712.72	148.48	700.29	73.02	701.03
12/18/2013	132.51	712.16	148.97	699.80	73.53	700.52
1/24/2014	132.78	711.89	149.23	699.54	73.74	700.31
2/26/2014	132.24	712.43	148.75	700.02	73.61	700.44
3/26/2014	132.42	712.25	148.80	699.97	73.60	700.45
4/22/2014	132.42	712.25	148.80	699.97	73.60	700.45
5/21/2014	132.47	712.20	148.85	699.92	73.31	700.74
6/20/2014	132.76	711.91	149.06	699.71	73.50	700.55
7/24/2014	132.92	711.75	149.29	699.48	72.79	701.26
8/27/2014	132.93	711.74	149.31	699.46	72.96	701.09
9/24/2014	132.97	711.70	149.35	699.42	73.21	700.84
10/23/2014	132.41	712.26	148.80	699.97	73.32	700.73
11/12/2014	132.92	711.75	149.12	699.65	73.65	700.40
12/9/2014	132.93	711.74	149.16	699.61	73.73	700.32
1/20/2015	132.93	711.74	149.20	699.57	73.80	700.25
2/25/2015	132.83	711.84	149.04	699.73	73.74	700.31
3/25/2015	133.21	711.46	149.48	699.29	74.08	699.97
4/23/2015	133.19	711.48	149.30	699.47	74.19	699.86
5/18/2015	133.38	711.29	149.37	699.40	74.26	699.79
6/26/2015	133.59	711.08	149.54	699.23	74.38	699.67
7/22/2015	133.78	710.89	149.73	699.04	74.48	699.57
8/26/2015	134.12	710.55	150.06	698.71	74.67	699.38
9/23/2015	134.27	710.40	150.17	698.60	74.73	699.32
10/20/2015	133.96	710.71	149.37	699.40	74.75	699.30
11/24/2015	134.47	710.20	149.74	699.03	75.07	698.98
12/7/2015	134.32	710.35	149.61	699.16	74.97	699.08
1/13/2016	134.32	710.35	149.61	699.16	74.97	699.08
2/24/2016	134.91	709.76	150.21	698.56	75.17	698.88
3/28/2016	134.98	709.69	150.38	698.39	74.91	699.14

	MW	MW-1 MW-2			MW	<i>I</i> -3
Date	Depth to Groundwater (ft)	Water Elevation (ft)	Depth to Groundwater (ft)	Water Elevation (ft)	Depth to Groundwater (ft)	Water Elevation (ft)
4/27/2016	134.54	710.13	149.74	699.03	74.56	699.49
5/25/2016	134.62	710.05	149.76	699.01	74.48	699.57
6/21/2016	134.69	709.98	149.80	698.97	74.51	699.54
7/25/2016	134.78	709.89	149.86	698.91	74.57	699.48
8/22/2016	134.83	709.84	149.93	698.84	74.49	699.56
9/20/2016	134.74	709.93	149.85	698.92	74.41	699.64
10/24/2016	134.14	710.53	149.52	699.25	74.41	699.64
11/22/2017	134.05	710.60	149.08	699.67	73.73	700.30
12/22/2017	133.81	710.84	148.85	699.90	73.67	700.36
1/19/2018	133.49	711.16	148.65	700.10	73.59	700.44
2/22/2018	134.08	710.57	149.07	699.68	74.02	700.01
3/15/2018	133.65	711.00	148.91	699.84	73.90	700.13
4/25/2018	133.84	710.81	149.14	699.61	74.08	699.95
5/18/2018	133.84	710.81	149.19	699.56	74.15	699.88
6/20/2018	133.86	710.79	149.25	699.50	74.21	699.82
7/23/2018	133.92	710.73	149.44	699.31	74.32	699.71
8/20/2018	133.94	710.71	149.43	699.32	74.31	699.72
9/18/2018	134.04	710.61	149.65	699.10	74.19	699.84
10/18/2018	134.24	710.41	149.81	698.94	72.78	701.25
11/19/2018	133.52	711.13	149.16	699.59	72.27	701.76
12/17/2018	133.44	711.21	148.98	699.77	72.42	701.61
1/18/2019	133.26	711.39	148.73	700.02	72.63	701.40
2/18/2019	133.27	711.38	148.63	700.12	72.14	701.89
3/21/2019	133.45	711.20	147.92	700.83	71.28	702.75
4/18/2019	131.71	712.94	147.46	701.29	71.06	702.97
5/16/2019	131.42	713.23	147.16	701.59	70.95	703.08
6/20/2019	131.02	713.63	147.01	701.74	70.94	703.09
7/16/2019	130.80	713.85	146.83	701.92	70.89	703.14
8/12/2019	130.64	714.01	146.74	702.01	70.95	703.08
9/20/2019	130.52	714.13	146.80	701.95	71.05	702.98
10/22/2019	129.47	715.18	146.06	702.69	70.06	703.97
11/21/2019	128.71	715.94	145.18	703.57	70.18	703.85
12/18/2019	128.81	715.84	145.36	703.39	70.64	703.39
1/13/2020	128.45	716.20	145.32	703.43	70.61	703.42
2/18/2020	128.20	716.45	145.45	703.30	70.78	703.25
3/17/2020	128.09	716.56	145.48	703.27	70.70	703.33
4/16/2020	128.07	716.58	145.66	703.09	70.62	703.41
5/7/2020	127.66	716.99	145.41	703.34	70.43	703.60
6/11/2020	127.65	717.00	145.58	703.17	70.68	703.35
7/15/2020	127.11	717.54	145.28	703.47	70.31	703.72
8/21/2020	126.85	717.80	145.17	703.58	70.37	703.66
9/14/2020	127.19	717.46	145.46	703.29	70.60	703.43
10/21/2020	127.11	717.54	145.54	703.21	70.67	703.36
11/17/2020	127.79	716.86	146.07	702.68	71.01	703.02
12/16/2020	127.41	717.24	145.79	702.96	70.72	703.31
1/19/2021	128.04	716.61	146.32	702.43	70.71	703.32
2/16/2021	127.98	716.67	146.31	702.44	71.04	702.99
3/16/2021	128.12	716.53	146.49	702.26	71.06	702.97
4/27/2021	128.46	716.19	146.71	702.04	71.07	702.96
5/17/2021	128.81	715.84	147.00	701.75	71.27	702.76
6/14/2021	129.14	715.51	147.24	701.51	71.48	702.55

MW-1			MW	I-2	MW	MW-3		
Date	Depth to Groundwater (ft)	Water Elevation (ft)	Depth to Groundwater (ft)	Water Elevation (ft)	Depth to Groundwater (ft)	Water Elevation (ft)		
7/14/2021	129.34	715.31	147.26	701.49	71.54	702.49		
8/13/2021	129.81	714.84	147.56	701.19	71.84	702.19		
9/14/2021	129.74	714.91	147.47	701.28	71.84	702.19		
10/11/2021	129.89	714.76	147.54	701.21	71.94	702.09		
11/22/2021	130.56	714.09	148.06	700.69	72.54	701.49		
12/13/2021	130.76	713.89	148.21	700.54	72.73	701.30		
1/17/2022	130.63	714.02	148.13	700.62	72.70	701.33		
2/15/2022	131.22	713.43	148.49	700.26	73.13	700.90		
3/16/2022	131.17	713.48	148.46	700.29	73.14	700.89		
4/28/2022	131.57	713.08	148.77	699.98	73.46	700.57		
5/19/2022	131.48	713.17	148.71	700.04	73.41	700.62		
6/13/2022	131.84	712.81	148.91	699.84	73.59	700.44		
7/11/2022	131.89	712.76	149.01	699.74	73.68	700.35		
8/22/2022	132.46	712.19	149.37	699.38	73.98	700.05		
9/27/2022	132.70	711.95	149.58	699.17	73.17	700.86		
10/31/2022	132.68	711.97	149.53	699.22	74.17	699.86		
11/15/2022	133.04	711.61	149.77	698.98	74.38	699.65		
12/8/2022	133.35	711.30	149.95	698.80	74.49	699.54		
1/11/2023	133.16	711.49	149.88	698.87	74.47	699.56		
2/15/2023	133.34	711.31	150.15	698.60	74.68	699.35		
3/29/2023	133.97	710.68	150.49	698.26	74.84	699.19		
4/18/2023	133.93	710.72	150.48	698.27	74.74	699.29		
5/18/2023	133.93	710.72	150.43	698.32	74.73	699.30		
6/20/2023	134.22	710.43	150.68	698.07	74.84	699.19		
7/18/2023	134.30	710.35	150.69	698.06	74.86	699.17		
8/18/2023	134.49	710.16	150.78	697.97	74.92	699.11		
9/19/2023	134.50	710.15	150.77	697.98	74.92	699.11		
10/20/2023	134.46	707.59	150.61	697.88	74.91	699.15		
11/27/2023	134.88	707.17	150.95	697.54	75.20	698.86		
12/20/2023	138.40	703.65	154.32	694.17	78.64	695.42		
1/22/2024	138.40	703.65	154.35	694.14	78.59	695.47		
2/15/2024	138.59	703.46	154.48	694.01	78.78	695.28		
3/25/2024	138.31	703.74	154.25	694.24	78.65	695.41		
4/22/2024	138.52	703.53	154.42	694.07	78.75	695.31		
5/23/2024	135.31	706.74	151.20	697.29	78.56	695.50		
6/10/2024	135.43	706.62	151.21	697.28	74.75	699.31		
7/9/2024	135.28	706.77	151.18	697.31	74.45	699.61		
8/28/2024	135.17	706.88	150.75	697.74	74.18	699.88		
9/27/2024	134.92	707.13	150.36	698.13	74.15	699.91		
10/7/2024	135.06	706.99	150.38	698.11	74.25	699.81		
Average	132.33	711.98	148.74	699.98	73.27	700.77		

Notes:

Updated By: L. Auner, 12/30/2024 Checked By: M. Holicky, 1/9/2025

^{1.} The monitoring wells were resurveyed 9/26/2023. The new top of casing elevations were used for groundwater elevation calculations starting in October 2023.

^{2.} Depth to groundwater measurements from April 2019 to present are based on the monthly reports from IIW or Origin Design.

The source of earlier measurements is not confirmed.

Table 5: Background and GWPS Summary 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C

			Background Data Set ⁽¹⁾								Source
Constituent Type	Constituent	Units	# Samples	# Detections	Min Detection	Max Detection	Mean Detection	Background Level	Statistical Test for Background Level	GWPS	of GWPS ⁽²⁾
Field Parameters	pH	SU	20*	20	7.0	7.8	7.3	6.7 - 8.0	95% LPL - 95% UPL (k=8)	-	-
	Specific conductance	µmhos	20*	20	472	730	611	753.5	95% UPL (k=8)	-	-
Non-metal	Chloride	mg/L	20	15	2.48	6.69	4.62	8.05	95% KM UPL (k=8)	-	-
Inorganics	Fluoride	mg/L	20	5	0.101	0.251	0.1492	0.251	Max Detected	4	MCL
	Nitrate, as nitrogen	mg/L	20*	0	-	-	-	0.5	DQR at max PQL	10	MCL
	Sulfate	mg/L								-	-
	Ammonia, as nitrogen	mg/L	20	0	-	-	-	0.2	DQR at PQL	30	SS
	Chemical oxygen demand	mg/L	20	3	6.42	13.5	9.9266667	13.5	Max Detected	-	-
	Total dissolved solids (TDS)	mg/L								-	-
Metals	Barium, total	mg/L	11	11	0.057	0.104	0.081	0.118	95% UPL (k=8)	2	MCL
	Boron, total	mg/L								6	SS
	Calcium, total	mg/L								-	-
	Iron, total	mg/L	11	1	0.521	0.521	0.521	0.521	Max Detected	-	-
	Lithium, total	mg/L								0.014	SS
	Magnesium, total	mg/L	11	11	39.2	45.4	42.0	47.8	95% UPL (k=8)	-	-
	Molybdenum, total	mg/L							-	0.04	SS
Organics	Phenols	mg/L	20	0	-	-	-	0.02	DQR at max PQL	-	-

Notes:

- = not established or not applicable

* = excluding outlier

UPL = upper prediction limit

LPL = lower prediction limit

KM = Kaplan-Meier

DQR = double quantification rule

PQL = practical quantitation limit

k = number of future comparisons for UPL calculation

GWPS = groundwater protection standard

MCL = EPA maximum contaminant level

SS = statewide standard

-- = parameter added in October 2023, not enough data yet for background evaluation

Footnotes:

- 1. The data set used for background calculations consisted of the most recent results through October 2022. Background levels will be updated for the 2025 Annual Report, after two years of use.
- 2. MCLs from https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations SSs from https://programs.iowadnr.gov/riskcalc/home/statewidestandards (used most protective standard for groundwater) The SS listed for ammonia as nitrogen is the standard established for ammonia.

Checked by: M. Holicky 1/11/2024

Table 6: Summary of Detections with No Immediately Preceding SSIs 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C

Well	Constituent	Units	Most Recent Result (October 2024)	Background Level	
MW-2	Chloride	mg/L	7.58	8.05	
	Barium, total	mg/L	0.0857	0.118	
	Magnesium, total	mg/L	42.1	47.8	
	рН	SU	7.1	6.7 - 8.0	
	Specific conductance	μmhos	783.4	753.5	
	TDS	mg/L	424	-	
	Calcium, total	mg/L	101	-	
	Sulfate	mg/L	19.9	-	
MW-3	Barium, total	mg/L	0.0628	0.118	
	рН	SU	7.1	6.7 - 8.0	
	TDS	mg/L	810	-	
	Boron, total	mg/L	2.35	-	
	Calcium, total	mg/L	129	-	
	Sulfate	mg/L	119	-	

Notes:

Background exceedances from the spring sampling event that weren't confirmed as SSIs are discussed in the report text. Data is for downgradient wells only.

Prepared by: L. Auner, 12/30/2024 Checked by: M. Holicky 1/9/2025

^{- =} Background level has not yet been established (parameter was added in October 2023)

Table 7: Summary of Ongoing and Newly Identified SSIs 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C

							Sample Dates	
Well	Constituent	Units	Most Recent Result (October 2024)	Background Level	Lower Confidence Limit	GWPS	Initial Exceedance	Verification Sample
MW-2	Nitrate, as nitrogen	mg/L	1.52	0.5	-	10	10/26/2022	4/24/2023
MW-3	Chloride	mg/l	112	8.05	-	-	4/26/2021	10/7/2021
	Nitrate, as nitrogen	mg/L	0.782	0.5	-	10	4/27/2022	10/26/2022
	Magnesium, total	mg/l	59.2	47.8	=	-	4/26/2021	10/7/2021
	Specific conductance	µmhos	1425.6	753.5	-	-	4/26/2021	10/7/2021

Notes:

Prepared by: 12/30/2024

- = Not applicable

Checked by: M. Holicky 1/9/2025

GWPS = groundwater protection standard

Lower confidence limits were not calculated because GWPS were not exceeded by individual results.

Table 8: Summary of Ongoing and Newly Identified SSLs 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C

							Consecutiv	ve Compliance I	Dates
Well	Constituent	Units	Most Recent Result	Upper Confidence Limit	GWPS	Initial Exceedance	1st Occurrence	Most Recent	Duration
NA									

Notes:

NA - Table not applicable; SSLs have not been identified.

Table 9a: MW-1 Groundwater Monitoring Results 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C Dubuque, Iowa

									Parameters	<u> </u>								
Sample	pH (field) Standard Units	Specific Conductance (field) µmhos	Temperature (field) °F	Ammonia Nitrogen mg/L	Chloride mg/L	Chemical Oxygen Demand mg/L	Iron (dissolved) mg/L	Iron (total) mg/L	Total Organic Halogen mg/L	Phenols mg/L	Magnesium (dissolved) mg/L	Magnesium (total) mg/L	TCE mg/L	Selenium (dissolved) mg/L	Fluoride mg/L	Barium (dissolved) mg/L	Barium (total) mg/L	Nitrate mg/L
Date	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Apr. 1991	7.1	750	53	0.1	4.5	12	0.10		0.029	0.023	16		< 0.0005					
Jul. 1991	7.2	410	62	< 0.1	2.5	12	< 0.02		0.019	0.004	22		< 0.0005					
Oct. 1991	7.2	430	62	< 0.1	1.5	< 1	< 0.02		0.023	0.060	32		< 0.0005					
Jan. 1992	9.6	550	50	< 0.1	1.0	10	< 0.02		< 0.010	0.005	28		< 0.0005					
Apr. 1992	7.8	460	53	< 0.2 < 0.2	< 5.0	<u>5</u>	< 0.10		< 0.01	< 0.005	29		< 0.001					
Oct. 1992 Mar. 1993	9.5 9.1	440 500	56 56	< 0.2	< 5.0 < 5.0	< 5	0.30 < 0.10		< 0.010 < 0.010	< 0.005 < 0.005	27 29		< 0.001 < 0.001	< 0.005				
Sep. 1993	7.0	1250*	53	< 0.2	1000*	16*	2.7*		1.54*	< 0.005	160*		< 0.001	< 0.005				
Mar. 1994	7.4	600	56	< 0.2	23.0	< 5	0.12		0.024	0.008	41		< 0.001	< 0.005				1
Sep. 1994	7.8	550	51	< 0.2	6.0	< 5	< 0.10		0.041	< 0.020			0.001	0.000				
Mar. 1995	7.9	540	46	< 0.2	< 5.0	< 5	< 0.10		0.018	< 0.020								
Sep. 1995	8.0	460	57	< 0.2	17.0	5	< 0.10		0.170	< 0.020								
Apr. 1996	8.8	570	47	< 0.2	5.4	< 5	< 0.10		0.012	< 0.020								
Oct. 1996	8.4	630	45	< 0.2	5.2	< 5	0.24		0.016	< 0.020								
Apr. 1997	8.5	560	52	< 0.2	< 5.0	< 5	0.15		0.014	< 0.020								<u> </u>
Oct. 1997 Apr. 1998	8.1 8.0	570 540	55 54	< 0.2 < 0.2	< 5.0 8.8	< 5 < 5	0.34 0.92		< 0.010 < 0.010	< 0.020 < 0.020								
Sep. 1998	8.2	520	57	< 0.2	< 5.0	< 5	0.92		0.068	< 0.020								
Mar. 1999	8.4	590	54	< 0.2	6.2	5	1.70		0.085	< 0.020								
Sep. 1999	7.9	510	54	< 0.2	< 5.0	< 5	0.37		< 0.010	< 0.020								
Mar. 2000	7.9	560	51	< 0.2	< 5.0	< 5	0.24		< 0.010	< 0.020								
Sep. 2000	7.8	510	56	< 0.2	< 5.0	< 5	0.19		0.044	< 0.020								
Mar. 2001	8.1	530	53	< 0.2	5.3	5.5	0.30		0.062	< 0.020								
Sep. 2001	8.1	520	55	< 0.2	5.5	5.1	0.40		< 0.010	< 0.020								
Mar. 2002	8.7	580	52	< 0.2	< 5.0	< 5	0.25		0.011	< 0.020								
Sep. 2002	8.3	580	54	< 0.2	< 5.0	12.0	0.14		0.048	< 0.020								
Mar. 2003 Oct. 2003	8.5 8.2	590 570	52 52	< 0.2 < 0.2	< 5.0 < 5.0	7.9 18.0	< 0.10 0.11		0.056 0.047	< 0.020								
Mar. 2004	8.7	520	53	< 0.2	< 5.0	7.1	< 0.11		0.047	< 0.020 < 0.020								
Oct. 2004	8.9	600	52	< 0.2	< 5.0	< 5.0	< 0.10		0.044	< 0.020								
Mar. 2005	8.4	740	50	< 0.2	< 5.0	5.6	0.14		0.043	< 0.020								
Oct. 2005	7.8	600	53	< 0.2	< 5.0	5.0	< 0.10		0.051	< 0.020								
Mar. 2006	7.9	660	52	< 0.2	< 5.0	5.4	< 0.10		0.023	< 0.020								
Oct. 2006	7.6	670	54	< 0.2	< 5.0	< 5.0	< 0.10		0.044	< 0.020								
Mar. 2007	7.9	650	51	0.2	< 5.0	5.7	< 0.10		0.055	< 0.020								
Oct. 2007	7.4	690	54	< 0.2	< 5.0	< 5.0	< 0.10		0.041	< 0.020								
Mar. 2008	7.6	660	53	< 0.2	< 5.0	7.3	< 0.10		0.040	< 0.020								
Sep. 2008 Mar. 2009	7.3 7.6	610 650	52 51	< 0.2 < 0.2	< 5.0 < 5.0	< 5.0 < 5.0	< 0.10 < 0.10		0.042 0.036	< 0.020 < 0.020								
Oct. 2009	7.5	610	52	< 0.2	< 5.0	< 5.0	< 0.10		0.036	< 0.020								
Apr. 2010	7.3	600	53	< 0.2	< 5.0	< 5.0	< 0.10		0.029	< 0.018	41				0.10	0.0734		< 0.100
Oct. 2010	7.3	620	51	< 0.2	< 5.0	9.8	< 0.10		0.032	< 0.018	39				0.11	0.0760		< 0.100
Apr. 2011	7.4	600	53	< 0.2	< 5.0	< 5.0	< 0.10		0.036	< 0.020	39				0.12	0.0757		< 0.100
Oct. 2011	7.4	620	52	< 0.2	< 5.0	< 5.0	< 0.10		0.025	< 0.018	42				0.13	0.0724		< 0.100
Apr. 2012	7.3	630	53	< 0.2	< 5.0	6.4	< 0.10		0.032	< 0.020	44				< 0.50	0.0706		< 0.100
Oct. 2012	7.3	610	52	< 0.2	< 5.0	< 5.0	< 0.10		0.028	< 0.020	38				< 0.20	0.0718		< 0.100
Apr. 2013	7.4	630	52	< 0.2	< 5.0	< 5.0	< 0.10		< 0.030	< 0.020	42				< 0.50	0.0853		< 0.100
Oct. 2013	7.7	620	52	< 0.2	< 5.0	< 5.0	< 0.10		0.203*	< 0.019	41				< 0.10	0.0709		< 0.100
Jan. 2014					ļ				0.0317									
Feb. 2014 Apr. 2014	7.6	610	51	< 0.200	< 5.00	< 5.00	< 0.100		0.0318	< 0.0196	41.5				< 0.100	0.0708		< 0.100
May. 2014	7.0	010	ان ا	<u> </u>	> 5.00	> 0.00	<u> > 0.100</u>		< 0.0300	~ U.U 190	41.0				> 0.100	0.0708		~ U. 1UU
Oct. 2014	7.6	610	52	< 0.200	< 5.00	< 5.00	< 0.100		0.0482	< 0.0196	42.2				< 0.100	0.0698		< 0.100
Apr. 2015	6.1*	636	51	< 0.200	2.66	< 5.00	< 0.100		2.0.02	2.0.00	42.9			< 0.150	< 0.100	0.0770		< 0.100
, .p 2010	J. 1	- 550	· ·	0.200	00	0.00	0.100				0			0.100	0.100	0.0770		1 0.100

Table 9a: MW-1 Groundwater Monitoring Results 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C Dubuque, Iowa

									Parameter	s								
Sample	pH (field) Standard Units	Specific Conductance (field) µmhos	Temperature (field) °F	Ammonia Nitrogen mg/L	Chloride mg/L	Chemical Oxygen Demand mg/L	Iron (dissolved) mg/L	Iron (total) mg/L	Total Organic Halogen mg/L	Phenols mg/L	Magnesium (dissolved) mg/L	Magnesium (total) mg/L	TCE mg/L	Selenium (dissolved) mg/L	Fluoride mg/L	Barium (dissolved) mg/L	Barium (total) mg/L	Nitrate mg/L
Date	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Oct. 2015	7.0	560	54	< 0.200	2.93	< 5.00	< 0.100		0.0447	< 0.0204	40.7				< 0.100	0.0809		< 0.100
Apr. 2016	7.3	304	52	< 0.200	2.48	< 5.00	< 0.100		< 0.0620		38.7				0.101	0.0773		< 0.100
Oct. 2016	7.1	562	55	< 0.200	6.69	13.50	< 0.100		0.0470	< 0.0184	40.6				< 0.100	0.0615		< 0.100
Apr. 2017	7.2	472	55	< 0.200	2.50	< 5.00	< 0.500				40.3				< 0.100	0.0703		< 0.100
Oct. 2017	7.3	564	58	< 0.200	< 5.00	< 5.00	< 0.500	< 0.500	0.054	< 0.0188	43.1	43.9			< 0.500	0.0566	0.0569	3.76*
Apr. 2018	7.6	730	42	< 0.200	4.61	< 5.00	< 0.500	0.521			42.8	42.8			0.164	0.0693	0.0747	< 0.100
Oct. 2018	7.8	580	68	< 0.200	5.43	< 10.00	< 0.500	< 0.500		< 0.0196	44.0	40.9			0.117	0.0753	0.0747	< 0.100
Apr. 2019	7.2	665	51	< 0.200	5.35	< 5.00	< 0.500	< 0.500			40.6	40.6			< 0.100	0.0620	0.0814	< 0.100
Oct. 2019	7.1	625	42	< 0.200	5.38	< 5.00	< 0.500	< 0.500		< 0.0200	36.6	39.2			0.251	0.0687	0.0741	< 0.100
Apr. 2020	7.4	609	48	< 0.200	5.04	< 5.00		< 0.500				41.4			< 0.100		0.0831	< 0.500
Oct. 2020	7.2	614	57	< 0.200	5.31	< 5.00		< 0.500		< 0.0184		41.1			< 0.100		0.0874	< 0.100
Apr. 2021	7.4	604	56	< 0.200	4.77	9.86		< 0.500		< 0.0188		43.0			0.113		0.0890	
Oct. 2021	7.4	639	60	< 0.200	5.60	6.42		< 0.500		< 0.0200		40.2			< 0.100		0.0853	< 0.100
Apr. 2022	7.4	631	53	< 0.200	5.36	< 5.00		< 0.500				45.4			< 0.100		0.1040	< 0.100
Oct. 2022	7.0	646	55	< 0.200	5.16	< 5.00		< 0.500		< 0.0200		43.1			< 0.100		0.0796	< 0.100
Apr. 2023	7.5	412	54	< 0.200	5.45	6.37		< 0.500				48.5	·		< 0.100		0.1010	< 0.200
Oct. 2023	7.6	601	62	< 0.200	4.78	< 5.00		< 0.500		< 0.0200		42.3			< 0.200		0.0894	< 0.200
Apr. 2024	7.4	571	55	< 0.200	5.68	< 5.00		< 0.500				38.5	·		< 0.200		0.0770	< 0.200
Oct. 2024	7.4	630	54	< 0.200	4.82	12.3		< 0.500		< 0.0200		37.9			< 0.200		0.0853	< 0.200

Notes:

Updated By: L. Auner, 12/30/2024 Checked By: M. Holicky 1/10/2025

^{*} Outlier or erroneous measurement, excluded from use in background level calculations. Qualifiers not included in table.

Table 9b: MW-2 Groundwater Monitoring Results 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C Dubuque, Iowa

									Par	ameters								
		Specific				Chemical			Total									
	pH	Cond.	Temp.	Ammonia		Oxygen	Iron	Iron	Organic		Magnesium	Magnesium		Selenium		Barium	Barium	1
	(field)	(field)	(field)	Nitrogen	Chloride	Demand	(dissolved)	(total)	Halogen	Phenols	(dissolved)	(total)	TCE	(dissolved)	Fluoride	(dissolved)	(total)	Nitrate
Comple	Standard Units	umhos	°F	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Sample Date	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Apr. 1991	7.0	1,150	53	< 0.100	110.0	8.00	< 0.020	value	< 0.0100	0.0020	51.0	value	0.0017	Value	value	Value	value	Value
Jul. 1991	7.1	1,180	58	< 0.100	140.0	22.00	< 0.020		< 0.0100	< 0.0020	49.0		0.0015					
Oct. 1991	7.2	1,120	54	< 0.100	130.0	36.00	< 0.020		0.0230	< 0.0020	56.0		0.0012	1				
Jan. 1992	7.8	1,210	53	< 0.100	130.0	25.00	< 0.020		0.0190	< 0.0020	50.0		0.0014					
Apr. 1992	7.8	1,280	55	< 0.200	140.0	8.00	< 0.100		0.0200	< 0.0050	51.0		< 0.025					
Oct. 1992	7.8	1,280	55	< 0.200	34.0	8.00	< 0.100		< 0.0100	< 0.0050	55.0		< 0.001					
Mar. 1993	7.1	1,270	54	< 0.200	150.0	< 5.00	< 0.100		0.0110	< 0.0050	60.0		< 0.001	< 0.005				
Sep. 1993	7.8	830	54	< 0.200	170.0	< 5.00	< 0.100		< 0.0100	0.0220	65.0		< 0.001	< 0.005				
Mar. 1994 Sep. 1994	7.2 7.5	1,200 1,180	56 53	< 0.200 < 0.200	150.0 140.0	< 5.00 < 5.00	< 0.100 < 0.100		< 0.0100 < 0.0100	< 0.0050 < 0.0200	59.0		0.001	< 0.005				
Mar. 1995	7.8	1,100	45	< 0.200	110.0	< 5.00	< 0.100		< 0.0100	< 0.0200								
Sep. 1995	7.8	950	56	< 0.200	100.0	< 5.00	< 0.100		0.0220	< 0.0200								
Apr. 1996	8.2	1,090	48	0.310	99.0	< 5.00	< 0.100		0.0400	< 0.0200	1	1		†				
Oct. 1996	7.6	1,030	47	< 0.200	81.0	< 5.00	< 0.100		< 0.0100	< 0.0200								
Apr. 1997	8.5	1,080	52	< 0.200	71.0	< 5.00	< 0.100		< 0.0100	< 0.0200				<u> </u>				
Oct. 1997	8.0	920	53	< 0.200	52.0	< 5.00	< 0.100		< 0.0100	0.0220								
Apr. 1998	8.5	750	58	< 0.200	51.0	< 5.00	< 0.100		< 0.0100	0.0295								
Sep. 1998	8.1	750	56	< 0.200	52.0	< 5.00	< 0.100		< 0.0200	< 0.0200								
Mar. 1999	7.8	950	53	< 0.200	48.0	< 5.00	< 0.100		< 0.0100	< 0.0200								├──
Sep. 1999	7.5	830	56	< 0.200	46.0	< 5.00	< 0.100		< 0.0100	< 0.0200								
Mar. 2000 Sep. 2000	8.2 7.5	860 830	53 54	< 0.200 < 0.200	49.0 47.0	< 5.00 < 5.00	< 0.100 < 0.100		< 0.0100 < 0.0100	< 0.0200 < 0.0200								
Маг. 2001	8.1	850	52	< 0.200	33.1	< 5.00	< 0.100		< 0.0100	< 0.0200								
Sep. 2001	8.0	900	50	< 0.200	26.1	< 5.00	< 0.100		< 0.0100	< 0.0200								
Mar. 2002	8.7	940	53	< 0.200	28.8	< 5.00	< 0.100		< 0.0100	< 0.0200								
Sep. 2002	8.3	890	54	< 0.200	37.0	< 5.00	< 0.100		< 0.0100	< 0.0200								
Mar. 2003	9.2	880	50	< 0.200	25.8	5.20	< 0.100		< 0.0100	< 0.0200								
Oct. 2003	7.8	900	52	< 0.200	21.5	< 5.00	< 0.100		< 0.0100	0.0210								<u> </u>
Mar. 2004	7.6	760	54	< 0.200	23.1	< 5.00	< 0.100		< 0.0100	< 0.0200								
Oct. 2004	8.9	930	52	< 0.200	19.7	< 5.00	< 0.100		< 0.0100	0.0210								├
Mar. 2005	7.4	1,090	50	< 0.200	19.2	< 5.00	< 0.100		< 0.0100	< 0.0200								
Oct. 2005 Mar. 2006	7.4 7.2	860 990	54 51	< 0.200 < 0.200	24.3 25.2	< 5.00 < 5.00	< 0.100 < 0.100		< 0.0100 < 0.0100	< 0.0200 < 0.0200			-	+				\vdash
Oct. 2006	7.3	910	52	< 0.200	27.8	< 5.00	< 0.100		< 0.0100	< 0.0200								
Mar. 2007	7.2	930	50	< 0.200	27.2	7.50	< 0.100		< 0.0100	< 0.0200								
Oct. 2007	7.1	990	54	< 0.200	28.0	< 5.00	< 0.100		< 0.0100	< 0.0200								
Mar. 2008	7.2	900	50	< 0.200	27.0	< 5.00	< 0.100		< 0.0100	< 0.0200		<u> </u>		<u> </u>				
Sep. 2008	7.0	890	52	< 0.200	30.6	< 5.00	< 0.100		0.0410	< 0.0180								
Mar. 2009	7.1	870	53	< 0.200	26.4	5.70	< 0.100		< 0.0100	< 0.0200								
Oct. 2009	7.2	870	51	< 0.200	25.6	< 5.00	< 0.100		0.0131	< 0.0180	10.5			1		0.05 : 5		
Apr. 2010	7.1	830	53	< 0.200	24.8	< 5.00	< 0.100		< 0.0100	< 0.0180	49.2			1	0.139	0.0946		0.730
Oct. 2010	7.1	860	52	< 0.200	24.9	< 5.00	< 0.100		< 0.0100	< 0.0180	32.9		1	+	0.169	0.0644		0.930
Apr. 2011 Oct. 2011	7.1 7.1	840 820	52 52	< 0.200 < 0.200	24.7 22.3	6.10 < 5.00	< 0.100 < 0.100		< 0.0100 < 0.0100	< 0.0180 < 0.0200	43.8 46.5			 	0.156 0.217	0.0877 0.0873		0.700 0.590
Apr. 2012	7.1	820	52	< 0.200	22.3	< 5.00	< 0.100		0.0105	< 0.0200	48.5		1	+	< 0.500	0.0873		0.590
Oct. 2012	7.1	820	53	< 0.200	24.7	< 5.00	< 0.100		0.0103	< 0.0200	45.5		+		< 0.200	0.0931		0.582
Apr. 2013	7.0	830	51	< 0.200	20.8	5.10	< 0.100		< 0.0300	< 0.0200	44.2	1	1	1	< 0.500	0.1040		0.631
Oct. 2013	7.4	820	52	< 0.200	20.7	6.70	< 0.100		0.233	< 0.0204	43.2		1	1	0.166	0.0878		0.317
Jan. 2014		-				-			< 0.0300			İ		İ				
Feb. 2014									< 0.0300									
Apr. 2014	7.4	800	51	< 0.200	17.3	< 5.00	< 0.100		< 0.0300	< 0.0200	45.3				0.146	0.0942		0.607
May. 2014									< 0.0300									
Oct. 2014	7.6	760	53	< 0.200	13.4	< 5.00	< 0.100		< 0.0300	< 0.0208	43.4	L	L	1	0.173	0.0876		0.728

Table 9b: MW-2 Groundwater Monitoring Results 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C Dubuque, Iowa

									Par	ameters								
		Specific				Chemical			Total									
	рН	Cond.	Temp.	Ammonia		Oxygen	Iron	Iron	Organic		Magnesium	Magnesium		Selenium		Barium	Barium	1
	(field)	(field)	(field)	Nitrogen	Chloride	Demand	(dissolved)	(total)	Halogen	Phenols	(dissolved)	(total)	TCE	(dissolved)	Fluoride	(dissolved)	(total)	Nitrate
Sample	Standard Units	umhos	°F	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Date	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Apr. 2015	6.49*	711	51	< 0.200	16.6	< 5.00	< 0.100	Value	Value	Value	42.2	value	Value	< 0.150	0.156	0.0849	Value	0.440
Oct. 2015	7.0	687	53	< 0.200	15.7	< 5.00	< 0.100		0.0261	< 0.0180	47.2			< 0.150	0.130	0.0849		0.440
Apr. 2016	7.0	694	51	< 0.200	16.2	< 5.00	< 0.100		0.0261	< 0.0160	40.6				0.142	0.0822		0.439
Oct. 2016	7.1	766	55	< 0.200	15.6	6.69	< 0.100		< 0.0350	< 0.0188	42.5				0.177	0.0822		0.413
Apr. 2017	7.0	681	53	< 0.200	15.0	< 5.00	< 0.500		< 0.0250	< 0.0100	43.2				0.109	0.0801		0.577
Oct. 2017	7.0	629	59	< 0.200	11.6	< 5.00	< 0.500	< 0.500	0.122	< 0.0196	43.3	44.4			0.133	0.0814	0.0805	0.845
Apr. 2018	7.3	801	44	< 0.200	10.2	< 5.00	< 0.500	< 0.500	0.122	V 0.0130	45.3	44.0			0.192	0.0804	0.0841	0.823
Oct. 2018	7.4	695	75	< 0.200	12.1	< 5.00	< 0.500	< 0.500		< 0.0192	45.5	44.6			0.192	0.0004	0.0788	0.780
Apr. 2019	7.1	760	51	< 0.200	10.1	< 5.00	< 0.500	< 0.500		V 0.0192	41.3	43.6			0.108	0.0692	0.0881	0.802
Oct. 2019	7.1	736	43	< 0.200	9.6	< 5.00	< 0.500	< 0.500		< 0.0180	42.0	36.5			0.190	0.0832	0.0734	0.950
Apr. 2020	7.2	749	47	< 0.200	9.4	< 5.00	0.000	< 0.500		0.0100	12.0	46.1			< 0.100	0.0002	0.0900	0.909
Oct. 2020	7.0	736	56	< 0.200	10.6	< 5.00		< 0.500		< 0.0188		44.3			0.165		0.0890	0.316
Apr. 2021	7.2	710	56	< 0.200	8.1	6.44		< 0.500		< 0.0184		45.1			< 0.100		0.0896	
Oct. 2021	7.2	780	61	< 0.200	9.4	5.36		< 0.500		< 0.0192		44.3			< 0.100		0.0886	0.250
Apr. 2022	7.2	774	53	< 0.200	9.3	14.60		< 0.500				46.3			< 0.100		0.1040	0.488
Oct. 2022	6.9	802	54	< 0.200	8.7	< 5.00		< 0.500		< 0.0200		45.7			0.208		0.0818	1.06
Apr. 2023	7.8	627	53	< 0.200	7.8	< 5.00		< 5.000				51.3			< 0.200		0.107	1.23
Oct. 2023	7.3	737	65	< 0.200	7.9	7.07		< 5.000		< 0.0204		44.2			< 0.200		0.0915	2.88
Apr. 2024	7.2	694	59	< 0.200	8.3	< 5.00		< 5.000				41.6			< 0.200		0.0825	1.39
Oct. 2024	7.1	783	55	< 0.200	7.58	< 5.00		< 5.000		< 0.0216		42.1			< 0.200		0.0857	1.52

Notes:

Updated By: L. Auner, 12/30/2024 Checked By: M. Holicky 1/10/2025

^{*} Erroneous measurement Qualifiers not included in table.

Table 9c: MW-3 Groundwater Monitoring Results 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C Dubuque, Iowa

									Para	meters								
Sample	pH (field) Standard Units	Specific Cond. (field) µmhos	Temp. (field) °F	Ammonia Nitrogen mg/L	Chloride mg/L	Chemical Oxygen Demand mg/L	Iron (dissolved) mg/L	Iron (total) mg/L	Total Organic Halogen mg/L	Phenols mg/L	Magnesium (dissolved) mg/L	Magnesium (total) mg/L	TCE mg/L	Selenium (dissolved) mg/L	Fluoride mg/L	Barium (dissolved) mg/L	Barium (total) mg/L	Nitrate mg/L
Date	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Apr. 1991	7.7	500	53	< 0.100	28.0	< 1.00	0.020		0.0150	0.0040	36.0		< 0.0005					
Jul. 1991	7.3	730	66	< 0.100	28.0	14.00	< 0.020		0.0110	< 0.0020	39.0		< 0.0005					
Oct. 1991	7.6	510	53	< 0.100	26.0	< 1.00	< 0.020		0.0330	< 0.0020	44.0		< 0.0005					
Jan. 1992	8.1	820	54	< 0.100	28.0	10.00	< 0.020		< 0.0100	< 0.0020	42.0		< 0.0005					
Apr. 1992 Oct. 1992	7.6 7.7	700 680	55 55	< 0.200 < 0.200	24.0 26.0	< 5.00 < 5.00	< 0.100 < 0.100		< 0.0100 < 0.0100	< 0.0050 < 0.0050	38.0 33.0		< 0.005 < 0.001					
Mar. 1993	7.3	790	55 55	< 0.200	36.0	< 5.00	0.170		< 0.0100	< 0.0050	43.0		< 0.001	< 0.005				
Sep. 1993	6.8	790	53	< 0.200	37.0	< 5.00	0.170		< 0.0100	< 0.0050	48.0		< 0.001	< 0.005				
Mar. 1994	7.7	810	55	< 0.200	61.0	< 5.00	0.120		< 0.0100	< 0.0050	48.0		< 0.001	< 0.005				
Sep. 1994	7.6	780	51	< 0.200	37.0	< 5.00	< 0.100		< 0.0100	< 0.0200			0.00.	0.000				i
Mar. 1995	8.1	580	47	< 0.200	43.0	< 5.00	0.180		< 0.0100	< 0.0200								
Sep. 1995	8.4	780	54	< 0.200	56.0	< 5.00	0.160		< 0.0100	< 0.0200								
Apr. 1996	8.7	880	49	0.270	57.0	< 5.00	< 0.100		< 0.0100	< 0.0200								
Oct. 1996	7.8	910	43	< 0.200	56.0	< 5.00	< 0.100		< 0.0100	< 0.0200								
Apr. 1997	8.5	1,030	50	< 0.200	53.0	5.00	< 0.100		< 0.0100	< 0.0200				-				
Oct. 1997	8.2	840	53	< 0.200	49.0	< 5.00	0.110		< 0.0100	< 0.0200								
Apr. 1998 Sep. 1998	8.1 8.1	700 750	55 56	< 0.200 < 0.200	53.0 49.0	< 5.00 < 5.00	< 0.100 < 0.100		< 0.0100 < 0.0200	< 0.0200 < 0.0200								
Mar. 1999	8.4	840	52	< 0.200	55.0	< 5.00	0.180		0.0200	< 0.0200								
Sep. 1999	7.7	810	57	< 0.200	57.0	< 5.00	0.330		< 0.0120	< 0.0200								
Mar. 2000	7.9	860	52	< 0.200	58.0	< 5.00	0.400		< 0.0100	< 0.0200								
Sep. 2000	7.6	840	54	< 0.200	72.0	< 5.00	0.240		< 0.0100	< 0.0200								1
Mar. 2001	8.6	810	51	< 0.200	69.4	< 5.00	0.200		< 0.0100	< 0.0200								
Sep. 2001	8.3	800	54	4.620	77.7	< 5.00	0.180		< 0.0100	< 0.0200								
Mar. 2002	8.8	900	49	< 0.200	79.9	6.50	0.180		< 0.0100	< 0.0200								
Sep. 2002	7.8	890	53	< 0.200	75.9	8.30	0.170		< 0.0100	< 0.0200								
Mar. 2003	8.9	990	51	< 0.200	84.9	7.00	< 0.100		< 0.0100	< 0.0200								
Oct. 2003 Mar. 2004	7.8 12.3	970 1,030	52 54	< 0.200 < 0.200	87.5 116	< 5.00 6.30	0.160 < 0.100		< 0.0100 < 0.0100	< 0.0200 < 0.0200								
Oct. 2004	9.0	1,120	52	< 0.200	105	< 5.00	< 0.100		< 0.0100	< 0.0200								
Mar. 2005	7.7	1,120	50	< 0.200	80.6	6.10	< 0.100		< 0.0100	< 0.0200								
Oct. 2005	7.5	1,100	53	< 0.200	97.0	< 5.00	< 0.100		< 0.0100	< 0.0200								
Mar. 2006	7.4	1,360	52	< 0.200	107	6.10	< 0.100		< 0.0100	< 0.0200								1
Oct. 2006	7.5	1,150	52	< 0.200	97.5	< 5.00	0.168		< 0.0100	< 0.0200								
Mar. 2007	7.3	1,260	50	< 0.200	107	< 5.00	< 0.100		< 0.0100	< 0.0200								
Oct. 2007	7.1	1,319	54	< 0.200	111	9.20	< 0.100		< 0.0100	< 0.0200								
Mar. 2008	7.2	1,280	50	< 0.200	116	< 5.00	< 0.100		< 0.0100	< 0.0200								
Sep. 2008 Mar. 2009	7.1 7.2	5,400 1,140	51 50	< 0.200 < 0.200	114 91.7	< 5.00 7.80	< 0.100 < 0.100		0.0450 < 0.0100	< 0.0200 < 0.0200	1							
Oct. 2009	7.2	1,140	51	< 0.200	90.3	< 5.00	< 0.100		0.0100	< 0.0200								
Apr. 2010	7.0	1,100	52	< 0.200	102	< 5.00	< 0.100		< 0.0119	< 0.0200	52.7				0.119	0.0690		0.140
Oct. 2010	7.0	1,140	51	< 0.200	107	< 5.00	< 0.100		< 0.0100	< 0.0200	50.5				0.113	0.0672		0.140
Apr. 2011	7.1	1,070	52	< 0.200	99.7	< 5.00	< 0.100		< 0.0120	< 0.0200	44.5				0.152	0.0657		< 0.100
Oct. 2011	7.1	1,140	52	< 0.200	112	6.40	< 0.100		< 0.0123	< 0.0180	55.6				0.189	0.7930		0.130
Apr. 2012	7.1	1,150	52	< 0.200	115	5.40	< 0.100		< 0.0100	< 0.0200	54.8				< 0.500	0.0729		< 0.100
Oct. 2012	7.1	1,100	52	< 0.200	105	< 5.00	0.114		0.0128	< 0.0200	49.4				< 0.200	0.0718		< 0.100
Apr. 2013	7.2	1,150	52	< 0.200	103	< 5.00	< 0.100		< 0.0300	< 0.0192	52.6				< 0.500	0.0841		0.101
Oct. 2013	7.4	1,270	52	< 0.200	128	11.90	< 0.100		8.0100	< 0.0192	55.0			-	0.123	0.708		< 0.100
Jan. 2014				 					0.0570									
Feb. 2014 Apr. 2014	7.5	1,220	52	< 0.200	114	< 5.00	< 0.100		< 0.0300 < 0.0300	< 0.0196	52.5				0.120	0.0646		< 0.100
May. 2014	1.0	1,220	JZ	~ U.ZUU	114	\ J.00	~ U. 10U		< 0.0300	~ U.U19U	JZ.Ü				0.120	0.0040		<u> </u>
Oct. 2014	7.4	1,320	52	< 0.200	137	< 5.00	< 0.100		< 0.0300	< 0.0208	59.4		1		0.132	0.0653		0.162
Apr. 2015	6.11*	1,081	51	< 0.200	111	< 5.00	< 0.100		213000		56.2			< 0.150	0.119	0.0822		< 0.100
		.,,,,,,																

Table 9c: MW-3 Groundwater Monitoring Results 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C Dubuque, Iowa

									Para	meters								
Sample	pH (field) Standard Units	Specific Cond. (field) µmhos	Temp. (field) °F	Ammonia Nitrogen mg/L	Chloride mg/L	Chemical Oxygen Demand mg/L	Iron (dissolved) mg/L	Iron (total) mg/L	Total Organic Halogen mg/L	Phenols mg/L	Magnesium (dissolved) mg/L	Magnesium (total) mg/L	TCE mg/L	Selenium (dissolved) mg/L	Fluoride mg/L	Barium (dissolved) mg/L	Barium (total) mg/L	Nitrate mg/L
Date	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Oct. 2015	7.1	1,219	53	< 0.200	122	< 5.00	< 0.100		0.1100	< 0.0180	55.3				< 0.500	0.0652		0.275
Apr. 2016	7.0	1,229	51	< 0.200	126	< 5.00	< 0.100		0.0540		55.6				0.122	0.0691		< 0.100
Oct. 2016	7.6	1,442	54	< 0.200	138.0	13.50	< 0.100		0.0320	< 0.0188	60.6				< 0.100	0.0583		0.342
Apr. 2017	7.4	1,374	52	< 0.200	121	6.65	< 0.500				59.9				< 0.100	0.0644		0.142
Oct. 2017	6.9	1,370	54	< 0.200	139	34.6	< 0.500	< 0.500	< 0.010	< 0.0196	65.4	62.2			< 0.100	0.0479	0.0490	1.17
Apr. 2018	7.2	1,530	48	< 0.200	115	< 5.00	< 0.500	< 0.500			65.2	63.4			< 0.100	0.0470	0.0524	1.18
Oct. 2018	7.2	1,420	61	< 0.200	115	< 5.00	< 0.500	< 0.500		< 0.0196	65.3	59.9			< 0.100	0.0478	0.0475	1.17
Apr. 2019	7.0	1,463	50	< 0.200	114	< 5.00	< 0.500	< 0.500			59.1	58.6			< 0.100	0.0397	0.0527	1.27
Oct. 2019	7.0	1,375	51	< 0.200	111	7.72	< 0.500	< 0.500		< 0.0184	56.0	56.8			< 0.100	0.0477	0.0493	1.30
Apr. 2020	6.4	1,190	50	< 0.200	95	< 5.00		< 0.500				55.7			0.102		0.0635	0.46
Oct. 2020	7.0	1,121	56	< 0.200	107	< 5.00		< 0.500		< 0.0188		54.0			< 0.140		0.0687	0.20
Apr. 2021	7.1	1,198	56	< 0.200	94	9.86		< 0.500		< 0.0192		58.2			0.358		0.0595	
Oct. 2021	7.0	1,363	59	< 0.200	102	5.36		< 0.500		< 0.0208		60.0			< 0.100		0.0516	0.21
Apr. 2022	7.0	1,384	52	< 0.200	102	< 5.00		< 0.500				68.0			< 0.100		0.0634	0.57
Oct. 2022	6.8	1,374	53	< 0.200	92	5.20		< 0.500		< 0.0200		62.4			< 0.100		0.0472	0.96
Apr. 2023	7.3	1,286	52	< 0.200	100	9.74		< 0.500				67.4			< 0.200		0.0858	0.63
Oct. 2023	7.3	1,244	59	< 0.200	76	5.70		< 0.500		< 0.0200		58.6			< 0.200		0.0534	0.94
Apr. 2024	7.2	1,192	53	< 0.200	81	5.56		< 0.500				55.6			< 0.200		0.0455	0.64
Oct. 2024	7.1	1,426	52	< 0.200	112	< 10.00		< 0.500		< 0.0200		59.2			< 0.200		0.0628	0.782

Notes:

* Erroneous measurement Qualifiers not included in table.

Updated By: L. Auner, 12/30/2024 Checked By: M. Holicky 1/10/2025

Table 9d: Stage 1 Underliner Monitoring Results 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C Dubuque, Iowa

								Dubuque, lov	<i>l</i> a								
								Para	neters								
Sample	pH (field) Standard Units	Specific Conductance (field) µmhos	Temperature (field) °F	Ammonia Nitrogen mg/L	Chloride mg/L	Chemical Oxygen Demand mg/L	Iron (dissolved) mg/L	Iron Organic (total) Halogen mg/L mg/L	Phenols mg/L	Magnesium (dissolved) mg/L	Magnesium (total) mg/L	Trichloroethylene mg/L	Selenium (dissolved) mg/L	Fluoride mg/L	Barium (dissolved) mg/L	Barium (total) mg/L	Nitrate mg/L
Date	Value	Value	Value	Value	Value	Value	Value	Value Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Apr. 1991	7.0	1,150	53	< 0.100	110.00	8.00	< 0.020	< 0.0100	0.0020	16.0		< 0.0005					
Jul. 1991	7.1	1,180	58	< 0.100	140.00	22.00	< 0.020	< 0.0100	< 0.0020	22.0		< 0.0005					
Oct. 1991	7.2	1,120	54	< 0.100	130.00	36.00	< 0.020	0.0230	< 0.0020	32.0		< 0.0005					
Jan. 1992 Apr. 1992	7.8 7.8	1,210 1,280	53 55	< 0.100 < 0.200	130.00 140.00	25.00 8.00	< 0.020 < 0.100	0.0190 0.0200	< 0.0020 < 0.0050	28.0 29.0		< 0.0005 < 0.0010					
Oct. 1992	7.8	1,280	55	< 0.200	34.00	8.00	< 0.100	< 0.0100	< 0.0050	27.0		< 0.0010					+
Mar. 1993	7.1	1,270	54	< 0.200	150.00	< 5.00	< 0.100	0.0110	< 0.0050	29.0		< 0.0010	< 0.0050				1
Sep. 1993	7.8	830	54	< 0.200	170.00	< 5.00	< 0.100	< 0.0100	0.0220	160.0		< 0.0020	< 0.0050				1
Mar. 1994	7.2	1,200	56	< 0.200	150.00	< 5.00	< 0.100	< 0.0100	< 0.0050	41.0		< 0.0010	< 0.0050				
Sep. 1994	7.5	1,180	53	< 0.200	140.00	< 5.00	< 0.100	< 0.0100	< 0.0200								
Mar. 1995	7.8	1,100	45	< 0.200	110.00	< 5.00	< 0.100	< 0.0100	< 0.0200								
Sep. 1995	7.8	950	56	< 0.200	100.00	< 5.00	< 0.100	0.0220	< 0.0200								
Apr. 1996	8.2	1,090	48	0.310 < 0.200	99.00	< 5.00 < 5.00	< 0.100	0.0400 < 0.0100	< 0.0200								_
Oct. 1996 Apr. 1997	7.6 8.5	1,030 1,080	47 52	< 0.200	81.00 71.00	< 5.00 < 5.00	< 0.100 < 0.100	< 0.0100	< 0.0200 < 0.0200								
Oct. 1997	8.0	920	53	< 0.200	52.00	< 5.00	< 0.100	< 0.0100	0.0200								+
Apr. 1998	7.3	>1000	61	4.300	420.00	44.00	0.120	0.1880	<0.020								<u> </u>
Sep. 1998	8.0	>999	64	< 0.200	360.00	54.00	13.000	0.1270	< 0.0200								
Mar. 1999	7.7	>999	58	4.700	390.00	44.00	0.300	0.0670	< 0.0200								
Sep. 1999	8.1	>1000	63	0.440	390.00	30.00	< 0.100	< 0.0100	< 0.0200								
Mar. 2000	6.7	>1000	58	0.940	560.00	50.00	< 0.100	0.0700	< 0.0200								
Sep. 2000	7.4	>1000	64	< 0.200	630.00	< 5.00	< 0.100	0.0730	< 0.0200								
Mar. 2001	8.3 7.9	>1000 950	54	< 0.200	567.00	39.00	< 0.100	0.0650	< 0.0200								_
Sep. 2001 Mar. 2002	7.9 8.5	>1000	62 57	4.510 4.800	454.00 514.00	62.00 60.00	5.300 5.300	0.0660 0.0670	< 0.0200 < 0.0200								
Sep. 2002	7.5	>1000	62	5.810	406.00	72.00	9.500	0.0070	0.0460								+
Mar. 2003	7.7	>1000	57	5.600	415.00	63.00	0.310	0.0840	< 0.0200								<u> </u>
Oct. 2003	7.6	>1000	60	5.040	500.00	66.00	1.060	0.0900	< 0.0200								1
Mar. 2004	7.9	>1000	62	1.170	405.00	52.00	< 0.100	0.0680	< 0.0200								
Oct. 2004	9.1	>1000	64	5.270	452.00	63.00	2.500	0.0830	0.0250								
Mar. 2005	7.7	1,210	50	< 0.200	414.00	86.00	15.000	0.0960	0.0290								
Oct. 2005	8.2	>1000	63	8.230	508.00	83.00	16.000	0.1050	0.0200								
Mar. 2006	7.3	>1000	56	8.370	488.00	91.70	13.600	0.0821	< 0.0200								_
Oct. 2006 Mar. 2007	7.1 7.1	>1000 3.400	59 55	7.320 6.520	372.00 385.00	57.30 60.60	11.600 8.460	0.0579 0.0575	< 0.0200 0.0200								+
Oct. 2007	7.1	3,760	62	6.820	374.00	68.40	14.500	0.0640	< 0.0200								+
Mar. 2008	6.9	2,800	59	5.480	262.00	55.70	8.980	0.0545	< 0.0200								<u> </u>
Sep. 2008	7.0	3,500	60	6.560	392.00	75.50	1.510	0.2400	< 0.0180								+
Mar. 2009	7.8	3,000	57	6.700	321.00	54.70	8.980	0.0847	< 0.0200								
Oct. 2009	7.3	3,400	58	2.210	380.00	41.20	< 0.100	0.0530	< 0.0180								
Apr. 2010	7.8	2,600	59	3.770	202.00	35.10	< 0.100	0.0524	< 0.0180	49.9				0.746	0.337		< 0.100
Oct. 2010	7.0	3,000	59	6.920	294.00	75.80	0.874	< 0.5000	< 0.0180	44.9				1.01	0.376		< 0.100
Apr. 2011	7.3	2,700	58	6.830	294.00	47.40	< 0.100	0.1360	< 0.0180	32.2				1.14	0.273		0.720
Oct. 2011 Apr. 2012	7.1 7.1	2,700 2,700	59 57	7.050 9.610	250.00 252.00	57.00 66.00	13.500 11.100	0.0943 0.0644	< 0.0180 < 0.0200	46.5 43.9				1.05 1.06	0.273 0.788		< 0.100 < 0.100
Oct. 2012	7.1	2,700	57 57	7.070	252.00	31.80	0.175	0.0647	< 0.0200	43.9				0.834	0.788		0.394
Apr. 2013	7.3	2,500	57	5.810	248.00	44.60	< 0.100	0.0995	< 0.0200	45.7				0.577	0.717		0.371
Oct. 2013	7.5	2,300	58	6.480	206.00	44.60	13.900	20.0000	< 0.0184	38.2				0.890	0.708		0.175
Jan. 2014	-							0.147									
Feb. 2014								0.0770									
Apr. 2014	8.2	2,400	52	< 0.200	244	32.4	< 0.100	0.152	0.0216	39.5				0.760	0.337		2.92
May. 2014	7.0	4.000		5.00	400	07.1	4.00	0.0840	.0.0040	07.5				0.704	0.475		10.100
Oct. 2014	7.3	1,860	57 52	5.28	160	37.1	4.90	0.0786	< 0.0216	37.5			< 0.4E0	0.791	0.475		< 0.100
Apr. 2015	6.4	2,331	52	< 0.200	193	28.6	< 0.100			40.6			< 0.150	0.689	0.263		4.33

Table 9d: Stage 1 Underliner Monitoring Results 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C Dubuque, Iowa

									Paran	neters								
Sample	pH (field) Standard Units	Specific Conductance (field) µmhos	Temperature (field) °F	Ammonia Nitrogen mg/L	Chloride mg/L	Chemical Oxygen Demand mg/L	Iron (dissolved) mg/L	Iron (total) mg/L	Total Organic Halogen mg/L	Phenols mg/L	Magnesium (dissolved) mg/L	Magnesium (total) mg/L	Trichloroethylene mg/L	Selenium (dissolved) mg/L	Fluoride mg/L	Barium (dissolved) mg/L	Barium (total) mg/L	Nitrate mg/L
Date	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Oct. 2015	8.0	2,468	66	< 0.200	158	24.6	< 0.100		0.1220	< 0.0200	41.2				< 0.500	0.505		3.67
Apr. 2016	8.3	2,391	66	0.499	133	31.8	< 0.100		0.0900		39.9				0.516	0.627		2.18
Oct. 2016	8.1	1,871	62	1.48	127	40.3	< 0.100		0.0890	< 0.0196	46.2				0.649	0.706		2.04
Apr. 2017	8.2	2,391	62	0.802	123	16.5	< 0.500				35.8				< 0.500	0.490		2.35
Oct. 2017	7.0	1,200	61	8.12	188	56.2	< 0.500	1.34	0.063	0.0215	72.4	70.2			1.02	0.200	0.203	< 0.100
Apr. 2018	8.6	1,690	51	< 0.200	153	23.9	< 0.500	< 0.500			41.1	40.7			0.595	0.375	0.389	2.930
Oct. 2018	7.2	1,590	66	2.14	141	21.7	< 0.500	3.66		< 0.0192	46.6	42.8			0.631	0.750	0.800	1.13
Apr. 2019	7.9	1,951	55	4.15	189	42.1	< 0.500	3.24			45.0	46.1			0.423	0.631	0.880	0.23
Oct. 2019	7.2	1,865	52	4.24	117	36.4	1.520	1.97		< 0.0192	38.3	40.7			0.547	0.790	0.863	< 0.100
Apr. 2020	6.8	1,782	56	4.97	124	40.4		20.90				41.4			0.614		0.916	< 0.100
Oct. 2020	6.9	1,829	69	4.74	118	35.5		15.30		< 0.0184		43.9			< 0.100		1.180	< 0.100
Apr. 2021	7.3	1,785	61	5.18	99.6	41.7		2.02		< 0.0184		42.5			1.05		0.675	
Oct. 2021	7.2	1,831	64	4.23	103	31.2		0.75		< 0.0184		38.6			0.274		0.829	< 0.100
Apr. 2022	7.1	1,535	63	0.85	99	21.1		< 0.50				44.4			0.283		1.080	2.400
Oct. 2022	6.6	1,627	63	4.14	91	19.1		11.10		< 0.0200		42.4			< 0.100		0.932	< 0.100
Apr. 2023				3.69	85.1	32.2		3.59				47.8			0.305		0.872	< 0.200
Oct. 2023	8.2	1,135.3	61	< 0.500	76.3	22.1		2.96		< 0.0200		39.6			0.472	<u> </u>	0.662	3.80
Apr. 2024	7.6	1,154.7	56	< 0.500	80.9	17.7		< 0.500				42.6			0.311		0.696	2.97
Oct. 2024	7.3	1,211.7	59	< 0.500	60.2	18.8		< 0.500		< 0.0212		38.0			0.456		0.642	2.54

Notes:

Qualifiers not included in table.

Stage 1 underliner samples displayed in this table were collected while the leachate collection system wet valves were open.

Updated By: L. Auner, 12/30/2024 Checked By: M. Holicky 1/10/2025

Table 9e: Combined Leachate Monitoring Results 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C Dubuque, Iowa

									Para	ameters								
Sample	pH (field) Standard Units	Specific Conductance (field) µmhos	Temperature (field) °F	Ammonia Nitrogen mg/L	Chloride mg/L	Chemical Oxygen Demand mg/L	Iron (dissolved) mg/L	Iron (total) mg/L	Total Organic Halogen mg/L	Phenols mg/L	Magnesium (dissolved) mg/L	Magnesium (total) mg/L	Trichloroethylene mg/L	Selenium (dissolved) mg/L	Fluoride mg/L	Barium (dissolved) mg/L	Barium (total) mg/L	Nitrate mg/L
Date	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Apr. 1991	7.0	1,150	53	< 0.100	110.00	8.00	< 0.020		< 0.0100	0.0020	16.0		< 0.0005					
Jul. 1991	7.1	1,180	58	< 0.100	140.00	22.00	< 0.020		< 0.0100	< 0.0020	22.0		< 0.0005					
Oct. 1991	7.2	1,120	54	< 0.100	130.00	36.00	< 0.020		0.0230	< 0.0020	32.0		< 0.0005					<u> </u>
Jan. 1992	7.8	1,210	53	< 0.100	130.00	25.00	< 0.020		0.0190	< 0.0020	28.0		< 0.0005					<u> </u>
Apr. 1992	7.8	1,280	55	< 0.200	140.00	8.00	< 0.100		0.0200	< 0.0050	29.0		< 0.0010					┼
Oct. 1992	7.8	1,280 1,270	55 54	< 0.200 < 0.200	34.00	8.00 < 5.00	< 0.100		< 0.0100 0.0110	< 0.0050 < 0.0050	27.0 29.0		< 0.0010 < 0.0010	< 0.0050				
Mar. 1993 Sep. 1993	7.1 7.8	830	54 54	< 0.200	150.00 170.00	< 5.00	< 0.100 < 0.100		< 0.0110	0.0050	160.0		< 0.0010	< 0.0050 < 0.0050				+
Mar. 1994	7.2	1,200	56	< 0.200	150.00	< 5.00	< 0.100		< 0.0100	< 0.0050	41.0		< 0.0020	< 0.0050				+
Sep. 1994	7.5	1,180	53	< 0.200	140.00	< 5.00	< 0.100		< 0.0100	< 0.0200	71.0		10.0010	1 0.0000				+
Mar. 1995	7.8	1,100	45	< 0.200	110.00	< 5.00	< 0.100		< 0.0100	< 0.0200								1
Sep. 1995	7.8	950	56	< 0.200	100.00	< 5.00	< 0.100		0.0220	< 0.0200								
Apr. 1996	8.2	1,090	48	0.310	99.00	< 5.00	< 0.100		0.0400	< 0.0200								
Oct. 1996	7.6	1,030	47	< 0.200	81.00	< 5.00	< 0.100		< 0.0100	< 0.0200								
Apr. 1997	8.5	1,080	52	< 0.200	71.00	< 5.00	< 0.100		< 0.0100	< 0.0200								<u> </u>
Oct. 1997	8.0	920	53	< 0.200	52.00	< 5.00	< 0.100		< 0.0100	0.0220								
Apr. 1998	8.5	750 750	58	< 0.200	51.00	< 5.00	< 0.100		< 0.0100	0.0295								
Sep. 1998 Mar. 1999	8.1 7.9	750 1,000	56 62	< 0.200 8.400	52.00 280.00	< 5.00 52.00	< 0.100 < 0.100		< 0.0200 0.0470	< 0.0200 < 0.0200								+
Sep. 1999	8.1	999	68	8.300	280.00	76.00	< 0.100		0.0470	< 0.0200								+
Mar. 2000	8.2	1,000	61	9.600	380.00	58.00	< 0.100		0.0330	< 0.0200								
Sep. 2000	7.7	1.000	68	9.250	320.00	< 5.00	< 0.100		0.0700	< 0.0200								†
Mar. 2001	8.2	1,000	62	< 0.200	567.00	39.00	< 0.100		0.0650	< 0.0200								
Sep. 2001	8.5	1,000	66	10.800	278.00	84.00	0.500		0.0300	< 0.0200								
Mar. 2002	8.6	1,000	59	10.600	263.00	63.00	< 0.100		0.0420	< 0.0200								
Sep. 2002	8.2	1,000	63	9.770	270.00	68.00	0.120		0.0400	0.0320								<u> </u>
Mar. 2003	8.8	1,000	61	9.160	294.00	68.00	< 0.100		0.0460	< 0.0200								<u> </u>
Oct. 2003	8.3	1,000	63	7.280	351.00	62.00	< 0.100		0.0630	< 0.0200								
Mar. 2004 Oct. 2004	8.0 8.7	>1000 >1000	60 60	7.730 10.000	240.00 281.00	71.00 61.00	< 0.100 < 0.100		0.0320 0.0620	< 0.0200 < 0.0200								+
Mar. 2005	7.5	>1000	59	10.000	266.00	76.00	< 0.100		0.0620	< 0.0200								+
Oct. 2005	7.4	>1000	61	10.900	293.00	74.00	< 0.100		0.0410	< 0.0200								+
Mar. 2006	7.9	>1000	59	9.300	304.00	75.20	1.620		0.0351	< 0.0200								†
Oct. 2006	8.2	>1000	63	9.130	274.00	63.00	0.100		0.0386	< 0.0200								1
Mar. 2007	8.0	3,400	59	8.610	246.00	67.00	1.620		0.0308	< 0.0200								1
Oct. 2007	7.6	3,650	66	9.170	245.00	64.60	0.147		0.0564	< 0.0180								1
Mar. 2008	7.8	3,500	61	9.560	259.00	69.40	0.227		0.0321	< 0.0200								
Sep. 2008	7.3	3,700	64	11.400	327.00	105.00	0.111		0.2400	< 0.0180								
Mar. 2009	7.8 7.5	3,600	58	13.100	302.00	92.40	< 0.100		0.0126	< 0.0176								+
Oct. 2009 Apr. 2010	7.5 7.4	3,600 3,200	62 63	13.000 11.200	253.00 202.00	65.70 57.10	0.112 < 0.100		0.0451 0.0517	< 0.0200 < 0.0180	94.5				0.904	0.253		0.220
Oct. 2010	7.2	3,400	62	9.800	211.00	80.40	0.154		< 0.5000	< 0.0180	93.9				1.05	0.263		< 0.100
Apr. 2011	7.6	3,300	62	11.200	215.00	68.60	< 0.100		0.0541	< 0.0100	96.1			 	0.990	0.203		0.310
Oct. 2011	7.6	2,900	62	6.580	187.00	< 5.00	0.108		0.0682	< 0.0200	89.8				1.22	0.307		0.370
Apr. 2012	7.6	3,000	61	9.920	208.00	64.30	< 0.100		0.0722	< 0.0200	98.6				1.16	0.350		0.265
Oct. 2012	7.4	2,900	60	< 0.020	222.00	56.40	0.907		0.0722	< 0.0200	75.5				0.907	0.379		0.191
Apr. 2013	7.5	3,000	57	8.750	211.00	57.30	0.606		0.0824	< 0.0188	93.0				0.606	0.432		0.432
Oct. 2013	8.0	2,700	59	7.830	215.00	54.50	< 0.100		36.8000	< 0.0180	61.4				0.512	0.432		0.175
Jan. 2014									0.108	ļ								
Feb. 2014	2.2	0.000	F	0.46	004	40.4	0.404		0.0980	.00100	71.6				0.001	0.00-		1.00
Apr. 2014	8.0	2,800	57	6.46	221	48.4	0.121		0.113	< 0.0192	71.6				0.901	0.225		1.08
May. 2014 Oct. 2014	8.1	2,500	50	6.43	191.00	38.40	< 0.100		0.122 0.109	< 0.0216	71.5			 	0.751	0.294		0.603
Apr. 2015	6.7	2,500	58 52	6.65	242.00	51.20	0.100		0.109	<u> > 0.0∠10</u>	86.7			< 0.150	1.00	0.294		0.603
AUI. 2010	0.7	∠,∪3/	5 ∠	0.00	∠4∠.UU	JI.∠U	U. 100		1	I	00.7	Ī	Ī	~ U. 10U	1.00	U.∠4ŏ		0.091

Table 9e: Combined Leachate Monitoring Results 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C Dubuque, Iowa

									Para	meters								
Sample	pH (field) Standard Units	Specific Conductance (field) µmhos	Temperature (field) °F	Ammonia Nitrogen mg/L	Chloride mg/L	Chemical Oxygen Demand mg/L	Iron (dissolved) mg/L	Iron (total) mg/L	Total Organic Halogen mg/L	Phenols mg/L	Magnesium (dissolved) mg/L	Magnesium (total) mg/L	Trichloroethylene mg/L	Selenium (dissolved) mg/L	Fluoride mg/L	Barium (dissolved) mg/L	Barium (total) mg/L	Nitrate mg/L
Date	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Oct. 2015	8.2	1,642	60	2.21	167.00	45.10	0.220		0.185	< 0.0180	73.0				0.66	0.308		3.300
Apr. 2016	7.5	2,187	57	3.55	179	42.1	0.172		0.1200		62.7				0.793	0.373		1.15
Oct. 2016	7.5	2,441	55	3.49	174	54.9	< 0.100		0.0940	< 0.0196	61.4				0.675	0.368		1.13
Apr. 2017	7.5	2,168	56	4.06	157	15.5	< 0.500				53.6				0.729	0.365		1.20
Oct. 2017	7.5	1,900	61	5.52	144	27.2	< 0.500	2.49	0.053	< 0.0196	59.4	57.7			0.810	0.395	0.393	0.266
Apr. 2018	7.9	2,520	53	4.38	159	43.3	< 0.500	1.11			65.9	66.9			0.840	0.233	0.249	0.859
Oct. 2018	7.3	1,960	65	3.57	114	33.5	< 0.500	1.52		< 0.0192	62.5	57.4			0.675	0.255	0.260	0.906
Apr. 2019	7.1	2,342	57	3.30	174	49.6	< 0.500	1.28			67.7	66.2			1.060	0.233	0.286	2.35
Oct. 2019	7.0	2,582	53	5.81	130	48.8	< 0.500	2.86		< 0.0184	73.9	81.1			0.778	0.276	0.397	1.10
Apr. 2020	6.8	2,655	58	6.51	122	46.7		5.69				97.5			1.330		0.230	1.13
Oct. 2020	7.4	2,441	67	6.71	120	54.7		8.72		< 0.0184		88.2			1.460		0.523	< 0.10
Apr. 2021	7.5	2,514	62	6.69	116	54.7		5.04		< 0.0184		97.9			0.932		0.372	
Oct. 2021	7.4	2,448	63	7.08	112	49.2		2.27		< 0.0188		96.1			0.475		0.255	0.180
Apr. 2022	7.8	2,483	65	5.46	111	45.2		1.22				113.0			0.957		0.239	0.278
Oct. 2022	7.3	2,384	64	6.35	113	44.6		2.34		< 0.0200		93.6			< 0.100		0.319	0.258
Apr. 2023				6.98	114	56.6		< 2.50				90.9			0.906		0.350	0.554
Oct. 2023	7.9	2,234.7	63	5.79	108	53.1		2.14		< 0.0200		95.1			0.687		0.268	0.766
Apr. 2024	7.5	2,231.3	59	5.94	119	45.0		2.17				88.3			0.677		0.211	0.865
Oct. 2024	7.3	2,274.9	59	5.34	92	49.9		4.37		< 0.0208		93.3			1.020		0.317	0.894

Notes:

Qualifiers not included in table.

Updated By: L. Auner, 12/30/2024 Checked By: M. Holicky 1/10/2025

Table 9f: April and October 2024 Monitoring Results 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C Dubuque, Iowa

														nbined /Underliner										
		Sample Type		Stag	e 1 Leachate	e/Underliner L	iquid.		Stag	e 2 Leachate	/Underliner L	_iquid		quid				Groun	dwater				Equipm/	ent Blanks
	Samp	le Location ID	S1 Leach	ate Open	S1 Under	rliner Open	S1 Underli	ner Closed	1	nate Open	S2 Underli		Combine	d Leachate	MV	V-1		M\	N-2		M	W-3	EB-01	EB-01
	•	Duplicate ID																Dup-01		Dup-01				
		Sample Date	4/11/2024	10/28/2024	4/11/2024	10/28/2024	4/12/2024	10/29/2024	4/11/2024	10/28/2024	4/12/2024	10/29/2024	4/11/2024	10/28/2024	4/11/2024	10/28/2024	4/11/2024	4/11/2024	10/28/2024	10/28/2024	4/11/2024	10/28/2024	4/11/2024	10/28/2024
Parameter Group	Parameter	Units																						
Field Parameters	рН	SU	7.84	7.12	7.63	7.33	8.37	7.02	7.35	7.27	7.74	7.26	7.51	7.3	7.43	7.43	7.15	-	7.14	-	7.23	7.10	-	-
	Specific conductance umhos/cm		2793.2	1658.9	1154.7	1211.7	1153.8	1488	1592	3070.1	2892.2	3077	2231.3	2274.9	571.3	629.5	694.3	-	783.4	-	1191.6	1425.6	-	-
General Chemistry	Chloride	mg/L	115	79.8	80.9	60.2	85.7	74.9	134	107	132	376	119	92.4	5.68	4.82	8.30	8.26	7.58	7.5	80.9	112	<1.00	<1.00
and Anions	Fluoride	mg/L	0.443	0.562	0.311	0.456	0.302	0.64	0.829	1.02	0.701	1.41	0.677	1.02	<0.200	<0.200	< 0.200	<0.200	<0.200	<0.200	< 0.200	<0.200	< 0.200	< 0.200
	Nitrate as N	mg/L	<0.200	< 0.200	2.97	2.54	1.77	0.967	< 0.200	0.67	<0.200	1.24	0.865	0.894	<0.200	<0.200	1.39	1.41	1.52	1.53	<1.00	0.782	< 0.200	<0.200
	Sulfate	mg/L	2.53	43.5	26.7	34.1	42.8	47.5	1190	1210	1170	1380	715	616	25.7	23.7	20.9	19.1	19.9	19.6	126	119	<1.00	<1.00
	Ammonia as N	mg/L	4.98	3.67	< 0.500	< 0.500	< 0.500	2.02	9.79	8.4	8.63	8.06	5.94	5.34	<0.200 UJ	<0.200	<0.200 UJ	<0.200 UJ	<0.200	<0.200	<0.200 UJ	<0.200	< 0.200	<0.200
	Chemical Oxygen Demand	mg/L	27.4	31.8	17.7	18.8	28.3	27.4	68.9	71.9	74.9	69.4	45.0	49.9	<5.00	12.3	<5.00	<5.00	<5.00	<10.0	5.56	<10.0	<5.00	<5.00
	Total Dissolved Solids	mg/L	952	938	706	694	700	880	2510	2330	2160	2250	2010	1510	360	340	418	398	424	408	734	810	<50.0	<50.0
Metals	Barium, total	mg/L	0.869	0.88	0.696	0.642	0.496	0.677	0.0268	0.0299	0.0321	0.0359	0.211	0.317	0.0770	0.0853	0.0825	0.0780	0.0857	0.0867	0.0455	0.0628	< 0.0100	< 0.0100
	Boron, total	mg/L	8.19	8.9	3.01	3.72	3.87	8.1	22.1	22.5	22.1	22.7	15.2	15.7	<0.200	<0.200	< 0.200	<0.200	<0.200	<0.200	2.26	2.35	< 0.200	< 0.200
	Calcium, total	mg/L	115	133	86.8	92.2	71.1	123	159	181	166	190	134	158	67.2	68.8	97.6	92.7	101	100	122	129	<1.00	<1.00
	Iron, total	mg/L	8.66	9.01	< 0.500	< 0.500	< 0.500	6.42	2.88	1.2	2.58	3.06	2.17	4.37	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500
	Lithium, total	mg/L	0.210	0.198	0.0679	0.0743	0.0970	0.192	1.14	1.12	1.13	1.13	0.695	0.651	<0.0500	< 0.0500	< 0.0500	<0.0500	< 0.0500	< 0.0500	< 0.0500	<0.0500	< 0.0500	< 0.0500
	Magnesium, total	mg/L	44.8	41.3	42.6	38	41.4	41.9	126	143	126	149	88.3	93.3	38.5	37.9	41.6	39.5	42.1	43.2	55.6	59.2	<1.00	<1.00
	Molybdenum, total	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	0.0565	0.0547	0.0522	< 0.0500	< 0.0500	< 0.0500	<0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	<0.0500	< 0.0500	< 0.0500
Organics	Phenols, total	mg/L	-	< 0.0200	-	< 0.0212	-	< 0.0200	-	< 0.0220	-	< 0.0212	-	< 0.0208	-	< 0.0200	-	< 0.0216	-	< 0.0200	-	< 0.0200	-	< 0.0200

Notes:

UJ = estimated nondetect

Prepared by: L. Auner, 1/9/2024 Checked by: M. Holicky 1/10/2024

Page 1 of 1

^{- =} Not analyzed or not applicable

Table 10: Historic SSI and SSL since January 1, 2021 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C

Well	Constituent	Spring 2021	Fall 2021	Spring 2022	Fall 2022	Spring 2023	Fall 2023	Spring 2024	Fall 2024
MW-2	Chloride								
	Nitrate, as nitrogen								
	Specific conductance								*
MW-3	Chloride								
	Nitrate, as nitrogen								
	Magnesium								
	Specific conductance								

Key:

SSI SSL Updated by: L. Auner, 12/30/2024 Checked by: M. Holicky 1/10/2025

 Result was above background level. If next sample is also above background level, an SSI will be identified.

Notes:

1. Evaluation of SSIs and SSLs began with the 2021 AWQR.

Table 11: Corrective Action Trend Analysis 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C

Well	Current SSL	Trend	N	Projected Year to Completion
NA				

Notes:

N - Number of Samples

NA - Table not applicable; this facility is not under corrective action monitoring.

Table 12: Leachate Management Summary 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C

First Day of Measurements for	Elevat Saturate (f	d Waste	Waste ab	Saturated ove Liner t)	Line Flo	te Drain ow Rate om)	Line Flow LCS Valv	ner Drain Rate with ves Open om)	Line Flow LCS Valv	ner Drain Rate with es Closed om)	Volume of Leachate Discharged to NPDES #008 Since Last Measurement Date		Monthly Precipitation ³
Event ¹	Stage 1	Stage 2	Stage 1	Stage 2	Stage 1	Stage 2	Stage 1	Stage 2 ²	Stage 1	Stage 2	(gal)	Notes	(in)
11/27/2023	<789.06	797.34	-	16.54	0.52	0.95	0.06	0	0.06	0.17	129,989		0.34
12/20/2023	<789.02	793.9	-	13.1	0.45	0.95	0.04	0	0.04	0.16	78,185		1.8
1/22/2024	<788.67	793.86	-	13.06	0.4	0.97	0.03	0	0.03	0.16	100,850		0.68
2/15/2024	<788.67	793.86	-	13.06	0.38	0.90	0.03	0	0.03	0.14	75,797		0.6
3/25/2024	<788.67	794.01	-	13.21	0.44	0.92	0.05	0	0.05	0.14	117,627	Jetting 3/26/2024.4	2.67
4/22/2024	<788.67	793.76	-	12.96	0.54	0.91	0.11	0	0.11	0.24	101,481		5.52
5/23/2024	789.26	788.68	2.16	7.88	0.89	0.93	0.19	0	0.23	0.83	131,028		5.78
6/10/2024	789.52	793.86	2.42	13.06	1.24	0.93	0.21	0	0.27	0.91	74,192		7.6
7/9/2024	789.24	791.28	2.14	10.48	1.76	1.02	0.24	0	1.01	0.92	204,839		5.77
8/28/2024	790.01	794.66	2.91	13.86	1.84	1.06	0.18	0	0.20	0.96	328,545	Jetting 8/19/2024. ⁵	2.6
9/27/2024	789.34	791.36	2.24	10.56	1.4	1.16	0.15	0	1.08	1.08	199,727		0.71
10/7/2024	788.65	794.96	1.55	14.16	1.27	1.15	0.19	0	0.85	1.15	60,824		3.06
Annual Total											1,603,084		37.13

Prepared by: L. Auner, 1/9/2024

Checked by: M. Holicky 1/10/2025

Notes:

LCS = leachate collection system

- = not measured or not applicable

Footnotes:

1 Measurements were made over the course of two days. Measurements of leachate drain line flow rates, underliner drain line flow rates with LCS valves open, and volume of leachate discharged were made on Day 1. Other measurements were made on Day 2.

² No flow was observed during monthly monitoring, consistent with historical observations.

 $^{^{3}}$ Monthly precipitation based on calendar month (not aligned with leachate measurement dates).

⁴ Jetting on March 26, 2024 was performed for leachate drain lines for Stage 1 and Stage 2.

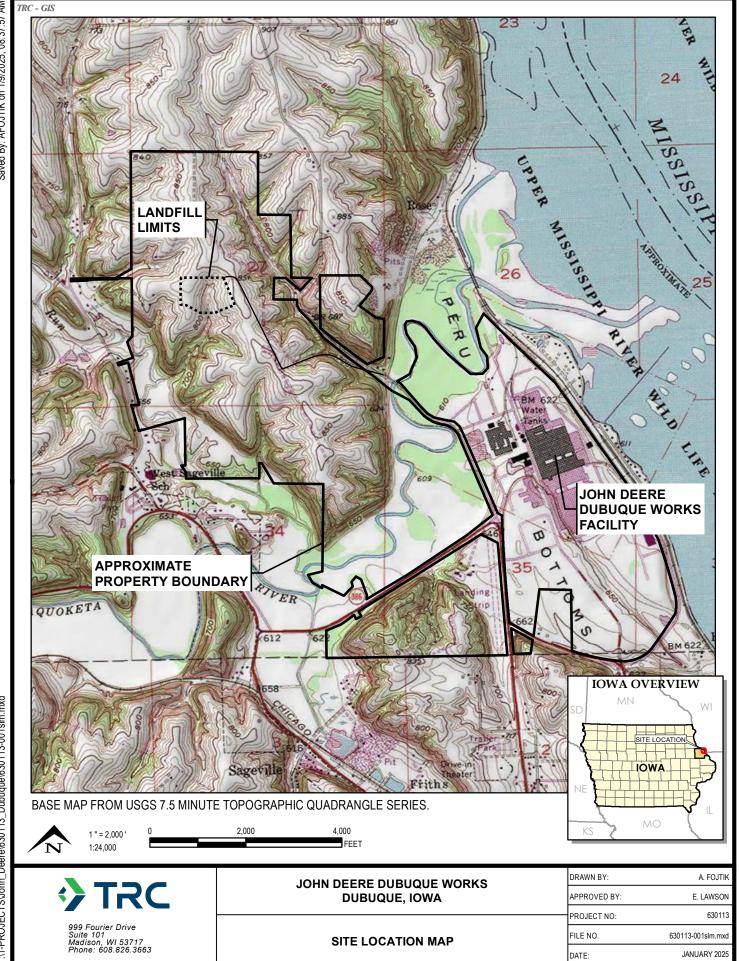
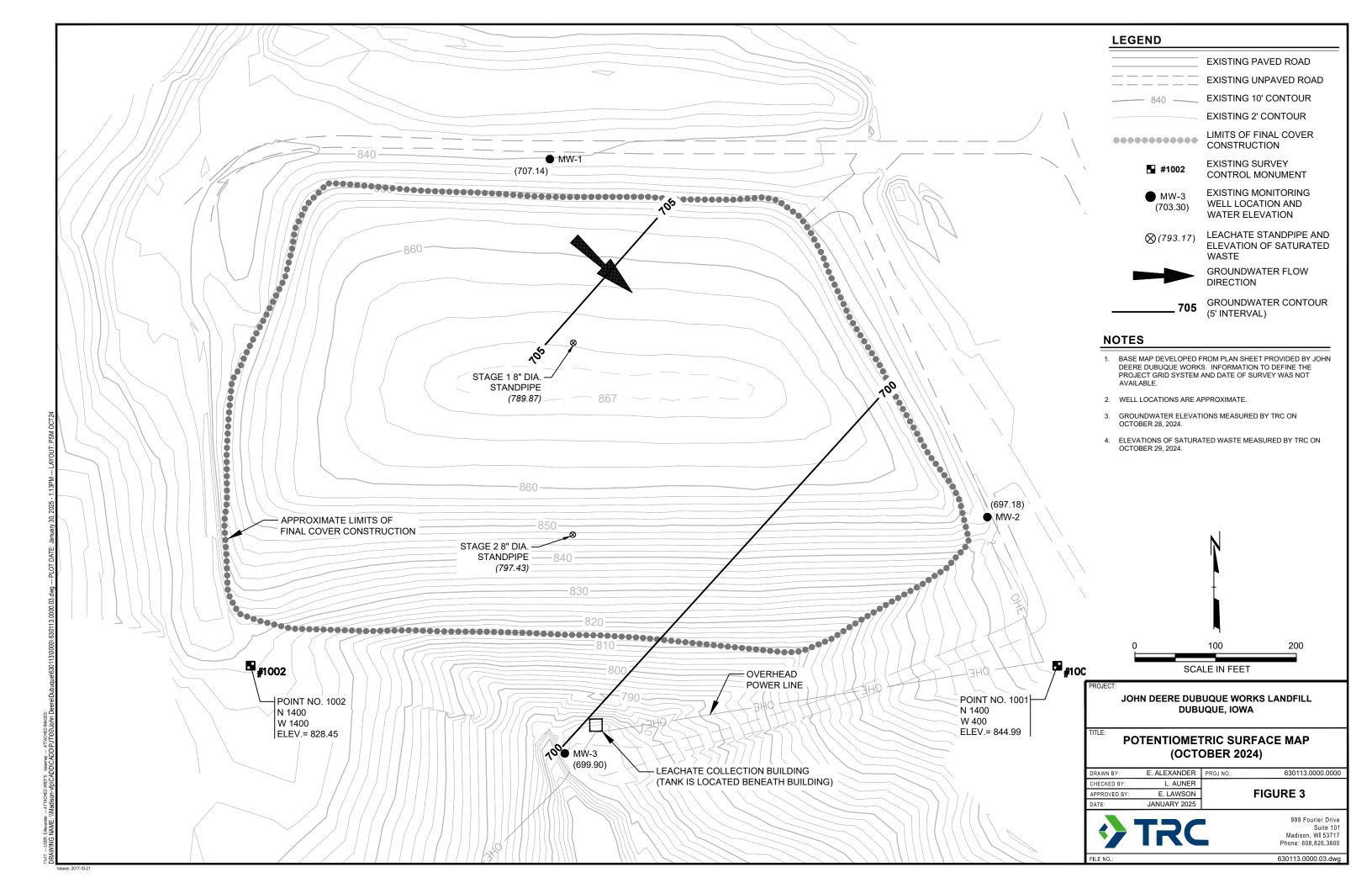

⁵ Jetting on August 19, 2024 was performed for leachate drain lines for Stage 1 and Stage 2, the Stage 2 vertical standpipe, and part of the Stage 1 vertical standpipe.

Table 13: Gas Monitoring Summary 2024 Annual Water Quality Report John Deere Dubuque Works Landfill Permit No. 31-SDP-01-75C


	Monitoring	Points	Methane Results (% LEL)				
Name	Туре	Description					
NA							

Notes:

NA - Table not applicable, gas monitoring is not conducted at this facility.

Appendix A: Correspondence

August 7, 2024

DAN MAI JOHN DEERE DUBUQUE WORKS 18600 SOUTH JOHN DEERE ROAD DUBUQUE IA 52001

RE: John Deere Dubuque Works Landfill
Permit No. 31-SDP-01-75C
2023 Annual Water Quality Report (<u>Document No. 109010</u>) and Hydrologic Monitoring
System Plan (<u>Documents No. 109761</u>)

Dear Mr. Mai:

The Iowa Department of Natural Resources (DNR) has reviewed the 2023 Annual Water Quality Report (AWQR), dated January 2024, as submitted by TRC Environmental Corporation (TRC). Our comments on the AWQR are below.

1. Report Priority Items

No priority items were requested in the report.

2. Groundwater Monitoring

- a. The Closure Permit was amended on August 17, 2023 to include supplemental sampling and analysis for additional constituents (sulfate, total dissolved solids [TDS], total boron, total calcium, total lithium, and total molybdenum) as requested in the DNR's 2022 AWQR Comment Letter (Doc #107430). These constituents were present in all leachate and underliner samples taken. The similarity in the leachate and underliner sample results suggests that leachate has migrated to the underliner layer. Although no levels were above the statewide standards in the downgradient monitoring wells MW-2 and MW-3, MW-2 showed elevated levels of total dissolved solids (420 mg/L), while MW-3 was elevated in chloride (75.9 mg/L), sulfate (121 mg/L), and total dissolved solids (730 mg/L) above that observed in the upgradient background monitoring well MW-1, which has corresponding concentrations of chloride (4.78 mg/L), sulfate (28.4 mg/L), and total dissolved solids (330 mg/L). Since sulfate, chloride, and total dissolved solids can be an indicator of leachate migration, this affirms that continued sampling of these additional constituents is appropriate.
- b. Chloride, sulfate, barium, boron, calcium, magnesium, and total dissolved solids were observed in wells MW-1, MW-2, and MW-3, but all were below statewide standards. No other constituents were observed above minimum laboratory detection levels in these wells.
- c. Due to missing pH, specific conductance, chloride, and other parameters that were not recorded during the April 2023 sampling event a clear trend could not be determined for the reporting period. The permit holder is reminded that recording of all required field data is a requirement of your permit and the regulations. Please ensure all data is properly recorded during future events.
- d. No changes to monitoring were proposed by TRC. DNR agrees with this statement.

e. DNR further reviewed the proposed Hydrologic Monitoring System Plan (<u>Doc #109761</u>) and agrees with all proposed changes. This will be incorporated into the permit under separate cover.

3. Leachate Control System

- a. Televising revealed a blockage in Stage 1 standpipe about 80 feet below the ground surface that appeared to be gravel, which is from the gravel pack around the standpipe, and that entered the standpipe by way of a breach. The Stage 2 leachate drain line had gravel and sediment encountered upon removal of the PVC fitting, and the gravel and sediment encountered were removed.
- b. No other debris, damage, or obstructions were noted, and it appears that neither of the noted situations negatively impacted operation of the leachate collection system. Therefore, the DNR concurs with continuing to monitor, operate, and report in accordance with the permit and applicable rules

Feel free to contact me with any questions at (515) 415-1331 or by email at brad.davison@dnr.iowa.gov.

Sincerely,

Brad Davison Environmental Specialist Land Quality Bureau

copy: Erica Lawson

TRC Environmental Corporation 999 Fourier Drive, Suite 101 Madison, WI 53717

DNR Field Office #1 – Manchester

Appendix B: Field Notes

- Spring 2024 Sampling Forms and Facility Inspection Report
- Fall 2024 Sampling Forms and Facility Inspection Report

Sampling Forms and Facility Inspection Report Spring 2024

1/10/2025	licky, Adam Jannke, Wes	1/13/25
Maddie Ho	licky, Adam Jannke, Wes	Braga
Maddie Ho	licky, Adam Jannke, Wes	Braga
	4/11/2024 - 4/12/2024	
	Dubuque, IA	
	Erica Lawson	
	577511	
	JDDW	
	Semiannual grou	577511 Erica Lawson Dubuque, IA

DATE

DATE

SIGNED

GENERAL NOTES

PROJECT NAME:	JDDW		DATE:	4/11/2024	TIME ARRIVED	D: 8:00
PROJECT NUMBE	R: 577511		AUTHOR:	M. Holicky	TIME LEFT:	14:00
		,	WEATHER			
TEMPERATURE: 5	o °F WIND:	10	MPH	VISIBILITY:	Clear	•
	WC	ORK / SA	MPLING PE	RFORMED		
Arrive on site, che	ck in with JDDW securi	ty at nort	th gate			
Drive to landfill be	hind JDDW facility					
Gauging for MW-1	1, MW-2, MW-3, and St	age 1 an	d Stage 2 s	standpipes		
Calibrate water qu	ality meter					
Sample MW-1, M\	W-2, and MW-3					
Landfill cap inspec	ction					
Leachate and und	erliner sampling (while	leachate	valves ope	n). Stage 1 underliner	not flowing, as	typical.
PRO	OBLEMS ENCOUNTERE	D		CORRECTIVE	ACTION TAKEN	
PRO	OBLEMS ENCOUNTERE None	D		CORRECTIVE A	ACTION TAKEN	
PRO		D		CORRECTIVE A	ACTION TAKEN	
PRO		D		CORRECTIVE	ACTION TAKEN	
PRO		D		CORRECTIVE	ACTION TAKEN	
PRO		D		CORRECTIVE	ACTION TAKEN	
PRO		D		CORRECTIVE	ACTION TAKEN	
PRO			MMUNICATI		ACTION TAKEN	
PRO NAME			MMUNICATI			
	None	COM		ON SUBJECT / COMMEN		
NAME	None	COM		ON		
NAME	None	COM		ON SUBJECT / COMMEN		
NAME	None	COM		ON SUBJECT / COMMEN		
NAME	None	COM		ON SUBJECT / COMMEN		
NAME	None	COM		ON SUBJECT / COMMEN		
NAME	None	COM		ON SUBJECT / COMMEN		

DATE

CHECKED BY

DATE

SIGNED

GENERAL NOTES

PROJECT NAME:	PROJECT NAME: JDDW		E:	4/12/2024 TIME ARRIVE): 8:30
PROJECT NUMBER	R: 577511	AUT	HOR:	M. Holicky		TIME LEFT:	12:00
		\ar= a	THEN				
		WEA	THER				
TEMPERATURE: 50	O °F WIND:	15MPH		VI	ISIBILITY:	Clear	
	WC	ORK / SAMPLI	NG PE	RFORMED			
Arrive on-site and	check in at north gate s	security					
Collect leachate le	vel measurements in S	tage 1 and St	tage 2	standpipes			
Wait one hour to c	heck leachate levels to	see if stabiliz	zation (occurred			
Collected S1 and S	S2 underliner closed sa	mples and pa	aramet	ers			
PRO	DBLEMS ENCOUNTERE	D		CORR	ECTIVE A	ACTION TAKEN	
Leachate level me	asurements at Stage 1	were not stat	ole				
	after one hour			Waited ar	n extra ho	our for stabiliza	tion
		COMMUN	VICATI	ON			
NAME	REPRESENTING			SUBJECT /	COMMEN	ITS	
Erica Lawson	TRC (PM)	Notified of a	rrival a	and departure			
				· · · · · · · · · · · · · · · · · · ·			
Maddie Ho	licky 1/1	0/2025			LA	1/13/25	

DATE

CHECKED BY

◆ TRC

WATER QUALITY METER CALIBRATION LOG

LA,
12/26/24

PROJECT NAME: JDDW	MANUF:	InSitu	MODEL:	TRC	SAMPLER:	Wesley Braga
PROJECT NO.: 577511	OWNER:	AquaTROLL 600	SER #:	1069460	DATE:	4/11/24 - 4/12/24

	PH METER									
C/	ALIBRATIO	IN .	POS CALIB							
pH 4	pH 7	TIME	pH 4	pH 7	TIME	DATE				
WITHIN RANGE	WITHIN RANGE	9:44	N/A	7.00	14:02	4/11/24				
WITHIN RANGE	11 1	6:27	N/A	7.00	12:45	4/12/24				
WITHIN RANGE	11 1 1									
WITHIN RANGE	WITHIN RANGE									
WITHIN RANGE	WITHIN RANGE									

	CONDUCTIVITY METER										
CAL	BRATION		POST SAMPLING	CALIBRATION	CHECK						
STANDA	ARD	TIME	CHECK	TEMP	TIME	DATE					
8050 μS/c	m WITHIN		7747 μS/cm	20.85 °C	14:02	4/11/24					
8050 μS/c	m WITHIN	6.74	7921 μS/cm	20.21 °C	12:45	4/12/24					
μS/c	m WITHIN	1	μS/cm	°C							
μS/c	m WITHIN	1	μS/cm	°C							
μS/c	m WITHIN RANGE	1	μS/cm	°C							

	DO	O METER		
CALIBRATION	TIME	CALIBRATION	TIME	DATE
WITHIN RANGE	9:30	WITHIN RANGE	14:00	4/11/24
WITHIN RANGE	6:15	WITHIN RANGE	12:42	4/12/24
WITHIN RANGE		WITHIN RANGE		
WITHIN RANGE		WITHIN RANGE		
WITHIN		WITHIN RANGE		

ORP METER												
		POST SAM										
CALIBRATION	TIME	СНЕСК	(TEMP		TIME	DATE					
WITHIN RANGE	9:35	235.4	mV	20.85	°C	14:02	4/11/24					
WITHIN RANGE	6:18	238.6	mV	21.42	°C	12:45	4/12/24					
WITHIN			mV		°C							
WITHIN RANGE			mV		°C							
WITHIN			mV		°C							

		TURI	SIDITY C	ALIBR	ATION C	HECK						
MET	ER TYPE:			ŀ	lach 210)0P		i i				
		PRE-SAMPLING CALIBRATION CHECK										
GEL 1 LABEL (NTU)	GEL 1 READING (NTU)	GEL 2 LABEL (NTU)	GEL 2 READING (NTU)	GEL 3 LABEL (NTU)	GEL 3 READING (NTU)	WITHIN 5%?	TIME	DATE				
5.58	5.61	53.7	53.9	501	503	503 🗸	14:00	4/11/24				
5.58	5.61	53.7	53.9	501	503	503 ✓	12:55	4/12/24				
							-					

Autocal Solution Lot#:	NA	Exp Date:	N/A
pH 7 Soultion Lot#:	NA	Exp Date:	N/A
ORP Solution Lot#:	NA	Exp Date:	N/A
Parameters Calibrated:	✓ pH	, 	Conductivity
✓ Turbidity	✓ ORP	V	Dissolved Oxygen

Llead Incitu A							
Osea Ilisita A	utoCal solut	on for ORP,	pH and Cor	nd. One-p	oint pH ca	libration in	stead
of 2.							

12/26/24

DATE	PROBLEMS ENCOUNTERED	CORRECTIVE ACTIONS
	1	

SIGNED SIGNED

119 24 DATE

LA

1/13/25

Checked

DATE

WATER LEVEL DATA

PROJECT NAME:	JDDW Semi-Annual Sampling - Spring 2024	DATE:	4/11/24	
PROJECT NUMBER:	577511	AUTHOR:	WB/AJ/MH	

ROJECT NUMBER.	5//511	7511 AUTHOR: WB/AJ/MIN											
WELL LOCATION	TIME	REFERENCE ELEVATION (TOP OF PVC CASING)	DEPTH TO WATER (FT BTOC)	DEPTH TO BOTTOM (FT BTOC)*	TOTAL DEPTH BASED ON CONSTRUCTIO N (FT BTOC)	SCREENED INTERVAL (FT BTOC)	WATER ELEVATION (FT)						
MW-1	9:01	842.05	134.83	198.80	198.78	168.78 - 198.78	707.22						
MW-2	8:50	848.49	150.60	196.08	196.72	166.72 - 196.72	697.89						
MW-3	8:45	774.06	75.14	127.08	127.06	97.06 - 127.06	698.92						
	·				1								
-													
		:											
·													

 ${\it *Remember to include the tape correction factor for depth to bottom measurements, if applicable.}$

Maddie Holicky

1/10/2025 DATE CHECKED MY MM

4/19/24

DATE

♦ TRC LOW-FLOW WATER SAMPLE LOG

PROJECT NAME: JDDW Spring 2024							PREP	ARED				CHE	ECK	ŒD				
PROJEC1	T NUMBEF	R: 577511				BY:	WB/AJ	DATE: 4	/ 11/2 4	· E	BY:	Lt	(DATE	:1/13/25			
SAMPLE	ID:	MW	-1	WI	ELL (DIAMET	ER: 5	in								٦		
WELL MAT	ERIAL:	✓ PVC 🗌	SS	GS		IRON				OTHE	R:					٦		
SAMPLE T	YPE:	☑ GW 🔲	ww	□sw		DI	LEA	ACHATE		OTHE	R:					٦		
PUR	GING	TIME: 11	:51	DATE:	04/1	1/24	SAM	PLE:	TIME	E: 1	2:20)	DAT	E:	04/11/24	٦		
PL	JMP TYPE:	BLADDE	R PUI	MP (Non-Ded	icate	d)	PH:	7.43 S	su c	ONDUCT	ΓΙVΙΤ	Υ:	571.	.3	umhos/c	m		
STABILIZA	TION CRIT	ERIA: EPA R	5 (202	21)			DO:	1.58 m	ıg/l	ORP:	19	6.8		nV				
DEPTH TO	O WATER:	134.83 T/	PVC				TURBIDIT	TURBIDITY: 1.7 NTU										
DEPTH TO	ВОТТОМ	198.80 T/	PVC				✓ NONE	✓ NONE SLIGHT MODERATE					VERY	╛				
WELL VOL	.UME:		LITE		ALLO	NS	TEMPERA'	TURE:	12.87	°C (HTC	ER:			-	_		
VOLUME I	REMOVED:	5.8	LITE		ALLO	NS	COLOR:		lone		ODO			N	one	4		
COLO	DR:	None		DDOR:	Non	e	FILTRATE	•	∐ Y	ES l	<u> </u>					4		
✓ NONE	SLI	TURBIDI GHT MO		ATE [) VEI	DV.	QC SAMP		/MSD		FIL	T ODO	R:			\dashv		
		GROUND	_		HEF			TS: Man tur		tinge colle			n tub	not	working	\dashv		
PURGE SPECIFIC							COMMEN	TO. Man tu	loreac	ings cone		WATE		71100	vorking	\dashv		
	RATE (mL/min)	TEMPERATUR	RE C	CONDUCTIVITY		D.O. mg/L)	pH (SU)	ORP (mV)	Τl	JRBIDITY (NTU)		LEVE (ft bloc	L					
	(IIIDIIIII)						Criteria	(iiiv)	1	(110)		(IT DIOC	<u>"</u>					
TIME	100 mL/min- 500 mL/min	None 3%			whi	or 0.2 mg/L, ichever is er (optional)	±0.1	±10 mV (optional)	within 1	0%, or <10 I	NTU	<0.1 fi			MULATIVE SE VOLUM (L)			
11:51	200	12.58 571.3		571.3		2.36	7.52	171.5		NR	ĺ	134.8	3		0.00	٦		
11:56	200	12.61		572.1		2.02	7.51	177.5	ĺ	NR	Ì	NR	Ì		1.00	╛		
12:00	200	12.83		572.2		1.81	7.49	182.8	Ì	NR		NR	٦Ì		1.80	٦		
12:05	200	12.75		573.9		573.9		1.70	7.46	187.4		NR		135.3	7		2.80	٦
12:10	200	12.71		573.2		1.67	7.44	191.1	<u> </u>	1.9		135.4	ю		3.80	┪		
12:15	200	12.68	1	573.0		1.61	7.43	194.8	<u> </u>	1.8		135.4	11		4.80	┪		
12:20	200	12.87	1	571.3		1.58	7.43	196.8	İ	1.7	i	135.4	2		5.80	┪		
1					T				<u>′ </u>		Ť		Ť			┪		
			\dashv						1		+		寸			┪		
			\dashv						<u> </u>		<u> </u>		寸			\dashv		
			+								Ť		Ť			\dashv		
			+						<u> </u>		+		\dashv			\dashv		
			\dashv		+				<u> </u> 		<u> </u>		Ť			\dashv		
			\dashv		\vdash				<u>! </u>		+		ᆉ			\dashv		
			+		+				<u> </u>		_		<u> </u>			┥		
			+						<u> </u> 		1		1			\dashv		
	i		\dashv		\vdash				<u> </u>				\dashv			\dashv		
			+		\vdash				<u> </u>		<u> </u>		1			\dashv		
			-		+				<u> </u>		1		<u> </u>			\dashv		
			+		\vdash				<u> </u>				1			4		
			\dashv		-				<u> </u>		_		<u> </u>			ᆜ		
	1		\dashv		-				<u> </u>		4		_			ᆜ		
			_		-				<u> </u>		_		-			_		
			\dashv		-		ļ		<u> </u>		_ ļ					_		
																_]		
						ES FILLED									_}			
NUMBER	SIZE				FILTI	ERED	NUMBER	SIZE		YPE		ESERV	ATIV	E	FILTERED) -		
	7501	1741	1,5 HN	<u>v4</u>] _ -		1 1	16	<u> Cl</u>	rı	٨)rive		╬		7		
	250ml	Ciel	<u>riv</u>	<u>vr</u>	1 _		 		1					╬	╫	닊		
SHIPPING	METHOD:	FedEx	Jor	DATE SH	<u> </u>	<u>احم الم</u> ED: 4/4	1/24	<u> </u>	<u> </u>						<u>- </u>	4		
· · · · ·		-		SIGNATI				1/1/	In	ATE SIG	NEC):	ul	اًم)	<u>.</u> 4	-		
L				1		<u> </u>		14.1/	<u> </u>				<u>-44</u>	1.11		_		

Groundwater Sampling Field Sheet

Site Name: John Deer	e Dubuque Works	Permit No.: 31-S	DP-01-75	
Well/Piezometer: MW-1		Weather: Sunr	ny	
Date: 4/11/2024		Sampler: WB/A	J	
Monitoring Well Construction	on Information			
Borehole diameter (in):	8		elevation (ft. MSL): _	840.33
Casing Diameter (in):	5	Top of Casing ele	` -	842.05
Casing material: F	VC	Depth to top of so	creen (ft TOC):	168.78
Monitoring Well Field Obser				
Locked (Y/N):	<u>Yes</u>			
ī	Doforo nurgina	After purging	IDoforo complina	
Depth to water (ft. TOC):	Before purging 134.83	After purging 135.42	Before sampling 135.42	
Water Elevation (ft. MSL)	707.22	706.63	706.63	
Water Lievation (it. WSL)	101.22	1 700.03	700.03	
Screen submerged? (Y/N):	Yes			
ocieen submerged: (1714).	163			
<u> </u>	Constructed	Measured	Difference	
Well Depth (ft. TOC)	198.78	198.80	-0.02	
	•			
Well conditions commentary:	Good			
·				
Sampling Equipment				
Type of Sampling Equipment:	Pump			
Equipment Name & Descrip		Bladder Pump		
Pump Type:	Submersibl	e Pump		
Dedicated/Disposable/Porta	ble: Portable			
Decontamination for pump:	Alconox wa	sh, DI water rinse		
Tubing (Dedicated/Disposable	e): Dedicated			
Purge Method:	Low-flow			
Sample Info				
Equipment depth (ft. TOC)	184			
Flow Rate (mL/min):	200			
Volume purged (L):	5.8			
Volume sampled (L):	1.75			
Odor? (Y/N)	None			
Color? (Y/N)	None	•		
Comments:				

TRC LOW-FLOW WATER SAMPLE LOG

PROJECT NAME: JDDW Spring 2024							PREF	PARED				CHEC	KED	
PROJECT	NUMBER	R: 5775 1	11			BY:	AJ	DATE: 4	/11/24		BY:	LA	DAT	E: 1/13/25
SAMPLE	ID:		MW-2		WELL	DIAMET	ER: 5	in		_1				
WELL MAT	ERIAL:	✓ PVC	ss	G	s 🗍	IRON				ОТНЕ	ER:			
SAMPLE T	YPE:	☑ GW	□ wv	v 🗆 s	w 🔲	DI	LE.	ACHATE	Ĺ	ОТНЕ	ER:			
PURG	SING	TIME:	13:00	DATE	: 04/1	11/24	SAN	1PLE:	TIME	E: 1	3:30	D,	ATE:	04/11/24
PU	MP TYPE:	BLA	DDER PI	JMP (Non-	Dedicate	ed)	PH:	7.15	su c	ONDUC	TIVITY	′: 6 9	94.3	umhos/cm
STABILIZA	TION CRIT	ERIA: EF	PA R5 (20)21)			DO:	4.02 m	ng/l	ORP:	210).9	mV	
DEPTH TO	WATER:	150.60	T/ PV				TURBIDIT			ITU			_	
DEPTH TO			T/ PV		1		✓ NONE					RATE	L	_ VERY
WELL VOL		175.60	Y LITI		GALLO		TEMPERA		14.76		OTHE			 M
	REMOVED:				Non		COLOR:	(0.45 um)	lone		ODOF			None
COLO	JK:	None	RBIDITY	ODOR:	Non	ie	FILT COL		<u> </u>			ODOR:		
☑ NONE	SLI) MODE	RATE	U VE	RY	QC SAME		S/MSD		_	DUP- 01		
DISPOSAL	METHOD:	✓ GROU	OTHE	R	COMMEN	ITS:								
	PURGE RATE	TEMPER	ATUDE	SPECIF CONDUCT		D.O.	рH	ORP	_	URBIDITY		WATER LEVEL		
	(mL/min)			(μS/cm)		(mg/L)	(SU)	(mV)		(NTU)		(ft btoc)		
						bilization	Criteria	1	1				Cı	JMULATIVE
TIME	100 mL/min- 500 mL/min				wi	or 0.2 mg/L, hichever is aler (optional)	±0.1	±10 mV (optional)	within 1	10%, or <10	NTU	<0.1 ft		RGE VOLUME
13:00	200	24.61 16.66		0.1		8.07	10.08	237.4		0.0		150.60		0.0
13:05	200			711.2	:	4.28	7.24	199.9		1.7		150.60		1.0
13:10	200	15.	35	710.7		4.01	7.26	197.8		NR		150.60		2.0
13:15	200	14.	66	712.8		3.78	7.24	201.2		NR		150.60		3.0
13:20	200	14.	38	713.3		4.05	7.22	206.1		3.4		150.60		4.0
13:25	200	14.	14	4 707.2		4.02	7.18	207.9		3.6		150.60		5.0
13:30	200.000	14.	14.76 694.			4.02	7.15	210.9	Ĭ	3.9		150.60		6.0
								Î						
	* **													
											\neg			
	1	·				BOTTL	ES FILLED						1	
NUMBER	SIZE	TYPE		ERVATIVE	FILT	TERED	NUMBER	SIZE	1	YPE		SERVA1	IVE	FILTERED
2	250sal	CIPI	Hz	50-(D h	2	11	CI	91	^) ou		
	250ml	CIPI	HV			1 N		ļ	-					
v	250ml	CIPI	NE		<u> </u>	7 N	L	<u> </u>	1					
SHIPPING	METHOD:	FedEx			E SHIPP	·	11/24 M	Na -			- NICC		JI.	2/201
				SIGI	NATURE	· W	100		_ [DATE SIG	JNED:	:	<u> 111°</u>	<u> </u>

Groundwater Sampling Field Sheet

Site Name:	John Deere	Dubuque Works	s Permit No.: 31-SDP-01-75							
Well/Piezometer:	MW-2		Weather:	Sunn	у					
Date:	4/11/2024		Sampler:	WB/A	J					
Monitoring Well Borehole diameter Casing Diameter Casing material:	er (in): (in):	n Information 8 5 VC	Ground sur Top of Casi Depth to top	846.71 848.49 166.72						
Monitoring Well Locked (Y/N):	Field Obser	vations <u>Yes</u>								
		Before purging	After purgin	g	Before sampling					
Depth to water (ft	. TOC):	150.60	150.6	}	150.6					
Water Elevation (ft. MSL)	697.89	697.8	9	697.89					
Screen submerge	ed? (Y/N):	<u>Yes</u>	I		I					
		Constructed	Measured		Difference					
Well Depth (ft. TO	OC)	196.72	196.0	8	0.64					
Well conditions of Sampling Equipment Nam Pump Type: Dedicated/Disponderontamination Tubing (Dedicate Purge Method:	ment I Equipment: ne & Descript osable/Portal in for pump:	Submersible Portable Alconox was	Bladder Pur e Pump sh, DI water							
Sample Info Equipment depth Flow Rate (mL/mi Volume purged (I Volume sampled Odor? (Y/N) Color? (Y/N)	in): _):	182 200 6 3.5 None None								
Comments:										

♦ TRC

LOW-FLOW WATER SAMPLE LOG

PROJECT NAME: JDDW Spring 2024							L	PREF	PARED	_		_	CHE	CKED)																			
PROJECT	NUMBER	R: 57751	1				BY:	AJ/WB	DATE: 4	/11/2	4	BY:	LA	DAT	E: ///	3/25																		
SAMPLE	ID;	r	VIW-3		w	ELL I	DIAMET	ER: 5	in	-	- 1			,																				
WELL MAT	ERIAL:	✓ PVC	ss	[GS		IRON				□ отн	ER:																						
SAMPLE T	YPE:	☑ GW	□w	v [⊒ sw		DI	LE	ACHATE		□ отн	ER:																						
PUR	SING	TIME:	10:05		DATE:	04/1	1/24	SAM	IPLE:	TIM	ΛE:	10:3	8 [ATE:	04/	11/24																		
PU	IMP TYPE:	BLA	ODER P	UMP	(Non-Ded	icate	d)	PH:	7.23 S	SU	CONDUC	TIVI	TY: 1	191.6	um	nhos/cm																		
STABILIZA	TION CRIT	ERIA: EP	A R5 (20	021)				DO:	0.27 m	ıg/l	ORP:	2	48.7	mV																				
DEPTH TO	WATER:	75.14	T/ PV	C				TURBIDIT	Y: 3.29	•	NTU			_																				
DEPTH TO	ВОТТОМ	127.08	T/ PV)				NONE	SL	IGHT	. [MOE	DERATE	[VE	RY																		
WELL VOL	UME:	200.55	<u> Zuri</u>		G/	ALLC	NS	TEMPERA	TURE:	11.43	°C	ОТН	łER:																					
VOLUME F	REMOVED:	8.3	<u> </u> LITI	ERS	∐ G/	ALLC	NS	COLOR:	N	lone		ODC			None																			
COLO	DR:	None		ODC	R:	Non	e	FILTRATE	· · · · · ·	<u></u>	YES	<u> </u>																						
✓ NONE		_	BIDITY		_	۱	D) (FILT COLO				FIL	T ODOR:																					
	∐ SLI		MODE			VE		QC SAMP		/MSI	,	ш	DUP-																					
DISPUSAL	PURGE	GROU	ир 🗀	DRU		T	۲	COMMEN	15:				WATER																					
	RATE	TEMPERA		CON	PECIFIC DUCTIVITY		D.O.	pH ORP TURBIDIT					LEVEL																					
	(mL/min)	(°C)	<u> </u>	ļ	(μS/cm)		mg/L) bilization	(SU)	(mV)	<u> </u>	(NTU)		(ft btoc)	\dashv																				
	100 mL/min-	min. I1			10%	or 0.2 mg/L,		±10 mV			<u>-</u>				ATIVE																			
TIME	500 mL/min				3%		ichever is ler (optional)	±0.1	(optional)	within	10%, or <10	UTU	<0.1 ft	PUF	RGE V (L)	OLUME																		
10:05	250	11.4	12	٠.	1205.3		0.67	6.99	253.3		NR		75.14		0.0																			
10:10	250	11.3	36		1199.2		0.46	7.07	253.6		NR		NR		1.3	3																		
10:15	250	11.3	39		1194.3		0.38	7.08	254.0		NR		NR		2.5	5																		
10:20	250	11.3	33		1194.1		0.35	7.13	251.2		NR		NR		3.8																			
10:25	250	11.3	 39		1189.9	\vdash	0.32	7.19	250.7		NR		75.98		5.0)																		
10:28	250	11.4		├	1188.7	+	0.30	7.20	248.9		3.42		76.01		5.8																			
10:33	250	11.4																					1191.1		0.28	7.22	248.9		3.35		76.03		7.0	
10:38	250	11.4		-	1191.6	+	0.27	7.23	248.7		3.29		76.05	+-	8.3																			
10.36	250	11.4			0.1811	╁	0.21	7.23	240.7		3.29		70.05	+	0.0	•																		
						\vdash								-																				
						┡								-																				
						_				<u> </u>				1																				
										<u> </u>																								
						_				<u> </u>																								
						_																												

										ĺ																								
						<u> </u>																												
						T																												
						T				\vdash																								
						-			<u> </u>	\vdash				+																				
BOT						BOTTI	L ES FILLED	<u> </u>				l																						
NUMBER	SIZE	TYPE	PRES	ERV	ATIVE		ERED	NUMBER	SIZE	1	TYPE	PR	ESERVA	TIVE	FILT	ERED																		
i		50n4ap1 H2504			1	N	1	16		191		Vou			NU																			
j	750ml		HN	09	,]	国 と	1			· · ·	-																						
	rsont		No) nı			DW																											
	METHOD:	···			DATE SH	IIPPI	t	R:	-					:1	,																			
					SIGNATI	JRE:	14	mdl	w		DATE SI	GNE	D:	पा	9/2	.4																		

Groundwater Sampling Field Sheet

Site Name:	John Deere Dubuque Works		Permit No.:				
Well/Piezometer: MW-3			Weather: Sunny				
Date:	4/11/2024		Sampler:	WB/A	J		
				•			
Monitoring Well	Construction	n Information					
Borehole diameter (in): 8			Ground sur	772.26			
Casing Diameter (in): 5			Top of Casi	774.06			
Casing material:	/C	Depth to top of screen (ft TOC):			97.06		
23.29			,				
Monitoring Well	Field Observ	/ations					
Locked (Y/N):		Yes					
2001104 (1111)							
		Before purging	After purgir	ng	Before sampling		
Depth to water (ft	t, TOC):	75.14	76.05	5	76.05		
Water Elevation (ft. MSL)		698.92	698.01		698.01		
vidto.	(<u> </u>					
Screen submerge	ed? (Y/N):	Yes					
00,001,000,000		_ 					
			Measured		Difference		
Well Depth (ft. To	OC)	Constructed 127.06	127.0	8	-0.02		
Wen Bopar (ic. 1		<u> </u>					
Well conditions of	commentary:	Good			•		
vven conditions c	ommorna, y.				· · · · · · · · · · · · · · · · · · ·		
Sampling Equip	ment						
Type of Sampling	Pump						
Equipment Nar		Bladder Pu	amı				
Pump Type:		Submersible Pump					
Dedicated/Disp							
Decontamination		sh, DI water	rinse				
Tubing (Dedicate							
Purge Method:			Low-flow				
r argo mourou.							
Sample Info							
Equipment depth	o (ft. TOC)	112					
Flow Rate (mL/m		250			· · · · · · · · · · · · · · · · · · ·		
Volume purged (8.25	_			•	
Volume sampled		1.75			<u>-</u>	•	
•	* (<u>-</u>).	None					
Odor? (Y/N) None Color? (Y/N) None						•	
Oddi. (m)							
Comments:							

WATER SAMPLE LOG

BY: WB			CHECKED								
BY: WB	DATE: 4/	11/24	BY:	LA DAT	E:1/13/25						
DIAMETER: NA											
ON	✓ OTHER: N/A										
LE/	LEACHATE OTHER:										
24 SAM	IPLE:	TIME:	13:55	DATE:	04/11/24						
PH:	NM S	U CONDUC	CTIVITY:	NM	umhos/cm						
DO: N	I M mg/l	ORP	NM	mV							
TURBIDIT	Y: NM	NTU									
✓ NONE	SLI	GHT 🗌	MODERATE	= [VERY						
TEMPERA	TURE:	NM °C	OTHER								
COLOR:	COLOR: None ODOR: None										
FILTRATE	FILTRATE (0.45 um) YES NO										
FILT COL	FILT COLOR: FILT ODOR:										
QC SAMP	QC SAMPLE: MS/MSD DUP-										
COMMEN	Collected by pouring distilled water										
decontamination											
BOTTLES FILLED											
ED NUMBER	SIZE	TYPE	PRESERV	ATIVE	FILTERED						
] N 1	1 L	CLR PLST	None	• [□Y V						
] N				. [_ Y						
] N					Y						
: 4/11/24											
///wi	W	DATE SI	GNED:	4/19	124						
	METER: NA METER: NA DON LE, 4 SAM PH: DO: N TURBIDIT V NONE TEMPERA COLOR: FILTRATE FILT COL QC SAMF COMMEN TLES FILLED D NUMBER N 1 N N 4/11/24	METER: NA DIN LEACHATE 4 SAMPLE: PH: NM SI DO: NM mg/I TURBIDITY: NM V NONE SLI TEMPERATURE: COLOR: None FILT COLOR: QC SAMPLE: MS. COMMENTS: over bl. decont TLES FILLED D NUMBER SIZE N 1 1 L N N	METER: NA METER: NA	METER: NA OTHER: N/A	METER: NA OTHER: N/A LEACHATE						

Leachate and Underliner Sampling Summary

Site Name

John Deere Dubuque Works 31-SDP-01-75

Permit No: 31-SDP-01-7

Weather: Sampler: Cloudy 50F MH Project #:

Prepared by:

577511

WB

MH Date:

Date:

4/12/2024 4/19/2024

Sample Summary	Sample Date	Sample Time	pH (SU)	Conductivity (umhos/cm)	DO (mg/L)	ORP (mV)	Temperature (°C)	Turbidity (NTU)	Color	Odor
Sample ID	4/11/2024	11:09	7.84	2793.2	8.32	-36.7	16.03	16	Clear	None
S1 Leachate Open	4/11/2024		7.35	1592	5.05	-48.6	15.52	14	Clear	None
S2 Leachate Open	4/11/2024	10:46	7.63	1154.7	8.51	225.9	13.32	7	Clear	None
S1 Underliner Open	No Flow	10.40								
S2 Underliner Open	4/12/2024		8.37	1153.8	10.01	227.9	13.76	16	Clear	None
S1 Underliner Closed		-	7.74	2892.2	8.9	145.6	15.75	13.4	Clear	None
S2 Underliner Closed	4/12/2024	 	7.51	2231.3	5.56	114.7	15.12	28	Clear	None

Notes on Sample IDs

S1 = Stage 1

Open = sample collected while leachate valves open

S2 = Stage 2

Closed = sample collected while leachate valves closed

Sampling Methods:	Stage 1 and Stage 2 leachate and underliner samples collected from drains in leachate building.
	Combined Leachate sample collected from combined leachate sample tap in leachate building.
Equipment:	Stage 1 and Stage 2 leachate and underliner samples collected into new, disposable 1-gallon collapsible jugs prior to being poured into laboratory-provided sample containers.
	Combined Leachate sample collected directly from tap, no equipment used.
Decontamination	Not applicable, only disposable equipment used.

Bottles Filled for	Each Sample	_			T	Jew10
Method(s)	Number _	_ ;	Size (mL)	Туре	Preservative	Filtered?
EPA 9056A		1	250	CLR PLST	None	No
EPA 350.1		1	250	CLR PLST	H2SO4	No
EPA 6010C		1	250	CLR PLST	HNO3	No
EPA 2540C		1	1000	CLR PLST	None	No
		T				
Total sample volu	me (mL):		1750			

Additional Comments			

JDDW Landfill - Leachate Flow and Standpipe Measurements

Recorded by: M. Holicky

Flow Totalizer Measurement		
Total gallons pumped to X-18 discharge	Date	Time
8597200	4/11/2024	10:16

Leachate Drain Valve			Start	Volume Filled		to Fill	(sec)	Time	Avg. Flow
Status	Drain	Date	Time	(L)	Test 1	Test 2	Test 3	(sec)	(gpm)
	Stage 1 Leachate	4/11/2024	10:20	1.35	33	35	34	34.00	0.63
	Stage 2 Leachate	4/11/2024	10:18	1.35	24	24	24	24.00	0.89
Open	Stage 1 Underliner	4/11/2024	10:23	1.35	247	253	253	251.00	0.09
(Day 1)	Stage 2 Underliner	4/11/2024							0
Closed	Stage 1 Underliner	4/12/2024	11:30	1.35	208	223	216	215.67	0.10
(Day 2)	Stage 2 Underliner	4/12/2024	11:40	1.35	25	38	28	30.33	0.71

Standpipe and Liner Elevations		
	Stage 1	Stage 2
Top of Standpipe Elevation (ft):	869.32	850.76
Synthetic Liner Elevation (ft):	787.1	780.8

Leachate Drain Valve Status	Standpipe	Date	Time	Depth to Leachate (ft btoc)	Change in Depth to Leachate (ft)	Depth to Bottom (ft btoc)
Open	Stage 1	4/11/2024	9:08	79.52		83.87
	1	4/12/2024	10:07	66.69		
Closed		4/12/2024	11:07	66.69	0	
Open	Stage 2	4/11/2024	9:10	-54.45		73.13
•	1 ~	4/12/2024	9:11	54.54		
Closed		4/12/2024	10:11	54.45	-0.09	
		-				

Notes:

- 1. If change in depth to leachate is <0.1 ft after 1 hour, level is considered stable. If not <0.1 ft, remeasure at 1 hr intervals until change is <0.1 ft.
- 2. If obstruction is encountered, note that an obstruction was encountered and the depth to the obstruction.
- 3. The measurements crossed out in red are measurements are due to condensation of leachate on standpipe walls. Waited for 1 extra hour for stabilization and collected another round of readings.

Facility Inspection Report John Deere Dubuque Works Landfill – Dubuque, Iowa Permit No. 31-SDP-01-75C

Pate 4 11/2024		Name of Inspector M . Hollicky	
1 '		J	
Description of Wea	ther:		
ime	Temperature	Precipitation	
13,00	56-60	NOTE	
Neather Conditions	Ground Conditions	General Past 7-Day Weather Conditions	
fair -sunny	dry	rainy/sunny/show	
Final Cover:	 	J ·	
General Health of Veg	etation:		<u>,,</u>
Healthy 🔽	Stressed	Barren 🗌	
Comments:			
Density of Vegetation			
Deligita of Aederwich	l <u>i</u>		
	Fair 🗌	Poor	
Good 🗓		Poor	
		Poor	
Good 🗓		Poor	
Good []/ Comments:	Fair □		
Good (1) Comments: Evidence of Burrowi	Fair □ ng Animals:		
Good []/ Comments:	Fair □		
Good Comments: Evidence of Burrowi	Fair □ ng Animals: Yes ☑		
Good	Fair □ ng Animals: Yes ☑	comments: Servical freth mice burrows a firmagnout landfill wer	
Good	Fair □ ng Animals: Yes ☑ ap: Yes □	Comments: Servical freth mice burrows a furbughout landfill over Comments:	
Comments: Evidence of Burrowi No Erosion of Landfill C No Settlement of Landfill	Fair □ ng Animals: Yes □ ap: Yes □	comments: Servical freth mice burrows a firmagnout landfill wer	
Good	Fair □ ng Animals: Yes ☑ ap: Yes □	Comments: Servical freth mice burrows a furbughout landfill over Comments:	
Comments: Evidence of Burrowi No Erosion of Landfill C No Settlement of Landfill No V	Fair □ Ing Animals: Yes □ Yes □ III Cap: Yes □	Comments: Servical freth mice burrows a freth mice	
Comments: Evidence of Burrowi No Erosion of Landfill C No Settlement of Landfil No Drainage Ditch Eros	Fair ng Animals: Yes Yes iap: Yes Yes Ill Cap: Yes Yes Sion:	Comments: Servical freth mice burrows a furbughout landfill over Comments:	
Comments: Evidence of Burrowi No Erosion of Landfill C No Settlement of Landfill No V	Fair □ Ing Animals: Yes □ Yes □ III Cap: Yes □	Comments: Servical freth mice burrows a freth mice	
Comments: Evidence of Burrowi No Erosion of Landfill C No Settlement of Landfil No Drainage Ditch Eros	Fair □ ng Animals: Yes □ ap: Yes □ II Cap: Yes □ sion: Yes □	Comments: Servical freth mice burrows a freth mice	

John Deere Dubuque Works Landfill – Dubuque, Iowa Facility Inspection Report Page 2

Site Feature		
Fence Secure		Comments:
No 🗌	Yes 🔽	
Gates and Loc	ks Secure:	Comments:
No 🗌	Yes 🔽	
Signs Present		Comments:
No 🗌	Yes 🖾	
Access Road	Accessible:	Comments:
No 🗌	Yes 🗹	
Storm Water D	iversion Structures Operating:	Comments:
No 🗌	Yes 🗹	
Leachate Co	llection System:	
Standpipe #	Condition	Comments
Stage 1 (north)	Adequate Requires Mainte	
Stage 2 (south)	Adequate Requires Mainte	enance V · New love
Groundwate	r Monitoring Wells:	
Well #	Condition	Comments
MW-1 (north)	Adequate Requires Mainte	nance 🗌
MW-2 (east)	Adequate Pequires Mainte	nance 🗌
MW-3 (south)	Adequate 🗹 Requires Mainte	nance
Survey Contr	ol Monuments:	
Monument #	Condition	Comments
1001 (SE)	Adequate Requires Mainte	nance
1002 (SW)	Adequate Maintel	nance 🗌

Sampling Forms and Facility Inspection Report Fall 2024

PROJECT NAME:	John Deere Dubuque Works
PROJECT NUMBER:	630113
PROJECT MANAGER:	Erica Lawson
SITE LOCATION:	Dubuque, IA
DATES OF FIELDWORK:	10/28/24 - 10/29/2024
PURPOSE OF FIELDWORK:	Semiannual groundwater monitoring, leachate monitoring, and landfill cap inspection
WORK PERFORMED BY:	Maddie Holicky, Wes Braga

Men W/	10/29/2024	LA	1/13/25	
SIGNED	DATE	CHECKED BY		DATE

TIME ARRIVED: 8:15

John Deere Dubuque Works

PROJECT NAME:

GENERAL NOTES

DATE:

10/28/2024

PROJECT NUMBER:	630113		AUTHOR:	M. Holicky		TIME LEFT:	16:00
			WEATH	IER			
TEMPERATURE: 60	_°F WIND:	10	MPH		VISIBILITY:	Clear	<u>-</u>
		WORK	/ SAMPLING	PERFORM	ED		
0910 to 0930: Gauge	e groundwater monito	ring wells ar	nd stage 1 a	and stage 2	leachate st	andpipes.	
1100: Start sampling	MW-3, calibrated wa	ater quality m	neter and tu	rbidity mete	r prior to sa	ampling.	
1120 to 1140: Leach	ate/underliner flow m	easurement	s and samp	ling (S1/S2	Leachate C	Open, S1 Unde	rliner, Combined Leacha
1210: Closed wet va	lves for leachate.						
1230-1500: Sampling	g MW-1 and MW-2. [Oup-01 collec	cted at MW	-2.			
1435: EB-01 collecte	ed.						
1700: Drop off cooler	r at FedEx.						
DDC.	BLEMS ENCOUNTER	ED			CORREC	CTIVE ACTION	TAVEN
PRO	BLEWS ENCOUNTER	ED			CORREC	STIVE ACTION	IANEN
			COMMUNIC	CATION			
NAME	REPRESENTING			SU	BJECT / CON	MENTS	
Erica Lawson	TRC (PM)	Notified of a	arrival and o	departure. C	hecked cha	ain of custody l	pefore Fedex
Mela	11/1/						
1. car Call	00//	10/29/2024			L	4 1/13/25	-
SIGNED		DATE	-	CHECKED B	Y	_	DATE

SIGNED

GENERAL NOTES

PROJECT NAME:	John Deere Dubuque	e Works	DATE:	10/29/2024	TIME ARRIVE	D: 9:00	
PROJECT NUMBE	R: 630113	A	AUTHOR:	M. Holicky	TIME LEFT:	14:00	
		•					
			WEA	THER			
TEMPERATURE: 6	°F WIND:	10 M	IPH	VISIBILITY:		Clear	
		WORK /	SAMPLI	NG PERFORMED			
0930: Gauge S1 a	and S2 leachate standp	ipes after leachate	drain val	ves closed since 12:10	the day prior (10/28)	
0940: Landfill cap	inspection						
1030: Re-gauge S	S1 and S2 standpipes to	o check stabilization	า				
1100: Sample S1	and S2 underliner (clos	sed)					
1115: Update E. L	awson on standpipe re	eadings, including po	otential is	ssue with S1 leachate (closed) depth t	to leachate.	
1200: Redo gaugi	ng of S1 standpipe.						
1215: Open Stage	e 2 and stage 1 leachat	e valves, wait for flo	ow to retu	urn to the same rate as	it was on day ′	1 (10/28/24).	
1245: Flow returns	s to the same as it was	on Day 1.					
1250: Remeasure	Stage 2 (open) depth	to leachate using lo	west ser	sitivity and makeshift p	rotector for ser	nsor.	
	PROBLEMS ENCOUNT	TERED		COR	RECTIVE ACTION	ON TAKEN	
Water level meter	thought to be detecting	g moisture on side o	of Cr	eated makeshift protector	for sensor and a	adjusted to lowest sensitivity befor	
standpipe walls dı	uring Stage 1 (closed) r	measurement.	rei	measuring Stage 1 (clos	sed) depth to le	eachate.	
Initial measureme	nt of Stage 2 (open) de	epth to leachate thou	ught Re	e-did measurement for S	Stage 2 (open)	on Day 2 after reopening valv	
to be inaccurate.			an	d waiting for flow to retu	urn to the same	e as on Day 1.	
			COMMUN	NICATION			
NAME	REPRESENTING			SUBJECT / CC	MMENTS		
Erica Lawson	TRC (PM)	See notes above	regardin	g problems for depth to	leachate mea	surements.	
_	1/1/						

1/13/25

DATE

10/29/2024

DATE

CHECKED BY

Groundwater Sampling Field Sheet

Site Name:	John Deere	Dubuque Works	Permit No.:	31-SE	P-01-75	
Well/Piezometer:	MW-1	Weather:	60 °F	, sunny		
Date:	10/28/2024		Sampler: M. Holicky			
Monitoring Well Borehole diamete Casing Diameter Casing material:	r (in):8 (in):8	n Information 8 5 VC	Top of Casi	ng elev	evation (ft. MSL): vation (ft. MSL): reen (ft TOC):	840.33 842.05 168.78
Monitoring Well Locked (Y/N):	Field Observ	vations Yes				
		Before purging	After purgin	g	Before sampling	
Depth to water (ft.	TOC):	134.46	135.0	2	135.02	
Water Elevation (ft. MSL)	707.59	707.0	3	707.03	
Screen submerge	ed? (Y/N):	Yes				
		Constructed	Measured		Difference	
Well Depth (ft. TC	OC)	198.78	198.7	2	0.06	
Well conditions co Sampling Equipr Type of Sampling Equipment Nam Pump Type: Dedicated/Dispo Decontaminatio Tubing (Dedicated Purge Method:	ment Equipment: ne & Descript osable/Portat n for pump:	Submersible Portable Alconox was	Bladder Pur e Pump sh, DI water			
Sample Info Equipment depth Flow Rate (mL/mi	` ,	184 150				
Volume purged (L	,	4.5				
Volume sampled	•	2.25				
Odor? (Y/N)	(-).	No				
Color? (Y/N)		No				
Comments:						

Groundwater Sampling Field Sheet

Site Name: John Deere Dubuque Works Permit No.: 31-SDP-01-75 Well/Piezometer: MW-2 60 °F, sunny Weather: 10/28/2024 Date: Sampler: M. Holicky **Monitoring Well Construction Information** Borehole diameter (in): Ground surface elevation (ft. MSL): 846.71 Casing Diameter (in): 5 Top of Casing elevation (ft. MSL): 848.49 Casing material: **PVC** Depth to top of screen (ft TOC): 166.72 **Monitoring Well Field Observations** Locked (Y/N): Yes

	Before purging	After purging	Before sampling
Depth to water (ft. TOC):	149.96	150.70	150.70
Water Elevation (ft. MSL)	698.53	697.79	697.79

Screen submerged? (Y/N): Yes

	Constructed	Measured	Difference
Well Depth (ft. TOC)	196.72	196.72	0.00

Well conditions commentary: Good

Sampling Equipment

Type of Sampling Equipment: Pump

Equipment Name & Description: Sample Pro Bladder Pump

No

Pump Type: Submersible Pump

Dedicated/Disposable/Portable: Portable

Decontamination for pump:

Tubing (Dedicated/Disposable):

Alconox wash, DI water rinse

Disposable

Purge Method: Low-flow

Sample Info

Color? (Y/N)

Equipment depth (ft. TOC) 182

Flow Rate (mL/min): 150

Volume purged (L): 4.5

Volume sampled (L): 4.5

Odor? (Y/N) No

Comments: Dup-01 collected here

Groundwater Sampling Field Sheet

Site Name:	John Deere	Dubuque Works	Permit No.:	31-SE	P-01-75	
Well/Piezometer:	MW-3		Weather:	60 °F,	, sunny	
Date:	10/28/2024		Sampler:	М. Но	licky	
Monitoring Well		n Information				
Borehole diamete	` ′	8			evation (ft. MSL):	772.26
Casing Diameter		5			vation (ft. MSL):	774.06
Casing material:	P\	VC	Depth to top	of scr	reen (ft TOC):	97.06
Monitoring Well Locked (Y/N):	Field Observ	Yes				
		Before purging	After purging		Before sampling	
Depth to water (ft		74.16	75.25		75.25	
Water Elevation (ft. MSL)	699.90	698.8	1	698.81	
Screen submerge	ed? (Y/N):	Yes				
		Constructed	Measured		Difference	
Well Depth (ft. TO	DC)	127.06	127.06	3	0.00	
Well conditions co	·	Good				
Sampling Equipor Type of Sampling Equipment Nam Pump Type: Dedicated/Dispination Decontamination Tubing (Dedicated Purge Method: Sample Info Equipment depth	Equipment: ne & Descriptionsable/Portable on for pump: d/Disposable/	Submersible Portable Alconox was Disposable Low-flow	Bladder Pur e Pump sh, DI water i			
Flow Rate (mL/mi		250				
Volume purged (L	•	13.1				
Volume sampled	(L):	2.25				
Odor? (Y/N)		No				
Color? (Y/N)		No				
Comments:						

JDDW Landfill - Leachate Flow and Standpipe Measurements

Recorded by: M. Holicky

Flow Totalizer Measurement		
Total gallons pumped to X-18 discharge	Date	Time
9744370	10/28/2024	1046

Flow Measu	Flow Measurements - Leachate and Underliner Drains										
Leachate Drain Valve Status	Drain	Date	Start Time	Volume Filled (L)	Time Test 1	to Fill Test 2	(sec) Test 3		Avg. Flow (gpm)		
	Stage 1 Leachate	10/28/2024	1045	1.35	120	125	121	122	0.18		
	Stage 2 Leachate	-	No flow	-	-	-	-	-	0.00		
Open	Stage 1 Underliner	10/28/2024	1055	1.35	15	16	17	16	1.34		
(Day 1)	Stage 2 Underliner	10/28/2024	1057	1.35	17	17	17	17	1.26		
Closed	Stage 1 Underliner	10/29/2024	1108	1.35	22	19	19	20	1.07		
(Day 2)	Stage 2 Underliner	10/29/2024	1110	1.35	27	27	27	27	0.79		

Standpipe and Liner Elevations									
Stage 1 Stage 2									
Top of Standpipe Elevation (ft):	869.32	850.76							
Synthetic Liner Elevation (ft):	787.1	780.8							

Standpipe [Depth to Leachate	Measurements	3			
Standpipe	Leachate Drain Valve Status	Date	Time	Depth to Leachate (ft btoc)	Change in Depth to Leachate (ft)	Depth to Bottom (ft btoc)
Stage 1	Open	10/28/2024	9:25	Obstruction at 80).91 ft btoc.	NM (obstruction)
		10/29/2024	9:31	66.51*		
	Closed	10/29/2024	10:41	66.51*	ł	
		10/29/2024	12:00	79.45		
Stage 2	Open	10/28/2024	9:30	70.25*		72.7
	Closed	10/29/2024	9:36	53.33		
	Ciosed	10/29/2024	10:36	53.33	0	
	Open	10/29/2024	12:50	72.70		

Notes:

- 1. If change in depth to leachate is <0.1 ft after 1 hour, level is considered stable. If not <0.1 ft, remeasure at 1 hr intervals until change is <0.1 ft.
- 2. If obstruction is encountered, note that an obstruction was encountered and the depth to the obstruction.

Notes from fieldwork:

- * = Measurement believed to be inaccurate; was remeasured later. See notes below.
- 1. The original depth to leachate in the Stage 1 standpipe (with valves closed) was thought to be inaccurate, possibly due to the water lever meter detecting moisture on the side of the standpipe. This depth was remeasured on 10/29/2024 while the leachate control system valves were still closed. The water level meter was outfitted with a makeshift protector and the sensitivity level was adjusted before remeasuring.
- 2. The original depth to leachate in the Stage 2 standpipe (with valves open) was thought to be inaccurate. This depth was remeasured on 10/29/2024 after the leachate control system valves were reopened and flow returned to normal conditions, and after adding makeshift protector to water level meter and adjusting sensitivity level.

Leachate and Underliner Sampling Summary

Site Name	John Deere Dubuque Works	Project #:	630113		
Permit No:	31-SDP-01-75	Prepared by:	МН	Date:	10/28/24, 10/29/24
Weather:	60 °F, sunny	Checked by:	LA	Date:	1/13/2025
Sampler:	M. Holicky, W. Braga				

Sample Summary										
-		Sample		Conductivity	DO	ORP	Temperature	Turbidity		
Sample ID	Sample Date	Time	pH (SU)	(umhos/cm)	(mg/L)	(mV)	(°C)	(NTU)	Color	Odor
S1 Leachate Open	10/28/2024	11:30	7.12	1658.9	4.09	24.6	14.98	5.25	None	Leachate
S2 Leachate Open	10/28/2024	11:35	7.27	3070.1	6.32	133.6	15.55	4.8	None	Leachate
S1 Underliner Open	10/28/2024	11:20	7.33	1211.7	7.61	147.3	14.88	8.1	None	None
S2 Underliner Open	10/28/2024	-	-	-	-	-	-	-	-	-
S1 Underliner Closed	10/29/2024	11:05	7.02	1488	8.34	182.0	19.66	19.1	None	None
S2 Underliner Closed	10/29/2024	11:10	7.26	3077	7.25	61.7	18.38	5.05	None	None
Combined Leachate	10/28/2024	11:45	7.30	2274.9	5.98	73.1	14.95	44.5	Orange	Leachate

Notes on Sample IDs

S1 = Stage 1 Open = sample collected while leachate valves open
S2 = Stage 2 Closed = sample collected while leachate valves closed

Sampling Methods:	Stage 1 and Stage 2 leachate and underliner samples collected from drains in leachate building.
	Combined Leachate sample collected from combined leachate sample tap in leachate building.
	Stage 1 and Stage 2 leachate and underliner samples collected into new, disposable 1-gallon collapsible jugs prior to being poured into laboratory-provided sample containers. Combined Leachate sample collected directly from tap, no equipment used.
Decontamination	Not applicable, only disposable equipment used.

Bottles Filled for Each Sampl	е				
Method(s)	Number	Size (mL)	Type	Preservative	Filtered?
EPA 305.1	1	250	Clear plastic	Sulfuric Acid (H2SO4)	No
EPA 9056A	1	250	Clear plastic	None	No
EPA 6010D	1	250	Clear plastic	Nitric Acid (HNO3)	No
EPA 2540C	1	1000	Clear plastic	Sulfric Acid (H2SO4)	No
EPA 9066	1	500	Amber glass	None	No
Total sample volume (mL):		2250			

Additional Comments	

♦ TRC

TRC MADISON GROUNDWATER SAMPLING NOTES

JDDW- Dubuque

ADDRESS: Dubuque, IA 52001

Final Signature:

Molie My

Date Signed:

2025-01-10

QC Signature:

Date Signed:

1/13/2025

QC Reviewer:

L. Auner

DAILY NOTES

Project Information			
Project Name	JDDW- Dubuque	Project Manager	Erica Lawson
Project Number	630113	Location	Dubuque, IA

Sample Event Information				
Start of Field Work	2024-10-28	End of Field Work	2024-10-29	
Purpose of Field Work	Sample Collection,Water Level Gauging	Sample Collection Methods	Low-Flow Stabilization	

Daily Notes: 2024-10-28, Arrival: 08:30 Departure: 16:28					
Field Staff	Maddie Holicky,Wes Braga				
Work/Sampling Performed	Standpipe gauging, groundwater gaugin	g, groundwater sampling			
Weather	Overcast, Temperature: 55°F, Wind: 13 r	mph			
Equipment Used	juipment Used Turbidity Meter,WQM w/ Flow Cell				
Turbidimeter Calibration	Turbidimeter Calibration				
Turb Meter Type: Hach 2100 P (FRC)	SN: 0511CO14860	Rental: No		
Check Within Range: Yes		Meter Recalibrated: N/A			
End of Day Turbidity Calibration	n Check				
Turbidity Gel Std 1:		Turbidity Gel 1 Check:			
Turbidity Gel Std 2:		Turbidity Gel 2 Check:			
Turbidity Gel Std 3:		Turbidity Gel 3 Check:			

WATER LEVEL MEASUREMENTS

Well ID	Ref. Elv. (MSL)	Date	Time	DTW (ft)	GW Elv. (MSL)	DTB (ft)	Screened Interval (ft bgs)	Product (ft)	Comments
MW-1		2024-10-28	09:20	134.91		198.78			
MW-2		2024-10-28	10:57	151.31		196.72			
MW-3		2024-10-28	09:13	74.16		127.06			

WATER SAMPLE LOG

Location ID: MW-1			Field Staff Initials: MH			
Location Type: Monitoring We	II	Sam	Sample Type: Groundwater			
Sample Collection Method: Low-Flow Stabilization			Diameter: 5 in	Well Material:	PVC	
Location Notes:						
Purging	2024-10-28 14:27	Sam	ple ID: MW-1	2024-10-28 1	4:57	
Pump Type: Non-Ded Bladde	Material: Stainless Steel	Para	meter Coll Meth: Low-flow	Stabilization		
Model: QED SamplePRO	·	pH:	7.43 SU	Cond: 629.5 µ	ıS/cm	
DTW (BTOC): 134.46 ft	DTB (BTOC): 198.78 ft	DO:	DO: 1.17 mg/L ORP: 69.8 mV		/	
Well Vol: 248.3 L Vol. Removed: 4.5 L		Tem	Temperature: 12.05 °C			
Purge Color: None	Purge Odor: None	Turb	: 3.12 NTU	Obs Turb: None		
Initial Turbidity: None	·	Sam	Sample Color: None Sample Odor: None			
Stabilization Criteria: EPA		Filte	Filtered? (0.45um): No			
LF Attempted?: Yes	Went Dry?: No	Filtra	ate Color:	Filtrate Odor:		
Disposal Method: Ground			QC Samples: QC ID:			
Comments:			Comments:			
Bottles Filled						
Number Size	Туре		Preservative		Filtered	

Bottles Filled				
Number	Size	Туре	Preservative	Filtered
1	250 mL	CLEAR PLASTIC	Sulfuric Acid (H2SO4)	no
1	250 mL	CLEAR PLASTIC	None	no
1	250 mL	CLEAR PLASTIC	Nitric Acid (HNO3)	no
1	500 mL	AMBER GLASS	Sulfuric Acid (H2SO4)	no
1	1 L	CLEAR PLASTIC	None	no

Shipping Method:	FEDEX	Shipping Date:	2024-10-28
------------------	-------	----------------	------------

WATER SAMPLE LOG

Location ID: MW-2			Field	Field Staff Initials: MH			
Location Type: Monitoring	g Well		Sam	Sample Type: Groundwater			
Sample Collection Method: Low-Flow Stabilization			Well	Diameter: 5 in	Well Material:	PVC	
Location Notes:							
Purging	20	024-10-28 12:53	Sam	ple ID: MW-2	2024-10-28 1	3:23	
Pump Type: Non-Ded Bla	adder M	aterial: Stainless Steel	Para	meter Coll Meth: Low-flo	w Stabilization		
Model: QED Sample Pro	•		pH: 7	7.14 SU	Cond: 783.4 μ	ıS/cm	
DTW (BTOC): 149.96 ft	DTW (BTOC): 149.96 ft DTB (BTO		DO:	3.09 mg/L	ORP: 76.0 mV		
Well Vol: 180.5 L Vol. Removed: 4.5 L			Temperature: 12.54 °C				
Purge Color: None	Pi	urge Odor: None	Turb	: 1.64 NTU	Obs Turb: None		
Initial Turbidity: None	•		Sam	Sample Color: None Sample Odor: None		None	
Stabilization Criteria: EPA	4		Filte	Filtered? (0.45um): No			
LF Attempted?: Yes	W	/ent Dry?: No	Filtra	te Color:	Filtrate Odor:	Filtrate Odor:	
Disposal Method: Ground			QC Samples: Duplicate QC ID: DUP-01)1	
Comments:			Com	ments:			
Bottles Filled			·				
Number	Size	Туре	Preservative		ve	Filtered	
2	250 mL	CLEAR PLASTIC		Sulfuric Acid (H2SO4)		no	

Bottles Filled				
Number	Size	Туре	Preservative	Filtered
2	250 mL	CLEAR PLASTIC	Sulfuric Acid (H2SO4)	no
2	250 mL	CLEAR PLASTIC	None	no
2	500 mL	AMBER GLASS	Sulfuric Acid (H2SO4)	no
2	250 mL	CLEAR PLASTIC	Nitric Acid (HNO3)	no
2	1 L	CLEAR PLASTIC	None	no

Shipping Method:	FEDEX	Shipping Date:	2024-10-28
------------------	-------	----------------	------------

WATER SAMPLE LOG

Location ID: MW-3		Field	Field Staff Initials: MH				
Location Type: Monitoring Well		Sam	Sample Type: Groundwater				
Sample Collection Method: Low	-Flow Stabilization	Well	Diameter: 5 in	Well Material:	PVC		
Location Notes:							
Purging	2024-10-28 10:37	Sam	ple ID: MW-3	2024-10-28 1	1:33		
Pump Type: Non-Ded Bladder	Material: Stainless Steel	Para	meter Coll Meth: Low-flow S	Stabilization			
Model: QED SamplePRO		pH:	7.10 SU	Cond: 1425.6	μS/cm		
DTW (BTOC): 74.16 ft	DTB (BTOC): 127.06 ft	DO:	0.23 mg/L	ORP: 98.1 mV			
Well Vol: 204.3 L	Vol. Removed: 13.12 L	Tem	Temperature: 11.04 °C				
Purge Color: None	Purge Odor: None	Turb	Turb: 8.05 NTU Obs Turb: None		ne		
Initial Turbidity: Slight		Sam	Sample Color: None Sample Odor: None				
Stabilization Criteria: EPA		Filte	Filtered? (0.45um): No				
LF Attempted?: Yes	Went Dry?: No	Filtra	ate Color:	Filtrate Odor:			
Disposal Method: Ground		QC s	QC Samples: QC ID:				
Comments:		Com	Comments:				
Bottles Filled		•					
Number Size Type			Preservative				

1	250 mL	CLEAR PLASTIC	None	no
1	500 mL	AMBER GLASS	Sulfuric Acid (H2SO4)	no
1	250 mL	CLEAR PLASTIC	Nitric Acid (HNO3)	no
1	1 L	CLEAR PLASTIC	None	no

Sulfuric Acid (H2SO4)

CLEAR PLASTIC

Shipping Method:	FEDEX	Shipping Date:	2024-10-28
------------------	-------	----------------	------------

250 mL

no

SAMPLE SUMMARY

Sample ID	Date	Time	Color	Odor	Obs. Turb	Turb. (NTU)	Temp.	pH (SU)	Sp. Cond. (µS/cm)	DO (mg/L)	ORP (mV)	QC ID
MW-1	2024-10-28	14:57	None	None	None	3.12	12.05	7.43	629.5	1.17	69.8	
MW-2	2024-10-28	13:23	None	None	None	1.64	12.54	7.14	783.4	3.09	76.0	DUP-01
MW-3	2024-10-28	11:33	None	None	None	8.05	11.04	7.10	1425.6	0.23	98.1	

Calibration Report

Instrument Aqua TROLL 400

Serial Number 807539 Created 10/28/2024

Sensor RDO

Serial Number 1069352 Last Calibrated 10/28/2024

Calibration Details

Slope 1.1899391 Offset -0.00 mg/L

Calibration point 100%

Concentration 8.52 mg/L
Temperature 13.69 °C
Barometric Pressure 990.59 mbar

Sensor Conductivity

Serial Number 807539 Last Calibrated 10/28/2024

Calibration Details

Offset 0.00 μS/cm
Cell Constant 1.002
Reference Temperature 25.00 °C
TDS Conversion Factor (ppm) 0.65

Sensor **Level**Serial Number 808453

Last Calibrated Factory Defaults

Sensor pH/ORP

Serial Number 22431

Last Calibrated 10/28/2024

Calibration Details

Total Calibration Points 2

Calibration Point 1

pH of Buffer 4.00 pH pH mV 158.1 mV Temperature 14.03 °C

Calibration Point 2

pH of Buffer 7.04 pH pH mV -6.5 mV Temperature 14.34 °C

Slope and Offset 1

Slope -54.15 mV/pH Offset -4.3 mV

ORP

ORP Solution Zobell's
Offset 18.9 mV
Temperature 13.48 °C

Calibration Report

Instrument Aqua TROLL 400

Serial Number 807539 Created 10/29/2024

Sensor RDO

Serial Number 1069352 Last Calibrated 10/29/2024

Calibration Details

Slope 1.1472826 Offset -0.00 mg/L

Calibration point 100%

Concentration 7.52 mg/L
Temperature 21.02 °C
Barometric Pressure 982.13 mbar

Sensor Conductivity

Serial Number 807539 Last Calibrated 10/29/2024

Calibration Details

Offset 0.00 µS/cm

Cell Constant 1.02
Reference Temperature 25.00 °C
TDS Conversion Factor (ppm) 0.65

Sensor Level

Serial Number 808453

Last Calibrated Factory Defaults

Sensor pH/ORP

Serial Number 22431

Last Calibrated 10/29/2024

Calibration Details

Total Calibration Points 2

Calibration Point 1

pH of Buffer 4.00 pH pH mV 159.7 mV Temperature 21.32 °C

Calibration Point 2

pH of Buffer 7.02 pH pH mV -7.6 mV Temperature 21.57 °C

Slope and Offset 1

Slope -55.42 mV/pH Offset -6.5 mV

ORP

ORP Solution Zobell's
Offset 15.4 mV
Temperature 22.25 °C

Low-Flow Test Report:

Test Date / Time: 10/28/2024 2:27:49PM

Project: JDWW - DUBUQUE

Operator Name:

Location Name: MW-1

Latitude: 42.57962005678564 Longitude: -90.71575275622308 Flow Cell Volume: 90 ml Final Flow Rate: 150 ml/min **Instrument Used: Aqua TROLL 400**

Serial Number: 807539

Test Notes:

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1		+/- 3 %		+/- 10 % or <10 NTU		+/- 0.1 ft	
10/28/2024 2:27PM	00:00	7.44 pH	18.31 °C	591.94 μS/cm	3.44 mg/L	2.72 NTU	93.0 mV	134.46 ft	150.00 ml/min
10/28/2024 2:32PM	05:00	7.42 pH	13.35 °C	623.30 μS/cm	1.74 mg/L	3.69 NTU	105.9 mV	134.82 ft	150.00 ml/min
10/28/2024 2:37PM	10:00	7.43 pH	12.66 °C	628.17 μS/cm	1.43 mg/L	3.69 NTU	77.5 mV	135.00 ft	150.00 ml/min
10/28/2024 2:42PM	15:00	7.43 pH	12.25 °C	628.07 μS/cm	1.32 mg/L	3.69 NTU	74.2 mV	135.01 ft	150.00 ml/min
10/28/2024 2:47PM	20:00	7.43 pH	12.14 °C	629.15 μS/cm	1.26 mg/L	3.27 NTU	72.0 mV	135.02 ft	150.00 ml/min
10/28/2024 2:52PM	25:00	7.43 pH	12.07 °C	629.39 μS/cm	1.21 mg/L	3.25 NTU	70.8 mV	135.02 ft	150.00 ml/min
10/28/2024 2:57PM	30:00	7.43 pH	12.05 °C	629.51 μS/cm	1.17 mg/L	3.12 NTU	69.8 mV	135.02 ft	150.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

Created using VuSitu from In-Situ, Inc.

Low-Flow Test Report:

Test Date / Time: 10/28/2024 12:53:05PM

Project: JDWW - DUBUQUE

Operator Name:

Location Name: MW-2

Latitude: 42.57847299333662 Longitude: -90.71405533701181 Flow Cell Volume: 90 ml Final Flow Rate: 150 ml/min **Instrument Used: Aqua TROLL 400**

Serial Number: 807539

Test Notes:

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific	RDO	Turbidity	ORP	Depth to	Flow	
				Conductivity	Concentration			Water		
		+/- 0.1		+/- 3 %		+/- 10 %or <10 NTU		+/- 0.1 ft		
10/28/2024	00.00	7.0411	00.70.00	40.400/2	0.00/1	2 40 NITH	200 4 \	440.00 #	450.001/	
12:53PM	00:00	7.34 pH	20.79 °C	13.16 µS/cm	8.82 mg/L	3.48 NTU	208.4 mV	149.96 ft	150.00 ml/min	
10/28/2024	05.00	6 00 511	14.64 °C	764 00 uC/om	4.54 //	3.48 NTU	123.2 mV	150.50 ft	150.00 ml/min	
12:58PM	05:00	6.83 pH	14.64 °C	761.90 μS/cm	4.54 mg/L	3.46 NTU	123.2 1110	150.50 II	150.00 m/mm	
10/28/2024	40.00	C 00 -11	42.46.90	700 700/2	2.55/1	4 CO NTU	400.0\/	450 70 8	450.001/	
1:03PM	10:00	6.98 pH	13.16 °C	780.73 μS/cm	3.55 mg/L	1.68 NTU	100.0 mV	150.70 ft	150.00 ml/min	
10/28/2024	45.00	7.05 ml l	12.93 °C	700 01 uC/om	2.26 ma/l		89.0 mV	150.69 ft	150.00 ml/min	
1:08PM	15:00	7.05 pH	12.93 °C	782.21 μS/cm	3.36 mg/L		69.0 IIIV	150.69 11	150.00 mi/min	
10/28/2024	20:00	7.10 pH	12.78 °C	782.57 µS/cm	3.18 mg/L		81.6 mV	150.69 ft	150.00 ml/min	
1:13PM	20.00	7.10 μπ	12.76 C	762.57 µ3/CIII	3.16 Hig/L		01.01110	150.69 11	150.00 111/111111	
10/28/2024	25.00	7 10 ml l	40.67.°C	704 F4 UC/om	2.14 //		70.0 m\/	150 CO #	150.00 ml/min	
1:18PM	25:00	7.12 pH	12.67 °C	781.51 μS/cm	3.14 mg/L		78.9 mV	150.69 ft	150.00 ml/min	
10/28/2024	30.00	7 1 1 nU	12 E 4 °C	792 42 uS/om	2.00 mg/l	1.64 NTU	76.0 mV	150.70 ft	150.00 ml/min	
1:23PM	30:00	7.14 pH	12.54 °C	783.43 µS/cm	3.09 mg/L		76.0 1110	150.70 11	150.00 ml/min	

Samples

Sample ID:	Description:
------------	--------------

Created using VuSitu from In-Situ, Inc.

Low-Flow Test Report:

Test Date / Time: 10/28/2024 10:40:26 AM

Project: JDDW_MW-3-202410 **Operator Name:** Wes Braga

Location Name: John Deere (MW-3)

Latitude: 42.5779364989778 Longitude: -90.7160884514451

Well Diameter: 5 in Casing Type: PVC

Initial Depth to Water: 74.16 ft

Pump Type: Bladder
Tubing Type: LDPE

Estimated Total Volume Pumped:

13312.5 ml

Flow Cell Volume: 90 ml Final Flow Rate: 250 ml/min Final Draw Down: 1.09 ft Instrument Used: Aqua TROLL 400

Serial Number: 807539

Test Notes:

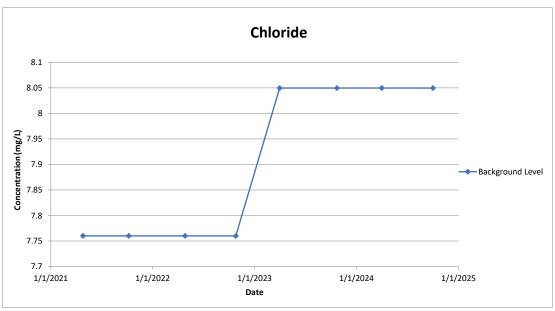
Low-Flow Readings:

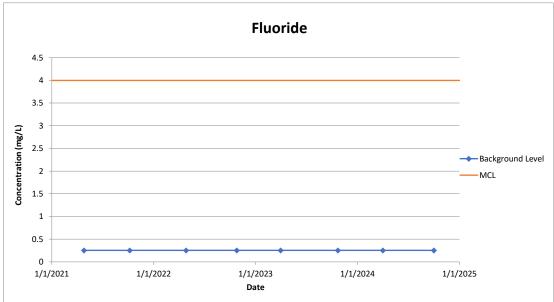
Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow			
		+/- 0.1		+/- 3 %		+/- 10 % or <10 NTU		+/- 0.1 ft				
10/28/2024	00:00	6.77 pH	11.39 °C	1,422.1	0.65 mg/L	14.20 NTU	133.6 mV	74.16 ft	250.00 ml/min			
10:40 AM	00.00	6.77 pm	11.39 C	μS/cm	0.65 mg/L	14.20 NTO	133.0 1110	74.1011	250.00 111/111111			
10/28/2024	05:00	6.94 pH	11.09 °C	1,431.9	0.46 mg/L	14 20 NTU	116.8 mV	74.45 ft	250.00 ml/min			
10:45 AM	05.00	6.94 рп	11.09 C	μS/cm	0.46 mg/L	14.20 NTU	110.01110	74.45 11	250.00 111/111111			
10/28/2024	10:00	7.01 pH	11.05 °C	1,433.6	0.36 mg/L	14.20 NTU	110.8 mV	74.65 ft	250.00 ml/min			
10:50 AM	10.00	7.01 pm	11.05	μS/cm	0.30 Hig/L	14.201110	110.0111	74.05 10	250.00 111/111111			
10/28/2024	15:00	7.04 pH	11.09 °C	1,432.2	0.32 mg/L	14.20 NTU	107.5 mV	74.89 ft	250.00 ml/min			
10:55 AM	15.00	7.04 pm	11.05 0	μS/cm	0.52 mg/L	14.20 1010	107.0111	7 1.00 1.	200.00 111/11111			
10/28/2024	18:15	7.05 pH	10.97 °C	1,435.1	0.31 mg/L	14.20 NTU	131.7 mV	75.18 ft	250.00 ml/min			
10:58 AM	10.13	7.03 pm	10.97	μS/cm	0.01 mg/L	14.20 1110	131.7 1110	75.1010	250.00 111/111111			
10/28/2024	23:15	7.06 pH	11.05 °C	1,432.7	0.28 mg/L	14.20 NTU	104.5 mV	75.23 ft	250.00 ml/min			
11:03 AM	20.10	7.00 pm	11.00	μS/cm			104.0111	70.2011	200.00			
10/28/2024	28:15	7.07 pH	11.08 °C	1,431.7	0.26 mg/L	14.20 NTU	102.4 mV	75.24 ft	250.00 ml/min			
11:08 AM	20.10	7.07 pm	11.00 0	μS/cm	0.20 mg/L	14.20 1410	102.41111	70.2410	200.00 111/111111			
10/28/2024	33:15	7.08 nH	7.08 nH	7.08 pH	7 08 nH	11.09 °C	1,430.5	0.25 mg/L	12.50 NTU	101.2 mV	75.25 ft	250.00 ml/min
11:13 AM	00.10	7.00 pri	11.00	μS/cm	0.20 mg/2	12.001110	101.21114	70.2011	200.00 1111/111111			
10/28/2024	38:15	7.09 pH	11.00 °C	1,430.7	0.25 mg/L	9.77 NTU	126.1 mV	75.25 ft	250.00 ml/min			
11:18 AM	00.10	7.00 pm	11.00 0	μS/cm	0.20 mg/L	3.77 1410	120.1 1111	70.2011	200:00 111/111111			
10/28/2024	43:15	43:15 7.10 pH	11.00 °C	1,429.6	0.24 mg/L	8.18 NTU	100.0 mV	75.25 ft	250.00 ml/min			
11:23 AM	7.10 pm	11.00	μS/cm	0.24 mg/L	0.101110	100.0 1111	70.2011	200.00 111/111111				
10/28/2024	48:15 7.10 pH	11.05 °C	1,428.3	0.24 mg/L	8.12 NTU	99.1 mV	75.25 ft	250.00 ml/min				
11:28 AM	10.10	7.10 p.1		μS/cm	3.2 · · · · · g, 2	3.12.11.3		70.2011	200.00 111,111111			
10/28/2024	53:15	7.10 pH	11.04 °C	1,425.6	0.23 mg/L	8.05 NTU	98.1 mV	75.25 ft	250.00 ml/min			
11:33 AM	33.10	7.10 p.1	11.01	μS/cm	5.25 mg, 2	3.00 111 3	00.1 1111	70.20 10	200.00 1117.11111			

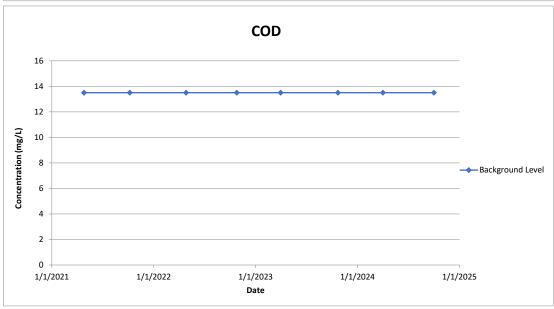
Samples

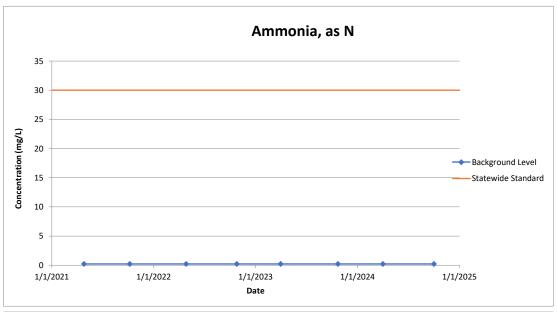
Sample ID:	Description:
------------	--------------

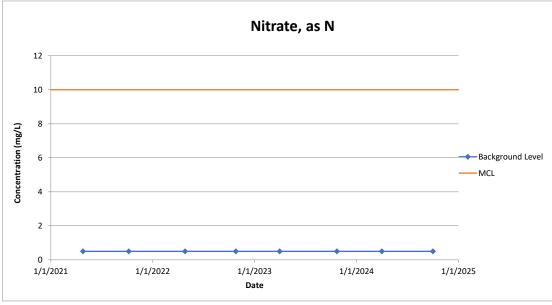
Facility Inspection Report John Deere Dubuque Works Landfill – Dubuque, Iowa Permit No. 31-SDP-01-75C

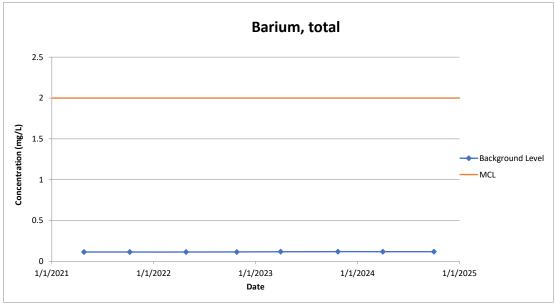

- 1				
Date 29 24		Name of Inspector Maddic Holidu		
Description		J		
Description of Weat	her:			
Time 9:40	Temperature (0) **	Precipitation N/A		
1 :				
Weather Conditions	Ground Conditions	General Past 7-Day Weather Conditions		
partly cloudy	dry	sunny I windy		
Final Cover:	3	,		
General Health of Veget	ation:			
Healthy 1	Stressed	Barren		
Comments:				
*	or the state of the state of			
Density of Vegetation:		2 0		
Good 🖺	Fair 🗌	Poor		
Evidence of Burrowing A	Animals:	Comments:		
_		field mice burrows throughout		
lo 🗌	Yes ✓	core		
rosion of Landfill Cap:		Comments:		
	Yes □			
ettlement of Landfill Ca	p:	Comments:		
o 🗗 ,	res 🗌			
-				
rainage Ditch Erosion:		Comments:		
	∕es □	to the second se		
achate Seeps Identifie	d:	Comments:		
	′es □			
	_			

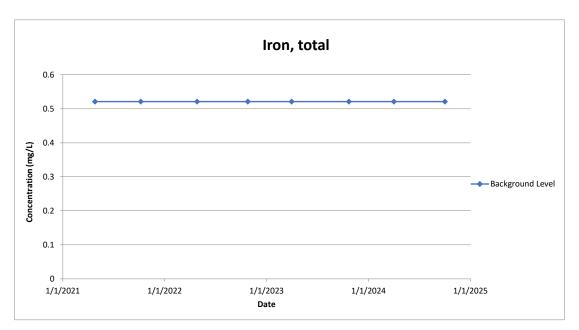

John Deere Dubuque Works Landfill – Dubuque, Iowa Facility Inspection Report Page 2

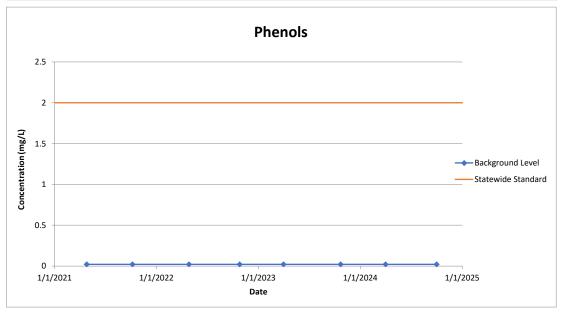

Site Featur	es:			
Fence Secure		Comments:		
No ☐ Yes ☐				
Gates and Locks Secure:		Comments:		
No ☐ Yes ☑				
Signs Presen	t:	Comments:		
No 🗌	Yes 🗹			
Access Road	Accessible:	Comments:		
No 🗌	Yes 🖸			
Storm Water D	Diversion Structures Operating:	Comments:		
No 🗌 Yes 🗹				
Leachate Co	ollection System:			
Standpipe #	Condition	С	comments	
Stage 1 (north)	Adequate Requires Mainte	nance	needs new corc	
Stage 2 (south)	Adequate Requires Mainte	nance 🗹	needs hew cover	
Groundwate	r Monitoring Wells:	10 1 H		
Nell #	Condition	С	comments	
MW-1 (north)	Adequate Requires Maintenance			
/IW-2 (east)	Adequate Requires Mainte	nance 🗌		
/IVV-3 (south)	Adequate Requires Mainte	nance 🗌		
urvey Contr	ol Monuments:			
lonument #	Condition		comments	
001 (SE)	Adequate Requires Mainte	nance 🗌		
002 (SW)	Adequate 🗡 Requires Mainte	nance 🗌		
Children and Child				

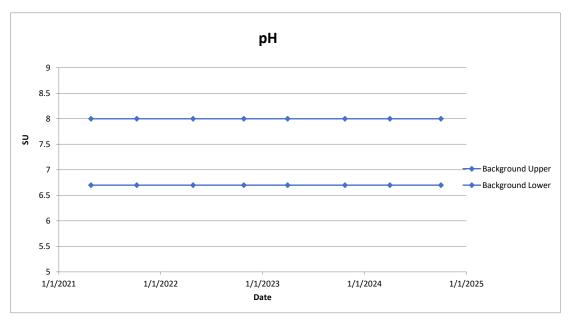


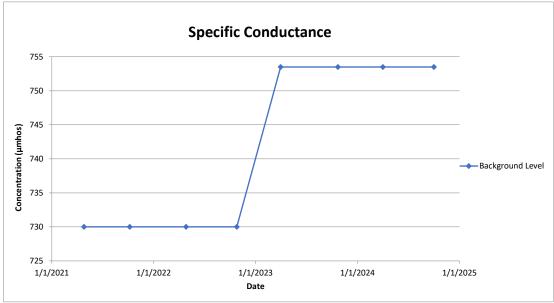

Appendix C: Background Levels











Updated by: L. Auner, 12/30/2024 Checked by: M. Holicky 1/10/2025

Appendix D: Laboratory Reports

- April 2024
- October 2024

Laboratory Analytical Report April 2024

ANALYTICAL REPORT

PREPARED FOR

Attn: Daniel Mai John Deere & Co 18600 S John Deere Road PO BOX 538 Dubuque, Iowa 52001 Generated 7/1/2024 4:20:39 PM Revision 1

JOB DESCRIPTION

John Deere Dubuque Landfill

JOB NUMBER

310-278836-1

Eurofins Cedar Falls 3019 Venture Way Cedar Falls IA 50613

Eurofins Cedar Falls

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 7/1/2024 4:20:39 PM Revision 1

Authorized for release by

Conner Calhoun, Project Management Assistant I

Conner.Calhoun@et.eurofinsus.com

(319)277-2401

Eurofins Cedar Falls is a laboratory within Eurofins Environment Testing North Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 2 of 45 7/1/2024 (Rev. 1)

Client: John Deere & Co Project/Site: John Deere Dubuque Landfill

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	8
Detection Summary	9
Client Sample Results	12
Definitions	23
QC Sample Results	24
QC Association	30
Chronicle	34
Certification Summary	38
Method Summary	39
Chain of Custody	40
Receipt Checklists	45

3

4

_

0

9

10

12

13

Client: John Deere & Co

Project: John Deere Dubuque Landfill

Job ID: 310-278836-1 **Eurofins Cedar Falls**

> Job Narrative 310-278836-1

REVISION

The report being provided is a revision of the original report sent on 4/24/2024. The report (revision 1) is being revised due to Chloride and Fluoride results switched on MW-3.

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 4/12/2024 9:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 4.9°C and 5.6°C.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method 6010D: The reference method requires samples to be preserved to a pH of <2. The following sample was received with insufficient preservation at a pH of >2: S1 Leachate Open (310-278836-7). The sample(s) was preserved to the appropriate pH in the laboratory.

Method 6010D: The continuing calibration verification (CCV) associated with batch 310-419098 recovered above the upper control limit for Iron. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cedar Falls

Job ID: 310-278836-1

Client: John Deere & Co

Project: John Deere Dubuque Landfill

Job ID: 310-278836-2 **Eurofins Cedar Falls**

> Job Narrative 310-278836-2

REVISION

The report being provided is a revision of the original report sent on 4/24/2024. The report (revision 1) is being revised due to Reporting the no dilution Nitrate run.

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 4/12/2024 9:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 4.9°C and 5.6°C.

HPLC/IC

Method 9056A_ORGFM_48H: The following sample was diluted due to the nature of the sample matrix: MW-3 (310-278836-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cedar Falls

Job ID: 310-278836-1

Client: John Deere & Co

Project: John Deere Dubuque Landfill

Eurofins Cedar Falls Job ID: 310-278909-1

Job Narrative 310-278909-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 4/13/2024 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.9°C.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 310-278836-1

Client: John Deere & Co

Project: John Deere Dubuque Landfill

Job ID: 310-278909-2 Eurofins Cedar Falls

Job Narrative 310-278909-2

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 4/13/2024 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.9°C.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cedar Falls

.

Job ID: 310-278836-1

3

J

7

8

9

12

13

Sample Summary

Client: John Deere & Co

Project/Site: John Deere Dubuque Landfill

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
310-278836-1	MW-1	Water	04/11/24 12:20	04/12/24 09:30
310-278836-2	MW-2	Water	04/11/24 13:33	04/12/24 09:30
310-278836-3	MW-3	Water	04/11/24 10:37	04/12/24 09:30
310-278836-4	Dup-01	Water	04/11/24 00:00	04/12/24 09:30
310-278836-5	EB-01	Water	04/11/24 13:55	04/12/24 09:30
310-278836-6	S1 Underliner Open	Water	04/11/24 10:40	04/12/24 09:30
310-278836-7	S1 Leachate Open	Water	04/11/24 11:00	04/12/24 09:30
310-278836-8	S2 Leachate Open	Water	04/11/24 11:05	04/12/24 09:30
310-278836-9	Combined Leachate	Water	04/11/24 11:10	04/12/24 09:30
310-278909-1	S1 Underliner Closed	Water	04/12/24 11:30	04/13/24 09:00
310-278909-2	S2 Underliner Closed	Water	04/12/24 11:24	04/13/24 09:00

Job ID: 310-278836-1

Client: John Deere & Co

Project/Site: John Deere Dubuque Landfill

Client Sample ID: MW-1 Lab Sample ID: 310-278836-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac I	D Method	Prep Type
Chloride	5.68	1.00	mg/L		9056A	Total/NA
Sulfate	25.7	1.00	mg/L	1	9056A	Total/NA
Barium	0.0770	0.0100	mg/L	1	6010D	Total/NA
Calcium	67.2	1.00	mg/L	1	6010D	Total/NA
Magnesium	38.5	1.00	mg/L	1	6010D	Total/NA
Total Dissolved Solids	360	50.0	mg/L	1	SM 2540C	Total/NA

Client Sample ID: MW-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Chloride	8.30	1.00	mg/L		9056A	Total/NA
Nitrate as N	1.39	1.00	mg/L	5	9056A	Total/NA
Sulfate	20.9	1.00	mg/L	1	9056A	Total/NA
Barium	0.0825	0.0100	mg/L	1	6010D	Total/NA
Calcium	97.6	1.00	mg/L	1	6010D	Total/NA
Magnesium	41.6	1.00	mg/L	1	6010D	Total/NA
Total Dissolved Solids	418	50.0	mg/L	1	SM 2540C	Total/NA

Client Sample ID: MW-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	80.9		1.00		mg/L	1	_	9056A	Total/NA
Nitrate as N	0.638		0.200		mg/L	1		9056A	Total/NA
Sulfate	126		5.00		mg/L	5		9056A	Total/NA
Barium	0.0455		0.0100		mg/L	1		6010D	Total/NA
Boron	2.26		0.200		mg/L	1		6010D	Total/NA
Calcium	122		1.00		mg/L	1		6010D	Total/NA
Magnesium	55.6		1.00		mg/L	1		6010D	Total/NA
Chemical Oxygen Demand	5.56		5.00		mg/L	1		5220D LL	Total/NA
Total Dissolved Solids	734		50.0		mg/L	1		SM 2540C	Total/NA

Client Sample ID: Dup-01

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Chloride	8.26	1.00	mg/L		9056A	Total/NA
Nitrate as N	1.41	1.00	mg/L	5	9056A	Total/NA
Sulfate	19.1	1.00	mg/L	1	9056A	Total/NA
Barium	0.0780	0.0100	mg/L	1	6010D	Total/NA
Calcium	92.7	1.00	mg/L	1	6010D	Total/NA
Magnesium	39.5	1.00	mg/L	1	6010D	Total/NA
Total Dissolved Solids	398	50.0	mg/L	1	SM 2540C	Total/NA

Client Sample ID: EB-01

No Detections.

Client Sample ID: S1 Underliner Open Lab Sample ID: 310-278836-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	80.9		1.00		mg/L		_	9056A	Total/NA
Nitrate as N	2.97		1.00		mg/L	5		9056A	Total/NA
Fluoride	0.311		0.200		mg/L	1		9056A	Total/NA
Sulfate	26.7		1.00		mg/L	1		9056A	Total/NA
Barium	0.696		0.0100		mg/L	1		6010D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Cedar Falls

7/1/2024 (Rev. 1)

Job ID: 310-278836-1

Lab Sample ID: 310-278836-2

Lab Sample ID: 310-278836-3

Lab Sample ID: 310-278836-4

Lab Sample ID: 310-278836-5

Client: John Deere & Co

Project/Site: John Deere Dubuque Landfill

Client Sample ID: S1 Underliner Open (Continued)

Lab Sample ID: 310-278836-6

Job ID: 310-278836-1

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	3.01		0.200		mg/L	1	_	6010D	Total/NA
Calcium	86.8		1.00		mg/L	1		6010D	Total/NA
Lithium	0.0679		0.0500		mg/L	1		6010D	Total/NA
Magnesium	42.6		1.00		mg/L	1		6010D	Total/NA
Chemical Oxygen Demand	17.7		5.00		mg/L	1		5220D LL	Total/NA
Total Dissolved Solids	706		50.0		mg/L	1		SM 2540C	Total/NA

Client Sample ID: S1 Leachate Open

	0	ID. O.	40 070000 7
ı an	Samnie	7 III. K	10-278836-7
Lun	Oumpi	, 10. 0	10-210000-1

Analyte	Result C	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	115	5.00		mg/L		_	9056A	Total/NA
Fluoride	0.443	0.200		mg/L	1		9056A	Total/NA
Sulfate	2.53	1.00		mg/L	1		9056A	Total/NA
Barium	0.869	0.0100		mg/L	1		6010D	Total/NA
Boron	8.19	0.200		mg/L	1		6010D	Total/NA
Calcium	115	1.00		mg/L	1		6010D	Total/NA
Iron	8.66	0.500		mg/L	1		6010D	Total/NA
Lithium	0.210	0.0500		mg/L	1		6010D	Total/NA
Magnesium	44.8	1.00		mg/L	1		6010D	Total/NA
Ammonia as N	4.98	0.500		mg/L	1		350.1	Total/NA
Chemical Oxygen Demand	27.4	5.00		mg/L	1		5220D LL	Total/NA
Total Dissolved Solids	952	50.0		mg/L	1		SM 2540C	Total/NA

Client Sample ID: S2 Leachate Open

Lab Sample ID: 310-278836-8

Analyte	Result Qual	lifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	134	5.00		mg/L		_	9056A	Total/NA
Fluoride	0.829	0.200		mg/L	1		9056A	Total/NA
Sulfate	1190	20.0		mg/L	20		9056A	Total/NA
Barium	0.0268	0.0100		mg/L	1		6010D	Total/NA
Boron	22.1	0.200		mg/L	1		6010D	Total/NA
Calcium	159	1.00		mg/L	1		6010D	Total/NA
Iron	2.88	0.500		mg/L	1		6010D	Total/NA
Lithium	1.14	0.0500		mg/L	1		6010D	Total/NA
Magnesium	126	1.00		mg/L	1		6010D	Total/NA
Molybdenum	0.0565	0.0500		mg/L	1		6010D	Total/NA
Ammonia as N	9.79	2.50		mg/L	1		350.1	Total/NA
Chemical Oxygen Demand	68.9	5.00		mg/L	1		5220D LL	Total/NA
Total Dissolved Solids	2510	250		mg/L	1		SM 2540C	Total/NA

Client Sample ID: Combined Leachate

Lab Sample ID: 310-278836-9

Analyte	Result C	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	119	5.00		mg/L		_	9056A	Total/NA
Nitrate as N	0.865	0.200		mg/L	1		9056A	Total/NA
Fluoride	0.677	0.200		mg/L	1		9056A	Total/NA
Sulfate	715	20.0		mg/L	20		9056A	Total/NA
Barium	0.211	0.0100		mg/L	1		6010D	Total/NA
Boron	15.2	0.200		mg/L	1		6010D	Total/NA
Calcium	134	1.00		mg/L	1		6010D	Total/NA
Iron	2.17	0.500		mg/L	1		6010D	Total/NA
Lithium	0.695	0.0500		mg/L	1		6010D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Cedar Falls

3

6

8

10

12

13

1.

Detection Summary

Client: John Deere & Co

Project/Site: John Deere Dubuque Landfill

Lab Sample ID: 310-278836-9

CI	ient S	Sampl	e ID	: Com	bined	Leach	nate ((Conti	inued)
----	--------	-------	------	-------	-------	-------	--------	--------	--------

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Magnesium	88.3	1.00	mg/L	1	6010D	Total/NA
Ammonia as N	5.94	0.500	mg/L	1	350.1	Total/NA
Chemical Oxygen Demand	45.0	5.00	mg/L	1	5220D LL	Total/NA
Total Dissolved Solids	2010	250	mg/L	1	SM 2540C	Total/NA

Client Sample ID: S1 Underliner Closed

Analyte	Result Qualifier	RL	MDL Uni	it	Dil Fac	D	Method	Prep Type
Chloride	85.7	1.00	mg/	/L	1	_	9056A	Total/NA
Nitrate as N	1.77	0.200	mg/	/L	1		9056A	Total/NA
Fluoride	0.302	0.200	mg/	/L	1		9056A	Total/NA
Sulfate	42.8	1.00	mg/	/L	1		9056A	Total/NA
Barium	0.496	0.0100	mg/	/L	1		6010D	Total/NA
Boron	3.87	0.200	mg/	/L	1		6010D	Total/NA
Calcium	71.1	1.00	mg/	/L	1		6010D	Total/NA
Lithium	0.0970	0.0500	mg/	/L	1		6010D	Total/NA
Magnesium	41.4	1.00	mg/	/L	1		6010D	Total/NA
Chemical Oxygen Demand	28.3	25.0	mg/	/L	5		5220D LL	Total/NA
Total Dissolved Solids	700	50.0	mg/	/L	1		SM 2540C	Total/NA

Client Sample ID: S2 Underliner Closed

Analyte	Result Q	ualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	132	5.00		mg/L		_	9056A	Total/NA
Fluoride	0.701	0.200		mg/L	1		9056A	Total/NA
Sulfate	1170	50.0		mg/L	50		9056A	Total/NA
Barium	0.0321	0.0100		mg/L	1		6010D	Total/NA
Boron	22.1	0.200		mg/L	1		6010D	Total/NA
Calcium	166	1.00		mg/L	1		6010D	Total/NA
Iron	2.58	0.500		mg/L	1		6010D	Total/NA
Lithium	1.13	0.0500		mg/L	1		6010D	Total/NA
Magnesium	126	1.00		mg/L	1		6010D	Total/NA
Molybdenum	0.0522	0.0500		mg/L	1		6010D	Total/NA
Ammonia as N	8.63	0.500		mg/L	1		350.1	Total/NA
Chemical Oxygen Demand	74.9	25.0		mg/L	5		5220D LL	Total/NA
Total Dissolved Solids	2160	250		mg/L	1		SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 310-278909-1

Lab Sample ID: 310-278909-2

Eurofins Cedar Falls

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: MW-1 Lab Sample ID: 310-278836-1

Matrix: Water

Date Collected: 04/11/24 12:20 Date Received: 04/12/24 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.68		1.00		mg/L			04/12/24 15:38	1
Nitrate as N	<0.200		0.200		mg/L			04/12/24 15:38	1
Fluoride	<0.200		0.200		mg/L			04/12/24 15:38	1
Sulfate	25.7		1.00		mg/L			04/12/24 15:38	1
Method: SW846 6010D - Metals ((ICP)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0770		0.0100		mg/L		04/17/24 09:00	04/17/24 18:07	1
Boron	<0.200		0.200		mg/L		04/17/24 09:00	04/17/24 18:07	1
Calcium	67.2		1.00		mg/L		04/17/24 09:00	04/17/24 18:07	1
Iron	<0.500	^+	0.500		mg/L		04/17/24 09:00	04/17/24 18:07	1
Lithium	<0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:07	1
Magnesium	38.5		1.00		mg/L		04/17/24 09:00	04/17/24 18:07	1
Molybdenum	<0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:07	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.200	F1	0.200		mg/L			04/16/24 17:40	1
Chemical Oxygen Demand (SM 5220D LL)	<5.00		5.00		mg/L			04/18/24 14:24	1
Total Dissolved Solids (SM 2540C)	360		50.0		mg/L			04/15/24 18:54	1

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: MW-2 Lab Sample ID: 310-278836-2

Matrix: Water

Date Collected: 04/11/24 13:33 Date Received: 04/12/24 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.30		1.00		mg/L			04/12/24 15:51	1
Nitrate as N	1.39		1.00		mg/L			04/12/24 19:25	5
Fluoride	<0.200		0.200		mg/L			04/12/24 15:51	1
Sulfate	20.9		1.00		mg/L			04/12/24 15:51	1
Method: SW846 6010D - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0825		0.0100		mg/L		04/17/24 09:00	04/17/24 18:09	1
Boron	<0.200		0.200		mg/L		04/17/24 09:00	04/17/24 18:09	1
Calcium	97.6		1.00		mg/L		04/17/24 09:00	04/17/24 18:09	1
Iron	<0.500	^+	0.500		mg/L		04/17/24 09:00	04/17/24 18:09	1
Lithium	<0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:09	1
Magnesium	41.6		1.00		mg/L		04/17/24 09:00	04/17/24 18:09	1
Molybdenum	<0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:09	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.200		0.200		mg/L			04/16/24 17:42	1
Chemical Oxygen Demand (SM 5220D LL)	<5.00		5.00		mg/L			04/18/24 14:24	1
Total Dissolved Solids (SM 2540C)	418		50.0		mg/L			04/15/24 18:54	1

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: MW-3 Lab Sample ID: 310-278836-3 Date Collected: 04/11/24 10:37

Matrix: Water

Date Received: 04/12/24 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	80.9		1.00		mg/L			04/12/24 13:07	1
Nitrate as N	0.638		0.200		mg/L			04/12/24 13:07	1
Fluoride	<0.200		0.200		mg/L			04/12/24 13:07	1
Sulfate	126		5.00		mg/L			04/12/24 13:20	5
Method: SW846 6010D - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0455		0.0100		mg/L		04/17/24 09:00	04/17/24 18:11	1
Boron	2.26		0.200		mg/L		04/17/24 09:00	04/17/24 18:11	1
Calcium	122		1.00		mg/L		04/17/24 09:00	04/17/24 18:11	1
Iron	<0.500	^+	0.500		mg/L		04/17/24 09:00	04/17/24 18:11	1
Lithium	< 0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:11	1
Magnesium	55.6		1.00		mg/L		04/17/24 09:00	04/17/24 18:11	1
Molybdenum	<0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:11	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.200		0.200		mg/L			04/16/24 17:43	1
Chemical Oxygen Demand (SM 5220D LL)	5.56		5.00		mg/L			04/18/24 14:24	1
Total Dissolved Solids (SM 2540C)	734		50.0		mg/L			04/15/24 18:54	1

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: Dup-01 Lab Sample ID: 310-278836-4 Date Collected: 04/11/24 00:00

Matrix: Water

Date Received: 04/12/24 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.26		1.00		mg/L			04/12/24 12:42	1
Nitrate as N	1.41		1.00		mg/L			04/12/24 12:55	5
Fluoride	<0.200		0.200		mg/L			04/12/24 12:42	1
Sulfate	19.1		1.00		mg/L			04/12/24 12:42	1
Method: SW846 6010D - Metals ((ICP)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0780		0.0100		mg/L		04/17/24 09:00	04/17/24 18:13	1
Boron	<0.200		0.200		mg/L		04/17/24 09:00	04/17/24 18:13	1
Calcium	92.7		1.00		mg/L		04/17/24 09:00	04/17/24 18:13	1
Iron	<0.500	^+	0.500		mg/L		04/17/24 09:00	04/17/24 18:13	1
Lithium	<0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:13	1
Magnesium	39.5		1.00		mg/L		04/17/24 09:00	04/17/24 18:13	1
Molybdenum	<0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:13	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.200		0.200		mg/L			04/16/24 17:43	1
Chemical Oxygen Demand (SM 5220D LL)	<5.00		5.00		mg/L			04/18/24 14:24	1
Total Dissolved Solids (SM 2540C)	398		50.0		mg/L			04/15/24 18:54	1

7/1/2024 (Rev. 1)

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: EB-01 Lab Sample ID: 310-278836-5

Matrix: Water

Date Collected: 04/11/24 13:55 Date Received: 04/12/24 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<1.00		1.00		mg/L			04/12/24 16:03	1
Nitrate as N	<0.200		0.200		mg/L			04/12/24 16:03	1
Fluoride	<0.200		0.200		mg/L			04/12/24 16:03	1
Sulfate	<1.00		1.00		mg/L			04/12/24 16:03	1
Method: SW846 6010D - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	<0.0100		0.0100		mg/L		04/17/24 09:00	04/17/24 18:15	1
Boron	<0.200		0.200		mg/L		04/17/24 09:00	04/17/24 18:15	1
Calcium	<1.00		1.00		mg/L		04/17/24 09:00	04/17/24 18:15	1
Iron	<0.500	^+	0.500		mg/L		04/17/24 09:00	04/17/24 18:15	1
Lithium	< 0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:15	1
Magnesium	<1.00		1.00		mg/L		04/17/24 09:00	04/17/24 18:15	1
Molybdenum	<0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:15	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.200		0.200		mg/L			04/16/24 17:45	1
Chemical Oxygen Demand (SM 5220D LL)	<5.00		5.00		mg/L			04/18/24 14:24	1
Total Dissolved Solids (SM 2540C)	<50.0		50.0		mg/L			04/15/24 18:54	1

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: S1 Underliner Open

Lab Sample ID: 310-278836-6

Date Collected: 04/11/24 10:40 Date Received: 04/12/24 09:30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	80.9		1.00		mg/L			04/12/24 13:33	1
Nitrate as N	2.97		1.00		mg/L			04/12/24 14:10	5
Fluoride	0.311		0.200		mg/L			04/12/24 13:33	1
Sulfate	26.7		1.00		mg/L			04/12/24 13:33	1
Method: SW846 6010D - Metals	(ICP)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.696		0.0100		mg/L		04/17/24 09:00	04/17/24 18:17	1
Boron	3.01		0.200		mg/L		04/17/24 09:00	04/17/24 18:17	1
Calcium	86.8		1.00		mg/L		04/17/24 09:00	04/17/24 18:17	1
Iron	<0.500	^+	0.500		mg/L		04/17/24 09:00	04/17/24 18:17	1
Lithium	0.0679		0.0500		mg/L		04/17/24 09:00	04/17/24 18:17	1
Magnesium	42.6		1.00		mg/L		04/17/24 09:00	04/17/24 18:17	1
Molybdenum	<0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:17	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.500		0.500		mg/L		04/18/24 08:35	04/19/24 09:15	1
Chemical Oxygen Demand (SM 5220D LL)	17.7		5.00		mg/L			04/18/24 14:24	1
Total Dissolved Solids (SM 2540C)	706		50.0		mg/L			04/15/24 18:54	1

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: S1 Leachate Open

Date Collected: 04/11/24 11:00 Date Received: 04/12/24 09:30 Lab Sample ID: 310-278836-7

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	115		5.00		mg/L			04/12/24 14:35	5
Nitrate as N	<0.200		0.200		mg/L			04/12/24 14:23	1
Fluoride	0.443		0.200		mg/L			04/12/24 14:23	1
Sulfate	2.53		1.00		mg/L			04/12/24 14:23	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Result 0.869	Qualifier	RL 0.0100	MDL	Unit mg/L	<u>D</u>	Prepared 04/17/24 09:00		Dil Fac
Barium		Qualifier		MDL		<u>D</u>		04/17/24 18:21	Dil Fac
Barium	0.869	Qualifier	0.0100	MDL	mg/L	<u>D</u>	04/17/24 09:00	04/17/24 18:21 04/17/24 18:21	1 1 1
Barium Boron Calcium	0.869 8.19	Qualifier	0.0100 0.200	MDL	mg/L mg/L	<u> </u>	04/17/24 09:00 04/17/24 09:00 04/17/24 09:00	04/17/24 18:21 04/17/24 18:21 04/17/24 18:21	Dil Fac 1 1 1 1 1
Barium Boron Calcium Iron	0.869 8.19 115	Qualifier	0.0100 0.200 1.00	MDL	mg/L mg/L mg/L	<u>D</u>	04/17/24 09:00 04/17/24 09:00 04/17/24 09:00	04/17/24 18:21 04/17/24 18:21 04/17/24 18:21 04/19/24 10:59	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Barium Boron	0.869 8.19 115 8.66	Qualifier	0.0100 0.200 1.00 0.500	MDL	mg/L mg/L mg/L mg/L	<u>D</u>	04/17/24 09:00 04/17/24 09:00 04/17/24 09:00 04/17/24 09:00 04/17/24 09:00	04/17/24 18:21 04/17/24 18:21 04/17/24 18:21 04/19/24 10:59	Dil Fac 1 1 1 1 1 1 1 1 1 1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	4.98		0.500		mg/L		04/18/24 08:35	04/19/24 09:17	1
Chemical Oxygen Demand (SM 5220D LL)	27.4		5.00		mg/L			04/18/24 14:24	1
Total Dissolved Solids (SM 2540C)	952		50.0		mg/L			04/15/24 18:54	1

8

10

11

4.0

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: S2 Leachate Open

Date Collected: 04/44/24 44:05

Date Collected: 04/11/24 11:05 Date Received: 04/12/24 09:30

5220D LL)

Total Dissolved Solids (SM 2540C)

2510

04/15/24 18:54

Matrix: Water

Method: SW846 9056A - Anion	s, Ion Chro	matograph	ıy						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	134		5.00		mg/L			04/12/24 15:00	5
Nitrate as N	<0.200		0.200		mg/L			04/12/24 14:48	1
Fluoride	0.829		0.200		mg/L			04/12/24 14:48	1
Sulfate	1190		20.0		mg/L			04/13/24 13:15	20
- Method: SW846 6010D - Metals	s (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0268		0.0100		mg/L		04/17/24 09:00	04/17/24 18:27	1
Boron	22.1		0.200		mg/L		04/17/24 09:00	04/17/24 18:27	1
Calcium	159		1.00		mg/L		04/17/24 09:00	04/17/24 18:27	1
Iron	2.88		0.500		mg/L		04/17/24 09:00	04/19/24 11:01	1
Lithium	1.14		0.0500		mg/L		04/17/24 09:00	04/17/24 18:27	1
Magnesium	126		1.00		mg/L		04/17/24 09:00	04/17/24 18:27	1
Molybdenum	0.0565		0.0500		mg/L		04/17/24 09:00	04/17/24 18:27	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	9.79		2.50		mg/L		04/18/24 08:35	04/19/24 09:17	1
Chemical Oxygen Demand (SM	68.9		5.00		mg/L			04/18/24 14:24	1

250

mg/L

Eurofins Cedar Falls

4

5

0

9

1 U

12

13

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: Combined Leachate Lab Sample ID: 310-278836-9 **Matrix: Water**

Date Collected: 04/11/24 11:10 Date Received: 04/12/24 09:30

Method: SW846 9056A - Anions, Ion Chromatography									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	119		5.00		mg/L			04/12/24 15:26	5
Nitrate as N	0.865		0.200		mg/L			04/12/24 15:13	1
Fluoride	0.677		0.200		mg/L			04/12/24 15:13	1
Sulfate	715		20.0		mg/L			04/13/24 13:28	20

Analyte	Result C	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.211	0.0100		mg/L		04/17/24 09:00	04/17/24 18:29	1
Boron	15.2	0.200		mg/L		04/17/24 09:00	04/17/24 18:29	1
Calcium	134	1.00		mg/L		04/17/24 09:00	04/17/24 18:29	1
Iron	2.17	0.500		mg/L		04/17/24 09:00	04/19/24 11:03	1
Lithium	0.695	0.0500		mg/L		04/17/24 09:00	04/17/24 18:29	1
Magnesium	88.3	1.00		mg/L		04/17/24 09:00	04/17/24 18:29	1
Molybdenum	<0.0500	0.0500		mg/L		04/17/24 09:00	04/17/24 18:29	1

General Chemistry Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	5.94	0.500	mg/L		04/23/24 11:30	04/23/24 22:23	1
Chemical Oxygen Demand (SM 5220D LL)	45.0	5.00	mg/L			04/18/24 14:24	1
Total Dissolved Solids (SM 2540C)	2010	250	mg/L			04/15/24 18:54	1

Eurofins Cedar Falls

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: S1 Underliner Closed

Lab Sample ID: 310-278909-1 Date Collected: 04/12/24 11:30 **Matrix: Water**

Date Received: 04/13/24 09:00

Method: SW846 9056A	Method: SW846 9056A - Anions, Ion Chromatography								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	85.7		1.00		mg/L			04/13/24 13:40	1
Nitrate as N	1.77		0.200		mg/L			04/13/24 13:40	1
Fluoride	0.302		0.200		mg/L			04/13/24 13:40	1
Sulfate	42.8		1.00		mg/L			04/13/24 13:40	1

Analyte	Result Quali	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.496	0.0100		mg/L		04/15/24 15:46	04/17/24 10:46	1
Boron	3.87	0.200		mg/L		04/15/24 15:46	04/17/24 10:46	1
Calcium	71.1	1.00		mg/L		04/15/24 15:46	04/17/24 10:46	1
Iron	<0.500	0.500		mg/L		04/15/24 15:46	04/17/24 10:46	1
Lithium	0.0970	0.0500		mg/L		04/15/24 15:46	04/17/24 10:46	1
Magnesium	41.4	1.00		mg/L		04/15/24 15:46	04/17/24 10:46	1
Molybdenum	<0.0500	0.0500		mg/L		04/15/24 15:46	04/17/24 10:46	1

General Chemistry									
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.500		0.500		mg/L		04/23/24 08:34	04/23/24 20:42	1
Chemical Oxygen Demand (SM 5220D LL)	28.3		25.0		mg/L			04/23/24 09:39	5
Total Dissolved Solids (SM 2540C)	700		50.0		mg/L			04/16/24 17:30	1

Eurofins Cedar Falls

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: S2 Underliner Closed

Lab Sample ID: 310-278909-2 Date Collected: 04/12/24 11:24 **Matrix: Water**

Date Received: 04/13/24 09:00

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	132	5.00	mg/L			04/13/24 14:09	5
Nitrate as N	<0.200	0.200	mg/L			04/13/24 13:53	1
Fluoride	0.701	0.200	mg/L			04/13/24 13:53	1
Sulfate	1170	50.0	mg/L			04/17/24 10:26	50

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0321	0.0100	mg/L		04/15/24 15:47	04/17/24 10:48	1
Boron	22.1	0.200	mg/L		04/15/24 15:47	04/17/24 10:48	1
Calcium	166	1.00	mg/L		04/15/24 15:47	04/17/24 10:48	1
Iron	2.58	0.500	mg/L		04/15/24 15:47	04/17/24 10:48	1
Lithium	1.13	0.0500	mg/L		04/15/24 15:47	04/17/24 10:48	1
Magnesium	126	1.00	mg/L		04/15/24 15:47	04/17/24 10:48	1
Molybdenum	0.0522	0.0500	mg/L		04/15/24 15:47	04/17/24 10:48	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	8.63		0.500		mg/L		04/23/24 08:34	04/23/24 20:44	1
Chemical Oxygen Demand (SM 5220D LL)	74.9		25.0		mg/L			04/23/24 09:39	5
Total Dissolved Solids (SM 2540C)	2160		250		mg/L			04/16/24 17:30	1

Definitions/Glossary

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Qualifiers

Metals

Qualifier Qualifier Description

^+ Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.

General Chemistry

Qualifier Qualifier Description

F1 MS and/or MSD recovery exceeds control limits.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

1000-1

3

А

5

9

IU

12

13

| | 4

Project/Site: John Deere Dubuque Landfill

Job ID: 310-278836-1

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 310-418738/3

Matrix: Water

Analysis Batch: 418738

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<1.00		1.00		mg/L			04/12/24 12:17	1
Nitrate as N	<0.200		0.200		mg/L			04/12/24 12:17	1
Fluoride	<0.200		0.200		mg/L			04/12/24 12:17	1
Sulfate	<1.00		1.00		mg/L			04/12/24 12:17	1

Lab Sample ID: LCS 310-418738/4

Matrix: Water

Analysis Batch: 418738

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	10.05		mg/L		101	90 - 110	
Nitrate as N	2.00	2.125		mg/L		106	90 - 110	
Fluoride	2.00	2.095		mg/L		105	90 - 110	
Sulfate	10.0	11.03		mg/L		110	90 - 110	

Lab Sample ID: 310-278836-5 MS

Matrix: Water

Analysis Batch: 418738

Client Sample ID: EB-01 Prep Type: Total/NA

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Chloride <1.00 5.00 80 - 120 4.904 mg/L 98 Nitrate as N <0.200 1.00 1.029 mg/L 103 80 - 120 Fluoride <0.200 1.00 mg/L 1.003 100 80 - 120 Sulfate <1.00 5.00 5.248 mg/L 105 80 - 120

Lab Sample ID: 310-278836-5 MSD

Matrix: Water

Analysis Batch: 418738

Client Sample ID: EB-01

Prep Type: Total/NA

_	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	<1.00		5.00	4.987		mg/L		100	80 - 120	2	15
Nitrate as N	<0.200		1.00	1.044		mg/L		104	80 - 120	1	15
Fluoride	<0.200		1.00	1.022		mg/L		102	80 - 120	2	15
Sulfate	<1.00		5.00	5.368		mg/L		107	80 - 120	2	15

Lab Sample ID: MB 310-419158/3

Matrix: Water

Analysis Batch: 419158

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<1.00		1.00		mg/L			04/17/24 09:29	1
Fluoride	<0.200		0.200		mg/L			04/17/24 09:29	1
Sulfate	<1.00		1.00		mg/L			04/17/24 09:29	1

Lab Sample ID: LCS 310-419158/4

Matrix: Water

Analysis Batch: 419158

Alialysis Dalcii. 413130								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	10.04		mg/L		100	90 - 110	

Eurofins Cedar Falls

Prep Type: Total/NA

Client: John Deere & Co

Project/Site: John Deere Dubuque Landfill

Job ID: 310-278836-1

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 310-419158/4

Matrix: Water

Analysis Batch: 419158

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits Fluoride 2.00 2.149 mg/L 107 90 - 110 Sulfate 10.0 10.47 mg/L 105 90 - 110

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 310-418777/1-A

Matrix: Water

Analysis Batch: 419007

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 418777

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	<0.0100		0.0100		mg/L		04/15/24 15:46	04/17/24 09:52	1
Boron	<0.200		0.200		mg/L		04/15/24 15:46	04/17/24 09:52	1
Calcium	<1.00		1.00		mg/L		04/15/24 15:46	04/17/24 09:52	1
Iron	<0.500		0.500		mg/L		04/15/24 15:46	04/17/24 09:52	1
Lithium	<0.0500		0.0500		mg/L		04/15/24 15:46	04/17/24 09:52	1
Magnesium	<1.00		1.00		mg/L		04/15/24 15:46	04/17/24 09:52	1
Molybdenum	<0.0500		0.0500		mg/L		04/15/24 15:46	04/17/24 09:52	1

Lab Sample ID: LCS 310-418777/2-A

Matrix: Water

Analysis Batch: 419007

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 418777

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Barium	1.00	1.003		mg/L		100	80 - 120	
Boron	2.00	1.926		mg/L		96	80 - 120	
Calcium	20.0	18.93		mg/L		95	80 - 120	
Iron	2.00	2.009		mg/L		100	80 - 120	
Lithium	2.00	1.994		mg/L		100	80 - 120	
Magnesium	20.0	19.59		mg/L		98	80 - 120	
Molybdenum	2.00	1.976		mg/L		99	80 - 120	

Lab Sample ID: MB 310-418887/1-A

Matrix: Water

Analysis Batch: 419098

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 418887

	MB I	MB							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	<0.0100		0.0100		mg/L		04/17/24 09:00	04/17/24 17:41	1
Boron	<0.200		0.200		mg/L		04/17/24 09:00	04/17/24 17:41	1
Calcium	<1.00		1.00		mg/L		04/17/24 09:00	04/17/24 17:41	1
Iron	<0.500		0.500		mg/L		04/17/24 09:00	04/17/24 17:41	1
Lithium	<0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 17:41	1
Magnesium	<1.00		1.00		mg/L		04/17/24 09:00	04/17/24 17:41	1
Molybdenum	<0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 17:41	1

Lab Sample ID: LCS 310-418887/2-A

Matrix: Water

Analyte

Barium

Analysis Batch: 419098

Prep Batch: 418887 Spike LCS LCS %Rec Added Result Qualifier Unit Limits %Rec 1.00 0.9780 98 80 - 120 mg/L

Eurofins Cedar Falls

Prep Type: Total/NA

Page 25 of 45

7/1/2024 (Rev. 1)

Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCS 310-418887/2-A **Matrix: Water**

Analysis Batch: 419098

Client: John Deere & Co

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 418887** Snika

	Spike	LUS	LUS				70Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Boron	2.00	1.898		mg/L		95	80 - 120	
Calcium	20.0	18.76		mg/L		94	80 - 120	
Iron	2.00	2.089		mg/L		104	80 - 120	
Lithium	2.00	1.957		mg/L		98	80 - 120	
Magnesium	20.0	19.17		mg/L		96	80 - 120	
Molybdenum	2.00	1.962		mg/L		98	80 - 120	

Lab Sample ID: 310-278836-6 DU

Matrix: Water

Analysis Batch: 419098

Client Sample ID: S1 Underliner Open Prep Type: Total/NA

Prep Batch: 418887

DU DU Sample Sample **RPD Analyte** Result Qualifier Result Qualifier Unit **RPD** Limit Barium 0.696 0.6877 mg/L 20 Boron 3.01 2.935 mg/L 3 20 Calcium 86.8 85.56 mg/L 20 Iron <0.500 ^+ <0.500 ^+ NC 20 mg/L Lithium 0.0679 0.06641 mg/L 2 20 Magnesium 42.6 2 20 41.92 mg/L Molybdenum < 0.0500 < 0.0500 mg/L NC 20

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 310-418900/90

Matrix: Water

Analyte

Analysis Batch: 418900

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed Dil Fac Prepared

04/16/24 17:38

Ammonia as N

Analysis Batch: 418900

Lab Sample ID: LCS 310-418900/91 **Client Sample ID: Lab Control Sample**

MDL Unit

mg/L

Matrix: Water Prep Type: Total/NA

RI

0.200

Spike LCS LCS %Rec Added Result Qualifier D %Rec Limits **Analyte** Unit 8.55 90 - 110 Ammonia as N 8.540 mg/L 100

MB MB Result Qualifier

< 0.200

Analysis Batch: 418900

Lab Sample ID: 310-278836-1 MS Client Sample ID: MW-1 **Matrix: Water** Prep Type: Total/NA

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Ammonia as N <0.200 F1 1.00 0.8415 F1 mg/L 90 - 110

Lab Sample ID: 310-278836-1 MSD

Matrix: Water

Analysis Batch: 418900											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ammonia as N	<0.200	F1	1.00	0.8190	F1	mg/L		82	90 - 110	3	10

Eurofins Cedar Falls

Job ID: 310-278836-1

Prep Batch: 419084

Prep Batch: 419084

Project/Site: John Deere Dubuque Landfill

Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: MB 310-419084/1-A Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Client: John Deere & Co

Analysis Batch: 419264

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared 0.500 04/18/24 08:35 04/19/24 09:05 Ammonia as N < 0.500 mg/L

Lab Sample ID: LCS 310-419084/2-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 419264

Analyte

Spike

Added 4.00 Result Qualifier 4.107

LCS LCS

Unit mg/L D %Rec 103

Limits 90 - 110

%Rec

Lab Sample ID: MB 310-419538/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Ammonia as N

Analysis Batch: 419635

MB MB

Result Qualifier Analyte <0.500

Ammonia as N

RL

MDL Unit 0.500 mg/L Prepared

Analyzed Dil Fac 04/23/24 08:34 04/23/24 20:35

Prep Batch: 419538

Lab Sample ID: LCS 310-419538/2-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

RL

0.500

Matrix: Water

Analyte

Analysis Batch: 419635

Spike Added 4.00

LCS LCS Result Qualifier 3.933

Unit mg/L

%Rec %Rec Limits

90 - 110

Prep Type: Total/NA

Prep Batch: 419579

Prep Batch: 419538

Lab Sample ID: MB 310-419579/1-A

Matrix: Water

Ammonia as N

Analysis Batch: 419635

MR MR

Analyte

Result Qualifier <0.500

MDL Unit mg/L Prepared

Analyzed 04/23/24 11:30 04/23/24 22:13

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Dil Fac

Lab Sample ID: LCS 310-419579/2-A

Matrix: Water

Ammonia as N

Analyte

Ammonia as N

Analysis Batch: 419635

Spike Added

4.00

LCS LCS

Result Qualifier 4.164

Unit mg/L D %Rec 104

Prep Batch: 419579 %Rec Limits

Prep Type: Total/NA

Prep Type: Total/NA

Method: 5220D LL - COD

Lab Sample ID: MB 310-419167/32

Matrix: Water

Analysis Batch: 419167

MR MR

Chemical Oxygen Demand <5.00

Result Qualifier

RL 5.00 MDL Unit mg/L D Prepared

Analyzed 04/18/24 14:24

Client Sample ID: Method Blank

90 - 110

Dil Fac

Eurofins Cedar Falls

Client: John Deere & Co

Project/Site: John Deere Dubuque Landfill

Job ID: 310-278836-1

Method: 5220D LL - COD (Continued)

Lab Sample ID: LCS 310-419167/33

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 419167

_	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chemical Oxygen Demand	 125	126.4		mg/L		101	85 - 115		-

Lab Sample ID: MB 310-419553/32

Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 419553

MB MB

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chemical Oxygen Demand	<5.00	5.00	mg/L			04/23/24 09:39	1

Lab Sample ID: MB 310-419553/5

Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 419553

мв мв

	1410 14								
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chemical Oxygen Demand	<5.00		5.00		mg/L			04/23/24 09:39	1

Lab Sample ID: LCS 310-419553/3

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 419553

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chemical Oxygen Demand	 125	123.6		mg/L		99	85 - 115	

Lab Sample ID: LCS 310-419553/33

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 419553

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chemical Oxygen Demand	 125	119.2		mg/L		95	85 - 115	

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 310-418795/1

Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 418795

Prep Type: Total/NA

MB MB **MDL** Unit Analyte Result Qualifier RL Prepared Analyzed 50.0 04/15/24 18:54 **Total Dissolved Solids** <50.0 mg/L

Lab Sample ID: LCS 310-418795/2 **Client Sample ID: Lab Control Sample**

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 418795

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits Total Dissolved Solids 1000 956.0 mg/L 90 - 110

Eurofins Cedar Falls

Dil Fac

QC Sample Results

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: MB 310-418901/1 **Client Sample ID: Method Blank Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 418901

MB MB

MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac 04/16/24 17:30 Total Dissolved Solids <50.0 50.0 mg/L

Lab Sample ID: LCS 310-418901/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 418901

Spike LCS LCS %Rec **Analyte** Added Result Qualifier Unit D %Rec Limits **Total Dissolved Solids** 1000 968.0

90 - 110 mg/L 97

Eurofins Cedar Falls

QC Association Summary

Client: John Deere & Co

Project/Site: John Deere Dubuque Landfill

HPLC/IC

Analysis Batch: 418738

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-278836-1	MW-1	Total/NA	Water	9056A	
310-278836-2	MW-2	Total/NA	Water	9056A	
310-278836-2	MW-2	Total/NA	Water	9056A	
310-278836-3	MW-3	Total/NA	Water	9056A	
310-278836-3	MW-3	Total/NA	Water	9056A	
310-278836-4	Dup-01	Total/NA	Water	9056A	
310-278836-4	Dup-01	Total/NA	Water	9056A	
310-278836-5	EB-01	Total/NA	Water	9056A	
310-278836-6	S1 Underliner Open	Total/NA	Water	9056A	
310-278836-6	S1 Underliner Open	Total/NA	Water	9056A	
310-278836-7	S1 Leachate Open	Total/NA	Water	9056A	
310-278836-7	S1 Leachate Open	Total/NA	Water	9056A	
310-278836-8	S2 Leachate Open	Total/NA	Water	9056A	
310-278836-8	S2 Leachate Open	Total/NA	Water	9056A	
310-278836-8	S2 Leachate Open	Total/NA	Water	9056A	
310-278836-9	Combined Leachate	Total/NA	Water	9056A	
310-278836-9	Combined Leachate	Total/NA	Water	9056A	
310-278836-9	Combined Leachate	Total/NA	Water	9056A	
310-278909-1	S1 Underliner Closed	Total/NA	Water	9056A	
310-278909-2	S2 Underliner Closed	Total/NA	Water	9056A	
310-278909-2	S2 Underliner Closed	Total/NA	Water	9056A	
MB 310-418738/3	Method Blank	Total/NA	Water	9056A	
LCS 310-418738/4	Lab Control Sample	Total/NA	Water	9056A	
310-278836-5 MS	EB-01	Total/NA	Water	9056A	
310-278836-5 MSD	EB-01	Total/NA	Water	9056A	

Analysis Batch: 419158

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-278909-2	S2 Underliner Closed	Total/NA	Water	9056A	
MB 310-419158/3	Method Blank	Total/NA	Water	9056A	
LCS 310-419158/4	Lab Control Sample	Total/NA	Water	9056A	

Metals

Prep Batch: 418777

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-278909-1	S1 Underliner Closed	Total/NA	Water	3005A	
310-278909-2	S2 Underliner Closed	Total/NA	Water	3005A	
MB 310-418777/1-A	Method Blank	Total/NA	Water	3005A	
LCS 310-418777/2-A	Lab Control Sample	Total/NA	Water	3005A	

Prep Batch: 418887

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-278836-1	MW-1	Total/NA	Water	3005A	
310-278836-2	MW-2	Total/NA	Water	3005A	
310-278836-3	MW-3	Total/NA	Water	3005A	
310-278836-4	Dup-01	Total/NA	Water	3005A	
310-278836-5	EB-01	Total/NA	Water	3005A	
310-278836-6	S1 Underliner Open	Total/NA	Water	3005A	
310-278836-7	S1 Leachate Open	Total/NA	Water	3005A	
310-278836-8	S2 Leachate Open	Total/NA	Water	3005A	

Eurofins Cedar Falls

Page 30 of 45

Job ID: 310-278836-1

3

4

6

8

3

11

16

-

QC Association Summary

Client: John Deere & Co

Project/Site: John Deere Dubuque Landfill

Job ID: 310-278836-1

Metals (Continued)

Prep Batch: 418887 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-278836-9	Combined Leachate	Total/NA	Water	3005A	
MB 310-418887/1-A	Method Blank	Total/NA	Water	3005A	
LCS 310-418887/2-A	Lab Control Sample	Total/NA	Water	3005A	
310-278836-6 DU	S1 Underliner Open	Total/NA	Water	3005A	

Analysis Batch: 419007

Lab Sample ID 310-278909-1	Client Sample ID S1 Underliner Closed	Prep Type Total/NA	Matrix Water	Method 6010D	Prep Batch 418777
310-278909-2	S2 Underliner Closed	Total/NA	Water	6010D	418777
MB 310-418777/1-A	Method Blank	Total/NA	Water	6010D	418777
LCS 310-418777/2-A	Lab Control Sample	Total/NA	Water	6010D	418777

Analysis Batch: 419098

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-278836-1	MW-1	Total/NA	Water	6010D	418887
310-278836-2	MW-2	Total/NA	Water	6010D	418887
310-278836-3	MW-3	Total/NA	Water	6010D	418887
310-278836-4	Dup-01	Total/NA	Water	6010D	418887
310-278836-5	EB-01	Total/NA	Water	6010D	418887
310-278836-6	S1 Underliner Open	Total/NA	Water	6010D	418887
310-278836-7	S1 Leachate Open	Total/NA	Water	6010D	418887
310-278836-8	S2 Leachate Open	Total/NA	Water	6010D	418887
310-278836-9	Combined Leachate	Total/NA	Water	6010D	418887
MB 310-418887/1-A	Method Blank	Total/NA	Water	6010D	418887
LCS 310-418887/2-A	Lab Control Sample	Total/NA	Water	6010D	418887
310-278836-6 DU	S1 Underliner Open	Total/NA	Water	6010D	418887

Analysis Batch: 419305

Lab Sample ID 310-278836-7	Client Sample ID S1 Leachate Open	Prep Type Total/NA	Matrix Water	Method 6010D	Prep Batch 418887
310-278836-8	S2 Leachate Open	Total/NA	Water	6010D	418887
310-278836-9	Combined Leachate	Total/NA	Water	6010D	418887

General Chemistry

Analysis Batch: 418795

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-278836-1	MW-1	Total/NA	Water	SM 2540C	
310-278836-2	MW-2	Total/NA	Water	SM 2540C	
310-278836-3	MW-3	Total/NA	Water	SM 2540C	
310-278836-4	Dup-01	Total/NA	Water	SM 2540C	
310-278836-5	EB-01	Total/NA	Water	SM 2540C	
310-278836-6	S1 Underliner Open	Total/NA	Water	SM 2540C	
310-278836-7	S1 Leachate Open	Total/NA	Water	SM 2540C	
310-278836-8	S2 Leachate Open	Total/NA	Water	SM 2540C	
310-278836-9	Combined Leachate	Total/NA	Water	SM 2540C	
MB 310-418795/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 310-418795/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Client: John Deere & Co Job ID: 310-278836-1 Project/Site: John Deere Dubuque Landfill

General Chemistry

Analysis Batch: 418900

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-278836-1	MW-1	Total/NA	Water	350.1	
310-278836-2	MW-2	Total/NA	Water	350.1	
310-278836-3	MW-3	Total/NA	Water	350.1	
310-278836-4	Dup-01	Total/NA	Water	350.1	
310-278836-5	EB-01	Total/NA	Water	350.1	
MB 310-418900/90	Method Blank	Total/NA	Water	350.1	
LCS 310-418900/91	Lab Control Sample	Total/NA	Water	350.1	
310-278836-1 MS	MW-1	Total/NA	Water	350.1	
310-278836-1 MSD	MW-1	Total/NA	Water	350.1	

Analysis Batch: 418901

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-278909-1	S1 Underliner Closed	Total/NA	Water	SM 2540C	
310-278909-2	S2 Underliner Closed	Total/NA	Water	SM 2540C	
MB 310-418901/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 310-418901/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Prep Batch: 419084

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-278836-6	S1 Underliner Open	Total/NA	Water	350.1	
310-278836-7	S1 Leachate Open	Total/NA	Water	350.1	
310-278836-8	S2 Leachate Open	Total/NA	Water	350.1	
MB 310-419084/1-A	Method Blank	Total/NA	Water	350.1	
LCS 310-419084/2-A	Lab Control Sample	Total/NA	Water	350.1	

Analysis Batch: 419167

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-278836-1	MW-1	Total/NA	Water	5220D LL	
310-278836-2	MW-2	Total/NA	Water	5220D LL	
310-278836-3	MW-3	Total/NA	Water	5220D LL	
310-278836-4	Dup-01	Total/NA	Water	5220D LL	
310-278836-5	EB-01	Total/NA	Water	5220D LL	
310-278836-6	S1 Underliner Open	Total/NA	Water	5220D LL	
310-278836-7	S1 Leachate Open	Total/NA	Water	5220D LL	
310-278836-8	S2 Leachate Open	Total/NA	Water	5220D LL	
310-278836-9	Combined Leachate	Total/NA	Water	5220D LL	
MB 310-419167/32	Method Blank	Total/NA	Water	5220D LL	
LCS 310-419167/33	Lab Control Sample	Total/NA	Water	5220D LL	

Analysis Batch: 419264

Lab Sample ID 310-278836-6	Client Sample ID S1 Underliner Open	Prep Type Total/NA	Matrix Water	Method 350.1	Prep Batch 419084
310-278836-7	S1 Leachate Open	Total/NA	Water	350.1	419084
310-278836-8	S2 Leachate Open	Total/NA	Water	350.1	419084
MB 310-419084/1-A	Method Blank	Total/NA	Water	350.1	419084
LCS 310-419084/2-A	Lab Control Sample	Total/NA	Water	350.1	419084

Prep Batch: 419538

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-278909-1	S1 Underliner Closed	Total/NA	Water	350.1	
310-278909-2	S2 Underliner Closed	Total/NA	Water	350.1	

Page 32 of 45

Eurofins Cedar Falls

7/1/2024 (Rev. 1)

QC Association Summary

Client: John Deere & Co

Project/Site: John Deere Dubuque Landfill

Job ID: 310-278836-1

General Chemistry (Continued)

Prep Batch: 419538 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 310-419538/1-A	Method Blank	Total/NA	Water	350.1	
LCS 310-419538/2-A	Lab Control Sample	Total/NA	Water	350.1	

Analysis Batch: 419553

Lab Sample ID 310-278909-1	Client Sample ID S1 Underliner Closed	Prep Type Total/NA	Matrix Water	Method 5220D LL	Prep Batch
310-278909-2	S2 Underliner Closed	Total/NA	Water	5220D LL	
MB 310-419553/32	Method Blank	Total/NA	Water	5220D LL	
MB 310-419553/5	Method Blank	Total/NA	Water	5220D LL	
LCS 310-419553/3	Lab Control Sample	Total/NA	Water	5220D LL	
LCS 310-419553/33	Lab Control Sample	Total/NA	Water	5220D LL	

Prep Batch: 419579

Lab Sample ID 310-278836-9	Client Sample ID Combined Leachate	Prep Type Total/NA	Matrix Water	Method 350.1	Prep Batch
MB 310-419579/1-A	Method Blank	Total/NA	Water	350.1	
LCS 310-419579/2-A	Lab Control Sample	Total/NA	Water	350.1	

Analysis Batch: 419635

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-278836-9	Combined Leachate	Total/NA	Water	350.1	419579
310-278909-1	S1 Underliner Closed	Total/NA	Water	350.1	419538
310-278909-2	S2 Underliner Closed	Total/NA	Water	350.1	419538
MB 310-419538/1-A	Method Blank	Total/NA	Water	350.1	419538
MB 310-419579/1-A	Method Blank	Total/NA	Water	350.1	419579
LCS 310-419538/2-A	Lab Control Sample	Total/NA	Water	350.1	419538
LCS 310-419579/2-A	Lab Control Sample	Total/NA	Water	350.1	419579

4

6

8

9

11

4.0

1 Toject/Oite. John Deere Dubuque Landin

Client Sample ID: MW-1 Lab Sample ID: 310-278836-1

Date Collected: 04/11/24 12:20 Matrix: Water Date Received: 04/12/24 09:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		1	418738	QTZ5	EET CF	04/12/24 15:38
Total/NA	Prep	3005A			418887	KM3E	EET CF	04/17/24 09:00
Total/NA	Analysis	6010D		1	419098	ZRI4	EET CF	04/17/24 18:07
Total/NA	Analysis	350.1		1	418900	ZJX4	EET CF	04/16/24 17:40
Total/NA	Analysis	5220D LL		1	419167	D7CP	EET CF	04/18/24 14:24
Total/NA	Analysis	SM 2540C		1	418795	D7CP	EET CF	04/15/24 18:54

Client Sample ID: MW-2 Lab Sample ID: 310-278836-2

Date Collected: 04/11/24 13:33 Matrix: Water

Date Received: 04/12/24 09:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		1	418738	QTZ5	EET CF	04/12/24 15:51
Total/NA	Analysis	9056A		5	418738	QTZ5	EET CF	04/12/24 19:25
Total/NA	Prep	3005A			418887	KM3E	EET CF	04/17/24 09:00
Total/NA	Analysis	6010D		1	419098	ZRI4	EET CF	04/17/24 18:09
Total/NA	Analysis	350.1		1	418900	ZJX4	EET CF	04/16/24 17:42
Total/NA	Analysis	5220D LL		1	419167	D7CP	EET CF	04/18/24 14:24
Total/NA	Analysis	SM 2540C		1	418795	D7CP	EET CF	04/15/24 18:54

Client Sample ID: MW-3 Lab Sample ID: 310-278836-3

Date Collected: 04/11/24 10:37

Date Received: 04/12/24 09:30

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		1	418738	QTZ5	EET CF	04/12/24 13:07
Total/NA	Analysis	9056A		5	418738	QTZ5	EET CF	04/12/24 13:20
Total/NA	Prep	3005A			418887	KM3E	EET CF	04/17/24 09:00
Total/NA	Analysis	6010D		1	419098	ZRI4	EET CF	04/17/24 18:11
Total/NA	Analysis	350.1		1	418900	ZJX4	EET CF	04/16/24 17:43
Total/NA	Analysis	5220D LL		1	419167	D7CP	EET CF	04/18/24 14:24
Total/NA	Analysis	SM 2540C		1	418795	D7CP	EET CF	04/15/24 18:54

Client Sample ID: Dup-01 Lab Sample ID: 310-278836-4

Date Collected: 04/11/24 00:00 Date Received: 04/12/24 09:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		1	418738	QTZ5	EET CF	04/12/24 12:42
Total/NA	Analysis	9056A		5	418738	QTZ5	EET CF	04/12/24 12:55
Total/NA	Prep	3005A			418887	KM3E	EET CF	04/17/24 09:00
Total/NA	Analysis	6010D		1	419098	ZRI4	EET CF	04/17/24 18:13
Total/NA	Analysis	350.1		1	418900	ZJX4	EET CF	04/16/24 17:43

Eurofins Cedar Falls

Λ

5

7

10

12

4 4

10-278836-4 Matrix: Water

Lab Chronicle

Client: John Deere & Co

Project/Site: John Deere Dubuque Landfill

Client Sample ID: Dup-01

Date Collected: 04/11/24 00:00 Date Received: 04/12/24 09:30 Lab Sample ID: 310-278836-4

Matrix: Water

Job ID: 310-278836-1

Batch Dilution Batch Prepared **Prep Type** Method **Factor** Number Analyst or Analyzed Type Run Lab 04/18/24 14:24 Total/NA Analysis 5220D LL 419167 D7CP EET CF Total/NA Analysis SM 2540C 418795 D7CP EET CF 04/15/24 18:54 1

Client Sample ID: EB-01 Lab Sample ID: 310-278836-5

Date Collected: 04/11/24 13:55 **Matrix: Water**

Date Received: 04/12/24 09:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A			418738	QTZ5	EET CF	04/12/24 16:03
Total/NA	Prep	3005A			418887	KM3E	EET CF	04/17/24 09:00
Total/NA	Analysis	6010D		1	419098	ZRI4	EET CF	04/17/24 18:15
Total/NA	Analysis	350.1		1	418900	ZJX4	EET CF	04/16/24 17:45
Total/NA	Analysis	5220D LL		1	419167	D7CP	EET CF	04/18/24 14:24
Total/NA	Analysis	SM 2540C		1	418795	D7CP	EET CF	04/15/24 18:54

Lab Sample ID: 310-278836-6 Client Sample ID: S1 Underliner Open

Date Collected: 04/11/24 10:40

Date Received: 04/12/24 09:30

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		1	418738	QTZ5	EET CF	04/12/24 13:33
Total/NA	Analysis	9056A		5	418738	QTZ5	EET CF	04/12/24 14:10
Total/NA	Prep	3005A			418887	KM3E	EET CF	04/17/24 09:00
Total/NA	Analysis	6010D		1	419098	ZRI4	EET CF	04/17/24 18:17
Total/NA	Prep	350.1			419084	MQ8M	EET CF	04/18/24 08:35
Total/NA	Analysis	350.1		1	419264	ENB7	EET CF	04/19/24 09:15
Total/NA	Analysis	5220D LL		1	419167	D7CP	EET CF	04/18/24 14:24
Total/NA	Analysis	SM 2540C		1	418795	D7CP	EET CF	04/15/24 18:54

Client Sample ID: S1 Leachate Open Lab Sample ID: 310-278836-7

Date Collected: 04/11/24 11:00 Date Received: 04/12/24 09:30

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Analyst	Lab	Prepared or Analyzed
Total/NA	Analysis	9056A	Kuii	_ <u> </u>	418738		EET CF	04/12/24 14:23
Total/NA	Analysis	9056A		5	418738	QTZ5	EET CF	04/12/24 14:35
Total/NA	Prep	3005A			418887	KM3E	EET CF	04/17/24 09:00
Total/NA	Analysis	6010D		1	419098	ZRI4	EET CF	04/17/24 18:21
Total/NA Total/NA	Prep Analysis	3005A 6010D		1	418887 419305	KM3E ZRI4	EET CF EET CF	04/17/24 09:00 04/19/24 10:59
Total/NA	Prep	350.1			419084	MQ8M	EET CF	04/18/24 08:35
Total/NA	Analysis	350.1		1	419264	ENB7	EET CF	04/19/24 09:17
Total/NA	Analysis	5220D LL		1	419167	D7CP	EET CF	04/18/24 14:24
Total/NA	Analysis	SM 2540C		1	418795	D7CP	EET CF	04/15/24 18:54

Page 35 of 45

Matrix: Water

Matrix: Water

Client: John Deere & Co

Project/Site: John Deere Dubuque Landfill

Client Sample ID: S2 Leachate Open

Date Collected: 04/11/24 11:05 Date Received: 04/12/24 09:30 Lab Sample ID: 310-278836-8

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		1	418738	QTZ5	EET CF	04/12/24 14:48
Total/NA	Analysis	9056A		5	418738	QTZ5	EET CF	04/12/24 15:00
Total/NA	Analysis	9056A		20	418738	QTZ5	EET CF	04/13/24 13:15
Total/NA Total/NA	Prep Analysis	3005A 6010D		1	418887 419098		EET CF EET CF	04/17/24 09:00 04/17/24 18:27
Total/NA Total/NA	Prep Analysis	3005A 6010D		1	418887 419305		EET CF EET CF	04/17/24 09:00 04/19/24 11:01
Total/NA Total/NA	Prep Analysis	350.1 350.1		1	419084 419264		EET CF EET CF	04/18/24 08:35 04/19/24 09:17
Total/NA	Analysis	5220D LL		1	419167	D7CP	EET CF	04/18/24 14:24
Total/NA	Analysis	SM 2540C		1	418795	D7CP	EET CF	04/15/24 18:54

Client Sample ID: Combined Leachate Lab Sample ID: 310-278836-9

Date Collected: 04/11/24 11:10 Date Received: 04/12/24 09:30

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A			418738	QTZ5	EET CF	04/12/24 15:13
Total/NA	Analysis	9056A		5	418738	QTZ5	EET CF	04/12/24 15:26
Total/NA	Analysis	9056A		20	418738	QTZ5	EET CF	04/13/24 13:28
Total/NA	Prep	3005A			418887	KM3E	EET CF	04/17/24 09:00
Total/NA	Analysis	6010D		1	419098	ZRI4	EET CF	04/17/24 18:29
Total/NA	Prep	3005A			418887	KM3E	EET CF	04/17/24 09:00
Total/NA	Analysis	6010D		1	419305	ZRI4	EET CF	04/19/24 11:03
Total/NA	Prep	350.1			419579	MQ8M	EET CF	04/23/24 11:30
Total/NA	Analysis	350.1		1	419635	ZJX4	EET CF	04/23/24 22:23
Total/NA	Analysis	5220D LL		1	419167	D7CP	EET CF	04/18/24 14:24
Total/NA	Analysis	SM 2540C		1	418795	D7CP	EET CF	04/15/24 18:54

Client Sample ID: S1 Underliner Closed Lab Sample ID: 310-278909-1

Date Collected: 04/12/24 11:30 **Matrix: Water**

Date Received: 04/13/24 09:00

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		1	418738	QTZ5	EET CF	04/13/24 13:40
Total/NA	Prep	3005A			418777	QTZ5	EET CF	04/15/24 15:46
Total/NA	Analysis	6010D		1	419007	ZRI4	EET CF	04/17/24 10:46
Total/NA	Prep	350.1			419538	MQ8M	EET CF	04/23/24 08:34
Total/NA	Analysis	350.1		1	419635	ZJX4	EET CF	04/23/24 20:42
Total/NA	Analysis	5220D LL		5	419553	ENB7	EET CF	04/23/24 09:39
Total/NA	Analysis	SM 2540C		1	418901	D7CP	EET CF	04/16/24 17:30

Eurofins Cedar Falls

Lab Chronicle

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: S2 Underliner Closed

Lab Sample ID: 310-278909-2

Date Collected: 04/12/24 11:24 **Matrix: Water** Date Received: 04/13/24 09:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		50	419158	QTZ5	EET CF	04/17/24 10:26
Total/NA	Analysis	9056A		1	418738	QTZ5	EET CF	04/13/24 13:53
Total/NA	Analysis	9056A		5	418738	QTZ5	EET CF	04/13/24 14:09
Total/NA	Prep	3005A			418777	QTZ5	EET CF	04/15/24 15:47
Total/NA	Analysis	6010D		1	419007	ZRI4	EET CF	04/17/24 10:48
Total/NA	Prep	350.1			419538	MQ8M	EET CF	04/23/24 08:34
Total/NA	Analysis	350.1		1	419635	ZJX4	EET CF	04/23/24 20:44
Total/NA	Analysis	5220D LL		5	419553	ENB7	EET CF	04/23/24 09:39
Total/NA	Analysis	SM 2540C		1	418901	D7CP	EET CF	04/16/24 17:30

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Accreditation/Certification Summary

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Laboratory: Eurofins Cedar Falls

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
lowa	State		007	05-27-24
The following analytes	s are included in this repo	rt, but the laboratory is r	not certified by the governing authori	ty. This list may include analyte
for which the agency	does not offer certification	-		
for which the agency of Analysis Method	does not offer certification Prep Method	Matrix	Analyte	
0 ,			Analyte Ammonia as N	
Analysis Method		Matrix		

3

4

5

7

0

. .

12

13

Method Summary

Client: John Deere & Co

Project/Site: John Deere Dubuque Landfill

Method **Method Description** Protocol Laboratory SW846 9056A Anions, Ion Chromatography **EET CF** SW846 6010D Metals (ICP) EET CF **EPA** 350.1 Nitrogen, Ammonia EET CF 5220D LL COD SM EET CF SM 2540C Solids, Total Dissolved (TDS) SM **EET CF** 3005A Preparation, Total Metals SW846 EET CF 350.1 Distillation, Ammonia EPA EET CF

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Job ID: 310-278836-1

Δ

6

6

9

10

13

America

Environment Testing

eurofins

Cooler/Sample Receipt and Temperature Log Form

Client Information				
Client: TRC				
City/State:		STATE	Project:	
Receipt Information				
Date/Time DA	ATE 1-12,24	TIME 930	Received By:	
Delivery Type: UPS	FedEx	<	☐ FedEx Ground ☐ US Mail	☐ Spee-Dee
	Courier 🗌 Lab Fi	ield Services	☐ Client Drop-off ☐ Other:	
Condition of Cooler/Conta	iners			
Sample(s) received in Co	ooler? PYes	☐ No	If yes: Cooler ID:	
Multiple Coolers?	Yes		If yes: Cooler # of _ Z	
Cooler Custody Seals Pro	esent? 🛱 Yes	☐ No	If yes: Cooler custody seals intact?	√ Yes □
Sample Custody Seals P No	resent?	7 No	If yes: Sample custody seals intact	? Yes
Trip Blank Present?	☐ Yes	₩No	If yes: Which VOA samples are in c	cooler? ↓
Temperature Record				
Coolant: Wet ice	Blue ice	☐ Dry ice	Other:	NONE
Thermometer ID:	Ø		Correction Factor (°C):	
 Temp Blank Temperature 	→ If no temp blank, or a second contract to the property of the property	or temp blank ter	perature above criteria, proceed to Sample Co	ontainer Temperature
Uncorrected Temp (°C):	5.1	4	Corrected Temp (°C): 5~(<i>Q</i>
 Sample Container Tempe 				
Container(s) used:	CONTAINER 1		CONTAINER 2	
Uncorrected Temp (°C):				
Corrected Temp (°C):			The state of the s	
Exceptions Noted				-
	•		ved same day of sampling? Yes began? Yes	
2) If temperature is <0°0 (e.g., bulging septa, b	C, are there obvicoroken/cracked b	ous signs that ottles, frozen	the integrity of sample containers is coolid?)	
Note If yes, contact P	M before proceedir	ng If no, proce	ed with login	
Additional Comments				

Document CED-P-SAM-FRM45521 Revision 26 Date 27 Jan 2022

Environment Testing America

Place COC scanning label here

Cooler/Sample Receipt and Temperature Log Form

Client Information					·
Client: TRC	<u> </u>		***		- Market Market Control of Contro
City/State: CITY	STATE	Project:			
Receipt Information	WI				
Date/Time DATE	TIME			***************************************	
Received: 4-12.24	930	Received B	y: Mu		
Delivery Type: UPS PedEx	:	☐ FedEx Gr	ound 🔲 L	JS Mail	☐ Spee-Dee
☐ Lab Courier ☐ Lab Fi	eld Services	☐ Client Dro	p-off 🔲 C	Other:	
Condition of Cooler/Containers					
Sample(s) received in Cooler?	☐ No	If yes: Coo			
Multiple Coolers?	☐ No	If yes: Coo	oler#of		
Cooler Custody Seals Present? Yes	☐ No	If yes: Coo	ler custody sea	Is intact?	l¥es □
Sample Custody Seals Present? Yes	₽No	If yes: San	nple custody se	als intact?] Yes 🔲
Trip Blank Present?	TX WO	<i>If yes:</i> Whi	ch VOA sample	es are in coo	ler? ↓
	,				
			,		
Temperature Record 🚰		,		2	' u,
Coolant: Wet ice Blue ice	☐ Dry ice		·	NO	ONE
Thermometer ID:		Correction F		0	
• Temp Blank Temperature – If no temp blank, o	or temp blank tei	mperature ábove	criteria, proceed to	Sample Conta	iner Temperature
Uncorrected Temp (°C):	9	Corrected T	emp (°C):	4.9	
Sample Container Temperature	1				4,
Container(s) used:			CONTAINER 2		
Uncorrected Temp (°C):					
Corrected Temp (°C):					
Exceptions Noted		} '	c.	·į	·s. /5
If temperature exceeds criteria, was sa a) If yes: Is there evidence that the c			y of sampling?	☐ Yes ☐ Yes	□ No □ No
If temperature is <0°C, are there obvio (e.g., bulging septa, broken/cracked be			of sample conta	ainers is con ☐ Yes	npromised?
Note If yes, contact PM before proceeding	ng. If no, proce	ed with login			
Additional Comments		T	į		v
			1.00.50		

3019 Venture Way Cedar Falls, 1A 50613 Dhynol (340) 377 3404	Chain	Chain of Custody Record	Recor	ס					💸 eurofins	Environment Testin
FIGURE (5.19) 2.11-2401 FIGURE (5.19) 2.11-2423	Sampler		Lab PM:			Carri	Carrier Tracking No(s)		COC No:	7
Client Information	10 87 RJ 15 MZ		Calhoun, Conner M	ner M				9 1	310-91979-20055.1	0.1
Cilent Contact: Wesley Braga	Phone: Cosーンスード	27-1 0	E-Mail: Conner Calhoun@et.eurofinsus.com	un@et.eurc	ofinsus.cor		State of Origin:	<u></u>	Page: Page 1 of 2	
Company TRC Companies		PWSID:			Analysis	sis Reguested	fed	, , , , , , , , , , , , , , , , , , ,	Job #:	
Address.	Due Date Requested:								Preservation Codes:	es:
999 Founer Drive, Ste 101	TAT Deminerhal (demin):									M - Hexane N - None
Madison	i A i Requested (udys).			etet						0 - AsNaO2 P - Na204S
State, Zip: W1, 53717	Compliance Project: A Yes	Δ No		ine pi						Q - Na2SO3 R - Na2S2O3
Phone:	John Deere PO #. 4513542286) 	ide, ar	oy	8			F - MeOH G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate
Email, Word Cofficers of 155, Com	WO #:			e, Fluo	η 'BW 'i	ollos b	***************************************	000000000000000000000000000000000000000		U - Acetone V - MCAA W - pH 4-5
Project Name:" John Deere Dubuque Landfill	Eurofins Project #: 31002706			hlorld		BVIOSE		Contract of	K-EDIA L-EDA	Y - Trizma Z - other (specify)
Site:	SSOW#:			58D- C		id lato		KONTO PARA	Other	
		Sample Matrix Type (W=W=Neter,	S betetili7 IM\&M mt	nia- 350.1 5220D_LL _ORGFM_	sta latoT -	T - bolsO_		JedmuN		
Sample Identification	Sample Date Time	(C=comp, o=waste/oil, G=qrab) BT=Tasse A=Air)	Pleid	cop-		5240C		IntoT	Special In	Special Instructions/Note:
	/ \	- 医乳状腺	X	S		7		S SEEDS		
Mw-1	0221 /2/11//	G Water	્ર	×	×	×		'n	Nitrate- 48hour hold time	ıld time
2-MM	EEE/ 12/11/h	ر Water	<i>S</i>	.×	×	×		<i>/</i> 5		
NW-3	£801 72/11/h	G Water	×		×	×		ħ		
Duf-01	4/11/24	Water	2	×	×	×		4		
E8-01	4/11/14 1355	G Water	×	×	×	X		4 ,		
S1 underliner OPEN	0h01 t2/11/h	G Water	7	×	×	×		þ		
SI Leachate open	0011 \f2/11/h	ζ ₁ water	×	× ×	×	く		f_{ij}		
ارہ ا	4/11/24 1105	G Water	×	χX	ХX	χ		7		
Compined reachate	4/11/24 11#6	G Water	M	$X \mid X \mid X$	ΙX	χ		'		
		Water		•						
		Water								
Possible Hazard Identification	Poison B	Radiological	Samp	ole Disposal (A f Return To Client	l (A fee n Client	ay be asses	assessed if sample Disposal By Lab	ss are retained long	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month Return To Client Disposal By Lab Mod	month) Months
ested. I, II, III, IV, Other (specify)			Speci	Special Instructions/QC Requirements:	ns/QC Re	quirements:				
Empty Kit Relinquished by	Date:		Time:				Method of Shipment	ent		
Relinquished by CAU	Date/Time: 4/11/2014 1530	Company		Received by	\$	ر [Date	Date/Time:	930	Company
Relinquished by	Date/Time:	Company	, and	Received by:	•)	Date	Date/Time:		Company
Relinquished by	Date/Time:	Company	ığ.	Received by:			Date	Date/Time:		Company
Custody Seals Intact: Custody Seal No.			8	ooler Temperal	ure(s) °C an	Cooler Temperature(s) °C and Other Remarks:				
										Ver 01/16/2019

💸 eurofins | Environment Testing

Eurofins Cedar Falls 3019 Venture Way

Environment Testing America

Cooler/Sample Receipt and Temperature Log Form

Client Information				
Client: TCC				A10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
City/State: CITY	STATE	Project:		
Receipt Information				
Date/Time DATE Received: 4-13-24	900	Received By	: Mu	
	dex SAY	☐ FedEx Gro		☐ Spee-Dee
Lab Courier Lab	Field Services	Client Drop	o-off Other:	
Condition of Cooler/Containers				
Sample(s) received in Cooler?	es No	If yes: Cool	er ID:	
-	es Zno	If yes: Cool	er# of	
Cooler Custody Seals Present? Y	'es 🔁 No	If yes: Cool	er custody seals intact	? Yes
Sample Custody Seals Present? Y	es ZbNo	<i>If yes:</i> Sam	ple custody seals intac	t? Yes
Trip Blank Present?	es DNo	If yes: Whic	h VOA samples are in	cooler? ↓
	/			
Temperature Record				
Coolant: Wet ice Blue ice	e 🔲 Dry ice	Other:		NONE
Thermometer ID:		Correction F)
• Temp Blank Temperature – If no temp bla	nk, or temp blank tei	mperature above	criteria, proceed to Sample (Container Temperature
	1,9	Corrected Te	emp (°C):	7
Sample Container Temperature				
Container(s) used:			CONTAINER 2	
Uncorrected Temp (°C):			Approximation of the second of	
Corrected Temp (°C):				
Exceptions Noted				
If temperature exceeds criteria, was a) If yes: Is there evidence that the	. , .	•	of sampling? Ye	
2) If temperature is <0°C, are there of (e.g., bulging septa, broken/cracket			f sample containers is	
NOTE If yes, contact PM before proced	eding. If no, proce	ed with login		
Additional Comments				
	•			

Document CED-P-SAM-FRM45521 Revision: 26 Date 27 Jan 2022

Eurofins Cedar Falls 3019 Venture Way Cedar Falls, 1A 50613 Phone (319) 277-2401 Phone (319) 277-2425	Chain of C	hain of Custody Record	ord		•	💸 eurofins	Environment Testing
Client Information	Sampler S Cd Brogen	Lab PM: Calhoun	Conner M	Carrier Tracking No(s):		COC No: 310-91979-20055	1
Client Contact: Wesley Braga	134, 4	E-Mail: Conner (E-Mail: Conner Calhoun@et.eurofinsus.com	State of Origin:	<u>a a</u>	Page:	
Company TRC Companies	PWSID:		Analys	Analysis Requested	<u>۲</u>	Job #:	
Address: 999 Founer Drive, Ste 101	Due Date Requested:				a. *		s: M - Hexane
City Madison	TAT Requested (days):		e)fate		* B O I	B - NoCH B - NaOH C - Zn Acetate	N - None O - AsNaO2 P - Na2O4S
State, Zip: W1, 53717	Compliance Project: △ Yes △ No		jns pu				2 - Na2SO3 2 - Na2S2O3
トセラナートとて ~ Mandred	John Deere PO #: 4513542286	(0		ah			5 - H2SO4 TSP Dodecahydrate
MON SS. NOWO	WO#		onl∃ 'e	ollos p			V - MCAA W - pH 4-5
	Eurofins Project #: 31002706		hlorid	evioss			Y - Trizma Z - other (specify)
	SSOW#:		8H- NI	otal Di	SELECTION OF SECURITION	Other	
	Sample	Matrix do	7086 - sin 1085 - sin 20226 LL - MRGFM - ARGFM - Stell Ba	T - bolsO_	Илтрег		
Sample Identification	Sample Date Time G=crah)	S-solid, O-waste/oil, OT-Tiene A-Air)	omm/ 3 -do: A9306 _A3306	5240C	lato]	Special Inst	Special Instructions/Note:
Sample definition of		ation Code:		2 2	ST WASSEL		
57 Under Finer Closed	2 asii 12/21/p	Water N		7	3	Nitrate- 48hour hold time	l time
i malant line in Close	h211 f2	Water N	メベメ	×	3		
		Water					
		Water					
		Water					
		Water					
		Water					
		Water					
		Water					
		Water					
		Water					
Identification			Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	nay be assessed if sa	Imples are retained long	l longer than 1 m	nonth)
Deliverable Requested 1, II, III, IV, Other (specify)	Poison B Unknown Kadiological		Special Instructions/QC Requirements.	duirements.		5.0	
Empty Kit Relinquished by	Date:	Time:	.e.	Method of Shipment:	Shipment		
Relinquished by W	Date/Time: [24 545	Company	Received by:	- ')	Date/Time: 4-13-24	900	Сотрапу
Relinduished by		Company	Received by	•	Date/Time:		Company
Relinquished by	Date/Time:	Company	Received by:		Date/Time:		Сотрапу
Custody Seals Intact Custody Seal No.			Cooler Temperature(s) °C and Other Remarks:	d Other Remarks:			
							Ver 01/16/2019

Client: John Deere & Co Job Number: 310-278836-1

Login Number: 278836 List Source: Eurofins Cedar Falls

List Number: 1

Creator: Costello, Mackenzie K

•		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Laboratory Analytical Report October 2024

13

14

ANALYTICAL REPORT

PREPARED FOR

Attn: Austin Shoemaker John Deere & Co 18600 S John Deere Road PO BOX 538 Dubuque, Iowa 52001

Generated 11/18/2024 4:49:27 PM Revision 1

JOB DESCRIPTION

John Deere Dubuque Landfill (TRC)

JOB NUMBER

310-293885-1

Eurofins Cedar Falls 3019 Venture Way Cedar Falls IA 50613

Eurofins Cedar Falls

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 11/18/2024 4:49:27 PM Revision 1

Authorized for release by Conner Calhoun, Client Service Manager Conner.Calhoun@et.eurofinsus.com (319)277-2401

Table of Contents	
Cover Page	1
Table of Contents	
Case Narrative	4
Sample Summary	8
Detection Summary	9
Client Sample Results	12
Definitions	23
QC Sample Results	24
QC Association	31
Chronicle	36
Certification Summary	40
Method Summary	41
Chain of Custody	42
Receipt Checklists	47

Client: John Deere & Co Job ID: 310-293885-1

Project: John Deere Dubuque Landfill (TRC)

Job ID: 310-293885-1 **Eurofins Cedar Falls**

> Job Narrative 310-293885-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/29/2024 8:50 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 2.9°C and 5.2°C.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 5220D LL: The following samples were analyzed at a dilution due to the chloride pre-screening results: MW-3 (310-293885-7) and Dup-01 (310-293885-9). Elevated reporting limits are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cedar Falls

Client: John Deere & Co Job ID: 310-293885-1

Project: John Deere Dubuque Landfill (TRC)

Job ID: 310-293885-2 Eurofins Cedar Falls

Job Narrative 310-293885-2

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/29/2024 8:50 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 2.9°C and 5.2°C.

HPLC/IC

Method 9056A_ORGFM_48H: The following sample(s) was received with less than 2 days remaining on the holding time or less than one shift (8 hours) remaining on a test with a holding time of 48 hours or less. As such, the laboratory had insufficient time remaining to perform the analysis within holding time: Dup-01 (310-293885-9).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cedar Falls

3

5

7

_

1 N

Client: John Deere & Co

Project: John Deere Dubuque Landfill (TRC)

Eurofins Cedar Falls Job ID: 310-293962-1

> Job Narrative 310-293962-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/30/2024 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.1°C.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 310-293885-1

Client: John Deere & Co Job ID: 310-293885-1

Project: John Deere Dubuque Landfill (TRC)

Eurofins Cedar Falls Job ID: 310-293962-2

> Job Narrative 310-293962-2

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/30/2024 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.1°C.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cedar Falls

Sample Summary

Client: John Deere & Co

Project/Site: John Deere Dubuque Landfill (TRC)

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
310-293885-1	S1 Leachate Open	Water	10/28/24 11:30	10/29/24 08:50
310-293885-2	S2 Leachate Open	Water	10/28/24 11:35	10/29/24 08:50
310-293885-3	S1 Underliner Open	Water	10/28/24 11:20	10/29/24 08:50
310-293885-4	Combined Leachate	Water	10/28/24 11:45	10/29/24 08:50
310-293885-5	MW-1	Water	10/28/24 14:57	10/29/24 08:50
310-293885-6	MW-2	Water	10/28/24 13:24	10/29/24 08:50
310-293885-7	MW-3	Water	10/28/24 11:33	10/29/24 08:50
310-293885-8	EB-01	Water	10/28/24 14:35	10/29/24 08:50
310-293885-9	Dup-01	Water	10/28/24 00:00	10/29/24 08:50
310-293962-1	S1 underliner Closed	Water	10/29/24 11:05	10/30/24 09:00
310-293962-2	S2 underliner Closed	Water	10/29/24 11:10	10/30/24 09:00

Job ID: 310-293885-1

3

4

5

O

8

9

10

12

13

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: S1 Leachate Open

Lab Sample ID: 310-293885-1

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	79.8	1.00		mg/L		_	9056A	Total/NA
Fluoride	0.562	0.200		mg/L	1		9056A	Total/NA
Sulfate	43.5	1.00		mg/L	1		9056A	Total/NA
Barium	0.880	0.0100		mg/L	1		6010D	Total/NA
Boron	8.90	0.200		mg/L	1		6010D	Total/NA
Calcium	133	1.00		mg/L	1		6010D	Total/NA
Iron	9.01	0.500		mg/L	1		6010D	Total/NA
Lithium	0.198	0.0500		mg/L	1		6010D	Total/NA
Magnesium	41.3	1.00		mg/L	1		6010D	Total/NA
Ammonia as N	3.67	0.500		mg/L	1		350.1	Total/NA
Chemical Oxygen Demand	31.8	5.00		mg/L	1		5220D LL	Total/NA
Total Dissolved Solids	938	50.0		mg/L	1		SM 2540C	Total/NA

Client Sample ID: S2 Leachate Open

Lab Sample ID: 310-293885-2

Analyte	Result Qu	ualifier RL	MDL Unit	Dil Fac [) Method	Prep Type
Chloride	107	20.0	mg/L	20	9056A	Total/NA
Nitrate as N	0.670	0.200	mg/L	1	9056A	Total/NA
Fluoride	1.02	0.200	mg/L	1	9056A	Total/NA
Sulfate	1210	20.0	mg/L	20	9056A	Total/NA
Barium	0.0299	0.0100	mg/L	1	6010D	Total/NA
Boron	22.5	0.200	mg/L	1	6010D	Total/NA
Calcium	181	1.00	mg/L	1	6010D	Total/NA
Iron	1.20	0.500	mg/L	1	6010D	Total/NA
Lithium	1.12	0.0500	mg/L	1	6010D	Total/NA
Magnesium	143	1.00	mg/L	1	6010D	Total/NA
Molybdenum	0.0547	0.0500	mg/L	1	6010D	Total/NA
Ammonia as N	8.40	0.500	mg/L	1	350.1	Total/NA
Chemical Oxygen Demand	71.9	10.0	mg/L	2	5220D LL	Total/NA
Total Dissolved Solids	2330	250	mg/L	1	SM 2540C	Total/NA

Client Sample ID: S1 Underliner Open

Lab Sample ID: 310-293885-3

Lab Sample ID: 310-293885-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	Method	Prep Type
Chloride	60.2	1.00	mg/L		9056A	Total/NA
Nitrate as N	2.54	0.200	mg/L	1	9056A	Total/NA
Fluoride	0.456	0.200	mg/L	1	9056A	Total/NA
Sulfate	34.1	1.00	mg/L	1	9056A	Total/NA
Barium	0.642	0.0100	mg/L	1	6010D	Total/NA
Boron	3.72	0.200	mg/L	1	6010D	Total/NA
Calcium	92.2	1.00	mg/L	1	6010D	Total/NA
Lithium	0.0743	0.0500	mg/L	1	6010D	Total/NA
Magnesium	38.0	1.00	mg/L	1	6010D	Total/NA
Chemical Oxygen Demand	18.8	5.00	mg/L	1	5220D LL	Total/NA
Total Dissolved Solids	694	50.0	mg/L	1	SM 2540C	Total/NA

Client Sample ID: Combined Leachate

Analyte Result Qualifier MDL Unit Method RL Dil Fac D **Prep Type** Chloride 92.4 1.00 mg/L 9056A Total/NA Nitrate as N 0.894 0.200 9056A Total/NA mg/L 1 9056A Total/NA Fluoride 1.02 0.200 mg/L

This Detection Summary does not include radiochemical test results.

Eurofins Cedar Falls

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: Combined Leachate (Continued)

Lab Sample ID: 310-293885-4

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Sulfate	616	20.0		mg/L	20	_	9056A	Total/NA
Barium	0.317	0.0100		mg/L	1		6010D	Total/NA
Boron	15.7	0.200		mg/L	1		6010D	Total/NA
Calcium	158	1.00		mg/L	1		6010D	Total/NA
Iron	4.37	0.500		mg/L	1		6010D	Total/NA
Lithium	0.651	0.0500		mg/L	1		6010D	Total/NA
Magnesium	93.3	1.00		mg/L	1		6010D	Total/NA
Ammonia as N	5.34	0.500		mg/L	1		350.1	Total/NA
Chemical Oxygen Demand	49.9	10.0		mg/L	2		5220D LL	Total/NA
Total Dissolved Solids	1510	250		mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-1

Lab Sample ID: 310-293885-5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Chloride	4.82	1.00	mg/L		9056A	Total/NA
Sulfate	23.7	1.00	mg/L	1	9056A	Total/NA
Barium	0.0853	0.0100	mg/L	1	6010D	Total/NA
Calcium	68.8	1.00	mg/L	1	6010D	Total/NA
Magnesium	37.9	1.00	mg/L	1	6010D	Total/NA
Chemical Oxygen Demand	12.3	10.0	mg/L	2	5220D LL	Total/NA
Total Dissolved Solids	340	50.0	mg/L	1	SM 2540C	Total/NA

Client Sample ID: MW-2

Lab Sample ID: 310-293885-6

Analyte	Result Qualifier	RL	MDL (Unit	Dil Fac	D	Method	Prep Type
Chloride	7.58	1.00	r	ng/L	1	_	9056A	Total/NA
Nitrate as N	1.52	0.200	r	ng/L	1		9056A	Total/NA
Sulfate	19.9	1.00	r	ng/L	1		9056A	Total/NA
Barium	0.0857	0.0100	r	ng/L	1		6010D	Total/NA
Calcium	101	1.00	r	ng/L	1		6010D	Total/NA
Magnesium	42.1	1.00	r	ng/L	1		6010D	Total/NA
Total Dissolved Solids	424	50.0	r	ng/L	1		SM 2540C	Total/NA

Client Sample ID: MW-3

Lab Sample ID: 310-293885-7

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Chloride	112	5.00	mg/L	5	9056A	Total/NA
Nitrate as N	0.782	0.200	mg/L	1	9056A	Total/NA
Sulfate	119	5.00	mg/L	5	9056A	Total/NA
Barium	0.0628	0.0100	mg/L	1	6010D	Total/NA
Boron	2.35	0.200	mg/L	1	6010D	Total/NA
Calcium	129	1.00	mg/L	1	6010D	Total/NA
Magnesium	59.2	1.00	mg/L	1	6010D	Total/NA
Total Dissolved Solids	810	50.0	mg/L	1	SM 2540C	Total/NA

Client Sample ID: EB-01

Lab Sample ID: 310-293885-8

No Detections.

Client Sample ID: Dup-01

Lab Sample ID: 310-293885-9

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Chloride	7.50	1.00	mg/L		9056A	Total/NA
Nitrate as N	1.53 H	0.200	mg/L	1	9056A	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Cedar Falls

2

3

5

6

8

10

12

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: Dup-01 (Continued)

Lab Sample ID: 310-293885-9

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Sulfate	19.6	1.00	mg/L	1	9056A	Total/NA
Barium	0.0867	0.0100	mg/L	1	6010D	Total/NA
Calcium	100	1.00	mg/L	1	6010D	Total/NA
Magnesium	43.2	1.00	mg/L	1	6010D	Total/NA
Total Dissolved Solids	408	50.0	mg/L	1	SM 2540C	Total/NA

Client Sample ID: S1 underliner Closed

Lab	Sample	ID: 31	10-293962-	1
-----	--------	--------	------------	---

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Chloride	74.9	1.00	mg/L		9056A	Total/NA
Nitrate as N	0.967	0.200	mg/L	1	9056A	Total/NA
Fluoride	0.640	0.200	mg/L	1	9056A	Total/NA
Sulfate	47.5	1.00	mg/L	1	9056A	Total/NA
Barium	0.677	0.0100	mg/L	1	6010D	Total/NA
Boron	8.10	0.200	mg/L	1	6010D	Total/NA
Calcium	123	1.00	mg/L	1	6010D	Total/NA
Iron	6.42	0.500	mg/L	1	6010D	Total/NA
Lithium	0.192	0.0500	mg/L	1	6010D	Total/NA
Magnesium	41.9	1.00	mg/L	1	6010D	Total/NA
Ammonia as N	2.02	0.500	mg/L	1	350.1	Total/NA
Chemical Oxygen Demand	27.4	5.00	mg/L	1	5220D LL	Total/NA
Total Dissolved Solids	880	50.0	mg/L	1	SM 2540C	Total/NA

Client Sample ID: S2 underliner Closed

Lab Sample ID: 310-293962-2

Analyte	Result (Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	376	20.0		mg/L	20	_	9056A	Total/NA
Nitrate as N	1.24	0.200		mg/L	1		9056A	Total/NA
Fluoride	1.41	0.200		mg/L	1		9056A	Total/NA
Sulfate	1380	20.0		mg/L	20		9056A	Total/NA
Barium	0.0359	0.0100		mg/L	1		6010D	Total/NA
Boron	22.7	0.200		mg/L	1		6010D	Total/NA
Calcium	190	1.00		mg/L	1		6010D	Total/NA
Iron	3.06	0.500		mg/L	1		6010D	Total/NA
Lithium	1.13	0.0500		mg/L	1		6010D	Total/NA
Magnesium	149	1.00		mg/L	1		6010D	Total/NA
Ammonia as N	8.06	0.500		mg/L	1		350.1	Total/NA
Chemical Oxygen Demand	69.4	10.0		mg/L	2		5220D LL	Total/NA
Total Dissolved Solids	2250	250		mg/L	1		SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: S1 Leachate Open

Date Collected: 10/28/24 11:30 Date Received: 10/29/24 08:50 Lab Sample ID: 310-293885-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	79.8		1.00		mg/L			10/29/24 23:22	1
Nitrate as N	<0.200		0.200		mg/L			10/29/24 23:22	1
Fluoride	0.562		0.200		mg/L			10/29/24 23:22	1
Sulfate	43.5		1.00		mg/L			10/29/24 23:22	1
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
-		Qualifier		MDL		D	<u>.</u>		Dil Fac
Barium	0.880	Qualifier	0.0100	MDL	mg/L	D	10/31/24 09:30	11/08/24 11:33	Dil Fac
Barium Boron	0.880 8.90	Qualifier	0.0100 0.200	MDL	mg/L mg/L	<u>D</u>	10/31/24 09:30 10/31/24 09:30	11/08/24 11:33 11/08/24 11:33	Dil Fac
Barium Boron	0.880	Qualifier	0.0100	MDL	mg/L	<u>D</u>	10/31/24 09:30	11/08/24 11:33	1 1 1
Barium Boron Calcium	0.880 8.90	Qualifier	0.0100 0.200	MDL	mg/L mg/L	<u> </u>	10/31/24 09:30 10/31/24 09:30	11/08/24 11:33 11/08/24 11:33	1 1 1 1 1
Analyte Barium Boron Calcium Iron Lithium	0.880 8.90 133	Qualifier	0.0100 0.200 1.00	MDL	mg/L mg/L mg/L	<u>D</u>	10/31/24 09:30 10/31/24 09:30 10/31/24 09:30	11/08/24 11:33 11/08/24 11:33 11/08/24 11:33 11/08/24 11:33	Dil Fac 1 1 1 1 1 1 1
Barium Boron Calcium Iron	0.880 8.90 133 9.01	Qualifier	0.0100 0.200 1.00 0.500	MDL	mg/L mg/L mg/L mg/L	<u>D</u>	10/31/24 09:30 10/31/24 09:30 10/31/24 09:30 10/31/24 09:30	11/08/24 11:33 11/08/24 11:33 11/08/24 11:33 11/08/24 11:33 11/08/24 11:33	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	3.67		0.500		mg/L		11/05/24 07:47	11/05/24 19:19	
Chemical Oxygen Demand (SM 5220D LL)	31.8		5.00		mg/L			11/05/24 10:34	,
Phenols, Total (SW846 9066)	<0.0200		0.0200		mg/L		11/01/24 09:05	11/01/24 21:57	•
Total Dissolved Solids (SM 2540C)	938		50.0		mg/L			10/31/24 17:16	· · · · · · · · ·

4

5

7

0

10

12

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: S2 Leachate Open

Date Collected: 10/28/24 11:35 Date Received: 10/29/24 08:50

Ammonia as N (EPA 350.1)

Phenols, Total (SW846 9066)

5220D LL)

Chemical Oxygen Demand (SM

Total Dissolved Solids (SM 2540C)

Lab Sample ID: 310-293885-2

11/05/24 07:47 11/05/24 19:21

11/01/24 09:05 11/01/24 21:58

11/05/24 10:34

10/31/24 17:16

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	107		20.0		mg/L			10/30/24 00:09	20
Nitrate as N	0.670		0.200		mg/L			10/29/24 23:53	1
Fluoride	1.02		0.200		mg/L			10/29/24 23:53	1
Sulfate	1210		20.0		mg/L			10/30/24 00:09	20
Method: SW846 6010D - Me	etals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0299		0.0100		mg/L		10/31/24 09:30	11/08/24 11:35	1
Boron	22.5		0.200		mg/L		10/31/24 09:30	11/08/24 11:35	1
Calcium	181		1.00		mg/L		10/31/24 09:30	11/08/24 11:35	1
Iron	1.20		0.500		mg/L		10/31/24 09:30	11/08/24 11:35	1
Lithium	1.12		0.0500		mg/L		10/31/24 09:30	11/08/24 11:35	1
Magnesium	143		1.00		mg/L		10/31/24 09:30	11/08/24 11:35	1
Molybdenum	0.0547		0.0500		mg/L		10/31/24 09:30	11/08/24 11:35	1
General Chemistry									
Analyte	Result	Qualifier	RI	MDI	Unit	D	Prepared	Analyzed	Dil Fac

0.500

0.0220

250

10.0

mg/L

mg/L

mg/L

mg/L

8.40

71.9

<0.0220

2330

Eurofins Cedar Falls

4

6

<u>۾</u>

9

11

12

13

Ц

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: S1 Underliner Open

Date Collected: 10/28/24 11:20

Iron

Lithium

Magnesium

Molybdenum

Date Received: 10/29/24 08:50

<0.500

0.0743

< 0.0500

38.0

Lab Sample II	D: 310-293885-3
---------------	-----------------

10/31/24 09:30 11/08/24 11:37

10/31/24 09:30 11/08/24 11:37 10/31/24 09:30 11/08/24 11:37

10/31/24 09:30 11/08/24 11:37

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	60.2		1.00		mg/L			10/30/24 00:24	1
Nitrate as N	2.54		0.200		mg/L			10/30/24 00:24	1
Fluoride	0.456		0.200		mg/L			10/30/24 00:24	1
Sulfate	34.1		1.00		mg/L			10/30/24 00:24	1
Method: SW846 6010	O - Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.642		0.0100		mg/L		10/31/24 09:30	11/08/24 11:37	1
Boron	3.72		0.200		mg/L		10/31/24 09:30	11/08/24 11:37	1
Calcium	92.2		1.00		ma/L		10/31/24 09:30	11/08/24 11:37	1

0.500

0.0500

0.0500

1.00

mg/L

mg/L

mg/L

mg/L

_							
General Chemistry Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
Ammonia as N (EPA 350.1)	<0.500	0.500	mg/L		11/05/24 07:47	11/05/24 19:21	
Chemical Oxygen Demand (SM 5220D LL)	18.8	5.00	mg/L			11/05/24 10:34	
Phenols, Total (SW846 9066)	<0.0212	0.0212	mg/L		11/01/24 09:05	11/01/24 21:59	
Total Dissolved Solids (SM 2540C)	694	50.0	mg/L			10/31/24 17:16	

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: Combined Leachate

Lab Sample ID: 310-293885-4

Date Collected: 10/28/24 11:45 Date Received: 10/29/24 08:50

Total Dissolved Solids (SM 2540C)

au	Sample	ID.	J	10-293005-4	
				Matrix: Water	

11/01/24 16:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	92.4		1.00		mg/L			10/30/24 07:57	1
Nitrate as N	0.894		0.200		mg/L			10/30/24 07:57	1
Fluoride	1.02		0.200		mg/L			10/30/24 07:57	1
Sulfate	616		20.0		mg/L			10/30/24 08:12	20
Method: SW846 6010D - Metals	s (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.317		0.0100		mg/L		10/31/24 09:30	11/08/24 11:39	1
Boron	15.7		0.200		mg/L		10/31/24 09:30	11/08/24 11:39	1
Calcium	158		1.00		mg/L		10/31/24 09:30	11/08/24 11:39	1
Iron	4.37		0.500		mg/L		10/31/24 09:30	11/08/24 11:39	1
Lithium	0.651		0.0500		mg/L		10/31/24 09:30	11/08/24 11:39	1
Magnesium	93.3		1.00		mg/L		10/31/24 09:30	11/08/24 11:39	1
Molybdenum	<0.0500		0.0500		mg/L		10/31/24 09:30	11/08/24 11:39	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	5.34		0.500		mg/L		11/05/24 11:57	11/06/24 02:22	1
Chemical Oxygen Demand (SM 5220D LL)	49.9		10.0		mg/L			11/05/24 10:34	2
Phenols, Total (SW846 9066)	< 0.0208		0.0208		mg/L		11/01/24 09:05	11/01/24 21:59	1

250

mg/L

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: MW-1

Lab Sample ID: 310-293885-5 Date Collected: 10/28/24 14:57

Matrix: Water Date Received: 10/29/24 08:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4.82		1.00		mg/L			10/30/24 08:28	1
Nitrate as N	<0.200		0.200		mg/L			10/30/24 08:28	1
Fluoride	<0.200		0.200		mg/L			10/30/24 08:28	1
Sulfate	23.7		1.00		mg/L			10/30/24 08:28	1
Method: SW846 6010D - Metals ((ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0853		0.0100		mg/L		10/31/24 09:30	11/08/24 11:41	1
Boron	<0.200		0.200		mg/L		10/31/24 09:30	11/08/24 11:41	1
Calcium	68.8		1.00		mg/L		10/31/24 09:30	11/08/24 11:41	1
Iron	<0.500		0.500		mg/L		10/31/24 09:30	11/08/24 11:41	1
Lithium	< 0.0500		0.0500		mg/L		10/31/24 09:30	11/08/24 11:41	1
Magnesium	37.9		1.00		mg/L		10/31/24 09:30	11/08/24 11:41	1
Molybdenum	<0.0500		0.0500		mg/L		10/31/24 09:30	11/08/24 11:41	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.200		0.200		mg/L			10/31/24 00:45	1
Chemical Oxygen Demand (SM 5220D LL)	12.3		10.0		mg/L			11/05/24 10:34	2
Phenols, Total (SW846 9066)	<0.0200		0.0200		mg/L		11/01/24 09:05	11/01/24 22:00	1
Total Dissolved Solids (SM 2540C)	340		50.0		mg/L			11/01/24 17:05	1

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Date Received: 10/29/24 08:50

Chemical Oxygen Demand (SM 5220D

Total Dissolved Solids (SM 2540C)

Phenols, Total (SW846 9066)

LL)

<5.00

424

<0.0216

Client Sample ID: MW-2 Lab Sample ID: 310-293885-6

Date Collected: 10/28/24 13:24 **Matrix: Water**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7.58		1.00		mg/L			10/30/24 08:43	1
Nitrate as N	1.52		0.200		mg/L			10/30/24 08:43	1
Fluoride	<0.200		0.200		mg/L			10/30/24 08:43	1
Sulfate	19.9		1.00		mg/L			10/30/24 08:43	1
Method: SW846 6010D - Me	etals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0857		0.0100		mg/L		10/31/24 09:30	11/08/24 11:43	1
Boron	<0.200		0.200		mg/L		10/31/24 09:30	11/08/24 11:43	1
Calcium	101		1.00		mg/L		10/31/24 09:30	11/08/24 11:43	1
Iron	<0.500		0.500		mg/L		10/31/24 09:30	11/08/24 11:43	1
Lithium	<0.0500		0.0500		mg/L		10/31/24 09:30	11/08/24 11:43	1
Magnesium	42.1		1.00		mg/L		10/31/24 09:30	11/08/24 11:43	1
Molybdenum	<0.0500		0.0500		mg/L		10/31/24 09:30	11/08/24 11:43	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.200		0.200		mg/L			10/31/24 00:48	1

5.00

50.0

0.0216

mg/L

mg/L

mg/L

11/05/24 10:34

11/01/24 17:05

11/01/24 09:05 11/01/24 22:01

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: MW-3 Lab Sample ID: 310-293885-7

Date Collected: 10/28/24 11:33 Matrix: Water

Date Received: 10/29/24 08:50

Method: SW846 9056A - Anions	, Ion Chro	matograph	y						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	112		5.00		mg/L			10/30/24 09:46	5
Nitrate as N	0.782		0.200		mg/L			10/30/24 09:30	1
Fluoride	<0.200		0.200		mg/L			10/30/24 09:30	1
Sulfate	119		5.00		mg/L			10/30/24 09:46	5
Method: SW846 6010D - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0628		0.0100		mg/L		11/01/24 09:30	11/10/24 16:58	1
Boron	2.35		0.200		mg/L		11/01/24 09:30	11/10/24 16:58	1
Calcium	129		1.00		mg/L		11/01/24 09:30	11/10/24 16:58	1
Iron	<0.500		0.500		mg/L		11/01/24 09:30	11/10/24 16:58	1
Lithium	< 0.0500		0.0500		mg/L		11/01/24 09:30	11/10/24 16:58	1
Magnesium	59.2		1.00		mg/L		11/01/24 09:30	11/10/24 16:58	1
Molybdenum	<0.0500		0.0500		mg/L		11/01/24 09:30	11/10/24 16:58	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.200		0.200		mg/L			10/31/24 00:52	1
Chemical Oxygen Demand (SM 5220D LL)	<10.0		10.0		mg/L			11/05/24 10:34	2
Phenols, Total (SW846 9066)	<0.0200		0.0200		mg/L		11/01/24 09:05	11/01/24 22:01	1
Total Dissolved Solids (SM 2540C)	810		50.0		mg/L			11/01/24 17:05	1

-

3

5

7

10

11

13

4 /

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: EB-01

Lab Sample ID: 310-293885-8 Date Collected: 10/28/24 14:35

Matrix: Water

Date Received: 10/29/24 08:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<1.00		1.00		mg/L			10/30/24 09:30	1
Nitrate as N	<0.200		0.200		mg/L			10/30/24 09:30	1
Fluoride	<0.200		0.200		mg/L			10/30/24 09:30	1
Sulfate	<1.00		1.00		mg/L			10/30/24 09:30	1
Method: SW846 6010D - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	<0.0100		0.0100		mg/L		11/01/24 09:30	11/10/24 17:12	1
Boron	<0.200		0.200		mg/L		11/01/24 09:30	11/10/24 17:12	1
Calcium	<1.00		1.00		mg/L		11/01/24 09:30	11/10/24 17:12	1
Iron	<0.500		0.500		mg/L		11/01/24 09:30	11/10/24 17:12	1
Lithium	<0.0500		0.0500		mg/L		11/01/24 09:30	11/10/24 17:12	1
Magnesium	<1.00		1.00		mg/L		11/01/24 09:30	11/10/24 17:12	1
Molybdenum	<0.0500		0.0500		mg/L		11/01/24 09:30	11/10/24 17:12	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.200		0.200		mg/L			10/31/24 00:53	1
Chemical Oxygen Demand (SM 5220D LL)	<5.00		5.00		mg/L			11/05/24 10:34	1
Phenols, Total (SW846 9066)	<0.0200		0.0200		mg/L		11/01/24 09:05	11/01/24 22:02	1
Total Dissolved Solids (SM 2540C)	<50.0		50.0		mg/L			11/01/24 17:05	1

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Lab Sample ID: 310-293885-9 **Client Sample ID: Dup-01**

Date Collected: 10/28/24 00:00 **Matrix: Water**

Date Received: 10/29/24 08:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7.50		1.00		mg/L			10/30/24 09:46	1
Nitrate as N	1.53	Н	0.200		mg/L			10/30/24 09:46	1
Fluoride	<0.200		0.200		mg/L			10/30/24 09:46	1
Sulfate	19.6		1.00		mg/L			10/30/24 09:46	1
Method: SW846 6010D - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0867		0.0100		mg/L		11/01/24 09:30	11/10/24 17:14	1
Boron	<0.200		0.200		mg/L		11/01/24 09:30	11/10/24 17:14	1
Calcium	100		1.00		mg/L		11/01/24 09:30	11/10/24 17:14	1
Iron	<0.500		0.500		mg/L		11/01/24 09:30	11/10/24 17:14	1
Lithium	< 0.0500		0.0500		mg/L		11/01/24 09:30	11/10/24 17:14	1
Magnesium	43.2		1.00		mg/L		11/01/24 09:30	11/10/24 17:14	1
Molybdenum	<0.0500		0.0500		mg/L		11/01/24 09:30	11/10/24 17:14	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.200		0.200		mg/L			10/31/24 00:54	1
Chemical Oxygen Demand (SM 5220D LL)	<10.0		10.0		mg/L			11/05/24 10:34	2
Phenols, Total (SW846 9066)	<0.0200		0.0200		mg/L		11/01/24 09:05	11/01/24 22:02	1
Total Dissolved Solids (SM 2540C)	408		50.0		mg/L			11/01/24 17:05	1

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: S1 underliner Closed

Lab Sample ID: 310-293962-1 Date Collected: 10/29/24 11:05

Date Received: 10/30/24 09:00

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	74.9	1.00	mg/L			10/30/24 14:26	1
Nitrate as N	0.967	0.200	mg/L			10/30/24 14:26	1
Fluoride	0.640	0.200	mg/L			10/30/24 14:26	1
Sulfate	47.5	1.00	mg/L			10/30/24 14:26	1

Analyte	Result Q	Qualifier RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Barium	0.677	0.0100	m	ng/L		11/01/24 09:30	11/10/24 17:16	1
Boron	8.10	0.200	m	ng/L		11/01/24 09:30	11/10/24 17:16	1
Calcium	123	1.00	m	ng/L		11/01/24 09:30	11/10/24 17:16	1
Iron	6.42	0.500	m	ng/L		11/01/24 09:30	11/10/24 17:16	1
Lithium	0.192	0.0500	m	ng/L		11/01/24 09:30	11/10/24 17:16	1
Magnesium	41.9	1.00	m	ng/L		11/01/24 09:30	11/10/24 17:16	1
Molybdenum	<0.0500	0.0500	m	ng/L		11/01/24 09:30	11/10/24 17:16	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	2.02		0.500		mg/L		11/05/24 07:47	11/05/24 20:22	1
Chemical Oxygen Demand (SM 5220D LL)	27.4		5.00		mg/L			11/07/24 10:17	1
Phenols, Total (SW846 9066)	<0.0200		0.0200		mg/L		11/01/24 09:05	11/01/24 22:02	1
Total Dissolved Solids (SM 2540C)	880		50.0		mg/L			11/02/24 13:46	1

Matrix: Water

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: S2 underliner Closed

Date Collected: 10/29/24 11:10

Date Received: 10/30/24 09:00

Lab Sample ID: 310-293962-2

Matrix: Water

Analyte	Result C	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	376	20.0	mg/L			10/30/24 14:11	20
Nitrate as N	1.24	0.200	mg/L			10/30/24 13:55	1
Fluoride	1.41	0.200	mg/L			10/30/24 13:55	1
Sulfate	1380	20.0	mg/L			10/30/24 14:11	20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0359		0.0100		mg/L		11/01/24 09:30	11/10/24 17:18	1
Boron	22.7		0.200		mg/L		11/01/24 09:30	11/10/24 17:18	1
Calcium	190		1.00		mg/L		11/01/24 09:30	11/10/24 17:18	1
Iron	3.06		0.500		mg/L		11/01/24 09:30	11/10/24 17:18	1
Lithium	1.13		0.0500		mg/L		11/01/24 09:30	11/10/24 17:18	1
Magnesium	149		1.00		mg/L		11/01/24 09:30	11/10/24 17:18	1
Molybdenum	<0.0500		0.0500		mg/L		11/01/24 09:30	11/10/24 17:18	1

General Chemistry Analyte	Result (Qualifier RL	MDL Unit	t D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	8.06	0.500	mg/		11/05/24 07:47	11/05/24 19:18	1
Chemical Oxygen Demand (SM 5220D LL)	69.4	10.0	mg/	L		11/07/24 10:17	2
Phenols, Total (SW846 9066)	<0.0212	0.0212	mg/	L	11/01/24 09:05	11/01/24 22:03	1
Total Dissolved Solids (SM 2540C)	2250	250	mg/	L		11/02/24 13:46	1

11/18/2024 (Rev. 1)

4

6

9

10

12

13

Definitions/Glossary

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Qualifiers

	. ^	\sim
HP	1 2 /	1 1
	$ldsymbol{L}$	

Qualifier Qualifier Description

H Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.

Metals

4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

Glossary

Abbreviation These commonly used abbreviations may or may not be present	t in this report.
--	-------------------

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

5

7

8

10

13

Client: John Deere & Co

Project/Site: John Deere Dubuque Landfill (TRC)

Job ID: 310-293885-1

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 310-438483/3

Matrix: Water

Analysis Batch: 438483

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac D Prepared Chloride <1.00 1.00 mg/L 10/29/24 21:02 Nitrate as N < 0.200 0.200 mg/L 10/29/24 21:02 Fluoride < 0.200 0.200 10/29/24 21:02 mg/L Sulfate <1.00 1.00 mg/L 10/29/24 21:02

Lab Sample ID: LCS 310-438483/4

Matrix: Water

Analysis Batch: 438483

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	9.171		mg/L		92	90 - 110	
Nitrate as N	2.00	2.051		mg/L		103	90 - 110	
Fluoride	2.00	1.942		mg/L		97	90 - 110	
Sulfate	10.0	9.871		mg/L		99	90 - 110	

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 310-438107/1-A

Matrix: Water

Analysis Batch: 439150

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 438107

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	<0.0100		0.0100		mg/L		10/31/24 09:30	11/08/24 10:19	1
Boron	<0.200		0.200		mg/L		10/31/24 09:30	11/08/24 10:19	1
Calcium	<1.00		1.00		mg/L		10/31/24 09:30	11/08/24 10:19	1
Iron	<0.500		0.500		mg/L		10/31/24 09:30	11/08/24 10:19	1
Lithium	<0.0500		0.0500		mg/L		10/31/24 09:30	11/08/24 10:19	1
Magnesium	<1.00		1.00		mg/L		10/31/24 09:30	11/08/24 10:19	1
Molybdenum	<0.0500		0.0500		mg/L		10/31/24 09:30	11/08/24 10:19	1

Lab Sample ID: LCS 310-438107/2-A

Matrix: Water

Analysis Batch: 439150

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 438107

LCS LCS %Rec Spike Added Analyte Result Qualifier Unit %Rec Limits Barium 1.00 80 - 120 0.9845 mg/L 98 Boron 2.00 1.989 mg/L 99 80 - 120 Calcium 20.0 19.46 97 80 - 120 mg/L Iron 2.00 2.003 mg/L 100 80 - 120 2.00 Lithium 1.942 mg/L 97 80 - 120Magnesium 20.0 19.10 mg/L 95 80 - 120 2.00 101 80 - 120 Molybdenum 2.016 mg/L

Lab Sample ID: MB 310-438269/1-A

Matrix: Water

Analysis Batch: 439249

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 438269

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	<0.0100		0.0100		mg/L		11/01/24 09:30	11/10/24 16:54	1
Boron	< 0.200		0.200		ma/L		11/01/24 09:30	11/10/24 16:54	1

Eurofins Cedar Falls

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: MB 310-438269/1-A

Matrix: Water

Analysis Batch: 439249

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 438269

	MB N	МВ				•	
Analyte	Result (Qualifier RL	MDL Un	nit D	Prepared	Analyzed	Dil Fac
Calcium	<1.00	1.00	mg	g/L	11/01/24 09:30	11/10/24 16:54	1
Iron	<0.500	0.500	mg	g/L	11/01/24 09:30	11/10/24 16:54	1
Lithium	<0.0500	0.0500	mg	g/L	11/01/24 09:30	11/10/24 16:54	1
Magnesium	<1.00	1.00	mg	g/L	11/01/24 09:30	11/10/24 16:54	1
Molybdenum	<0.0500	0.0500	mg	g/L	11/01/24 09:30	11/10/24 16:54	1

Lab Sample ID: LCS 310-438269/2-A

Matrix: Water

Analysis Batch: 439249

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 438269

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Barium	1.00	0.9543		mg/L		95	80 - 120	
Boron	2.00	1.907		mg/L		95	80 - 120	
Calcium	20.0	18.47		mg/L		92	80 - 120	
Iron	2.00	1.925		mg/L		96	80 - 120	
Lithium	2.00	1.850		mg/L		92	80 - 120	
Magnesium	20.0	18.79		mg/L		94	80 - 120	
Molybdenum	2.00	1.906		mg/L		95	80 - 120	

Lab Sample ID: 310-293885-7 MS

Matrix: Water

Analysis Batch: 439249

Client Sample ID: MW-3 Prep Type: Total/NA **Prep Batch: 438269**

%Rec

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Barium	0.0628		1.00	1.021		mg/L		96	75 - 125	
Boron	2.35		2.00	4.317		mg/L		99	75 - 125	
Calcium	129		20.0	148.2	4	mg/L		93	75 - 125	
Iron	<0.500		2.00	2.203		mg/L		97	75 - 125	
Lithium	< 0.0500		2.00	1.916		mg/L		94	75 - 125	
Magnesium	59.2		20.0	78.57		mg/L		97	75 - 125	
Molybdenum	<0.0500		2.00	1.901		mg/L		95	75 - 125	

MS MS

Spike

Sample Sample

Lab Sample ID: 310-293885-7 MSD

Matrix: Water

Analysis Batch: 439249

Client Sample ID: MW-3 Prep Type: Total/NA

Prep Batch: 438269

Alluly 313 Dutolli 400240									i icp be	ALOII. T	100200		
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit		
Barium	0.0628		1.00	1.075		mg/L		101	75 - 125	5	20		
Boron	2.35		2.00	4.507		mg/L		108	75 - 125	4	20		
Calcium	129		20.0	153.3	4	mg/L		119	75 - 125	3	20		
Iron	<0.500		2.00	2.331		mg/L		103	75 - 125	6	20		
Lithium	< 0.0500		2.00	2.018		mg/L		99	75 - 125	5	20		
Magnesium	59.2		20.0	81.52		mg/L		111	75 - 125	4	20		
Molybdenum	<0.0500		2.00	1.999		mg/L		100	75 - 125	5	20		

Eurofins Cedar Falls

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 310-438137/175

Matrix: Water

Analysis Batch: 438137

MB MB Result Qualifier Analyte

Analyzed RL **MDL** Unit Dil Fac D Prepared 10/30/24 22:28 Ammonia as N < 0.200 0.200 mg/L

Lab Sample ID: MB 310-438137/219

Matrix: Water

Analysis Batch: 438137

MB MB

MDL Unit Result Qualifier RL Dil Fac Analyte Prepared Analyzed 0.200 10/31/24 00:47 Ammonia as N < 0.200 mg/L

Lab Sample ID: LCS 310-438137/176

Matrix: Water

Analysis Batch: 438137

Spike LCS LCS %Rec Added Limits Analyte Result Qualifier Unit %Rec Ammonia as N 8.55 8.616 90 - 110 mg/L

Lab Sample ID: LCS 310-438137/220

Matrix: Water

Analysis Batch: 438137

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Ammonia as N 8.55 8.639 mg/L 101 90 - 110

Lab Sample ID: 310-293885-6 MS

Matrix: Water

Analysis Batch: 438137

Sample Sample Spike MS MS %Rec Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits <0.200 1.00 98 90 - 110 Ammonia as N 0.9764 mg/L

Lab Sample ID: 310-293885-6 MSD

Matrix: Water

Analysis Batch: 438137

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Limits **RPD** Analyte Result Qualifier Unit D %Rec Limit <0.200 1 00 Ammonia as N 0.9573 mg/L 96 90 - 110

Lab Sample ID: MB 310-438656/1-A

Matrix: Water

Analysis Batch: 438779

MB MB

Result Qualifier RL MDL Unit Dil Fac Analyte Prepared Analyzed 0.500 11/05/24 07:47 11/05/24 19:09 Ammonia as N < 0.500 mg/L

Lab Sample ID: LCS 310-438656/2-A

Matrix: Water

Analysis Batch: 438779

Prep Batch: 438656 Spike LCS LCS %Rec Added Limits Analyte Result Qualifier Unit %Rec Ammonia as N 90 - 110 4.00 3.809 mg/L 95

Eurofins Cedar Falls

11/18/2024 (Rev. 1)

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: MW-2

Client Sample ID: MW-2 **Prep Type: Total/NA**

Prep Type: Total/NA

Prep Batch: 438656

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Job ID: 310-293885-1

Dil Fac

Client: John Deere & Co

Project/Site: John Deere Dubuque Landfill (TRC)

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 310-438716/1-A

Matrix: Water

Analysis Batch: 438784

MB MB

Result Qualifier Analyte

Ammonia as N < 0.500

RL 0.500 **MDL** Unit mg/L

Prepared

Analyzed 11/05/24 11:57 11/06/24 02:15

Prep Type: Total/NA

Prep Batch: 438716

Lab Sample ID: LCS 310-438716/2-A

Matrix: Water

Analyte

Ammonia as N

Analysis Batch: 438784

Spike Added 4.00 LCS LCS

4.184

Result Qualifier

D %Rec Unit mg/L

105

Client Sample ID: Lab Control Sample

%Rec

Prep Batch: 438716

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Limits

90 - 110

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Method: 5220D LL - COD

Lab Sample ID: MB 310-438691/32

Matrix: Water

Analysis Batch: 438691

MB MB

Analyte

Chemical Oxygen Demand

Result Qualifier <5.00

RL 5.00 **MDL** Unit mg/L Prepared

Dil Fac Analyzed 11/05/24 10:34

Lab Sample ID: MB 310-438691/60

Matrix: Water

Analysis Batch: 438691

MB MB

Analyte Chemical Oxygen Demand

Result Qualifier

<5.00

5.00

RL

RL

5.00

MDL Unit D mg/L

Prepared Analyzed 11/05/24 10:34

Client Sample ID: Method Blank

Dil Fac

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 438691

MB MB

<5.00

Analyte Chemical Oxygen Demand Result Qualifier

MDL Unit

mg/L

Prepared

Analyzed 11/05/24 10:34

Dil Fac

Lab Sample ID: LCS 310-438691/33

Lab Sample ID: MB 310-438691/90

Matrix: Water

Analysis Batch: 438691

Analyte

Chemical Oxygen Demand

Spike Added 125

LCS LCS Result Qualifier 130.5

Unit mg/L

%Rec 104 85 - 110

%Rec Limits

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 310-438691/63 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 438691

Chemical Oxygen Demand

Spike Added 125

130.8

LCS LCS Result Qualifier Unit mg/L

%Rec

%Rec Limits 104 85 _ 110

Eurofins Cedar Falls

Job ID: 310-293885-1

Client: John Deere & Co

Project/Site: John Deere Dubuque Landfill (TRC)

Method: 5220D LL - COD (Continued)

Lab Sample ID: 310-293885-9 MS Client Sample ID: Dup-01 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 438691

Sample Sample Spike MS MS %Rec Result Qualifier Result Qualifier Added %Rec Limits Analyte Unit D **Chemical Oxygen Demand** <10.0 100 125.3 mg/L 125 83 - 146

Lab Sample ID: 310-293885-9 MSD Client Sample ID: Dup-01 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 438691

RPD Sample Sample Spike MSD MSD %Rec Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit 100 83 - 146 Chemical Oxygen Demand <10.0 127.3 mg/L 127

Lab Sample ID: MB 310-438975/32 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 438975

MB MB

Result Qualifier RL Analyte MDL Unit Prepared Analyzed Dil Fac Chemical Oxygen Demand <5.00 5.00 11/07/24 10:17 mg/L

Client Sample ID: Method Blank Lab Sample ID: MB 310-438975/5 **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 438975

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chemical Oxygen Demand <5.00 5.00 11/07/24 10:17 mg/L

Lab Sample ID: LCS 310-438975/3 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 438975

LCS LCS Spike %Rec Added Limits Analyte Result Qualifier Unit %Rec Chemical Oxygen Demand 125 130.8 104 85 - 110 mg/L

Lab Sample ID: LCS 310-438975/91

Matrix: Water

Analysis Batch: 438975

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits 125 Chemical Oxygen Demand 131.8 mg/L 105 85 - 110

Method: 9066 - Phenolics, Total Recoverable

Lab Sample ID: MB 310-438340/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 438471 MR MR

Analyzed Analyte Result Qualifier RL MDL Unit Prepared Dil Fac Phenols, Total 0.0200 11/01/24 09:05 11/01/24 21:56 <0.0200 mg/L

Eurofins Cedar Falls

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 438340

Job ID: 310-293885-1

Client: John Deere & Co

Project/Site: John Deere Dubuque Landfill (TRC)

Method: 9066 - Phenolics, Total Recoverable (Continued)

< 0.0200

Lab Sample ID: LCS 310-438340/25-A Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 438471

Prep Type: Total/NA **Prep Batch: 438340**

%Rec

Spike Added Result Qualifier Limits Analyte Unit %Rec Phenols, Total 0.100 0.09528 mg/L 95 90 - 110

0.100

Lab Sample ID: 310-293885-1 MS Client Sample ID: S1 Leachate Open Prep Type: Total/NA

Matrix: Water

Analyte

Analyte

Phenols, Total

Phenols, Total

Analysis Batch: 438471

Sample Sample Spike Result Qualifier Added

0.09408

MS MS Result Qualifier

D %Rec Unit mg/L

Limits 94

76 - 119

%Rec

Lab Sample ID: 310-293885-1 MSD Client Sample ID: S1 Leachate Open Prep Type: Total/NA

Matrix: Water

Analysis Batch: 438471

Sample Sample Result Qualifier <0.0200

Spike Added 0.100

MSD MSD Result Qualifier 0.09807

LCS LCS

Unit mg/L %Rec

%Rec Limits RPD 76 - 119

Prep Batch: 438340

Prep Batch: 438340

RPD

Limit

16

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 310-438285/1 Client Sample ID: Method Blank Prep Type: Total/NA

RL

Matrix: Water

Analysis Batch: 438285

MB MB

Analyte Total Dissolved Solids Result Qualifier

<50.0 50.0

MDL Unit mq/L Prepared

Analyzed 10/31/24 17:16

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

RPD

Dil Fac

Lab Sample ID: LCS 310-438285/2

Matrix: Water

Analysis Batch: 438285

Analyte Total Dissolved Solids

Spike Added

1000

LCS LCS Result Qualifier 988.0

DU DU

2370

Result Qualifier

Unit mg/L

Unit

mg/L

%Rec Limits

88 - 110

Client Sample ID: S2 Leachate Open

Client Sample ID: Lab Control Sample

Lab Sample ID: 310-293885-2 DU

Matrix: Water

Analysis Batch: 438285

Sample Sample Result Qualifier

Analyte Total Dissolved Solids

Lab Sample ID: MB 310-438459/1

Matrix: Water Analysis Batch: 438459

MR MR Total Dissolved Solids

Result Qualifier <50.0

2330

RL 50.0

MDL Unit mg/L D Prepared

Analyzed 11/01/24 16:00

Client Sample ID: Method Blank

Dil Fac

RPD

Limit

Eurofins Cedar Falls

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

<50.0

Lab Sample ID: LCS 310-438459/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water Analysis Batch: 438459

Spike LCS LCS %Rec

Added Result Qualifier Unit %Rec Limits Analyte D **Total Dissolved Solids** 1000 980.0 mg/L 98 88 - 110

Lab Sample ID: MB 310-438461/1 Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA

mg/L

Analysis Batch: 438461

Total Dissolved Solids

MB MB Result Qualifier RL **MDL** Unit **Prepared** Dil Fac Analyte Analyzed 50.0

Lab Sample ID: LCS 310-438461/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 438461 Spike LCS LCS %Rec

Added Result Qualifier Limits Analyte Unit %Rec Total Dissolved Solids 1000 980.0 98 88 - 110 mg/L

Lab Sample ID: MB 310-438481/1 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 438481 MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Total Dissolved Solids <50.0 50.0 11/02/24 13:46 mg/L

Lab Sample ID: LCS 310-438481/2 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 438481

LCS LCS Spike %Rec Analyte Added Limits Result Qualifier Unit %Rec Total Dissolved Solids 1000 970.0 97 88 - 110 mg/L

Eurofins Cedar Falls

11/18/2024 (Rev. 1)

11/01/24 17:05

Prep Type: Total/NA

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

HPLC/IC

Analysis Batch: 438483

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-293885-1	S1 Leachate Open	Total/NA	Water	9056A	_
310-293885-2	S2 Leachate Open	Total/NA	Water	9056A	
310-293885-2	S2 Leachate Open	Total/NA	Water	9056A	
310-293885-3	S1 Underliner Open	Total/NA	Water	9056A	
310-293885-4	Combined Leachate	Total/NA	Water	9056A	
310-293885-4	Combined Leachate	Total/NA	Water	9056A	
310-293885-5	MW-1	Total/NA	Water	9056A	
310-293885-6	MW-2	Total/NA	Water	9056A	
310-293885-7	MW-3	Total/NA	Water	9056A	
310-293885-7	MW-3	Total/NA	Water	9056A	
310-293885-8	EB-01	Total/NA	Water	9056A	
310-293885-9	Dup-01	Total/NA	Water	9056A	
310-293962-1	S1 underliner Closed	Total/NA	Water	9056A	
310-293962-2	S2 underliner Closed	Total/NA	Water	9056A	
310-293962-2	S2 underliner Closed	Total/NA	Water	9056A	
MB 310-438483/3	Method Blank	Total/NA	Water	9056A	
LCS 310-438483/4	Lab Control Sample	Total/NA	Water	9056A	

Metals

Prep Batch: 438107

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-293885-1	S1 Leachate Open	Total/NA	Water	3005A	
310-293885-2	S2 Leachate Open	Total/NA	Water	3005A	
310-293885-3	S1 Underliner Open	Total/NA	Water	3005A	
310-293885-4	Combined Leachate	Total/NA	Water	3005A	
310-293885-5	MW-1	Total/NA	Water	3005A	
310-293885-6	MW-2	Total/NA	Water	3005A	
MB 310-438107/1-A	Method Blank	Total/NA	Water	3005A	
LCS 310-438107/2-A	Lab Control Sample	Total/NA	Water	3005A	

Prep Batch: 438269

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-293885-7	MW-3	Total/NA	Water	3005A	
310-293885-8	EB-01	Total/NA	Water	3005A	
310-293885-9	Dup-01	Total/NA	Water	3005A	
310-293962-1	S1 underliner Closed	Total/NA	Water	3005A	
310-293962-2	S2 underliner Closed	Total/NA	Water	3005A	
MB 310-438269/1-A	Method Blank	Total/NA	Water	3005A	
LCS 310-438269/2-A	Lab Control Sample	Total/NA	Water	3005A	
310-293885-7 MS	MW-3	Total/NA	Water	3005A	
310-293885-7 MSD	MW-3	Total/NA	Water	3005A	

Analysis Batch: 439150

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-293885-1	S1 Leachate Open	Total/NA	Water	6010D	438107
310-293885-2	S2 Leachate Open	Total/NA	Water	6010D	438107
310-293885-3	S1 Underliner Open	Total/NA	Water	6010D	438107
310-293885-4	Combined Leachate	Total/NA	Water	6010D	438107
310-293885-5	MW-1	Total/NA	Water	6010D	438107
310-293885-6	MW-2	Total/NA	Water	6010D	438107

Eurofins Cedar Falls

Page 31 of 47 11/18/2024 (Rev. 1)

2

3

4

6

Q

9

10

12

13

1 /

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Metals (Continued)

Analysis Batch: 439150 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 310-438107/1-A	Method Blank	Total/NA	Water	6010D	438107
LCS 310-438107/2-A	Lab Control Sample	Total/NA	Water	6010D	438107

Analysis Batch: 439201

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-293885-1	S1 Leachate Open	Total/NA	Water	6010D	438107
310-293885-2	S2 Leachate Open	Total/NA	Water	6010D	438107
310-293885-3	S1 Underliner Open	Total/NA	Water	6010D	438107
310-293885-4	Combined Leachate	Total/NA	Water	6010D	438107
310-293885-5	MW-1	Total/NA	Water	6010D	438107
310-293885-6	MW-2	Total/NA	Water	6010D	438107
MB 310-438107/1-A	Method Blank	Total/NA	Water	6010D	438107
LCS 310-438107/2-A	Lab Control Sample	Total/NA	Water	6010D	438107

Analysis Batch: 439249

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-293885-7	MW-3	Total/NA	Water	6010D	438269
310-293885-8	EB-01	Total/NA	Water	6010D	438269
310-293885-9	Dup-01	Total/NA	Water	6010D	438269
310-293962-1	S1 underliner Closed	Total/NA	Water	6010D	438269
310-293962-2	S2 underliner Closed	Total/NA	Water	6010D	438269
MB 310-438269/1-A	Method Blank	Total/NA	Water	6010D	438269
LCS 310-438269/2-A	Lab Control Sample	Total/NA	Water	6010D	438269
310-293885-7 MS	MW-3	Total/NA	Water	6010D	438269
310-293885-7 MSD	MW-3	Total/NA	Water	6010D	438269

General Chemistry

Analysis Batch: 438137

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-293885-5	MW-1	Total/NA	Water	350.1	
310-293885-6	MW-2	Total/NA	Water	350.1	
310-293885-7	MW-3	Total/NA	Water	350.1	
310-293885-8	EB-01	Total/NA	Water	350.1	
310-293885-9	Dup-01	Total/NA	Water	350.1	
MB 310-438137/175	Method Blank	Total/NA	Water	350.1	
MB 310-438137/219	Method Blank	Total/NA	Water	350.1	
LCS 310-438137/176	Lab Control Sample	Total/NA	Water	350.1	
LCS 310-438137/220	Lab Control Sample	Total/NA	Water	350.1	
310-293885-6 MS	MW-2	Total/NA	Water	350.1	
310-293885-6 MSD	MW-2	Total/NA	Water	350.1	

Analysis Batch: 438285

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-293885-1	S1 Leachate Open	Total/NA	Water	SM 2540C	
310-293885-2	S2 Leachate Open	Total/NA	Water	SM 2540C	
310-293885-3	S1 Underliner Open	Total/NA	Water	SM 2540C	
MB 310-438285/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 310-438285/2	Lab Control Sample	Total/NA	Water	SM 2540C	
310-293885-2 DU	S2 Leachate Open	Total/NA	Water	SM 2540C	

Page 32 of 47

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

General Chemistry

Prep Batch: 438340

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-293885-1	S1 Leachate Open	Total/NA	Water	Distill/Phenol	
310-293885-2	S2 Leachate Open	Total/NA	Water	Distill/Phenol	
310-293885-3	S1 Underliner Open	Total/NA	Water	Distill/Phenol	
310-293885-4	Combined Leachate	Total/NA	Water	Distill/Phenol	
310-293885-5	MW-1	Total/NA	Water	Distill/Phenol	
310-293885-6	MW-2	Total/NA	Water	Distill/Phenol	
310-293885-7	MW-3	Total/NA	Water	Distill/Phenol	
310-293885-8	EB-01	Total/NA	Water	Distill/Phenol	
310-293885-9	Dup-01	Total/NA	Water	Distill/Phenol	
310-293962-1	S1 underliner Closed	Total/NA	Water	Distill/Phenol	
310-293962-2	S2 underliner Closed	Total/NA	Water	Distill/Phenol	
MB 310-438340/1-A	Method Blank	Total/NA	Water	Distill/Phenol	
LCS 310-438340/25-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	
310-293885-1 MS	S1 Leachate Open	Total/NA	Water	Distill/Phenol	
310-293885-1 MSD	S1 Leachate Open	Total/NA	Water	Distill/Phenol	

Analysis Batch: 438459

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-293885-4	Combined Leachate	Total/NA	Water	SM 2540C	
MB 310-438459/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 310-438459/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 438461

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-293885-5	MW-1	Total/NA	Water	SM 2540C	
310-293885-6	MW-2	Total/NA	Water	SM 2540C	
310-293885-7	MW-3	Total/NA	Water	SM 2540C	
310-293885-8	EB-01	Total/NA	Water	SM 2540C	
310-293885-9	Dup-01	Total/NA	Water	SM 2540C	
MB 310-438461/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 310-438461/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 438471

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-293885-1	S1 Leachate Open	Total/NA	Water	9066	438340
310-293885-2	S2 Leachate Open	Total/NA	Water	9066	438340
310-293885-3	S1 Underliner Open	Total/NA	Water	9066	438340
310-293885-4	Combined Leachate	Total/NA	Water	9066	438340
310-293885-5	MW-1	Total/NA	Water	9066	438340
310-293885-6	MW-2	Total/NA	Water	9066	438340
310-293885-7	MW-3	Total/NA	Water	9066	438340
310-293885-8	EB-01	Total/NA	Water	9066	438340
310-293885-9	Dup-01	Total/NA	Water	9066	438340
310-293962-1	S1 underliner Closed	Total/NA	Water	9066	438340
310-293962-2	S2 underliner Closed	Total/NA	Water	9066	438340
MB 310-438340/1-A	Method Blank	Total/NA	Water	9066	438340
LCS 310-438340/25-A	Lab Control Sample	Total/NA	Water	9066	438340
310-293885-1 MS	S1 Leachate Open	Total/NA	Water	9066	438340
310-293885-1 MSD	S1 Leachate Open	Total/NA	Water	9066	438340

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

General Chemistry

Analysis Batch: 438481

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-293962-1	S1 underliner Closed	Total/NA	Water	SM 2540C	
310-293962-2	S2 underliner Closed	Total/NA	Water	SM 2540C	
MB 310-438481/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 310-438481/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Prep Batch: 438656

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-293885-1	S1 Leachate Open	Total/NA	Water	350.1	
310-293885-2	S2 Leachate Open	Total/NA	Water	350.1	
310-293885-3	S1 Underliner Open	Total/NA	Water	350.1	
310-293962-1	S1 underliner Closed	Total/NA	Water	350.1	
310-293962-2	S2 underliner Closed	Total/NA	Water	350.1	
MB 310-438656/1-A	Method Blank	Total/NA	Water	350.1	
LCS 310-438656/2-A	Lab Control Sample	Total/NA	Water	350.1	

Analysis Batch: 438691

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-293885-1	S1 Leachate Open	Total/NA	Water	5220D LL	
310-293885-2	S2 Leachate Open	Total/NA	Water	5220D LL	
310-293885-3	S1 Underliner Open	Total/NA	Water	5220D LL	
310-293885-4	Combined Leachate	Total/NA	Water	5220D LL	
310-293885-5	MW-1	Total/NA	Water	5220D LL	
310-293885-6	MW-2	Total/NA	Water	5220D LL	
310-293885-7	MW-3	Total/NA	Water	5220D LL	
310-293885-8	EB-01	Total/NA	Water	5220D LL	
310-293885-9	Dup-01	Total/NA	Water	5220D LL	
MB 310-438691/32	Method Blank	Total/NA	Water	5220D LL	
MB 310-438691/60	Method Blank	Total/NA	Water	5220D LL	
MB 310-438691/90	Method Blank	Total/NA	Water	5220D LL	
LCS 310-438691/33	Lab Control Sample	Total/NA	Water	5220D LL	
LCS 310-438691/63	Lab Control Sample	Total/NA	Water	5220D LL	
310-293885-9 MS	Dup-01	Total/NA	Water	5220D LL	
310-293885-9 MSD	Dup-01	Total/NA	Water	5220D LL	

Prep Batch: 438716

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-293885-4	Combined Leachate	Total/NA	Water	350.1	
MB 310-438716/1-A	Method Blank	Total/NA	Water	350.1	
LCS 310-438716/2-A	Lab Control Sample	Total/NA	Water	350.1	

Analysis Batch: 438779

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-293885-1	S1 Leachate Open	Total/NA	Water	350.1	438656
310-293885-2	S2 Leachate Open	Total/NA	Water	350.1	438656
310-293885-3	S1 Underliner Open	Total/NA	Water	350.1	438656
310-293962-1	S1 underliner Closed	Total/NA	Water	350.1	438656
310-293962-2	S2 underliner Closed	Total/NA	Water	350.1	438656
MB 310-438656/1-A	Method Blank	Total/NA	Water	350.1	438656
LCS 310-438656/2-A	Lab Control Sample	Total/NA	Water	350.1	438656

Eurofins Cedar Falls

2

3

4

6

8

9

11

12

4 4

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

General Chemistry

Analysis Batch: 438784

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-293885-4	Combined Leachate	Total/NA	Water	350.1	438716
MB 310-438716/1-A	Method Blank	Total/NA	Water	350.1	438716
LCS 310-438716/2-A	Lab Control Sample	Total/NA	Water	350.1	438716

Analysis Batch: 438975

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-293962-1	S1 underliner Closed	Total/NA	Water	5220D LL	
310-293962-2	S2 underliner Closed	Total/NA	Water	5220D LL	
MB 310-438975/32	Method Blank	Total/NA	Water	5220D LL	
MB 310-438975/5	Method Blank	Total/NA	Water	5220D LL	
LCS 310-438975/3	Lab Control Sample	Total/NA	Water	5220D LL	
LCS 310-438975/91	Lab Control Sample	Total/NA	Water	5220D LL	

3

4

6

7

9

10

12

13

Client: John Deere & Co

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: S1 Leachate Open

Date Collected: 10/28/24 11:30 Date Received: 10/29/24 08:50 Lab Sample ID: 310-293885-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A			438483	WZC8	EET CF	10/29/24 23:22
Total/NA	Prep	3005A			438107	F5MW	EET CF	10/31/24 09:30
Total/NA	Analysis	6010D		1	439150	ZRI4	EET CF	11/08/24 11:33
Total/NA	Prep	3005A			438107	F5MW	EET CF	10/31/24 09:30
Total/NA	Analysis	6010D		1	439201	ZRI4	EET CF	11/08/24 11:33
Total/NA	Prep	350.1			438656	MQ8M	EET CF	11/05/24 07:47
Total/NA	Analysis	350.1		1	438779	ZJX4	EET CF	11/05/24 19:19
Total/NA	Analysis	5220D LL		1	438691	HE7K	EET CF	11/05/24 10:34
Total/NA	Prep	Distill/Phenol			438340	HE7K	EET CF	11/01/24 09:05
Total/NA	Analysis	9066		1	438471	ZJX4	EET CF	11/01/24 21:57
Total/NA	Analysis	SM 2540C		1	438285	XJ7V	EET CF	10/31/24 17:16

Client Sample ID: S2 Leachate Open

Date Collected: 10/28/24 11:35

Date Received: 10/29/24 08:50

Lab Sample ID: 310-293885-2

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A			438483	WZC8	EET CF	10/29/24 23:53
Total/NA	Analysis	9056A		20	438483	WZC8	EET CF	10/30/24 00:09
Total/NA	Prep	3005A			438107	F5MW	EET CF	10/31/24 09:30
Total/NA	Analysis	6010D		1	439150	ZRI4	EET CF	11/08/24 11:35
Total/NA	Prep	3005A			438107	F5MW	EET CF	10/31/24 09:30
Total/NA	Analysis	6010D		1	439201	ZRI4	EET CF	11/08/24 11:35
Total/NA	Prep	350.1			438656	MQ8M	EET CF	11/05/24 07:47
Total/NA	Analysis	350.1		1	438779	ZJX4	EET CF	11/05/24 19:21
Total/NA	Analysis	5220D LL		2	438691	HE7K	EET CF	11/05/24 10:34
Total/NA	Prep	Distill/Phenol			438340	HE7K	EET CF	11/01/24 09:05
Total/NA	Analysis	9066		1	438471	ZJX4	EET CF	11/01/24 21:58
Total/NA	Analysis	SM 2540C		1	438285	XJ7V	EET CF	10/31/24 17:16

Client Sample ID: S1 Underliner Open

Date Collected: 10/28/24 11:20

Date Received: 10/29/24 08:50

EET CF	10/31/24 17:16
Lab	Sample ID: 310-293885-3 Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A			438483	WZC8	EET CF	10/30/24 00:24
Total/NA	Prep	3005A			438107	F5MW	EET CF	10/31/24 09:30
Total/NA	Analysis	6010D		1	439150	ZRI4	EET CF	11/08/24 11:37
Total/NA	Prep	3005A			438107	F5MW	EET CF	10/31/24 09:30
Total/NA	Analysis	6010D		1	439201	ZRI4	EET CF	11/08/24 11:37
Total/NA	Prep	350.1			438656	MQ8M	EET CF	11/05/24 07:47
Total/NA	Analysis	350.1		1	438779	ZJX4	EET CF	11/05/24 19:21
Total/NA	Analysis	5220D LL		1	438691	HE7K	EET CF	11/05/24 10:34

Eurofins Cedar Falls

Client: John Deere & Co Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: S1 Underliner Open

Date Collected: 10/28/24 11:20 Date Received: 10/29/24 08:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	Distill/Phenol			438340	HE7K	EET CF	11/01/24 09:05
Total/NA	Analysis	9066		1	438471	ZJX4	EET CF	11/01/24 21:59
Total/NA	Analysis	SM 2540C		1	438285	XJ7V	EET CF	10/31/24 17:16

Client Sample ID: Combined Leachate

Date Collected: 10/28/24 11:45 Date Received: 10/29/24 08:50

е	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
p	Distill/Phenol			438340	HE7K	EET CF	11/01/24 09:05
lysis	9066		1	438471	ZJX4	EET CF	11/01/24 21:59
lysis	SM 2540C		1	438285	XJ7V	EET CF	10/31/24 17:16

Lab Sample ID: 310-293885-4

Lab Sample ID: 310-293885-3

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A			438483	WZC8	EET CF	10/30/24 07:57
Total/NA	Analysis	9056A		20	438483	WZC8	EET CF	10/30/24 08:12
Total/NA	Prep	3005A			438107	F5MW	EET CF	10/31/24 09:30
Total/NA	Analysis	6010D		1	439150	ZRI4	EET CF	11/08/24 11:39
Total/NA	Prep	3005A			438107	F5MW	EET CF	10/31/24 09:30
Total/NA	Analysis	6010D		1	439201	ZRI4	EET CF	11/08/24 11:39
Total/NA	Prep	350.1			438716	MQ8M	EET CF	11/05/24 11:57
Total/NA	Analysis	350.1		1	438784	ZJX4	EET CF	11/06/24 02:22
Total/NA	Analysis	5220D LL		2	438691	HE7K	EET CF	11/05/24 10:34
Total/NA	Prep	Distill/Phenol			438340	HE7K	EET CF	11/01/24 09:05
Total/NA	Analysis	9066		1	438471	ZJX4	EET CF	11/01/24 21:59
Total/NA	Analysis	SM 2540C		1	438459	XJ7V	EET CF	11/01/24 16:00

Client Sample ID: MW-1 Lab Sample ID: 310-293885-5 Date Collected: 10/28/24 14:57 **Matrix: Water**

Date Received: 10/29/24 08:50

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A			438483	WZC8	EET CF	10/30/24 08:28
Total/NA	Prep	3005A			438107	F5MW	EET CF	10/31/24 09:30
Total/NA	Analysis	6010D		1	439150	ZRI4	EET CF	11/08/24 11:41
Total/NA	Prep	3005A			438107	F5MW	EET CF	10/31/24 09:30
Total/NA	Analysis	6010D		1	439201	ZRI4	EET CF	11/08/24 11:41
Total/NA	Analysis	350.1		1	438137	ZJX4	EET CF	10/31/24 00:45
Total/NA	Analysis	5220D LL		2	438691	HE7K	EET CF	11/05/24 10:34
Total/NA	Prep	Distill/Phenol			438340	HE7K	EET CF	11/01/24 09:05
Total/NA	Analysis	9066		1	438471	ZJX4	EET CF	11/01/24 22:00
Total/NA	Analysis	SM 2540C		1	438461	XJ7V	EET CF	11/01/24 17:05

Client Sample ID: MW-2 Lab Sample ID: 310-293885-6 Date Collected: 10/28/24 13:24 **Matrix: Water**

Date Received: 10/29/24 08:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		1	438483	WZC8	EET CF	10/30/24 08:43

Eurofins Cedar Falls

Lab Chronicle

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: MW-2

Date Collected: 10/28/24 13:24 Date Received: 10/29/24 08:50 Lab Sample ID: 310-293885-6

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3005A			438107	F5MW	EET CF	10/31/24 09:30
Total/NA	Analysis	6010D		1	439150	ZRI4	EET CF	11/08/24 11:43
Total/NA	Prep	3005A			438107	F5MW	EET CF	10/31/24 09:30
Total/NA	Analysis	6010D		1	439201	ZRI4	EET CF	11/08/24 11:43
Total/NA	Analysis	350.1		1	438137	ZJX4	EET CF	10/31/24 00:48
Total/NA	Analysis	5220D LL		1	438691	HE7K	EET CF	11/05/24 10:34
Total/NA	Prep	Distill/Phenol			438340	HE7K	EET CF	11/01/24 09:05
Total/NA	Analysis	9066		1	438471	ZJX4	EET CF	11/01/24 22:01
Total/NA	Analysis	SM 2540C		1	438461	XJ7V	EET CF	11/01/24 17:05

Client Sample ID: MW-3 Lab Sample ID: 310-293885-7

Date Collected: 10/28/24 11:33 Matrix: Water

Date Received: 10/29/24 08:50

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A			438483	WZC8	EET CF	10/30/24 09:30
Total/NA	Analysis	9056A		5	438483	WZC8	EET CF	10/30/24 09:46
Total/NA	Prep	3005A			438269	F5MW	EET CF	11/01/24 09:30
Total/NA	Analysis	6010D		1	439249	ZRI4	EET CF	11/10/24 16:58
Total/NA	Analysis	350.1		1	438137	ZJX4	EET CF	10/31/24 00:52
Total/NA	Analysis	5220D LL		2	438691	HE7K	EET CF	11/05/24 10:34
Total/NA	Prep	Distill/Phenol			438340	HE7K	EET CF	11/01/24 09:05
Total/NA	Analysis	9066		1	438471	ZJX4	EET CF	11/01/24 22:01
Total/NA	Analysis	SM 2540C		1	438461	XJ7V	EET CF	11/01/24 17:05

Client Sample ID: EB-01 Lab Sample ID: 310-293885-8

Date Collected: 10/28/24 14:35 Date Received: 10/29/24 08:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		1	438483	WZC8	EET CF	10/30/24 09:30
Total/NA	Prep	3005A			438269	F5MW	EET CF	11/01/24 09:30
Total/NA	Analysis	6010D		1	439249	ZRI4	EET CF	11/10/24 17:12
Total/NA	Analysis	350.1		1	438137	ZJX4	EET CF	10/31/24 00:53
Total/NA	Analysis	5220D LL		1	438691	HE7K	EET CF	11/05/24 10:34
Total/NA	Prep	Distill/Phenol			438340	HE7K	EET CF	11/01/24 09:05
Total/NA	Analysis	9066		1	438471	ZJX4	EET CF	11/01/24 22:02
Total/NA	Analysis	SM 2540C		1	438461	XJ7V	EET CF	11/01/24 17:05

Eurofins Cedar Falls

-

5

7

9

4 4

12

Lab Chronicle

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: Dup-01

Date Received: 10/29/24 08:50

Lab Sample ID: 310-293885-9 Date Collected: 10/28/24 00:00

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		1	438483	WZC8	EET CF	10/30/24 09:46
Total/NA	Prep	3005A			438269	F5MW	EET CF	11/01/24 09:30
Total/NA	Analysis	6010D		1	439249	ZRI4	EET CF	11/10/24 17:14
Total/NA	Analysis	350.1		1	438137	ZJX4	EET CF	10/31/24 00:54
Total/NA	Analysis	5220D LL		2	438691	HE7K	EET CF	11/05/24 10:34
Total/NA	Prep	Distill/Phenol			438340	HE7K	EET CF	11/01/24 09:05
Total/NA	Analysis	9066		1	438471	ZJX4	EET CF	11/01/24 22:02
Total/NA	Analysis	SM 2540C		1	438461	XJ7V	EET CF	11/01/24 17:05

Client Sample ID: S1 underliner Closed

Date Collected: 10/29/24 11:05 Date Received: 10/30/24 09:00

Lab Sample ID: 310-293962-1

Lab Sample ID: 310-293962-2

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		1	438483	WZC8	EET CF	10/30/24 14:26
Total/NA	Prep	3005A			438269	F5MW	EET CF	11/01/24 09:30
Total/NA	Analysis	6010D		1	439249	ZRI4	EET CF	11/10/24 17:16
Total/NA	Prep	350.1			438656	MQ8M	EET CF	11/05/24 07:47
Total/NA	Analysis	350.1		1	438779	ZJX4	EET CF	11/05/24 20:22
Total/NA	Analysis	5220D LL		1	438975	HE7K	EET CF	11/07/24 10:17
Total/NA	Prep	Distill/Phenol			438340	HE7K	EET CF	11/01/24 09:05
Total/NA	Analysis	9066		1	438471	ZJX4	EET CF	11/01/24 22:02
Total/NA	Analysis	SM 2540C		1	438481	XJ7V	EET CF	11/02/24 13:46

Client Sample ID: S2 underliner Closed

Date Collected: 10/29/24 11:10 Date Received: 10/30/24 09:00									
	Batch	Batch		Dilution	Batch			Prepared	
Prep Type Total/NA	Type Analysis	Method 9056A	Run	Factor 1	Number 438483		Lab EET CF	or Analyzed 10/30/24 13:55	

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A			438483	WZC8	EET CF	10/30/24 13:55
Total/NA	Analysis	9056A		20	438483	WZC8	EET CF	10/30/24 14:11
Total/NA	Prep	3005A			438269	F5MW	EET CF	11/01/24 09:30
Total/NA	Analysis	6010D		1	439249	ZRI4	EET CF	11/10/24 17:18
Total/NA	Prep	350.1			438656	MQ8M	EET CF	11/05/24 07:47
Total/NA	Analysis	350.1		1	438779	ZJX4	EET CF	11/05/24 19:18
Total/NA	Analysis	5220D LL		2	438975	HE7K	EET CF	11/07/24 10:17
Total/NA	Prep	Distill/Phenol			438340	HE7K	EET CF	11/01/24 09:05
Total/NA	Analysis	9066		1	438471	ZJX4	EET CF	11/01/24 22:03
Total/NA	Analysis	SM 2540C		1	438481	XJ7V	EET CF	11/02/24 13:46

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Eurofins Cedar Falls

Accreditation/Certification Summary

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Laboratory: Eurofins Cedar Falls

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
lowa	State	007	12-01-25

3

4

5

_

8

10

11

13

Method Summary

Client: John Deere & Co

Project/Site: John Deere Dubuque Landfill (TRC)

Method	Method Description	Protocol	Laboratory
9056A	Anions, Ion Chromatography	SW846	EET CF
6010D	Metals (ICP)	SW846	EET CF
350.1	Nitrogen, Ammonia	EPA	EET CF
5220D LL	COD	SM	EET CF
9066	Phenolics, Total Recoverable	SW846	EET CF
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET CF
3005A	Preparation, Total Metals	SW846	EET CF
350.1	Distillation, Ammonia	EPA	EET CF
Distill/Phenol	Distillation, Phenolics	None	EET CF

Protocol References:

EPA = US Environmental Protection Agency

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

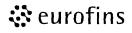
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Job ID: 310-293885-1

2


4

6

7

10

11

Environment Testing America

Cooler/Sample Receipt and Temperature Log Form

Client Information	f the few _ few _ few _
Client: TRC Environmental	
City/State: CITY STATE	Project:
Receipt Information	
Date/Time Received: DATE TIME USSO	Received By:
Delivery Type: ☐ UPS ☐ FedEx	☐ FedEx Ground ☐ US Mail ☐ Spee-Dee
☐ Lab Courier ☐ Lab Field Services	
Condition of Cooler/Containers	
Sample(s) received in Cooler? Yes No	If yes: Cooler ID:
Multiple Coolers? ☐ Yes ☐ No	If yes: Cooler # of
Cooler Custody Seals Present? Yes No	If yes: Cooler custody seals intact? Yes
Sample Custody Seals Present? Yes X No No	If yes: Sample custody seals intact? Yes
Trip Blank Present?	If yes: Which VOA samples are in cooler? ↓
Temperature Record 📆 💮 💆 👢 👢	The state of the s
Coolant: Wet ice Blue ice Dry ice	Other: NONE
Thermometer ID:	Correction Factor (°C):
Temp Blank Temperature – If no temp blank, or temp blank te	emperature above criteria, proceed to Sample Container Temperature
Uncorrected Temp (°C): 29	Corrected Temp (°C): 2.9
Sample Container Temperature	LOCATANES OF THE STATE OF THE S
Container(s) used:	CONTAINER 2
Uncorrected Temp (°C):	
Corrected Temp (°C):	
Exceptions Noted * **********************************	er mining of manager than the
 If temperature exceeds criteria, was sample(s) rece a) If yes: Is there evidence that the chilling process 	
2) If temperature is <0°C, are there obvious signs that (e.g., bulging septa, broken/cracked bottles, frozen	t the integrity of sample containers is compromised? solid?)
NOTE: If yes, contact PM before proceeding. If no, proceedingal Comments	eed with login
	ı

Document CED-P-SAM-FRM45521 Revision 26 Date 27 Jan 2022

Eurofins Cedar Falls

General temperature criteria is 0 to 6°C Bacteria temperature criteria is 0 to 10° C

3

4

5

9

1 U

12

Environment Testing America

Place COC scanning label	
here	

Cooler/Sample Receipt and Temperature Log Form

Client Information f	·
Client: TRC Environmenta	.
City/State: CITY STATE	Project:
Receipt Information	, ×
Date/Time DATE TIME CO CO CO CO CO CO CO C	Received By:) j
Delivery Type: ☐ UPS ☐ FedEx	☐ FedEx Ground ☐ US Mail ☐ Spee-Dee
☐ Lab Courier ☐ Lab Field Se	ervices Client Drop-off Cther:
Condition of Cooler/Containers	
Sample(s) received in Cooler? Yes	No If yes: Cooler ID:
Multiple Coolers?	No If yes: Cooler # 2 of 2
Cooler Custody Seals Present? Yes No	No If yes: Cooler custody seals intact? Yes
Sample Custody Seals Present? Yes No	No If yes: Sample custody seals intact?☐ Yes ☐
Trip Blank Present?	No If yes: Which VOA samples are in cooler? ↓
Temperature Record	8
Coolant: Wet ice Blue ice	Dry ice Other: NONE
Thermometer ID: \not	Correction Factor (°C):
* Temp Blank Temperature – If no temp blank, or temp	blank temperature above critéria, proceed to Sample Container Temperature
Uncorrected Temp (°C): 5-2	Corrected Temp (°C): 5 7
• Sample Container Temperature	
Container(s) used:	CONTAINER 2
Uncorrected Temp (°C):	
Corrected Temp (°C):	
Exceptions Noted	3 6 4 4 6
If temperature exceeds criteria, was sample(a) a) If yes: Is there evidence that the chilling	·
2) If temperature is <0°C, are there obvious sig (e.g , bulging septa, broken/cracked bottles,	ns that the integrity of sample containers is compromised? frozen solid?)
NOTE: If yes, contact PM before proceeding. If n Additional Comments	o, proceed with login
Additional Comments	* (1

Document CED-P-SAM-FRM45521 Revision 26 Date 27 Jan 2022

Eurofins Cedar Falls

General temperature criteria is 0 to 6°C Bacteria temperature criteria is 0 to 10°C

Seals Intact: Custody Seal No	Custody Seal No	by		Date/Time:	Company	Received by:	Date/Time D 20	201	
		Seals Intact:	Custody Se			Cooler Temperature(s) °C and Other Remarks:			 !

Cedar rails, 1A 50513 Phone (319) 277-2401 Phone (319) 277-2425	5		Chain of Custody Necolu	ב כ						😘 euronns	Environment Testing
Client Information	Sampler Maddie	Holichy	Lab Piv Calho	Lab PM: Calhoun, Conner M	≥		Carrier	Carrier Tracking No(s):		COC No: 310-86419-24126.2	5.2
Client Contact. Chris Frauen	Phone: 600 - 509 -	5097	E-Mail: Conne	E-Maii: Conner Calhoun@et.eurofinsus.com	get.eurofin	sus.com	State	State of Origin:		Page:	
Company TRC Environmental Corporation		PWSID:				Analysis	Analysis Requested	þa		Job #:	
Address: 999 Fourier Drive, Suite 101	Due Date Requested.									lö	ss: M - Hexane
City Madison	1 22									A - HCL B - NaOH C - 7n Acetate	N - None O - AsNaO2
State, Zip: W1, 53717	Compliance Project	A Yes 24No		7	etstli						P - Na2O4S Q - Na2SO3 P N52SO3
Phone: 563-589-6133(Tel)	2 00030				18 , ebl					F - MeOH G - Amchlor	S - H2SO4 T - TSP Dodecahydrate
Email: CFrauen@trccompanies.com	WO#:			(0)		, Fe, Li				I - fce J - Di Water	U - Acetone V - MCAA
Project Name: JD DUB - TRC (Landfill)	Eurofins Project #. 31002706			10 80	eterti	B, Ca				K-EDTA L-EDA	Y - Trizma Z - other (specify)
Sire: JDWW- Dubugue	SSOW#:			A) GS	N -H8Þ	s8 -sls				Other	
į.		Sample Type Sample (C=comp,	Matrix (Wewater S=solid, O=waste/oil,	beterie Filtered Mi&M mrofre BinommA 1.03	M48AQ_A880 M48AQ_A880 M18AQ_A880	ISM G0103 lato	оеЯ IstoT - 880			Tedmuk lato	
milye identification	Sample Date	Y Prese	ation Code:	ĮŽ	6 z	1 0	+"				Special Instructions/Note:
SI Leach ate open	11 12/92/01	135 6	Water	>	×	×	×			Nitrate- 48HR Hold time	Hold time
52 itachate Open	511	55	Water	>	×		*				
SI underliner Open	-	70	Water	X	ХХ	ΙĶ	X				
combined Leachart	P =	45	Water	X	 X X	<u></u>	X				
1-35		57	Water	×	/ //	×					
7. M.W.	<u>~</u>	177	Water	×	×	X	X				
MW-3		33	Water	<u>λ</u>	Z V	×:	X			2000	
FB.01		1435	Water	Χ	<u>/</u>	\leq					
Dup. 61	4	→	Water	X	XX	X	X				
Temp blank			Water								
			Water								
ant	Poison B Unknown	Radiological	ıcal	Sample I	Disposal (tum To Clie	A fee ma	/ be dissess	ed if sample	es are reta	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	month) Months
1, 111, 1V, O				Special In	structions,	'QC Requ	Special Instructions/QC Requirements.				
Empty Kit Relinquished by	Date	ė.		Time:				Method of Shipment:	ent.		
Relinquished by MIN MUN	167/01 05/61	42181	Company	Received by	red by:			Date	Date/Time:		Company
Relinquished by	Date/Time:		Company	Received by	ed by:			Date	Date/Time:		Company
Relinquished by	Date/Time:		Company	Received by	ed by:		ح	Date	Date/Time D 20	3	O Servin
Contraction Court Interior					**************************************						

Environment Testing America

Cooler/Sample Receipt and Temperature Log Form

Client Information	
Client: TRC	
City/State: City Mail Sun STATE	Project:
Receipt Information	
Date/Time Pare Pare Pare Pare Pare Pare Pare Par	Received By: PH
Delivery Type: ☐ UPS	☐ FedEx Ground ☐ US Mail ☐ Spee-Dee
☐ Lab Courier ☐ Lab Field Services	S Client Drop-off Other:
Condition of Cooler/Containers	
Sample(s) received in Cooler? Yes No	If yes: Cooler ID:
Multiple Coolers?	If yes: Cooler # of
Cooler Custody Seals Present? Yes No	If yes: Cooler custody seals intact? Yes
Sample Custody Seals Present? Yes No	If yes: Sample custody seals intact? Yes
Trip Blank Present?	If yes: Which VOA samples are in cooler? ↓
Temperature Record	
Coolant: Wet ice Blue ice Dry ic	e Other: NONE
Thermometer ID: K	Correction Factor (°C):
• Temp Blank Temperature - If no temp blank, or temp blank t	emperature above criteria, proceed to Sample Container Temperature
Uncorrected Temp (°C): / (Corrected Temp (°C): /. /
Sample Container Temperature	
Container(s) used:	CONTAINER 2
Uncorrected Temp (°C):	
Corrected Temp (°C):	
Exceptions Noted	
If temperature exceeds criteria, was sample(s) reca a) If yes: Is there evidence that the chilling proce	
 If temperature is <0°C, are there obvious signs the (e.g , bulging septa, broken/cracked bottles, frozen 	at the integrity of sample containers is compromised? n solid?)
NOTE If yes, contact PM before proceeding If no, proc Additional Comments	eed with login
Additional Comments	
·	

Document CED-P-SAM-FRM45521 Revision 26 Date: 27 Jan 2022

General temperature criteria is 0 to 6°C Bacteria temperature criteria is 0 to 10°C

Cedar Falls, IA 50613 Phone (319) 277-2401 Phone (319) 277-2425	Chain of	ain of Custody Record	ecord			Env	Env ronment Testing
Client Information	Sampler Maddle Holick		PM: houn, Conner M		Carrier Tracking No(s)	COC No:	
Client Contact. Chris Frauen	1	1	E-Mail: Conner Calhoun@et.eurofinsus com	State of Origin:	igin:	Page:	
Company TRC Environmental Corporation	<u>ā. </u>	wsid:		Rec		Job #;	
Address. 999 Founer Drive, Suite 101	Due Date Requested.			5			xane
City Madison	TAT Requested (days):			biid			ne NaO2
State, Zip: WI, 53717	Compliance Project: A Yes	0	e) Eliate	oM∑			2048 2803 2803
Phone: 563-589-6133(Tel)	PO#. 4512880175 00030					G-Amchlor T-TSI	SO4 P Dodecat
Email: CFrauen@trccompanies.com	WO #:		o' Eluoi L COD	Fe, Li		I - Ice J - DI Water	etone AA
Project Name: JD DUB - TRC (Landfill)	Eurofins Project #: 31002706		or for the state of the state o	, B, Ca,		K-EDTA L-EDA	w - pH 4-5 Y - Trizma Z - other (specify)
SIE: JOWW DUBUALLE	SSOW#:		3D (V. 28D-C 28D-C	s8 -sis 8 -sist ds1evo		Other	
	Sample	Sample Matrix Type Sesoid, C=Comp, O=wasteloid,	aid Filtered (Inform MS/M of 1 Ammonia ABO_ABO ABO_ABO	tal 6010D Met Id-Filtered We 56 - Total Rec		> TedmuM lst	
Sample Identification	Sample Date Time G	G=grab) BT=Trasue, A=Air) Preservation Code:	2 300 Z 2 300 X 32 32 X	oT C		Special Instructions/Note:	ions/No
I underlinur closed	SOIL 47/62/01	6 water	X	X		Nitrate- 48HR Hold time	d time
52 underliner closed	2	Water	× ×	XX			
Temp blank	→	Water					
. 1		Water					
		Water					
		Water					
		Water					
		Water					
		Water					
		Water					
		Water					
ant	Poison B Unknown	Radiological	Sample Disposal (A fee may be assessed	if samples are re	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Mon	nth) Months
δ			Special Instructions	Special Instructions/QC Requirements:			
Empty Kit Relinquished by:	Date.		Time:	Meth	Method of Shipment:		
Relinquishoopy (MP)	Date(Time: 1080	Company	Received by:		Date/Time:	Company	any
Relinquished by		Company	Received by:		Date/Time:	Company	any
	Date/Time:	Сотрапу	Received by	ز	Date/Top: 7	20 m Character	any
Custody Seals Intact: Custody Seal No			Toolar Temperature	Cooler Temperature (a) Proceedings			

Login Sample Receipt Checklist

Client: John Deere & Co

Job Number: 310-293885-1 SDG Number:

Login Number: 293885 List Source: Eurofins Cedar Falls

List Number: 1

Creator: Homolar, Dana J

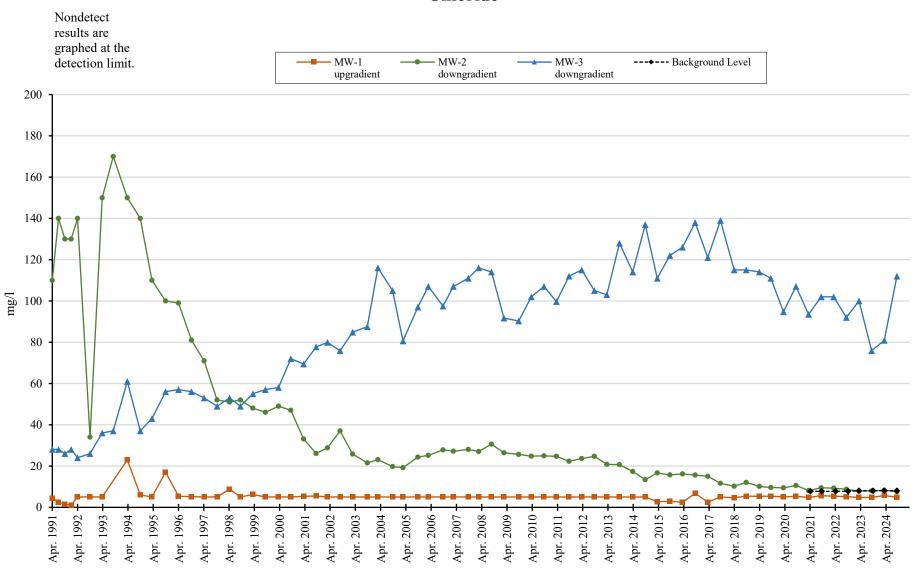
orcator: Homolar, Bana o		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
he cooler's custody seal, if present, is intact.	N/A	
ample custody seals, if present, are intact.	N/A	
ne cooler or samples do not appear to have been compromised or mpered with.	True	
imples were received on ice.	True	
poler Temperature is acceptable.	True	
poler Temperature is recorded.	True	
DC is present.	True	
DC is filled out in ink and legible.	True	
OC is filled out with all pertinent information.	True	
the Field Sampler's name present on COC?	True	
ere are no discrepancies between the containers received and the COC.	True	
imples are received within Holding Time (excluding tests with immediate s)	True	
imple containers have legible labels.	True	
ntainers are not broken or leaking.	True	
mple collection date/times are provided.	True	
propriate sample containers are used.	True	
ample bottles are completely filled.	True	
mple Preservation Verified.	True	
ere is sufficient vol. for all requested analyses, incl. any requested S/MSDs	True	
ontainers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
ultiphasic samples are not present.	True	
mples do not require splitting or compositing.	True	
esidual Chlorine Checked.	N/A	

5

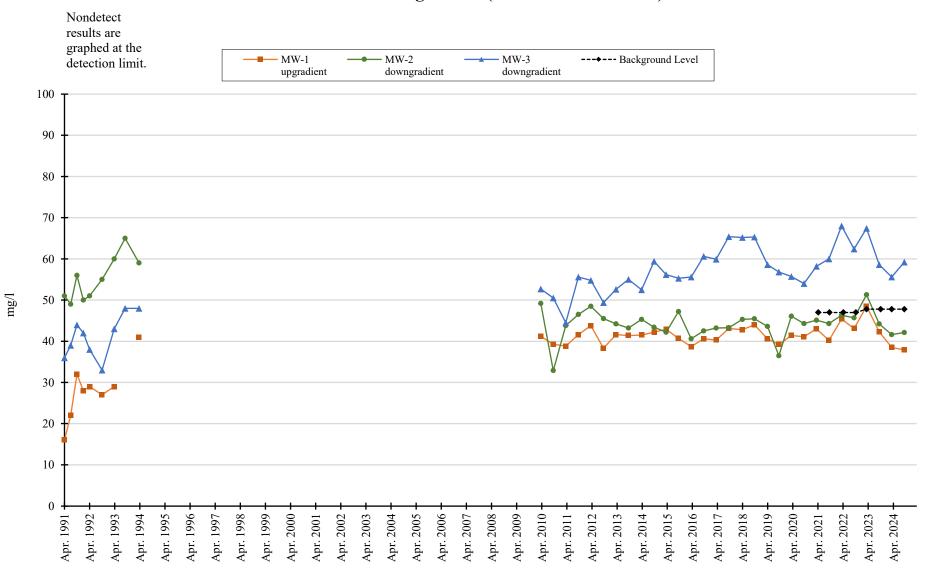
7

9

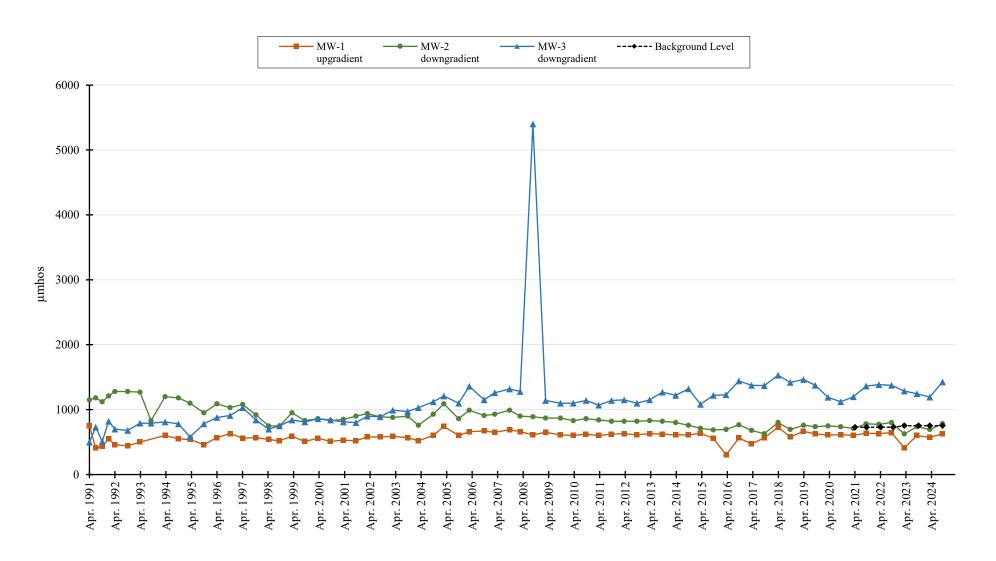
10



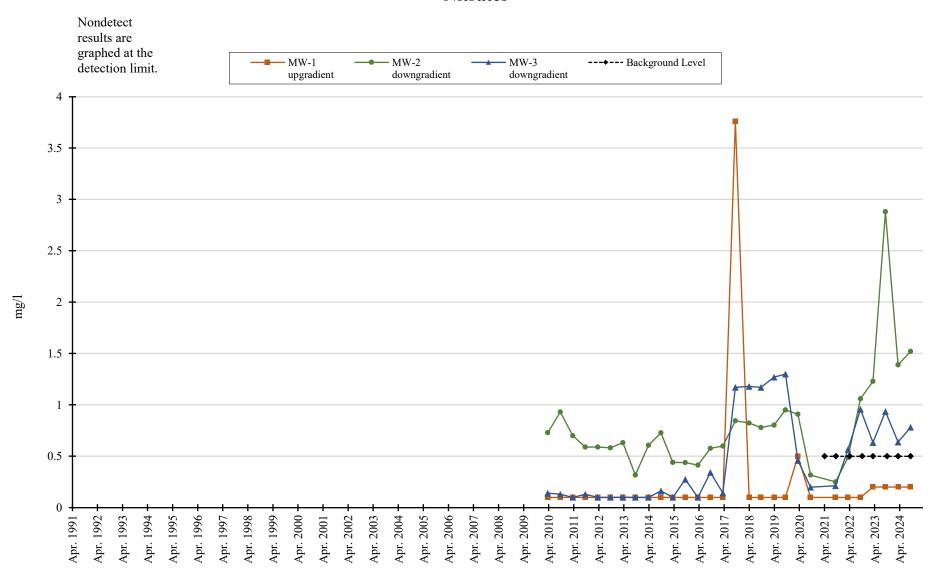
13


Appendix E: Groundwater Results Graphs

Chloride



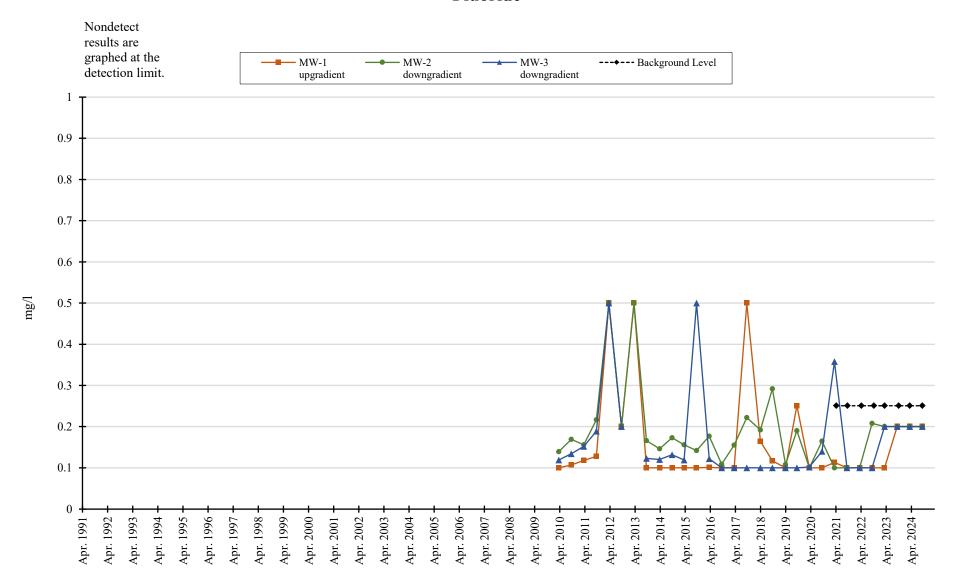
* Starting in April 2019, the sample results are for <u>total</u> Mg.


Magnesium (Dissolved and Total*)

Specific Conductance



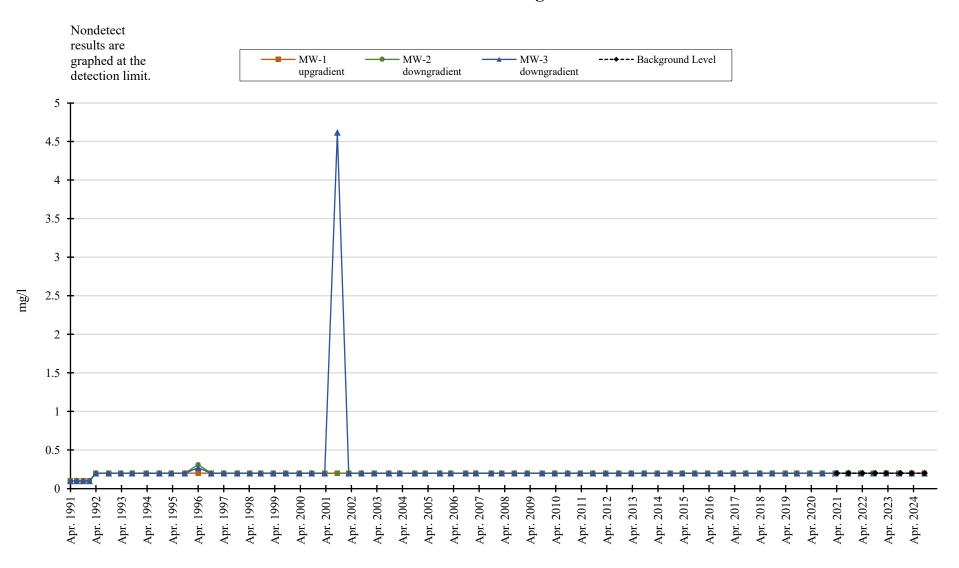
Nitrates



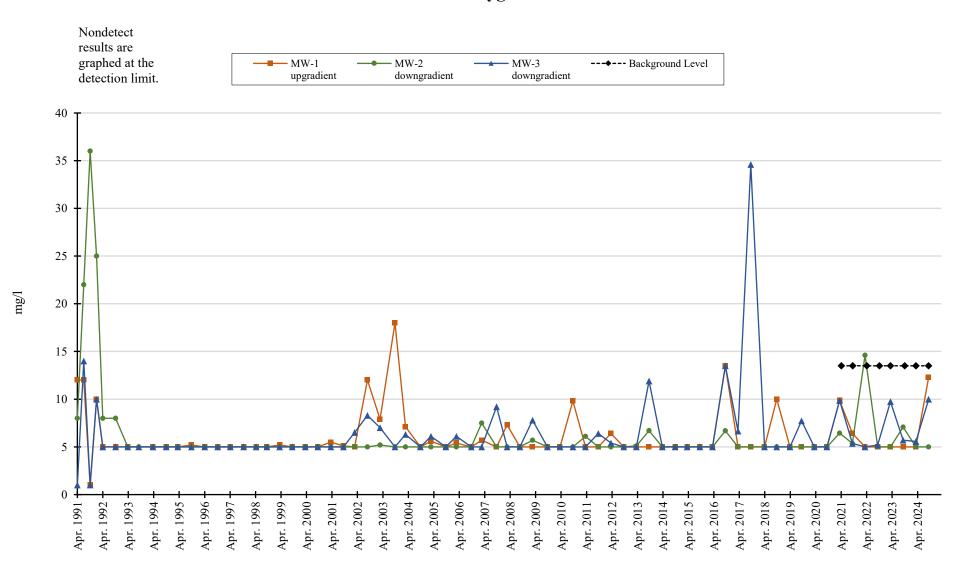
Barium (Dissolved and Total*)

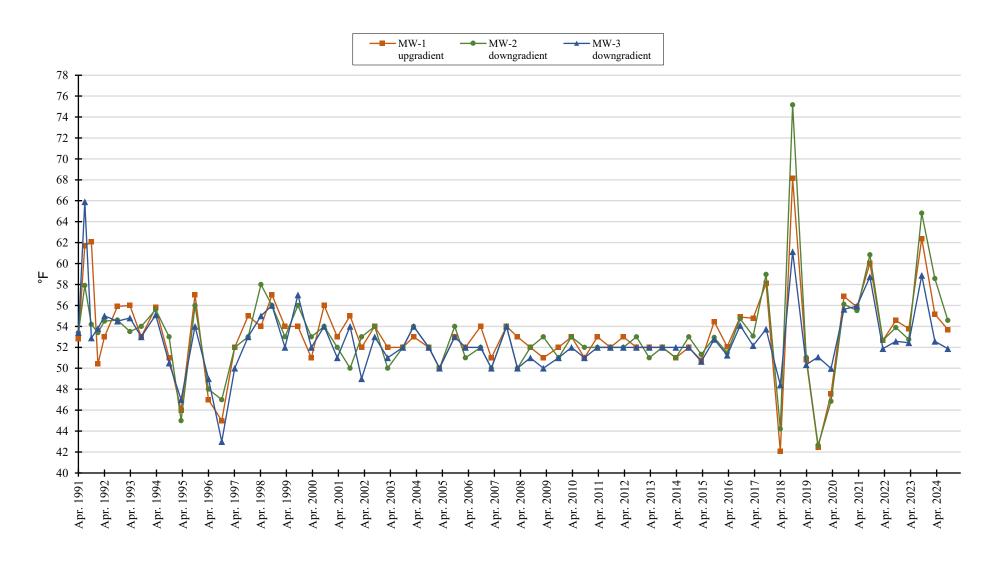
* Starting in April 2019, the sample results are for total Ba.

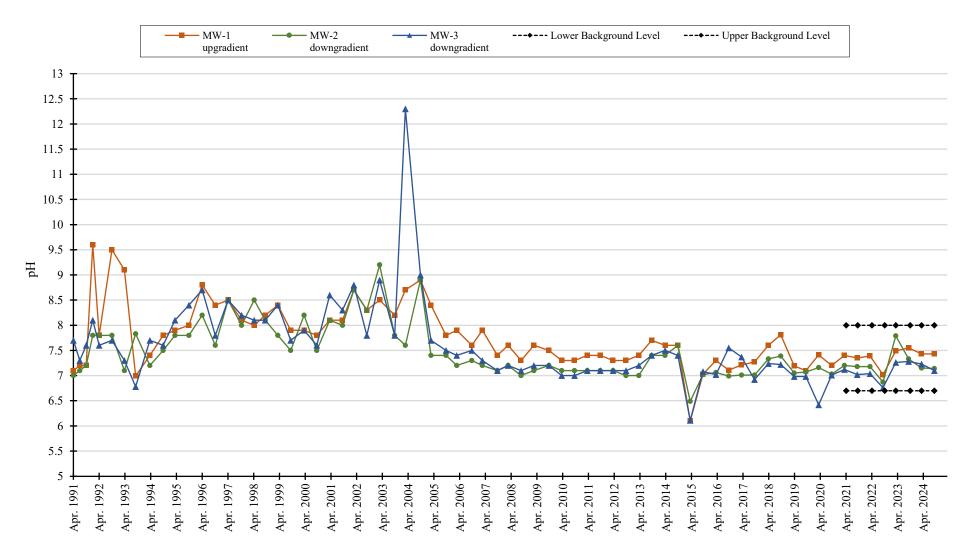
Fluoride

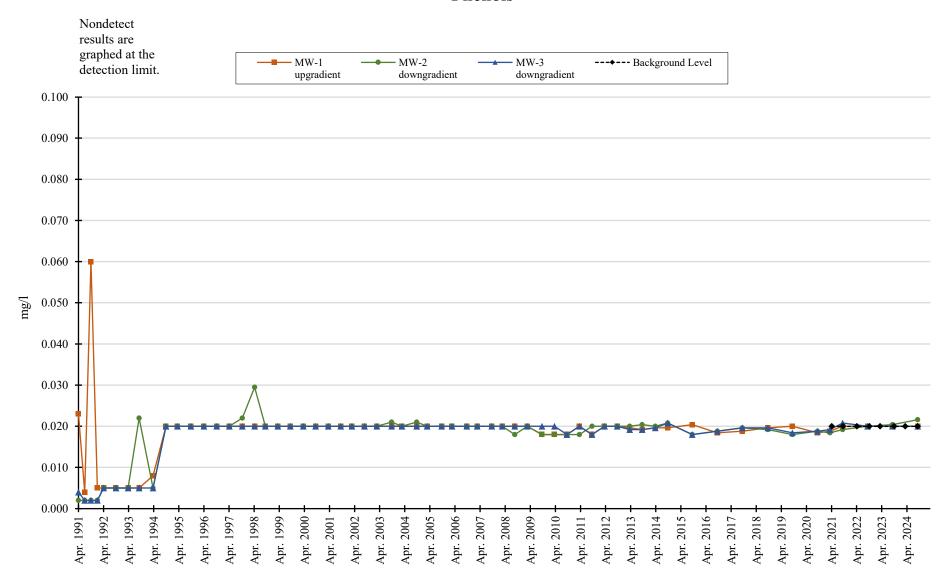


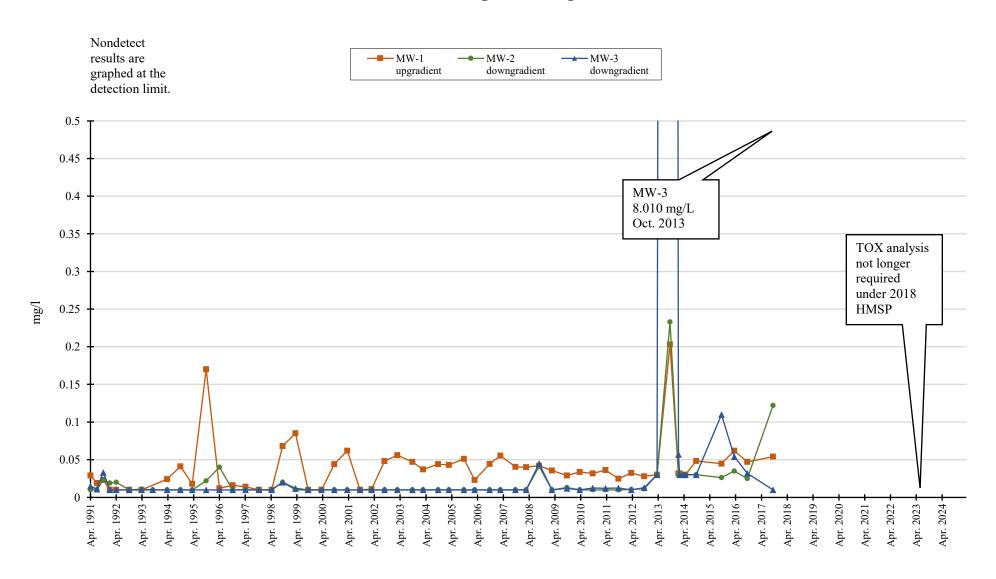
* Starting in April 2019, the sample results are for <u>total</u> iron.


Iron (Dissolved and Total*)


Ammonia Nitrogen


Chemical Oxygen Demand


Temperature


pН

Phenols

Total Organic Halogen

Appendix F: Data Validation

- April 2024
- October 2024

Data Validation April 2024

Memorandum

To: Erica Lawson

From: Megan Yonts (Data Reviewer)

Jessica Esser (Peer Reviewer)

Date: July 2, 2024

Subject: Data Validation Review

Groundwater and Leachate Samples John Deere, Dubuque Works Landfill Eurofins-Test America – Cedar Falls, IA

Laboratory Job ID 310-278836-1 (includes Job ID 310-278909-1) - Rev. 1

SUMMARY

Limited validation was performed on the data for four groundwater samples, six leachate samples, and one equipment blank sample collected at the John Deere, Dubuque Works Landfill in Dubuque, Iowa. The samples were collected on April 11-12, 2024 and were submitted to Eurofins-Test America in Cedar Falls, Iowa for analysis. The samples were analyzed for one or more of the following parameters:

- Anions (chloride, fluoride, sulfate, and nitrate) using SW-846 Method 9056A
- Select total metals (barium, boron, calcium, iron, lithium, magnesium, and molybdenum) using SW-846 Method 6010D
- Ammonia using EPA Method 350.1
- Chemical oxygen demand (COD) using Standard Methods (SM) 5220D
- Total dissolved solids (TDS) using SM 2540C

The sample results were assessed using the *USEPA National Functional Guidelines for Organic Superfund Methods Data Review* and *USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review*, November 2020. These guidelines were modified to accommodate the method-specific requirements.

In general, the data appear valid as reported and may be used for decision-making purposes. The following issues were noted which may have a minor impact on the data usability:

• The nondetect results for ammonia in samples MW-1, MW-2, MW-3, and Dup-01 were qualified as estimated nondetect (UJ) due to low MS/MSD percent recoveries (%Rs).

SAMPLES

Samples included in this review are listed below:

SDG 310-278836-1 (collected 04/11/2024)

- MW-1 MW-2 MW-3 DUP-01¹
- EB-01
 S1 Underliner Open
 S1 Leachate Open
 S2 Leachate Open
- Combined Leachate

¹Field duplicate of MW-2

SDG 310-278909-1 (collected 04/12/2024)

S1 Underliner Closed
 S2 Underliner Closed

REVIEW ELEMENTS

Sample data were reviewed for the following parameters:

- Agreement of analyses conducted with chain-of-custody requests
- Data completeness
- Holding times and sample preservation
- Blanks
- Surrogate recoveries
- MS/MSD results
- Laboratory control sample (LCS) results
- Laboratory duplicate results
- Field duplicate results
- Quantitation limits (QLs) and sample results

DISCUSSION

Agreement of Analyses Conducted with Chain-of-Custody (COC) Requests

Sample reports were checked to verify that the results corresponded to analytical requests as designated on the COC. The following issue was noted.

• The COC form requested metals analysis by SW-846 Method 6010C, but this analysis was performed by SW-846 Method 6010D. No validation action was taken on this basis.

Data Completeness

The data packages were found to be complete as received from the laboratory with the following exceptions.

 The laboratory noted iron continuing calibration verification (CCV) nonconformances in the case narrative. No validation actions were taken on this basis since the actual CCV results were not provided for review.

Holding Times and Sample Preservation

All samples were prepared and analyzed within the method-specified holding times. The cooler temperature was within the acceptance criteria (<6°C) upon sample receipt at the laboratory. All samples were properly preserved with the following exception.

• The nitric acid preserved container for the metals analysis of sample S1 Leachate Open was received with a pH outside of the method requited criteria (>2) and was preserved by the laboratory to the appropriate pH (<2). No validation action was required on this basis.

Blanks

There were no analytes detected in the laboratory method blanks or the equipment blank (EB-01).

The laboratory did not provide method blank results for the following analyses: the 20-fold diluted analysis of sulfate in samples S2 Leachate Open and Combined Leachate; the undiluted analysis of chloride, nitrate, fluoride, and sulfate in sample S1 Underline Closed; the undiluted analysis of nitrate and fluoride in sample S2 Underliner Closed; and the 5-fold diluted analysis of chloride in sample S2 Underliner Closed. The method blank from the original analysis that was performed >24 hours prior to these analyses was used to evaluate for potential method blank contamination. No validation action was taken on this basis.

Surrogate Recoveries

Surrogate recoveries are not applicable for this data set.

MS/MSD Results

MS/MSD analyses were performed on sample EB-01 for anions and sample MW-1 for ammonia. Note that MS/MSD analyses on an equipment blank sample are not relevant to the site media; therefore, the results were not included in this review. The %Rs and relative percent differences (RPDs) met the laboratory acceptance criteria with the following exceptions.

Sample ID	Analyte	MS %R	MSD %R	RPD	%R/RPD QC Limits	Validation Action
MW-1	Ammonia	84	82	1	90-110	The nondetect results for Ammonia were qualified as estimated (UJ) in the associated samples due to low MS and MSD recoveries.
Associated :	Samples: MW-	1, MW-2, M	1W-3, Dup-0	1		

LCS Results

The LCS %Rs met the laboratory acceptance criteria.

Laboratory Duplicate Results

Laboratory duplicate analysis was performed on sample S1 Underliner Open. The RPDs met the laboratory acceptance criteria.

Field Duplicate Results

Samples MW-2/DUP-1 were submitted as the field duplicate pair. The following table summarizes the RPDs and absolute difference (AbsD), where applicable, of the detected analytes in the field duplicate pair and the validation actions.

Analyte	QL (mg/L)	MW-2 (mg/L)	DUP-1 (mg/L)	RPD (%) or AbsD (mg/L)	Validation Actions				
Chloride	1.00	8.30	8.26	RPD = 0.5					
Nitrate as N	1.00	1.39	1.41	AbsD = 0.02					
Sulfate	1.00	20.9	19.1	RPD = 9.0					
Barium	0.0100	0.0825	0.0780	RPD = 5.6	None; all criteria were met				
Calcium	1.00	97.6	92.7	RPD = 5.1					
Magnesium	1.00	41.6	39.5	RPD = 5.2					
TDS	50.0	418	398	RPD = 4.9					
Criteria: When both results are ≥ 5x the QL, RPDs must be ≤30%. When one or both results are <5x the QL, AbsD must be <ql.< td=""></ql.<>									

Quantitation Limits and Sample Results

Based on historical data values, a request was made for the laboratory to investigate the reported results for chloride, fluoride, and nitrate in sample MW-3. In that investigation, the laboratory discovered that the chloride and fluoride results had been switched, and that nitrate was detected when reported from the undiluted analysis. The laboratory report and validation report were revised accordingly.

The table below summarizes the samples that were analyzed on dilution. The QLs for these samples were elevated accordingly, but all affected analytes were detected; therefore there was not an adverse impact on the usability of the data.

Sample IDs	Parameter	Dilution	Reason for Dilution
S1 Leachate Open			
S2 Leachate Open	Chloride		A dilution was likely performed due to the concentrations of
Combined Leachate	Chloride		chloride which would have exceeded the calibration range if analyzed undiluted.
S2 Underliner Closed		5-fold	•
MW-2		5-10lu	
Dup-01	Nitrate		A reason for dilution was not provided but likely due to
S1 Underliner Open			concentrations of interfering analytes (e.g., chloride, sulfate)
MW-3			
S2 Leachate Open	Culfata	00 tald	A dilution was likely performed due to the concentrations of
Combined Leachate	Sulfate	20-fold	sulfate which would have exceeded the calibration range if analyzed undiluted.
S2 Underliner Closed		50-fold	
S1 Underliner Closed	COD	E fold	A dilution was likely performed due to the nature of the
S2 Underliner Closed	COD	5-fold	sample matrix.

It should be noted that the TDS analyses of samples S2 Leachate Open, Combined Leachate, and S2 Underliner Closed were likely performed with reduced volumes as the QLs were 5x higher than other samples. Since TDS was detected in these samples, there was no adverse impact to the data.

It should be noted that the RLs for ammonia were 0.5 mg/L in leachate samples and 0.2 mg/L in groundwater samples due to the use of different preparation methods for each matrix. Additionally, it should be noted that the preparation of the ammonia analysis for sample S2 Leachate Open was likely performed with reduced volume as the QL for this sample was 5x higher than the other leachate samples. Since ammonia was detected in this sample, there was no adverse impact to the data.

QUALIFIED FORM 1s

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: MW-1 Lab Sample ID: 310-278836-1

. Matrix: Water

Date Collected: 04/11/24 12:20 Date Received: 04/12/24 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.68		1.00		mg/L			04/12/24 15:38	1
Nitrate as N	<0.200		0.200		mg/L			04/12/24 15:38	1
Fluoride	<0.200		0.200		mg/L			04/12/24 15:38	1
Sulfate	25.7		1.00		mg/L			04/12/24 15:38	1
Method: SW846 6010D - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0770		0.0100		mg/L		04/17/24 09:00	04/17/24 18:07	1
Boron	<0.200		0.200		mg/L		04/17/24 09:00	04/17/24 18:07	1
Calcium	67.2		1.00		mg/L		04/17/24 09:00	04/17/24 18:07	1
Iron	<0.500	N.	0.500		mg/L		04/17/24 09:00	04/17/24 18:07	1
Lithium	< 0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:07	1
Magnesium	38.5		1.00		mg/L		04/17/24 09:00	04/17/24 18:07	1
Molybdenum	<0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:07	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.200	™ UJ	0.200		mg/L			04/16/24 17:40	1
Chemical Oxygen Demand (SM 5220D LL)	<5.00		5.00		mg/L			04/18/24 14:24	1
Total Dissolved Solids (SM 2540C)	360		50.0		mg/L			04/15/24 18:54	1

3

5

7

8

10

40

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: MW-2 Lab Sample ID: 310-278836-2

Matrix: Water

Date Collected: 04/11/24 13:33 Date Received: 04/12/24 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.30		1.00		mg/L			04/12/24 15:51	1
Nitrate as N	1.39		1.00		mg/L			04/12/24 19:25	5
Fluoride	<0.200		0.200		mg/L			04/12/24 15:51	1
Sulfate	20.9		1.00		mg/L			04/12/24 15:51	1
Method: SW846 6010D - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0825		0.0100		mg/L		04/17/24 09:00	04/17/24 18:09	1
Boron	<0.200		0.200		mg/L		04/17/24 09:00	04/17/24 18:09	1
Calcium	97.6		1.00		mg/L		04/17/24 09:00	04/17/24 18:09	1
Iron	<0.500	M	0.500		mg/L		04/17/24 09:00	04/17/24 18:09	1
Lithium	<0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:09	1
Magnesium	41.6		1.00		mg/L		04/17/24 09:00	04/17/24 18:09	1
Molybdenum	<0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:09	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.200	UJ	0.200		mg/L			04/16/24 17:42	1
Chemical Oxygen Demand (SM 5220D LL)	<5.00		5.00		mg/L			04/18/24 14:24	1
Total Dissolved Solids (SM 2540C)	418		50.0		mg/L			04/15/24 18:54	1

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: MW-3 Lab Sample ID: 310-278836-3 Date Collected: 04/11/24 10:37

Matrix: Water

Date Received: 04/12/24 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	80.9		1.00		mg/L			04/12/24 13:07	1
Nitrate as N	0.638		0.200		mg/L			04/12/24 13:07	1
Fluoride	<0.200		0.200		mg/L			04/12/24 13:07	1
Sulfate	126		5.00		mg/L			04/12/24 13:20	5
Method: SW846 6010D - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0455		0.0100		mg/L		04/17/24 09:00	04/17/24 18:11	1
Boron	2.26		0.200		mg/L		04/17/24 09:00	04/17/24 18:11	1
Calcium	122		1.00		mg/L		04/17/24 09:00	04/17/24 18:11	1
Iron	<0.500	y.t.	0.500		mg/L		04/17/24 09:00	04/17/24 18:11	1
Lithium	< 0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:11	1
Magnesium	55.6		1.00		mg/L		04/17/24 09:00	04/17/24 18:11	1
Molybdenum	<0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:11	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.200	UJ	0.200		mg/L			04/16/24 17:43	1
Chemical Oxygen Demand (SM 5220D LL)	5.56		5.00		mg/L			04/18/24 14:24	1
Total Dissolved Solids (SM 2540C)	734		50.0		mg/L			04/15/24 18:54	1

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: Dup-01 Lab Sample ID: 310-278836-4

Date Collected: 04/11/24 00:00 Matrix: Water Date Received: 04/12/24 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.26		1.00		mg/L			04/12/24 12:42	1
Nitrate as N	1.41		1.00		mg/L			04/12/24 12:55	5
Fluoride	<0.200		0.200		mg/L			04/12/24 12:42	1
Sulfate	19.1		1.00		mg/L			04/12/24 12:42	1
Method: SW846 6010D - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0780		0.0100		mg/L		04/17/24 09:00	04/17/24 18:13	1
Boron	<0.200		0.200		mg/L		04/17/24 09:00	04/17/24 18:13	1
Calcium	92.7		1.00		mg/L		04/17/24 09:00	04/17/24 18:13	1
Iron	<0.500	My	0.500		mg/L		04/17/24 09:00	04/17/24 18:13	1
Lithium	<0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:13	1
Magnesium	39.5		1.00		mg/L		04/17/24 09:00	04/17/24 18:13	1
Molybdenum	<0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:13	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.200	UJ	0.200		mg/L			04/16/24 17:43	1
Chemical Oxygen Demand (SM 5220D LL)	<5.00		5.00		mg/L			04/18/24 14:24	1
Total Dissolved Solids (SM 2540C)	398		50.0		mg/L			04/15/24 18:54	1

4

6

8

10

10

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: EB-01 Lab Sample ID: 310-278836-5

Matrix: Water

Date Collected: 04/11/24 13:55 Date Received: 04/12/24 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<1.00		1.00		mg/L			04/12/24 16:03	1
Nitrate as N	<0.200		0.200		mg/L			04/12/24 16:03	1
Fluoride	<0.200		0.200		mg/L			04/12/24 16:03	1
Sulfate	<1.00		1.00		mg/L			04/12/24 16:03	1
Method: SW846 6010D - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	<0.0100		0.0100		mg/L		04/17/24 09:00	04/17/24 18:15	1
Boron	<0.200		0.200		mg/L		04/17/24 09:00	04/17/24 18:15	1
Calcium	<1.00		1.00		mg/L		04/17/24 09:00	04/17/24 18:15	1
Iron	<0.500	7	0.500		mg/L		04/17/24 09:00	04/17/24 18:15	1
Lithium	<0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:15	1
Magnesium	<1.00		1.00		mg/L		04/17/24 09:00	04/17/24 18:15	1
Molybdenum	<0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:15	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.200		0.200		mg/L			04/16/24 17:45	1
Chemical Oxygen Demand (SM 5220D LL)	<5.00		5.00		mg/L			04/18/24 14:24	1
Total Dissolved Solids (SM 2540C)	<50.0		50.0		mg/L			04/15/24 18:54	1

4

6

8

10

11

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: S1 Underliner Open

Lab Sample ID: 310-278836-6

Date Collected: 04/11/24 10:40 **Matrix: Water** Date Received: 04/12/24 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	80.9		1.00		mg/L			04/12/24 13:33	1
Nitrate as N	2.97		1.00		mg/L			04/12/24 14:10	5
Fluoride	0.311		0.200		mg/L			04/12/24 13:33	1
Sulfate	26.7		1.00		mg/L			04/12/24 13:33	1
Method: SW846 6010D - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.696		0.0100		mg/L		04/17/24 09:00	04/17/24 18:17	1
Boron	3.01		0.200		mg/L		04/17/24 09:00	04/17/24 18:17	1
Calcium	86.8		1.00		mg/L		04/17/24 09:00	04/17/24 18:17	1
Iron	<0.500	M	0.500		mg/L		04/17/24 09:00	04/17/24 18:17	1
Lithium	0.0679		0.0500		mg/L		04/17/24 09:00	04/17/24 18:17	1
Magnesium	42.6		1.00		mg/L		04/17/24 09:00	04/17/24 18:17	1
Molybdenum	<0.0500		0.0500		mg/L		04/17/24 09:00	04/17/24 18:17	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.500		0.500		mg/L		04/18/24 08:35	04/19/24 09:15	1
Chemical Oxygen Demand (SM 5220D LL)	17.7		5.00		mg/L			04/18/24 14:24	1
Total Dissolved Solids (SM 2540C)	706		50.0		mg/L			04/15/24 18:54	1

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: S1 Leachate Open

Date Collected: 04/11/24 11:00 Date Received: 04/12/24 09:30 Lab Sample ID: 310-278836-7

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	115		5.00		mg/L			04/12/24 14:35	5
Nitrate as N	<0.200		0.200		mg/L			04/12/24 14:23	1
Fluoride	0.443		0.200		mg/L			04/12/24 14:23	1
Sulfate	2.53		1.00		mg/L			04/12/24 14:23	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Result 0.869	Qualifier	RL 0.0100	MDL	Unit mg/L	<u>D</u>	Prepared 04/17/24 09:00		Dil Fac
Barium		Qualifier		MDL		<u>D</u>		04/17/24 18:21	Dil Fac
Barium	0.869	Qualifier	0.0100	MDL	mg/L	<u>D</u>	04/17/24 09:00	04/17/24 18:21 04/17/24 18:21	1 1 1
Barium Boron Calcium	0.869 8.19	Qualifier	0.0100 0.200	MDL	mg/L mg/L	<u> </u>	04/17/24 09:00 04/17/24 09:00 04/17/24 09:00	04/17/24 18:21 04/17/24 18:21 04/17/24 18:21	Dil Fac 1 1 1 1 1
Barium Boron Calcium Iron	0.869 8.19 115	Qualifier	0.0100 0.200 1.00	MDL	mg/L mg/L mg/L	<u>D</u>	04/17/24 09:00 04/17/24 09:00 04/17/24 09:00	04/17/24 18:21 04/17/24 18:21 04/17/24 18:21 04/19/24 10:59	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Barium Boron	0.869 8.19 115 8.66	Qualifier	0.0100 0.200 1.00 0.500	MDL	mg/L mg/L mg/L mg/L	<u>D</u>	04/17/24 09:00 04/17/24 09:00 04/17/24 09:00 04/17/24 09:00 04/17/24 09:00	04/17/24 18:21 04/17/24 18:21 04/17/24 18:21 04/19/24 10:59	Dil Fac 1 1 1 1 1 1 1 1 1 1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	4.98		0.500		mg/L		04/18/24 08:35	04/19/24 09:17	1
Chemical Oxygen Demand (SM 5220D LL)	27.4		5.00		mg/L			04/18/24 14:24	1
Total Dissolved Solids (SM 2540C)	952		50.0		mg/L			04/15/24 18:54	1

8

10

11

4.0

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: S2 Leachate Open

Date Collected: 04/44/24 44:05

Date Collected: 04/11/24 11:05 Date Received: 04/12/24 09:30

5220D LL)

Total Dissolved Solids (SM 2540C)

2510

04/15/24 18:54

Matrix: Water

Method: SW846 9056A - Anion	s, Ion Chro	matograph	ıy						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	134		5.00		mg/L			04/12/24 15:00	5
Nitrate as N	<0.200		0.200		mg/L			04/12/24 14:48	1
Fluoride	0.829		0.200		mg/L			04/12/24 14:48	1
Sulfate	1190		20.0		mg/L			04/13/24 13:15	20
- Method: SW846 6010D - Metals	s (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0268		0.0100		mg/L		04/17/24 09:00	04/17/24 18:27	1
Boron	22.1		0.200		mg/L		04/17/24 09:00	04/17/24 18:27	1
Calcium	159		1.00		mg/L		04/17/24 09:00	04/17/24 18:27	1
Iron	2.88		0.500		mg/L		04/17/24 09:00	04/19/24 11:01	1
Lithium	1.14		0.0500		mg/L		04/17/24 09:00	04/17/24 18:27	1
Magnesium	126		1.00		mg/L		04/17/24 09:00	04/17/24 18:27	1
Molybdenum	0.0565		0.0500		mg/L		04/17/24 09:00	04/17/24 18:27	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	9.79		2.50		mg/L		04/18/24 08:35	04/19/24 09:17	1
Chemical Oxygen Demand (SM	68.9		5.00		mg/L			04/18/24 14:24	1

250

mg/L

Eurofins Cedar Falls

4

5

0

9

1 U

12

13

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: Combined Leachate Lab Sample ID: 310-278836-9 **Matrix: Water**

Date Collected: 04/11/24 11:10 Date Received: 04/12/24 09:30

Method: SW846 9056A	- Anions, Ion Chro	matograph	у						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	119		5.00		mg/L			04/12/24 15:26	5
Nitrate as N	0.865		0.200		mg/L			04/12/24 15:13	1
Fluoride	0.677		0.200		mg/L			04/12/24 15:13	1
Sulfate	715		20.0		mg/L			04/13/24 13:28	20

Analyte	Result C	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.211	0.0100		mg/L		04/17/24 09:00	04/17/24 18:29	1
Boron	15.2	0.200		mg/L		04/17/24 09:00	04/17/24 18:29	1
Calcium	134	1.00		mg/L		04/17/24 09:00	04/17/24 18:29	1
Iron	2.17	0.500		mg/L		04/17/24 09:00	04/19/24 11:03	1
Lithium	0.695	0.0500		mg/L		04/17/24 09:00	04/17/24 18:29	1
Magnesium	88.3	1.00		mg/L		04/17/24 09:00	04/17/24 18:29	1
Molybdenum	<0.0500	0.0500		mg/L		04/17/24 09:00	04/17/24 18:29	1

General Chemistry Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	5.94	0.500	mg/L		04/23/24 11:30	04/23/24 22:23	1
Chemical Oxygen Demand (SM 5220D LL)	45.0	5.00	mg/L			04/18/24 14:24	1
Total Dissolved Solids (SM 2540C)	2010	250	mg/L			04/15/24 18:54	1

Eurofins Cedar Falls

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: S1 Underliner Closed

Lab Sample ID: 310-278909-1 Date Collected: 04/12/24 11:30 **Matrix: Water**

Date Received: 04/13/24 09:00

Method: SW846 9056A	- Anions, Ion Chro	matography	/						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	85.7		1.00		mg/L			04/13/24 13:40	1
Nitrate as N	1.77		0.200		mg/L			04/13/24 13:40	1
Fluoride	0.302		0.200		mg/L			04/13/24 13:40	1
Sulfate	42.8		1.00		mg/L			04/13/24 13:40	1

Analyte	Result Quali	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.496	0.0100		mg/L		04/15/24 15:46	04/17/24 10:46	1
Boron	3.87	0.200		mg/L		04/15/24 15:46	04/17/24 10:46	1
Calcium	71.1	1.00		mg/L		04/15/24 15:46	04/17/24 10:46	1
Iron	<0.500	0.500		mg/L		04/15/24 15:46	04/17/24 10:46	1
Lithium	0.0970	0.0500		mg/L		04/15/24 15:46	04/17/24 10:46	1
Magnesium	41.4	1.00		mg/L		04/15/24 15:46	04/17/24 10:46	1
Molybdenum	<0.0500	0.0500		mg/L		04/15/24 15:46	04/17/24 10:46	1

General Chemistry									
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.500		0.500		mg/L		04/23/24 08:34	04/23/24 20:42	1
Chemical Oxygen Demand (SM 5220D LL)	28.3		25.0		mg/L			04/23/24 09:39	5
Total Dissolved Solids (SM 2540C)	700		50.0		mg/L			04/16/24 17:30	1

Eurofins Cedar Falls

Client: John Deere & Co Job ID: 310-278836-1

Project/Site: John Deere Dubuque Landfill

Client Sample ID: S2 Underliner Closed

Lab Sample ID: 310-278909-2 Date Collected: 04/12/24 11:24 **Matrix: Water**

Date Received: 04/13/24 09:00

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	132	5.00	mg/L			04/13/24 14:09	5
Nitrate as N	<0.200	0.200	mg/L			04/13/24 13:53	1
Fluoride	0.701	0.200	mg/L			04/13/24 13:53	1
Sulfate	1170	50.0	mg/L			04/17/24 10:26	50

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0321	0.0100	mg/L		04/15/24 15:47	04/17/24 10:48	1
Boron	22.1	0.200	mg/L		04/15/24 15:47	04/17/24 10:48	1
Calcium	166	1.00	mg/L		04/15/24 15:47	04/17/24 10:48	1
Iron	2.58	0.500	mg/L		04/15/24 15:47	04/17/24 10:48	1
Lithium	1.13	0.0500	mg/L		04/15/24 15:47	04/17/24 10:48	1
Magnesium	126	1.00	mg/L		04/15/24 15:47	04/17/24 10:48	1
Molybdenum	0.0522	0.0500	mg/L		04/15/24 15:47	04/17/24 10:48	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	8.63		0.500		mg/L		04/23/24 08:34	04/23/24 20:44	1
Chemical Oxygen Demand (SM 5220D LL)	74.9		25.0		mg/L			04/23/24 09:39	5
Total Dissolved Solids (SM 2540C)	2160		250		mg/L			04/16/24 17:30	1

Data Validation October 2024

Memorandum

To: Erica Lawson

From: Nancy Bergstrom (Data Reviewer)

Jessica Esser (Peer Reviewer)

Date: November 20, 2024

Subject: Data Validation Review

Groundwater and Leachate Samples John Deere, Dubuque Works Landfill

Eurofins Environment Testing - Cedar Falls, IA

Laboratory Job Number 310-293885-1 (includes Job Number 310-293962-1)-Rev.1

SUMMARY

Limited validation was performed on the data for four groundwater samples, six leachate samples, and one equipment blank sample collected at the John Deere, Dubuque Works Landfill in Dubuque, Iowa. The samples were collected on October 28-29, 2024 and were submitted to Eurofins Environment Testing in Cedar Falls, Iowa for analysis. The samples were analyzed for the following parameters:

- Anions (chloride, fluoride, sulfate, and nitrate) using SW-846 Method 9056A
- Select total metals (barium, boron, calcium, iron, lithium, magnesium, and molybdenum) using SW-846 Method 6010D
- Ammonia using EPA Method 350.1
- Chemical oxygen demand (COD) using Standard Methods (SM) 5220D
- Total dissolved solids (TDS) using SM 2540C
- Total Phenols using SW-846 Method 9066

The sample results were assessed in accordance with *USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (EPA-542-R-20-006)*, November 2020. These guidelines were modified to accommodate the method-specific requirements.

In general, the data appear valid as reported and may be used for decision-making purposes.

SAMPLES

Samples included in this review are listed below:

Sample Delivery Group (SDG) 310-293885-1 (collected 10/28/2024)

- MW-1 MW-2 MW-3 DUP-01¹
- EB-01 S1 Underliner Open S1 Leachate Open S2 Leachate Open
- Combined Leachate

¹Field duplicate of MW-2

SDG 310-293962-1 (collected 10/29/2024)

S1 Underliner Closed
 S2 Underliner Closed

REVIEW ELEMENTS

Sample data were reviewed for the following parameters:

- Agreement of analyses conducted with chain-of-custody requests
- Data completeness
- Holding times and sample preservation
- Blanks
- MS/MSD results
- Laboratory control sample (LCS) results
- Laboratory duplicate results
- Field duplicate results
- Quantitation limits (QLs) and sample results

DISCUSSION

Agreement of Analyses Conducted with Chain-of-Custody (COC) Requests

Sample reports were checked to verify that the results corresponded to analytical requests as designated on the COC. The following issue was noted.

• The COC form for the samples collected 10/28/2024 did not request analysis of total dissolved solids (TDS), but this analysis was performed on all samples. No validation action was taken on this basis.

Data Completeness

The data package was found to be complete as received from the laboratory with the following exception.

 The COC for Job Number 310-293962-1 was not included with the original lab report. The laboratory was contacted and provided a revised report to include the COC.

Holding Times and Sample Preservation

All holding time and sample preservation criteria were met with the following note.

 The laboratory flagged the nitrate result for sample DUP-01 with an "H", indicating the sample was analyzed beyond the specified holding time. A collection time was not provided on the COC for sample DUP-01. The collection time was assumed to be near the time of the parent sample (MW-2), therefore sample DUP-01 was analyzed for nitrate within the required holding time and the result was not qualified.

Blanks

There were no analytes detected in the laboratory method blanks or the equipment blank (EB-01).

MS/MSD Results

MS/MSD analyses were performed on sample MW-3 for metals, sample MW-2 for ammonia, sample DUP-01 for COD, and sample S1 Leachate Open for total phenols. The percent recoveries (%Rs) and relative percent differences (RPDs) met the laboratory acceptance criteria.

Laboratory Duplicate Results

A laboratory duplicate analysis was performed on sample S2 Leachate Open for TDS. The RPD met the laboratory acceptance criteria.

LCS Results

The LCS %Rs met the laboratory acceptance criteria.

Field Duplicate Results

Samples MW-2/DUP-01 were submitted as the field duplicate pair. The following table summarizes the RPDs of the detected analytes in the field duplicate pair and the validation actions.

Analyte	QL (mg/L)	MW-2 (mg/L)	DUP-1 (mg/L)	RPD (%)	Validation Actions
Chloride	1.00	7.58	7.50	RPD = 1.06	
Nitrate as N	0.200	1.52	1.53	RPD = 0.656	
Sulfate	1.00	19.9	19.6	RPD = 1.52	
Barium	0.0100	0.0857	0.0867	RPD = 1.16	None; all criteria were met
Calcium	1.00	101	100	RPD = 0.995	
Magnesium	1.00	42.1	43.2	RPD = 2.58	
TDS	50.0	424	408	RPD = 3.85	
Criteria: When both res	sults are ≥	5x the QL, R	PDs must be	≤30%.	

teria: When both results are ≥ 5x the QL, RPDs must be ≤30%.

When one or both results are <5x the QL, AbsD must be ≤QL.

Sample Results and Quantitation Limits

The table below summarizes the dilutions that were performed on the samples in this data set. The QLs for these samples were elevated accordingly, and the nondetect COD results for samples MW-3 and DUP-01 were affected. No validation action was taken on this basis.

Sample IDs	Analyte	Dilution	Reason for Dilution																
MW-3			The case narrative indicated that these samples were																
DUP-01			analyzed at a dilution for COD due to the chloride pre- screening results.																
MW-1	COD	2-fold 5-fold	•																
S2 Leachate Open	COD																		
S2 Underliner Closed																			
Combined Leachate																			
MW-3			Dilutions were performed due to elevated concentrations of																
S2 Leachate Open	Sulfate		target analytes which would have exceeded or been close to																
S2 Underliner Closed	Sullate	20-fold	exceeding the calibration range if not diluted.																
Combined Leachate												20 1014	20 1014	20 10.0					
MW-3		5-fold 20-fold																	
S2 Leachate Open	Chloride																		
S2 Underliner Closed																			

It should be noted that the TDS analyses of samples S2 Leachate Open, Combined Leachate, and S2 Underliner Closed were likely performed with reduced volumes as the QLs were 5x higher than other samples. Since TDS was detected in these samples, there was no adverse impact to the data.

It should be noted that the RLs for ammonia were 0.5 mg/L in leachate samples and 0.2 mg/L in groundwater samples due to the use of different preparation methods for each matrix.

QUALIFIED FORM 1s

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: S1 Leachate Open

Date Collected: 10/28/24 11:30 Date Received: 10/29/24 08:50 Lab Sample ID: 310-293885-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	79.8		1.00		mg/L			10/29/24 23:22	1
Nitrate as N	<0.200		0.200		mg/L			10/29/24 23:22	1
Fluoride	0.562		0.200		mg/L			10/29/24 23:22	1
Sulfate	43.5		1.00		mg/L			10/29/24 23:22	1
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
-		Qualifier		MDL		D	<u>.</u>		Dil Fac
Barium	0.880	Qualifier	0.0100	MDL	mg/L	D	10/31/24 09:30	11/08/24 11:33	Dil Fac
Barium Boron	0.880 8.90	Qualifier	0.0100 0.200	MDL	mg/L mg/L	<u>D</u>	10/31/24 09:30 10/31/24 09:30	11/08/24 11:33 11/08/24 11:33	Dil Fac
Barium Boron	0.880	Qualifier	0.0100	MDL	mg/L	<u>D</u>	10/31/24 09:30	11/08/24 11:33	1 1 1
Barium Boron Calcium	0.880 8.90	Qualifier	0.0100 0.200	MDL	mg/L mg/L	<u> </u>	10/31/24 09:30 10/31/24 09:30	11/08/24 11:33 11/08/24 11:33	1 1 1 1 1
Analyte Barium Boron Calcium Iron Lithium	0.880 8.90 133	Qualifier	0.0100 0.200 1.00	MDL	mg/L mg/L mg/L	<u>D</u>	10/31/24 09:30 10/31/24 09:30 10/31/24 09:30	11/08/24 11:33 11/08/24 11:33 11/08/24 11:33 11/08/24 11:33	Dil Fac 1 1 1 1 1 1 1
Barium Boron Calcium Iron	0.880 8.90 133 9.01	Qualifier	0.0100 0.200 1.00 0.500	MDL	mg/L mg/L mg/L mg/L	<u>D</u>	10/31/24 09:30 10/31/24 09:30 10/31/24 09:30 10/31/24 09:30	11/08/24 11:33 11/08/24 11:33 11/08/24 11:33 11/08/24 11:33 11/08/24 11:33	Dil Fac 1 1 1 1 1 1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	3.67		0.500		mg/L		11/05/24 07:47	11/05/24 19:19	
Chemical Oxygen Demand (SM 5220D LL)	31.8		5.00		mg/L			11/05/24 10:34	,
Phenols, Total (SW846 9066)	<0.0200		0.0200		mg/L		11/01/24 09:05	11/01/24 21:57	•
Total Dissolved Solids (SM 2540C)	938		50.0		mg/L			10/31/24 17:16	· · · · · · · · ·

4

5

7

0

10

12

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: S2 Leachate Open

Date Collected: 10/28/24 11:35 Date Received: 10/29/24 08:50

Ammonia as N (EPA 350.1)

Phenols, Total (SW846 9066)

5220D LL)

Chemical Oxygen Demand (SM

Total Dissolved Solids (SM 2540C)

Lab Sample ID: 310-293885-2

11/05/24 07:47 11/05/24 19:21

11/01/24 09:05 11/01/24 21:58

11/05/24 10:34

10/31/24 17:16

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	107		20.0		mg/L			10/30/24 00:09	20
Nitrate as N	0.670		0.200		mg/L			10/29/24 23:53	1
Fluoride	1.02		0.200		mg/L			10/29/24 23:53	1
Sulfate	1210		20.0		mg/L			10/30/24 00:09	20
Method: SW846 6010D - Me	etals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0299		0.0100		mg/L		10/31/24 09:30	11/08/24 11:35	1
Boron	22.5		0.200		mg/L		10/31/24 09:30	11/08/24 11:35	1
Calcium	181		1.00		mg/L		10/31/24 09:30	11/08/24 11:35	1
Iron	1.20		0.500		mg/L		10/31/24 09:30	11/08/24 11:35	1
Lithium	1.12		0.0500		mg/L		10/31/24 09:30	11/08/24 11:35	1
Magnesium	143		1.00		mg/L		10/31/24 09:30	11/08/24 11:35	1
Molybdenum	0.0547		0.0500		mg/L		10/31/24 09:30	11/08/24 11:35	1
General Chemistry									
Analyte	Result	Qualifier	RI	MDI	Unit	D	Prepared	Analyzed	Dil Fac

0.500

0.0220

250

10.0

mg/L

mg/L

mg/L

mg/L

8.40

71.9

<0.0220

2330

Eurofins Cedar Falls

4

6

<u>۾</u>

9

11

12

13

Ц

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: S1 Underliner Open

Date Collected: 10/28/24 11:20

Iron

Lithium

Magnesium

Molybdenum

Date Received: 10/29/24 08:50

<0.500

0.0743

< 0.0500

38.0

Lab Sample II	D: 310-293885-3
---------------	-----------------

10/31/24 09:30 11/08/24 11:37

10/31/24 09:30 11/08/24 11:37 10/31/24 09:30 11/08/24 11:37

10/31/24 09:30 11/08/24 11:37

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	60.2		1.00		mg/L			10/30/24 00:24	1
Nitrate as N	2.54		0.200		mg/L			10/30/24 00:24	1
Fluoride	0.456		0.200		mg/L			10/30/24 00:24	1
Sulfate	34.1		1.00		mg/L			10/30/24 00:24	1
Method: SW846 6010	O - Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.642		0.0100		mg/L		10/31/24 09:30	11/08/24 11:37	1
Boron	3.72		0.200		mg/L		10/31/24 09:30	11/08/24 11:37	1
Calcium	92.2		1.00		ma/L		10/31/24 09:30	11/08/24 11:37	1

0.500

0.0500

0.0500

1.00

mg/L

mg/L

mg/L

mg/L

_							
General Chemistry Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
Ammonia as N (EPA 350.1)	<0.500	0.500	mg/L		11/05/24 07:47	11/05/24 19:21	
Chemical Oxygen Demand (SM 5220D LL)	18.8	5.00	mg/L			11/05/24 10:34	
Phenols, Total (SW846 9066)	<0.0212	0.0212	mg/L		11/01/24 09:05	11/01/24 21:59	
Total Dissolved Solids (SM 2540C)	694	50.0	mg/L			10/31/24 17:16	

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: Combined Leachate

Lab Sample ID: 310-293885-4

Date Collected: 10/28/24 11:45 Date Received: 10/29/24 08:50

Total Dissolved Solids (SM 2540C)

au	Sample	ID.	J	10-293005-4	
				Matrix: Water	

11/01/24 16:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	92.4		1.00		mg/L			10/30/24 07:57	1
Nitrate as N	0.894		0.200		mg/L			10/30/24 07:57	1
Fluoride	1.02		0.200		mg/L			10/30/24 07:57	1
Sulfate	616		20.0		mg/L			10/30/24 08:12	20
Method: SW846 6010D - Metals	s (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.317		0.0100		mg/L		10/31/24 09:30	11/08/24 11:39	1
Boron	15.7		0.200		mg/L		10/31/24 09:30	11/08/24 11:39	1
Calcium	158		1.00		mg/L		10/31/24 09:30	11/08/24 11:39	1
Iron	4.37		0.500		mg/L		10/31/24 09:30	11/08/24 11:39	1
Lithium	0.651		0.0500		mg/L		10/31/24 09:30	11/08/24 11:39	1
Magnesium	93.3		1.00		mg/L		10/31/24 09:30	11/08/24 11:39	1
Molybdenum	<0.0500		0.0500		mg/L		10/31/24 09:30	11/08/24 11:39	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	5.34		0.500		mg/L		11/05/24 11:57	11/06/24 02:22	1
Chemical Oxygen Demand (SM 5220D LL)	49.9		10.0		mg/L			11/05/24 10:34	2
Phenols, Total (SW846 9066)	< 0.0208		0.0208		mg/L		11/01/24 09:05	11/01/24 21:59	1

250

mg/L

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: MW-1

Lab Sample ID: 310-293885-5 Date Collected: 10/28/24 14:57

Matrix: Water Date Received: 10/29/24 08:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4.82		1.00		mg/L			10/30/24 08:28	1
Nitrate as N	<0.200		0.200		mg/L			10/30/24 08:28	1
Fluoride	<0.200		0.200		mg/L			10/30/24 08:28	1
Sulfate	23.7		1.00		mg/L			10/30/24 08:28	1
Method: SW846 6010D - Metals ((ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0853		0.0100		mg/L		10/31/24 09:30	11/08/24 11:41	1
Boron	<0.200		0.200		mg/L		10/31/24 09:30	11/08/24 11:41	1
Calcium	68.8		1.00		mg/L		10/31/24 09:30	11/08/24 11:41	1
Iron	<0.500		0.500		mg/L		10/31/24 09:30	11/08/24 11:41	1
Lithium	< 0.0500		0.0500		mg/L		10/31/24 09:30	11/08/24 11:41	1
Magnesium	37.9		1.00		mg/L		10/31/24 09:30	11/08/24 11:41	1
Molybdenum	<0.0500		0.0500		mg/L		10/31/24 09:30	11/08/24 11:41	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.200		0.200		mg/L			10/31/24 00:45	1
Chemical Oxygen Demand (SM 5220D LL)	12.3		10.0		mg/L			11/05/24 10:34	2
Phenols, Total (SW846 9066)	<0.0200		0.0200		mg/L		11/01/24 09:05	11/01/24 22:00	1
Total Dissolved Solids (SM 2540C)	340		50.0		mg/L			11/01/24 17:05	1

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Date Received: 10/29/24 08:50

Chemical Oxygen Demand (SM 5220D

Total Dissolved Solids (SM 2540C)

Phenols, Total (SW846 9066)

LL)

<5.00

424

<0.0216

Client Sample ID: MW-2 Lab Sample ID: 310-293885-6

Date Collected: 10/28/24 13:24 **Matrix: Water**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7.58		1.00		mg/L			10/30/24 08:43	1
Nitrate as N	1.52		0.200		mg/L			10/30/24 08:43	1
Fluoride	<0.200		0.200		mg/L			10/30/24 08:43	1
Sulfate	19.9		1.00		mg/L			10/30/24 08:43	1
Method: SW846 6010D - Me	etals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0857		0.0100		mg/L		10/31/24 09:30	11/08/24 11:43	1
Boron	<0.200		0.200		mg/L		10/31/24 09:30	11/08/24 11:43	1
Calcium	101		1.00		mg/L		10/31/24 09:30	11/08/24 11:43	1
Iron	<0.500		0.500		mg/L		10/31/24 09:30	11/08/24 11:43	1
Lithium	<0.0500		0.0500		mg/L		10/31/24 09:30	11/08/24 11:43	1
Magnesium	42.1		1.00		mg/L		10/31/24 09:30	11/08/24 11:43	1
Molybdenum	<0.0500		0.0500		mg/L		10/31/24 09:30	11/08/24 11:43	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.200		0.200		mg/L			10/31/24 00:48	1

5.00

50.0

0.0216

mg/L

mg/L

mg/L

11/05/24 10:34

11/01/24 17:05

11/01/24 09:05 11/01/24 22:01

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: MW-3 Lab Sample ID: 310-293885-7

Date Collected: 10/28/24 11:33 Matrix: Water

Date Received: 10/29/24 08:50

Method: SW846 9056A - Anions	, Ion Chro	matograph	y						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	112		5.00		mg/L			10/30/24 09:46	5
Nitrate as N	0.782		0.200		mg/L			10/30/24 09:30	1
Fluoride	<0.200		0.200		mg/L			10/30/24 09:30	1
Sulfate	119		5.00		mg/L			10/30/24 09:46	5
Method: SW846 6010D - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0628		0.0100		mg/L		11/01/24 09:30	11/10/24 16:58	1
Boron	2.35		0.200		mg/L		11/01/24 09:30	11/10/24 16:58	1
Calcium	129		1.00		mg/L		11/01/24 09:30	11/10/24 16:58	1
Iron	<0.500		0.500		mg/L		11/01/24 09:30	11/10/24 16:58	1
Lithium	< 0.0500		0.0500		mg/L		11/01/24 09:30	11/10/24 16:58	1
Magnesium	59.2		1.00		mg/L		11/01/24 09:30	11/10/24 16:58	1
Molybdenum	<0.0500		0.0500		mg/L		11/01/24 09:30	11/10/24 16:58	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.200		0.200		mg/L			10/31/24 00:52	1
Chemical Oxygen Demand (SM 5220D LL)	<10.0		10.0		mg/L			11/05/24 10:34	2
Phenols, Total (SW846 9066)	<0.0200		0.0200		mg/L		11/01/24 09:05	11/01/24 22:01	1
Total Dissolved Solids (SM 2540C)	810		50.0		mg/L			11/01/24 17:05	1

-

3

5

7

10

11

13

4 /

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: EB-01

Lab Sample ID: 310-293885-8 Date Collected: 10/28/24 14:35

Matrix: Water

Date Received: 10/29/24 08:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<1.00		1.00		mg/L			10/30/24 09:30	1
Nitrate as N	<0.200		0.200		mg/L			10/30/24 09:30	1
Fluoride	<0.200		0.200		mg/L			10/30/24 09:30	1
Sulfate	<1.00		1.00		mg/L			10/30/24 09:30	1
Method: SW846 6010D - Metals	(ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	<0.0100		0.0100		mg/L		11/01/24 09:30	11/10/24 17:12	1
Boron	<0.200		0.200		mg/L		11/01/24 09:30	11/10/24 17:12	1
Calcium	<1.00		1.00		mg/L		11/01/24 09:30	11/10/24 17:12	1
Iron	<0.500		0.500		mg/L		11/01/24 09:30	11/10/24 17:12	1
Lithium	<0.0500		0.0500		mg/L		11/01/24 09:30	11/10/24 17:12	1
Magnesium	<1.00		1.00		mg/L		11/01/24 09:30	11/10/24 17:12	1
Molybdenum	<0.0500		0.0500		mg/L		11/01/24 09:30	11/10/24 17:12	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.200		0.200		mg/L			10/31/24 00:53	1
Chemical Oxygen Demand (SM 5220D LL)	<5.00		5.00		mg/L			11/05/24 10:34	1
Phenols, Total (SW846 9066)	<0.0200		0.0200		mg/L		11/01/24 09:05	11/01/24 22:02	1
Total Dissolved Solids (SM 2540C)	<50.0		50.0		mg/L			11/01/24 17:05	1

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Lab Sample ID: 310-293885-9 **Client Sample ID: Dup-01** Date Collected: 10/28/24 00:00

Matrix: Water

Date Received: 10/29/24 08:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7.50		1.00		mg/L			10/30/24 09:46	1
Nitrate as N	1.53	#	0.200		mg/L			10/30/24 09:46	1
Fluoride	<0.200		0.200		mg/L			10/30/24 09:46	1
Sulfate	19.6		1.00		mg/L			10/30/24 09:46	1
Method: SW846 6010D - Metals	(ICP)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0867		0.0100		mg/L		11/01/24 09:30	11/10/24 17:14	1
Boron	<0.200		0.200		mg/L		11/01/24 09:30	11/10/24 17:14	1
Calcium	100		1.00		mg/L		11/01/24 09:30	11/10/24 17:14	1
Iron	<0.500		0.500		mg/L		11/01/24 09:30	11/10/24 17:14	1
Lithium	<0.0500		0.0500		mg/L		11/01/24 09:30	11/10/24 17:14	1
Magnesium	43.2		1.00		mg/L		11/01/24 09:30	11/10/24 17:14	1
Molybdenum	<0.0500		0.0500		mg/L		11/01/24 09:30	11/10/24 17:14	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	<0.200		0.200		mg/L			10/31/24 00:54	1
Chemical Oxygen Demand (SM 5220D LL)	<10.0		10.0		mg/L			11/05/24 10:34	2
Phenols, Total (SW846 9066)	<0.0200		0.0200		mg/L		11/01/24 09:05	11/01/24 22:02	1
Total Dissolved Solids (SM 2540C)	408		50.0		mg/L			11/01/24 17:05	1

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: S1 underliner Closed

Lab Sample ID: 310-293962-1 Date Collected: 10/29/24 11:05

Date Received: 10/30/24 09:00

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	74.9	1.00	mg/L			10/30/24 14:26	1
Nitrate as N	0.967	0.200	mg/L			10/30/24 14:26	1
Fluoride	0.640	0.200	mg/L			10/30/24 14:26	1
Sulfate	47.5	1.00	mg/L			10/30/24 14:26	1

Analyte	Result Q	Qualifier RL	MDL U	Init	D	Prepared	Analyzed	Dil Fac
Barium	0.677	0.0100		ng/L		11/01/24 09:30	11/10/24 17:16	1
Boron	8.10	0.200	m	ng/L		11/01/24 09:30	11/10/24 17:16	1
Calcium	123	1.00	m	ng/L		11/01/24 09:30	11/10/24 17:16	1
Iron	6.42	0.500	m	ng/L		11/01/24 09:30	11/10/24 17:16	1
Lithium	0.192	0.0500	m	ng/L		11/01/24 09:30	11/10/24 17:16	1
Magnesium	41.9	1.00	m	ng/L		11/01/24 09:30	11/10/24 17:16	1
Molybdenum	<0.0500	0.0500	m	ng/L		11/01/24 09:30	11/10/24 17:16	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	2.02		0.500		mg/L		11/05/24 07:47	11/05/24 20:22	1
Chemical Oxygen Demand (SM 5220D LL)	27.4		5.00		mg/L			11/07/24 10:17	1
Phenols, Total (SW846 9066)	<0.0200		0.0200		mg/L		11/01/24 09:05	11/01/24 22:02	1
Total Dissolved Solids (SM 2540C)	880		50.0		mg/L			11/02/24 13:46	1

Matrix: Water

Client: John Deere & Co Job ID: 310-293885-1

Project/Site: John Deere Dubuque Landfill (TRC)

Client Sample ID: S2 underliner Closed

Date Collected: 10/29/24 11:10

Date Received: 10/30/24 09:00

Lab Sample ID: 310-293962-2

Matrix: Water

Analyte	Result C	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	376	20.0	mg/L			10/30/24 14:11	20
Nitrate as N	1.24	0.200	mg/L			10/30/24 13:55	1
Fluoride	1.41	0.200	mg/L			10/30/24 13:55	1
Sulfate	1380	20.0	mg/L			10/30/24 14:11	20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0359		0.0100		mg/L		11/01/24 09:30	11/10/24 17:18	1
Boron	22.7		0.200		mg/L		11/01/24 09:30	11/10/24 17:18	1
Calcium	190		1.00		mg/L		11/01/24 09:30	11/10/24 17:18	1
Iron	3.06		0.500		mg/L		11/01/24 09:30	11/10/24 17:18	1
Lithium	1.13		0.0500		mg/L		11/01/24 09:30	11/10/24 17:18	1
Magnesium	149		1.00		mg/L		11/01/24 09:30	11/10/24 17:18	1
Molybdenum	<0.0500		0.0500		mg/L		11/01/24 09:30	11/10/24 17:18	1

General Chemistry Analyte	Result (Qualifier RL	MDL U	nit D	Prepared	Analyzed	Dil Fac
Ammonia as N (EPA 350.1)	8.06	0.500	m	ıg/L	11/05/24 07:47	11/05/24 19:18	1
Chemical Oxygen Demand (SM 5220D LL)	69.4	10.0	m	ig/L		11/07/24 10:17	2
Phenols, Total (SW846 9066)	<0.0212	0.0212	m	ıg/L	11/01/24 09:05	11/01/24 22:03	1
Total Dissolved Solids (SM 2540C)	2250	250	m	ıg/L		11/02/24 13:46	1

11/18/2024 (Rev. 1)

4

6

9

10

12

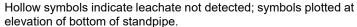
13

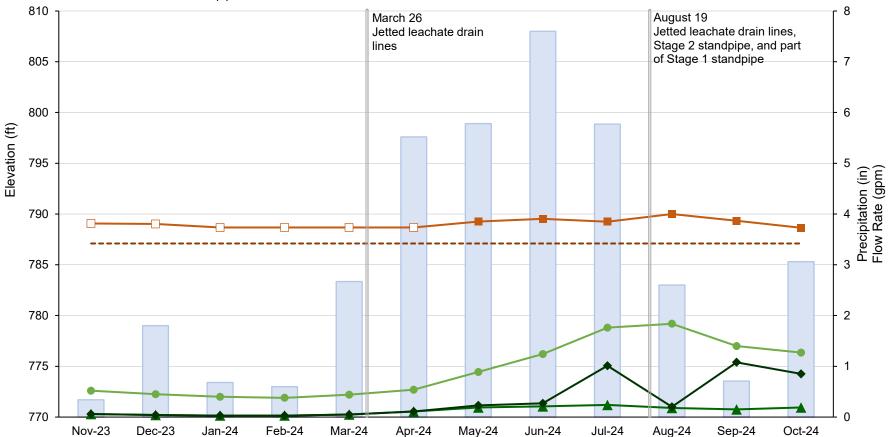
Appendix G: Leachate Collection System Evaluation Graphs

Landfill Monitoring Stage 1 Leachate Collection Evaluation

Total Monthly Precipitation (in)

Elevation of Saturated Waste (ft)


---- Liner Elevation (ft)


Leachate Flow Rate (gpm)

—

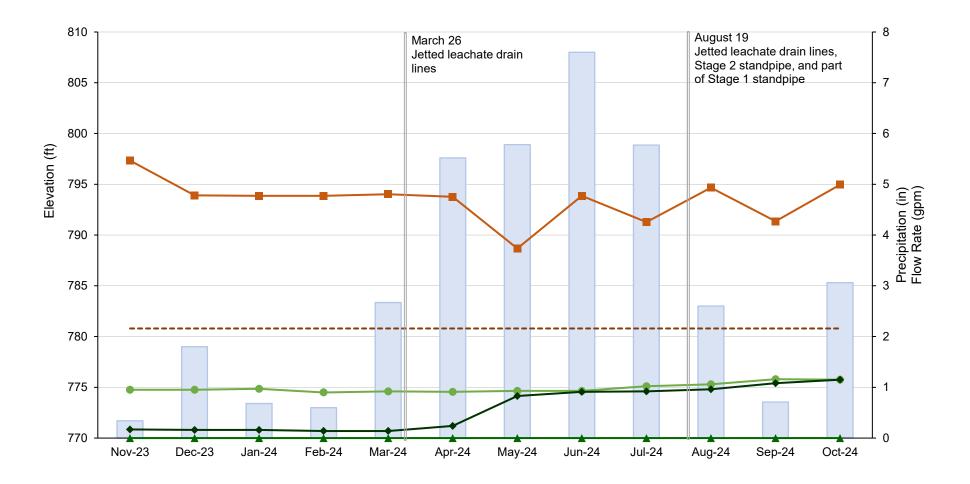
■ Underliner Flow Rate (valve open) (gpm)

── Underliner Flow Rate (valve closed) (gpm)

John Deere Dubuque Works Permit # 31-SDP-1-75P-ILF

Landfill Monitoring Stage 2 Leachate Collection Evaluation

Total Monthly Precipitation (in)


Elevation of Saturated Waste (ft)

Liner Elevation (ft)

Leachate Flow Rate (gpm)

Underliner Flow Rate (valve open) (gpm)

── Underliner Flow Rate (valve closed) (gpm)

