2024 ANNUAL GROUNDWATER QUALITY REPORT

FOR THE MARSHALL COUNTY SANITARY LANDFILL 64-SDP-2-75P MARSHALLTOWN, IOWA

by:

HLW Engineering Group 204 West Broad Street P.O. Box 314 Story City, Iowa 50248 (515) 733-4144

January, 2025

Table of Contents

Cert	н	пπ	CO	1	nn
	ш		va	ш	VII

Section 1.0 Background Information

Monitoring Well Maintenance Performance Reevaluation

Section 2.0 Reporting Period Activities

Section 3.0 Data Evaluation and Summary

Quality Assurance/Quality Control

Background data Validation

Site Specific GWPS

Statistically Significant Increases/Exceedances of Prediction Limits

Assessment Monitoring

Statistically Significant Levels

Assessment of Corrective Measures, Corrective Action Evaluations & Monitoring

Progress Towards Remedy Completion

Section 4.0 Leachate Collection System Performance Reevaluation

Section 5.0 Gas Monitoring Evaluation

Section 6.0 Recommendations

Figures

- Figure 1 Site Plan & Gas Monitoring Locations
- Figure 2 Water Table Contour Map
- Figure 3 SRAMP-B & PECS-B Location Map
- Figure 4 Corrective Action Plan Map
- Figure 5 Iso-Contour Map -arsenic
- Figure 6 Iso-Contour Map -cobalt
- Figure 7 Iso-Contour Map cis-1,2-dichloroethene
- Figure 8 Iso-Contour Map 1,2-dichloropropane
- Figure 9 Iso-Contour Map vinyl chloride

Tables in IDNR Format

- Table 1 Monitoring Program Summary
- Table 2 Monitoring Program Implementation Schedule
- Table 2A Summary of Monitoring Over Time
- Table 3 Monitoring Well Maintenance Performance Reevaluation Schedule
- Table 4 Monitoring Well Maintenance Performance Reevaluation Summary
- Table 4A Water Elevation Summary Over Time
- Table 5 Background and GWPS Summary
- Table 6 Summary of Detections
- Table 7 Summary of Ongoing and Newly Identified SSI **Interwell**
- Table 7A Summary of Ongoing and Newly Identified SSI Intrawell
- Table 8 Summary of Ongoing and Newly Identified SSL Not Required
- Table 9 Analytical Data Summary
- Table 10 Historic SSI and SSL Not Required
- Table 11 Corrective Action Trend Analysis Not Required
- Table 12 Leachate Levels
- Table 13 Gas Monitoring Summary
- Table 14 LW-75 Leachate Quality Data
- Table 15 CAMP -Vent Gas Evaluation Summary
- Table 16 CAMP Well Evaluation Summary
- Table 17 Progress of the Remedy

Appendices

Appendix A - Field Sampling Forms Appendix B - Statistical Reports

Appendix C - Laboratory Reports for Report Period Appendix D - Turbidity

Appendix E – Prediction Limit Exceedances
Appendix F - Assessment Monitoring Results
Appendix G – Leachate Collection System Map & Information

Certification

Prepared by: ______ Date: <u>1-22-2025</u>

Typed: <u>Todd Whipple, CPG</u>

Section 1.0 Background Information

1.1 Report Format

Table 1 through Table 17 are attached to this report and satisfy the IDNR requirement to provide the tables to meet the IDNR format requirements included in Special Provision 4i of Revised Permit #5, dated August 14, 2024 (Doc #110693).

1.2 Report Priority

No special priority is requested related to the review of this document.

A groundwater characterization study was performed in the vicinity of MW-96R and was submitted to IDNR on January 17, 2024 (Doc #108834). The study identified an alternate source for the elevated concentrations of arsenic and cobalt at MW-96R. The elevated arsenic and cobalt are not attributed to a landfill or landfill gas source. This study was approved in the IDNR Letter dated May 28, 2024 (Doc #110151) and MW-96R is herein designated a downgradient point of compliance well in detection monitoring.

1.3 Period of Report Coverage

Water quality data includes a running compilation of data beginning in March, 2008. Statistical evaluations herein are based only upon the "no-purge" data collected October 16, 2014 through the most recent. The 2024 data collection events occurred January 25, 2024 (verification sampling); April 16, 2024; July 18, 2024 (verification sampling); and October 15, 2024.

1.4 Current Site Map

Figure 1 is attached illustrating the current site features and monitoring locations.

1.5 Site Status and Applicable Rules

Site Location

The Marshall County Sanitary Landfill is located in SE1/4 Section 31, T84N, R18W and the west 970 feet of SW1/4 Sections 32, T84N, R18W, and part of the NW1/4 Section 5, T83N R18W, and part of the NE1/4 Section 5, T83N R18W. The site encompasses approximately 388 acres. The facility is situated on Marshalltown Boulevard approximately 1 mile southwest of the corporate limits of Marshalltown, Iowa. The facility operates under the Iowa Department of Natural Resources (IDNR) Permit Number 64-SDP-2-75P.

Landfill Lavout

The site is situated in the uplands between the Iowa River valley to the north and the Linn Creek alluvial valley to the south. Expansion Areas are designated Area B-1, B-2, B-3, and B-4, and Areas C/D. Areas B-1, B-2, B-3, and Area C/D are closed. Area B-4 is the active RCRA Subtitle D landfill expansion area.

Applicable Rules

Iowa Administrative Code (IAC) 567-113 is applicable to the site due to the contiguous nature of the closed Areas B-1, B-2, B-3, C/D and the active area (B-4).

1.6 Summary of Hydrologic Monitoring System Plan (HMSP)

The approved HMSP includes fifteen (15) monitoring wells, a tile line discharge pipe (SRAMP-B), and a discharge point from a Passive Engineered Conveyance System (PECS-B). MW-66, MW-85, MW-98, and MW-99 are the designated background/upgradient wells for the facility. The Site Plan and the approved monitoring network is illustrated on Figure 1. The current HMSP is summarized in Table 1. The HMSP Implementation Schedule for 2025 is itemized in Table 2.

MONITORING WELL MAINTENANCE PERFORMANCE REEVALUATION

Table 3 outlines the status of well performance and maintenance activities performed as required by IAC 567-113.10(2) f.

High & Low Water Levels

Current year water elevation data is included on Table 4. Historic water elevation data (1992 to 2024) is included in the Table 4A Supplement. The maximum depth to water and the minimum depth to water are included in the tables. A Water Table Contour Map (Figure 2) dated October, 2024 is included with this report. The Water Table Contour Map illustrates the water table surface and the effects of the topography.

Review of the October 15, 2025 water elevation data indicates that the readings generally represent a low water table condition within the historic water table surface elevation range.

Well Depth & Sedimentation

Well depth measurements were made on October 15, 2024. Review of the well depth data included on Table 4 indicate that well sedimentation is estimated to be 1.1 foot, or less, at all site monitoring wells. Based on this recorded data, recharge to the individual wells is sufficient to promote collection of representative water quality samples and the wells are functioning as intended.

Well Recharge Rates & Chemistry

The monitoring wells included in the HMSP were installed at various times between 1989 and 2022. Monitoring Well Maintenance Performance Reevaluations (MWMPR's) were completed every five (5) years in accordance with previous rules (June, 1996; May, 2001; and March, 2006). The MWMPR's were submitted to IDNR. All reports concluded that the integrity of all monitoring wells was intact, and that no changes in monitoring system were recommended.

Monitoring well recharge reevaluation is now due biennially according to 113.10(2)f. Field recovery data for April 16, 2024 is recorded on Table 4. Review of the recorded field data on IDNR Form 542-1322 for April 16, 2024, indicate that water levels within each well generally recover (fully or in excess of 90%) within 8 hours following purging. MW-95 required longer than 8 hours, but less than 24 hours to recover. Well recovery information indicates that recharge to the individual wells remained sufficient to promote collection of representative water quality samples and the wells were functioning as intended. Monitoring well recharge reevaluation is due biennially according to 113.10(2)"f", and should be evaluated again in 2026.

A Groundwater Contour Map (Figure 2) dated October 15, 2024 is attached. Review of the map confirms little change in the water table surface since 2017 when Subarea B-4-7 was constructed.

Based on the apparent static condition of the water table across the site, the conclusions of the Monitoring Well Maintenance Performance Reevaluation, and the existing water elevation database, it appears that the semi-annual water elevation data is sufficient to adequately monitor the hydrologic condition of the site. Further, the wells are interpreted to be appropriately located to detect any impact, should it occur. No changes or modifications to the site monitoring wells are recommended.

MW-66 was dry in October, 2017 following the completion of the groundwater underdrain system in Subarea B-4-7 and remained dry through 2024. MW-66 is expected to remain dry permanently. MW-66 has performed as a background well for the facility. Since there are no background well spacing requirements in rule, the well may, or may not, be replaced in the future, dependent upon needs. The available background data from MW-66 will be maintained in the background data pool going forward.

MW-96 was plugged on July 13, 2020 to make way for road improvements at the site. The well abandonment records (Doc #98067) were approved on September 30, 2020 (Doc #98549). MW-96 was replaced with MW-96R, constructed October 23, 2020. Construction documentation was submitted to IDNR on November 6, 2020 (Doc #98866). MW-96R is in the HMSP with the initial sampling event completed in April, 2021.

Alternate Source – MW-96R

As discussed previously in this report, an alternate source for the elevated metals at MW-96R has been documented (Doc # 108834) and was approved by IDNR on May 28, 2024 (Doc #110151).

Based on the identified alternate source, Statistically Significant Increases (SSI) and/or Statistically Significant Levels (SSL) for inorganic compounds will be identified if both the interwell prediction limit and the intrawell control limit are exceeded at MW-96R.

An insufficient number of data points are currently on record for a robust background at MW-96R. The database for MW-96R will increase with time. The minimum complete intrawell data set for all inorganic compounds at MW-96R will be achieved in 2027.

Section 2.0 Reporting Period Monitoring Activities

Table 1 and Table 2 include information related to the Monitoring Activities at this facility. A summary of all well testing beginning March 28, 2008 is included in the Table 2A Supplement.

Field sampling information for the April 16 2024 and October 15, 2024 sampling episodes is included on the field forms (IDNR Form 542-1322) in Appendix A.

A comprehensive summary of Analytical Results for the episodes between March 28, 2008 and October 15, 2024 is included in Table 9. A summary of the Appendix II sample collection events at each well is included on Table 2.

2.1 Current Detection Monitoring Activities

Background wells MW-66, MW-85, MW-98, and MW-99; and downgradient monitoring wells MW-87, MW-89, MW-93, MW-95, MW-96R, MW-97, and tile line SRAMP-B are the wells/points on site that remain in detection monitoring.

2.2 Current Assessment Monitoring Activities

Monitoring well MW-91 is included in the assessment monitoring program.

The full Appendix II parameter list is analyzed on an approved five (5) year frequency at all assessment wells. Approval of the five (5) year frequency is included in Special Provision 4.f. of Revised Permit #1, dated September 7, 2022 (Doc #103965).

The most recent full Appendix II sampling was completed in 2023 at MW-91.

The IDNR Letter dated August 23, 2017 (Doc #90171) approved a five (5) year frequency for the ongoing bis (2-ethylhexyl) phthalate testing (corresponds to the approved frequency of the Full Appendix II sample collection events).

2.3 Passive Engineered Conveyance Structure (PECS) Monitoring

The SRAMP diversion tile line near Area B-2 is discharged into a PECS (Figure 3). The tile line end where sampling is performed is designated SRAMP-B. The discharge from the PECS is designated as sampling point PECS-B. Note that the SRAMP tile line (SRAMP-B) and the associated PECS (PECS-B) are commonly recorded as being dry.

2.4 Supplemental Monitoring Points

Monitoring wells MW-49, MW-54, MW-81, and MW-94 are supplemental monitoring points within the Corrective Action Monitoring System (Figure 4). Sampling frequency is semi-annually at MW-49, MW-54, MW-81, and MW-94 for Appendix I compounds, and annually for dissolved methane, ethane, ethene and for alkalinity and pH.

2.5 Correction Action Monitoring Activities

Leachate Well LW-75 and Passive Gas Vents 1-27 are the Corrective Action Monitoring Points (CAMP). Sampling frequency at LW-75 is annually with analysis for Appendix I VOC, total arsenic, total cobalt, ammonia (as nitrogen), sulfate, chloride, TDS, BOD5, dissolved methane, ethane, ethene, alkalinity, and pH. The passive gas vents are monitored quarterly for percent lower explosive limit (%LEL).

Section 3.0 Data Evaluation and Summary

Statistical Evaluations are prepared by Otter Creek Environmental Services for the Spring and Fall monitoring episodes. <u>The Groundwater Statistics Report for the Marshall County Sanitary Landfill, First Semi-Annual Monitoring Event in 2024</u>, dated May, 2024 is included in Appendix B.1. <u>The Groundwater Statistics Report for the Marshall County Sanitary Landfill, Second Semi-Annual Monitoring Event in 2024</u>, dated November, 2024 is included in Appendix B.2.

The Analytical Reports for the laboratory testing from 2024 (January 25, 2024 (verification sampling); April 16, 2024; July 18, 2024 (verification sampling); and October 15, 2024) sampling events are included in Appendix C.

QUALITY ASSURANCE/QUALITY CONTROL

A blind duplicate sample was collected at MW-96R during the April 16, 2024 sampling episode. A blind duplicate was collected at MW-95 during the October 15, 2024 sampling episode.

The purpose of the field duplicate is to evaluate the precision of sample collection and analysis process from the field through the laboratory. The calculation of the Relative Percent Difference (RPD) for duplicate pair results is used as a means to evaluate the precision.

The Quality Control (QC) limit for the RPD on field duplicates is established at thirty percent (30%) for duplicate pairs that have reported concentrations five (5) times greater than the laboratory Reporting Limit. For samples and respective duplicates with reported analyte concentrations nearer the Reporting Limit, the RPD calculations demonstrate greater variability and the RPD can be very large. RPD values are considered non-representative in the following conditions:

- a) Both the original and the duplicate results are less than five (5) times the Reporting Limit.
- b) One or both results are qualified, flagged, or estimated.
- c) One or both results are non-detected.

The results of the blind duplicate and the monitoring well results (April 16, 2024 and October 15, 2024) were within the limits established and indicate that the data quality is acceptable without restriction.

BACKGROUND DATA VALIDATION

On July 10, 2014 an unnumbered Permit Amendment and Memo was issued by the IDNR regarding turbidity (Doc # 80716). A TSS and Field Turbidity Evaluation Report was prepared and submitted on February 24, 2015 (Doc# 82541), and was approved by IDNR in the September 30, 2015 IDNR Response Letter (Doc #84311). The approved TSS and Field Turbidity Evaluation Report includes a requirement to evaluate and sort data within the background data pool and retain only data that is validated as appropriate.

The background data has been limited to only the data collected by "no-purge" sample collection methods since October 2014. A summary of the field turbidity data at each well associated with the "no-purge" sample collection events is included in Appendix D. No events occurred during sampling in 2024 that induced mechanically increased turbidity. The turbidity values recorded are representative of the natural formation during each sample collection event and all samples are deemed appropriate for use in evaluating the site.

<u>Upgradient Data</u>, Table 1, Attachment B, to the November 2024 Statistical Evaluation Report (Appendix B.2) includes a summary of the background data. The calculated Prediction Limits are summarized on Table 5. Table 5 also included the calculated Control Limits utilized in the intrawell evaluations at MW-93 and MW-96R.

Outlier testing is applied to the background data pool to identify and remove extreme values. <u>Dixon's Test Outliers 1% Significance Level</u>, Table 6, Attachment B, to the November 2024 Statistical Evaluation Report (Appendix B.2) includes a summary of the outlier testing results.

SITE SPECIFIC GWPS

Review of the inorganic Prediction Limits in Table 5 indicates that the prediction limit for cobalt (currently 5.9879 ug/L) calculated from the background data exceeds the published IAC 567, Chapter 137 Statewide Standard (2.1 ug/L). The Site-Specific GWPS should not be set lower than the Site Prediction Limit calculated from the site background data. For this report, the published IAC 567, Chapter 137 Statewide Standards are used as the GWPS, except for cobalt, where the Site Specific GWPS of 5.9879 ug/L is utilized. The Site Specific GWPS for cobalt is equivalent to the Site Prediction Limits.

Note also that the Intrawell Control Limits calculated for inorganic compounds at MW-93 and MW-96R typically exceed the published IAC 567, Chapter 137 Statewide Standards.

STATISTICALLY SIGNIFICANT INCREASES (SSI)/EXCEEDANCES OF LIMITS

Interwell Statistical Evaluations

The detected concentration of each compound is compared to the current prediction limit for each respective compound calculated based on the background data set. A detected concentration for a compound that is in excess of the calculated site prediction limit is recorded as a Statistically Significant Increase (SSI) at detection monitoring wells.

Since the Prediction limit for VOC is set at the laboratory Method Reporting Limit, any VOC detection is recorded as an SSI. Table 6 is a summary of all compounds at site monitoring wells that have exceeded a *current* prediction limit (in 2024). There are no prediction limit exceedance recorded in the current detection monitoring system wells. MW-66, MW-85, MW-98, MW-99, MW-87, MW-89, MW-91, MW-95, MW-97, and SRAMP-B remain in the detection monitoring system. There were prediction limit exceedances recorded at MW-93 and MW-96R in 2024.

However, MW-93 and MW-96R are evaluated by intrawell statistical methods in addition to the interwell statistical methods. Interwell prediction limit exceedances at MW-93 and MW-96R are not considered to be SSI, unless the intrawell control limits for MW-93 and MW-96R are also exceeded. There are *no exceedances* of the intrawell control limit at MW-93 or MW-96R. Therefore, no SSI are recorded at MW-93 or MW-96R.

This method of a two (2) part statistical evaluation (interwell and intrawell) where an SSI is identified only when <u>both</u> the interwell prediction limit and the intrawell control limit are exceeded is explicitly approved for MW-96R in the IDNR Letter dated May 28, 2024 (Doc #110151). The same method of evaluation is also applied at MW-93 which was approved for intrawell statistical evaluation on June 1, 2020 (Doc #97844).

The prediction limit versus results evaluations are included in Table 7. SSI are highlighted in light brown on Table 7. Historically, SSI are recorded at MW-91 and MW-91 is included in the assessment monitoring program.

Exceedance of the Prediction Limits for the current year is summarized on Table 1. A running summary of recorded Prediction Limit exceedances by year is included in Appendix E.

This report serves as notice to the operating record in accordance with IAC 567-113.10(5)c.

Intrawell Statistical Evaluations

MW-93 and MW-96R are evaluated by Intrawell statistical methods for inorganics. Any detected VOC would be considered an SSI. To date both MW-93 and MW-96R are free of VOC detections.

MW-93 is the lagoon monitoring point and is determined to be situated in a distinct hydrogeological setting at the site. Intrawell statistical evaluations have been ongoing at MW-93 based on data collected since October 16, 2014. The background dataset is robust and includes 13 data points at MW-93.

MW-96R is a downgradient point of compliance well, also situated in a unique hydrogeologic setting. The subsurface environment at MW-96R is documented to be low pH with reducing conditions. The subsurface environment is documented to be free of indications of direct landfill impacts or landfill gas impacts. The subsurface environment is identified as an alternate source of the elevated inorganics at MW-96R. Intrawell statistics are employed at MW-96R in order to evaluate the natural concentrations of inorganic compounds.

Based on the Intrawell Statistical Evaluations at MW-93 and MW-96R, there are no control limit exceedances and no SSI are identified at MW-93 or MW-96R. Table 7A includes summary data related to the intrawell evaluations at MW-93 and MW-96R.

Time Series Trends - Source Area

The Supplemental Wells MW-49, MW-54, MW-81, and MW-94 are not evaluated by interwell or intrawell statistical methods. Instead, ongoing time series trend analyses of the Supplemental

Wells is utilized to track changes in the source area. Time series graphs are included in Appendix B.3. Any significant increasing or decreasing trends are noted on the respective graphs.

ASSESSMENT MONITORING

The full Appendix II (assessment) monitoring events have historically been completed at MW-49, MW-54, MW-81, MW-87, MW-89, MW-91, MW-93, MW-94, and MW-96R. Bis (2 ethylhexyl) phthalate was the only Appendix II compound detected (beyond the Appendix I list).

Full Appendix II List Assessment Monitoring is required on a five (5) year frequency as approved by Special Provision 4.f. of the Revised Permit #4, dated October 25, 2023 (Doc #108057). The most recent full Appendix II sampling event occurred in 2023, as summarized in Table 2.

The list of assessment monitoring compounds that were historically required in those years when full Appendix II was not performed consists of the Appendix I compounds plus bis (2 ethylhexyl) in accordance with 113.10(6)"d"(2). The IDNR Letter dated August 23, 2017 (Doc #90171) approved a five (5) year frequency for the ongoing bis (2-ethylhexyl) phthalate testing (corresponds to the approved frequency of the Full Appendix II sample collection events).

A summary of bis(2-ethylhexyl) phthalate testing to date is presented in Appendix F. The full Appendix II sampling episodes are highlighted in green in the tables in Appendix F.

STATISTICALLY SIGNIFICANT LEVELS (SSL)

The compounds with detections that exceed site prediction limits (see summary in Tables 6 & 7) are utilized to calculate the Confidence Interval (the 95% lower confidence limits (LCL) and the 95% upper control limits (UCL)) in accordance with the 2009 <u>Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities</u> by US EPA. The 95% LCL values are compared to applicable GWPS. Any 95% LCL value that exceeds an applicable GWPS is recorded as an SSL. All wells with a recorded SSL require the plume of impact to be defined in the horizontal and vertical directions and require completion of an Assessment of Corrective Action (ACM). Note that there are no SSL recorded at any point of compliance (POC) or at any attenuation zone point of compliance (AZPOC) well.

ACM, CORRECTIVE ACTION PLAN, CORRECTIVE ACTION MONITORING

Completed exposure pathways have not been identified and the findings of the approved Human Health Risk Assessment (1995) are unchanged.

The impact(s) have been delineated in the horizontal and vertical extent, with an Assessment of Corrective Measures Report submitted December 19, 2012 (Doc #75392) and revised and submitted on July 20, 2017 (Doc #90008), with an Amendment to the ACM submitted May 23, 2019 (Doc #95276). Delineation Reports in the vicinity of MW-94 were submitted December 18, 2013 (Doc #78985) and January 28, 2016 (Doc #85296).

Corrective Measures activities related to MW-49, MW-54, MW-81, and MW-94 were constructed in July, 2017. The corrective measure incorporated twenty-seven (27) passive vents through the landfill cap in Subarea B-3.

The selected remedy is monitored natural attenuation coupled with passive landfill gas vents 1-27 (Figure 4). The December 18, 2019 Corrective Action Plan (CAP), Doc #96631, was approved by IDNR on May 19, 2020 (Doc #97777) and is incorporated into Revised Permit #4, dated October 25, 2023 (Doc #108057).

Evaluation of CAMP point LW-75

Available leachate quality data is summarized in Table 14. To date there are no discernable trends in data. It is noted that the VOC concentrations detected in 2023 and 2024 appear higher than the previous years' results. The assumption is that any trends in data will be identified as additional data is gathered over time. As previously documented, leachate quality differs remarkably from the water quality in perimeter groundwater wells.

Evaluation of CAMP Passive Gas Vent Performance

The methane concentrations as % LEL were recorded quarterly at each of the twenty-seven (27) vents in the cap of Area B-3 (Figure 1). The results are included on Table 15. Note that there is not an enforceable level for vented landfill gas in rule.

Gas continues to vent from the closed landfill. Trend lines are included on the graphs included with Table 15. No site-wide downward trends in gas concentrations are observed based on the available data.

Evaluation of CAMP Methane, Ethane, Ethene, Alkalinity, and pH Monitoring Dissolved methane, ethane and ethene along with alkalinity and pH testing are performed annually at Supplemental Wells MW-49, MW-54, MW-81, and MW-94, and at leachate well LW-75 (Table 16).

The annual CAMP sampling for the permanent gases began in 2020 and sufficient data is not yet available to determine trends in Methane, Ethane, Ethane, Alkalinity, and pH. The annual testing will again be performed in 2025.

PROGRESS TOWARDS REMEDY COMPLETION

The December 18, 2019 Corrective Action Plan (CAP), Doc #96631, was approved by IDNR on May 19, 2020 (Doc #97777) for the monitored natural attenuation. The supplemental wells (MW-49, MW-54, MW-81, and MW-94) within the plume continue to demonstrate impact (see Time Series Plots in Appendix B.3. However, impact at the AZPOC wells (MW-91, MW-89, MW-87, and MW-97, respectively) has not been detected to date (beginning April 14, 2016). Impact is defined as any concentration exceeding an applicable GWPS. Table 17 is included to visually demonstrate the findings at the AZPOC wells. The remedy has been demonstrated to be complete

and properly performing since Spring, 2023 (upon completion of the 3-year demonstration (May, 2020 to May, 2023)).

Section 4.0 Leachate Collection System Performance Evaluation

Leachate System

Leachate level measurements are competed monthly. The measurements for 2024 are summarized in Table 12.

Area B-4 LCP

Area B-4 consists of all EPA Subtitle D compliant disposal areas constructed to date. The leachate collection systems in Subareas B-4-1 and B-4-2 were completed in October, 1995 and October, 1996, respectively. The leachate collection system in Subarea B-4-3 was completed in October, 2001. The leachate collection system in Subarea B-4-4 was completed and approved for acceptance of waste on September 11, 2002. The leachate collection system in the 2008 Abutment Area was completed and approved for acceptance of waste on October 14, 2008. The leachate collection systems in Subarea B-4-5/B-4-6 were completed and approved for acceptance of waste on October 6, 2010 (Phase I) and July 22, 2011 (Phase II). The leachate collection system in the Area B4-3,4,5 Abutment Liner was completed and approved for acceptance of waste on August 6, 2013. The leachate collection system in Subarea B-4-7 was completed and approved for acceptance of waste on August 28, 2017. Maps illustrating all Area B-4 leachate collection lines and all Area B-4 groundwater diversion lines (all connected to the LCP) are included in Appendix G.1. Note that the groundwater collection lines along the east and west side of the pond were modified as illustrated in Figure 3 of the report and on the Figure in Appendix G.1.

Two (2) leachate head monitoring points were constructed in Subarea B-4-6 in September, 2010. One (1) was constructed on the landfill base (LPZ-101), while the other was constructed in the leachate pipe backfill along the leachate pipe at the low point (LPZ-102). An additional leachate head monitoring point was constructed in Subarea B-4-7 in 2017 (LPZ-106). LPZ-106 was constructed on the landfill base. The locations of the leachate head monitoring points are included on the Figure 1 in Appendix G.1. Note that these leachate head monitoring points are located on the downgradient end of the Subtitle D disposal areas. The leachate head monitoring point measurements are included in Table 12. The data indicates that liquid levels in each monitoring point are well below the 12-inch maximum limit.

Groundwater Separation – Area B-4

Special Provision X.4.h in Revised Permit #5, dated August 14, 2024 (Doc #110693) requires semi-annual measurement of liquid levels in GPZ-105. The 2024 summary of measurements is included in Table 4. The liquid level in GPZ-105 in 2024 indicates acceptable separation between the landfill liner and the water table.

Area B-1, B-2, B-3, and C/D LCP

Leachate head level data collected in 2024 is included in Table 12. Leachate head level data collected since October 1992 is attached (Appendix G.2). A Map illustrating the location of the leachate wells is also included in Appendix G.2. Landfill base elevations at leachate monitoring points is recorded as:

```
LHMW-73 = 963.69
LHMW-75 = 1004.52
LHMW-78 = 965.76
LHMW-79 = 987.27
```

LHMW-73, located nearest to the leachate collection system (toe drain). The leachate head level at LHMW-73 is relatively static over time. In 2024, the head on the liner was between 0.40 feet and 0.44 feet above the landfill base elevation (963.69).

LHMW-75 is located in Area B-3. Existing leachate elevation data between 2001 and 2024 indicates a relatively static condition with approximately 10 to 17 feet of leachate thickness.

LHMW-78 and LHMW-79, situated in the former wet weather area (Area C/D), exhibit static trends in head levels. The variations in the water table appear to represent sub-seasonal fluctuations in the leachate surface. Based on October, 2024 measurements, 8.52 feet and 8.66 feet of liquid are measured in LHMW-78 and LHMW-79, respectively.

Based on water levels in perimeter MW's, the groundwater table is above the Area B landfill base on the north side, and more than 5 feet below the landfill base on the south side as a result of the leachate/groundwater collection system. It appears that the leachate collection toe drain south of Area B-1 controls the water surface and effectively lowers the water table in the vicinity of the leachate collection line.

A Human Health Risk Assessment was completed for the Marshall County Landfill on June 27, 1995. Based on the low-risk designation, the Solid Waste Management Commission of Marshall County applied for an exemption to additional leachate collection system requirements (June 27, 1995) in Areas B-1, B-2, and B-3. This exemption was approved in the March 1, 1996 Permit.

Leachate Treatment and Testing

Leachate is pumped to the City of Marshalltown Sanitary Sewer System for treatment and disposal in accordance with the pretreatment agreement between the City of Marshalltown and the Solid Waste Management Commission of Marshall County (Appendix G.3). Between January 1, 2024 and December 31, 2024, approximately 3,057,064 gallons of leachate were discharged to the Marshalltown POTW (Appendix G.4). Discharge occurred as two (2) separate events, the first in April (1,257,168 gallons) and the second in August/September (1,799.896 gallons). Chemical analysis of the waste stream as required by the pretreatment agreement is included in Appendix G.5.

Leachate Recirculation

A Leachate Recirculation Operation Plan was submitted to IDNR on April 9, 2019 (Doc #94860). Leachate recirculation was approved in Special Provision X.5 of Permit Revision #7 dated April 18, 2019. As per the approved Leachate Recirculation Operation Plan, leachate levels in LPZ-101 and LPZ-106 were measured weekly during recirculation operations. In 2024 approximately 780,000 gallons of leachate were recirculated using a tank wagon. The "Daily/Weekly Leachate Recirculation Logs" are included in Appendix G.6.

Leachate Line Cleaning

The leachate gravity collection and conveyance lines throughout the system in Area B were cleaned in August, 2024. IAC 567-113.7(5)b(5) requires that the leachate collection lines be cleaned every three (3) years. In accordance with rule, the next leachate line cleaning is scheduled for 2027.

Performance Evaluation

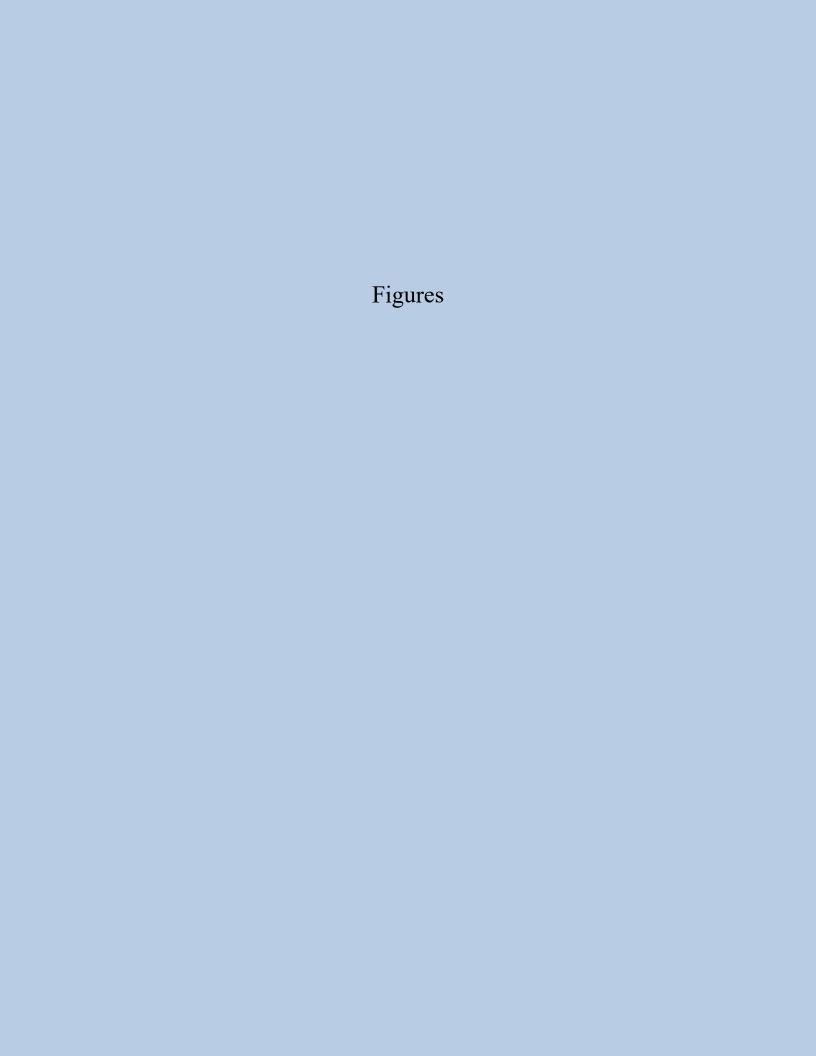
No modifications to the leachate collection system are recommended for 2025.

Section 5.0 Gas Monitoring

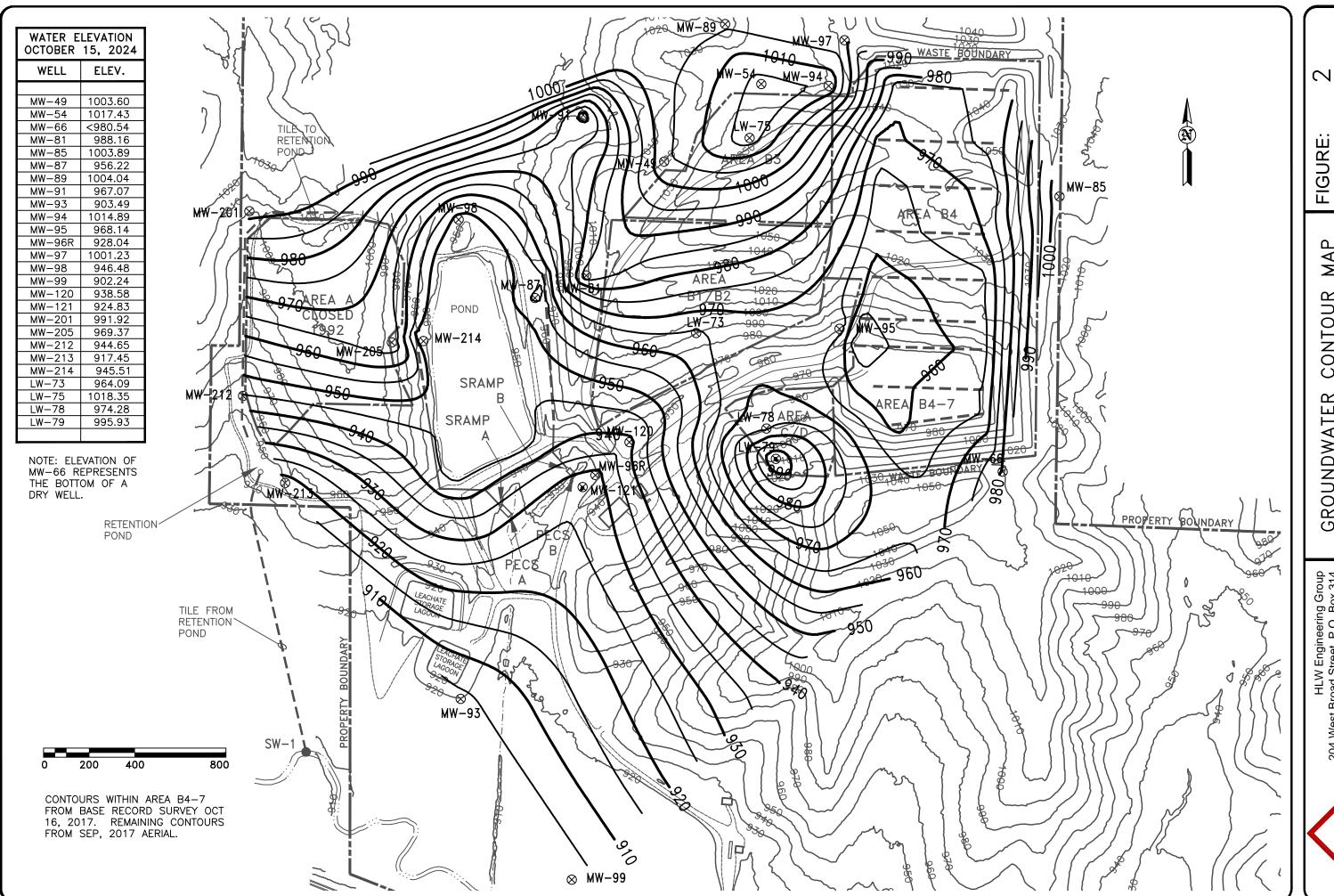
Explosive gas monitoring is conducted per 113.9(2) and Special Provision 6 of the Revised Permit #5, dated August 14, 2024 (Doc #110693). Gas Monitoring was performed quarterly in 2024 and will continue on a quarterly frequency moving forward. The following monitoring points are included in the approved GMSP, as illustrated on Figure 1.

Scale Pit -	ambient air/subsurface sump
Scale House -	indoor air
Electronics Shed -	indoor air
Garage -	indoor air
Shop -	indoor air
Cold shop -	indoor air
GP-1 -	subsurface
GP-2 -	subsurface
GP-3 -	subsurface
GP-4 -	subsurface
GP-5 -	subsurface
GP-6 -	subsurface
GP-7 -	subsurface
GP-8 (MW-213) -	subsurface
GU-2 -	underdrain
GU-3 -	underdrain

A summary table of gas monitoring is included as Table 13. Explosive gas concentrations are recorded as percent lower explosive limit (%LEL) and were below actionable levels during the monitoring episodes.

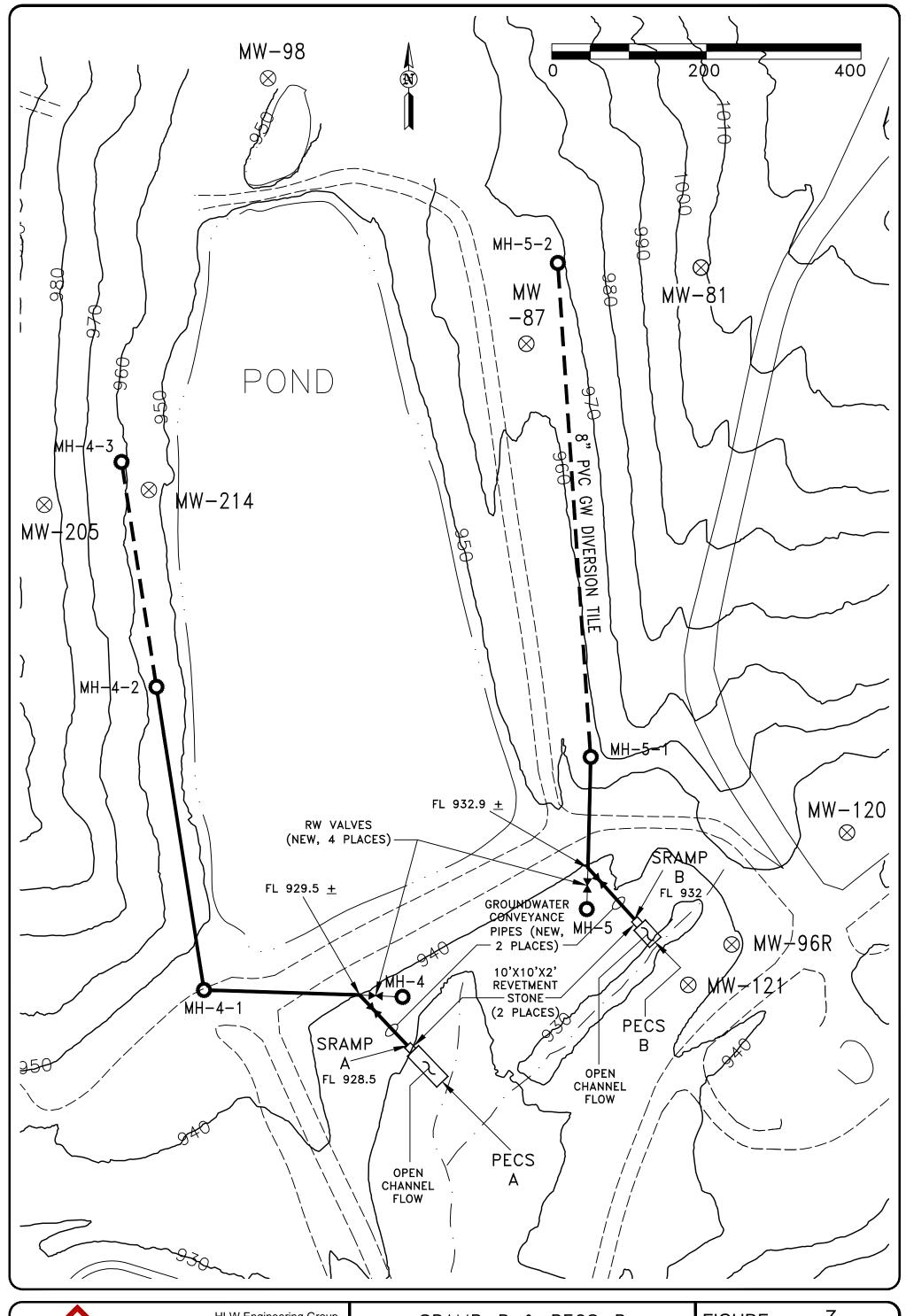

Section 6.0 Conclusions & Recommendations

Continue detection, assessment, and corrective action monitoring in accordance with the current HMSP and the CAMP.


The Corrective Action Plan appears to be functioning as intended. Evaluation of the CAP indicates that the water quality concentrations of concern at the AZPOC wells have been below the 95% UCL since the remedy was constructed in July, 2017 (Table 7). No GWPS have been exceeded for three (3) years since the remedy was selected per 113.10(8). The remedy is considered completed.

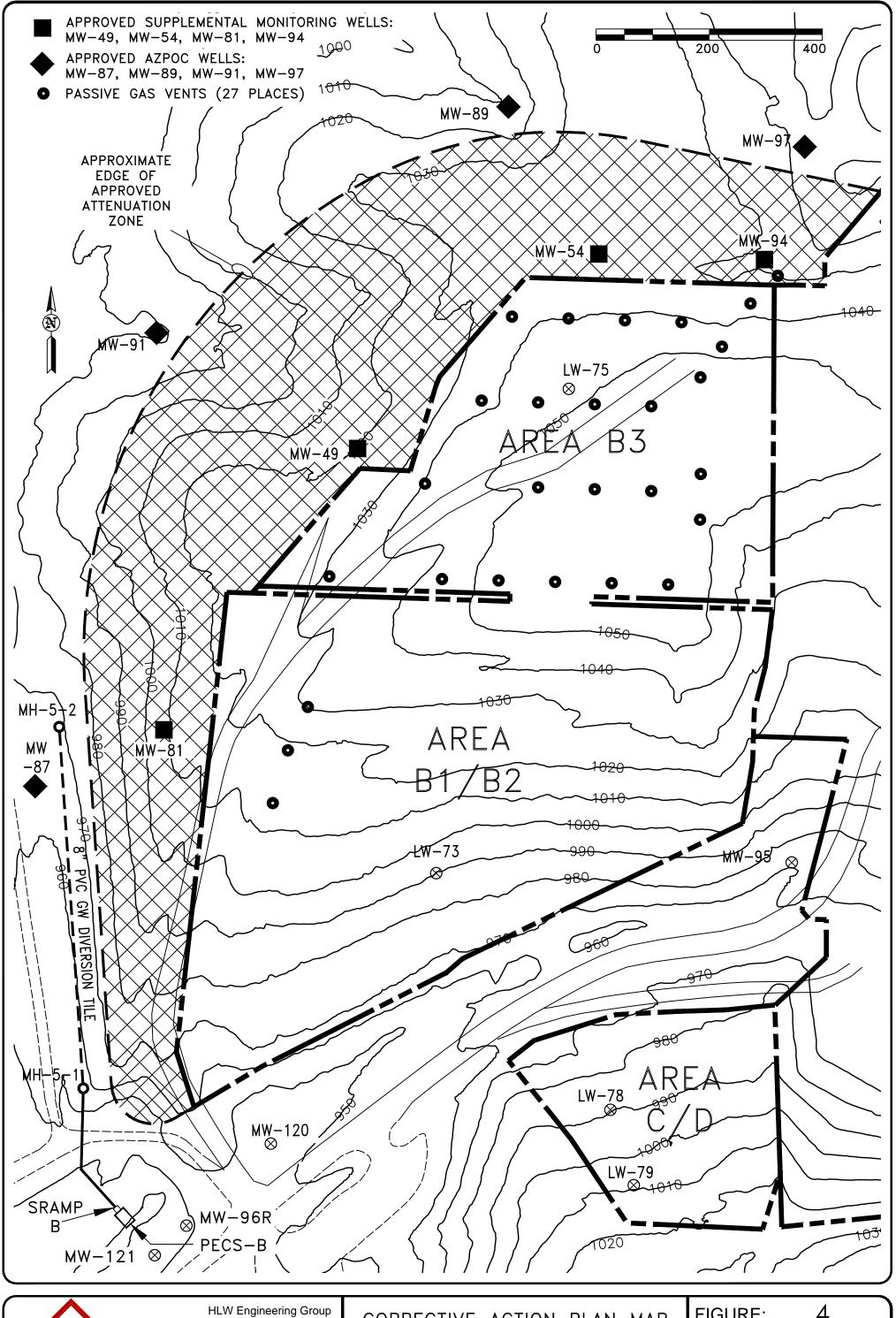
Water quality in the Supplemental Wells is also relatively unchanged since last year.

Leachate quality trends at LW-75 and gas quality trends measured at Passive Gas Vents do not yet demonstrate clear trends based on the limited data. Likewise, insufficient data is available to evaluate dissolved methane, alkalinity, and pH in the Supplemental Wells and leachate well LW-75. To date, ethane and ethene are undetected.



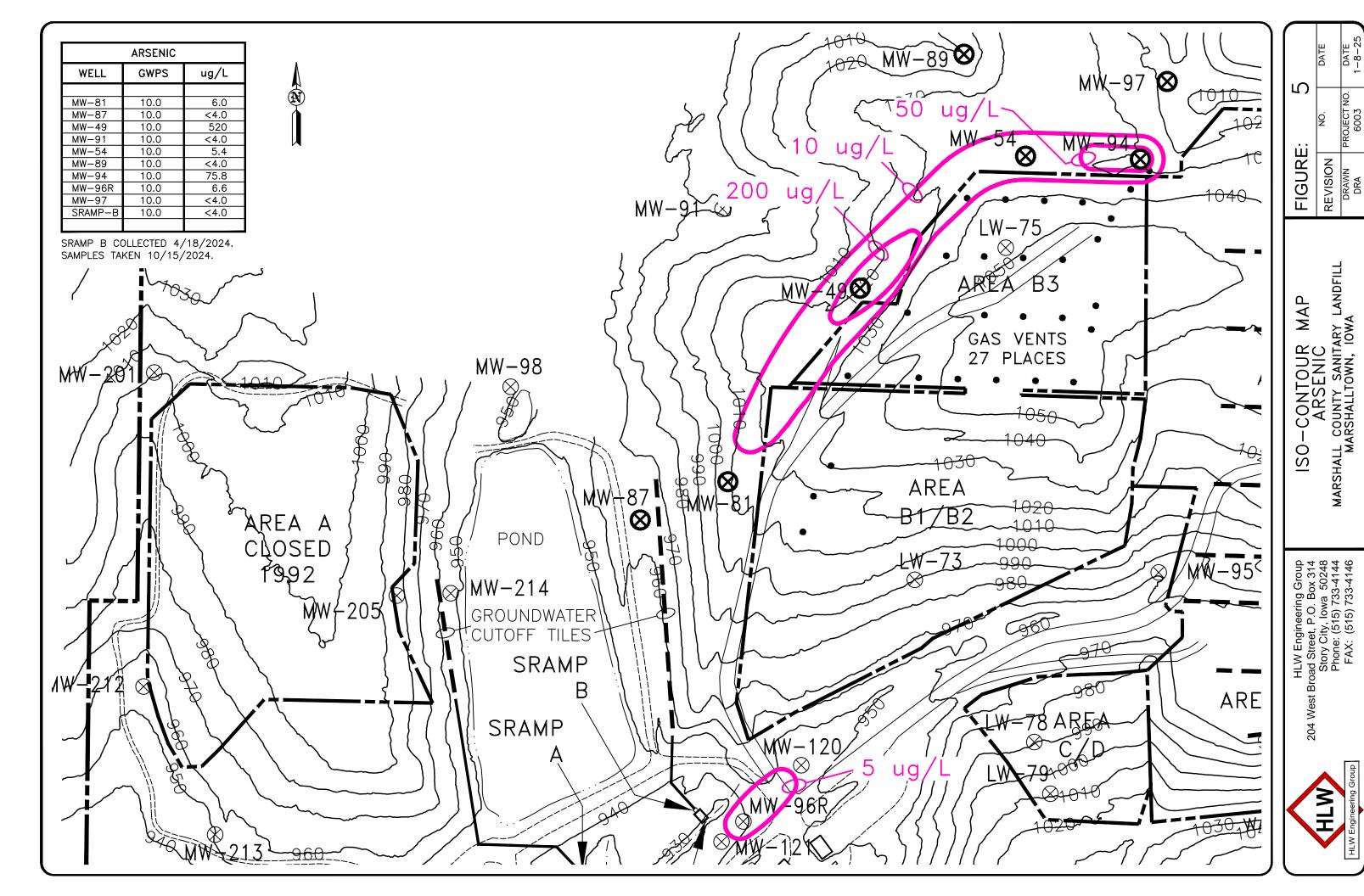
REVISION DRAWN DRA

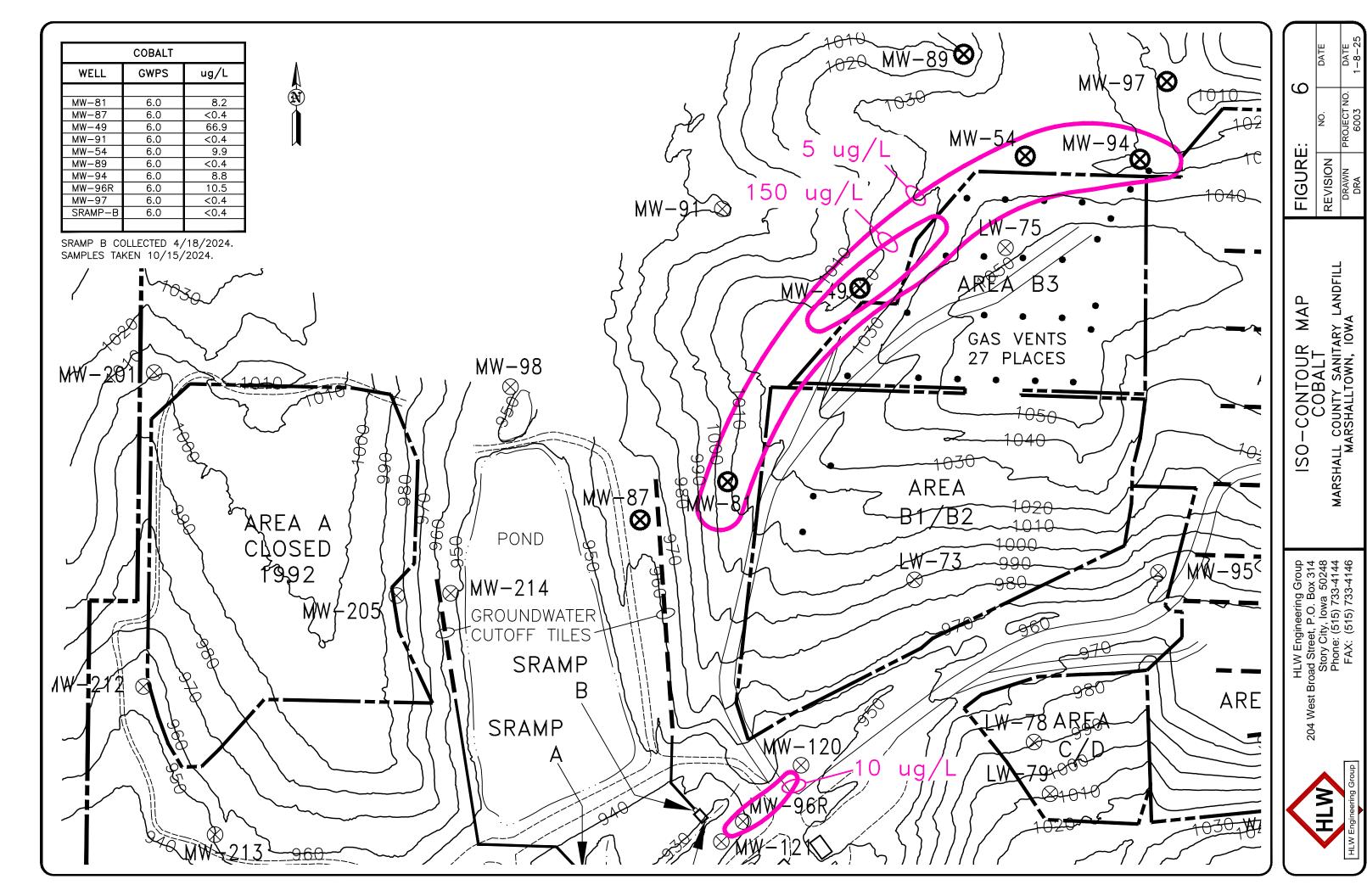
HLW Engineering Group 4 West Broad Street, P.O. Box 314 Story City, Iowa 50248 Phone: (515) 733-4144 FAX: (515) 733-4146

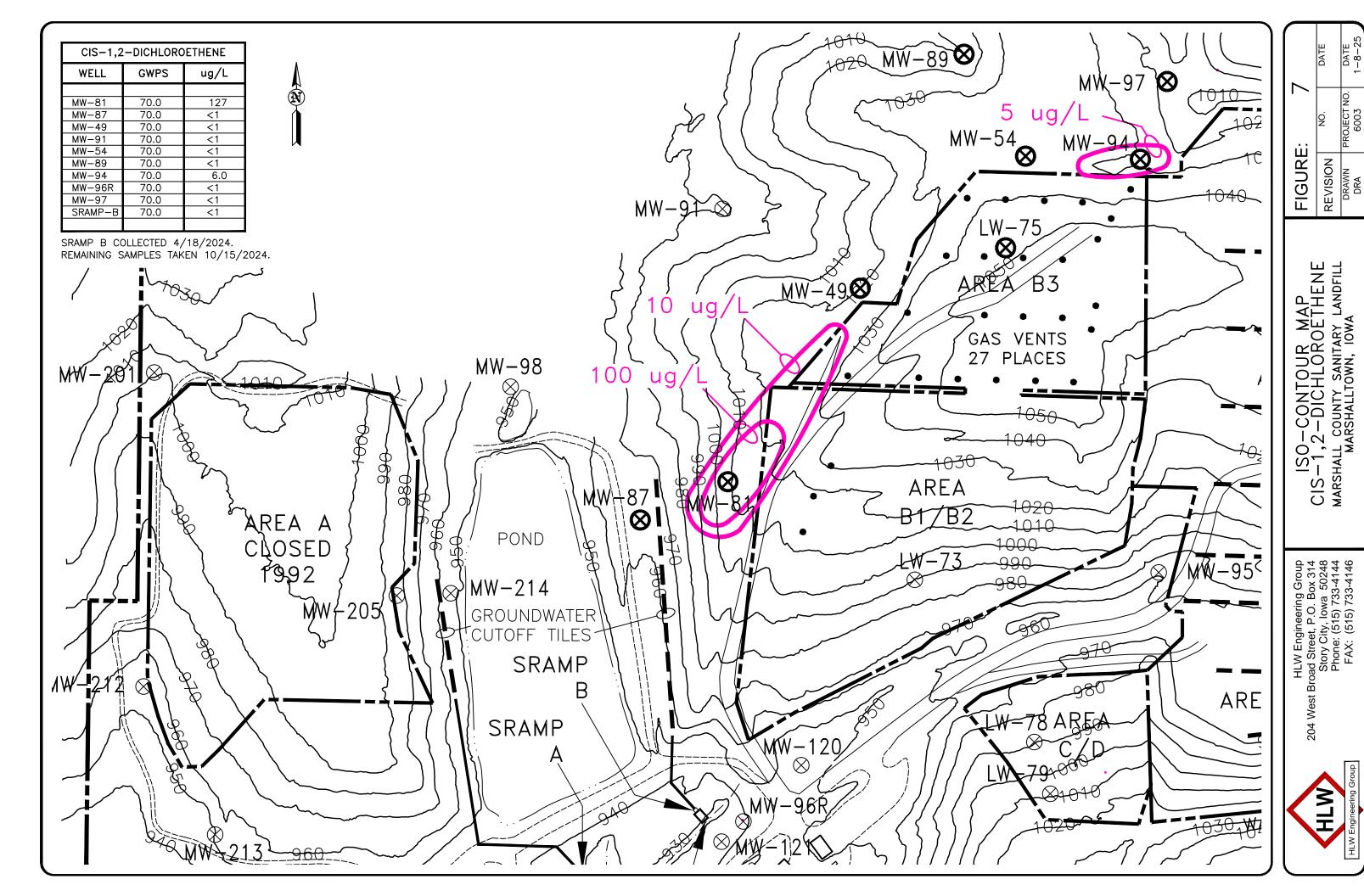


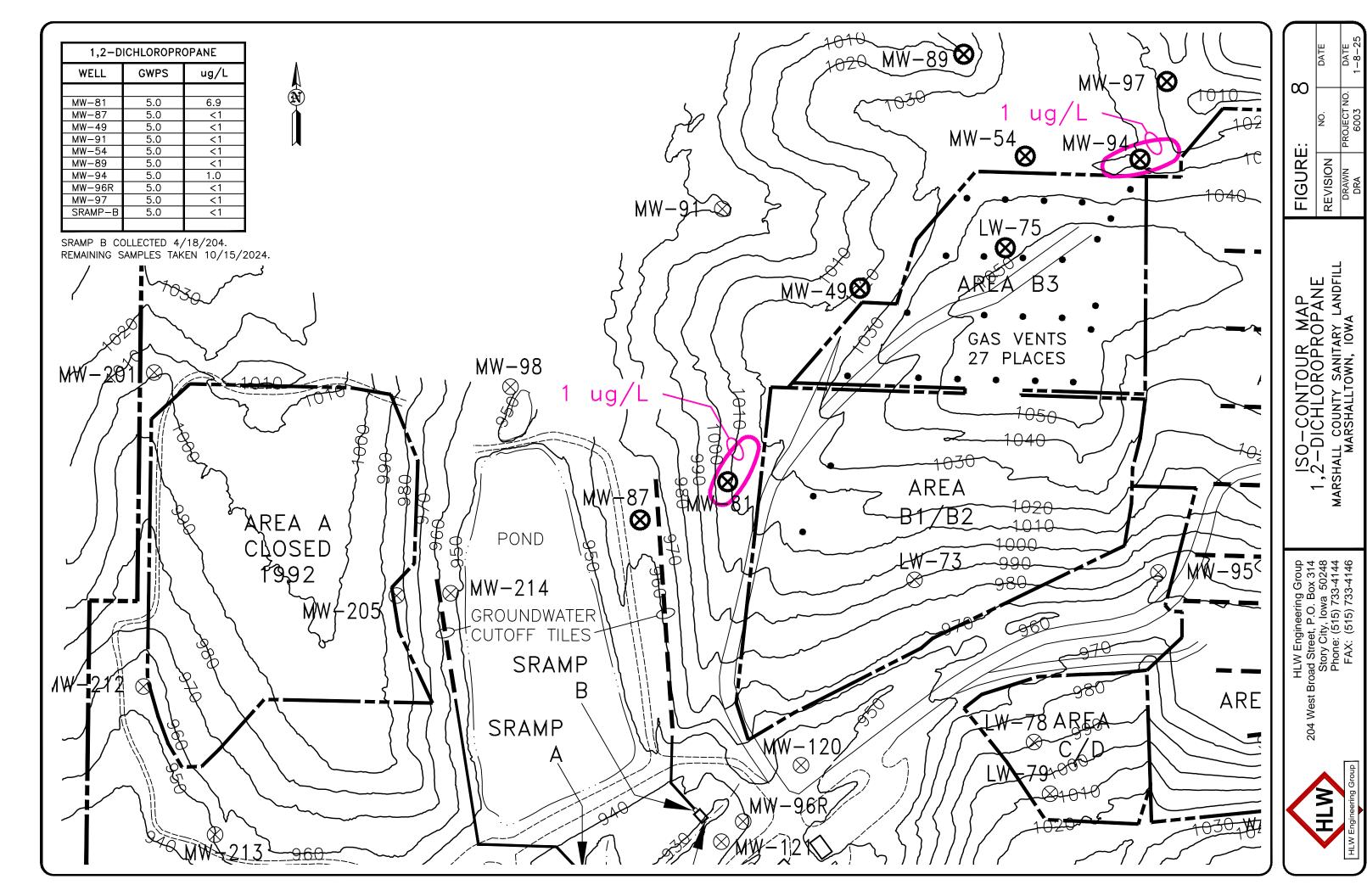
HLW Engineering Group 204 West Broad Street, P.O. Box 314 Story City, Iowa 50248 Phone: (515) 733-4144 FAX: (515) 733-4146 SRAMP-B & PECS-B LOCATION MAP MARSHALL COUNTY SANITARY LANDFILL MARSHALLTOWN, IOWA

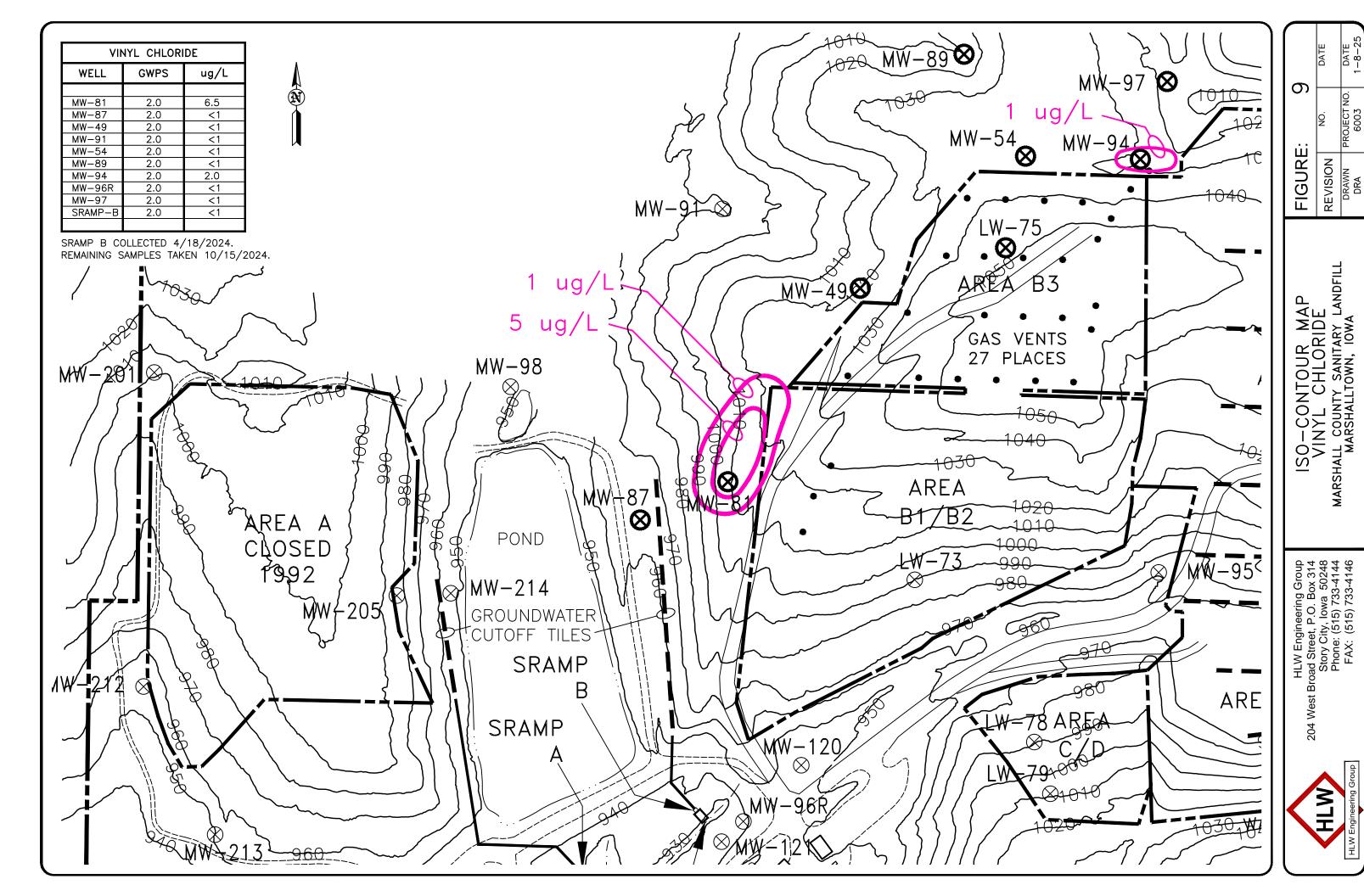
FIGURE	3	
REVISION	NO.	DATE
DRAWN	PROJECT NO.	DATE
DRA	6003	1-8-25


HLW Engineering Group 204 West Broad Street, P.O. Box 314 Story City, Iowa 50248 Phone: (515) 733-4144 FAX: (515) 733-4146


CORRECTIVE ACTION PLAN MAP


MARSHALL COUNTY SANITARY LANDFILL


MARSHALLTOWN, IOWA


FIGURE	1	
REVISION	NO.	DATE
DRAWN	PROJECT NO.	DATE
DRA	6003	1-8-25

Tables (in IDNR Format)

Table Index

- Table 1 Monitoring Program Summary
- Table 2 Monitoring Program Implementation Schedule
- Table 2A Summary of Monitoring Over Time
- Table 3 Monitoring Well Maintenance Performance Reevaluation Schedule
- Table 4 Monitoring Well Maintenance Performance Reevaluation Summary
- Table 4A Water Elevation Summary Over Time
- Table 5 Background and GWPS Summary
- Table 6 Summary of Detections
- Table 7 Summary of Ongoing and Newly Identified SSI **Interwell**
- Table 7A Summary of Ongoing and Newly Identified SSI Intrawell
- Table 8 Summary of Ongoing and Newly Identified SSL **Not Required**
- Table 9 Analytical Data Summary
- Table 10 Historic SSI and SSL Not Required
- Table 11 Corrective Action Trend Analysis Not Required
- Table 12 Leachate Levels
- Table 13 Gas Monitoring Summary
- Table 14 LW-75 Leachate Quality Data
- Table 15 CAMP -Vent Gas Evaluation Summary
- Table 16 CAMP Well Evaluation Summary
- Table 17 Progress of Remedy Over Time

Table 1 – Monitoring Program Summary

Table 1
Monitoring Program Summary
Annual Water Quality Report
Marshall County Sanitary Landfill
Permit No. 64-SDP-02-75P

Manitoring Wall		Change for next		2024 - 0	2024 Compliture who well CCI	Total # of Samples in each monitoring program since October 15, 2014			
Monitoring Well	Formation	Current Monitoring Program	sampling event	Historic - Constituents w/ SSI	2024 - Constituents w/ SSI	2024 Constituents w/ SSL	Detection	Assessment	Corrective Action
MW-66	Glacial Till	Background	NC	None	None	None	8	0	0
MW-85	Glacial Till	Background	NC	None	None	None	23	0	0
MW-98	Alluvium	Background	NC	None	None	None	17	0	0
MW-99	Alluvium	Background	NC	None	None	None	17	0	0
MW-87	Glacial Till	AZPOC - detection	NC	None	None	None	21	0	0
MW-89	Glacial Till	AZPOC - detection	NC	None	None	None	21	0	0
MW-91	Glacial Till	AZPOC - assessment	NC	selenium, 1,1-dichloroethane	None	None	0	21	0
MW-93	Glacial Till	POC - Lagoon - detection	NC	arsenic, cobalt, nickel	None	None	21	0	0
MW-95	Glacial Till	POC - detection	NC	None	None	None	21	0	0
MW-96R	Glacial Till	POC - detection	NC	arsenic, barium, cobalt	None	None	0	9	0
MW-49	Glacial Till	Supplemental Monitoring Points	NC	arsenic, barium, cobalt, nickel, 1,1-dichloroethane, 1,4-dichlorobenzene, acetone, benzene, bis(2-ethylhexyl)phthalate, chloroethane, chlorobenzene, cis-1,2-dichloroethene, vinyl chloride	Not Applicable	Not Applicable	0	0	21
MW-54	Glacial Till	Supplemental Monitoring Points	NC	arsenic, cobalt, nickel, 1,1-dichloroethane, 1,4- dichlorobenzene, benzene, chloroethane, cis-1,2- dichloroethene, vinyl chloride	Not Applicable	Not Applicable	0	0	21
MW-81	Glacial Till	Supplemental Monitoring Points	NC	barium, cobalt, nickel, 1,1-dichloroethane, 1,2-dichlorobenzene, 1,2-dichloroethane, 1,2-dichloropropane, 1,4-dichlorobenzene, acetone, benzene, bis(2ethylhexyl)phthalate, chlorobenzene, chloroethane, cis-1,2-dichloroethene, trans-1,2-dichloroethene, TCE, vinyl chloride	Not Applicable	Not Applicable	0	0	21
MW-94	Glacial Till	Supplemental Monitoring Points	NC	arsenic, cobalt, nickel, 1,1-dichloroethane, 1,2-dichloroethane, 1,2-dichloropropane, benzene, chloroethane, cis-1,2-dichloroethene, trans-1,2-dichloroethene, vinyl chloride	Not Applicable	Not Applicable	0	0	21
MW-97	Glacial Till	AZPOC - detection	NC	None	None	None	21	0	0
SRAMP-B	Glacial Till	POC - detection	NC	None	None	None	7	0	0
PECS-B	Glacial Till	PECS Performance	NC	None	None	None	΄	0	0

Table 2 – Monitoring Program Implementation Schedule

Table 2
Monitoring Program Implementation Schedule
Annual Water Quality Report
Marshall County Sanitary Landfill
Permit No. 64-SDP-02-75P

	Recent Sampling Dates and Constituents		Upcoming Sampling Da	tes and Constit	uents	Full Appendix II Sample Dates		
Monitoring Well		January 2025	April 2025	July 2025	October 2025	Previously Collected	Next Event	7
ИW-66			Appendix I		Appendix I		N/A	background
ЛW-85			Appendix I		Appendix I		N/A	background
лW-98	See following pages		Appendix I		Appendix I		N/A	background
лW-99			Appendix I		Appendix I		N/A	background
лW-87			Appendix I		Appendix I	3/28/08, 6/25/08, 8/25/08, 10/3/08, 12/8/08, 10/16/13	N/A	azpoc-detection
лW-89			Appendix I		Appendix I	3/28/08, 6/25/08, 8/25/08, 10/3/08, 12/8/08, 10/16/13	N/A	azpoc-detection
ИW-91			Appendix I		Appendix I	3/28/08, 6/25/08, 8/25/08, 10/3/08, 12/8/08, 10/16/13, 10/22/18, 10/13/2023	Oct., 2028	azpoc-assessment
ЛW-93			Appendix I		Appendix I	10/8/12, 4/4/13, 10/22/2018, 10/13/2023	N/A	poc-detection
ИW-95			Appendix I		Appendix I		N/A	poc-detection
MW-96R			Appendix I		Appendix I	10/8/2021, 10/25/2022	N/A	poc-detection
ИW-49			Appendix I + Note 1		Appendix I	3/28/08, 6/25/08, 8/25/08, 10/3/08, 12/8/08, 10/16/13, 10/22/18	N/A	supplemental-assessme
√W-54			Appendix I + Note 1		Appendix I	3/28/08, 6/25/08, 8/25/08, 10/3/08, 12/8/08, 10/16/13, 10/22/18	N/A	supplemental-assessme
ИW-81			Appendix I + Note 1		Appendix I	3/28/08, 6/25/08, 8/25/08, 10/3/08, 12/8/08, 10/16/13, 10/22/18	N/A	supplemental-assessme
ЛW-94			Appendix I + Note 1		Appendix I	4/4/11, 10/6/11, 10/8/12, 10/9/17	N/A	supplemental-assessme
ЛW-97			Appendix I		Appendix I		N/A	azpoc-detection
SRAMP-B			Appendix I		Appendix I		N/A	poc-detection
PECS-B			Appendix I VOC		Appendix I VOC		N/A	PECS Performance
.W-75			Note 1 + Note 2				N/A	CAMP
/ents 1-27		%LEL	%LEL	%LEL	%LEL		N/A	CAMP

Note 1 = dissolvedmethane, ethane, ethene and alkalinity and pH.

Note 2 = Appendix I VOC, cobalt (total), arsenic (total), ammonia (N), sulfate, chloride, TDS, and BOD5

Table 2A – Summary of Well Testing to Date

Table 2A - Itemized Summary of Hydrologic Monitoring (to date)

WELL	3/28/08	6/20/08	8/5/08	10/2/08	12/10/08
MW-66	Appendix I	Appendix I	Appendix I	Appendix I	Appendix I
MW-85	Appendix I	Appendix I	Appendix I	Appendix I	Appendix I
MW-49	Appendix II	Appendix II	Appendix II	Appendix II	Appendix II
MW-54	Appendix II	Appendix II	Appendix II	Appendix II	Appendix II
MW-80	Appendix I	Appendix I	Appendix I	Appendix I	Appendix I
MW-81	Appendix II	Appendix II	Appendix II	Appendix II	Appendix II
MW-87	Appendix II	Appendix II	Appendix II	Appendix II	Appendix II
MW-89	Appendix II	Appendix II	Appendix II	Appendix II	Appendix II
MW-91	Appendix II	Appendix II	Appendix II	Appendix II	Appendix II
MW-93	Installed 8/08	Installed 8/08	Appendix I	Appendix I	Appendix I
GWD-2	Appendix I	Appendix I	Appendix I	Appendix I	Appendix I
Duplicate	N/A	N/A	At MW-66	At MW-93	At MW-80

WELL	2/11/09	4/1/09	10/21/09	1/29/10	4/20/10
MW-66		Appendix I	Appendix I		Appendix I
MW-85		Appendix I	Appendix I		Appendix I
MW-49		Appendix I+	Appendix I+		Appendix I
MW-54		Appendix I+	Appendix I+		Appendix I
MW-80		Appendix I	Appendix I	Retest	Appendix I
MW-81		Appendix I+	Appendix I+		Appendix I
MW-87		Appendix I+	Appendix I+		Appendix I+
MW-89		Appendix I+	Appendix I+	Retest	Appendix I+
MW-91		Appendix I+	Appendix I+	Retest	Appendix I+
MW-93	Appendix I	Appendix I	Appendix I	Retest	Appendix I
GWD-2		Appendix I	Appendix I		Appendix I
Duplicate	N/A	At MW-80	At MW-66	N/A	At MW-93

WELL	10/8/10	1/14/11	4/5/2011	6/18/2011	8/10/2011	10/6/2011
MW-66	Appendix I		Appendix I			Appendix I
MW-85	Appendix I		Appendix I			Appendix I
MW-49	Appendix I*		Appendix I*			Appendix I*
MW-54	Appendix I*		Appendix I*			Appendix I*
MW-80	Appendix I		Plugged			Plugged
MW-81	Appendix I*		Appendix I*			Appendix I*
MW-87	Appendix I+		Appendix I+			Appendix I+
MW-89	Appendix I+		Appendix I+			Appendix I+
MW-91	Appendix I+		Appendix I+			Appendix I+
MW-93	Appendix I		Appendix I			Appendix I
MW-94	Installed 11/10	Appendix I	Appendix I	Appendix II	Appendix I	Appendix II
MW-95	Installed 11/10	Appendix I	Appendix I	Appendix I	Appendix I	Appendix I
MW-96	Installed 11/10	Appendix I	Appendix I	Appendix I	Appendix I	Appendix I
GU-2	Appendix I		Appendix I	Removed from	n HMSP	
GU-3	Appendix I	Appendix I	Appendix I	Removed from	n HMSP	
Duplicate	At MW-87	N/A	At MW-91	At GU-3	N/A	At MW-54

^{* =} Appendix I list for Assessment Monitoring Wells. += Bis (2 ethylhexyl) phthalate

WELL	4/10/12	10/9/12	4/4/13	7/12/13	10/16/13
MW-66	Appendix I	Appendix I	Appendix I		Appendix I
MW-85	Appendix I	Appendix I	Appendix I		Appendix I
MW-49	Appendix I*	Appendix I+	Appendix I+		Appendix II
MW-54	Appendix I*	Appendix I+	Appendix I+		Appendix II
MW-81	Appendix I*	Appendix I+	Appendix I+		Appendix II
MW-87	Appendix I+	Appendix I+	Appendix I+		Appendix II
MW-89	Appendix I+	Appendix I+	Appendix I+		Appendix II
MW-91	Appendix I+	Appendix I+	Appendix I+		Appendix II
MW-93	Appendix I	Appendix II	Appendix II		Appendix I
MW-94	Appendix I	Appendix II	Appendix I+		Appendix I+
MW-95	Appendix I	Appendix I	Appendix I		Appendix I
MW-96	Appendix II	Appendix II	Appendix I+	Bis(2-EH)P	Appendix I+
MW-97	Installed	Installed	Installed 9/13	Installed 9/13	Appendix I
	9/13	9/13			
Duplicate	At MW-49	At MW-85	At MW-85		At MW-97

^{+ =} Bis (2-ethylhexyl) phthalate = (Bis(2-EH)P)

WELL	4/9/14	10/16/14	1/14/2015	4/3/15	7/6/2015	10/1/2015
MW-66	Appendix I	Appendix I ⁽²⁾	Appendix I	Appendix I ⁽²⁾	Appendix I	Appendix I ⁽²⁾
MW-85	Appendix I	Appendix I ⁽²⁾	Appendix I	Appendix I ⁽²⁾	Appendix I	Appendix I ⁽²⁾
MW-49	Appendix I ⁽¹⁾	Appendix I ⁽¹⁾⁽²⁾		Appendix I ⁽¹⁾⁽²⁾	-	Appendix I ⁽¹⁾⁽²⁾
MW-54	Appendix I ⁽¹⁾	Appendix I ⁽¹⁾⁽²⁾		Appendix I ⁽¹⁾⁽²⁾		Appendix I ⁽¹⁾⁽²⁾
MW-81	Appendix I ⁽¹⁾	Appendix I ⁽¹⁾⁽²⁾		Appendix I ⁽¹⁾⁽²⁾	-	Appendix I ⁽¹⁾⁽²⁾
MW-87	Appendix I ⁽¹⁾	Appendix I ⁽¹⁾⁽²⁾		Appendix I ⁽¹⁾⁽²⁾	I	Appendix I ⁽¹⁾⁽²⁾
MW-89	Appendix I ⁽¹⁾	Appendix I ⁽¹⁾⁽²⁾		Appendix I ⁽¹⁾⁽²⁾	-	Appendix I ⁽¹⁾⁽²⁾
MW-91	Appendix I ⁽¹⁾	Appendix I ⁽¹⁾⁽²⁾		Appendix I ⁽¹⁾⁽²⁾		Appendix I ⁽¹⁾⁽²⁾
MW-93	Appendix I	Appendix I*(2)		Appendix I ⁽²⁾		Appendix I ⁽²⁾
MW-94	Appendix I ⁽¹⁾	Appendix I ⁽¹⁾⁽²⁾		Appendix I ⁽¹⁾⁽²⁾	-	Appendix I ⁽¹⁾⁽²⁾
MW-95	Appendix I	Appendix I ⁽²⁾		Appendix I ⁽²⁾	I	Appendix I ⁽²⁾
MW-96	Appendix I ⁽¹⁾	Appendix I ⁽¹⁾⁽²⁾		Appendix I ⁽¹⁾⁽²⁾	-	Appendix I ⁽¹⁾⁽²⁾
MW-97	Appendix I	Appendix I ⁽²⁾		Appendix I ⁽²⁾	I	Appendix I ⁽²⁾
Duplicate	At MW-66	At MW-96		At MW-85		At MW-97

^{(1) =} bis(2-ethylhexyl)phthalate (2) = TSS, TDS, chloride, alkalinity, sulfate, calcium, sodium, potassium, magnesium, ammonia

WELL	4/14/16	10/13/16	4/10/2017	7/11/2017	10/9/2017	1/9/2018
MW-66	Appendix I	Appendix I ⁽²⁾	Appendix I		Dry	
MW-85	Appendix I	Appendix I ⁽²⁾	Appendix I		Appendix I	
MW-98		Appendix I	Appendix I		Appendix I	
MW-99		Appendix I	Appendix I		Appendix I	
MW-49	Appendix I ⁽¹⁾	Appendix I ⁽¹⁾⁽²⁾	Appendix I ⁽¹⁾		Appendix I	R- Ba
MW-54	Appendix I ⁽¹⁾	Appendix I ⁽¹⁾⁽²⁾	Appendix I ⁽¹⁾		Appendix I	
MW-81	Appendix I ⁽¹⁾	Appendix I ⁽¹⁾⁽²⁾	Appendix I ⁽¹⁾		Appendix I	
MW-87	Appendix I ⁽¹⁾	Appendix I ⁽¹⁾⁽²⁾	Appendix I ⁽¹⁾		Appendix I	
MW-89	Appendix I ⁽¹⁾	Appendix I ⁽¹⁾⁽²⁾	Appendix I ⁽¹⁾		Appendix I	
MW-91	Appendix I ⁽¹⁾	Appendix I ⁽¹⁾⁽²⁾	Appendix I ⁽¹⁾	R- Cu, Se	Appendix I	R- Ba, Se, 1,4-DCB
MW-93	Appendix I	Appendix I*(2)	Appendix I		Appendix I	
MW-94	Appendix I ⁽¹⁾	Appendix I ⁽¹⁾⁽²⁾	Appendix I ⁽¹⁾		Appendix II	
MW-95	Appendix I	Appendix I ⁽²⁾	Appendix I		Appendix I	
MW-96	Appendix I ⁽¹⁾	Appendix I ⁽¹⁾⁽²⁾	Appendix I ⁽¹⁾		Appendix II	
MW-97	Appendix I	Appendix I ⁽²⁾	Appendix I		Appendix I	
Duplicate	At MW-96	At MW-54	At MW-54		At MW-96	

^{(1) =} bis(2-ethylhexyl)phthalate (2) = TSS, TDS, chloride, alkalinity, sulfate, calcium, sodium, potassium, magnesium, ammonia

WELL	4/17/18	7/2/18	10/22/18	4/22/2019	10/23/2019
MW-66	Dry		Dry	Dry	Dry
MW-85	Appendix I		Appendix I	Appendix I	Appendix I
MW-98	Appendix I		Appendix I	Appendix I	Appendix I
MW-99	Appendix I		Appendix I	Appendix I	Appendix I
MW-49	Appendix I		Appendix II	Appendix I	Appendix I
MW-54	Appendix I		Appendix II	Appendix I	Appendix I
MW-81	Appendix I		Appendix II	Appendix I	Appendix I
MW-87	Appendix I		Appendix I	Appendix I	Appendix I
MW-89	Appendix I		Appendix I	Appendix I	Appendix I
MW-91	Appendix I	R- Se	Appendix II	Appendix I	Appendix I
MW-93	Appendix I		Appendix II	Appendix I	Appendix I
MW-94	Appendix I		Appendix I	Appendix I	Appendix I
MW-95	Appendix I		Appendix I	Appendix I	Appendix I
MW-96	Appendix I		Appendix I	Appendix I	Appendix I
MW-97	As, Co, cis-1,2-DCE,		As, Co, cis-1,2-DCE,	As, Co, cis-1,2-DCE,	As, Co, cis-1,2-DCE,
	vinyl chloride		vinyl chloride	vinyl chloride	vinyl chloride
Duplicate	At MW-54		At MW-93	At MW-89	At MW-93

WELL	4/10/2020	10/19/2020	1/7/2021	4/5/2021	7/2/2021	10/8/2021
MW-66	Dry	Dry		Dry		Dry
MW-85	Appendix I	Appendix I		Appendix I		Appendix I
MW-98	Appendix I	Appendix I		Appendix I		Appendix I
MW-99	Appendix I	Appendix I		Appendix I		Appendix I
MW-49	Appendix I	Appendix I + Note 1		Appendix I + Note 1		Appendix I
MW-54	Appendix I	Appendix I + Note 1		Appendix I + Note 1		Appendix I
MW-81	Appendix I	Appendix I + Note 1		Appendix I + Note 1		Appendix I
MW-87	Appendix I	Appendix I		Appendix I		Appendix I
MW-89	Appendix I	Appendix I		Appendix I		Appendix I
MW-91	Appendix I	Appendix I	R-Se	Appendix I		Appendix I
MW-93	Appendix I	Appendix I		Appendix I	R-Cu	Appendix I
MW-94	Appendix I + Note 1	Appendix I		Appendix I + Note 1		Appendix I
MW-95	Appendix I	Appendix I		Appendix I		Appendix I
MW-96/96R	Appendix I	Appendix I		Appendix I	R-As,Ba,Co	Appendix II
MW-97	Appendix I	Appendix I		Appendix I		Appendix I
SRAMP-B	Appendix I	Dry		Appendix I		Dry
PECS-B	Dry	Dry		Dry		Dry
LW-75	Note 1	Note 2		Note 1 + Note 2		N/A
Duplicate	At MW-96	At MW-85		At MW-89		At MW-97

WELL	4/6/2022	10/25/2022	4/10/2023	7/7/2023	7/20/2023	10/13/2023
MW-66	Dry	Dry	Dry			Dry
MW-85	Appendix I	Appendix I	Appendix I			Appendix I
MW-98	Appendix I	Appendix I	Appendix I			Appendix I
MW-99	Appendix I	Appendix I	Appendix I			Appendix I
MW-49	Appendix I + Note 1	Appendix I	Appendix I + Note 1			Appendix I
MW-54	Appendix I + Note 1	Appendix I	Appendix I + Note 1			Appendix I
MW-81	Appendix I + Note 1	Appendix I	Appendix I + Note 1			Appendix I
MW-87	Appendix I	Appendix I	Appendix I			Appendix I
MW-89	Appendix I	Appendix I	Appendix I			Appendix I
MW-91	Appendix I	Appendix I	Appendix I			Appendix II
MW-93	Appendix I	Appendix I	Appendix I			Appendix II
MW-94	Appendix I + Note 1	Appendix I	Appendix I + Note 1			Appendix I
MW-95	Appendix I	Appendix I	Appendix I			Appendix I
MW-96R	Appendix I	Appendix II	Appendix I	R-As+Co+Se	R-As+Co	Appendix I
MW-97	Appendix I	Appendix I	Appendix I			Appendix I
SRAMP-	Appendix I	Dry	Dry			Appendix I
В						
PECS-B	Dry	Dry	Dry			Dry
LW-75	Note 1+Note 2	NA	Note 1+Note 2			NA
Duplicate	At MW-91	At MW-98	At MW-97			At MW-95

WELL	1/25/2024	4/16/2024	7/18/2024	10/15/2024	
MW-66		Dry		Dry	
MW-85		Appendix I		Appendix I	
MW-98		Appendix I		Appendix I	
MW-99		Appendix I		Appendix I	
MW-49		Appendix I + Note 1		Appendix I + Note 1	
MW-54		Appendix I + Note 1		Appendix I + Note 1	
MW-81		Appendix I + Note 1		Appendix I + Note 1	
MW-87		Appendix I		Appendix I	
MW-89		Appendix I		Appendix I	
MW-91		Appendix I		Appendix I	
MW-93		Appendix I		Appendix I	
MW-94		Appendix I + Note 1		Appendix I + Note 1	
MW-95	R-acetone	Appendix I		Appendix I	
MW-96R		Appendix I		Appendix I	
MW-97		Appendix I	R-copper	Appendix I	
SRAMP-		Appendix I		Dry	
В					
PECS-B		Dry		Dry	
LW-75		Note 2		Note 1+Note 2	
				(less VOC)	
Duplicate		At MW-96R		At MW-95	

Note 1 = dissolved methane, ethane, ethene and pH, alkalinity
Note 2 = Appendix I VOC, total cobalt, ammonia (N), sulfate,
chloride, TDS, and BOD5.

Table 3 – Monitoring Well Maintenance Performance Reevaluation Schedule

Compliance with			ו	Monito	oring C	alenda	r Year	S		
Compliance with:	1996	2001	2006	2007	2008	2009	2010	2011	2012	2013
567 IAC 113.10(2)"f"(1) high and low water levels (biennial)	Х	Х	Х	X	Χ	Х	Χ	Х	Х	Х
567 IAC 113.10(2)"f"(2) changes in the hydrologic setting and flow paths (historic = 1 per 5 years; current = biennial)	Х	Х	Х			Х	Х		Х	
567 IAC 113.10(2)"f"(3) well depths (annual)	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ
567 IAC 113.10(2)"f"(4) well recharge rates and chemistry (biennial)	Х	Х	Х			Х	Х		Х	
Waste separation from ground water 113.6(2)"I"					2X	2X	2X	2X	2X	2X

Compliance with			ſ	Monito	oring C	alenda	ır Year	S)	
Compliance with:	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
567 IAC 113.10(2)"f"(1) high and low water levels (biennial)	Х	Х	Х	Х	Χ	Х	Χ	Χ	Х	Х
567 IAC 113.10(2)"f"(2) changes in the hydrologic setting and flow paths (historic = 1 per 5 years; current = biennial)	Х		Х		Х		Х		Х	
567 IAC 113.10(2)"f"(3) well depths (annual)	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
567 IAC 113.10(2)"f"(4) well recharge rates and chemistry (biennial)	Х		Х		Х		Х		Х	
Waste separation from ground water 113.6(2)"I"	2X	2X	2X	2X	2X	2X	2X	2X	2X	2X

Compliance with:			1	Monito	oring C	alenda	ar Year	S		
Compliance with:	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
567 IAC 113.10(2)"f"(1) high and low water levels (biennial)	Х	Р	Р	Р	Р	Р	Р	Р	Р	Р
567 IAC 113.10(2)"f"(2) changes in the hydrologic setting and flow paths (historic = 1 per 5 years; current = biennial)	Х		Р		Р		Р		Р	
567 IAC 113.10(2)"f"(3) well depths (annual)	Χ	Р	Р	Р	Р	Р	Р	Р	Р	Р
567 IAC 113.10(2)"f"(4) well recharge rates and chemistry (biennial)	Х		Р		Р		Р		Р	
Waste separation from ground water 113.6(2)"I"	2X	2P	2P	2P	2P	2P	2P	2P	2P	2P

X = completed

P = Planned

Table 4 – Monitoring Well Maintenance Performance Reevaluation Summary

Table 4 Monitoring Well Maintenance and Performance Summary Annual Water Quality Report Marshall County Sanitary Landfill Permit No. 64-SDP-02-75P

Well	Top of	Top of	Total		Date of Me	easurements	Maximum Depth	Hydraulic Cond.		Recharge Rat						
	casing	Screen	Depth		4/16/2024	10/15/2024	Discrepancy (ft)	(cm/sec)/date	4/16/2024	Change						
N 41 4 4 6 6	1022.20	005 53	F4 0C	Groundwater Level (ft)	51.86	51.86		0.00000	DRY							
MW-66	1032.39	995.53	51.86	Groundwater Elevation (Ft MSL) Measured Well Depth (ft)	980.53 51.86	980.53 51.86	0	0.000392 Feb 2001								
				Submerged (+) or Exposed screen (-)	-15	-15		Feb 2001								
									Full							
N 4147 OF	1020.27	002.2	72.07		27.42	25.20			recovery in	None						
MW-85	1039.27	982.2	72.07	Groundwater Level (ft) Groundwater Elevation (Ft MSL)	37.42 1001.85	35.38 1003.89	0.87	0.0000138	<5 hour	percieved						
				Measured Well Depth (ft)	71.2	71.2		Feb 2006								
				Submerged (+) or Exposed screen (-)	19.65	21.69										
									Full							
MW-98	953.24	941.81	21.65	Groundwater Level (ft)	5.56	6.76			recovery in <5 hour	None percieved						
10100 30	333.24	341.01	21.03	Groundwater Elevation (Ft MSL)	947.68	946.48	0	Not Measured	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	percieved						
				Measured Well Depth (ft)	21.65	21.65]									
				Submerged (+) or Exposed screen (-)	5.87	4.67										
									Full	None						
MW-99	913.98	902.35	21.9	Groundwater Level (ft)	11.8	11.74	_		recovery in <3 hour	percieved						
	0.2010	0.000		Groundwater Elevation (Ft MSL)	902.18	902.24	0	Not Measured		p 0. 0.01 0 0.						
				Measured Well Depth (ft)	21.9	21.9										
				Submerged (+) or Exposed screen (-)	-0.17	-0.11			222/							
									90% recovery in	None						
MW-87	964.2	952.62	21.58	Groundwater Level (ft)	5.25	7.98			5 hour	percieved						
				Groundwater Elevation (Ft MSL)	958.95	956.22	0.58	0.00000359		,						
				Measured Well Depth (ft)	21	21		Feb 2006								
				Submerged (+) or Exposed screen (-)	6.33	3.6			0001							
									90% recovery in	None						
MW-89	1012.79	995.25	27.5	Groundwater Level (ft)	8.26	8.75			8 hour	percieved						
				Groundwater Elevation (Ft MSL)	1004.53	1004.04	0.2	0.0000039								
				Measured Well Depth (ft)	27.3	27.3		Feb 2006								
				Submerged (+) or Exposed screen (-)	9.28	8.79			Full							
									recovery in	None						
MW-91	978.57	971.07	17.5	Groundwater Level (ft)	8.79	11.5	0.5		4 hour	percieved						
				Groundwater Elevation (Ft MSL)	969.78	967.07	0.5	0.000622								
				Measured Well Depth (ft)	17	17		Feb 2006								
				Submerged (+) or Exposed screen (-)	-1.29	-4			Full							
									recovery in	None						
MW-93	921.91	909.74	22.25	Groundwater Level (ft)	18.41	18.42	0.05	4 hour		percieved						
				Groundwater Elevation (Ft MSL)	903.5	903.49	0.05									
				Measured Well Depth (ft)	22.2	22.2										
				Submerged (+) or Exposed screen (-)	-6.24	-6.25			Full							
									recovery in	None						
MW-95	973.55	960.16	23.39	Groundwater Level (ft)	7.45	5.41	-0.01		>8 hour	percieved						
				Groundwater Elevation (Ft MSL)	966.1	968.14	0.01	Not Measured								
				Measured Well Depth (ft) Submerged (+) or Exposed screen (-)	23.4 23.4) 5.94 7.98											
				Submerged (1) or Exposed screen (-)	3.54	7.56			Full							
									recovery in	None						
MW-96R	941.85	931.05	20.8	Groundwater Level (ft)	10.63	13.81	0		0	0	0	0		NI=+ NA== · · · · ·	6 hour	percieved
				Groundwater Elevation (Ft MSL) Measured Well Depth (ft)	931.22	928.04 20.8		Not Measured								
				Submerged (+) or Exposed screen (-)	0.17	-3.01										
									Full							
			_						recovery in	None						
MW-49	1019.99	993.57	26.25	Groundwater Level (ft)	20.11 999.88	16.39 1003.6	0	0.00013	8 hour	percieved						
				Groundwater Elevation (Ft MSL) Measured Well Depth (ft)	26.25	26.25		0.00013 Feb 2006								
			<u></u>	Submerged (+) or Exposed screen (-)	6.31	10.03	1									
									Full							
N 414 / F 4	1035 11	1012.12	24.0	Grand start 150	4= 4=	40.0			recovery in	None						
MW-54	1035.44	1013.49	31.8	Groundwater Level (ft) Groundwater Elevation (Ft MSL)	17.46 1017.98	18.01 1017.43	0	0.00000551	8 hour	percieved						
				Measured Well Depth (ft)	31.8	31.8		Feb 2006								
				Submerged (+) or Exposed screen (-)	4.49	3.94										
									Full .							
NANA 04	1000 37	000 27	25	Croundwater Lavel (6)	22.42	24.44			recovery in	None						
MW-81	1009.27	989.27	35	Groundwater Level (ft) Groundwater Elevation (Ft MSL)	22.49 986.78	21.11 988.16	1.1	0.0000197	4 hour	percieved						
				Measured Well Depth (ft)	33.9	33.9]	Feb 2006								
				Submerged (+) or Exposed screen (-)	-2.49	-1.11										
									Full .							
MW-94	1030.99	1013.14	27.85	Groundwater Loyal (#1)	15.36	16.1			recovery in	None						
14144-34	1030.33	1013.14	21.03	Groundwater Level (ft) Groundwater Elevation (Ft MSL)	1015.63	1014.89	0.35	4 hour		percieved						
				Measured Well Depth (ft)	27.5	27.5]	Not Measured								
				Submerged (+) or Exposed screen (-)	2.49	1.75										
									90%							
MW-97	1015.38	988.28	37.1	Groundwater Level (ft)	11.17	14.15		I I	recovery in	None percieved						
.v. vv -3/	1013.30	500.20	37.1	Groundwater Elevation (Ft MSL)	1004.21	1001.23	─ 0.3 I		8 hour	percieved						
				Measured Well Depth (ft)	36.8	36.8]	2234.00	urea							
		1		Submerged (+) or Exposed screen (-)	15.93	12.95	1			I						

Groundwater Underdrain Piezometer

Well	Dat	e of Measureme	ents
		4/16/2024	10/15/2024
GPZ - 105	bottom of waste (feet MSL)	962	962
	Bottom Screen of GPZ (feet MSL)	956.75	956.75
	Thickness Water in GPZ (ft)	0.08	0.1
	Elevation water in GPZ (feet MSL)	956.83	956.85
	Minimum Separation (ft)	5.17	5.15

Table 4A – Water Elevation Summary Over Time

Area B Eleva	tions	COUNTY SA								
	MONTHL MW 49	Y WATER EL		MW 81	MW 85	MW 87	MW 89	MW 91	MW93	MW94
TOP PVC. ELEV, FT.	1019.99		1032.39	1009.27	1039.27	964.20				1030.9
DATE										
01/17/2001	999.65	1004.68					1001.08	966.87		
02/07/2001	1006.89			988.07	1002.25	958.67		972.44		
04/25/2001	1006.84			992.77	1005.67	958.70		973.57		
07/20/2001	1002.74			000.07	4004.07	050.00	1005.89			
10/05/2001 01/03/2002	998.89 998.29			988.87	1001.97	956.20	1003.94 1002.59	966.77 966.97	1	
04/29/2002	1003.02			989.13	1001.22	958.11		968.07		
07/03/2002	1005.69						1004.74	971.87		
10/14/2002	999.40		994.97	988.72	1001.86	956.27				
01/27/2003	997.59			007.57	000.40	050.07	1000.59			
04/21/2003 07/10/2003	997.84 1007.49			987.57	999.18	958.27	1000.88 1006.74			
10/01/2003	1007.49			988.59	1003.76	955.75				
04/22/2004	1006.89			994.97	1005.57	959.80				
10/05/2004	998.79			989.97	1002.27	956.55				
04/01/2005	1006.08	1016.97	1000.11	992.64	1003.54	960.16	1004.00	970.82		
07/12/2005 10/04/2005	999.33	1015.32	996.60	990.66	1003.22	957.12	1002.94	967.49		
01/09/2006	999.33	1013.32	990.00	990.00	1003.22	937.12	1002.94	907.49		
02/01/2006	1001.31	1013.58	994.60	989.20	1001.32	959.63	1002.83	968.66		
04/05/2006	1007.47	1018.51	996.67	994.28	1002.36	960.30	1004.47	973.00		
07/13/2006										
10/05/2006	1002.64	1016.87	995.89	992.41	1004.02	958.59		970.71		
01/02/2007 04/10/2007	1006.58	1019.95		1009.27 996.21	1006.29	964.20 960.33		974.23		
07/30/2007	1000.50	1013.33	1005.45	330.21	1000.23	900.00	1000.04	374.20		
10/10/2007	1000.29	1015.63		992.03	1003.31	959.75	1004.19	970.43		
01/16/2008										
04/01/2008	1006.32			991.83				974.06		
06/20/2008 08/05/2008	1004.98 1002.94		1009.66 1007.69	995.98 995.49		960.02 960.02		973.45 969.47	909.35	
10/02/2008	999.49		1000.91	991.67	1003.67	959.48			907.96	
12/10/2008	1001.98		998.59	991.87	1003.77	960.20		969.55		
04/01/2009	1005.74			994.17	1005.27	960.50		973.97		
10/21/2009	1005.19			993.39						
04/20/2010 10/08/2010	1003.99 1004.19		1005.89 1004.99	993.77 993.77	1005.77 1006.22	960.35 960.20		972.87 972.27		
04/04/2011	1004.13			992.87	1004.52	960.40		971.57		1014.99
10/05/2011	997.99			989.17	1002.37	957.20		966.47	904.61	1011.69
04/09/2012	1005.49			991.67	1002.92	960.00		969.07	906.76	
10/08/2012	996.39		992.59	987.27	999.87	954.65		965.47	902.61	1009.49
04/05/2013 10/15/2013	1006.99 997.44		990.49 989.21	989.27 988.60	1000.97 1002.37	960.40 955.85	_	971.47 963.87	905.41 900.59	1020.19 1010.64
04/09/2014	1000.49		987.59	986.57	1002.57			967.82		1015.19
10/17/2014	1005.91	1020.79		993.67	1004.97	960.55		972.22		1017.39
04/03/2015	1002.56			992.07	1004.47	960.50		969.47		
10/01/2015	1000.54		986.48	991.57	1004.13			968.77		
4/14/2016	1003.48		988.61 983.87	994.37	1004.94	960.60		971.97 971.06	909.37 908.25	
10/13/2016 4/10/2017	1005.38 1007.88		983.87	993.01 995.19	1005.32 1005.00	960.43 960.56		971.06		
10/9/2017	997.84		980.49	988.82	1003.00			966.45		
4/17/2018	1008.62	1023.37	980.59	994.32	1002.55	960.70	1006.46	972.37	907.30	1018.3
10/22/2018	1006.89		980.59	994.51	1007.25			972.47		
4/22/2019 10/23/2019	1004.09		980.54	993.99		960.10		971.26		1017.7
4/10/2020	1006.10 1005.55		980.54 980.54	993.40 993.83	1004.27 1005.89	960.38 960.34		972.64 971.77		1017.3 1017.1
10/23/2020	998.73			989.54	1003.69			967.21	904.16	
4/5/2021	1007.32		980.54	992.24	1003.86			972.14		1018.7
10/8/2021	997.54	1015.18	980.54	987.15	1000.13	955.10	1000.03	966.77	902.42	1010.5
4/6/2022	1005.50			991.22	1001.89					
10/25/2022 4/10/2023	998.49 1006.97		980.54 980.54	987.39 992.02	1002.09 1004.82	955.69 960.16				1011.1 1017.2
10/13/2023	997.23		980.54	992.02				966.43		
4/16/2024	999.88			986.78						
10/15/2024	1003.60			988.16						
navimum danth ta watar	00	20.0	E0 F	00.05	AE A	0.55	10.5	447	21.32	21.
naximum depth to water low water elevation	26 993.99			23.25 986.02		9.55 954.65				
minimum depth to water				12.43						
high water elevation	1009.45			996.84						

Area B Eleva	tions						
	MW95	MW96	MW97		MW99	MW120	MW121
TOP PVC. ELEV, FT.	973.55		1015.38	953.24	913.98	948.04	938.6°
DATE		MW96R 941.85					
01/17/2001							
02/07/2001							
04/25/2001							
07/20/2001							
10/05/2001 01/03/2002							
04/29/2002							
07/03/2002							
10/14/2002							
01/27/2003							
04/21/2003							
07/10/2003 10/01/2003							
04/22/2004							
10/05/2004							
04/01/2005							
07/12/2005							
10/04/2005							
01/09/2006 02/01/2006							
04/05/2006							
07/13/2006							
10/05/2006							
01/02/2007							
04/10/2007 07/30/2007							
10/10/2007							
01/16/2008							
04/01/2008							
06/20/2008							
08/05/2008							
10/02/2008 12/10/2008							
04/01/2009							
10/21/2009							
04/20/2010							
10/08/2010	000.05	005.46					
04/04/2011 10/05/2011	966.95 969.55	935.16 933.11					
04/09/2012	967.20	935.16					
10/08/2012	968.35						
04/05/2013	965.40	934.21					
10/15/2013	968.35	932.21	1000.00				
04/09/2014 10/17/2014	966.55 970.00	933.41 936.81	1002.68 1006.28				
04/03/2015	967.05		1000.28				
10/01/2015	970.45	935.20	1002.79				
4/14/2016	967.24	935.16	1004.42				
10/13/2016	970.59	934.49	1004.13	947.61	906.28		
4/10/2017 10/9/2017	962.35 969.40	936.59 934.80	1006.58 999.24	949.43 947.07	907.64 894.10		
4/17/2018	966.98	934.60	1005.32	949.49			
10/22/2018	970.40	939.81	1007.24	948.70	907.75		
4/22/2019	967.27	934.87	1004.98	948.86			
10/23/2019	970.13			949.41			
4/10/2020 10/23/2020	967.19 969.08	935.16 934.06		949.31 947.44	906.84 902.88		
4/5/2021	969.08		1000.43	947.44			
10/8/2021	968.80	927.95					
4/6/2022	966.55	932.55	1005.10	948.75	903.59		
10/25/2022	968.71	928.70		946.35			
4/10/2023	966.69	931.36		948.63		938.54 938.23	
10/13/2023 4/16/2024	968.18 966.10			944.72 947.68			
10/15/2024	968.14						
. 5, 15,252 1	000.14	020.04	.001.20	5 10.40	00L.L4	000.00	52 ∓.€
naximum depth to water				8.3			14.0
low water elevation ninimum depth to water	962.35 2.96		998.28 8.14				
high water elevation	970.59						

Table $5-Background\ and\ GWPS\ Summary$

Table 5 Background and GWPS Summary Annual Water Quality Report Marshall County Sanitary Landfill Permit No. 64-SDP-02-75P

Interwell Background/(MW-66, MW-85, MW-98, and MW-99)

Inorganics - Appendix I	<u></u> _									
Constituent	Units	Model Type	Samples - N	Detections	Mean	SD	Prediction Limit	Confidence	GWPS	Source
Antimony (Sb)	μg/l	nonparametric	65	0			2.0000	0.99	6	SS
Arsenic (As)	μg/l	nonparametric	63	5			7.8000	0.99	10	SS
Barium (Ba)	μg/l	normal	65	65	179.9300	113.53	452.8900		2000	SS
Beryllium (Be)	μg/l	nonparametric	65	0			4.0000	0.99	4	SS
Cadmium (Cd)	μg/l	nonparametric	65	0			0.8000	0.99	5	SS
Chromium (Cr)	μg/l	nonparametric	65	2			23.4000	0.99	100	SS
Cobalt (Co)	μg/l	normal	65	35	1.519	1.817	5.9879		5.9879	Site
Copper (Cu)	μg/l	nonparametric	65	4			5.3000	0.99	1300	SS
Lead (Pb)	μg/l	nonparametric	65	0			4.0000	0.99	15	SS
Nickel (Ni)	μg/l	nonparametric	64	14			8.8000	0.99	100	SS
Selenium (Se)	μg/l	nonparametric	65	0			4.0000	0.99	50	SS
Silver (Ag)	μg/l	nonparametric	65	0			4.0000	0.99	100	SS
Thallium (TI)	μg/l	nonparametric	65	0			2.0000	0.99	2	SS
Vanadium (V)	μg/l	nonparametric	65	0			20.0000	0.99	35	SS
Zinc (Zn)	μg/l	nonparametric	64	7			54.6000	0.99	2000	SS
VOC - Appendix I										
Constituent	Units	Model Type	Samples - N	Detections	Mean	SD	Prediction Limit	Confidence	GWPS	Source
All	μg/l	DQR	65	0	<1	<1	<1		various	SS

= Prediction limit exceeds the GWPS. A Site-Specific GWPS equal to the Prediction Limit is used.

Intrawell Background at MW-93 and MW-96R

intr	aweii ba	ckground at MW-93 a	ina ivivv-96K	
			Intrawell	IAC 567-137
			Statistical	Statewide
			Control	Standards
Compound	Units	Point	Limit	
Antimony, total	ug/L	MW-93	2.0000	6
Arsenic, total	ug/L	MW-93	81.6313	10
Barium, total	ug/L	MW-93	525.9443	2000
Beryllium, total	ug/L	MW-93	4.0000	4
Cadmium, totall	ug/L	MW-93	0.8000	5
Chromium, total	ug/L	MW-93	8.0000	100
Cobalt, total	ug/L	MW-93	25.1103	2.1
Copper, total	ug/L	MW-93	4.0000	1300
Lead, total	ug/L	MW-93	4.0000	15
Nickel, total	ug/L	MW-93	54.9667	100
Selenium, total	ug/L	MW-93	4.0000	50
Silver, total	ug/L	MW-93	4.0000	100
Thallium, total	ug/L	MW-93	4.0000	2
Vanadium, total	ug/L	MW-93	20.0000	35
Zinc, total	ug/L	MW-93	34.2000	2000
Antimony, total	ug/L	MW-96R	pending	6
Arsenic, total	ug/L	MW-96R	71.8419	10
Barium, total	ug/L	MW-96R	2034.0643	2000
Beryllium, total	ug/L	MW-96R	pending	4
Cadmium, totall	ug/L	MW-96R	pending	5
Chromium, total	ug/L	MW-96R	pending	100
Cobalt, total	ug/L	MW-96R	22.9275	2.1
Copper, total	ug/L	MW-96R	pending	1300
Lead, total	ug/L	MW-96R	pending	15
Nickel, total	ug/L	MW-96R	12.632	100
Selenium, total	ug/L	MW-96R	15.3227	50
Silver, total	ug/L	MW-96R	pending	100
Thallium, total	ug/L	MW-96R	pending	2
Vanadium, total	ug/L	MW-96R	pending	35
Zinc, total	ug/L	MW-96R	pending	2000

= Control limit exceeds the GWPS. A Site-Specific GWPS equal to the Control Limit is used.

Table 6 – Summary of Detections

Table 6
Summary of Well/Detected Constituent Pairs that Exceed the Prediction Limit/Control Limit
Annual Water Quality Report
Marshall County Sanitary Landfill
Permit No. 64-SDP-02-75P

MW-66 was dry 4/16/2024 & 10/15/2024 SRAMP B was dry 10/15/2024 PECS B was dry 4/16/2024 & 10/15/2024 LW-75 was sampled twice to get the required annual parameters

Well	Constituent	Date	Most recent result (ug/L)	Background Standard (ug/L)	Monitoring Program	Statistical Method	
MW-87	None	4/16/2024 & 10/15/2024	N/A	N/A	AZPOC - detection	Interwell	
MW-89	None	4/16/2024 & 10/15/2024	N/A	N/A	AZPOC - detection	Interwell	
MW-91	None	4/16/2024 & 10/15/2024	N/A	N/A	AZPOC - assessment	Interwell	_
MW-93	Arsenic, Cobalt, Nickel	4/16/2024 & 10/15/2024	N/A	N/A	POC - assessment	Interwell	There is no SSI, as both methods of statistical
MW-93	None	4/16/2024 & 10/15/2024	N/A	N/A	POC - assessment	INTRAWELL	analyses did not exhibit an exceedance (Doc #110151).
MW-95	None	4/16/2024 & 10/15/2024	N/A	N/A	POC - detection	Interwell	
MW-96R	Cobalt, Selenium	4/16/2024 & 10/15/2024	N/A	N/A	POC - assessment	Interwell	There is no SSI, as both methods of statistical
MW-96R	None	4/16/2024 & 10/15/2024	N/A	N/A	POC - assessment	INTRAWELL	analyses did not exhibit an exceedance (Doc #110151).
MW-97	None	4/16/2024 & 10/15/2024	N/A	N/A	AZPOC - detection	Interwell	
SRAMP-B	None	4/16/2024	N/A	N/A	POC - detection	Interwell	

Table 7 – Summary of Ongoing and Newly Identified SSI - INTERWELL

KEY: SSI

Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report
Marshall County Sanitary Landfill
Permit No.64-SDP-02-75P

Note: The absence of shading indicates that the condition does not exist.

SSL LCL>GWPS

SSI

					331				
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-87	Cobalt	4/14/2016	<0.8	6.0	0.400	6	NA	NA	10/22/2018
MW-87	Cobalt	10/13/2016	<0.8	6.0	0.400	6	NA	NA	10/22/2018
MW-87	Cobalt	4/10/2017	<0.8	6.0	0.400	6	NA	NA	10/22/2018
MW-87	Cobalt	10/9/2017	<0.8	6.0	0.400	6	NA	NA	10/22/2018
MW-87	Cobalt	4/17/2018	<0.8	6.0	0.400	6	NA	NA	10/22/2018
MW-87	Cobalt	10/22/2018	<0.8	6.0	0.400	6	NA	NA	10/22/2018
MW-87	Cobalt	4/22/2019	<0.8	6.0	0.400	6	NA	NA	10/22/2018
MW-87	Cobalt	10/23/2019	<0.8	6.0	0.400	6	NA	NA	10/22/2018
MW-87	Cobalt	4/10/2020	<0.4	6.0	0.400	6	NA	NA	10/22/2018
MW-87	Cobalt	10/19/2020	<0.4	6.0	0.400	6	NA	NA	10/22/2018
MW-87	Cobalt	4/5/2021	<0.4	6.0	0.400	6	NA	NA	10/22/2018
MW-87	Cobalt	10/8/2021	<0.4	5.7024	0.200	5.7024	NA	NA	10/22/2018
MW-87	Cobalt	4/6/2022	<0.4	5.7100	0.200	5.7100	NA	NA	10/22/2018
MW-87	Cobalt	10/25/2022	<0.4	5.7836	0.200	5.7836	NA	NA	10/22/2018
MW-87	Cobalt	4/10/2023	<0.4	5.6895	0.200	5.6895	NA	NA	10/22/2018
MW-87	Cobalt	10/13/2023	<0.4	5.9053	0.200	5.9053	NA	NA	10/22/2018
MW-87	Cobalt	4/16/2024	<0.4	6.0584	0.200	6.0584	NA	NA	10/22/2018
MW-87	Cobalt	10/15/2024	<0.4	5.9879	0.200	5.9879	NA	NA	10/22/2018

KEY: SSI SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI **Annual Water Quality Report**

Note: The absence of shading indicates that the condition does not exist.

Marshall County Sanitary Landfill Permit No.64-SDP-02-75P

							SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-87	1,2-dichloropropane	4/14/2016	< 1.00	1.00	0.500	5	NA	NA	10/22/2018
MW-87	1,2-dichloropropane	10/13/2016	<1.00	1.00	0.500	5	NA	NA	10/22/2018
MW-87	1,2-dichloropropane	4/10/2017	<1.00	1.00	0.500	5	NA	NA	10/22/2018
MW-87	1,2-dichloropropane	10/9/2017	<1.00	1.00	0.500	5	NA	NA	10/22/2018
MW-87	1,2-dichloropropane	4/17/2018	<1.00	1.00	0.500	5	NA	NA	10/22/2018
MW-87	1,2-dichloropropane	10/22/2018	<1.00	1.00	0.500	5	NA	NA	10/22/2018
MW-87	1,2-dichloropropane	4/22/2019	<1.00	1.00	0.500	5	NA	NA	10/22/2018
MW-87	1,2-dichloropropane	10/23/2019	<1.00	1.00	0.500	5	NA	NA	10/22/2018
MW-87	1,2-dichloropropane	4/10/2020	<1.00	1.00	0.500	5	NA	NA	10/22/2018
MW-87	1,2-dichloropropane	10/19/2020	<1.00	1.00	0.500	5	NA	NA	10/22/2018
MW-87	1,2-dichloropropane	4/5/2021	<1.00	1.00	0.500	5	NA	NA	10/22/2018
MW-87	1,2-dichloropropane	10/8/2021	<1.00	1.00	0.500	5	NA	NA	10/22/2018
MW-87	1,2-dichloropropane	4/6/2022	<1.00	1.00	0.500	5	NA	NA	10/22/2018
MW-87	1,2-dichloropropane	10/25/2022	<1.00	1.00	0.500	5	NA	NA	10/22/2018
MW-87	1,2-dichloropropane	4/10/2023	<1.00	1.00	0.500	5	NA	NA	10/22/2018
MW-87	1,2-dichloropropane	10/13/2023	<1.00	1.00	0.500	5	NA	NA	10/22/2018
MW-87	1,2-dichloropropane	4/16/2024	<1.00	1.00	0.500	5	NA	NA	10/22/2018
MW-87	1,2-dichloropropane	10/15/2024	<1.00	1.00	0.500	5	NA	NA	10/22/2018

KEY:

SSI

SSL LCL>GWPS

Note: The absence of shading indicates that the condition does not exist.

Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report
Marshall County Sanitary Landfill

							SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-87	cis-1,2-dichloroethene	4/14/2016	<1.00	1.00	0.500	70	NA	NA	10/22/2018
MW-87	cis-1,2-dichloroethene	10/13/2016	<1.00	1.00	0.500	70	NA	NA	10/22/2018
MW-87	cis-1,2-dichloroethene	4/10/2017	<1.00	1.00	0.500	70	NA	NA	10/22/2018
MW-87	cis-1,2-dichloroethene	10/9/2017	<1.00	1.00	0.500	70	NA	NA	10/22/2018
MW-87	cis-1,2-dichloroethene	4/17/2018	<1.00	1.00	0.500	70	NA	NA	10/22/2018
MW-87	cis-1,2-dichloroethene	10/22/2018	<1.00	1.00	0.500	70	NA	NA	10/22/2018
MW-87	cis-1,2-dichloroethene	4/22/2019	<1.00	1.00	0.500	70	NA	NA	10/22/2018
MW-87	cis-1,2-dichloroethene	10/23/2019	<1.00	1.00	0.500	70	NA	NA	10/22/2018
MW-87	cis-1,2-dichloroethene	4/10/2020	<1.00	1.00	0.500	70	NA	NA	10/22/2018
MW-87	cis-1,2-dichloroethene	10/19/2020	<1.00	1.00	0.500	70	NA	NA	10/22/2018
MW-87	cis-1,2-dichloroethene	4.5/2021	<1.00	1.00	0.500	70	NA	NA	10/22/2018
MW-87	cis-1,2-dichloroethene	10/8/2021	<1.00	1.00	0.500	70	NA	NA	10/22/2018
MW-87	cis-1,2-dichloroethene	4/6/2022	<1.00	1.00	0.500	70	NA	NA	10/22/2018
MW-87	cis-1,2-dichloroethene	10/25/2022	<1.00	1.00	0.500	70	NA	NA	10/22/2018
MW-87	cis-1,2-dichloroethene	4/10/2023	<1.00	1.00	0.500	70	NA	NA	10/22/2018
MW-87	cis-1,2-dichloroethene	10/13/2023	<1.00	1.00	0.500	70	NA	NA	10/22/2018
MW-87	cis-1,2-dichloroethene	4/16/2024	<1.00	1.00	0.500	70	NA	NA	10/22/2018
MW-87	cis-1,2-dichloroethene	10/15/2024	<1.00	1.00	0.500	70	NA	NA	10/22/2018

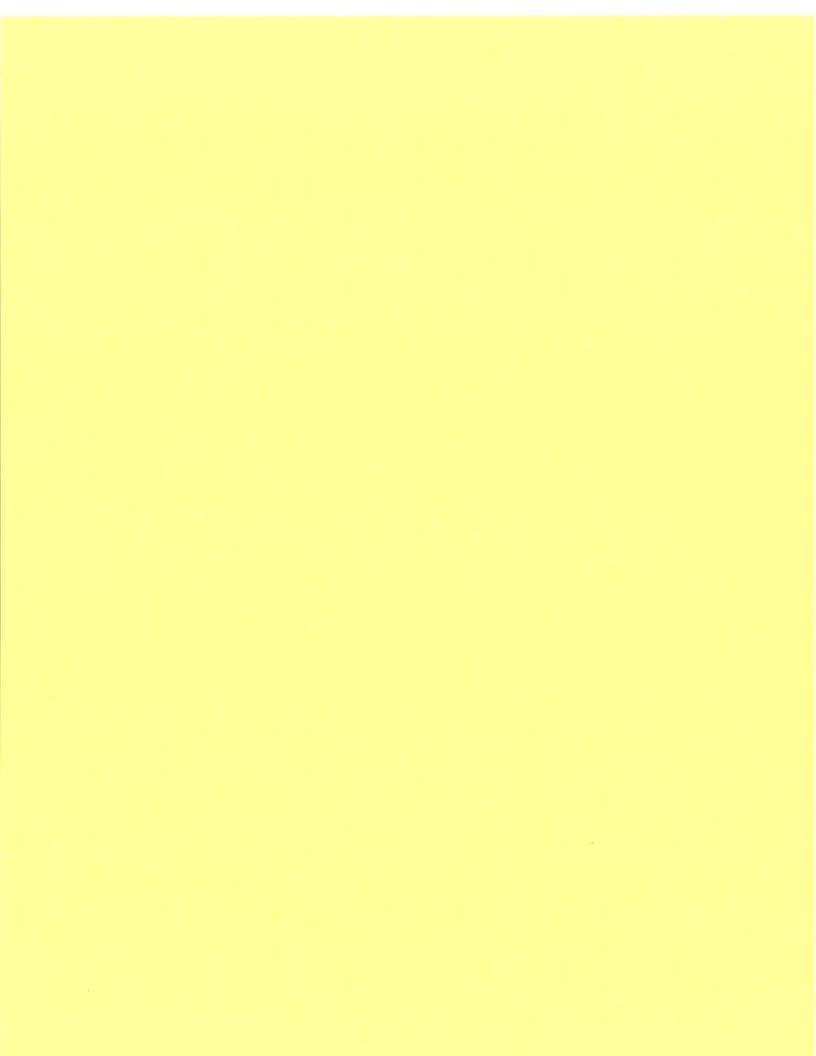
 Table 7
 KEY:
 SSI
 SSL LCL>GWPS

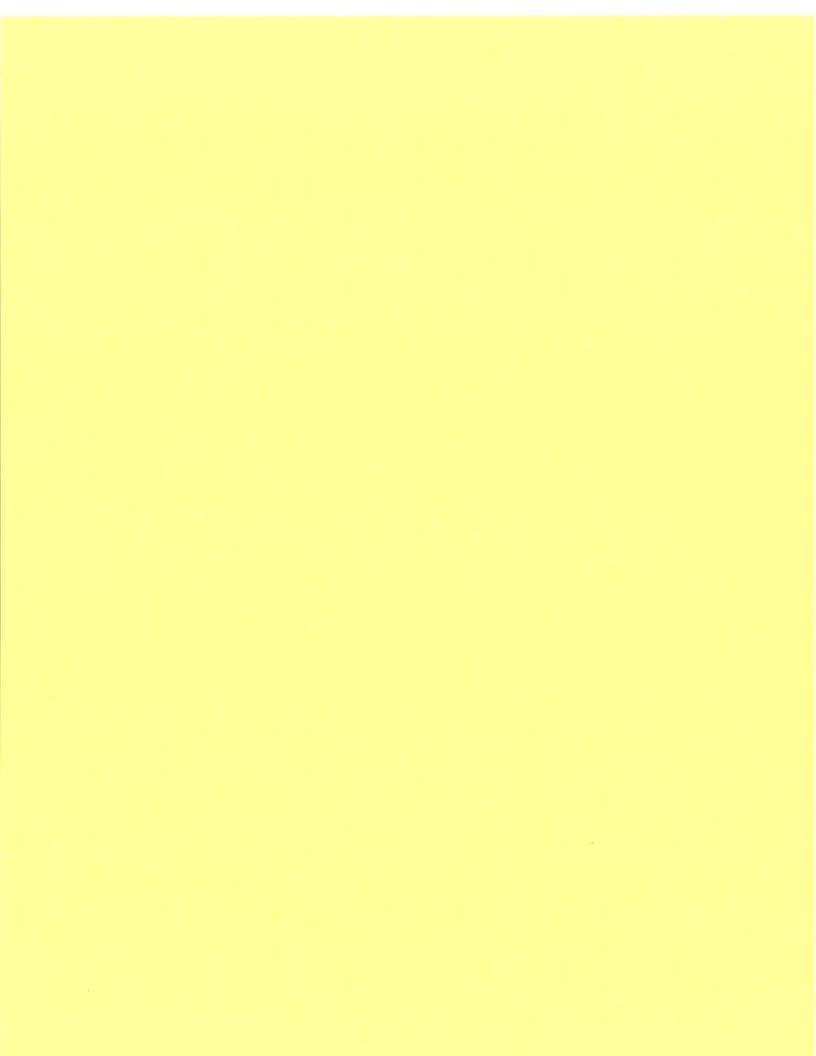
Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report
Marshall County Sanitary Landfill
Permit No.64-SDP-02-75P

Note: The absence of shading indicates that the condition does not exist.

							SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-87	Vinyl Chloride	4/14/2016	<1.00	1.00	0.500	2	NA	NA	10/22/2018
MW-87	Vinyl Chloride	10/13/2016	<1.00	1.00	0.500	2	NA	NA	10/22/2018
MW-87	Vinyl Chloride	4/10/2017	<1.00	1.00	0.500	2	NA	NA	10/22/2018
MW-87	Vinyl Chloride	10/9/2017	<1.00	1.00	0.500	2	NA	NA	10/22/2018
MW-87	Vinyl Chloride	4/17/2018	<1.00	1.00	0.500	2	NA	NA	10/22/2018
MW-87	Vinyl Chloride	10/22/2018	<1.00	1.00	0.500	2	NA	NA	10/22/2018
MW-87	Vinyl Chloride	4/22/2019	<1.00	1.00	0.500	2	NA	NA	10/22/2018
MW-87	Vinyl Chloride	10/23/2019	<1.00	1.00	0.500	2	NA	NA	10/22/2018
MW-87	Vinyl Chloride	4/10/2020	<1.00	1.00	0.500	2	NA	NA	10/22/2018
MW-87	Vinyl Chloride	10/19/2020	<1.00	1.00	0.500	2	NA	NA	10/22/2018
MW-87	Vinyl Chloride	4/5/2021	<1.00	1.00	0.500	2	NA	NA	10/22/2018
MW-87	Vinyl Chloride	10/8/2021	<1.00	1.00	0.500	2	NA	NA	10/22/2018
MW-87	Vinyl Chloride	4/6/2022	<1.00	1.00	0.500	2	NA	NA	10/22/2018
MW-87	Vinyl Chloride	10/25/2022	<1.00	1.00	0.500	2	NA	NA	10/22/2018
MW-87	Vinyl Chloride	4/10/2023	<1.00	1.00	0.500	2	NA	NA	10/22/2018
MW-87	Vinyl Chloride	10/13/2023	<1.00	1.00	0.500	2	NA	NA	10/22/2018
MW-87	Vinyl Chloride	4/16/2024	<1.00	1.00	0.500	2	NA	NA	10/22/2018
MW-87	Vinyl Chloride	10/15/2024	<1.00	1.00	0.500	2	NA	NA	10/22/2018

Bold = A Site Specific GWPS that is equal to the Prediction Limit. All other GWPS are IAC 567-137 Statewaide Standards for Protected Groundwater.




 Table 7
 KEY:
 SSI
 SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report
Marshall County Sanitary Landfill
Permit No.64-SDP-02-75P

Note: The absence of shading indicates that the condition does not exist.

							SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW 89	Cobalt	4/14/2016	<0.8	6.00	0.400	6	NA	NA	10/22/2018
MW 89	Cobalt	10/13/2016	<0.8	6.00	0.400	6	NA	NA	10/22/2018
MW 89	Cobalt	4/10/2017	<0.8	6.00	0.400	6	NA	NA	10/22/2018
MW 89	Cobalt	10/9/2017	<0.8	6.00	0.400	6	NA	NA	10/22/2018
MW 89	Cobalt	4/17/2018	<0.8	6.00	0.400	6	NA	NA	10/22/2018
MW 89	Cobalt	10/22/2018	<0.8	6.00	0.400	6	NA	NA	10/22/2018
MW 89	Cobalt	4/22/2019	<0.8	6.00	0.400	6	NA	NA	10/22/2018
MW 89	Cobalt	10/23/2019	<0.8	6.00	0.400	6	NA	NA	10/22/2018
MW 89	Cobalt	4/10/2020	<0.4	6.00	0.400	6	NA	NA	10/22/2018
MW 89	Cobalt	10/19/2020	<0.4	6.00	0.400	6	NA	NA	10/22/2018
MW 89	Cobalt	4/5/2021	<0.4	6.00	0.400	6	NA	NA	10/22/2018
MW 89	Cobalt	10/8/2021	<0.4	5.7024	0.200	5.7024	NA	NA	10/22/2018
MW 89	Cobalt	4/6/2022	<0.4	5.7100	0.200	5.7100	NA	NA	10/22/2018
MW 89	Cobalt	10/25/2022	<0.4	5.7836	0.200	5.7836	NA	NA	10/22/2018
MW 89	Cobalt	4/10/2023	<0.4	5.6895	0.200	5.6895	NA	NA	10/22/2018
MW 89	Cobalt	10/13/2023	<0.4	5.9053	0.200	5.9053	NA	NA	10/22/2018
MW 89	Cobalt	4/16/2024	<0.4	6.0584	0.200	6.0584	NA	NA	10/22/2018
MW 89	Cobalt	10/15/2024	<0.4	5.9879	0.200	5.9879	NA	NA	10/22/2018

Bold = A Site Specific GWPS that is equal to the Prediction Limit. All other GWPS are IAC 567-137 Statewaide Standards for Protected Groundwater.

KEY:

SSI

SSL LCL>GWPS

Note: The absence of shading indicates that the condition does not exist.

Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report
Marshall County Sanitary Landfill
Permit No.64-SDP-02-75P

SSI

		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-91	arsenic	4/14/2016	<4.0	25.3	2.000	25.3	NA	NA	10/22/2018
MW-91	arsenic	10/13/2016	<4.0	25.3	2.000	25.3	NA	NA	10/22/2018
MW-91	arsenic	4/10/2017	<4.0	25.3	2.000	25.3	NA	NA	10/22/2018
MW-91	arsenic	10/9/2017	4.00	25.3	1.324	25.3	NA	NA	10/22/2018
MW-91	arsenic	4/17/2018	<4.0	25.3	1.324	25.3	NA	NA	10/22/2018
MW-91	arsenic	10/22/2018	<4.0	25.3	1.324	25.3	NA	NA	10/22/2018
MW-91	arsenic	4/22/2019	<4.0	25.3	1.324	25.3	NA	NA	10/22/2018
MW-91	arsenic	10/23/2019	<4.0	25.3	2.000	25.3	NA	NA	10/22/2018
MW-91	arsenic	4/10/2020	<4.0	25.3	2.000	25.3	NA	NA	10/22/2018
MW-91	arsenic	10/19/2020	<4.0	7.8	2.000	10	NA	NA	10/22/2018
MW-91	arsenic	4/5/2021	<4.0	7.8	2.000	10	NA	NA	10/22/2018
MW-91	arsenic	10/8/2021	<4.0	7.8	2.000	10	NA	NA	10/22/2018
MW-91	arsenic	4/6/2022	<4.0	7.8	2.000	10	NA	NA	10/22/2018
MW-91	arsenic	10/25/2022	<4.0	7.8	2.000	10	NA	NA	10/22/2018
MW-91	arsenic	4/10/2023	<4.0	7.8	2.000	10	NA	NA	10/22/2018
MW-91	arsenic	10/13/2023	<4.0	7.8	2.000	10	NA	NA	10/22/2018
MW-91	arsenic	4/16/2024	<4.0	7.8	2.000	10	NA	NA	10/22/2018
MW-91	arsenic	10/15/2024	<4.0	7.8	2.000	10	NA	NA	10/22/2018

KEY:

SSI

SSL LCL>GWPS

Note: The absence of shading indicates that the condition does not exist.

Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report
Marshall County Sanitary Landfill

							SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-91	barium	4/14/2016	162.0	830.3938		2000	NA	NA	10/22/2018
MW-91	barium	10/13/2016	255.0	752.2511		2000	NA	NA	10/22/2018
MW-91	barium	4/10/2017	162.0	697.2202	127.012	2000	NA	NA	10/22/2018
MW-91	barium	10/9/2017	663.0	661.9074	29.303	2000	NA	NA	10/22/2018
MW-91	barium	4/17/2018	126.0	632.3878	4.532	2000	NA	NA	10/22/2018
MW-91	barium	10/22/2018	167.0	608.9577	6.833	2000	NA	NA	10/22/2018
MW-91	barium	4/22/2019	183.0	585.7477	124.465	2000	NA	NA	10/22/2018
MW-91	barium	10/23/2019	363.0	566.1175	86.300	2000	NA	NA	10/22/2018
MW-91	barium	4/10/2020	165.0	547.5754	106.570	2000	NA	NA	10/22/2018
MW-91	barium	10/19/2020	268.0	531.2195	138.023	2000	NA	NA	10/22/2018
MW-91	barium	4/5/2021	118.0	516.6799	99.836	2000	NA	NA	10/22/2018
MW-91	barium	10/8/2021	235.0	503.4302	116.868	2000	NA	NA	10/22/2018
MW-91	barium	4/6/2022	111.0	491.5435	88.559	2000	NA	NA	10/22/2018
MW-91	barium	10/25/2022	203.0	480.8617	94.058	2000	NA	NA	10/22/2018
MW-91	barium	4/10/2023	116.0	471.0737	92.933	2000	NA	NA	10/22/2018
MW-91	barium	10/13/2023	241.0	462.9491	92.933	2000	NA	NA	10/22/2018
MW-91	barium	4/16/2024	186.0	460.7031	141.190	2000	NA	NA	10/22/2018
MW-91	barium	10/15/2024	242.0	452.8909	144.670	2000	NA	NA	10/22/2018

KEY:

SSI

SSL LCL>GWPS Note: The absence of shading indicates that the condition does not exist.

Summary of Ongoing & Newly Identified SSI Annual Water Quality Report Marshall County Sanitary Landfill

							CCI		
		Sample	Each	Prediction		GWPS	SSI Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-91	cobalt	4/14/2016	<0.8	6.0	0.400	6	NA	NA	10/22/2018
MW-91	cobalt	10/13/2016	<0.8	6.0	0.400	6	NA	NA	10/22/2018
MW-91	cobalt	4/10/2017	<0.8	6.0	0.400	6	NA	NA	10/22/2018
MW-91	cobalt	10/9/2017	<0.8	6.0	0.400	6	NA	NA	10/22/2018
MW-91	cobalt	4/17/2018	<0.8	6.0	0.400	6	NA	NA	10/22/2018
MW-91	cobalt	10/22/2018	<0.8	6.0	0.400	6	NA	NA	10/22/2018
MW-91	cobalt	4/22/2019	<0.8	6.0	0.400	6	NA	NA	10/22/2018
MW-91	cobalt	10/23/2019	<0.8	6.0	0.400	6	NA	NA	10/22/2018
MW-91	cobalt	4/10/2020	<0.4	6.0	0.400	6	NA	NA	10/22/2018
MW-91	cobalt	10/19/2020	<0.4	6.0	0.400	6	NA	NA	10/22/2018
MW-91	cobalt	4/5/2021	<0.4	6.0	0.400	6	NA	NA	10/22/2018
MW-91	cobalt	10/8/2021	<0.4	5.7024	0.200	5.7024	NA	NA	10/22/2018
MW-91	cobalt	4/6/2022	<0.4	5.7100	0.200	5.7100	NA	NA	10/22/2018
MW-91	cobalt	10/25/2022	<0.4	5.7836	0.200	5.7836	NA	NA	10/22/2018
MW-91	cobalt	4/10/2023	<0.4	5.6895	0.200	5.6895	NA	NA	10/22/2018
MW-91	cobalt	10/13/2023	<0.4	5.9053	0.200	5.9053	NA	NA	10/22/2018
MW-91	cobalt	4/16/2024	<0.4	6.0584	0.200	6.0584	NA	NA	10/22/2018
MW-91	cobalt	10/15/2024	<0.4	5.9879	0.200	5.9879	NA	NA	10/22/2018

KEY:

SSI

SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report
Marshall County Sanitary Landfill

Permit No.64-SDP-02-75P

Note: The absence of shading indicates that the condition does not exist.

	1 CHINE (1010 + 35) 02 73	··							
		Sample	Each	Prediction		GWPS	SSI Initial	Resamples	Eth Background
Monitoring Well	Compound	Sample Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	5th Background
_	•				95% LCL (ug/L)				Sample
MW-91	selenium	4/14/2016	<4.0	4.00		50	NA	NA	10/22/2018
MW-91	selenium	10/13/2016	<4.0	4.00		50	NA	NA	10/22/2018
MW-91	selenium	4/10/2017	6.50	4.00	0.478	50	4/10/2017	NA	10/22/2018
MW-91	selenium	7/11/2017	<4.0	4.00		50	4/10/2017	NA	10/22/2018
MW-91	selenium	10/9/2017	4.70	4.00	1.207	50	4/10/2017	NA	10/22/2018
MW-91	selenium	1/9/2018	<4.0	4.00	1.207	50	4/10/2017	NA	10/22/2018
MW-91	selenium	4/17/2018	5.60	4.00	1.393	50	4/10/2017	NA	10/22/2018
MW-91	selenium	7/2/2018	<4.0	4.00	1.393	50	4/10/2017	NA	10/22/2018
MW-91	selenium	10/22/2018	<4.0	4.00	0.783	50	4/10/2017	NA	10/22/2018
MW-91	selenium	4/22/2019	<4.0	4.00	0.783	50	4/10/2017	NA	10/22/2018
MW-91	selenium	10/23/2019	<4.0	4.00	2.000	50	4/10/2017	NA	10/22/2018
MW-91	selenium	4/10/2020	<4.0	4.00	2.000	50	4/10/2017	NA	10/22/2018
MW-91	selenium	10/19/2020	4.10	4.00	1.29	50	4/10/2017	NA	10/22/2018
MW-91	selenium	1/7/2021	<4.0	4.00	1.29	50	4/10/2017	NA	10/22/2018
MW-91	selenium	4/5/2021	5.30	4.00	1.428	50	4/10/2017	NA	10/22/2018
MW-91	selenium	10/8/2021	<4.0	4.00	1.428	50	4/10/2017	NA	10/22/2018
MW-91	selenium	4/6/2022	<4.0	4.00	0.884	50	4/10/2017	NA	10/22/2018
MW-91	selenium	10/25/2022	<4.0	4.00	0.884	50	4/10/2017	NA	10/22/2018
MW-91	selenium	4/10/2023	<4.0	4.00	2.000	50	4/10/2017	NA	10/22/2018
MW-91	selenium	10/13/2023	<4.0	4.00	2.000	50	4/10/2017	NA	10/22/2018
MW-91	selenium	4/16/2024	<4.0	4.00	2.000	50	4/10/2017	NA	10/22/2018
MW-91	selenium	10/15/2024	<4.0	4.00	2.000	50	4/10/2017	NA	10/22/2018

KEY:

SSI

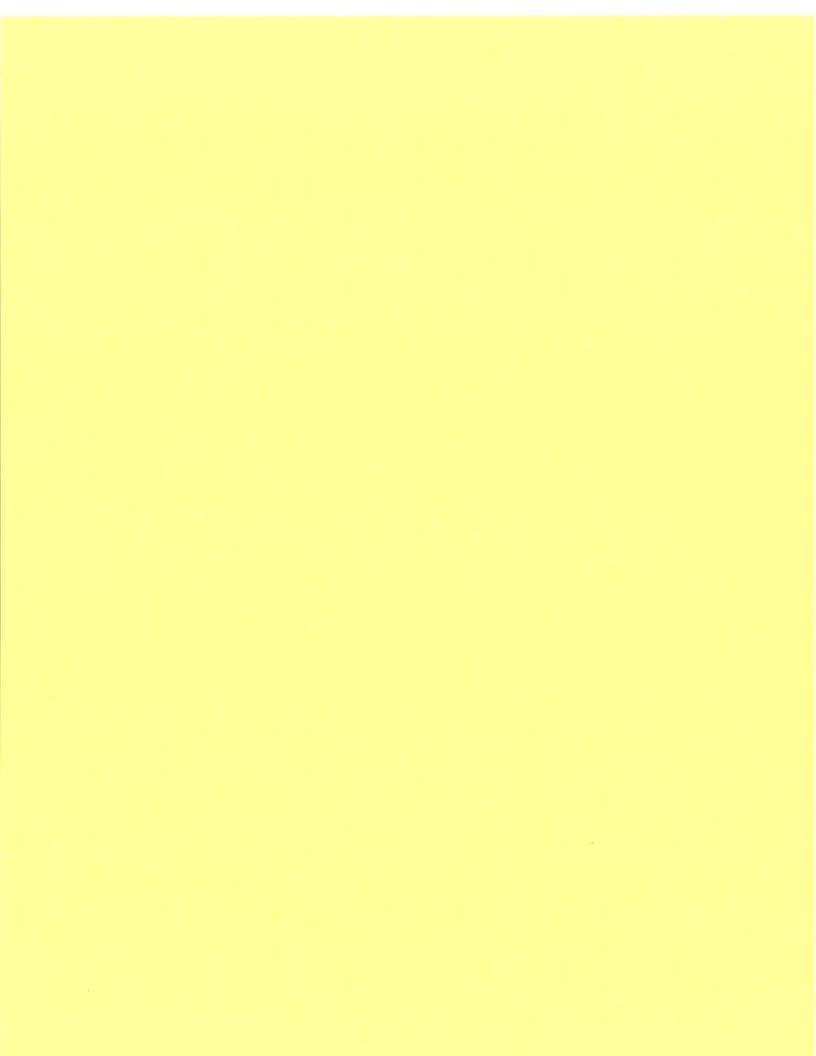
SSL LCL>GWPS Note: The absence of shading indicates that the condition does not exist.

Summary of Ongoing & Newly Identified SSI Annual Water Quality Report Marshall County Sanitary Landfill

		Sample	Each	Prediction		GWPS	SSI Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-91	1,1-dichloroethane	4/14/2016	<1.0	1.0	0.392	140	NA	NA	10/22/2018
MW-91	1,1-dichloroethane	10/13/2016	<1.0	1.0	0	140	NA	NA	10/22/2018
MW-91	1,1-dichloroethane	4/10/2017	<1.0	1.0	0	140	NA	NA	10/22/2018
MW-91	1,1-dichloroethane	10/9/2017	2.50	1.0	0	140	10/9/2017	NA	10/22/2018
MW-91	1,1-dichloroethane	1/9/2018	1.70	1.0	0	140	10/9/2017	NA	10/22/2018
MW-91	1,1-dichloroethane	4/17/2018	<1.0	1.0	0.147	140	10/9/2017	NA	10/22/2018
MW-91	1,1-dichloroethane	10/22/2018	<1.0	1.0	0.147	140	10/9/2017	NA	10/22/2018
MW-91	1,1-dichloroethane	4/22/2019	2.70	1.0	0.100	140	10/9/2017	NA	10/22/2018
MW-91	1,1-dichloroethane	10/23/2019	<1.0	1.0	0.000	140	10/9/2017	NA	10/22/2018
MW-91	1,1-dichloroethane	4/10/2020	<1.0	1.0	0.000	140	10/9/2017	NA	10/22/2018
MW-91	1,1-dichloroethane	10/19/2020	1.50	1.0	0.070	140	10/9/2017	NA	10/22/2018
MW-91	1,1-dichloroethane	4/5/2021	<1.0	1.0	0.162	140	10/9/2017	NA	10/22/2018
MW-91	1,1-dichloroethane	10/8/2021	<1.0	1.0	0.162	140	10/9/2017	NA	10/22/2018
MW-91	1,1-dichloroethane	4/6/2022	<1.0	1.0	0.162	140	10/9/2017	NA	10/22/2018
MW-91	1,1-dichloroethane	10/25/2022	<1.0	1.0	0.500	140	10/9/2017	NA	10/22/2018
MW-91	1,1-dichloroethane	4/10/2023	<1.0	1.0	0.500	140	10/9/2017	NA	10/22/2018
MW-91	1,1-dichloroethane	10/13/2023	<1.0	1.0	0.500	140	10/9/2017	NA	10/22/2018
MW-91	1,1-dichloroethane	4/16/2024	<1.0	1.0	0.500	140	10/9/2017	NA	10/22/2018
MW-91	1,1-dichloroethane	10/15/2024	<1.0	1.0	0.500	140	10/9/2017	NA	10/22/2018

Table 7 KEY: SSI

Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report
Marshall County Sanitary Landfill


Permit No.64-SDP-02-75P

SSI SSL LCL>GWPS

Note: The absence of shading indicates that the condition does not exist.

							SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-91	vinyl chloride	4/14/2016	<1.0	1.0	0.500	2	NA	NA	10/22/2018
MW-91	vinyl chloride	10/13/2016	<1.0	1.0	0.500	2	NA	NA	10/22/2018
MW-91	vinyl chloride	4/10/2017	<1.0	1.0	0.500	2	NA	NA	10/22/2018
MW-91	vinyl chloride	10/9/2017	<1.0	1.0	0.500	2	NA	NA	10/22/2018
MW-91	vinyl chloride	4/17/2018	<1.0	1.0	0.500	2	NA	NA	10/22/2018
MW-91	vinyl chloride	10/22/2018	<1.0	1.0	0.500	2	NA	NA	10/22/2018
MW-91	vinyl chloride	4/22/2019	<1.0	1.0	0.500	2	NA	NA	10/22/2018
MW-91	vinyl chloride	10/23/2019	<1.0	1.0	0.500	2	NA	NA	10/22/2018
MW-91	vinyl chloride	4/10/2020	<1.0	1.0	0.500	2	NA	NA	10/22/2018
MW-91	vinyl chloride	10/19/2020	<1.0	1.0	0.500	2	NA	NA	10/22/2018
MW-91	vinyl chloride	4/5/2021	<1.0	1.0	0.500	2	NA	NA	10/22/2018
MW-91	vinyl chloride	10/8/2021	<1.0	1.0	0.500	2	NA	NA	10/22/2018
MW-91	vinyl chloride	4/6/2022	<1.0	1.0	0.500	2	NA	NA	10/22/2018
MW-91	vinyl chloride	10/25/2022	<1.0	1.0	0.500	2	NA	NA	10/22/2018
MW-91	vinyl chloride	4/10/2023	<1.0	1.0	0.500	2	NA	NA	10/22/2018
MW-91	vinyl chloride	10/13/2023	<1.0	1.0	0.500	2	NA	NA	10/22/2018
MW-91	vinyl chloride	4/16/2024	<1.0	1.0	0.500	2	NA	NA	10/22/2018
MW-91	vinyl chloride	10/15/2024	<1.0	1.0	0.500	2	NA	NA	10/22/2018

Bold = A Site Specific GWPS that is equal to the Prediction Limit. All other GWPS are IAC 567-137 Statewaide Standards for Protected Groundwater.

KEY:

SSI

SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report
Marshall County Sanitary Landfill
Permit No.64-SDP-02-75P

Note: The absence of shading indicates that the condition does not exist.

				INTERWELL			SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-93	Aresenic	4/14/2016	16.10	25.30	1.768	25.30	4/22/2019	NA	10/22/2018
MW-93	Aresenic	10/13/2016	6.50	25.30	2.374	25.30	4/22/2019	NA	10/22/2018
MW-93	Aresenic	4/10/2017	5.50	25.30	2.193	25.30	4/22/2019	NA	10/22/2018
MW-93	Aresenic	10/9/2017	<4.0	25.30	0.428	25.30	4/22/2019	NA	10/22/2018
MW-93	Aresenic	4/17/2018	5.40	25.30	2.540	25.30	4/22/2019	NA	10/22/2018
MW-93	Aresenic	10/22/2018	18.40	25.30	0.000	25.30	4/22/2019	NA	10/22/2018
MW-93	Aresenic	4/22/2019	67.30	25.30	0.000	25.30	4/22/2019	NA	10/22/2018
MW-93	Aresenic	10/23/2019	13.60	25.30	0.000	25.30	4/22/2019	NA	10/22/2018
MW-93	Aresenic	4/10/2020	17.50	25.30	0.000	25.30	4/22/2019	NA	10/22/2018
MW-93	Aresenic	10/19/2020	4.80	7.80	0.000	10	4/22/2019	NA	10/22/2018
MW-93	Aresenic	4/5/2021	10.50	7.80	5.292	10	4/22/2019	NA	10/22/2018
MW-93	Aresenic	10/8/2021	11.40	7.80	4.934	10	4/22/2019	NA	10/22/2018
MW-93	Aresenic	4/6/2022	11.10	7.80	5.777	10	4/22/2019	NA	10/22/2018
MW-93	Aresenic	10/25/2022	58.50	7.80	0.000	10	4/22/2019	NA	10/22/2018
MW-93	Aresenic	4/10/2023	9.30	7.80	0.000	10	4/22/2019	NA	10/22/2018
MW-93	Aresenic	10/13/2023	59.60	7.80	1.434	10	4/22/2019	NA	10/22/2018
MW-93	Aresenic	4/16/2024	11.90	7.80	1.893	10	4/22/2019	NA	10/22/2018
MW-93	Aresenic	10/15/2024	15.20	7.80	0.000	10	4/22/2019	NA	10/22/2018

KEY:

SSI

SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report
Marshall County Sanitary Landfill

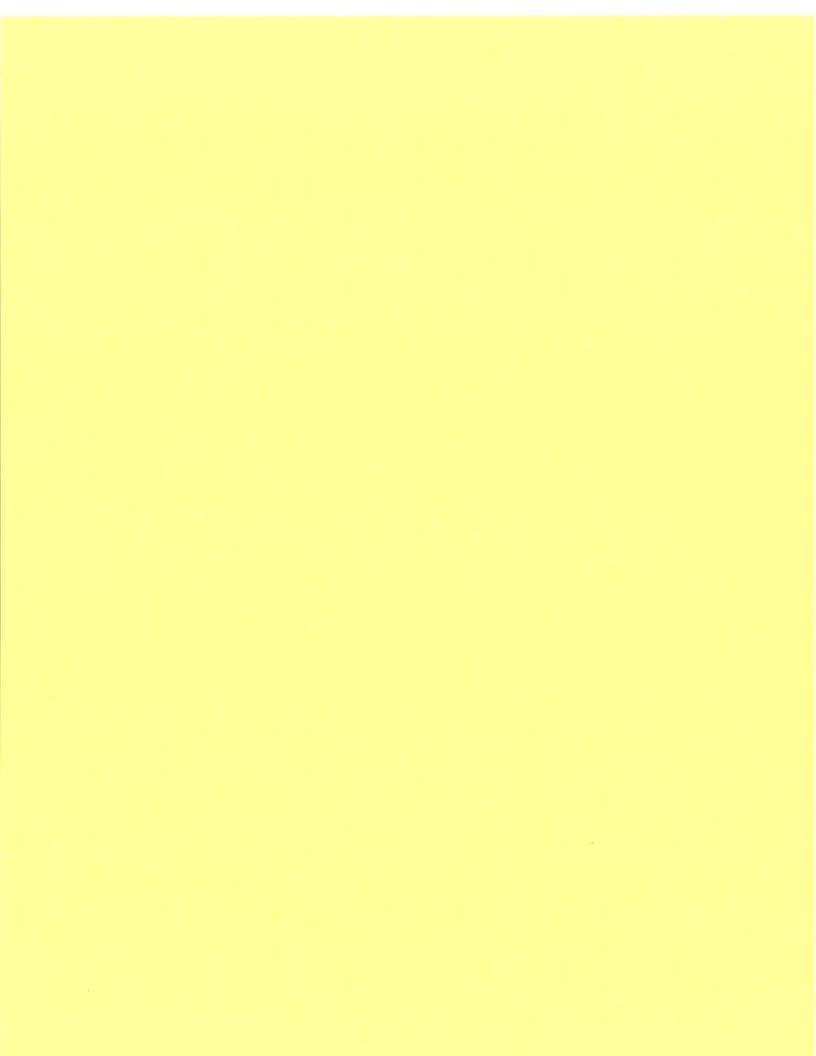
Permit No.64-SDP-02-75P

Note: The absence of shading indicates that the condition does not exist.

		INTERWELL					SSI			
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background	
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample	
MW-93	Cobalt	4/14/2016	14.70	6.00	5.750	6.00	4/14/2016	NA	10/22/2018	
MW-93	Cobalt	10/13/2016	6.60	6.00	5.361	6.00	4/14/2016	NA	10/22/2018	
MW-93	Cobalt	4/10/2017	8.60	6.00	5.046	6.00	4/14/2016	NA	10/22/2018	
MW-93	Cobalt	10/9/2017	5.20	6.00	3.847	6.00	4/14/2016	NA	10/22/2018	
MW-93	Cobalt	4/17/2018	5.90	6.00	4.851	6.00	4/14/2016	NA	10/22/2018	
MW-93	Cobalt	10/22/2018	9.90	6.00	4.789	6.00	4/14/2016	NA	10/22/2018	
MW-93	Cobalt	4/22/2019	18.90	6.00	2.564	6.00	4/14/2016	NA	10/22/2018	
MW-93	Cobalt	10/23/2019	8.30	6.00	4.073	6.00	4/14/2016	NA	10/22/2018	
MW-93	Cobalt	4/10/2020	11.30	6.00	6.576	6.00	4/14/2016	NA	10/22/2018	
MW-93	Cobalt	10/19/2020	4.60	6.00	3.635	6.00	4/14/2016	NA	10/22/2018	
MW-93	Cobalt	4/5/2021	7.90	6.00	4.800	6.00	4/14/2016	NA	10/22/2018	
MW-93	Cobalt	10/8/2021	7.10	5.7024	4.470	5.7024	4/14/2016	NA	10/22/2018	
MW-93	Cobalt	4/6/2022	8.70	5.7100	4.988	5.7100	4/14/2016	NA	10/22/2018	
MW-93	Cobalt	10/25/2022	8.60	5.7836	7.203	5.7836	4/14/2016	NA	10/22/2018	
MW-93	Cobalt	4/10/2023	9.00	5.6895	7.350	5.6895	4/14/2016	NA	10/22/2018	
MW-93	Cobalt	10/13/2023	8.30	5.9053	8.310	5.9053	4/14/2016	NA	10/22/2018	
MW-93	Cobalt	4/16/2024	9.80	6.0584	8.160	6.0584	4/14/2016	NA	10/22/2018	
MW-93	Cobalt	10/15/2024	9.90	5.9879	8.367	5.9879	4/14/2016	NA	10/22/2018	

Table 7 KEY: SSI

Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report
Marshall County Sanitary Landfill


Permit No.64-SDP-02-75P

Note: The absence of shading indicates that the condition does not exist.

SSL LCL>GWPS

				INTERWELL		SSI				
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background	
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample	
MW-93	Nickel	4/14/2016	26.50	8.80	27.148	100	4/14/2016	NA	10/22/2018	
MW-93	Nickel	10/13/2016	31.80	8.80	26.223	100	4/14/2016	NA	10/22/2018	
MW-93	Nickel	4/10/2017	27.30	8.80	25.222	100	4/14/2016	NA	10/22/2018	
MW-93	Nickel	10/9/2017	28.20	8.80	25.699	100	4/14/2016	NA	10/22/2018	
MW-93	Nickel	4/17/2018	26.20	8.80	25.522	100	4/14/2016	NA	10/22/2018	
MW-93	Nickel	10/22/2018	35.70	8.80	24.278	100	4/14/2016	NA	10/22/2018	
MW-93	Nickel	4/22/2019	24.20	8.80	22.667	100	4/14/2016	NA	10/22/2018	
MW-93	Nickel	10/23/2019	26.30	8.80	22.033	100	4/14/2016	NA	10/22/2018	
MW-93	Nickel	4/10/2020	18.10	8.80	17.490	100	4/14/2016	NA	10/22/2018	
MW-93	Nickel	10/19/2020	27.60	8.80	19.102	100	4/14/2016	NA	10/22/2018	
MW-93	Nickel	4/5/2021	23.10	8.80	18.800	100	4/14/2016	NA	10/22/2018	
MW-93	Nickel	10/8/2021	21.30	8.80	17.861	100	4/14/2016	NA	10/22/2018	
MW-93	Nickel	4/6/2022	20.20	8.80	19.215	100	4/14/2016	NA	10/22/2018	
MW-93	Nickel	10/25/2022	27.90	8.80	19.125	100	4/14/2016	NA	10/22/2018	
MW-93	Nickel	4/10/2023	31.80	8.80	18.821	100	4/14/2016	NA	10/22/2018	
MW-93	Nickel	10/13/2023	28.80	8.80	21.364	100	4/14/2016	NA	10/22/2018	
MW-93	Nickel	4/16/2024	25.50	8.80	25.437	100	4/14/2016	NA	10/22/2018	
MW-93	Nickel	10/15/2024	27.10	8.80	25.131	100	4/14/2016	NA	10/22/2018	

Bold = A Site Specific GWPS that is equal to the Prediction Limit. All other GWPS are IAC 567-137 Statewaide Standards for Protected Groundwater.

KEY:

SSI

SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report
Marshall County Sanitary Landfill

Permit No.64-SDP-02-75P

Note: The absence of shading indicates that the condition does not exist.

		Sample	Each	Prediction		GWPS	SSI Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-96R	Arsenic	4/5/2021	29.80	7.8		10	4/5/2021	NA	10/25/2022
MW-96R	Arsenic	7/2/2021	29.10	7.8		10	4/5/2021	NA	10/25/2022
MW-96R	Arsenic	10/8/2021	18.60	7.8		10	4/5/2021	NA	10/25/2022
MW-96R	Arsenic	4/6/2022	10.40	7.8	11.080	10	4/5/2021	NA	10/25/2022
MW-96R	Arsenic	10/25/2022	38.70	7.8	9.697	10	4/5/2021	NA	10/25/2022
MW-96R	Arsenic	4/11/2023	<4.0	7.8	0.000	10	4/5/2021	NA	10/25/2022
MW-96R	Arsenic	7/7/2023	12.90	7.8	2.286	10	4/5/2021	NA	10/25/2022
MW-96R	Arsenic	7/20/2023	<4.0	7.8	0.000	10	4/5/2021	NA	10/25/2022
MW-96R	Arsenic	10/13/2023	15.00	7.8	1.954	10	4/5/2021	NA	10/25/2022
MW-96R	Arsenic	4/16/2024	<4.0	7.8	0.000	10	4/5/2021	NA	10/25/2022
MW-96R	Arsenic	10/15/2024	6.60	7.8	0.000	10	4/5/2021	NA	10/25/2022

KEY:

SSI

SSL LCL>GWPS

Note: The absence of shading indicates that the condition does not exist.

Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report

Marshall County Sanitary Landfill

							SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-96R	Barium	4/5/2021	1160.00	516.6799		2000	4/5/2021	NA	10/25/2022
MW-96R	Barium	7/2/2021	696.00	503.4302		2000	4/5/2021	NA	10/25/2022
MW-96R	Barium	10/8/2021	667.00	503.4302		2000	4/5/2021	NA	10/25/2022
MW-96R	Barium	4/6/2022	406.00	491.5435	363.400	2000	4/5/2021	NA	10/25/2022
MW-96R	Barium	10/25/2022	661.00	480.8617	448.466	2000	4/5/2021	NA	10/25/2022
MW-96R	Barium	4/11/2023	190.00	471.0740	211.648	2000	4/5/2021	NA	10/25/2022
MW-96R	Barium	10/13/2023	576.00	462.9491	278.208	2000	4/5/2021	NA	10/25/2022
MW-96R	Barium	4/16/2024	124.00	460.7031	153.884	2000	4/5/2021	NA	10/25/2022
MW-96R	Barium	10/15/2024	338.00	452.8909	133.434	2000	4/5/2021	NA	10/25/2022

KEY:

SSI

SSL LCL>GWPS

Note: The absence of shading indicates that the condition does not exist.

Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report
Marshall County Sanitary Landfill

						SSI						
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background			
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample			
MW-96R	Cobalt	4/5/2021	16.80	6.0		6	4/5/2021	NA	10/25/2022			
MW-96R	Cobalt	7/2/2021	11.90	6.0		6	4/5/2021	NA	10/25/2022			
MW-96R	Cobalt	10/8/2021	11.40	5.7024		5.702	4/5/2021	NA	10/25/2022			
MW-96R	Cobalt	4/6/2022	7.60	5.7100	7.485	5.710	4/5/2021	NA	10/25/2022			
MW-96R	Cobalt	10/25/2022	11.10	5.7836	8.193	5.784	4/5/2021	NA	10/25/2022			
MW-96R	Cobalt	4/11/2023	2.20	5.6895	3.041	5.690	4/5/2021	NA	10/25/2022			
MW-96R	Cobalt	7/7/2023	11.20	5.6895	4.363	5.690	4/5/2021	NA	10/25/2022			
MW-96R	Cobalt	7/20/2023	10.00	5.6895	4.886	5.690	4/5/2021	NA	10/25/2022			
MW-96R	Cobalt	10/13/2023	10.60	5.9053	4.838	5.905	4/5/2021	NA	10/25/2022			
MW-96R	Cobalt	4/16/2024	1.80	6.0584	3.192	6.058	4/5/2021	NA	10/25/2022			
MW-96R	Cobalt	10/15/2024	10.50	5.9879	3.177	5.988	4/5/2021	NA	10/25/2022			

KEY:

SSI

SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report

Marshall County Sanitary Landfill Permit No.64-SDP-02-75P Note: The absence of shading indicates that the condition does not exist.

							SSI		
Monitoring Well	Compound	Sample Date	Each Result (ug/L)	Prediction Limit (ug/L)	95% LCL (ug/L)	GWPS Limit (ug/L)	Initial Exceedance	Resamples Due	5th Background Sample
MW-96R	Selenium	4/5/2021	<4	4.0		50	4/6/2022	NA	10/25/2022
			\4			30			
MW-96R	Selenium	10/8/2021	<4	4.0		50	4/6/2022	NA	10/25/2022
MW-96R	Selenium	4/6/2022	9.10	4.0		50	4/6/2022	NA	10/25/2022
MW-96R	Selenium	10/25/2022	<4	4.0	0.000	50	4/6/2022	NA	10/25/2022
MW-96R	Selenium	4/11/2023	7.80	4.0	0.080	50	4/6/2022	NA	10/25/2022
MW-96R	Selenium	7/7/2023	<4	4.0	0.080	50	4/6/2022	NA	10/25/2022
MW-96R	Selenium	10/13/2023	<4	4.0	0.939	50	4/6/2022	NA	10/25/2022
MW-96R	Selenium	4/16/2024	7.40	4.0	0.992	50	4/6/2022	NA	10/25/2022
MW-96R	Selenium	10/15/2024	<4	4.0	1.012	50	4/6/2022	NA	10/25/2022

Table 7KEY:SSISSL LCL>GWPSngoing & Newly Identified SSINote: The absence of shading indicates that the condition does not exist.

Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report
Marshall County Sanitary Landfill

Permit No.64-SDP-02-75P

			Each Result (ug/L)				SSI	Resamples Due	5th Background Sample
Monitoring Well		Sample		Prediction Limit (ug/L)		GWPS	Initial Exceedance		
	Compound	Date			95% LCL (ug/L)	Limit (ug/L)			
MW-96R	bis (2-ethylhexyl) phthalate	4/5/2021		6.0		6	NA	NA	10/25/2022
MW-96R	bis (2-ethylhexyl) phthalate	7/2/2021		6.0		6	NA	NA	10/25/2022
MW-96R	bis (2-ethylhexyl) phthalate	10/8/2021	6.00	6.0		6	NA	NA	10/25/2022
MW-96R	bis (2-ethylhexyl) phthalate	4/6/2022		6.0		6	NA	NA	10/25/2022
MW-96R	bis (2-ethylhexyl) phthalate	10/25/2022	<6.0	6.0		6	NA	NA	10/25/2022
MW-96R	bis (2-ethylhexyl) phthalate	4/11/2023		6.0		6	NA	NA	10/25/2022
MW-96R	bis (2-ethylhexyl) phthalate	10/13/2023		6.0		6	NA	NA	10/25/2022
MW-96R	bis (2-ethylhexyl) phthalate	4/16/2024		6.0		6	NA	NA	10/25/2022
MW-96R	bis (2-ethylhexyl) phthalate	10/15/2024		6.0		6	NA	NA	10/25/2022

Bold = A Site Specific GWPS that is equal to the Prediction Limit. All other GWPS are IAC 567-137 Statewide Standards for Protected Groundwater.

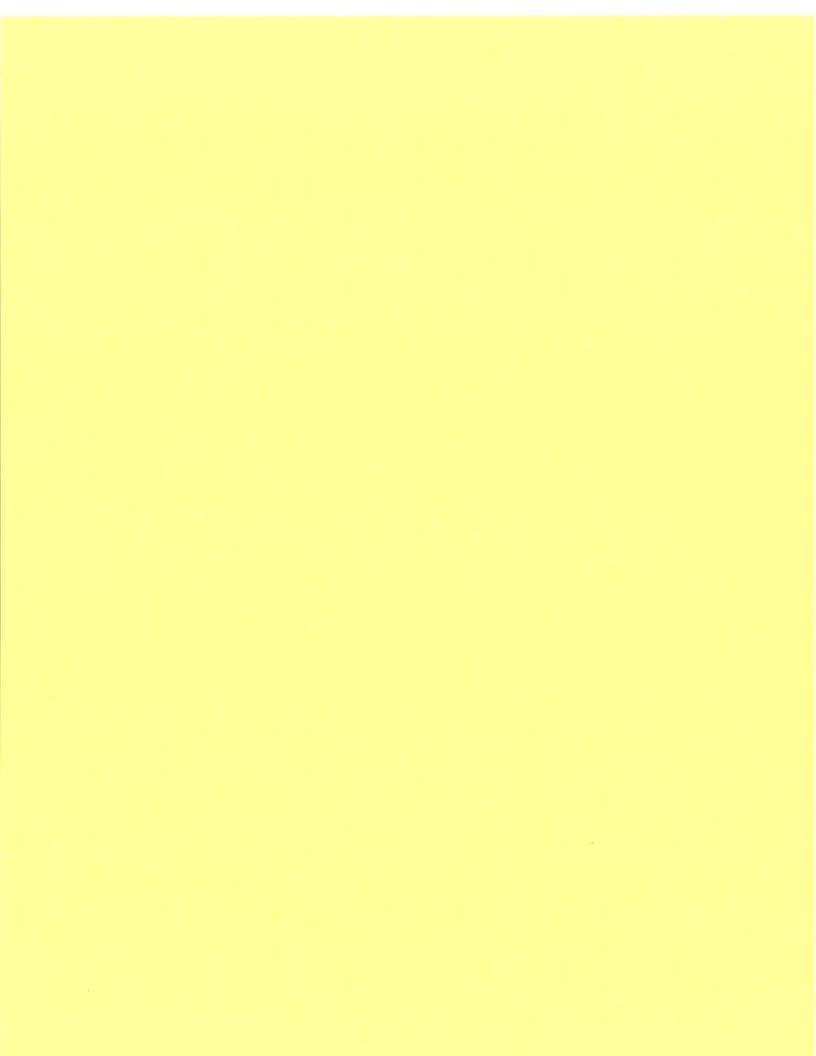


Table 7 KE

KEY: SSI SSL LCL>GWPS

SSI Note: The absence of shading indicates that the condition does not exist.

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report

Marshall County Sanitary Landfill

Marshall County Sanitary Landfill Permit No.64-SDP-02-75P

							SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-97	arsenic	4/14/2016	<4.0	25.30	2.000	25.30	None	NA	10/22/2018
MW-97	arsenic	10/13/2016	<4.0	25.30	2.000	25.30	None	NA	10/22/2018
MW-97	arsenic	4/10/2017	<4.0	25.30	2.000	25.30	None	NA	10/22/2018
MW-97	arsenic	10/9/2017	<4.0	25.30	2.000	25.30	None	NA	10/22/2018
MW-97	arsenic	4/17/2018	<4.0	25.30	2.000	25.30	None	NA	10/22/2018
MW-97	arsenic	10/22/2018	<4.0	25.30	2.000	25.30	None	NA	10/22/2018
MW-97	arsenic	4/22/2019	<4.0	25.30	2.000	25.30	None	NA	10/22/2018
MW-97	arsenic	10/23/2019	<4.0	25.30	2.000	25.30	None	NA	10/22/2018
MW-97	arsenic	4/10/2020	<4.0	25.30	2.000	25.30	None	NA	10/22/2018
MW-97	arsenic	10/19/2020	<4.0	7.80	2.000	10	None	NA	10/22/2018
MW-97	arsenic	4/5/2021	<4.0	7.80	2.000	10	None	NA	10/22/2018
MW-97	arsenic	10/8/2021	<4.0	7.80	2.000	10	None	NA	10/22/2018
MW-97	arsenic	4/6/2022	<4.0	7.80	2.000	10	None	NA	10/22/2018
MW-97	arsenic	10/25/2022	<4.0	7.80	2.000	10	None	NA	10/22/2018
MW-97	arsenic	4/10/2023	<4.0	7.80	2.000	10	None	NA	10/22/2018
MW-97	arsenic	10/13/2023	<4.0	7.80	2.000	10	None	NA	10/22/2018
MW-97	arsenic	4/16/2024	<4.0	7.80	2.000	10	None	NA	10/22/2018
MW-97	arsenic	10/15/2024	<4.0	7.80	2.000	10	None	NA	10/22/2018

Table 7 KEY:

SSI SSL LCL>GWPS

Note: The absence of shading indicates that the condition does not exist.

Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report

Marshall County Sanitary Landfill Permit No.64-SDP-02-75P

~~:	

			331							
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background	
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample	
MW-97	cobalt	4/14/2016	<0.8	6.00	0.400	6.00	None	NA	10/22/2018	
MW-97	cobalt	10/13/2016	<0.8	6.00	0.400	6.00	None	NA	10/22/2018	
MW-97	cobalt	4/10/2017	<0.8	6.00	0.400	6.00	None	NA	10/22/2018	
MW-97	cobalt	10/9/2017	<0.8	6.00	0.400	6.00	None	NA	10/22/2018	
MW-97	cobalt	4/17/2018	<0.8	6.00	0.400	6.00	None	NA	10/22/2018	
MW-97	cobalt	10/22/2018	<0.8	6.00	0.400	6.00	None	NA	10/22/2018	
MW-97	cobalt	4/22/2019	<0.8	6.00	0.400	6.00	None	NA	10/22/2018	
MW-97	cobalt	10/23/2019	<0.8	6.00	0.400	6.00	None	NA	10/22/2018	
MW-97	cobalt	4/10/2020	<0.4	6.00	0.400	6.00	None	NA	10/22/2018	
MW-97	cobalt	10/19/2020	<0.4	6.00	0.400	6.00	None	NA	10/22/2018	
MW-97	cobalt	4/5/2021	<0.4	6.00	0.400	6.00	None	NA	10/22/2018	
MW-97	cobalt	10/8/2021	<0.4	5.7024	0.400	5.7024	None	NA	10/22/2018	
MW-97	cobalt	4/6/2022	<0.4	5.7100	0.400	5.7100	None	NA	10/22/2018	
MW-97	cobalt	10/25/2022	<0.4	5.7836	0.400	5.7836	None	NA	10/22/2018	
MW-97	cobalt	4/10/2023	<0.4	5.6895	0.400	5.6895	None	NA	10/22/2018	
MW-97	cobalt	10/13/2023	<0.4	5.9053	0.400	5.9053	None	NA	10/22/2018	
MW-97	cobalt	4/16/2024	<0.4	6.0584	0.400	6.0584	None	NA	10/22/2018	
MW-97	cobalt	10/15/2024	<0.4	5.9879	0.400	5.9879	None	NA	10/22/2018	

Table 7 KEY: SSI

Summary of Ongoing & Newly Identified SSI **Annual Water Quality Report Marshall County Sanitary Landfill** Permit No.64-SDP-02-75P

Note: The absence of shading indicates that the condition does not exist.

SSL LCL>GWPS

						SSI			
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-97	cis-1,2-dichloroethene	4/14/2016	<1.0	1.00	0.500	70	None	NA	10/22/2018
MW-97	cis-1,2-dichloroethene	10/13/2016	<1.0	1.00	0.500	70	None	NA	10/22/2018
MW-97	cis-1,2-dichloroethene	4/10/2017	<1.0	1.00	0.500	70	None	NA	10/22/2018
MW-97	cis-1,2-dichloroethene	10/9/2017	<1.0	1.00	0.500	70	None	NA	10/22/2018
MW-97	cis-1,2-dichloroethene	4/17/2018	<1.0	1.00	0.500	70	None	NA	10/22/2018
MW-97	cis-1,2-dichloroethene	10/22/2018	<1.0	1.00	0.500	70	None	NA	10/22/2018
MW-97	cis-1,2-dichloroethene	4/22/2019	<1.0	1.00	0.500	70	None	NA	10/22/2018
MW-97	cis-1,2-dichloroethene	10/23/2019	<1.0	1.00	0.500	70	None	NA	10/22/2018
MW-97	cis-1,2-dichloroethene	4/10/2020	<1.0	1.00	0.500	70	None	NA	10/22/2018
MW-97	cis-1,2-dichloroethene	10/19/2020	<1.0	1.00	0.500	70	None	NA	10/22/2018
MW-97	cis-1,2-dichloroethene	4/5/2021	<1.0	1.00	0.500	70	None	NA	10/22/2018
MW-97	cis-1,2-dichloroethene	10/8/2021	<1.0	1.00	0.500	70	None	NA	10/22/2018
MW-97	cis-1,2-dichloroethene	4/6/2022	<1.0	1.00	0.500	70	None	NA	10/22/2018
MW-97	cis-1,2-dichloroethene	10/25/2022	<1.0	1.00	0.500	70	None	NA	10/22/2018
MW-97	cis-1,2-dichloroethene	4/10/2023	<1.0	1.00	0.500	70	None	NA	10/22/2018
MW-97	cis-1,2-dichloroethene	10/13/2023	<1.0	1.00	0.500	70	None	NA	10/22/2018
MW-97	cis-1,2-dichloroethene	4/16/2024	<1.0	1.00	0.500	70	None	NA	10/22/2018
MW-97	cis-1,2-dichloroethene	10/15/2024	<1.0	1.00	0.500	70	None	NA	10/22/2018

 Table 7
 KEY:
 SSI
 SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report
Marshall County Sanitary Landfill
Permit No.64-SDP-02-75P

Note: The absence of shading indicates that the condition does not exist.

							SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-97	Vinyl Chloride	4/14/2016	<1.0	1.00	0.500	2	None	NA	10/22/2018
MW-97	Vinyl Chloride	10/13/2016	<1.0	1.00	0.500	2	None	NA	10/22/2018
MW-97	Vinyl Chloride	4/10/2017	<1.0	1.00	0.500	2	None	NA	10/22/2018
MW-97	Vinyl Chloride	10/9/2017	<1.0	1.00	0.500	2	None	NA	10/22/2018
MW-97	Vinyl Chloride	4/17/2018	<1.0	1.00	0.500	2	None	NA	10/22/2018
MW-97	Vinyl Chloride	10/22/2018	<1.0	1.00	0.500	2	None	NA	10/22/2018
MW-97	Vinyl Chloride	4/22/2019	<1.0	1.00	0.500	2	None	NA	10/22/2018
MW-97	Vinyl Chloride	10/23/2019	<1.0	1.00	0.500	2	None	NA	10/22/2018
MW-97	Vinyl Chloride	4/10/2020	<1.0	1.00	0.500	2	None	NA	10/22/2018
MW-97	Vinyl Chloride	10/19/2020	<1.0	1.00	0.500	2	None	NA	10/22/2018
MW-97	Vinyl Chloride	4/5/2021	<1.0	1.00	0.500	2	None	NA	10/22/2018
MW-97	Vinyl Chloride	10/8/2021	<1.0	1.00	0.500	2	None	NA	10/22/2018
MW-97	Vinyl Chloride	4/6/2022	<1.0	1.00	0.500	2	None	NA	10/22/2018
MW-97	Vinyl Chloride	10/25/2022	<1.0	1.00	0.500	2	None	NA	10/22/2018
MW-97	Vinyl Chloride	4/10/2023	<1.0	1.00	0.500	2	None	NA	10/22/2018
MW-97	Vinyl Chloride	10/13/2023	<1.0	1.00	0.500	2	None	NA	10/22/2018
MW-97	Vinyl Chloride	4/16/2024	<1.0	1.00	0.500	2	None	NA	10/22/2018
MW-97	Vinyl Chloride	10/15/2024	<1.0	1.00	0.500	2	None	NA	10/22/2018

Bold = A Site Specific GWPS that is equal to the Prediction Limit. All other GWPS are IAC 567-137 Statewaide Standards for Protected Groundwater.

Table 7A – Summary of Ongoing and Newly Identified SSI - INTRAWELL

KEY: SSI SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI

Note: The absence of shading indicates that the condition does not exist.

				INTRAWELL			SSI		
		Sample	Each	Control		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-93	Aresenic	4/14/2016	16.10	24.0801	1.768	24.0801	4/22/2019	NA	10/22/2018
MW-93	Aresenic	10/13/2016	6.50	24.0801	2.374	24.0801	4/22/2019	NA	10/22/2018
MW-93	Aresenic	4/10/2017	5.50	24.0801	2.193	24.0801	4/22/2019	NA	10/22/2018
MW-93	Aresenic	10/9/2017	<4.0	24.0801	0.428	24.0801	4/22/2019	NA	10/22/2018
MW-93	Aresenic	4/17/2018	5.40	24.0801	2.540	24.0801	4/22/2019	NA	10/22/2018
MW-93	Aresenic	10/22/2018	18.40	24.0801	0.000	24.0801	4/22/2019	NA	10/22/2018
MW-93	Aresenic	4/22/2019	67.30	24.0801	0.000	24.0801	4/22/2019	NA	10/22/2018
MW-93	Aresenic	10/23/2019	13.60	24.0801	0.000	24.0801	4/22/2019	NA	10/22/2018
MW-93	Aresenic	4/10/2020	17.50	24.0801	0.000	24.0801	4/22/2019	NA	10/22/2018
MW-93	Aresenic	10/19/2020	4.80	24.0801	0.000	24.0801	4/22/2019	NA	10/22/2018
MW-93	Aresenic	4/5/2021	10.50	81.6313	5.292	81.6313	4/22/2019	NA	10/22/2018
MW-93	Aresenic	10/8/2021	11.40	81.6313	4.934	81.6313	4/22/2019	NA	10/22/2018
MW-93	Aresenic	4/6/2022	11.10	81.6313	5.777	81.6313	4/22/2019	NA	10/22/2018
MW-93	Aresenic	10/25/2022	58.50	81.6313	0.000	81.6313	4/22/2019	NA	10/22/2018
MW-93	Aresenic	4/10/2023	9.30	81.6313	0.000	81.6313	4/22/2019	NA	10/22/2018
MW-93	Aresenic	10/13/2023	59.60	81.6313	1.434	81.6313	4/22/2019	NA	10/22/2018
MW-93	Aresenic	4/16/2024	11.90	81.6313	1.893	81.6313	4/22/2019	NA	10/22/2018
MW-93	Aresenic	10/15/2024	15.20	81.6313	0.000	81.6313	4/22/2019	NA	10/22/2018

KEY: SSI SSL LCL>GWPS

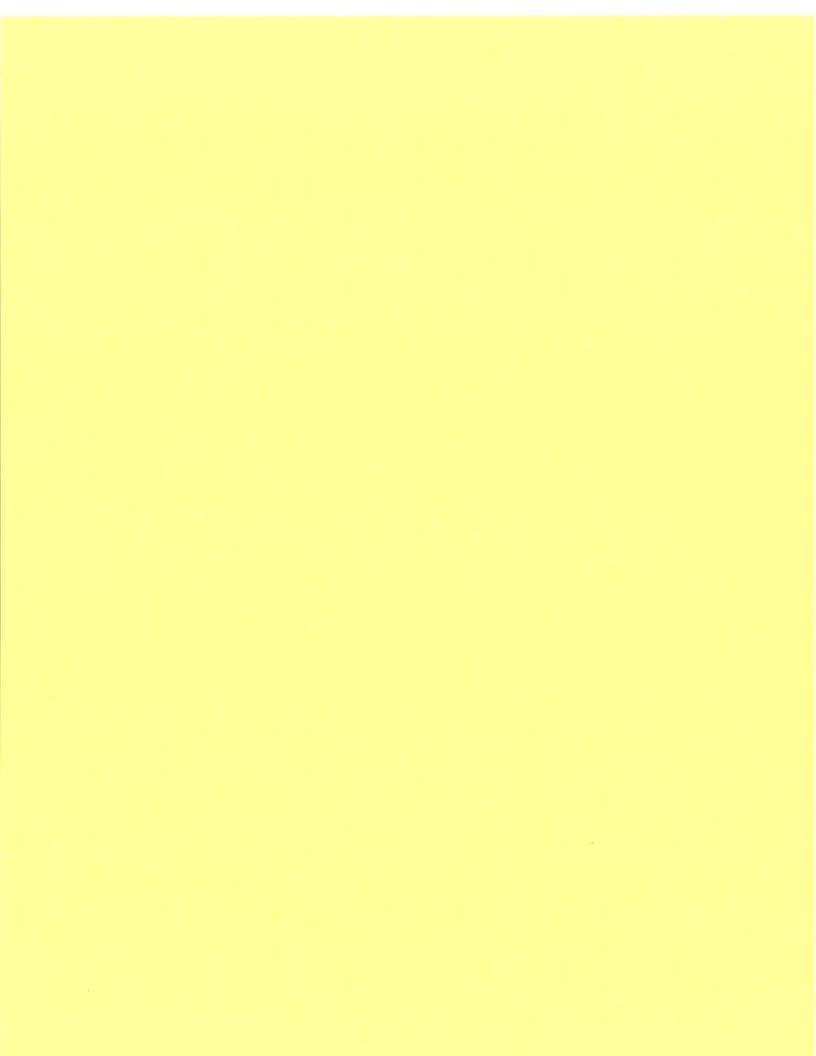
SSI Note: The absence of shading indicates that the condition does not exist.

Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report
Marshall County Sanitary Landfill

Permit No.64-SDP-02-75P

				INTRAWELL			SSI		
		Sample	Each	Control		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-93	Cobalt	4/14/2016	14.70	21.6670	5.750	21.6670	NA	NA	10/22/2018
MW-93	Cobalt	10/13/2016	6.60	21.6670	5.361	21.6670	NA	NA	10/22/2018
MW-93	Cobalt	4/10/2017	8.60	21.6670	5.046	21.6670	NA	NA	10/22/2018
MW-93	Cobalt	10/9/2017	5.20	21.6670	3.847	21.6670	NA	NA	10/22/2018
MW-93	Cobalt	4/17/2018	5.90	21.6670	4.851	21.6670	NA	NA	10/22/2018
MW-93	Cobalt	10/22/2018	9.90	21.6670	4.789	21.6670	NA	NA	10/22/2018
MW-93	Cobalt	4/22/2019	18.90	21.6670	2.564	21.6670	NA	NA	10/22/2018
MW-93	Cobalt	10/23/2019	8.30	21.6670	4.073	21.6670	NA	NA	10/22/2018
MW-93	Cobalt	4/10/2020	11.30	21.6670	6.576	21.6670	NA	NA	10/22/2018
MW-93	Cobalt	10/19/2020	4.60	21.6670	3.635	21.6670	NA	NA	10/22/2018
MW-93	Cobalt	4/5/2021	7.90	25.1103	4.800	25.1103	NA	NA	10/22/2018
MW-93	Cobalt	10/8/2021	7.10	25.1103	4.470	25.1103	NA	NA	10/22/2018
MW-93	Cobalt	4/6/2022	8.70	25.1103	4.988	25.1103	NA	NA	10/22/2018
MW-93	Cobalt	10/25/2022	8.60	25.1103	7.203	25.1103	NA	NA	10/22/2018
MW-93	Cobalt	4/10/2023	9.00	25.1103	7.350	25.1103	NA	NA	10/22/2018
MW-93	Cobalt	10/13/2023	8.30	25.1103	8.310	25.1103	NA	NA	10/22/2018
MW-93	Cobalt	4/16/2024	9.80	25.1103	8.160	25.1103	NA	NA	10/22/2018
MW-93	Cobalt	10/15/2024	9.90	25.1103	8.367	25.1103	NA	NA	10/22/2018

Table 7A KEY: SSL LCL>GWPS Note: The absence of shading indicates that the condition does not exist.


Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Marshall County Sanitary Landfill

		•					
	Permit No.64-SDP-02-75P						
				INTRAWELL			SSI
		Sample	Each	Control		GWPS	Initial
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedan

				INTRAWELL			551		
		Sample	Each	Control		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-93	Nickel	4/14/2016	26.50	57.7012	27.148	100	NA	NA	10/22/2018
MW-93	Nickel	10/13/2016	31.80	57.7012	26.223	100	NA	NA	10/22/2018
MW-93	Nickel	4/10/2017	27.30	57.7012	25.222	100	NA	NA	10/22/2018
MW-93	Nickel	10/9/2017	28.20	57.7012	25.699	100	NA	NA	10/22/2018
MW-93	Nickel	4/17/2018	26.20	57.7012	25.522	100	NA	NA	10/22/2018
MW-93	Nickel	10/22/2018	35.70	57.7012	24.278	100	NA	NA	10/22/2018
MW-93	Nickel	4/22/2019	24.20	57.7012	22.667	100	NA	NA	10/22/2018
MW-93	Nickel	10/23/2019	26.30	57.7012	22.033	100	NA	NA	10/22/2018
MW-93	Nickel	4/10/2020	18.10	57.7012	17.490	100	NA	NA	10/22/2018
MW-93	Nickel	10/19/2020	27.60	57.7012	19.102	100	NA	NA	10/22/2018
MW-93	Nickel	4/5/2021	23.10	54.9667	18.800	100	NA	NA	10/22/2018
MW-93	Nickel	10/8/2021	21.30	54.9667	17.861	100	NA	NA	10/22/2018
MW-93	Nickel	4/6/2022	20.20	54.9667	19.215	100	NA	NA	10/22/2018
MW-93	Nickel	10/25/2022	27.90	54.9667	19.125	100	NA	NA	10/22/2018
MW-93	Nickel	4/10/2023	31.80	54.9667	18.821	100	NA	NA	10/22/2018
MW-93	Nickel	10/13/2023	28.80	54.9667	21.364	100	NA	NA	10/22/2018
MW-93	Nickel	4/16/2024	25.50	54.9667	25.437	100	NA	NA	10/22/2018
MW-93	Nickel	10/15/2024	27.10	54.9667	25.131	100	NA	NA	10/22/2018

Bold = A Site Specific GWPS that is equal to the Prediction Limit. All other GWPS are IAC 567-137 Statewaide Standards for Protected Groundwater.

KEY:

SSI

SSL LCL>GWPS

Note: The absence of shading indicates that the condition does not exist.

Summary of Ongoing & Newly Identified SSI

		Sample	Each	INTRAWELL Control		GWPS	SSI Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-96R	Arsenic	4/5/2021	29.80	76.5042		76.5042	NA	NA	10/25/2022
MW-96R	Arsenic	7/2/2021	29.10	76.5042		76.5042	NA	NA	10/25/2022
MW-96R	Arsenic	10/8/2021	18.60	76.5042		76.5042	NA	NA	10/25/2022
MW-96R	Arsenic	4/6/2022	10.40	76.5042	11.080	76.5042	NA	NA	10/25/2022
MW-96R	Arsenic	10/25/2022	38.70	76.5042	9.697	76.5042	NA	NA	10/25/2022
MW-96R	Arsenic	4/11/2023	<4.0	76.5042	0.000	76.5042	NA	NA	10/25/2022
MW-96R	Arsenic	7/7/2023	12.90	76.5042	2.286	76.5042	NA	NA	10/25/2022
MW-96R	Arsenic	7/20/2023	<4.0	76.5042	0.000	76.5042	NA	NA	10/25/2022
MW-96R	Arsenic	10/13/2023	15.00	76.5042	1.954	76.5042	NA	NA	10/25/2022
MW-96R	Arsenic	4/16/2024	<4.0	76.5042	1.954	76.5042	NA	NA	10/25/2022
MW-96R	Arsenic	10/15/2024	6.60	71.8419	1.092	71.8419	NA	NA	10/25/2022

KEY:

SSI

SSL LCL>GWPS

Note: The absence of shading indicates that the condition does not exist.

Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report

				INTRAWELL			SSI		
		Sample	Each	Control		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-96R	Barium	4/5/2021	1160.00	2096.9752		2096.9752	NA	NA	10/25/2022
MW-96R	Barium	7/2/2021	696.00	2096.9752		2096.9752	NA	NA	10/25/2022
MW-96R	Barium	10/8/2021	667.00	2096.9752		2096.9752	NA	NA	10/25/2022
MW-96R	Barium	4/6/2022	406.00	2096.9752	363.400	2096.9752	NA	NA	10/25/2022
MW-96R	Barium	10/25/2022	661.00	2096.9752	448.466	2096.9752	NA	NA	10/25/2022
MW-96R	Barium	4/11/2023	190.00	2096.9752	211.648	2096.9752	NA	NA	10/25/2022
MW-96R	Barium	10/13/2023	576.00	2096.9752	278.208	2096.9752	NA	NA	10/25/2022
MW-96R	Barium	4/16/2024	124.00	2096.9752	153.884	2096.9752	NA	NA	10/25/2022
MW-96R	Barium	10/15/2024	338.00	2034.0634	133.434	2034.0634	NA	NA	10/25/2022

KEY:

SSI

SSL LCL>GWPS

Note: The absence of shading indicates that the condition does not exist.

Summary of Ongoing & Newly Identified SSI

				INTRAWELL	SSI				
		Sample	Each	Control		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-96R	Cobalt	4/5/2021	16.80	23.8796		23.8796	4/5/2021	NA	10/25/2022
MW-96R	Cobalt	7/2/2021	11.90	23.8796		23.8796	4/5/2021	NA	10/25/2022
MW-96R	Cobalt	10/8/2021	11.40	23.8796		23.8796	4/5/2021	NA	10/25/2022
MW-96R	Cobalt	4/6/2022	7.60	23.8796	7.485	23.8796	4/5/2021	NA	10/25/2022
MW-96R	Cobalt	10/25/2022	11.10	23.8796	8.193	23.8796	4/5/2021	NA	10/25/2022
MW-96R	Cobalt	4/11/2023	2.20	23.8796	3.041	23.8796	4/5/2021	NA	10/25/2022
MW-96R	Cobalt	7/7/2023	11.20	23.8796	4.363	23.8796	4/5/2021	NA	10/25/2022
MW-96R	Cobalt	7/20/2023	10.00	23.8796	4.886	23.8796	4/5/2021	NA	10/25/2022
MW-96R	Cobalt	10/13/2023	10.60	23.8796	4.838	23.8796	4/5/2021	NA	10/25/2022
MW-96R	Cobalt	4/16/2024	1.80	23.8796	4.566	23.8796	4/5/2021	NA	10/25/2022
MW-96R	Cobalt	10/15/2024	10.50	22.9275	4.509	22.9275	4/5/2021	NA	10/25/2022

KEY:

Note: The absence of shading indicates that the condition does not exist.

SSI

SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI

				INTRAWELL			SSI		
		Sample	Each	Control		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-96R	Selenium	4/5/2021	<4	15.9884		50	4/6/2022	NA	10/25/2022
MW-96R	Selenium	10/8/2021	<4	15.9884		50	4/6/2022	NA	10/25/2022
MW-96R	Selenium	4/6/2022	9.10	15.9884		50	4/6/2022	NA	10/25/2022
MW-96R	Selenium	10/25/2022	<4	15.9884	0.000	50	4/6/2022	NA	10/25/2022
MW-96R	Selenium	4/11/2023	7.80	15.9884	0.080	50	4/6/2022	NA	10/25/2022
MW-96R	Selenium	7/7/2023	<4	15.9884	0.080	50	4/6/2022	NA	10/25/2022
MW-96R	Selenium	10/13/2023	<4	15.9884	0.939	50	4/6/2022	NA	10/25/2022
MW-96R	Selenium	4/16/2024	7.40	15.9884	1.996	50	4/6/2022	NA	10/25/2022
MW-96R	Selenium	10/15/2024	<4	15.3227	1.012	50	4/6/2022	NA	10/25/2022

Table 7A KEY: SSI SSL LCL>GWPS Note: The absence of shading indicates that the condition does not exist.

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report
Marshall County Sanitary Landfill

	Sample	Each	Control	GWPS	Initial	Resamp
			INTRAWELL		SSI	
Permit No.64-SDP-02-75P						
iviarshall County Sanitary Landfill						

				INTRAWELL			221		
		Sample	Each	Control		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-96R	bis (2-ethylhexyl) phthalate	4/5/2021		6.0		6	NA	NA	10/25/2022
MW-96R	bis (2-ethylhexyl) phthalate	7/2/2021		6.0		6	NA	NA	10/25/2022
MW-96R	bis (2-ethylhexyl) phthalate	10/8/2021	6.00	6.0		6	NA	NA	10/25/2022
MW-96R	bis (2-ethylhexyl) phthalate	4/6/2022		6.0		6	NA	NA	10/25/2022
MW-96R	bis (2-ethylhexyl) phthalate	10/25/2022	<6.0	6.0		6	NA	NA	10/25/2022
MW-96R	bis (2-ethylhexyl) phthalate	4/11/2023		6.0		6	NA	NA	10/25/2022
MW-96R	bis (2-ethylhexyl) phthalate	10/13/2023		6.0		6	NA	NA	10/25/2022
MW-96R	bis (2-ethylhexyl) phthalate	4/16/2024		6.0		6	NA	NA	10/25/2022
MW-96R	bis (2-ethylhexyl) phthalate	10/15/2024		6.0		6	NA	NA	10/25/2022

Bold = A Site Specific GWPS that is equal to the Prediction Limit. All other GWPS are IAC 567-137 Statewide Standards for Protected Groundwater.

Table 8 - Summary of Ongoing and Newly Identified SSL-Not Required

Table 9 – Analytical Data Summary

Table 9

Analytical Data Summary for MW-120

1,1,1,2-tetrachloroethane 1,1,1-trichloroethane 1,1,2,2-tetrachloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dichlorobenzene 1,2-dichloropropane 1,2-dichlorobenzene 1,4-dichlorobenzene 2-butanone (mek) 2-hexanone (mbk) 4-methyl-2-pentanone (mibk)	11 41 41 41 41 41 41 41 41
1,1,2,2-tetrachloroethane	41 41 41 41 45 41 41 41
1,1,2,2-tetrachloroethane	1 1 1 4 5 1 4 1 1 1
1,1-dichloroethane ug/L 1,1-dichloroethylene ug/L 1,2,3-trichloropropane ug/L 1,2-dibromo-3-chloropropane ug/L 1,2-dibromoethane ug/L 1,2-dichlorobenzene ug/L 1,2-dichloroethane ug/L 1,2-dichloropropane ug/L 1,2-dichlorobenzene ug/L 2-butanone (mek) ug/L 2-hexanone (mbk) ug/L 4-methyl-2-pentanone (mibk) ug/L	1 1 4 5 1 1 1 1 1
1,1-dichloroethylene ug/L 1,2,3-trichloropropane ug/L 1,2-dibromo-3-chloropropane ug/L 1,2-dibromoethane ug/L 1,2-dichlorobenzene ug/L 1,2-dichloropropane ug/L 1,2-dichloropropane ug/L 1,4-dichlorobenzene ug/L 2-butanone (mek) ug/L 2-hexanone (mbk) ug/L 4-methyl-2-pentanone (mibk) ug/L	<1 <1 <5 <1 <1 <1 <1
1,2,3-trichloropropane ug/L 1,2-dibromo-3-chloropropane ug/L 1,2-dibromoethane ug/L 1,2-dichlorobenzene ug/L 1,2-dichloropropane ug/L 1,2-dichloropropane ug/L 1,4-dichlorobenzene ug/L 2-butanone (mek) ug/L 2-hexanone (mbk) ug/L 4-methyl-2-pentanone (mibk) ug/L	<1 <5 <1 <1 <1 <1 <1
1,2-dibromo-3-chloropropane ug/L ug/L 1,2-dibromoethane ug/L 1,2-dichlorobenzene ug/L 1,2-dichloropropane ug/L 1,2-dichloropropane ug/L 1,4-dichlorobenzene ug/L 2-butanone (mek) ug/L 2-hexanone (mbk) ug/L 4-methyl-2-pentanone (mibk) ug/L	<5 <1 <1 <1 <1 <1
1,2-dibromoethane	<1 <1 <1 <1 <1
1,2-dichlorobenzene	<1 <1 <1 <1
1,2-dichloroethane	<1 <1 <1
1,2-dichloropropane	<1 <1
1,4-dichlorobenzene	<1
2-butanone (mek) ug/L 2-hexanone (mbk) ug/L 4-methyl-2-pentanone (mibk) ug/L	
2-hexanone (mbk) ug/L 4-methyl-2-pentanone (mibk) ug/L	
4-methyl-2-pentanone (mibk) ug/L	<10
, , , ,	<5
	<5
Acetone ug/L	<10
Acrylonitrile ug/L	<5
Alkalinity, as caco3 mg/L	354
Antimony, total ug/L	<2
Arsenic, total ug/L	9.9
Barium, total ug/L	406
Benzene ug/L	<1
Beryllium, total ug/L	<4
Bromochloromethane ug/L	<1
Bromodichloromethane ug/L	<1
Bromoform ug/L	<1
Bromomethane ug/L	<1
Cadmium, total ug/L	<.8
Carbon disulfide ug/L	<1
Carbon tetrachloride ug/L	<1
Chlorobenzene ug/L	<1 <1
Chloroethane ug/L Chloroform ug/L ug/L	<1
-	<1
	<8
	<1
Cis-1,2-dichloroethylene ug/L Cis-1,3-dichloropropene ug/L	<1
Cobalt, total ug/L	9.1
Copper, total ug/L	4.1
Dibromochloromethane ug/L	<1
Dibromomethane ug/L	<1
Ethylbenzene ug/L	<1
Lead, total ug/L	<4
Methyl iodide ug/L	<1
Methylene chloride ug/L	<5
Nickel, total	7
pH pH	6.6
Selenium, total ug/L	<4
Silver, total ug/L	<4
Styrene ug/L	<1
Tetrachloroethylene ug/L	<1
Thallium, total ug/L	<2
Toluene ug/L	<1
Trans-1,2-dichloroethylene ug/L	<1
Trans-1,3-dichloropropene ug/L	<1
Trans-1,4-dichloro-2-butene ug/L	<5
Trichloroethylene ug/L	<1
Trichlorofluoromethane ug/L	<1
Vanadium, total ug/L	<20
Vinyl acetate ug/L	<5
Vinyl chloride ug/L	<1
Xylenes, total ug/L	<2
Zinc, total ug/L	40.4

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-121

2-hexanone (mbk) ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	23 <1 <1 <1 <1 <1 <1 <1 <1 <1 <10 <5 <10 <55 <10 <9.28
1,1,1-trichloroethane 1,1,2,2-tetrachloroethane 1,1,2-trichloroethane 1,1,2-trichloroethane 1,1,1-dichloroethane 1,1-dichloroethylene 1,2-dichloropropane 1,2-dibromoethane 1,2-dibromoethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,2-dichloropropane 1,4-dichloropropane 1,4-dichlorobenzene 2-butanone (mek) 2-hexanone (mbk) 4-methyl-2-pentanone (mibk) 4-methyl-2-pentanone (mibk) 4Ascetone Acrylonitrile Alkalinity, as caco3 Antimony, total Barium, total Barium, total Bromochloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromothane Cadmium, total Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Chromium, total Cis-1,2-dichloroethylene Cis-1,3-dichloropropene Cobalt, total Dibromochloromethane Dibromomethane Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L	<1 <1 <1 <1 <1 <1 <1 <1 <1 <5 <1 <1 <1 <5 <10 <55 <10 <59 <2 9.2
1,1,2,2-tetrachloroethane 1,1,2-trichloroethane 1,1,1-dichloroethane 1,1-dichloroethane 1,2,3-trichloropropane 1,2-dibromo-3-chloropropane 1,2-dibromoethane 1,2-dichlorobenzene 1,2-dichloroethane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichlorobenzene 1,2-dichlo	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 <1 <1 <1 <1 <5 <10 <55 <10 <59 <2 9.2
1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethylene 1,2,3-trichloropropane 1,2-dibromo-3-chloropropane 1,2-dibromoethane 1,2-dibromoethane 1,2-dichloroethane 1,2-dichloropropane 1,2-dichloropropan	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
1,1-dichloroethane 1,1-dichloroethylene 1,2-dibromo-3-chloropropane 1,2-dibromo-3-chloropropane 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,4-dichloropropane 1,4-dichlorobenzene 2-butanone (mek) 2-hexanone (mbk) 4-methyl-2-pentanone (mibk) 4-methyl-2-pentanone	<1 <1 <1 <5 <1 <1 <10 <5 <10 <5 <10 <59 <2 9.2
1,1-dichloroethylene 1,2,3-trichloropropane 1,2-dibromo-3-chloropropane 1,2-dibromoethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,4-dichloropropane 1,4-dichlorobenzene 2-butanone (mek) 2-hexanone (mbk) 4-methyl-2-pentanone (mibk) 4-me	<1 <1 <5 <1 <1 <10 <5 <5 <10 <5 <5 <5 <2 9.2
1,2,3-trichloropropane 1,2-dibromo-3-chloropropane 1,2-dibromo-3-chloropropane 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichloropropane 1,2-dic	<1 <5 <1 <1 <1 <10 <5 <5 <10 <2 <9.2
1,2-dibromo-3-chloropropane	<5 <1 <1 <1 <1 <5 <5 <10 <5 <2 9.2
1,2-dichlorobenzene ug/L 1,2-dichlorobenzene ug/L 1,2-dichloropropane ug/L 1,4-dichlorobenzene ug/L 2-butanone (mek) ug/L 2-hexanone (mbk) ug/L 4-methyl-2-pentanone (mibk) ug/L Actone ug/L Acrylonitrile ug/L Acrylonitrile ug/L Alkalinity, as caco3 mg/L Antimony, total ug/L Barium, total ug/L Benzene ug/L Beryllium, total ug/L Bromochloromethane ug/L Bromodichloromethane ug/L Bromomethane ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L Chloroform ug/L Chloromethane ug/L Chloromethane ug/L Chloromethane ug/L Chloromethane ug/L Chloroform ug/L Chloromethane ug/L Chloroform ug/L Chloromethane ug/L Chloromethane ug/L Chloroform ug/L Chloromethane ug/L Chloromomethane ug/L	<1 <1 <1 <1 <10 <5 <5 <10 <5 359 <2 9.2
1,2-dichlorobenzene 1,2-dichloroethane 1,2-dichloropropane 1,4-dichlorobenzene 2-butanone (mek) 2-hexanone (mbk) 4-methyl-2-pentanone (mibk) Acetone Acrylonitrile Alkalinity, as caco3 Antimony, total Barium, total Benzene Beryllium, total Bromochloromethane Bromodichloromethane Bromodichloroform Bromothane Cadmium, total Carbon disulfide Chlorobenzene Chloroform Chloromethane Ug/L Chloromethane Ug/L Chloromethane Ug/L Chloromethane Ug/L Chloromethane Ug/L Chloroform Ug/L Chloromethane Ug/L Chloromethane Ug/L Chloromethane Ug/L Chloroform Ug/L Chloromethane Ug/L Chloroform Ug/L Chloroform Ug/L Chloromethane Ug/L Chloromethane Ug/L Chloromethane Ug/L Chloromethane Ug/L Chloromethane Ug/L Chloroform Ug/L Chloromethane Ug/L Chloromomethane Ug/L	<1 <1 <10 <5 <10 <5 <10 <5 359 <2 9.2
1,2-dichloropropane ug/L 1,4-dichlorobenzene ug/L 2-butanone (mek) ug/L 2-hexanone (mbk) ug/L 4-methyl-2-pentanone (mibk) ug/L Beralianone (mibk) ug/L 4-meth	<1 <10 <5 <5 <10 <5 359 <2 9.2
1,4-dichlorobenzene ug/L	<1 <10 <5 <10 <5 359 <2 9.2
2-butanone (mek) 2-hexanone (mbk) 4-methyl-2-pentanone (mibk) 4-methyl-2-pentanone (mibk) Acetone Acrylonitrile Alkalinity, as caco3 Antimony, total Arsenic, total Barium, total Benzene Beryllium, total Bromochloromethane Bromodichloromethane Bromodichlorometha	<10 <5 <10 <5 359 <2 9.2
2-hexanone (mbk)	<5 <10 <5 359 <2 9.2
4-methyl-2-pentanone (mibk) ug/L	<5 <10 <5 359 <2 9.2
Acetone Acrylonitrile Acrylonitrile Alkalinity, as caco3 Antimony, total Antimony, total Ug/L Arsenic, total Ug/L Barium, total Ug/L Beryllium, total Ug/L Bromochloromethane Ug/L Bromodichloromethane Ug/L Bromoform Ug/L Bromomethane Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L	<10 <5 359 <2 9.2
Acrylonitrile ug/L Alkalinity, as caco3 mg/L Antimony, total ug/L Arsenic, total ug/L Barium, total ug/L Benzene ug/L Beryllium, total ug/L Bromochloromethane ug/L Bromodichloromethane ug/L Bromoform ug/L Bromomethane ug/L Cadmium, total ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L Chloroform ug/L Chloromethane ug/L Chomium, total ug/L Cis-1,2-dichloropropene ug/L Cobalt, total ug/L Cobalt, total ug/L Cobalt, total ug/L Dibromochloromethane ug/L Dibromochloromethane ug/L Ethylbenzene ug/L	<5 359 <2 9.2
Alkalinity, as caco3 Antimony, total Arsenic, total Barium, total Benzene Beryllium, total Bromochloromethane Bromodichloromethane Ug/L Carbon disulfide Carbon tetrachloride Carbon tetrachloride Ug/L Chlorobenzene Ug/L Chloroform Ug/L Chloroform Ug/L Chloromethane Ug/L Cis-1,2-dichloroethylene Cis-1,3-dichloropropene Ug/L Cobalt, total Ug/L Cobalt, total Ug/L Dibromochloromethane Ug/L Dibromomethane Ug/L Ethylbenzene	359 <2 9.2
Antimony, total Arsenic, total Barium, total Benzlene Beryllium, total Bromochloromethane Bromodichloromethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Bromoform Bromomethane Bromoform Bromomethane Bromoform Bromomethane Bromoform Bromomethane Bromoform Bromomethane Bromoform Bromomethane Ug/L Carbon disulfide Ug/L Carbon tetrachloride Ug/L Chlorobenzene Ug/L Chlorobenzene Ug/L Chloroform Ug/L Chloromium, total Ug/L Cis-1,2-dichloroethylene Ug/L Cis-1,3-dichloropropene Ug/L Cobalt, total Ug/L Dibromochloromethane Ug/L Dibromomethane Ug/L Dibromomethane Ug/L Ethylbenzene	<2 9.2
Arsenic, total Barium, total Barium, total Beryllium, total Beryllium, total Bromochloromethane Bromodichloromethane Bromomethane Ug/L Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chloroform Ug/L Chloromium, total Chloromethane Ug/L Cis-1,2-dichloropropene Ug/L Cis-1,3-dichloropropene Ug/L Cobalt, total Ug/L Copper, total Ug/L Dibromochloromethane Ug/L Dibromomethane Ug/L Ethylbenzene Ug/L	9.2
Barium, total Benzene Beryllium, total Benzene Beryllium, total Bromochloromethane Bromodichloromethane Bromoform Bromomethane Bromomethane Bromoform Ug/L Bromomethane Ug/L Cadmium, total Carbon disulfide Ug/L Carbon tetrachloride Ug/L Chlorobenzene Ug/L Chloroform Ug/L Chloroform Ug/L Chloromethane Ug/L Chloromethane Ug/L Chloromethane Ug/L Choromium, total Ug/L Cis-1,2-dichloroethylene Cis-1,3-dichloropropene Ug/L Cobalt, total Ug/L Copper, total Ug/L Uj/L Ubiromochloromethane Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L	
Beryllium, total Bromochloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromomethane Bromodichloromethane Bromodic	<i></i> U
Bromochloromethane Bromodichloromethane Bromodichloromethane Bromoform Bromomethane Ug/L Bromomethane Ug/L Cadmium, total Carbon disulfide Ug/L Carbon tetrachloride Ug/L Chlorobenzene Ug/L Chloroform Ug/L Chloroform Ug/L Chloromethane Ug/L Choromium, total Ug/L Cis-1,2-dichloroethylene Ug/L Cis-1,3-dichloropropene Ug/L Cobalt, total Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L	<1
Bromodichloromethane Bromoform Bromoform Bromomethane Cadmium, total Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Ug/L Chloroform Ug/L Chloromethane Ug/L Chloromethane Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L	<4
Bromoform ug/L ug/L ug/L ug/L Cadmium, total ug/L ug/L Carbon disulfide ug/L u	<1
Bromomethane ug/L Cadmium, total ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L Chloroethane ug/L Chloromium, total ug/L Chromium, total ug/L Cis-1,2-dichloroethylene ug/L Cis-1,3-dichloropropene ug/L Cobalt, total ug/L Copper, total ug/L Dibromochloromethane ug/L Dibromomethane ug/L Ethylbenzene ug/L	<1
Cadmium, total ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L Chloroform ug/L Chloroform ug/L Chloromethane ug/L Chromium, total ug/L Cis-1,2-dichloroethylene ug/L Cis-1,3-dichloropropene ug/L Cobalt, total ug/L Copper, total ug/L Dibromochloromethane ug/L Dibromomethane ug/L Ethylbenzene ug/L	<1
Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L Chloroform ug/L Chloroform ug/L Chloromethane ug/L Chloromethane ug/L Chloromethore ug/L Cis-1,2-dichloroethylene ug/L Cis-1,3-dichloropropene ug/L Cobalt, total ug/L Copper, total ug/L Dibromochloromethane ug/L Dibromomethane ug/L Ethylbenzene ug/L	<1
Carbon tetrachloride Chlorobenzene Chlorobenzene Chloroform Ug/L Chloroform Ug/L Chloromethane Ug/L Chloromethane Ug/L Chromium, total Cis-1,2-dichloroethylene Cis-1,3-dichloropropene Ug/L Cobalt, total Ug/L Copper, total Ug/L Uj/L Uj/Copper, total Ug/L Uj/Copper, total Ug/L Uj/Copper, total Ug/L Uj/Copper, total Ug/L Uj/Copper, total Uj/Copper	1 <1
Chlorobenzene ug/L Chloroethane ug/L Chloroform ug/L Chloromethane ug/L Chromium, total ug/L Cis-1,2-dichloroethylene ug/L Cis-1,3-dichloropropene ug/L Cobalt, total ug/L Copper, total ug/L Dibromochloromethane ug/L Dibromomethane ug/L Ethylbenzene ug/L	<1
Chloroethane ug/L Chloroform ug/L Chloromethane ug/L Chromium, total ug/L Cis-1,2-dichloroethylene ug/L Cis-1,3-dichloropropene ug/L Cobalt, total ug/L Copper, total ug/L Dibromochloromethane ug/L Dibromomethane ug/L Ethylbenzene ug/L	<1
Chloroform ug/L ug/L chloromethane ug/L chloromethane ug/L chromium, total ug/L cis-1,2-dichloroethylene ug/L cobalt, total ug/L copper, total ug/L copper, total ug/L chloromomethane ug/L chloromome	<1
Chloromethane ug/L ug/L ug/L clis-1,2-dichloropropene ug/L Cobalt, total ug/L Copper, total ug/L Ug/L Dibromochloromethane ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L U	<1
Cis-1,2-dichloroethylene Cis-1,3-dichloropropene Cobalt, total Copper, total Dibromochloromethane Dibromomethane Ethylbenzene ug/L ug/L ug/L ug/L ug/L	<1
Cis-1,3-dichloropropene ug/L Cobalt, total ug/L Copper, total ug/L Dibromochloromethane ug/L Dibromomethane ug/L Ethylbenzene ug/L	<8
Cobalt, total	<1
Copper, total	<1
Dibromochloromethane ug/L ug/L ug/L thylbenzene ug/L	9.6
Dibromomethane ug/L Ethylbenzene ug/L	<4
Ethylbenzene ug/L	<1 <1
	<1
Lead, total ag/L	<4
Methyl iodide ug/L	<1
Methylene chloride ug/L	<5
Nickel, total ug/L	8.4
	6.5
Selenium, total ug/L	<4
Silver, total ug/L	<4
Styrene ug/L	~ 4
Tetrachloroethylene ug/L	<1
Thallium, total ug/L	<1 <1
Toluene ug/L	<1 <1 <2
Trans-1,2-dichloroethylene ug/L	<1 <1 <2 <1
Trans-1,3-dichloropropene ug/L Trans-1,4-dichloro-2-butene ug/L	<1 <1 <2 <1 <1
Trichloroethylene ug/L	<1 <1 <2 <1 <1 <1
Trichlorofluoromethane ug/L	<1 <1 <2 <1 <1 <1 <5
	<1 <1 <2 <1 <1 <1 <5 <1
Vinyl acetate ug/L	<1 <1 <2 <1 <1 <1 <5 <1 <1
Vinyl chloride ug/L	<1 <1 <2 <1 <1 <1 <5 <1
Xylenes, total ug/L	<1 <1 <2 <1 <1 <1 <5 <1 <1 <20
Zinc, total ug/L	<1 <1 <2 <1 <1 <1 <5 <1 <1 <20 <5

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-201

Constituents	Units	10/17/2014	4/6/2015	4/14/2016	10/14/2016	4/10/2017	10/9/2017	4/17/2018	10/22/2018
1,1,1,2-tetrachloroethane	ug/L				<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L				<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L				<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L				<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L				<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,1-dichloroethylene 1,2,3-trichloropropane	ug/L ug/L				<1	<1	<1	<1	<1 <1
1,2-dibromo-3-chloropropane	ug/L ug/L				<1	<1	<1	<1	<1
1,2-dibromoethane	ug/L				<1	<1	<1	<1	<1
1,2-dichlorobenzene	ug/L				<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L				<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L				<1	<1	<1	<1	<1
1,4-dichlorobenzene	ug/L				<1	<1	<1	<1	<1
2-butanone (mek)	ug/L				<5	<5	<5	<5	<5
2-hexanone (mbk)	ug/L				<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	ug/L				<5	<5	<5	<5	<5
Acetone	ug/L				<10 <5	<10 <5	<10 <5	<10 <5	<10
Acrylonitrile	ug/L				<2 <2	<2	<2	<2	<5 <2
Antimony, total Arsenic, total	ug/L ug/L				< <u>2</u>	<4	<4	<4	< <u>4</u>
Barium, total	ug/L ug/L				240	235	218	223	220
Benzene	ug/L				<1	<1	<1	<1	<1
Beryllium, total	ug/L				<4	<4	<4	<4	<4
Bromochloromethane	ug/L				<1	<1	<1	<1	<1
Bromodichloromethane	ug/L				<1	<1	<1	<1	<1
Bromoform	ug/L				<1	<1	<1	<1	<1
Bromomethane	ug/L				<1	<1	<1	<1	<1
Cadmium, total	ug/L				<.8	<.8	<.8	<.8	<.8
Carbon disulfide	ug/L				<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L	0.4	40	-10	<1	<1	<1	<1	<1
Chemical oxygen demand	mg/L	24 11	10 11	<10 10					
Chlorobenzene	mg/L ug/L	"	11	10	<1	<1	<1	<1	<1
Chloroethane	ug/L ug/L				<1	<1	<1	<1	<1
Chloroform	ug/L				<1	<1	<1	<1	<1
Chloromethane	ug/L				<1	<1	<1	<1	<1
Chromium, total	ug/L				<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	ug/L				<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	ug/L				<1	<1	<1	<1	<1
Cobalt, total	ug/L				<.8	<.8	<.8	<.8	<.8
Copper, total	ug/L				<4	<4	<4	<4	<4
Dibromochloromethane	ug/L				<1	<1	<1	<1	<1
Dibromomethane	ug/L				<1	<1	<1	<1	<1
Ethylbenzene	ug/L	<100	<100	<100	<1	<1	<1	<1	<1
Iron, dissolved Lead, total	ug/L ug/L	<100	<100	<100	<4	<4	<4	<4	<4
Methyl iodide	ug/L ug/L				<1	<1	<1	<1	<1
Methylene chloride	ug/L				<5	<5	<5	<5	<5
Nickel, total	ug/L				<4	<4	<4	<4	<4
Nitrogen, ammonia	mg/L	1.44	<1.00	<1.00		-			-
Phenols, total	mg/L	<.1							
Selenium, total	ug/L				<4	<4	<4	<4	<4
Silver, total	ug/L				<4	<4	<4	<4	<4
Solids, total suspended	mg/L				72				
Styrene	ug/L				<1	<1	<1	<1	<1
Tetrachloroethylene	ug/L				<1	<1	<1	<1	<1
Thallium, total	ug/L				<4 <1	<4	<4	<4	<4 <1
Toluene Total organic halogens (tox)	ug/L mg/L	<.01			<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	ug/L	\.01			<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	ug/L ug/L				<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L				<5	<5	<5	<5	<5
Trichloroethylene	ug/L				<1	<1	<1	<1	<1
Trichlorofluoromethane	ug/L				<1	<1	<1	<1	<1
Vanadium, total	ug/L				<20	<20	<20	<20	<20
Vinyl acetate	ug/L				<5	<5	<5	<5	<5
Vinyl chloride	ug/L				<1	<1	<1	<1	<1
Xylenes, total	ug/L				<2	<2	<2	<2	<2
Zinc, total	ug/L				<8.0	<8.0	39.6	<8.0	25.6

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-205

Constituents	Units	10/17/2014	4/6/2015	4/14/2016	10/14/2016	4/10/2017	10/9/2017	4/17/2018	10/22/2018
1,1,1,2-tetrachloroethane	ug/L				<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L				<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L				<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L				<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L				10.2	7.1	7.7	7.8	3.3
1,1-dichloroethylene	ug/L				<1	<1	<1	<1	<1
1,2,3-trichloropropane	ug/L				<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	ug/L				<1	<1	<1	<1	<1
1,2-dibromoethane	ug/L				<1	<1	<1	<1	<1
1,2-dichlorobenzene	ug/L				<1.0	<1.0	<1.0	1.1	<1.0
1,2-dichloroethane 1,2-dichloropropane	ug/L ug/L				<1 <1.0	<1 2.0	<1 <1.0	<1 3.3	<1.0
1,2-dichloroproparie	ug/L ug/L				7.2	8.5	8.0	11.9	9.4
2-butanone (mek)	ug/L ug/L				<5	<5	<5	11.9 <5	9.4 <5
2-hexanone (mbk)	ug/L				<5	<5	<5 <5	<5 <5	<5 <5
4-methyl-2-pentanone (mibk)	ug/L				<5	<5	<5	<5	<5
Acetone	ug/L				<10.0	<10.0	22.2	<10.0	<10.0
Acrylonitrile	ug/L				<5	<5	<5	<5	<5
Antimony, total	ug/L				<2	<2	<2	<2	<2
Arsenic, total	ug/L				24.9	23.6	18.2	22.5	24.7
Barium, total	ug/L				1450	1360	1390	1160	1500
Benzene	ug/L	7.2	10.8	12.1	12.3	10.8	8.7	5.6	10.8
Beryllium, total	ug/L				<4	<4	<4	<4	<4
Bromochloromethane	ug/L				<1	<1	<1	<1	<1
Bromodichloromethane	ug/L				<1	<1	<1	<1	<1
Bromoform	ug/L				<1	<1	<1	<1	<1
Bromomethane	ug/L				<1	<1	<1	<1	<1
Cadmium, total	ug/L				<.8	<.8	<.8	<.8	<.8
Carbon disulfide	ug/L				<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L				<1	<1	<1	<1	<1
Chemical oxygen demand	mg/L	62	53	39	38	49	53	39	60
Chloride	mg/L	<10	32	27	0.0		4.0	0.4	.4.0
Chlorobenzene	ug/L				2.9	2.6	1.9	2.4	<1.0
Chloroethane Chloroform	ug/L				7.1 <1	5.0	3.8 <1	3.4	3.3 <1
Chloromethane	ug/L				<1	<1 <1	<1	<1 <1	<1
Chromium, total	ug/L ug/L				<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	ug/L ug/L				6.1	1.7	5.1	5.9	<1.0
Cis-1,3-dichloropropene	ug/L ug/L				<1	<1	<1	<1	<1
Cobalt, total	ug/L				33.9	37.5	24.2	30.2	25.0
Copper, total	ug/L				<4.0	<4.0	<4.0	14.4	<4.0
Dibromochloromethane	ug/L				<1	<1	<1	<1	<1
Dibromomethane	ug/L				<1	<1	<1	<1	<1
Ethylbenzene	ug/L				<1.0	<1.0	1.1	<1.0	14.0
Iron, dissolved	ug/L	24800	25800	34100	30600	33400	25200	28200	30400
Iron, total	ug/L				37600	46600	23500	42100	32100
Lead, total	ug/L				<4	<4	<4	<4	<4
Methyl iodide	ug/L				<1	<1	<1	<1	<1
Methylene chloride	ug/L				<5	<5	<5	<5	<5
Nickel, total	ug/L	0.00	0.07		33.9	38.4	31.2	47.4	29.9
Nitrogen, ammonia	mg/L	3.20	3.37	4.13	5.85	6.83	7.06	2.90	7.66
pH	pH ma/l				6.6	6.5	6.5	6.4	6.4
Phenols, total	mg/L	<.1			<4	<4	<4	_1	_4
Selenium, total Silver, total	ug/L ug/L				<4 <4	<4 <4	<4 <4	<4 <4	<4 <4
Solids, total	mg/L				321	\4	<4	<u> </u>	^4
Styrene	ug/L				321 <1	<1	<1	<1	<1
Tetrachloroethylene	ug/L ug/L				<1	<1	<1	<1	<1
Thallium, total	ug/L ug/L				<4	<4	<4	<4	<4
Toluene	ug/L				1.0	1.0	<1.0	<1.0	<1.0
Total organic halogens (tox)	mg/L	.239							
Trans-1,2-dichloroethylene	ug/L	50			<1	<1	<1	1	<1
Trans-1,3-dichloropropene	ug/L				<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L				<5	<5	<5	<5	<5
Trichloroethylene	ug/L	19.3	8.8	1.2	1.2	<1.0	<1.0	1.7	<1.0
Trichlorofluoromethane	ug/L				<1	<1	<1	<1	<1
Vanadium, total	ug/L				<20	<20	<20	<20	<20
Vinyl acetate	ug/L				<5	<5	<5	<5	<5
Vinyl chloride	ug/L				1.8	1.9	1.2	1.0	<1.0
Xylenes, total	ug/L				<2	<2	<2	<2	<2
Zinc, total	ug/L				<8.0	<8.0	<8.0	25.3	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-205

1,1,1,2-tetrachloroethane	Constituents	4/22/2040		A/5/2024
1,1,1-trichloroethane	Constituents	4/22/2019	10/23/2020	4/5/2021 <1
1,1,2-trichloroethane				<1 <1
1,1-dichloroethylene 5.7 4.8 2. 1,1-dichloroethylene <1				<1
1,1-dichloroethylene		<1	<1	<1
1,2,3-trichloropropane				2.8
12-dibromo-3-chloropropane 1 2-dibromoethane 1 2-dibromoethane 1 2-dichlorobenzene 1.0 1.0 1.1 2-dichlorobenzene 1.1 1 1 1 1 1 1 1 1				<1
1,2-dichlorobenzene				<1 <5
1.2-dichlorobethane				<1
1,2-dichloropropane		<1.0		<1.0
1.4-dichlorobenzene	1 '			<1
2-butanone (mek)				1.4
2-hexanone (mbk)				10.2 <5
A-methyl-2-pentanone (mibk) <5 <5 <5 <5 <5 <5 <5 <	` '			<5
Acrylonitrile				<5
Antimony, total	Acetone	<10.0	<10.0	<10.0
Arsenic, total 25.9 21.0 51. Barium, total 1490 1820 165 Benzene 11.9 13.6 7. 7. 8 8 8 4 4 4 4 4 6 8 8 8 8 8 8 8 8 8				<5
Barium, total 1490 1820 1656 1657 1658 1659				<2 51.2
Benzene 11.9 13.6 7.				1650
Beryllium, total				7.2
Bromodichloromethane				<4
Bromoform				<1
Bromomethane				<1
Cadmium, total <.8		1		<1 <1
Carbon disulfide <1				<.8
Chemical oxygen demand 46 76 Chloride 3.4 3. Chlorobenzene 4.9 3.4 3. Chloroethane 4.3 3.9 1. Chloroform <1				<1
Chloride Chlorobenzene Chlorobenzene Chloroform Chloroform Chloromethane Chloromethane Chromium, total Cis-1,2-dichloroethylene Cis-1,3-dichloropropene Choper, total Dibromochloromethane Chromium Choromethane Chromium, total Cis-1,2-dichloropropene Cobalt, total Copper, total Coppe	Carbon tetrachloride			<1
Chloroethane 4.9 3.4 3. Chloroethane 4.3 3.9 1. Chloroform <1		46	76	
Chloroethane 4.3 3.9 1. Chloroform <1		4.0	2.4	2.0
Chloroform <1				3.2 1.9
Chloromethane <1	T =			<1
Cis-1,2-dichloroethylene 1.2 2.3 1. Cis-1,3-dichloropropene <1	1 -			<1
Cis-1,3-dichloropropene <1				<8
Cobalt, total 36.4 27.5 24. Copper, total <4.0				1.3
Copper, total <4.0				<1 24.0
Dibromochloromethane				<4.0 <4.0
Ethylbenzene				<1
Iron, dissolved 34000 37300 Iron, total 42900 39100 Lead, total 44 44 44 44 44 44 44	Dibromomethane	<1		<1
Iron, total				<1.0
Lead, total <4				
Methyl iodide <1				<4
Methylene chloride <5				<1
Nitrogen, ammonia 7.61 21.60 pH 6.6 6.5 Phenols, total Selenium, total <4 <4 <4 <5 Solids, total suspended Styrene <1 <1 <1 <1 <1 <1 <1 <				<5
pH 6.6 6.5 Phenols, total Selenium, total 4 4 4 Silver, total 4 4 4 4 Solids, total suspended 5tyrene 1	Nickel, total		32.1	29.4
Phenols, total Selenium, total Selenium, total Selenium, total Selenium, total Selenium, total Selenium, total Solids, total suspended Styrene Selection Styrene Selection S				
Selenium, total	1.	6.6	6.5	
Silver, total		<1	<1	<4
Solids, total suspended Styrene				<4
Styrene				
Thallium, total	Styrene			<1
Toluene				<1
Total organic halogens (tox)				<2 <1.0
Trans-1,2-dichloroethylene <1		1.9	~1.0	\1.0
Trans-1,3-dichloropropene <1		<1	<1	<1
Trichloroethylene	Trans-1,3-dichloropropene	<1	<1	<1
Trichlorofluoromethane <1 <1 <1 < Vanadium, total <20 <20 <2				<5
Vanadium, total <20 <20 <2				<1.0
				<1 <20
I VIIIVI AUGUALE I SOI SOI SOI S	Variadium, total Vinyl acetate	<5	<5	<5
				<1.0
Xylenes, total 4 <2 <	Xylenes, total	4	<2	<2
Zinc, total <20.0 <20.0 <20.0	Zinc, total	<20.0	<20.0	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-212

Constituents	Units	10/17/2014	4/6/2015	4/14/2016	10/14/2016	4/10/2017	10/9/2017	4/17/2018	10/22/2018
1,1,1,2-tetrachloroethane	ug/L				<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L				<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L				<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L				<1	<1	<1	<1	<1
1,1-dichloroethane 1,1-dichloroethylene	ug/L				<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,1-dicfiloroetrylefie	ug/L ug/L				<1	<1	<1	<1	<1
1,2,3-tilofloroproparie	ug/L ug/L				<1	<1	<1	<1	<1
1,2-dibromoethane	ug/L				<1	<1	<1	<1	<1
1,2-dichlorobenzene	ug/L				<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L				<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L				<1	<1	<1	<1	<1
1,4-dichlorobenzene	ug/L				<1	<1	<1	<1	<1
2-butanone (mek)	ug/L				<5	<5	<5	<5	<5
2-hexanone (mbk)	ug/L				<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	ug/L				<5	<5	<5	<5	<5
Acetone	ug/L				<10	<10	<10	<10	<10
Acrylonitrile	ug/L				<5 <2	<5 <2	<5 <2	<5 <2	<5 <2
Antimony, total Arsenic, total	ug/L ug/L				< <u>2</u>	<4	<4	<4	< <u>4</u>
Barium, total	ug/L ug/L				49.4	46.3	45.8	49.5	53.8
Benzene	ug/L ug/L				45.4 <1	40.5 <1	45.6 <1	49.5 <1	33.0 <1
Beryllium, total	ug/L				<4	<4	<4	<4	<4
Bromochloromethane	ug/L				<1	<1	<1	<1	<1
Bromodichloromethane	ug/L				<1	<1	<1	<1	<1
Bromoform	ug/L				<1	<1	<1	<1	<1
Bromomethane	ug/L				<1	<1	<1	<1	<1
Cadmium, total	ug/L				<.8	<.8	<.8	<.8	<.8
Carbon disulfide	ug/L				<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L				<1	<1	<1	<1	<1
Chemical oxygen demand	mg/L	28	10	<10					
Chloride	mg/L	<10	14	14	_1	-1	-1	-1	_1
Chlorobenzene Chloroethane	ug/L ug/L				<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Chloroform	ug/L ug/L				<1	<1	<1	<1	<1
Chloromethane	ug/L				<1	<1	<1	<1	<1
Chromium, total	ug/L				<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	ug/L				<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	ug/L				<1	<1	<1	<1	<1
Cobalt, total	ug/L				<.8	<.8	<.8	<.8	<.8
Copper, total	ug/L				<4	<4	<4	<4	<4
Dibromochloromethane	ug/L				<1	<1	<1	<1	<1
Dibromomethane	ug/L				<1	<1	<1	<1	<1
Ethylbenzene	ug/L	400			<1	<1	<1	<1	<1
Iron, dissolved	ug/L	<100	<100	<100	-4	-4	-4	-4	-4
Lead, total	ug/L				<4 <1	<4 <1	<4 <1	<4 <1	<4 <1
Methyl iodide Methylene chloride	ug/L ug/L				<1 <5	<1 <5	<1 <5	<1 <5	< 1 < 5
Nickel, total	ug/L ug/L				<4	<4	<4	<4	<4
Nitrogen, ammonia	mg/L	<1	<1	<1	"		***	""	1
Phenols, total	mg/L	<.1							
Selenium, total	ug/L				<4	<4	<4	<4	<4
Silver, total	ug/L				<4	<4	<4	<4	<4
Solids, total suspended	mg/L				103				
Styrene	ug/L				<1	<1	<1	<1	<1
Tetrachloroethylene	ug/L				<1	<1	<1	<1	<1
Thallium, total	ug/L				<4	<4	<4	<4	<4
Toluene	ug/L				<1	<1	<1	<1	<1
Total organic halogens (tox) Trans-1,2-dichloroethylene	mg/L	<.01			<1	<1	<1	<1	<1
Trans-1,2-dichloropropene	ug/L ug/L				<1	<1 <1	<1	<1	<1
Trans-1,3-dichloro-2-butene	ug/L ug/L				<5	<5	<5	<5	<5
Trichloroethylene	ug/L ug/L				<1	<1	<1	<1	<1
Trichlorofluoromethane	ug/L				<1	<1	<1	<1	<1
Vanadium, total	ug/L				<20	<20	<20	<20	<20
Vinyl acetate	ug/L				<5	<5	<5	<5	<5
Vinyl chloride	ug/L				<1	<1	<1	<1	<1
Xylenes, total	ug/L				<2	<2	<2	<2	<2
Zinc, total	ug/L				<8.0	<8.0	9.5	<8.0	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-213

Constituents	Units	10/17/2014	4/6/2015	4/14/2016	10/14/2016	4/10/2017	4/17/2018	10/22/2018	4/22/2019
1,1,1,2-tetrachloroethane	ug/L				<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L				<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L				<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L				<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L				<1.0 <1	<1.0 <1	<1.0 <1	<1.0 <1	<1.0 <1
1,1-dichloroethylene 1,2,3-trichloropropane	ug/L ug/L				<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	ug/L				<1	<1	<1	<1	<1
1,2-dibromoethane	ug/L				<1	<1	<1	<1	<1
1,2-dichlorobenzene	ug/L				<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L				<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L				<1.0	1.6	<1.0	<1.0	3.8
1,4-dichlorobenzene	ug/L				<1	<1	<1	<1	<1
2-butanone (mek)	ug/L				<5	<5	<5	<5	<5
2-hexanone (mbk)	ug/L				<5	<5	<5	<5	< 5
4-methyl-2-pentanone (mibk) Acetone	ug/L ug/L				<5 <10	<5 <10	<5 <10	<5 <10	<5 <10
Acrylonitrile	ug/L ug/L				<5	<5	<5	<5	<5
Antimony, total	ug/L				<2	<2	<2	<2	<2
Arsenic, total	ug/L				<4.0	<4.0	<4.0	<4.0	<4.0
Barium, total	ug/L				345	360	357	362	421
Benzene	ug/L				<1.0	<1.0	<1.0	<1.0	<1.0
Beryllium, total	ug/L				<4	<4	<4	<4	<4
Bromochloromethane	ug/L				<1	<1	<1	<1	<1
Bromodichloromethane	ug/L				<1	<1	<1	<1	<1
Bromoform	ug/L				<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Bromomethane Cadmium, total	ug/L ug/L				<.8	<.8	<.8	<.8	<.8
Carbon disulfide	ug/L ug/L				<.o	<.o	<1 <1	<.o	<. <1
Carbon tetrachloride	ug/L				<1	<1	<1	<1	<1
Chemical oxygen demand	mg/L	23	<10	<10	•	·	.	·	
Chloride	mg/L	<10	19	<10					
Chlorobenzene	ug/L				<1	<1	<1	<1	<1
Chloroethane	ug/L				<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	ug/L				<1	<1	<1	<1	<1
Chloromethane	ug/L				<1	<1	<1	<1	<1
Chromium, total	ug/L				<8.0 8.8	<8.0 4.7	<8.0 1.6	<8.0 1.5	<8.0 19.0
Cis-1,2-dichloroethylene Cis-1,3-dichloropropene	ug/L ug/L				o.o <1	4.7 <1	1.0 <1	1.5 <1	19.0
Cobalt, total	ug/L ug/L				<.8	<.8	<.8	<.8	<.8
Copper, total	ug/L				<4.0	<4.0	<4.0	<4.0	<4.0
Dibromochloromethane	ug/L				<1	<1	<1	<1	<1
Dibromomethane	ug/L				<1	<1	<1	<1	<1
Ethylbenzene	ug/L				<1	<1	<1	<1	<1
Iron, dissolved	ug/L	<100	<100	<100					
Lead, total	ug/L				<4	<4	<4	<4	<4
Methyl iodide	ug/L				<1	<1	<1	<1	<1
Methylene chloride Nickel, total	ug/L				<5 <4.0	<5 <4.0	<5 <4.0	<5 <4.0	<5 <4.0
Nitrogen, ammonia	ug/L mg/L	<1	<1	<1	\4.0	\4.0	~4.0	\4. 0	~4.0
Phenols, total	mg/L	<.1	-1	''					
Selenium, total	ug/L	'''			<4	<4	<4	<4	<4
Silver, total	ug/L				<4	<4	<4	<4	<4
Solids, total suspended	mg/L				150				
Styrene	ug/L				<1	<1	<1	<1	<1
Tetrachloroethylene	ug/L				<1	<1	<1	<1	<1
Thallium, total	ug/L				<4	<4	<4	<4	<2
Toluene Total organic halogens (tox)	ug/L mg/L	.011			<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	ug/L	.011			<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	ug/L				<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L				<5	<5	<5	<5	<5
Trichloroethylene	ug/L				<1	<1	<1	<1	<1
Trichlorofluoromethane	ug/L				<1	<1	<1	<1	<1
Vanadium, total	ug/L				<20	<20	<20	<20	<20
Vinyl acetate	ug/L				<5	<5	<5	<5	<5
Vinyl chloride	ug/L				<1.0	<1.0	<1.0	<1.0	<1.0
Xylenes, total	ug/L				<2	<2	<2	<2	<2
Zinc, total	ug/L				<8	<8	<8	<8	<20

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-213

Constituents	10/23/2020	4/5/2021	4/6/2022	10/25/2022	4/10/2023	10/13/2023	10/15/2024
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	<1.0	2.2	3.3	2.7	2.5	3.2	1.9
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	<5	<5	<5	<5	<5	<5	<5
1,2-dibromoethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1
1,2-dichlorobenzene	<1 <1						
1,2-dichloroethane 1,2-dichloropropane	6.1	7.6	7.7	6.5	5.6	4.1	3.8
1,4-dichlorobenzene	<1	7.0 <1	/./ <1	<1	3.0 <1	<1	3.6 <1
2-butanone (mek)	<5	<5	<10	<10	<10	<10	<10
2-hexanone (mbk)	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5	<5	<5
Acetone	<10	<10	<10	<10	<10	<10	<10
Acrylonitrile	<5	<5	<5	<5	<5	<5	<5
Antimony, total	<2	<2	<2	<2	<2	١	<2
Arsenic, total	<4.0	<4.0	<4.0	4.7	<4.0		<4.0
Barium, total	578	409	800	899	674		720
Benzene	<1.0	<1.0	<1.0	1.1	1.0	1.4	<1.0
Beryllium, total	<4	<4	<4	<4	<4		<4
Bromochloromethane	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	<1	<1	<1	<1	<1	<1	<1
Bromoform	<1	<1	<1	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	<.8	<.8	<.8	<.8	<.8		<.8
Carbon disulfide	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1	<1	<1	<1
Chemical oxygen demand							
Chloride							
Chlorobenzene	<1	<1	<1	<1	<1	<1	<1
Chloroethane	1.5	2.6	2.6	3.0	2.5	4.2	1.4
Chloroform	<1	<1	<1	<1	<1	<1	<1
Chloromethane	<1	<1	<1	<1	<1	<1	<1
Chromium, total	<8.0	<8.0	<8.0	10.8	<8.0	00.0	<8.0
Cis-1,2-dichloroethylene	44.9	37.8	43.5	31.9	21.0	32.6	19.0
Cis-1,3-dichloropropene	<1 6.9	<1 <.4	<1	<1	<1 <.4	<1	<1
Cobalt, total	<4.0	<4.0	.6 <4.0	6.1 9.6	<4.0		<.4 <4.0
Copper, total Dibromochloromethane	<4.0 <1	<4.0 <1	<1	9.0	<4.0 <1	<1	<4.0 <1
Dibromomethane	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	<1	<1	<1	<1	<1	<1	<1
Iron, dissolved	''	71	"	* 1	71	`'	"
Lead, total	<4	<4	<4	<4	<4		<4
Methyl iodide	<1	<1	<1	<1	- <1	<1	<1
Methylene chloride	<5	<5	<5	<5	<5	<5	<5
Nickel, total	8.5	<4.0	<4.0	11.5	<4.0	١	<4.0
Nitrogen, ammonia			-				-
Phenols, total							
Selenium, total	<4	<4	<4	<4	<4		<4
Silver, total	<4	<4	<4	<4	<4		<4
Solids, total suspended							
Styrene	<1	<1	<1	<1	<1	<1	<1
Tetrachloroethylene	<1	<1	<1	<1	<1	<1	<1
Thallium, total	<2	<2	<2	<2	<2		<2
Toluene	<1	<1	<1	<1	<1	<1	<1
Total organic halogens (tox)							
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	<20	<20	<20	<20	<20	,_	<20
Vinyl acetate	<5	<5 2.0	<5	<5	<5	<5	<5
Vinyl chloride	1.4	3.0	2.4	3.1	2.5	4.3	1.4
Xylenes, total	<2 -20	<2	<2	<2	<2	<2	<2
Zinc, total	<20	<20	<20	<20	<20		<20

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-214

1,1,1,2-tetrachloroethane	<1 <1 <1	I	<1
1,1,2,2-tetrachloroethane ug/L 1,1,2-trichloroethane ug/L 1,1,1-dichloroethane ug/L 1,1-dichloroethane ug/L	<1 <	1 <1	
1,1,2-trichloroethane			<1
1.1 dichloroethane ug/L 1.1			<1
'	<1 <	I	<1
	<1.0		<1.0
1,1-dichloroethylene ug/L <1	<1 <		<1
1,2,3-trichloropropane ug/L <1	<1 <		<1
1,2-dibromo-3-chloropropane ug/L	<1 <	I	<1
1,2-dibromoethane ug/L <1	<1 <		<1
1,2-dichlorobenzene ug/L	<1 <		<1
1,2-dichloroethane ug/L <1 <1 <1 <1	<1 <1 <1	•	<1 <1
1,2-dichloropropane ug/L <1 <1 <1 <1 <1	<1		<1
2-butanone (mek) ug/L <5	<5 <5		<5
2-hexanone (mbk) ug/L <5	<5 <5		<5 <5
4-methyl-2-pentanone (mibk) ug/L <5	<5		<5
Acetone ug/L <10	<10 <10		<10
Acrylonitrile ug/L <5	<5 <5		<5
Antimony, total ug/L <2	<2 <2		<2
Arsenic, total ug/L <4	<4 <4		<4
	103.0 104.0	107.0	98.9
Benzene ug/L <1 <1 <1 <1	<1 <		<1
Beryllium, total ug/L <4	<4 <4	4	<4
Bromochloromethane ug/L <1	<1 <	1 <1	<1
Bromodichloromethane ug/L <1	<1 <		<1
Bromoform ug/L <1	<1 <	•	<1
Bromomethane ug/L <1	<1 <		<1
Cadmium, total ug/L .8	<.8	I	<.8
Carbon disulfide ug/L <1	<1 <		<1
Carbon tetrachloride ug/L <1	<1 <		<1
Chemical oxygen demand mg/L 13 <10 <10 <10	<10 <10	> <10	<20
Chloride			
Chlorobenzene ug/L <1	<1 <	I	<1
Chloroethane ug/L <1	<1 <	I	<1
Chloroform ug/L <1	<1 <1 <1		<1
Chloromethane ug/L <1 <8		•	<1
, , , , , , , , , , , , , , , , , , , ,	<8 <8 2.7 2.8		<8 1.4
Cis-1,2-dichloroethylene ug/L 3.0 Cis-1,3-dichloropropene ug/L <1	<1 <1 <		1. 4 <1
Cobalt, total ug/L <.8	<.8		<.8
Copper, total ug/L <4.0	<4.0		6.0
Dibromochloromethane ug/L <1	<1 <-		<1
Dibromomethane ug/L <1	<1 <	I	<1
Ethylbenzene ug/L <1	<1 <		<1
Iron, dissolved ug/L <100 <100 <100	<100	<100	<100
Iron, total ug/L <100	<100	<100	<100
Lead, total ug/L <4	<4 <4	4	<4
Methyl iodide ug/L <1	<1 <		<1
Methylene chloride ug/L <5	<5 <5		<5
Nickel, total ug/L <4	<4 <4	I	<4
Nitrogen, ammonia mg/L <1 <1 <1 <1	<1 <		<1
pH	7.3 7.2	7.2	7.1
Phenols, total mg/L <.1		.	, II
Selenium, total ug/L <4	<4 <4	I	<4
Silver, total ug/L <4	<4 <4	4	<4
Solids, total suspended mg/L 20			∥ مي
Styrene ug/L <1	<1 <		<1
Tetrachloroethylene ug/L 12.2	9.9 8.8		4.1
Thallium, total ug/L <4 Toluene ug/L <1	<4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <		<4 <1
	<1 <	1 <1	` '
Total organic halogens (tox) mg/L .016	<1 <	1 <1	<1
Trans-1,3-dichloropropene ug/L <1	<1 <	I	<1
Trans-1,4-dichloro-2-butene ug/L <5	<5 <5		<5
Trichloroethylene ug/L 2.0 1.8 2.1 3.0	2.4 2.8		<1.0
Trichlorofluoromethane ug/L 2.0 1.6 2.1 3.0	<1 <-		<1.0 <1
Vanadium, total ug/L <20	<20 <20		<20
Vinyl acetate ug/L <5	<5 <5		<5
Vinyl additional Ug/L Vinyl chloride Ug/L <1	<1		<1
Xylenes, total ug/L <2	<2		<2
Zinc, total ug/L <8.0	<8.0		<8.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-214

Comptitueents	4/00/0040	40/22/2020	
Constituents	4/22/2019	10/23/2020	4/5/2021
1,1,1,2-tetrachloroethane	<1 <1	<1 <1	<1 <1
1,1,2,2-tetrachloroethane	<1	<1	<1
1,1,2,trichloroethane	<1	<1	<1
1,1-dichloroethane	<1.0	<1.0	<1.0
1,1-dichloroethylene	<1	<1	<1
1,2,3-trichloropropane	<1	<1	<1
1,2-dibromo-3-chloropropane	<1	<5	<5
1,2-dibromoethane	<1	<1	<1
1,2-dichlorobenzene	<1 <1	<1 <1	<1
1,2-dichloroethane 1,2-dichloropropane	<1	<1	<1 <1
1,4-dichlorobenzene	<1	<1	<1
2-butanone (mek)	<5	<5	<5
2-hexanone (mbk)	<5	<5	<5
4-methyl-2-pentanone (mibk)	<5	<5	<5
Acetone	<10	<10	<10
Acrylonitrile	<5	<5	<5
Antimony, total	<2	<2	<2
Arsenic, total	<4 93.7	<4 112.0	<4 109.0
Barium, total Benzene	93.7	112.0 <1	109.0
Beryllium, total	<4	<4	<4
Bromochloromethane	<1	<1	<1
Bromodichloromethane	<1	<1	<1
Bromoform	<1	<1	<1
Bromomethane	<1	<1	<1
Cadmium, total	<.8	<.8	<.8
Carbon disulfide	<1	<1	<1
Carbon tetrachloride	<1	<1	<1
Chemical oxygen demand Chloride	<20	<20	
Chlorobenzene	<1	<1	<1
Chloroethane	<1	<1	<1
Chloroform	<1	<1	<1
Chloromethane	<1	<1	<1
Chromium, total	<8	<8	<8
Cis-1,2-dichloroethylene	4.1	6.5	3.3
Cis-1,3-dichloropropene	<1	<1	<1
Cobalt, total	<.8	<.4	<.4
Copper, total Dibromochloromethane	<4.0 <1	<4.0 <1	<4.0 <1
Dibromomethane	<1	<1	<1
Ethylbenzene	<1	<1	<1
Iron, dissolved	<100	<100	
Iron, total	<100	<100	
Lead, total	<4	<4	<4
Methyl iodide	<1	<1	<1
Methylene chloride	<5	<5	<5
Nickel, total	<4	<4	<4
Nitrogen, ammonia	<1	<1 7.1	
pH Phenols, total	7.3	7.1	
Selenium, total	<4	<4	<4
Silver, total	<4	<4	<4
Solids, total suspended	~		
Styrene	<1	<1	<1
Tetrachloroethylene	8.5	7.8	5.4
Thallium, total	<2	<2	<2
Toluene	<1	<1	<1
Total organic halogens (tox)	ا مر	ا مد .	
Trans-1,2-dichloroethylene	<1 <1	<1 <1	<1 <1
Trans-1,3-dichloropropene Trans-1,4-dichloro-2-butene	<5	< 1 < 5	<1 <5
Trichloroethylene	3.3	5.8	2.9
Trichlorofluoromethane	<1	<1	<1
Vanadium, total	<20	<20	<20
Vinyl acetate	<5	<5	<5
Vinyl chloride	<1	<1	<1
			- 1
Xylenes, total Zinc, total	<2 <20.0	<2 <20.0	<2 <20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-49

3.4	Constituents	Units	10/16/2014	4/6/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	1/9/2018
1,1,1-inchioncembane ugil, <1 <1 <1 <1 <1 <1 <1 <										
1,1,2,2-tethochoreshane ugit <1 <1 <1 <1 <1 <1 <1 <										
1.1.2-inchiorosthane	' '									
1.1-dichiprochlymen										
1.1-dichiorpotypome	' '	ug/L								
1.1-dichiroproperse										
1.2.3-lichioropispane upit 1.2.4 1 1 1 1 1 1 1 1 1			` '	`'	`'	` '		`'	``	
12.45 tetrachiorobenzene			<1	<1	<1	<1	<1	<1	<1	
12-distromo-3-chiloropropane Ugit				-			_		_	
1.2-dischoropeane	1,2,4-trichlorobenzene	ug/L								
1.2-dichlorochance UgiL <1 <1 <1 <1 <1 <1 <1 <										
1.2-dintropropane ug/L < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <				-			· · · · · · · · · · · · · · · · · · ·			
1.2-dichloropropane										
1.2-diniforbenzene ug/L 1.3-dichorobenzene ug/L 1.3-dichorobenzene ug/L 1.3-dichorobenzene ug/L 1.4-dichorobenzene ug/L 1.4-dichorobenzene ug/L 1.4-dichorobenzene ug/L 1.4-dichorobenzene ug/L 1.4-pinnylendiamine ug/L 1.4-strichorophenol ug/L 1.4-strichorophenol ug/L 1.4-dintrobuene ug/L										
1.3.5-inhirobenzene ugl. 1.3.5-inhirobenzene ugl. 1.3-inhirobenzene ugl. 1.3-inhirobenzene ugl. 1.3-inhirobenzene ugl. 1.4-inhirobenzene			` '	`'	`'	` '	` '	`'	``	
1.3-dichloropeane										
1.3-dichioropropane										
1.4-dichlorobenzene ug/L	1,3-dichloropropane									
1.4-naphthoquinone										
1.4-phenylenediamine			8.7	8.7	8.6	8.9	9.2	7.8	5.8	
1-naphthylamine										
2.2-dichioropropane										
2.3.4 6-letrachlorophenol ug/L 2.4.5-Ir (silvex) ug/L 2.4-1-Ir (silv										
2.4.5-1										
2.4.5-trichlorophenol ug/L										
2.4-Erichlorophenol ug/L										
2.4-di										
2.4-dichlorophenol ug/L ug/L										
2.4-dinitrophenol ug/L										
2.4-dinitrophenol ug/L										
2.4-dintrolotuene										
2.6-dintrotphenol ug/L										
2.6-dinitrotoluene										
2-acetylaminofluorene										
2-chlorophenol ug/L										
2-chlorophenol ug/L	2-butanone (mek)	ug/L	<5	<5	<5	<5	<5	<5	<5	
2-hexphylaphthalene ug/L		ug/L								
2-methylnaphthalene										
2-methylphenol ug/L 2-nitrophenol ug/L 2-nitrophenol ug/L 2-nitrophenol ug/L 2-nitrophenol ug/L 3,3'-dichorbenzidine ug/L 3,3'-dimethylbenzidine ug/L 3,3'-dimethylbenzidine ug/L 3,3'-dimethylbenzidine ug/L 4,4'-ddd ug/L 4,4'-ddd ug/L 4,4'-ddd ug/L 4,4'-dde ug/L 4,4'-dde ug/L 4,6'-dinitro-2-methylphenol ug/L 4-aminobjhenyl ug/L 4-bromophenyl phenyl ether ug/L 4-chloro-3-methylphenol ug/L 4-chloro-1line ug/L 4-chloro-1line ug/L 4-chloro-1line ug/L 4-chloro-1line ug/L 4-chloro-1line ug/L 4-chlorophenyl phenyl ether ug/L 4-chlorophenyl ether ug/			<5	<5	<5	<5	<5	<5	<5	
2-naphthylamine										
2-nitrophenol ug/L										
2-nitrophenol ug/L 3,3'-dichlorobenzidine ug/L 3,3'-dimethylbenzidine ug/L 3-methylcholanthrene ug/L 3-methylcholanthrene ug/L 4,4'-ddd ug/L 4,4'-ddd ug/L 4,4'-ddt ug/L 4,6-dinitro-2-methylphenol ug/L 4-minobiphenyl ug/L 4-bromophenyl phenyl ether 4-chlorop-anjenyl phenyl ether ug/L 4-chlorop-hyl phenyl ether ug/L 4-methyl-2-pentanone (mibk) ug/L 4-methyl-2-pentanone (mibk) ug/L 4-mitrop-honol ug/L 4-nitrop-honol ug/L 5-nitro-o-toluidine ug/L Aceanphthylene ug/L Aceanphthylene ug/L Aceanphthylene ug/L Aceanphthylene ug/L Acetone ug/										
3,3'-dimethylbenzidine	2-nitrophenol									
3-methylcholanthrene										
3-nitro-aniline										
4,4'-ddd ug/L										
4,4'-dde										
4,4'-ddt ug/L										
4,6-dinitro-2-methylphenol	II '	ua/l								
4-aminobiphenyl dether		ug/L								
4-bromophenyl phenyl ether ug/L		ug/L								
4-chloroaniline ug/L 4-chlorophenyl phenyl ether ug/L 4-methyl-2-pentanone (mibk) ug/L 4-nitroaniline ug/L 4-nitrophenol ug/L 4-nitrophenol ug/L 5-nitro-o-toluidine ug/L 7,12-dimethylbenz(a)anthracene ug/L Acenaphthene ug/L Acenaphthylene ug/L Acetone ug/L Acetophenone ug/L Acrolein ug/L Acrolein ug/L Aldrin ug/L Aldrin ug/L Alkalinity, as caco3 mg/L	4-bromophenyl phenyl ether	ug/L								
4-chlorophenyl phenyl ether ug/L 4.	4-chloro-3-methylphenol	ug/L								
4-methyl-2-pentanone (mibk) ug/L										
4-nitroaniline			, -		l	l				
4-nitrophenol ug/L 5-nitro-o-toluidine ug/L 7,12-dimethylbenz(a)anthracene ug/L Acenaphthene ug/L Acenaphthylene ug/L Acetone ug/L Acetonitrile ug/L Acetophenone ug/L Acrolein ug/L Acrylonitrile ug/L Aldrin ug/L Alkalinity, as caco3 mg/L 1080 1130 994 1100 1100			<5	<5	<5	<5	<5	<5	<5	
5-nitro-o-toluidine										
7,12-dimethylbenz(a)anthracene ug/L ug/L ug/L ug/L ug/L ug/L ug/L Acetone ug/L ug/L Acetophenone ug/L ug/L Acrylonitrile ug/L Acrylonitrile ug/L ug/L Alkalinity, as caco3 mg/L 1080 1130 994 1100										
Acenaphthene Ug/L Ug/L Carenaphthylene										
Acetone ug/L		ug/L								
Acetone	Acenaphthylene	ug/L								
Acetophenone ug/L ug/L ug/L ug/L 45 <td< td=""><td></td><td>ug/L</td><td><10.0</td><td><10.0</td><td><10.0</td><td><10.0</td><td><10.0</td><td><10.0</td><td>20.0</td><td></td></td<>		ug/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	20.0	
Acrolein ug/L ug/L										
Acrylonitrile ug/L <5										
Aldrin ug/L Alkalinity, as caco3 mg/L 1130 994 1100			/ E	/F	<i></i>	∠ E	_E			
Alkalinity, as caco3 mg/L 1080 1130 994 1100			<5	<5	<5	<5	<5	<5	<5	
			1080	1130	994		1100			
			1000	1130	334		1100			
Alpha-bhc ug/L ug/L										

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-49

Constituents	4/17/2018	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022
(3 4)-methylphenol		<8							
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane 1,1,2,2-tetrachloroethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,1,2,2-tetracinoroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	1.4	1.2	3.4	2.6	2.6	2.5	1.4	1.9	1.0
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloropropene		<1							
1,2,3-trichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,4,5-tetrachlorobenzene		<8 <1							
1,2,4-trichlorobenzene 1,2-dibromo-3-chloropropane	<1	<1 <1	<1	<1	<5	<5	<5	<5	<5
1,2-dibromoethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	<1	<1 <8	<1	<1	<1	<1	<1	<1	<1
1,3,5-trinitrobenzene		<8							
1,3-dichlorobenzene		<1							
1,3-dichloropropane		<1							
1,3-dinitrobenzene	4.0	<8	44.4	7.4	.4.0	0.0			0.0
1,4-dichlorobenzene 1,4-naphthoquinone	1.8	2.5 <8	11.4	7.4	<1.0	6.6	6.4	6.0	3.6
1,4-naphthoquinone		<8							
1-naphthylamine		<8							
2,2-dichloropropane		<1							
2,3,4,6-tetrachlorophenol		<8							
2,4,5-t 2,4,5-tp (silvex)		<.5 <.5							
2,4,5-trichlorophenol		<8							
2,4,6-trichlorophenol		<8							
2,4-d		<2							
2,4-dichlorophenol		<8							
2,4-dimethylphenol 2,4-dinitrophenol		<8 <8							
2,4-dinitrophenol		<8							
2,6-dichlorophenol		<8							
2,6-dinitrotoluene		<8							
2-acetylaminofluorene		<8	.=	.5					.40
2-butanone (mek) 2-chloronaphthalene	<5	<5 <8	<5	<5	<5	<5	<5	<5	<10
2-chlorophenol		<8							
2-hexanone (mbk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
2-methylnaphthalene		<8							
2-methylphenol		<8							
2-naphthylamine 2-nitroaniline		<8 <8							
2-nitrophenol		<8							
3,3'-dichlorobenzidine		<8							
3,3'-dimethylbenzidine		<8							
3-methylcholanthrene		<8 <8							
3-nitroaniline 4,4'-ddd		<.05							
4,4'-dde		<.05							
4,4'-ddt		<.05							
4,6-dinitro-2-methylphenol		<8							
4-aminobiphenyl 4-bromophenyl phenyl ether		<8 <8							
4-chloro-3-methylphenol		<8							
4-chloroaniline		<8							
4-chlorophenyl phenyl ether	_	<8	_	_	_	_	_	_	_
4-methyl-2-pentanone (mibk) 4-nitroaniline	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-nitroaniline 4-nitrophenol		<8 <8							
5-nitro-o-toluidine		<8							
7,12-dimethylbenz(a)anthracene		<8							
Acenaphthene		<8							
Acetana	70.0	<8 26.0	240.0	-40.0	-100	-400	240.0	-40.0	04.4
Acetone Acetonitrile	76.0	36.8 <10	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	24.1
Acetophenone		<8							
Acrolein		<10							
Acrylonitrile	<5	<5	<5	<5	<5	<5	<5	<5	<5
Aldrin		<.05				1015			
Alkalinity, as caco3 Allyl chloride		<1				1010	960		844
Allyl chloride Alpha-bhc		<.05							
L splid-bild		₹.00							

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-49

Constituents	10/25/2022	4/11/2023	10/13/2023	4/17/2024	10/15/2024
(3 4)-methylphenol					
1,1,1,2-tetrachloroethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1	<1	<1
1,1-dichloroethane	1.7	1.4	1.6	1.1	1.2
1,1-dichloroethylene 1,1-dichloropropene	<1	<1	<1	<1	<1
1,2,3-trichloropropane	<1	<1	<1	<1	<1
1,2,4,5-tetrachlorobenzene					
1,2,4-trichlorobenzene	-E	-E	-E	-E	, E
1,2-dibromo-3-chloropropane	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1
1,2-dichlorobenzene	<1	<1	<1	<1	<1
1,2-dichloroethane	<1	<1	<1	<1	<1
1,2-dichloropropane	<1	<1	<1	<1	<1
1,2-dinitrobenzene					
1,3-dichlorobenzene					
1,3-dichloropropane					
1,3-dinitrobenzene	6.3	7.4	6.1	2.2	7.9
1,4-dictioroperizerie	0.5	7.4	0.1	3.3	7.9
1,4-phenylenediamine					
1-naphthylamine					
2,2-dichloropropane 2,3,4,6-tetrachlorophenol					
2,4,5-t					
2,4,5-tp (silvex)					
2,4,5-trichlorophenol					
2,4,6-trichlorophenol					
2,4-dichlorophenol					
2,4-dimethylphenol					
2,4-dinitrophenol					
2,4-dinitrotoluene 2,6-dichlorophenol					
2,6-dinitrotoluene					
2-acetylaminofluorene					
2-butanone (mek) 2-chloronaphthalene	<10	<10	<10	<10	<10
2-chlorophenol					
2-hexanone (mbk)	<5	<5	<5	<5	<5
2-methylnaphthalene					
2-methylphenol 2-naphthylamine					
2-nitroaniline					
2-nitrophenol					
3,3'-dichlorobenzidine					
3,3'-dimethylbenzidine 3-methylcholanthrene					
3-nitroaniline					
4,4´-ddd					
4,4´-dde 4,4´-ddt					
4,4 -aat 4,6-dinitro-2-methylphenol					
4-aminobiphenyl					
4-bromophenyl phenyl ether					
4-chloro-3-methylphenol 4-chloroaniline					
4-chlorophenyl phenyl ether					
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5
4-nitroaniline					
4-nitrophenol 5-nitro-o-toluidine					
7,12-dimethylbenz(a)anthracene					
Acenaphthene					
Acetana	-10.0	-10 O	-10.0	-10.0	-10.0
Acetone Acetonitrile	<10.0	<10.0	<10.0	<10.0	<10.0
Acetophenone					
Acrolein					
Acrylonitrile Aldrin	<5	<5	<5	<5	<5
Aldrin Alkalinity, as caco3		816		652	1170
Allyl chloride		3.0		332	
Alpha-bhc					

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-49

Benzze Benzze ug/L 2.9 2.3 1.9 2.6 3.5 3.0 1.2	Constituents	Units	10/16/2014	4/6/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	1/9/2018
Arcobin 1916 Ugil. Arcobin 1921 Ugil. Arcobin 1922 Ugil. Arcobin 1923 Ugil. Arcobin 1924 Arcobin 1925 Ugil. Arcobin 1926 Ugil.			_	_	_	_	_	_	_	
Arochior 1232			<2	<2	<2	<2	<2	<2	<2	
Arochlor (1242 ug)L Arochlor (1242 ug)L Arochlor (1242 ug)L Arochlor (1248 ug)L Arochlor (1248 ug)L Arochlor (1269 ug)L Arsenic, Iotal Arsenic, Iotal Arsenic, Iotal Arsenic, Iotal Barium, Iotal Bari										
Arochior 1242 Ugil. Arochior 1248 Ugil. Arochior 1254 Ugil. Arochior 1255 Ugil. Arochior 1255 Ugil. Arochior 1255 Ugil. Arochior 1255 Ugil. Banzo(gh)propee Ugil.										
Arochior 1245										
Arochior 1280 ug/L ug/L 2.9 ug/L 2.9 ug/L 2.9 ug/L 2.8 3.5 3.0 1.2 Benzo (a) phyrene ug/L ug										
Arcohnol 1260										
Azobenzene Ugit S44 S44 S71 S16 747 457 695 Serium, total Ugit S49 S29 S3 1.9 2.6 3.5 3.0 1.2 Serium, total Ugit Ser	Arochlor 1260									
Barium, total			42.7	82.1	41.6	125.0	118.0	134.0	10.4	
Benzze						-10			005	200
Benzo(a)anthracene										623
Benzo(a)pyrene			2.9	2.3	1.9	2.0	3.5	3.0	1.2	
Benzo(pi)fluoranthene										
Benzo(gh, p)perylene ug/L Benzyl alcohol ug/L Benzyl alcohol ug/L Benzyl alcohol ug/L Benzyl alcohol ug/L										
Benyrijum, total ug/L ug										
Berylium, total Ug/L C4 C4 C4 C4 C4 C4 C4 C										
Beta-bhc ug/L										
Bis (2-chloroethoxy) methane ug/L Bis (2-chloroethy) ether ug/L Bis (2-chloroethy) ether ug/L Bis (2-chloroethy) ether ug/L ug/L <10 65 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1			<4	<4	<4	<4	<4	<4	<4	
Bis(2-chlorosptyn) ether ug/L Bis(2-chlorosptyn) ether ug/L sis(2-chlorosptyn) ether sis(2-chlorosptyn) ether ug/L sis(2-chlorosptyn) ether ug/L sis(2-chlorosptyn) ether sis(2-chlorosptyn) ether ug/L eth										
Bisic2-ethylhyryl) pithalate ug/L stock										
Bisigle-ethylnexyl) phthalate ugil. <10 65 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <										
Bromochioromethane ug/L 1 1 1 1 1 1 1 1 1			<10	65	<10	<10	<10	<10		
Bromoform Ug/L									<1	
Brommethane Ug/L Cadmium, total Ug/L Catmium, total Ug/L Chlorobenzene Ug/L Chlorobe					<1			<1		
Buty benzyl phthalate										
Cadinium, total Ug/L Calcium, total Ug/L Calcium, total Ug/L Caton tetrachloride Ug/L			<1	<1	<1	<1	<1	<1	<1	
Calcium, total					. 0	. 0	. 0			
Carbon disultifide						<.8		<.8	<.8	
Carbon tetrachloride	1 = /					<1		<1	<1	
Chloridane										
Chlorobenzene				-			·			
Chlorobenzilate	Chloride									
Chloroethane			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Chloroform			40.0	0.0	0.7	0.0	44.0	40.4	0.7	
Chloromethane										
Chloroprene										
Chromium, total Ug/L Chysene Ug/				``	, ,	` '	` '	`'	` '	
Chrysene			<8	<8	<8	<8	<8	<8	<8	
Cis-1,3-dichloropropene		ug/L								
Cobper, total										
Copper, total										
Cyanide, total										
Delta-bhc ug/L ug/L			<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	
Diallate										
Dibenzo(a,h)anthracene										
Dibenzofuran Ug/L Ug/L C1 C1 C1 C1 C1 C1 C1 C										
Dibromomethane	Dibenzofuran									
Dichlorodifluoromethane			<1	<1	<1	<1	<1	<1	<1	
Dieldrin ug/L Diethyl phthalate ug/L Dimethoate ug/L Dimethylphthalate ug/L Din-butyl phthalate ug/L Di-n-butyl phthalate ug/L Di-n-octyl phthalate ug/L Dinoseb ug/L Diphenylamine ug/L Disulfoton ug/L Endosulfan i ug/L Endosulfan ii ug/L Endosulfan sulfate ug/L Endrin ug/L Endrin ug/L Endrin diehyde ug/L Ethane ug/L Ethene	Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
Diethyl phthalate ug/L Dimethoate ug/L Dimethylphthalate ug/L Di-n-butyl phthalate ug/L Di-n-botyl phthalate ug/L Dinoseb ug/L Diphenylamine ug/L Disulfoton ug/L Endosulfan i ug/L Endosulfan sulfate ug/L Endosulfan sulfate ug/L Endosulfan sulfate ug/L Endin ug/L Endosulfan sulfate ug/L Endosulfan sulfate ug/L Endosulfan sulfate ug/L Endosulfan ug/L Endosulfan sulfate ug/L Endrin ug/L Endrin ug/L Endrin ug/L Ethane ug/L										
Dimethoate										
Dimethylphthalate		ug/L								
Di-n-butyl phthalate ug/L		ug/L								
Di-n-octyl phthalate ug/L										
Dinoseb ug/L ug/L										
Disulfoton ug/L		ug/L								
Endosulfan i										
Endosulfan ii										
Endosulfan sulfate ug/L Endrin ug/L Endrin aldehyde ug/L Ethane ug/L Ethene ug/L										
Endrin										
Endrin aldehyde										
Ethane ug/L Lethene ug/L										
Ethene ug/L										
Ethyl methacrylate ug/L		ug/L								
	Ethyl methacrylate	ug/L								
Ethyl methanesulfonate ug/L		ug/L			ر ما					
Ethylbenzene		ug/L	<1	<1	<1	<1	<1	<1	<1	
Famphur ug/L										

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-49

Constituents	4/17/2018	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022
Anthracene Antimony, total	<2	<8 <2	<2	<2	<2	<2	<2	<2	<2
Anumony, total Arochlor 1016	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<.1	~2	~2	~2	~2	\ \2	\	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Arochlor 1221		<.2							
Arochlor 1232		<.2							
Arochlor 1242		<.2							
Arochlor 1248 Arochlor 1254		<.2 <.1							
Arochlor 1260		<.1							
Arsenic, total	99.1	294.0	167.0	137.0	206.0	76.4	132.0	26.0	41.5
Azobenzene	304	<8 283	409	380	390	479	562	526	237
Barium, total Benzene	1.9	2.5	4.3	3.5	3.7	2.0	2.8	1.9	2.4
Benzo(a)anthracene		<8		0.0	0	2.0			
Benzo(a)pyrene		<8							
Benzo(b)fluoranthene Benzo(g,h,i)perylene		<8 <8							
Benzo(g,ff,f)perylene Benzo(k)fluoranthene		<8							
Benzyl alcohol		<8							
Beryllium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Beta-bhc Bis (2-chloroethoxy) methane		<.05 <8							
Bis(2-chloroethyl) ether		<8							
Bis(2-chloroisopropyl) ether		<8							
Bis(2-ethylhexyl) phthalate	.	<6							
Bromochloromethane Bromodichloromethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Bromoform	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Butyl benzyl phthalate		<8	- 0	- 0	- 0	- 0	۰,		- 0
Cadmium, total Calcium, total	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Carbon disulfide	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorida		<.1							
Chloride Chlorobenzene	<1.0	<1.0	1.1	<1.0	1.1	1.0	1.0	1.0	<1.0
Chlorobenzilate		<8							
Chloroethane	5.5	11.0	8.2	10.2	9.4	9.8	6.8	7.3	5.6
Chloroform Chloromethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Chloroprene	`'	<1	``	`			`'	``	` '
Chromium, total	<8	<8	<8	<8	<8	<8	<8	<8	<8
Chrysene	2.7	<8 <1.0	2.6	-10	1.1	6.2	-10	2.0	-10
Cis-1,2-dichloroethylene Cis-1,3-dichloropropene	2.7	<1.0 <1	2.6 <1	<1.0 <1	1.1 <1	6.2 <1	<1.0 <1	2.0 <1	<1.0 <1
Cobalt, total	130.0	95.5	62.6	108.0	75.1	30.1	115.0	17.3	63.3
Copper, total	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Cyanide, total Delta-bhc		<.005 <.05							
Diallate		<8							
Dibenzo(a,h)anthracene		<8							
Dibenzofuran Dibromochloromethane		<8 <1	<1	24	24		<1		
Dibromocnioromethane Dibromomethane	<1 <1	<1	<1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1
Dichlorodifluoromethane	"	<1	''						'
Dieldrin		<.05							
Diethyl phthalate Dimethoate		<8 <.4							
Dimethoate Dimethylphthalate		<.4 <8							
Di-n-butyl phthalate		<8							
Di-n-octyl phthalate		<8							
Dinoseb Diphenylamine		<.5 <8							
Disulfoton		<.4							
Endosulfan i		<.05							
Endosulfan ii		<.05							
Endosulfan sulfate Endrin		<.05 <.05							
Endrin aldehyde		<.05							
Ethane						<10	<13		
Ethene		-40				<10	<13		
Ethyl methacrylate Ethyl methanesulfonate		<10 <8							
Ethyl methanesulionate Ethylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Famphur		<.4			·	·			'
Fluoranthene		<8							

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-49

Constituents	10/25/2022	4/11/2023	10/13/2023	4/17/2024	10/15/2024
Anthracene	<2	<2	<2	<2	<2
Antimony, total Arochlor 1016	^2	< 2	_ ^2	\ 2	^2
Arochlor 1221					
Arochlor 1232					
Arochlor 1242					
Arochlor 1248 Arochlor 1254					
Arochlor 1260					
Arsenic, total	135.0	278.0	44.5	53.7	520.0
Azobenzene					
Barium, total	473	275	499	429	213
Benzene Benzo(a)anthracene	2.4	2.9	1.1	<1.0	3.7
Benzo(a)pyrene					
Benzo(b)fluoranthene					
Benzo(g,h,i)perylene					
Benzo(k)fluoranthene					
Benzyl alcohol Beryllium, total	<4	<4	<4	<4	<4
Beta-bhc	`~	~ 4	` ` `	`~	`~
Bis (2-chloroethoxy) methane					
Bis(2-chloroethyl) ether					
Bis(2-chloroisopropyl) ether					
Bis(2-ethylhexyl) phthalate Bromochloromethane	<1	<1	<1	<1	<1
Bromocnioromethane	<1 <1	<1 <1	<1	<1 <1	<1 <1
Bromoform	<1	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1	<1
Butyl benzyl phthalate		_			
Cadmium, total	<.8	<.8	<.8	.9	<.8
Calcium, total Carbon disulfide	<1	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1	<1
Chlordane					
Chloride					
Chlorobenzene	1.1	<1.0	1.0	<1.0	1.1
Chlorobenzilate Chloroethane	7.4	6.6	6.6	4.6	5.5
Chloroform	7. 4 <1	6.6 <1	0.0 <1	4.0 <1	5.5 <1
Chloromethane	<1	<1	<1	<1	<1
Chloroprene					
Chromium, total	<8	<8	<8	<8	<8
Chrysene Cis-1,2-dichloroethylene	1.6	<1.0	2.1	2.4	<1.0
Cis-1,3-dichloropropene	<1.0	<1.0 <1	2.1 <1	2. 4 <1	<1.0 <1
Cobalt, total	30.0	65.5	16.2	5.8	66.9
Copper, total	<4.0	<4.0	<4.0	7.5	<4.0
Cyanide, total					
Delta-bhc					
Diallate Dibenzo(a,h)anthracene					
Diberizo(a,rr)aritiracerie Dibenzofuran					
Dibromochloromethane	<1	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1	<1
Dichlorodifluoromethane					
Dieldrin Diethyl phthalate					
Dimethoate					
Dimethylphthalate					
Di-n-butyl phthalate					
Di-n-octyl phthalate					
Dinoseb					
Diphenylamine Disulfoton					
Endosulfan i					
Endosulfan ii					
Endosulfan sulfate					
Endrin					
Endrin aldehyde Ethane					<5
Ethene					<5 <5
Ethyl methacrylate					-5
Ethyl methanesulfonate					
Ethylbenzene	<1	<1	<1	<1	<1
Famphur					
Fluoranthene					

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-49

Constituents	Units	10/16/2014	4/6/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	1/9/2018
Fluorene	ug/L								
Gamma-bhc (lindane)	ug/L								
Heptachlor	ug/L								
Heptachlor epoxide Hexachlorobenzene	ug/L ug/L								
Hexachlorobutadiene	ug/L ug/L								
Hexachlorocyclopentadiene	ug/L ug/L								
Hexachloroethane	ug/L								
Hexachloropropene	ug/L								
Indeno(1,2,3-cd)pyrene	ug/L								
Isobutanol	mg/L								
Isodrin	ug/L								
Isophorone	ug/L								
Isosafrole Kepone	ug/L ug/L								
Lead, total	ug/L ug/L	<4	<4	<4	<4	<4	<4	<4	
Magnesium, total	mg/L	104	112	106		115	"		
Mercury, total	ug/L								
Methacrylonitrile	ug/L								
Methane	ug/L								
Methapyrilene	ug/L								
Methoxychlor	ug/L			. 4. 1					
Methyl methografic	ug/L	<1	<1	<1	<1	<1	<1	<1	
Methyl methacrylate Methyl methanesulfonate	ug/L ug/L								
Methyl methanesulfonate Methyl parathion	ug/L ug/L								
Methylene chloride	ug/L ug/L	<5	<5	<5	<5	<5	<5	<5	
Naphthalene	ug/L		.5	.0	,,,				
Nickel, total	ug/L	18.8	24.0	11.3	31.8	15.4	27.5	5.1	
Nitrobenzene	ug/L								
Nitrogen, ammonia	mg/L	<1	<1	<1		<1			
N-nitrosodiethylamine	ug/L								
N-nitrosodimethylamine	ug/L								
N-nitrosodi-n-butylamine	ug/L								
N-nitroso-di-n-propylamine N-nitrosodiphenylamine	ug/L ug/L								
N-nitrosomethylethylamine	ug/L ug/L								
N-nitrosopiperidine	ug/L								
N-nitrosopyrrolidine	ug/L								
O,o,o-triethyl phosphorothioate	ug/L								
O-toluidine	ug/L								
Parathion	ug/L								
P-dimethylaminoazobenzene	ug/L								
Pentachlorobenzene	ug/L								
Pentachloronitrobenzene (pcnb)	ug/L ug/L								
Pentachlorophenol pH	pH								
Phenacetin	ug/L								
Phenanthrene	ug/L								
Phenol	ug/L								
Phorate	ug/L								
Potassium, total	mg/L	<1	<1	1		1			
Pronamide	ug/L								
Propionitrile	ug/L								
Pyrene Safrole	ug/L								
Sarrole Selenium, total	ug/L ug/L	<4	<4	<4	<4	<4	<4	<4	
Silver, total	ug/L ug/L	<4	<4	<4	<4	<4	<4	<4	
Sodium, total	mg/L	11.8	11.9	11.0		11.7	"		
Solids, total dissolved	mg/L	995	984	1010		1290			
Solids, total suspended	mg/L	46	40						
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Sulfate	mg/L	8.4	3.0	6.3		5.2			
Sulfide, total	mg/L			. 4. 1					
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Thallium, total Thionazin	ug/L	<4	<4	<1	<4	<4	<4	<4	
Tinonazin Tin, total	ug/L ug/L								
Toluene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	
Toxaphene	ug/L	`'	*1	*1	1	`'	`'		
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5	<5	
Trichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Trichlorofluoromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20	<20	
Vinyl acetate	ug/L	<5	<5	<5	<5	<5	<5	<5	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-49

Constituents	4/17/2018	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022
Fluorene		<8							
Gamma-bhc (lindane)		<.05							
Heptachlor		<.05							
Heptachlor epoxide		<.05							
Hexachlorobenzene		<.05 <8							
Hexachlorobutadiene Hexachlorocyclopentadiene		<8							
Hexachloroethane		<8							
Hexachloropropene		<8							
Indeno(1,2,3-cd)pyrene		<8							
Isobutanol		<1							
Isodrin		<8							
Isophorone		<8							
Isosafrole		<8							
Kepone		<8							
Lead, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Magnesium, total									
Mercury, total		<.5							
Methacrylonitrile		<1							
Methane		_				737	9660		
Methapyrilene		<8							
Methoxychlor Method india		<.05	ا مر				ي ا		
Methyl iodide	<1	<1 <1	<1	<1	<1	<1	<1	<1	<1
Methyl methacrylate Methyl methanesulfonate		<8							
Methyl parathion		<.4							
Methylene chloride	<5	<.4 <5	<5	<5	<5	<5	<5	<5	<5
Naphthalene	``	<8		-5	-5				"3
Nickel, total	41.1	40.0	28.1	44.7	35.2	13.1	53.5	10.7	28.1
Nitrobenzene	''''	<8			33.2		55.0		
Nitrogen, ammonia									
N-nitrosodiethylamine		<8							
N-nitrosodimethylamine		<8							
N-nitrosodi-n-butylamine		<8							
N-nitroso-di-n-propylamine		<8							
N-nitrosodiphenylamine		<8							
N-nitrosomethylethylamine		<8							
N-nitrosopiperidine		<8							
N-nitrosopyrrolidine		<8							
O,o,o-triethyl phosphorothioate		<.4							
O-toluidine Parathion		<8 <.4							
P-dimethylaminoazobenzene		<8							
Pentachlorobenzene		<8							
Pentachloronitrobenzene (pcnb)		<8							
Pentachlorophenol		<8							
pH						6.4	6.7		6.5
Phenacetin		<8							
Phenanthrene		<8							
Phenol		<8							
Phorate		<.4							
Potassium, total									
Pronamide		<8							
Propionitrile		<10							
Pyrene		<8							
Safrole	ا م	<8	ا م ر						
Selenium, total	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4
Silver, total Sodium, total		<4	<4	<4	<4	<4	<4	<4	<4
Sodium, total Solids, total dissolved									
Solids, total dissolved Solids, total suspended									
Styrene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulfate	"	``	''	` '	``	`'	''		"
Sulfide, total		<.1							
Tetrachloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	<4	<4	<2	<2	<2	<2	<2	<2	<2
Thionazin		<.4	_	_	_		_	_	
Tin, total		<20							
Toluene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toxaphene		<.2							
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	<5	<5	<5	<5	<5	<5	<5	<5	<5

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-49

Constituents	10/25/2022	4/11/2023	10/13/2023	4/17/2024	10/15/2024
Fluorene					
Gamma-bhc (lindane) Heptachlor					
Heptachlor epoxide					
Hexachlorobenzene					
Hexachlorobutadiene					
Hexachlorocyclopentadiene					
Hexachloroethane Hexachloropropene					
Indeno(1,2,3-cd)pyrene					
Isobutanol					
Isodrin					
Isophorone					
Isosafrole Kepone					
Lead, total	<4	<4	<4	<4	<4
Magnesium, total					
Mercury, total					
Methacrylonitrile					4770
Methane Methapyrilene					4770
Methoxychlor					
Methyl iodide	<1	<1	<1	<1	<1
Methyl methacrylate					
Methyl methanesulfonate					
Methyl parathion Methylene chloride	<5	<5	<5	<5	<5
Naphthalene	~5	\0	\5	\0	_5
Nickel, total	13.9	27.5	10.0	16.2	33.9
Nitrobenzene					
Nitrogen, ammonia					
N-nitrosodiethylamine N-nitrosodimethylamine					
N-nitrosodi-n-butylamine					
N-nitroso-di-n-propylamine					
N-nitrosodiphenylamine					
N-nitrosomethylethylamine					
N-nitrosopiperidine					
N-nitrosopyrrolidine O,o,o-triethyl phosphorothioate					
O-toluidine					
Parathion					
P-dimethylaminoazobenzene					
Pentachlorobenzene					
Pentachloronitrobenzene (pcnb) Pentachlorophenol					
pH		6.5		6.5	6.3
Phenacetin					-
Phenanthrene					
Phenol					
Phorate Potassium, total					
Pronamide					
Propionitrile					
Pyrene					
Safrole	-		_		_
Selenium, total	<4 <4	<4 <4	<4 <4	<4 <4	<4
Silver, total Sodium, total	<4	<4	<4	<4	<4
Solidin, total					
Solids, total suspended					
Styrene	<1	<1	<1	<1	<1
Sulfate					
Sulfide, total Tetrachloroethylene	<1	<1	<1	<1	<1
Thallium, total	<2	<2	<2	<2	<2
Thionazin	_	_	_	_	_
Tin, total					
Toluene	<1	<1	<1	<1	<1
Toxaphene	<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene Trans-1,3-dichloropropene	<1	<1 <1	<1	<1 <1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1	<1
Trichlorofluoromethane	<1	<1	<1	<1	<1
Vanadium, total	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5
Vinyl acetate	<5	<u> </u>	<5	\ 5	<5

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Constituents	Units	10/16/2014	4/6/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	1/9/2018
Vinyl chloride	ug/L	4.6	3.1	3.1	4.0	5.1	5.5	3.2	
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2	<2	
Zinc, total	ug/L	<20.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Constituents	4/17/2018	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022
Vinyl chloride	1.1	2.6	2.8	1.4	1.1	2.4	<1.0	<1.0	<1.0
Xylenes, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	<8.0	<8.0	<20.0	39.6	<20.0	<20.0	<20.0	<20.0	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Constituents	10/25/2022	4/11/2023	10/13/2023	4/17/2024	10/15/2024
Vinyl chloride	<1.0	<1.0	<1.0	<1.0	<1.0
Xylenes, total	<2	<2	<2	<2	<2
Zinc, total	<20.0	<20.0	<20.0	22.7	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-54

Constituents	Units	10/16/2014	4/6/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
(3 4)-methylphenol	ug/L								
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L	17.5	13.4	12.2	11.0	13.0	10.4	11.2	7.8
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane 1,2,4,5-tetrachlorobenzene	ug/L ug/L	\ \	<1	<u> </u>	<u> </u>	_ ``	``	<u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1,2,4,5-tetrachiorobenzene	ug/L ug/L								
1,2-dibromo-3-chloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1.2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dinitrobenzene	ug/L								
1,3,5-trinitrobenzene	ug/L								
1,3-dichlorobenzene	ug/L								
1,3-dichloropropane	ug/L								
1,3-dinitrobenzene	ug/L	0.0	0.4	0.0	0.4		0.7	0.5	4.0
1,4-dichlorobenzene	ug/L	2.3	2.1	2.3	2.1	2.3	2.7	3.5	4.3
1,4-naphthoquinone 1,4-phenylenediamine	ug/L								
1,4-pnenylenediamine 1-naphthylamine	ug/L ug/L								
2,2-dichloropropane	ug/L ug/L								
2,3,4,6-tetrachlorophenol	ug/L ug/L								
2,4,5-t	ug/L								
2,4,5-tp (silvex)	ug/L								
2,4,5-trichlorophenol	ug/L								
2,4,6-trichlorophenol	ug/L								
2,4-d	ug/L								
2,4-dichlorophenol	ug/L								
2,4-dimethylphenol	ug/L								
2,4-dinitrophenol	ug/L								
2,4-dinitrotoluene	ug/L								
2,6-dichlorophenol	ug/L								
2,6-dinitrotoluene	ug/L								
2-acetylaminofluorene	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
2-butanone (mek) 2-chloronaphthalene	ug/L ug/L	\3	\ 5	\ 5	\ 5	\	\ \	\5	\5
2-chlorophenol	ug/L ug/L								
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
2-methylnaphthalene	ug/L		· ·						
2-methylphenol	ug/L								
2-naphthylamine	ug/L								
2-nitroaniline	ug/L								
2-nitrophenol	ug/L								
3,3'-dichlorobenzidine	ug/L								
3,3'-dimethylbenzidine	ug/L								
3-methylcholanthrene	ug/L								
3-nitroaniline	ug/L								
4,4´-ddd	ug/L								
4,4'-dde 4,4'-ddt	ug/L								
4,4 -dat 4,6-dinitro-2-methylphenol	ug/L ug/L								
4,0-diffitio-2-methylphenol	ug/L ug/L								
4-bromophenyl phenyl ether	ug/L ug/L								
4-chloro-3-methylphenol	ug/L								
4-chloroaniline	ug/L								
4-chlorophenyl phenyl ether	ug/L								
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
4-nitroaniline	ug/L								
4-nitrophenol	ug/L								
5-nitro-o-toluidine	ug/L								
7,12-dimethylbenz(a)anthracene	ug/L								
Acenaphthene	ug/L								
Acetana	ug/L	-400	-40.0	-40.0	-40.0	-40.0	-400	40.4	40.0
Acetone Acetonitrile	ug/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	18.1	<10.0
II .	ug/L								
Acetophenone Acrolein	ug/L ug/L								
Acrolein Acrylonitrile	ug/L ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Adrin	ug/L ug/L	```	~3	-3	~3	```	```	~5	```
Alkalinity, as caco3	mg/L	911	913	704		700			
Allyl chloride	ug/L	""	0.0			.50			
Alpha-bhc	ug/L								
•									

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-54

Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022	10/25/2022
(3 4)-methylphenol	<8								
1,1,1,2-tetrachloroethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,1,2,2-tetrachloroethane	<1 <1	<1	<1 <1	<1 <1	<1	<1	<1	<1	<1
1,1,2,2-tetracriloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1.1-dichloroethane	3.8	4.7	2.9	<1.0	1.9	<1.0	1.2	<1.0	1.1
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloropropene	<1								
1,2,3-trichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,4,5-tetrachlorobenzene	<8								
1,2,4-trichlorobenzene	<1 <1	<1	<1	<5	<5	<5	<5	<5	
1,2-dibromo-3-chloropropane	<1 <1	<1 <1	<1	<5 <1	<5 <1	<1	<1	<1	<5 <1
1.2-dibromoetriane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	<1	<1	- <1	- <1	<1	<1	<1	<1	<1
1,2-dichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dinitrobenzene	<8								
1,3,5-trinitrobenzene	<8								
1,3-dichlorobenzene	<1 <1								
1,3-dichloropropane 1,3-dinitrobenzene	<8								
1,4-dichlorobenzene	<1.0	2.5	3.5	<1.0	3.8	2.9	2.8	2.4	3.1
1,4-naphthoquinone	<8	2.3	0.0	1.0	0.0				
1,4-phenylenediamine	<8								
1-naphthylamine	<8								
2,2-dichloropropane	<1								
2,3,4,6-tetrachlorophenol	<8								
2,4,5-t 2,4,5-tp (silvex)	<.5 <.5								
2,4,5-trichlorophenol	<8								
2,4,6-trichlorophenol	<8								
2,4-d	<2								
2,4-dichlorophenol	<8								
2,4-dimethylphenol	<8								
2,4-dinitrophenol	<8								
2,4-dinitrotoluene 2,6-dichlorophenol	<8 <8								
2,6-dinitrotoluene	<8								
2-acetylaminofluorene	<8								
2-butanone (mek)	<5	<5	<5	<5	<5	<5	<5	<10	<10
2-chloronaphthalene	<8								
2-chlorophenol	<8	_	-	_	_	_	_	_	_
2-hexanone (mbk)	<5 <8	<5	<5	<5	<5	<5	<5	<5	<5
2-methylnaphthalene 2-methylphenol	<8								
2-naphthylamine	<8								
2-nitroaniline	<8								
2-nitrophenol	<8								
3,3'-dichlorobenzidine	<8								
3,3'-dimethylbenzidine	<8								
3-methylcholanthrene	<8								
3-nitroaniline 4,4'-ddd	<8 <.05								
4,4'-dde	<.05								
4,4'-ddt	<.05								
4,6-dinitro-2-methylphenol	<8								
4-aminobiphenyl	<8								
4-bromophenyl phenyl ether	<8								
4-chloro-3-methylphenol 4-chloroaniline	<8 <8								
4-chlorophenyl phenyl ether	<8								
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-nitroaniline	<8				· ·				
4-nitrophenol	<8								
5-nitro-o-toluidine	<8								
7,12-dimethylbenz(a)anthracene	<8								
Acenaphthene Acenaphthylene	<8 <8								
Acetone	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Acetonie	<10.0	~10.0	~10.0	~10.0	~10.0	10.0	10.0	10.0	10.0
Acetophenone	<8								
Acrolein	<10								
Acrylonitrile	<5	<5	<5	<5	<5	<5	<5	<5	<5
Aldrin	<.05								
Alkalinity, as caco3	ا مدر				624	581		670	
Allyl chloride Alpha-bhc	<1 <.05								
лірпа-впс	<.05						<u> </u>	l	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-54

Constituents	4/11/2023	10/13/2023	4/17/2024	10/15/2024
(3 4)-methylphenol				
1,1,1,2-tetrachloroethane	<1 <1	<1 <1	<1 <1	<1 <1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1	<1
1,1-dichloroethane	<1.0	<1.0	<1.0	<1.0
1,1-dichloroethylene	<1	<1	<1	<1
1,1-dichloropropene	<1	<1	<1	<1
1,2,3-trichloropropane 1,2,4,5-tetrachlorobenzene	_ `	<u> </u>	`'	`
1.2.4-trichlorobenzene				
1,2-dibromo-3-chloropropane	<5	<5	<5	<5
1,2-dibromoethane	<1	<1	<1	<1
1,2-dichlorobenzene	<1	<1	<1	<1
1,2-dichloroethane 1,2-dichloropropane	<1 <1	<1 <1	<1 <1	<1 <1
1,2-dicitioroproparte	`'	`'	`'	`'
1,3,5-trinitrobenzene				
1,3-dichlorobenzene				
1,3-dichloropropane				
1,3-dinitrobenzene	1.6	4.4	2.2	2.0
1,4-dichlorobenzene 1,4-naphthoguinone	1.6	4.1	2.3	2.9
1,4-phenylenediamine				
1-naphthylamine				
2,2-dichloropropane				
2,3,4,6-tetrachlorophenol				
2,4,5-t 2,4,5-tp (silvex)				
2,4,5-trichlorophenol				
2,4,6-trichlorophenol				
2,4-d				
2,4-dichlorophenol				
2,4-dimethylphenol				
2,4-dinitrophenol 2,4-dinitrotoluene				
2,6-dichlorophenol				
2,6-dinitrotoluene				
2-acetylaminofluorene				
2-butanone (mek)	<10	<10	<10	<10
2-chloronaphthalene 2-chlorophenol				
2-hexanone (mbk)	<5	<5	<5	<5
2-methylnaphthalene			١	
2-methylphenol				
2-naphthylamine				
2-nitroaniline				
2-nitrophenol 3,3´-dichlorobenzidine				
3,3'-dimethylbenzidine				
3-methylcholanthrene				
3-nitroaniline				
4,4´-ddd				
4,4'-dde 4,4'-ddt				
4,4 -aat 4,6-dinitro-2-methylphenol				
4-aminobiphenyl				
4-bromophenyl phenyl ether				
4-chloro-3-methylphenol				
4-chloroaniline				
4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk)	<5	<5	<5	<5
4-nitroaniline	``	-5	~3	-3
4-nitrophenol				
5-nitro-o-toluidine				
7,12-dimethylbenz(a)anthracene				
Acenaphthylone				
Acenaphthylene Acetone	<10.0	<10.0	<10.0	<10.0
Acetonie	\ \ \ \ \	~10.0	~10.0	~10.0
Acetophenone				
Acrolein				
Acrylonitrile	<5	<5	<5	<5
Aldrin	585		512	612
Alkalinity, as caco3 Allyl chloride	565		512	012
Alpha-bhc				

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-54

Animony, total Anchor 1016 April	Constituents	Units	10/16/2014	4/6/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
Arcelate 17016 Arcelate 17016 Arcelate 17016 Arcelate 17012 Arcela	Anthracene	ug/L								
Arcchior 1221	Antimony, total		<2	<2	<2	<2	<2	<2	<2	<2
Arcohor 1232 Arcohor 1242 UgL Arcohor 1244 Arcohor 1254 Arcohor 1250 UgL Benzo(a) alphraroene UgL Benzo(a) Ugl-Benzo(a) Ugl-Benzo(Arochlor 1016	ug/L								
Arcachor 12428	Arochlor 1221	ug/L								
Arcachor 1248	Arochlor 1232	ug/L								
Arochior 1254 Arochior 1250 Quick Arochior 1250 Quick Azobenzone Quick Benrum, total Q	Arochlor 1242									
Arcenic 1260 Arcen	Arochlor 1248	ug/L								
Arsenic, total Arsenic, total Arsenic, total Arsenic, total Baltium, total Baltium, total Benzo(a) anthreacene Ugl. Benzo(a) aphrene Ugl. Benzo(b) Aphrene Ugl. Benzo(b) Microartholia Ugl. Siz (-chroartholia) Ugl. Siz (
Azobenzene										
Barium, total Ug/L 444 578 445 493 537 454 487 486 886 886 686			<4.0	<4.0	<4.0	<4.0	5.9	<4.0	4.2	<4.0
Benzone Benz			444	F70	445	400	507	454	407	400
Benzo(a)phyrene										
Benzo(a) pyrone			ı	<u> </u>	<u> </u>	<u> </u>	'	``	'	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Benzo(ghi/proriente ug/L										
Benzo(s, h), perylene ug/L										
Benzy (altrohot)										
Benzyla i alcohol Septilum										
Benyllium, total Ug/L C4 C4 C4 C4 C4 C4 C4 C										
Bela-bhc			<4	<4	<4	<4	<4	<4	<4	<4
Bis (2-hioroethoxy) methane Bis (2-hioroethy) ether Bis (2-hioroethy) pithalate Ug/L C41	Beta-bhc									
Bis(2-chinoisopropy) ether Bis(2-chinoisopropy) phthalate Ug/L <1	Bis (2-chloroethoxy) methane									
Bis(2-chinoisopropy) ether Bis(2-chinoisopropy) phthalate Ug/L <1	Bis(2-chloroethyl) ether	ug/L								
Bisity-thy-thy) prinhalate ug/L <17 <10 <10 <16 <10 <10 Bisity-thy-thy) prinhalate ug/L <1 <1 <1 <1 <1 <1 <1 <	Bis(2-chloroisopropyl) ether	ug/L								
Bromotichloromethane	Bis(2-ethylhexyl) phthalate	ug/L								
Bromoform Ug/L C1 C1 C1 C1 C1 C1 C1 C	Bromochloromethane									
Bromomethane	Bromodichloromethane									I I
Buty henzyl phthalate										
Cadmium, total Ug/L Calcium, total Ug/L Carbon disulfide U			<1	<1	<1	<1	<1	<1	<1	<1
Calcium, total				. 0	. 0	. 0				
Carbon disulfide						<.8		<.8	<.8	<.8
Carbon tetrachloride						_1				
Chloridane										I I
Chloride			` '	\ 1	`1			`'		`'
Chlorobenzale			<10.0	<10.0	<10.0		3.2			
Chlorobenzilate						<1		<1	<1	<1
Chloroethane				••		•				
Chloroform			20.6	14.1	13.6	5.8	13.7	10.5	11.4	8.5
Chloromethane										
Chloroprene ug/L vg/L vg	Chloromethane		<1	<1	<1	<1	<1	<1	<1	
Chrysene	Chloroprene									
Cis-1,2-dichloroethylene	Chromium, total	ug/L	<8	<8	<8	<8>	<8	<8	<8	<8
Cis-1,3-dichloropropene	Chrysene									
Cobalt, total										
Copper, total Ug/L Cyanide, total mg/L Ug/L Ug										
Cyanide, total mg/L										
Delta-bhc Ug/L Dibanzo(a,h)anthracene Ug/L Dibenzo(a,h)anthracene Ug/L Dibenzofuran Ug/L Dibenzofuran Ug/L C1 C1 C1 C1 C1 C1 C1 C			<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Diallate										
Dibenzo(a,h)anthracene										
Diboracofuran										
Dibromochloromethane	,									
Dibromomethane			<1	<1	<1	<1	-1	<1	<1	<1
Dichlorodifluoromethane										
Dieldrin		ug/L	·	•	•	·			·	•
Diethyl phthalate	Dieldrin									
Dimethoate	Diethyl phthalate									
Dimethylphthalate	Dimethoate									
Di-n-butyl phthalate	Dimethylphthalate									
Dinoseb Ug/L	Di-n-butyl phthalate	ug/L								
Diphenylamine	Di-n-octyl phthalate									
Disulfoton ug/L Endosulfan i ug/L Endosulfan ii ug/L Endosulfan sulfate ug/L Endorin sulfate ug/L Endrin aldehyde ug/L Ethane ug/L Ethene ug/L Ethyl methacrylate ug/L Ethyl methanesulfonate ug/L Ethylbenzene ug/L Famphur ug/L										
Endosulfan i ug/L										
Endosulfan ii ug/L	Disulfoton									
Endosulfan sulfate										
Endrin										
Endrin aldehyde										
Ethane ug/L Ethene ug/L Ethyl methacrylate ug/L Ethyl methanesulfonate ug/L Ethylbenzene ug/L Famphur ug/L										
Ethene ug/L Ethyl methacrylate ug/L Ethyl methanesulfonate ug/L Ethylbenzene ug/L Famphur ug/L										
Ethyl methacrylate										
Ethyl methanesulfonate ug/L										
Ethylbenzene ug/L <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1										
Famphur ug/L		ug/L			24	_4				
				<1	<1	<1	<1	<1	<1	<1
	Fampnur Fluoranthene	ug/L ug/L								

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-54

Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022	10/25/2022
Anthracene	<8								
Antimony, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arochlor 1016	<.1								
Arochlor 1221	<.2								
Arochlor 1232	<.2								
Arochlor 1242	<.2								
Arochlor 1248	<.2								
Arochlor 1254 Arochlor 1260	<.1 <.1								
Arsenic, total	<4.0	6.0	11.3	46.4	7.6	4.9	8.7	6.7	5.0
Azobenzene	<8	0.0	11.0	40.4	7.0	7.0	0.7	0.7	0.0
Barium, total	373	439	354	528	424	441	408	397	438
Benzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Benzo(a)anthracene	<8								
Benzo(a)pyrene	<8								
Benzo(b)fluoranthene	<8								
Benzo(g,h,i)perylene Benzo(k)fluoranthene	<8 <8								
Benzyl alcohol	<8								
Beryllium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Beta-bhc	<.05								
Bis (2-chloroethoxy) methane	<8								
Bis(2-chloroethyl) ether	<8								
Bis(2-chloroisopropyl) ether	<8								
Bis(2-ethylhexyl) phthalate	<6								
Bromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform Bromomethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Butyl benzyl phthalate	<8	\ 1	\ \		`1	~1		`'	`
Cadmium, total	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Calcium, total									
Carbon disulfide	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlordane	<.1								
Chloride									
Chlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzilate	<8	4.0	4.0	4.0	0.7	.4.0	.4.0		4.0
Chloroethane	2.0	4.0 <1	4.3 <1	1.9 <1	2.7 <1	<1.0	<1.0	<1.0 <1	1.6 <1
Chloroform Chloromethane	<1	<1	<1	<1 <1	<1	<1 <1	<1 <1	<1	<1
Chloroprene	<1	` ' '	\ \ \		`	~1		``	`'
Chromium, total	<8	<8	<8	<8	<8	<8	<8	<8	<8
Chrysene	<8			-					
Cis-1,2-dichloroethylene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cis-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	9.7	9.7	9.3	28.9	8.5	9.7	8.9	10.1	9.6
Copper, total	<4.0	<4.0	<4.0	50.9	<4.0	<4.0	<4.0	<4.0	<4.0
Cyanide, total	<.005								
Delta-bhc Diallate	<.05 <8								
Dialiate Dibenzo(a,h)anthracene	<8								
Dibenzo(a,rr)aritiracerie	<8								
Dibromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	<1								
Dieldrin	<.05								
Diethyl phthalate	<8								
Dimethoate	<.4								
Dimethylphthalate Di-n-butyl phthalate	<8 <8								
Di-n-butyl phthalate	<8								
Di-ni-octyl pritrialate	<.5								
Diphenylamine	<8								
Disulfoton	<.4								
Endosulfan i	<.05								
Endosulfan ii	<.05								
Endosulfan sulfate	<.05								
Endrin	<.05								
Endrin aldehyde	<.05				ا د د.				
Ethane					<14	<10			
Ethene	<10				<14	<10			
Ethyl methacrylate Ethyl methanesulfonate	<8								
Ethylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Famphur	<.4	*1	`'	- 1	``	- 1	1	''	-1
Fluoranthene	<8								

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-54

Constituents	4/11/2023	10/13/2023	4/17/2024	10/15/2024
Anthracene				
Antimony, total Arochlor 1016	<2	<2	<2	<2
Arochlor 1221				
Arochlor 1232				
Arochlor 1242				
Arochlor 1248				
Arochlor 1254				
Arochlor 1260				
Arsenic, total	<4.0	22.3	4.8	5.4
Azobenzene Barium, total	373	460	449	481
Benzene	<1	<1	<1	<1
Benzo(a)anthracene				-
Benzo(a)pyrene				
Benzo(b)fluoranthene				
Benzo(g,h,i)perylene				
Benzo(k)fluoranthene Benzyl alcohol				
Beryllium, total	<4	<4	<4	<4
Beta-bhc	, · · · ·		, , , , , , , , , , , , , , , , , , ,	
Bis (2-chloroethoxy) methane				
Bis(2-chloroethyl) ether				
Bis(2-chloroisopropyl) ether				
Bis(2-ethylhexyl) phthalate				
Bromochloromethane Bromodichloromethane	<1 <1	<1 <1	<1 <1	<1 <1
Bromoform	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1
Butyl benzyl phthalate	.			•
Cadmium, total	<.8	<.8	<.8	<.8
Calcium, total				
Carbon disulfide	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1
Chlordane Chloride				
Chlorobenzene	<1	<1	<1	<1
Chlorobenzilate	.			•
Chloroethane	<1.0	<1.0	<1.0	<1.0
Chloroform	<1	<1	<1	<1
Chloromethane	<1	<1	<1	<1
Chloroprene Chromium, total	<8	<8	<8	<8
Chrysene		~ 0		~0
Cis-1,2-dichloroethylene	<1.0	<1.0	<1.0	<1.0
Cis-1,3-dichloropropene	<1	<1	<1	<1
Cobalt, total	9.9	11.3	10.6	9.9
Copper, total	<4.0	<4.0	<4.0	<4.0
Cyanide, total				
Delta-bhc Diallate				
Dibenzo(a,h)anthracene				
Dibenzofuran				
Dibromochloromethane	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1
Dichlorodifluoromethane				
Dieldrin				
Diethyl phthalate				
Dimethoate Dimethylphthalate				
Di-n-butyl phthalate				
Di-n-octyl phthalate				
Dinoseb				
Diphenylamine				
Disulfoton				
Endosulfan i Endosulfan ii				
Endosulfan sulfate				
Endrin				
Endrin aldehyde				
Ethane				<5
Ethene				<5
Ethyl methacrylate				
Ethyl methanesulfonate	<1	<1	<1	<1
Ethylbenzene Famphur		<1	<1	< 1
Fluoranthene				

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-54

Constituents	Units	10/16/2014	4/6/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
Fluorene	ug/L								
Gamma-bhc (lindane)	ug/L								
Heptachlor	ug/L								
Heptachlor epoxide Hexachlorobenzene	ug/L ug/L								
Hexachlorobutadiene	ug/L								
Hexachlorocyclopentadiene	ug/L								
Hexachloroethane	ug/L								
Hexachloropropene	ug/L								
Indeno(1,2,3-cd)pyrene	ug/L								
Isobutanol	mg/L								
Isodrin Isophorone	ug/L ug/L								
Isosafrole	ug/L ug/L								
Kepone	ug/L								
Lead, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Magnesium, total	mg/L	72.6	69.8	72.0		64.5			
Mercury, total	ug/L								
Methacrylonitrile	ug/L								
Methane Methapyrilene	ug/L								
Methoxychlor	ug/L ug/L								
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Methyl methacrylate	ug/L					.,		1	
Methyl methanesulfonate	ug/L								
Methyl parathion	ug/L								
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene	ug/L		00.7	05.5		50.0	05.4	00.0	20.0
Nickel, total Nitrobenzene	ug/L	33.2	38.7	25.5	37.4	52.0	35.4	28.3	32.3
Nitrogen, ammonia	ug/L mg/L	<1	<1	<1		<1			
N-nitrosodiethylamine	ug/L	`'	`'	` '		``			
N-nitrosodimethylamine	ug/L								
N-nitrosodi-n-butylamine	ug/L								
N-nitroso-di-n-propylamine	ug/L								
N-nitrosodiphenylamine	ug/L								
N-nitrosomethylethylamine	ug/L								
N-nitrosopiperidine N-nitrosopyrrolidine	ug/L ug/L								
O,o,o-triethyl phosphorothioate	ug/L ug/L								
O-toluidine	ug/L								
Parathion	ug/L								
P-dimethylaminoazobenzene	ug/L								
Pentachlorobenzene	ug/L								
Pentachloronitrobenzene (pcnb)	ug/L								
Pentachlorophenol	ug/L								
pH Phenacetin	pH ug/L								
Phenanthrene	ug/L								
Phenol	ug/L								
Phorate	ug/L								
Potassium, total	mg/L	1.3	<1.0	1.4		<1.0			
Pronamide	ug/L								
Propionitrile	ug/L								
Pyrene Safrole	ug/L ug/L								
Selenium, total	ug/L ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Sodium, total	mg/L	10.8	10.6	12.4		9.8		1	_
Solids, total dissolved	mg/L	713	700	713		545			
Solids, total suspended	mg/L	107	9						
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Sulfate	mg/L	6.9	6.4	11.1		5.6			
Sulfide, total Tetrachloroethylene	mg/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	ug/L ug/L	<4	<4	<1 <1	<4	<4	<4	<4	<4
Thionazin	ug/L			*1			"		,
Tin, total	ug/L								
Toluene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Toxaphene	ug/L								
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L	<5	<5 <1	<5 <1	<5 <1	<5	<5	<5 <1	<5
Trichloroethylene Trichlorofluoromethane	ug/L ug/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
HIGHOUGHUUNGHEHAHE		<20	<20	<20	<20	<20	<20	<20	
Vanadium, total	ug/L	< / / / /							<20

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-54

Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022	10/25/2022
Fluorene	<8								
Gamma-bhc (lindane)	<.05								
Heptachlor apovido	<.05 <.05								
Heptachlor epoxide Hexachlorobenzene	<.05								
Hexachlorobutadiene	<8								
Hexachlorocyclopentadiene	<8								
Hexachloroethane	<8								
Hexachloropropene	<8								
Indeno(1,2,3-cd)pyrene	<8								
Isobutanol	<1								
Isodrin	<8 <8								
Isophorone Isosafrole	<8								
Kepone	<8								
Lead, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Magnesium, total									
Mercury, total	<.5								
Methacrylonitrile	<1								
Methane					68	63			
Methapyrilene Methapyrihlar	<8 < 05								
Methoxychlor Methyl iodide	<.05 <1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl methacrylate	<1	~1	``			``	``'	`'	`'
Methyl methanesulfonate	<8								
Methyl parathion	<.4								
Methylene chloride	<5	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene	<8								
Nickel, total	24.7	23.1	18.5	105.0	21.0	22.0	20.7	21.1	19.3
Nitrobenzene	<8								
Nitrogen, ammonia N-nitrosodiethylamine	<8								
N-nitrosodimethylamine	<8								
N-nitrosodi-n-butylamine	<8								
N-nitroso-di-n-propylamine	<8								
N-nitrosodiphenylamine	<8								
N-nitrosomethylethylamine	<8								
N-nitrosopiperidine	<8								
N-nitrosopyrrolidine	<8								
O,o,o-triethyl phosphorothioate	<.4								
O-toluidine Parathion	<8 <.4								
P-dimethylaminoazobenzene	<8								
Pentachlorobenzene	<8								
Pentachloronitrobenzene (pcnb)	<8								
Pentachlorophenol	<8								
pH					6.7	6.8		6.8	
Phenacetin	<8								
Phenanthrene	<8 <8								
Phenol Phorate	<.4								
Priorate Potassium, total	\. .4								
Pronamide	<8								
Propionitrile	<10								
Pyrene	<8								
Safrole	<8				_				
Selenium, total	<4	<4	<4 <4	<4	<4	<4	<4	<4	<4
Silver, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Sodium, total Solids, total dissolved									
Solids, total dissolved Solids, total suspended									
Styrene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulfate	''			· '	,				''
Sulfide, total	<.1								
Tetrachloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	<4	<2	<2	<2	<2	<2	<2	<2	<2
Thionazin	<.4								
Tin, total	<20	4.0	-10	-10	-10	-10	-10	-10	-10
Toluene Toxaphene	<1.0 <.2	1.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trans-1,2-dichloroethylene	<.2 <1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	<5	<5	<5	<5	<5	<5	<5	<5	<5

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-54

Constituents	4/11/2023	10/13/2023	4/17/2024	10/15/2024
Fluorene				
Gamma-bhc (lindane) Heptachlor				
Heptachlor epoxide				
Hexachlorobenzene				
Hexachlorobutadiene				
Hexachlorocyclopentadiene Hexachloroethane				
Hexachloropropene				
Indeno(1,2,3-cd)pyrene				
Isobutanol Isodrin				
Isophorone				
Isosafrole				
Kepone	-4	-4	-4	-4
Lead, total Magnesium, total	<4	<4	<4	<4
Mercury, total				
Methacrylonitrile				
Methane				78
Methapyrilene Methoxychlor				
Methyl iodide	<1	<1	<1	<1
Methyl methacrylate				
Methyl methanesulfonate Methyl parathion				
Methylene chloride	<5	<5	<5	<5
Naphthalene		-		
Nickel, total	22.4	22.2	22.4	22.6
Nitrobenzene Nitrogen, ammonia				
N-nitrosodiethylamine				
N-nitrosodimethylamine				
N-nitrosodi-n-butylamine				
N-nitroso-di-n-propylamine N-nitrosodiphenylamine				
N-nitrosomethylethylamine				
N-nitrosopiperidine				
N-nitrosopyrrolidine				
O,o,o-triethyl phosphorothioate O-toluidine				
Parathion				
P-dimethylaminoazobenzene				
Pentachlorobenzene				
Pentachloronitrobenzene (pcnb) Pentachlorophenol				
pH			6.7	6.4
Phenacetin				
Phenanthrene Phenol				
Phorate				
Potassium, total				
Pronamide				
Propionitrile				
Pyrene Safrole				
Selenium, total	<4	<4	<4	<4
Silver, total	<4	<4	<4	<4
Sodium, total Solids, total dissolved				
Solids, total dissolved Solids, total suspended				
Styrene	<1	<1	<1	<1
Sulfate				
Sulfide, total Tetrachloroethylene	<1	<1	<1	<1
Thallium, total	<2	<2	<2	<2
Thionazin				
Tin, total	-10	-10	-10	<1.0
Toluene Toxaphene	<1.0	<1.0	<1.0	<1.0
Trans-1,2-dichloroethylene	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene Trichloroethylene	<5 <1	<5 <1	<5 <1	<5 <1
Trichlorofluoromethane	<1	<1	<1	<1
Vanadium, total	<20	<20	<20	<20
Vinyl acetate	<5	<5	<5	<5

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-54

Constituents	Units	10/16/2014	4/6/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
Vinyl chloride	ug/L	1.0	<1.0	1.0	<1.0	2.0	1.8	1.6	<1.0
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	ug/L	<20.0	8.3	<8.0	<8.0	9.2	<8.0	<8.0	<8.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-54

Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022	10/25/2022
Vinyl chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Xylenes, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	9.3	28.6	28.9	244.0	<20.0	<20.0	<20.0	<20.0	<20.0

 $[\]ensuremath{^{\star}}$ - The displayed value is the arithmetic mean of multiple database matches.

Table 9

Constituents	4/11/2023	10/13/2023	4/17/2024	10/15/2024
Vinyl chloride	<1.0	<1.0	<1.0	<1.0
Xylenes, total	<2	<2	<2	<2
Zinc, total	<20.0	<20.0	<20.0	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-66

Constituents	Units	10/16/2014	1/14/2015	4/3/2015	7/6/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	ug/L	<1	· <1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1.4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
2-butanone (mek)		<5	<5	<5	<5	<5	<5	<5	<5
2-hexanone (mbk)	ug/L	<5 <5	<5	<5	<5	<5	<5	<5 <5	<5
4-methyl-2-pentanone (mibk)	ug/L	<5 <5	<5 <5	<5	<5	<5	<5	<5 <5	<5
	ug/L								
Acetone	ug/L	<10	<10	<10	<10	<10	<10	<10	<10
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Alkalinity, as caco3	mg/L	457	_	472	_	433	_	354	_
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Barium, total	ug/L	325	412	524	560	612	395	413	371
Benzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Beryllium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Bromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	ug/L	<1	<1	<1	<1	<1	<1	<1	<i< td=""></i<>
Bromomethane	ug/L	<1	<1	- <1	<1	<1	<1	<1	<1
Cadmium, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Calcium, total	mg/L	119.0	1.0	112.0	٠.٥	104.0	1.0	89.8	١.٠
Carbon disulfide		<1	<1	<1	<1	<1	<1	<1	<1
	ug/L				<1	<1	<1		<1
Carbon tetrachloride	ug/L	<1	<1	<1	<u> </u>		<u> </u>	<1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Chloride	mg/L	<10		<10		<10		2	
Chlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	ug/L	<8	<8	<8	<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	.9	<.8
Copper, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
			~ 4	35.8	~4	36.1	~4	28.2	~*
Magnesium, total	mg/L	39.3 <1	ادر		ابر		ابر		<1
Methylone chloride	ug/L		<1	<1	<1	<1	<1	<1	
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Nickel, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Nitrogen, ammonia	mg/L	<1		<1		<1		<1	
Potassium, total	mg/L	1.9		1.2		1.6		1.4	
Selenium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Sodium, total	mg/L	9.9		9.3		9.1		7.3	
Solids, total dissolved	mg/L	487		380		449		331	
Solids, total suspended	mg/L	133		17					
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Sulfate	mg/L	33.4		26.0	*1	25.9		24.1	* 1
Tetrachloroethylene	ug/L	<1	<1	20.0 <1	<1	<1	<1	<1	<1
Thallium, total	ug/L	<4	<4	<4	<4	<1	<4	<4	<4
Toluene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
		<1	<1 <1	<1	<1	<1 <1	<1	<1	<1
Trans-1,2-dichloroethylene	ug/L								I
Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl chloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	ug/L	<20.0	<8.0	54.6	<8.0	<8.0	<8.0	<8.0	<8.0
		~~0.0	٠٠.0	U-T.U	٠٠.0	٠٠.0	\0.0	٠٠.0	~0.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-81

Constituents	Units	10/16/2014	4/3/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
(3 4)-methylphenol	ug/L								
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,1,2,2-tetrachloroethane	ug/L ug/L	<1	<1	<1 <1	<1 <1	<1	<1	<1 <1	<1 <1
1,1-dichloroethane	ug/L	44.6	39.2	38.6	27.5	29.7	25.9	33.9	24.5
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloropropene	ug/L								
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2,4,5-tetrachlorobenzene	ug/L								
1,2,4-trichlorobenzene 1,2-dibromo-3-chloropropane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromoethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1.2-dichlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloroethane	ug/L	7.7	6.5	8.7	4.7	6.4	4.2	9.9	5.8
1,2-dichloropropane	ug/L	19.6	16.1	15.8	11.1	10.6	9.1	12.6	8.6
1,2-dinitrobenzene	ug/L								
1,3,5-trinitrobenzene	ug/L								
1,3-dichlorobenzene 1,3-dichloropropane	ug/L ug/L								
1,3-dinitrobenzene	ug/L								
1,4-dichlorobenzene	ug/L	1.6	1.5	1.5	2.2	3.2	2.8	3.4	4.2
1,4-naphthoquinone	ug/L								
1,4-phenylenediamine	ug/L								
1-naphthylamine	ug/L								
2,2-dichloropropane 2,3,4,6-tetrachlorophenol	ug/L ug/L								
2,4,5-t	ug/L ug/L								
2,4,5-tp (silvex)	ug/L								
2,4,5-trichlorophenol	ug/L								
2,4,6-trichlorophenol	ug/L								
2,4-d	ug/L								
2,4-dichlorophenol 2,4-dimethylphenol	ug/L ug/L								
2,4-dinitrophenol	ug/L								
2,4-dinitrotoluene	ug/L								
2,6-dichlorophenol	ug/L								
2,6-dinitrotoluene	ug/L								
2-acetylaminofluorene	ug/L								
2-butanone (mek) 2-chloronaphthalene	ug/L ug/L	<5	<5	<5	<5	<5	<5	<5	<5
2-chlorophenol	ug/L ug/L								
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
2-methylnaphthalene	ug/L								
2-methylphenol	ug/L								
2-naphthylamine 2-nitroaniline	ug/L								
2-nitroanline 2-nitrophenol	ug/L ug/L								
3,3'-dichlorobenzidine	ug/L								
3,3'-dimethylbenzidine	ug/L								
3-methylcholanthrene	ug/L								
3-nitroaniline	ug/L								
4,4'-ddd 4.4'-dde	ug/L								
4,4 -ade 4,4'-ddt	ug/L ug/L								
4,6-dinitro-2-methylphenol	ug/L ug/L								
4-aminobiphenyl	ug/L								
4-bromophenyl phenyl ether	ug/L								
4-chloro-3-methylphenol	ug/L								
4-chloroaniline 4-chlorophenyl phenyl ether	ug/L ug/L								
4-methyl-2-pentanone (mibk)	ug/L ug/L	<5	<5	<5	<5	<5	<5	<5	<5
4-nitroaniline	ug/L	10	-0	٠٠,	10	10	10	10	10
4-nitrophenol	ug/L								
5-nitro-o-toluidine	ug/L								
7,12-dimethylbenz(a)anthracene	ug/L								
Acenaphthene Acenaphthylene	ug/L								
Acenaphthylene Acetone	ug/L ug/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Acetonie	ug/L ug/L	10.0	×10.0	~10.0	~10.0	10.0	10.0	~10.0	~10.0
Acetophenone	ug/L								
Acrolein	ug/L								
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Alkalinity	ug/L	1440	4040	070		1000			
Alkalinity, as caco3 Allyl chloride	mg/L ug/L	1140	1210	973		1030			
Alpha-bhc	ug/L ug/L								
	, ~g, _					1			

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-81

Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022	10/25/2022
(3 4)-methylphenol	<8								
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1	<1 <1	<1 <1
1,1,2,2-tetrachloroethane	<1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,1,2-therioroethane	19.0	13.8	11.0	10.8	27.9	15.8	29.3	21.5	27.7
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloropropene	<1		•		•	-			-
1,2,3-trichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,4,5-tetrachlorobenzene	<8								
1,2,4-trichlorobenzene	<1						.=		
1,2-dibromo-3-chloropropane	<1 <1	<1 <1	<1 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1
1,2-dichlorobenzene	<1.0	1.9	1.3	2.0	1.1	<1.0	<1.0	<1.0	<1.0
1,2-dichloroethane	2.9	2.1	<1.0	2.4	7.7	3.9	9.8	5.7	12.8
1,2-dichloropropane	4.9	1.9	1.5	1.1	7.9	4.0	9.3	2.6	8.1
1,2-dinitrobenzene	<8								
1,3,5-trinitrobenzene	<8								
1,3-dichlorobenzene	<1								
1,3-dichloropropane	<1								
1,3-dinitrobenzene	<8 <1.0	8.0	7.6	<1.0	6.6	5.2	5.0	4.6	5.8
1,4-dichlorobenzene	<8	6.0	7.0	~1.0	0.0	5.2	5.0	4.0	5.6
1,4-naphthoquinone	<8								
1-naphthylamine	<8								
2,2-dichloropropane	<1								
2,3,4,6-tetrachlorophenol	<8								
2,4,5-t	<.5								
2,4,5-tp (silvex)	<.5								
2,4,5-trichlorophenol	<8 <8								
2,4,6-tricrilorophenor	<2								
2,4-dichlorophenol	<8								
2,4-dimethylphenol	<8								
2,4-dinitrophenol	<8								
2,4-dinitrotoluene	<8								
2,6-dichlorophenol	<8								
2,6-dinitrotoluene	<8								
2-acetylaminofluorene	<8 <5	<5	<5	<5	<5	<5	<5	<10	<10
2-butanone (mek) 2-chloronaphthalene	<8	< 5	\ 5	< 5	<2	\ 5	< 5	<10	<10
2-chlorophenol	<8								
2-hexanone (mbk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
2-methylnaphthalene	<8								
2-methylphenol	<8								
2-naphthylamine	<8								
2-nitroaniline	<8								
2-nitrophenol 3,3'-dichlorobenzidine	<8 <8								
3,3'-dimethylbenzidine	<8								
3-methylcholanthrene	<8								
3-nitroaniline	<8								
4,4´-ddd	<.05								
4,4´-dde	<.05								
4,4'-ddt	<.05								
4,6-dinitro-2-methylphenol	<8 <8								
4-aminobiphenyl 4-bromophenyl phenyl ether	<8 <8								
4-chloro-3-methylphenol	<8								
4-chloroaniline	<8								
4-chlorophenyl phenyl ether	<8								
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-nitroaniline	<8								
4-nitrophenol	<8								
5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene	<8 <8								
Acenaphthene	<8 <8								
Acenaphthylene	<8								
Acetone	26.7	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Acetonitrile	<10								
Acetophenone	<8								
Acrolein	<10								
Acrylonitrile	<5	<5	<5	<5	<5	<5	<5	<5	<5
Alkalinity as case3	<.05				1020	1050		965	
Alkalinity, as caco3 Allyl chloride	<1				1020	1050		905	
Alpha-bhc	<.05								
. apriles aris	00								

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-81

Constituents	4/11/2023	10/13/2023	4/16/2024	10/15/2024
(3 4)-methylphenol				
1,1,1,2-tetrachloroethane	<1 <1	<1 <1	<1 <1	<1 <1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1	<1
1,1-dichloroethane	23.9	30.0	28.2	24.8
1,1-dichloroethylene	<1	<1	<1	<1
1,1-dichloropropene	<1	<1	<1	<1
1,2,3-trichloropropane 1,2,4,5-tetrachlorobenzene	``	`'	`'	`'
1,2,4-trichlorobenzene				
1,2-dibromo-3-chloropropane	<5	<5	<5	<5
1,2-dibromoethane	<1	<1	<1	<1
1,2-dichlorobenzene 1,2-dichloroethane	<1.0 6.9	<1.0 15.6	<1.0 12.3	<1.0 11.2
1,2-dichloropropane	3.5	8.4	6.5	6.9
1,2-dinitrobenzene	0.0	0.1	0.0	0.0
1,3,5-trinitrobenzene				
1,3-dichlorobenzene				
1,3-dichloropropane 1,3-dinitrobenzene				
1,3-difiliobenzene 1,4-dichlorobenzene	4.6	5.7	4.7	5.6
1,4-dichlorobenzene	4.0	5.7	7.7	3.0
1,4-phenylenediamine				
1-naphthylamine				
2,2-dichloropropane				
2,3,4,6-tetrachlorophenol				
2,4,5-tp (silvex)				
2,4,5-trichlorophenol				
2,4,6-trichlorophenol				
2,4-d				
2,4-dichlorophenol 2,4-dimethylphenol				
2,4-dinitrophenol				
2,4-dinitrotoluene				
2,6-dichlorophenol				
2,6-dinitrotoluene				
2-acetylaminofluorene 2-butanone (mek)	<10	<10	<10	<10
2-chloronaphthalene	\ \ \ \ \ \	~10	~10	~10
2-chlorophenol				
2-hexanone (mbk)	<5	<5	<5	<5
2-methylnaphthalene				
2-methylphenol 2-naphthylamine				
2-nitroaniline				
2-nitrophenol				
3,3'-dichlorobenzidine				
3,3'-dimethylbenzidine				
3-methylcholanthrene 3-nitroaniline				
4,4'-ddd				
4,4'-dde				
4,4'-ddt				
4,6-dinitro-2-methylphenol				
4-aminobiphenyl 4-bromophenyl phenyl ether				
4-chloro-3-methylphenol				
4-chloroaniline				
4-chlorophenyl phenyl ether				
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5
4-nitroaniline 4-nitrophenol				
5-nitro-o-toluidine				
7,12-dimethylbenz(a)anthracene				
Acenaphthene				
Acenaphthylene	<u></u> .			
Acetone	<10.0	<10.0	<10.0	<10.0
Acetonitrile Acetophenone				
Acrolein				
Acrylonitrile	<5	<5	<5	<5
Aldrin				
Alkalinity, as caco3	982		886	907
Allyl chloride Alpha-bhc				
, aprid-bito				

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-81

Constituents	Units	10/16/2014	4/3/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
Anthracene	ug/L								
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2
Arochlor 1016	ug/L								
Arochlor 1221	ug/L								
Arochlor 1232	ug/L								
Arochlor 1242	ug/L								
Arochlor 1248	ug/L								
Arochlor 1254	ug/L								
Arochlor 1260	ug/L								
Arsenic, total	ug/L	6.1	4.4	<4.0	<4.0	4.4	<4.0	<4.0	<4.0
Azobenzene	ug/L	4040		1010	4040	4000		4040	4.400
Barium, total	ug/L	1610	2000	1810	1340	1600	1170	1640	1460
Benzene	ug/L	<1.0	<1.0	<1.0	<1.0	1.3	1.5	1.1	1.0
Benzo(a)anthracene	ug/L								
Benzo(a)pyrene	ug/L								
Benzo(b)fluoranthene	ug/L								
Benzo(g,h,i)perylene	ug/L								
Benzo(k)fluoranthene	ug/L								
Benzyl alcohol	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Beryllium, total	ug/L	\4	\4	\4	\4	\ 4	\4	\4	~ 4
Beta-bhc	ug/L								
Bis (2-chloroethoxy) methane	ug/L								
Bis(2-chloroethyl) ether	ug/L								
Bis(2-chloroisopropyl) ether Bis(2-ethylhexyl) phthalate	ug/L ug/L	<10	36	<10	<10	<10	<10		
		<10	30 <1	<10 <1	<10		<10	<1	_1
Bromochloromethane Bromodichloromethane	ug/L ug/L	<1	<1 <1	<1	<1	<1 <1	<1	<1	<1 <1
Bromoform	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Butyl benzyl phthalate	ug/L	`'	` '	, ,	`'	`'	`'		''
Cadmium, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Calcium, total	mg/L	230	229	221	1.0	260	1.0	1.0	1.0
Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chlordane	ug/L			•				-,	
Chloride	mg/L	<10.0	10.0	<10.0		8.8			
Chlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	1.1	1.0	1.1	1.1
Chlorobenzilate	ug/L								
Chloroethane	ug/L	13.3	13.7	8.6	7.5	11.5	9.8	8.7	7.1
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloroprene	ug/L								
Chromium, total	ug/L	<8	<8	<8	<8	<8	<8	<8	<8
Chrysene	ug/L								
Cis-1,2-dichloroethylene	ug/L	288	252	201	247	243	205	188	195
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	ug/L	14.0	13.6	9.3	9.5	6.4	7.7	9.1	9.2
Copper, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Cyanide, total	mg/L								
Delta-bhc	ug/L								
Diallate	ug/L								
Dibenzo(a,h)anthracene	ug/L								
Dibenzofuran	ug/L								
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	ug/L								
Dieldrin	ug/L								
Diethyl phthalate	ug/L								
Dimethoate	ug/L								
Dimethylphthalate	ug/L								
Di-n-butyl phthalate	ug/L								
Di-n-octyl phthalate	ug/L								
Dinoseb	ug/L								
Diphenylamine	ug/L								
Disulfoton	ug/L								
Endosulfan i	ug/L								
Endosulfan ii	ug/L								
Endosulfan sulfate	ug/L								
Endrin	ug/L								
Endrin aldehyde	ug/L								
Ethane	ug/L								
Ethene	ug/L								
Ethyl methacrylate	ug/L								
Ethyl methanesulfonate	ug/L								
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Famphur	ug/L								
Fluoranthene	ug/L								

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-81

Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022	10/25/2022
Anthracene	<8								
Antimony, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arochlor 1016	<.1								
Arochlor 1221	<.2								
Arochlor 1232 Arochlor 1242	<.2 <.2								
Arochlor 1242	<.2								
Arochlor 1254	<.1								
Arochlor 1260	<.1								
Arsenic, total	10.5	6.6	8.0	11.5	6.1	6.7	5.5	8.2	6.0
Azobenzene	<8								
Barium, total	2140	956	873	1010	1180	1190	1550	1500	1670
Benzene	<1.0	2.9	2.7	2.9	1.5	1.1	<1.0	<1.0	<1.0
Benzo(a)anthracene Benzo(a)pyrene	<8 <8								
Benzo(b)fluoranthene	<8								
Benzo(g,h,i)perylene	<8								
Benzo(k)fluoranthene	<8								
Benzyl alcohol	<8								
Beryllium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Beta-bhc	<.05								
Bis (2-chloroethoxy) methane	<8								
Bis(2-chloroethyl) ether	<8								
Bis(2-chloroisopropyl) ether	<8								
Bis(2-ethylhexyl) phthalate Bromochloromethane	<6 <1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	<1	<1	<1	<1 <1	<1 <1	<1	<1 <1	<1	<1
Bromoform	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1	<1	- <1	<1	<1	<1
Butyl benzyl phthalate	<8								
Cadmium, total	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Calcium, total									
Carbon disulfide	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlordane	<.1								
Chloride Chlorobenzene	<1.0	1.4	1.4	1.3	1.5	1.2	1.3	1.2	1.7
Chlorobenzilate	<8	1.4	1.4	1.3	1.5	1.2	1.3	1.2	1.7
Chloroethane	5.2	6.0	7.8	6.0	9.2	5.6	5.7	5.0	7.2
Chloroform	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroprene	<1								
Chromium, total	<8	<8	<8	<8	<8	<8	<8	<8	<8
Chrysene	<8	0.4	407	00	240	440	400	400	205
Cis-1,2-dichloroethylene Cis-1,3-dichloropropene	101	84 <1	127 <1	83 <1	210 <1	148 <1	188 <1	192 <1	225 <1
Cobalt, total	5.6	15.9	13.1	23.5	12.9	8.8	10.9	12.1	9.7
Copper, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Cyanide, total	<.005	·	·	·		·	·		•
Delta-bhc	<.05								
Diallate	<8								
Dibenzo(a,h)anthracene	<8								
Dibenzofuran	<8			.	.				.]
Dibromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1 <1
Dibromomethane Dichlorodifluoromethane	<1 <1	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane Dieldrin	<.05								
Diethyl phthalate	<8								
Dimethoate	<.4								
Dimethylphthalate	<8								
Di-n-butyl phthalate	<8								
Di-n-octyl phthalate	<8								
Dinoseb	<.5								
Diphenylamine	<8								
Disulfoton	<.4								
Endosulfan i Endosulfan ii	<.05 <.05								
Endosulfan II Endosulfan sulfate	<.05								
Endosulian sullate	<.05								
Endin	<.05								
Ethane					<10	<10			
Ethene					<10	<10			
Ethyl methacrylate	<10								
Ethyl methanesulfonate	<8								
Ethylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Famphur	<.4								
Fluoranthene	<8								

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-81

Constituents	4/11/2023	10/13/2023	4/16/2024	10/15/2024
Anthracene	_	_	_	_
Antimony, total Arochlor 1016	<2	<2	<2	<2
Arochlor 1016 Arochlor 1221				
Arochlor 1232				
Arochlor 1242				
Arochlor 1248				
Arochlor 1254				
Arochlor 1260	7.0	6.3	6.8	6.0
Arsenic, total Azobenzene	7.0	0.3	0.6	0.0
Barium, total	1540	1750	1940	1580
Benzene	<1.0	<1.0	<1.0	<1.0
Benzo(a)anthracene				
Benzo(a)pyrene Benzo(b)fluoranthene				
Benzo(g,h,i)perylene				
Benzo(k)fluoranthene				
Benzyl alcohol				
Beryllium, total	<4	<4	<4	<4
Beta-bhc Bis (2-chloroethoxy) methane				
Bis(2-chloroethyl) ether				
Bis(2-chloroisopropyl) ether				
Bis(2-ethylhexyl) phthalate				
Bromochloromethane	<1	<1	<1	<1
Bromodichloromethane Bromoform	<1 <1	<1 <1	<1 <1	<1 <1
Bromororm Bromomethane	<1	<1	<1 <1	<1 <1
Butyl benzyl phthalate	` '	``	- 1	`'
Cadmium, total	<.8	<.8	<.8	<.8
Calcium, total				
Carbon disulfide	<1	<1	<1	<1
Carbon tetrachloride Chlordane	<1	<1	<1	<1
Chloride				
Chlorobenzene	1.4	1.9	1.7	1.8
Chlorobenzilate				
Chloroethane	5.4	6.5	6.8	6.0
Chloroform Chloromethane	<1 <1	<1 <1	<1 <1	<1 <1
Chloroprene	` '	`	` '	`'
Chromium, total	<8	<8	<8	<8
Chrysene				
Cis-1,2-dichloroethylene	140	181	164	127
Cis-1,3-dichloropropene Cobalt, total	<1 10.9	<1 9.0	<1 10.5	<1 8.2
Copper, total	<4	<4	<4	<4
Cyanide, total				-
Delta-bhc				
Diallate				
Dibenzo(a,h)anthracene Dibenzofuran				
Dibromochloromethane	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	- <1
Dichlorodifluoromethane				
Dieldrin				
Diethyl phthalate Dimethoate				
Dimetholate Dimethylphthalate				
Di-n-butyl phthalate				
Di-n-octyl phthalate				
Dinoseb				
Diphenylamine Disulfoton				
Disulfoton Endosulfan i				
Endosulfan ii				
Endosulfan sulfate				
Endrin				
Endrin aldehyde				_
Ethane Ethene				<5 <5
Ethele Ethyl methacrylate				^5
Ethyl methanesulfonate				
Ethylbenzene	<1	<1	<1	<1
Famphur				
Fluoranthene				

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-81

Constituents	Units	10/16/2014	4/3/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
Fluorene	ug/L								
Gamma-bhc (lindane)	ug/L								
Heptachlor Heptachlor epoxide	ug/L ug/L								
Hexachlorobenzene	ug/L ug/L								
Hexachlorobutadiene	ug/L								
Hexachlorocyclopentadiene	ug/L								
Hexachloroethane	ug/L								
Hexachloropropene Indeno(1,2,3-cd)pyrene	ug/L ug/L								
Isobutanol	mg/L								
Isodrin	ug/L								
Isophorone	ug/L								
Isosafrole	ug/L								
Kepone	ug/L	-4	-4	-4	-4			-4	-4
Lead, total Magnesium, total	ug/L mg/L	<4 113	<4 112	<4 113	<4	<4 129	<4	<4	<4
Mercury, total	ug/L	113	112	113		123			
Methacrylonitrile	ug/L								
Methane	ug/L								
Methapyrilene	ug/L								
Methoxychlor Methyl jedide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Methyl iodide Methyl methacrylate	ug/L ug/L	<1	< 1	<1	<1	<1	<1	<1	<1
Methyl methanesulfonate	ug/L ug/L								
Methyl parathion	ug/L								
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene	ug/L	40.7	47.0	44.0	0.7		7.0	40.0	40.0
Nickel, total Nitrobenzene	ug/L ug/L	19.7	17.3	11.2	9.7	6.1	7.6	12.0	10.3
Nitrogen, ammonia	mg/L	<1	<1	<1		<1			
N-nitrosodiethylamine	ug/L	-	-						
N-nitrosodimethylamine	ug/L								
N-nitrosodi-n-butylamine	ug/L								
N-nitroso-di-n-propylamine N-nitrosodiphenylamine	ug/L								
N-nitrosomethylethylamine	ug/L ug/L								
N-nitrosopiperidine	ug/L								
N-nitrosopyrrolidine	ug/L								
O,o,o-triethyl phosphorothioate	ug/L								
O-toluidine	ug/L								
Parathion P-dimethylaminoazobenzene	ug/L ug/L								
Pentachlorobenzene	ug/L								
Pentachloronitrobenzene (pcnb)	ug/L								
Pentachlorophenol	ug/L								
pH	pH _″								
Phenacetin Phenanthrene	ug/L ug/L								
Phenol	ug/L ug/L								
Phorate	ug/L								
Potassium, total	mg/L	3.0	1.7	2.6		3.2			
Pronamide	ug/L								
Propionitrile	ug/L								
Pyrene Safrole	ug/L ug/L								
Selenium, total	ug/L ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Sodium, total	mg/L	10.3	10.7	11.0		12.0			
Solids, total dissolved	mg/L	955 500	880	943		1150			
Solids, total suspended Styrene	mg/L ug/L	500 <1	25 <1	<1	<1	<1	<1	<1	<1
Sulfate	mg/L	17.5	13.0	9.8	~1	16.7	``	``	
Sulfide, total	mg/L		10.0	0.0		,			
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	ug/L	<4	<4	<1	<4	<4	<4	<4	<4
Thionazin	ug/L								
Tin, total Toluene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Toxaphene	ug/L ug/L		~ 1	~1	<1			<1	<1
Trans-1,2-dichloroethylene	ug/L ug/L	2.5	3.2	2.2	2.6	3.1	3.0	2.6	2.4
Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L	10.0	6.7	12.2	4.7	2.1	5.4	9.4	4.3
			-4		-4	_1		-4	
Trichlorofluoromethane Vanadium, total	ug/L ug/L	<1 <20	<1 <20	<1 <20	<1 <20	<1 <20	<1 <20	<1 <20	<1 <20

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-81

Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022	10/25/2022
Fluorene	<8								
Gamma-bhc (lindane)	<.05								
Heptachlor	<.05								
Heptachlor epoxide	<.05								
Hexachlorobenzene Hexachlorobutadiene	<.05 <8								
Hexachlorocyclopentadiene	<8								
Hexachloroethane	<8								
Hexachloropropene	<8								
Indeno(1,2,3-cd)pyrene	<8								
Isobutanol	<1								
Isodrin	<8								
Isophorone	<8								
Isosafrole	<8								
Kepone	<8								
Lead, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Magnesium, total	_								
Mercury, total	<.5								
Methacrylonitrile	<1				4400	0000			
Methane	ا م۔				1160	2880			
Methapyrilene Methapyriler	<8 <.05								
Methoxychlor Methyl iodide	<.05	<1	<1	<1	<1	<1	<1	<1	<1
Methyl methacrylate	<1		``	``'	`'	``	``	`'	`'
Methyl methanesulfonate	<8								
Methyl parathion	<.4								
Methylene chloride	<5	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene	<8							1	
Nickel, total	22.0	5.0	5.6	5.9	10.3	9.5	11.5	11.9	11.2
Nitrobenzene	<8								
Nitrogen, ammonia									
N-nitrosodiethylamine	<8								
N-nitrosodimethylamine	<8								
N-nitrosodi-n-butylamine	<8								
N-nitroso-di-n-propylamine	<8								
N-nitrosodiphenylamine	<8 <8								
N-nitrosomethylethylamine N-nitrosopiperidine	<8								
N-nitrosopyrrolidine	<8								
O,o,o-triethyl phosphorothioate	<.4								
O-toluidine	<8								
Parathion	<.4								
P-dimethylaminoazobenzene	<8								
Pentachlorobenzene	<8								
Pentachloronitrobenzene (pcnb)	<8								
Pentachlorophenol	<8								
pH					6.6	6.7		6.6	
Phenacetin	<8								
Phenanthrene	<8								
Phenol	<8								
Phorate	<.4								
Potassium, total Pronamide	<8								
Propionitrile	<10								
Pyrene	<8								
Safrole	<8								
Selenium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Sodium, total									
Solids, total dissolved									
Solids, total suspended									
Styrene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulfate									
Sulfide, total	<.1	الدر		الم ر		ي .			ا مہ
Tetrachloroethylene	<1	<1	<1 <2	<1 <2	<1 <2	<1	<1	<1	<1 <2
Thallium, total Thionazin	<4 <.4	<2	<2	<2	<2	<2	<2	<2	<2
Trilonaziri Tin, total	<20								
Toluene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toxaphene	<.2				`'		`'	`'	`'
Trans-1,2-dichloroethylene	<1.0	2.6	2.2	2.4	4.1	1.8	1.9	<1.0	2.4
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1.0	<1.0	<1.0	<1.0	3.0	2.0	2.3	1.0	2.9
Trichlorofluoromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	<5	<5	<5	<5	<5		<5		<5

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-81

Constituents	4/11/2023	10/13/2023	4/16/2024	10/15/2024
Fluorene				
Gamma-bhc (lindane) Heptachlor				
Heptachlor epoxide				
Hexachlorobenzene				
Hexachlorobutadiene				
Hexachlorocyclopentadiene Hexachloroethane				
Hexachloropropene				
Indeno(1,2,3-cd)pyrene				
Isobutanol				
Isodrin Isophorone				
Isosafrole				
Kepone				
Lead, total Magnesium, total	<4	<4	<4	<4
Magnesium, total Mercury, total				
Methacrylonitrile				
Methane				560
Methapyrilene				
Methoxychlor Methyl iodide	<1	<1	<1	<1
Methyl methacrylate	''	` '	, , ,	
Methyl methanesulfonate				
Methyl parathion	-E	-E	-E	.E
Methylene chloride Naphthalene	<5	<5	<5	<5
Nickel, total	10.9	12.2	13.4	9.4
Nitrobenzene				
Nitrogen, ammonia				
N-nitrosodiethylamine N-nitrosodimethylamine				
N-nitrosodi-n-butylamine				
N-nitroso-di-n-propylamine				
N-nitrosodiphenylamine				
N-nitrosomethylethylamine N-nitrosopiperidine				
N-nitrosopyrrolidine				
O,o,o-triethyl phosphorothioate				
O-toluidine				
Parathion P-dimethylaminoazobenzene				
Pentachlorobenzene				
Pentachloronitrobenzene (pcnb)				
Pentachlorophenol pH	6.6		6.6	6.3
Phenacetin	0.0		0.0	0.3
Phenanthrene				
Phenol				
Phorate Potassium, total				
Pronamide				
Propionitrile				
Pyrene				
Satrole Selenium, total	<4	<4	<4	<4
Silver, total	<4	<4	<4	<4
Sodium, total		-	· l	-
Solids, total dissolved				
Solids, total suspended Styrene	<1	<1	<1	<1
Sulfate				`'
Sulfide, total				
Tetrachloroethylene	<1	<1	<1	<1
Thallium, total Thionazin	<2	<2	<2	<2
Triionazin Tin, total				
Toluene	<1	<1	<1	<1
Toxaphene				
Trans-1,2-dichloroethylene	2.2	2.5 <1	2.2 <1	2.4 <1
Trans-1,3-dichloropropene Trans-1,4-dichloro-2-butene	<5	<5	<5	<5
Trichloroethylene	2.6	3.3	1.4	2.2
Trichlorofluoromethane	<1	<1	<1	<1
Vanadium, total Vinyl acetate	<20 <5	<20 <5	<20 <5	<20 <5
Viiiji doctate		-5	-5	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-81

Constituents	Units	10/16/2014	4/3/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
Vinyl chloride	ug/L	9.7	12.9	8.8	15.8	20.1	16.5	13.2	13.6
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	ug/L	<20.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-81

Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022	10/25/2022
Vinyl chloride	26.6	15.5	24.2	13.9	15.4	11.3	7.2	7.0	8.4
Xylenes, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	15.4	<20.0	20.8	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0

 $[\]ensuremath{^{\star}}$ - The displayed value is the arithmetic mean of multiple database matches.

Table 9

Constituents	4/11/2023	10/13/2023	4/16/2024	10/15/2024
Vinyl chloride	7.7	6.7	6.8	6.5
Xylenes, total	<2	<2	<2	<2
Zinc, total	<20.0	21.8	<20.0	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-85

Constituents	Units	10/16/2014	1/14/2015	4/3/2015	7/6/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
2-butanone (mek)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	ug/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	15.4
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Alkalinity, as caco3	mg/L	387		416		437		382		
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Barium, total	ug/L	138	157	167	143	135	155	149	175	143
Benzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Beryllium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Bromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Calcium, total	mg/L	107		101		103		121		
Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloride	mg/L	<10		<10		<10		<1		
Chlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	ug/L	<8	<8	<8	<8	<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Copper, total	ug/L	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Magnesium, total	mg/L	31.7		29.1		31.2		34.2		
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Nickel, total	ug/L	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Nitrogen, ammonia	mg/L	<1		<1		<1		<1		""
Potassium, total	mg/L	2.8		1.9		2.8		4.3		
Selenium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Sodium, total	mg/L	16.2	· [16.5	'	15.0		15.9	•	
Solids, total dissolved	mg/L	40400		344		411		435		
Solids, total suspended	mg/L	308		41						
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulfate	mg/L	14.3		13.6	'	14.8	1	14.9	· ·	''
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	ug/L	<4	<4	<4	<4	<1	<4	<4	<4	<4
Toluene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L	<1	<1 <1	<1	<1	<1	<1	<1	<1 <1	<1
Trichlorofluoromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	ug/L ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Viryl acetate Vinyl chloride	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1 <1	<1
Xylenes, total	ug/L ug/L	<2	<2	<2	<2	<2		<2	<2	<2
	ug/L ug/L	<20.0	<8.0	27.0	9.1	<8.0		<8.0	<8.0	<8.0
Zinc, total										

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-85

Constituents	4/17/2018	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	<1	<1	<1	<1	<5	<5	<5	<5	<5
1,2-dibromoethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane 1,2-dichloropropane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,4-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
2-butanone (mek)	<5	<5	<5	<5	<5	<5	<5	<5	<10
2-hexanone (mbk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Acrylonitrile	<5	<5	<5	<5	<5	<5	<5	<5	<5
Alkalinity, as caco3		-	-			-	-	-	-
Antimony, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Barium, total	142	146	152	126	160	151	135	121	133
Benzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Beryllium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Bromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Calcium, total									
Carbon disulfide	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloride					.				.
Chlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane Chromium, total	<1 <8	<1 <8	<1 <8	<1 <8	<1 <8	<1 <8	<1 <8	<1 <8	<1 <8
Cis-1,2-dichloroethylene	<1	<0 <1	<1	<1	<1	<1	<0 <1	<0 <1	<1
Cis-1,2-dicfiloroethylerie	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	<.8	<.8	<.8	<.8	.4	.4	<.4	<.4	<.4
Copper, total	<4.0	4.8	<4.0	4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Magnesium, total									
Methyl iodide	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	<5	<5	<5	<5	<5	<5	<5	<5	<5
Nickel, total	<4.0	20.6	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Nitrogen, ammonia									
Potassium, total									
Selenium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Sodium, total									
Solids, total dissolved									
Solids, total suspended	_		_		.			.	.
Styrene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulfate						ا ما			.
Tetrachloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	<4	<4 <1	<2 <1	<2 <1	<2	<2 <1	<2	<2 <1	<2 <1
Toluene Trans-1,2-dichloroethylene	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Trans-1,2-dichloroethylene Trans-1,3-dichloropropene	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Trans-1,3-dichloropropene	<1 <5	<1 <5	<1 <5	<1 <5	<1 <5	<1 <5	<1 <5	<1 <5	<1 <5
Trans-1,4-dichloro-2-butene Trichloroethylene	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1
Trichlorofluoromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	<20	<20	<20	<20	<20	<20	<20	<20	<20
Variadidiff, total Vinyl acetate	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl acetate Vinyl chloride	<1	<1 <1	<1	<1 <1	<1	<1	<1	<1	<1
Xvlenes, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	<8.0	125.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
Enio, total	\0.0	120.0	~20.0	~20.0	~20.0	٠٤٥.0	~20.0	`~20.0	120.0

 $[\]ensuremath{^{\star}}$ - The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-85

Constituents	10/25/2022	4/11/2023	10/13/2023	4/17/2024	10/15/2024
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1
1,1,1-trichloroethane	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1	<1
1,1,2-trichloroethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,1-dichloroethane 1,1-dichloroethylene	<1	<1	<1	<1	<1
1,2,3-trichloropropane	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	<5	<5	<5	<5	<5
1,2-dibromoethane	<1	<1	<1	<1	<1
1,2-dichlorobenzene	<1	<1	<1	<1	<1
1,2-dichloroethane	<1	<1	<1	<1	<1
1,2-dichloropropane	<1	<1	<1	<1	<1
1,4-dichlorobenzene	<1	<1	<1	<1	<1
2-butanone (mek)	<10 <5	<10 <5	<10 <5	<10 <5	<10
2-hexanone (mbk) 4-methyl-2-pentanone (mibk)	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
Acetone	<10.0	<10.0	<10.0	<10.0	<10.0
Acrylonitrile	<5	<5	<5	<5	<5
Alkalinity, as caco3		.0		.0	
Antimony, total	<2	<2	<2	<2	<2
Arsenic, total	<4	<4	<4	<4	<4
Barium, total	138	141	143	144	136
Benzene	<1	<1	<1	<1	<1
Beryllium, total	<4	<4	<4	<4	<4
Bromochloromethane	<1	<1	<1	<1	<1
Bromodichloromethane Bromoform	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Bromomethane	<1	<1	<1	<1	<1
Cadmium, total	<.8	<.8	<.8	<.8	<.8
Calcium, total		.0	.0	.0	
Carbon disulfide	<1	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1	<1
Chloride					
Chlorobenzene	<1	<1	<1	<1	<1
Chloroethane	<1	<1	<1	<1	<1
Chloroform Chloromethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Chromium, total	<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	<1	<1	<1	<1	<1
Cobalt, total	<.4	<.4	<.4	.4	<.4
Copper, total	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromochloromethane	<1	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1	<1
Ethylbenzene	<1	<1	<1	<1	<1
Lead, total	<4	<4	<4	<4	<4
Magnesium, total Methyl iodide	<1	<1	<1	<1	<1
Methylene chloride	<5	<5	<5	<5	<5
Nickel, total	<4.0	<4.0	<4.0	<4.0	<4.0
Nitrogen, ammonia					
Potassium, total					
Selenium, total	<4	<4	<4	<4	<4
Silver, total	<4	<4	<4	<4	<4
Sodium, total					
Solids, total dissolved					
Solids, total suspended		_1	_1	_1	_1
Styrene Sulfate	<1	<1	<1	<1	<1
Tetrachloroethylene	<1	<1	<1	<1	<1
Thallium, total	<2	<2	<2	<2	<2
Toluene	<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1	<1
Trichlorofluoromethane	<1	<1	<1	<1	<1
Vanadium, total	<20	<20	<20	<20	<20
Vinyl acetate Vinyl chloride	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1
Xylenes, total	<2	<2	<2	<2	<2
Zinc, total	<20.0	<20.0	<20.0	<20.0	<20.0
,		20.0	20.0	20.0	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-87

Constituents	Units	10/16/2014	4/3/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	ug/L	<1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1	<1
1,2-dibromo-3-chloropropane 1,2-dibromoethane	ug/L ug/L	<1 <1	<1	<1	<1	<1 <1	<1	<1 <1	<1 <1
1,2-dibromoetriane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
2-butanone (mek)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	ug/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	18.4	<10.0
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Alkalinity, as caco3	mg/L	373	400	352	.0	340	.0		
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic, total	ug/L	<4 138	<4 129	<4 154	<4 132	<4 135	<4 128	<4 110	<4 124
Barium, total Benzene	ug/L ug/L	138	<1	154 <1	132 <1	135	<1	<1	124 <1
Beryllium, total	ug/L ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Bis(2-ethylhexyl) phthalate	ug/L ug/L	<10	<10	<10	<10	<10	<10		`~
Bromochloromethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Calcium, total	mg/L	121	125	104		124			
Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloride	mg/L	<10.0	<10.0	<10.0		1.5			
Chlorobenzene	ug/L	<1	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1
Chloroethane Chloroform	ug/L	<1 <1	<1	<1	<1 <1	<1	<1	<1	<1 <1
Chloromethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	ug/L ug/L	<8	<8	<8	<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Copper, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Magnesium, total	mg/L	28.6 <1	27.1 <1	25.1 <1	<1	27.9 <1	<1	<1	<1
Methyl iodide Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Nickel, total	ug/L ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Nitrogen, ammonia	mg/L	<1	<1	<1	74	<1	~4		**
Potassium, total	mg/L	3.5	3.0	3.4		3.8			
Selenium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Sodium, total	mg/L	18.7	17.5	17.1		19.7			
Solids, total dissolved	mg/L	439	419	457		443			
Solids, total suspended	mg/L	3	3						
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Sulfate	mg/L	91.2	85.7	85.1		95.2			ا ن
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total Toluene	ug/L	<4 <1	<4 <1	<1 <1	<4 <1	<4 <1	<4 <1	<4 <1	<4 <1
Trans-1,2-dichloroethylene	ug/L ug/L	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1	<1	<1
Trans-1,3-dichloropropene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L ug/L	<1 <1	<1 <1	<1	<1 <1	<1	<1	<1	<1
Trichlorofluoromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl chloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	ug/L	<20	<8	<8	<8	<8	<8	<8	<8

 $[\]ensuremath{^{\star}}$ - The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-87

Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022	10/25/2022
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	<1 <1	<1 <1	<1 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1
1,2-dibromoethane 1,2-dichlorobenzene	<1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1	<1	<1
1,2-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
2-butanone (mek)	- <5	- <5	- <5	- <5	- <5	- <5	- <5	<10	<10
2-hexanone (mbk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Acrylonitrile	<5	<5	<5	<5	<5	<5	<5	<5	<5
Alkalinity, as caco3									
Antimony, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Barium, total	120	131	125	121	125	107	109	104	120
Benzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Beryllium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Bis(2-ethylhexyl) phthalate	.		.						
Bromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	<1	<1 <1	<1	<1	<1	<1	<1	<1 <1	<1
Bromoform	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1
Bromomethane Cadmium, total	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Cadrillum, total	<.0	<.0	\. 0	\. 0	<.0	\. 0	\. 0	\. 0	<.0
Carbon disulfide	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloride	''	71	,,,	*1	71	,,,			31
Chlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	<1	<1	<1	· <1	<1	<1	<1	<1	<1
Chloroform	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	<8	<8	<8	<8	<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	<.8	<.8	<.8	<.4	<.4	<.4	<.4	<.4	<.4
Copper, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Dibromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	<1	<1	<1	<1	<1	<1 <4	<1	<1	<1 <4
Lead, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Magnesium, total Methyl iodide	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	<5	<5	<5	<5	<5	<5	<5	<5	<5
Nickel, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Nitrogen, ammonia	"	, , ,	"						
Potassium, total									
Selenium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Sodium, total									
Solids, total dissolved									
Solids, total suspended									
Styrene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulfate									
Tetrachloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	<4	<2	<2	<2	<2	<2	<2	<2	<2
Toluene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1 <1	<1	<1 <1	<1	<1	<1 <1	<1 <1	<1 <1	<1 <1
Trichlorofluoromethane	<1 <20	<1 <20	<1 <20	<1 <20	<1	<1 <20	<1 <20	<1 <20	<1 <20
Vanadium, total Vinyl acetate	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5
Vinyl acetate Vinyl chloride	<5 <1	<1	<5 <1	<5 <1	<5 <1	<5 <1	<1	<1	<1
Xylenes, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	<20	<20	<20	<20	<20	<20	<20	<20	<20
Enio, total	~20	~20	~20	~20	-20	`~20	120	`~20	~20

 $[\]ensuremath{^{\star}}$ - The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-87

1,1,1-zichrobroethane	Constituents	4/11/2023	10/13/2023	4/16/2024	10/15/2024
1,1,2-tichloroethane		1 1	-		
1,1-2-trichloroethane		1 1	•		-
1,1-dichloroethylene					-
1,1-dichloroethylene		1 1	•		-
1,2-dibrono-s-chloropropane		1 1	•		-
1,2-dibromo-3-chioropropane <5 <5 <5 <5 <5 <5 <5 <			•		
1,2-dichromoethane		1 1	•		-
1,2-dichlorobenzene					-
1,2-dichloroethane					-
1,2-dichloropropane		1 1	•		-
1,4-ichlorobenzene			•	- 1	
2-butanone (mek)			-		
2-hexanone (mbk)		1 1	•		-
A-methyl-2-pentanone (mibk)				-	-
Aceton			-		
Actylonitrile					
Alkalinity, as caco3					
Antimon'y, total		<5	<5	<5	<5
Arsenic, total			.0	.0	.0
Barium, total 115 104 117 100					
Benzene		1	-	- 1	
Beryllium, total Sis(2-ethylhexyl) phthalate Bromochloromethane Continue Conti					
Bis(2-ethylhexyl) phthalate Bromochloromethane		1	-		-
Bromochioromethane		<4	<4	<4	<4
Bromoficitoromethane		ا در	-4		-14
Bromoform			•	- 1	
Bromomethane	III	1 1	•		-
Cadmium, total Calcium, total Carbon disulfide Carbon disulfide Carbon disulfide Carbon disulfide Carbon disulfide Chloride Chlorodenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chloroform Chloroform Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethylene Cis-1,3-dichloropropene Cis-1,3-dichloropr	III	1	-		-
Calcium, total Carbon disulfide Carbon disulfide Carbon detrachloride Carbon detrachloride Carbon detrachloride Chloroden					
Carbon disulfide		\.o	\. 0	\. 0	<.0
Carbon tetrachloride	III = '	_1	_1	_1	_1
Chloride Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chloroform Chloroform Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethylene Chlorobenzene Chlor	III =	1	-		
Chloroethane	III =		\ 1	`'	\1
Chloroethane		_1	_1	_1	_1
Chloroform		1 1	•		-
Chloromethane	III =	1 1	•		-
Chromium, total	III =				-
Cis-1,2-dichloroethylene	III =		•		
Cis-1,3-dichloropropene			-	-	-
Cobalt, total		1 1	•		-
Copper, total			•		
Dibromochloromethane					
Dibromomethane			-		-
Ethylbenzene		1 1	•		-
Lead, total					
Magnesium, total 4 <1		1 1	-		
Methyl iodide <1			77	'-	***
Methylene chloride <5		<1	<1	<1	<1
Nickel, total		1 1	-		-
Nitrogen, ammonia Potassium, total Selenium, total Selenium, total Selenium, total Selenium, total Selenium, total Selenium, total Solids, total dissolved Solids, total dissolved Solids, total suspended Styrene Styrene Styrene Sulfate Selenium, total Selenium, total					-
Potassium, total Selenium, total Selenium, total Selenium, total Selenium, total Solium, total Solium, total Solium, total Solium, total Solium, total Solium, total Sulfate Styrene Styrene Sulfate Styrene Sulfate Styrene Sulfate Sulfate Styrene Sulfate Styrene Sulfate Sulfate Styrene Sulfate Styrene Sulfate Styrene Sulfate Styrene Sulfate Sulfate Styrene Sulfate Sulfate		"	- '	.	
Selenium, total					
Silver, total		<4	<4	<4	<4
Sodium, total Solids, total dissolved Solids, total dissolved Solids, total suspended Styrene <1			-		-
Solids, total dissolved Solids, total suspended Styrene Styrene Solids Styrene Sty				-	- [
Solids, total suspended Styrene Styrene Styrene Styrene Styrene Styrene Sulfate Sulfate					
Styrene					
Sulfate 1 <1		<1	<1	<1	<1
Tetrachloroethylene		'	· l		
Thallium, total		<1	<1	<1	<1
Toluene		<2	<2	<2	<2
Trans-1,3-dichloropropene <1				<1	
Trans-1,3-dichloropropene <1	Trans-1,2-dichloroethylene	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene <5		<1	<1	<1	<1
Trichloroethylene		<5	<5	<5	<5
Trichlorofluoromethane					
Vanadium, total <20		<1	<1	<1	<1
Vinyl chloride <1		<20	<20	<20	<20
Xylenes, total <2 <2 <2 <2				<5	
Xylenes, total <2 <2 <2 <2	Vinyl chloride	<1	<1	<1	<1
		<2	<2	<2	<2
20 20 20	Zinc, total	<20	<20	<20	<20

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-89

Constituents	Units	10/16/2014	4/3/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L	<1 <1	<1 <1	<1	<1	<1 <1	<1	<1	<1
1,1-dichloroethylene	ug/L	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1
1,2,3-trichloropropane 1,2-dibromo-3-chloropropane	ug/L ug/L	<1 <1	<1 <1	<1	<1 <1	<1	<1 <1	<1	<1 <1
1,2-dibromoethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromoetriane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
2-butanone (mek)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	ug/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	18.2	<10.0
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Alkalinity, as caco3	mg/L	406	428	393		374			
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic, total Barium, total	ug/L	<4 329	<4 356	<4 330	<4 323	<4 317	<4 309	<4 295	<4 238
Barium, total Benzene	ug/L ug/L	329 <1	356 <1	330 <1	323 <1	317 <1	309 <1	295 <1	238 <1
Beryllium, total	ug/L ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Bis(2-ethylhexyl) phthalate	ug/L ug/L	<10	**	<10	19	<10	<10		`*
Bromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Calcium, total	mg/L	94.7	102.0	84.4		105.0			
Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloride	mg/L	<10.0	<10.0	<10.0		7.5			
Chlorobenzene	ug/L	<1	<1	<1 <1	<1	<1	<1	<1	<1
Chloroethane Chloroform	ug/L	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Chloromethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	ug/L ug/L	<8	<8	<8	<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Copper, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Magnesium, total	mg/L	33.5	33.0	31.1		37.2			
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride Nickel, total	ug/L	<5 <4	<5 <4	<5 <4	<5 <4	<5 <4	<5 <4	<5 <4	<5 <4
Nitrogen, ammonia	ug/L mg/L	<1	<1	<1	\4	<1	\4	\4	\4
Potassium, total	mg/L	1.0	<1.0	1.0		1.4			
Selenium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Sodium, total	mg/L	14.5	15.5	13.2		17.8	.		
Solids, total dissolved	mg/L	407	353	384		320			
Solids, total suspended	mg/L	87	5						
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Sulfate	mg/L	10.1	9.8	10.2		14.6	.	_	
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	ug/L	<4	<4	<1	<4	<4	<4	<4	<4
Toluene Trans-1,2-dichloroethylene	ug/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1
Trans-1,2-dichloroethylene	ug/L ug/L	<1	<1 <1	<1	<1 <1	<1	<1 <1	<1	<1 <1
Trans-1,3-dichloro-2-butene	ug/L ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L ug/L	<1 <1	<1	<1	<1	<1 <1	<1	<1	<1
Trichlorofluoromethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl chloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	ug/L	<20	<8	<8>	<8	<8	<8	<8	<8

 $[\]ensuremath{^{\star}}$ - The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-89

Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022	10/25/2022
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	<1 <1	<1	<1 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5
1,2-dibromoethane 1,2-dichlorobenzene	<1	<1 <1	<1	<1	<1	<1	<1	<1	<1 <1
1,2-dichloroethane	<1	<1 <1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
2-butanone (mek)	<5	<5	<5	<5	<5	<5	<5	<10	<10
2-hexanone (mbk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Acrylonitrile	<5	<5	<5	<5	<5	<5	<5	<5	<5
Alkalinity, as caco3	,	-			•	_	-		-
Antimony, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Barium, total	255	336	352	311	336	263	298	219	242
Benzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Beryllium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Bis(2-ethylhexyl) phthalate									
Bromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Calcium, total									
Carbon disulfide	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloride	-4		-4	-4	-4	-1	-4	-11	
Chlorobenzene	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Chloroethane Chloroform	<1 <1	<1 <1	<1	<1	<1 <1	<1	<1	<1	<1
Chloromethane	<1 <1	<1 <1	<1	<1	<1 <1	<1	<1	<1	<1
Chromium, total	<8	<8	<8	<8	<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	<.8	<.8	<.8	<.4	<.4	<.4	<.4	<.4	<.4
Copper, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Dibromochloromethane	<1	- <1	<1	<1	<1	- <1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Magnesium, total									
Methyl iodide	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	<5	<5	<5	<5	<5	<5	<5	<5	<5
Nickel, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Nitrogen, ammonia									
Potassium, total									
Selenium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Sodium, total									
Solids, total dissolved									
Solids, total suspended		.							.
Styrene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulfate									
Tetrachloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	<4	<2	<2	<2	<2	<2	<2	<2	<2
Toluene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5 <1	<5	<5	<5	<5	<5 <1	<5	<5 <1	<5
Trichloroethylene Trichlorofluoromethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Vanadium, total	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5
Vinyl acetate Vinyl chloride	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1
Xylenes, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	<20	<20	<20	<20	<20	<20	<20	<20	<20
Lano, iolai	<u>~20</u>	\ 20	\2 0	~20	\2 0	~20	<u>~20</u>		\ 20

 $[\]ensuremath{^{\star}}$ - The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-89

Constituents	4/11/2023	11/9/2023	4/16/2024	10/15/2024
1,1,1,2-tetrachloroethane	<1	<1	<1	<1
1,1,1-trichloroethane	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1	<1
1,1-dichloroethane	<1	<1	<1	<1
1,1-dichloroethylene	<1	<1	<1 <1	<1 <1
1,2,3-trichloropropane 1,2-dibromo-3-chloropropane	<1 <5	<1 <5	<1 <5	<1 <5
1,2-dibromo-3-chloropropane	<5 <1	<5 <1	<5 <1	<5 <1
1,2-dibromoetrarie	<1	<1	<1	<1
1,2-dichloroethane	<1	<1	<1	<1
1,2-dichloropropane	<1	<1	<1	<1
1,4-dichlorobenzene	<1	<1	<1	<1
2-butanone (mek)	<10	<10	<10	<10
2-hexanone (mbk)	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5
Acetone	<10.0	<10.0	<10.0	<10.0
Acrylonitrile	<5	<5	<5	<5
Alkalinity, as caco3		_	_	_
Antimony, total	<2	<2	<2	<2
Arsenic, total	<4	<4	<4	<4
Barium, total	214	257	240	215
Benzene Benzelium total	<1	<1	<1	<1
Beryllium, total Bis(2-ethylhexyl) phthalate	<4	<4	<4	<4
Bis(2-etnyinexyi) pritrialate Bromochloromethane	<1	<1	<1	<1
Bromodichloromethane	<1	<1	<1	<1
Bromoform	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1
Cadmium, total	<.8	<.8	<.8	<.8
Calcium. total				
Carbon disulfide	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1
Chloride				
Chlorobenzene	<1	<1	<1	<1
Chloroethane	<1	<1	<1	<1
Chloroform	<1	<1	<1	<1
Chloromethane	<1	<1	<1	<1
Chromium, total	<8	<8	<8	<8
Cis-1,2-dichloroethylene	<1	<1	<1	<1
Cis-1,3-dichloropropene	<1	<1	<1	<1
Cobalt, total	<.4	<.4	<.4	<.4
Copper, total	<4	<4	<4	<4
Dibromochloromethane	<1 <1	<1 <1	<1 <1	<1
Dibromomethane	<1	<1 <1	<1 <1	<1 <1
Ethylbenzene Lead, total	<4	<4	<4	<4
Magnesium, total	\ 4	~4	~4	\4
Methyl iodide	<1	<1	<1	<1
Methylene chloride	<5	<5	<5	<5
Nickel, total	<4	<4	<4	<4
Nitrogen, ammonia		. '	. '	
Potassium, total				
Selenium, total	<4	<4	<4	<4
Silver, total	<4	<4	<4	<4
Sodium, total				
Solids, total dissolved				
Solids, total suspended				
Styrene	<1	<1	<1	<1
Sulfate				
Tetrachloroethylene	<1	<1	<1	<1
Thallium, total	<2	<2	<2	<2
Toluene	<1	<1	<1	<1
Trans-1,2-dichloroethylene	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5
Trichloroethylene Trichlorofluoromethane	<1 <1	<1 <1	<1 <1	<1 <1
Vanadium, total	<20	<1 <20	<20	<20
vanadium, total Vinyl acetate	<20 <5	<20 <5	<20 <5	<20 <5
Viriyi acetate Vinyl chloride	<1	<1	<1	<1
Xylenes, total	<2	<2	<2	<2
Zinc, total	<20	<20	<20	<20
/				

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-91

Constituents	Units	10/16/2014	4/3/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	7/11/2017	10/9/2017
(3 4)-methylphenol	ug/L								
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1		<1
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1		<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1		<1
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1		<1
1,1-dichloroethane	ug/L	2.4	6.1	3.6	<1.0	<1.0	<1.0		2.5
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1		<1
1,1-dichloropropene	ug/L	ا م		الدر			ا مر		
1,2,3-trichloropropane 1,2,4,5-tetrachlorobenzene	ug/L	<1	<1	<1	<1	<1	<1		<1
1,2,4,5-tetrachioropenzene	ug/L ug/L								
1,2,4-inchlorobenzene	ug/L ug/L	<1	<1	<1	<1	<1	<1		<1
1.2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1		<1
1.2-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1		<1
1,2-dichloroethane	ug/L	<1	· <1	<1	<1	<1	<1		<1
1,2-dichloropropane	ug/L	<1	<1	<1	<1	<1	<1		<1
1,2-dinitrobenzene	ug/L								
1,3,5-trinitrobenzene	ug/L								
1,3-dichlorobenzene	ug/L								
1,3-dichloropropane	ug/L								
1,3-dinitrobenzene	ug/L								
1,4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1		<1
1,4-naphthoquinone	ug/L								
1,4-phenylenediamine	ug/L								
1-naphthylamine	ug/L								
2,2-dichloropropane 2,3,4,6-tetrachlorophenol	ug/L ug/L								
2,3,4,6-tetrachiorophenoi 2,4,5-t	ug/L ug/L								
2,4,5-t 2,4,5-tp (silvex)	ug/L ug/L								
2,4,5-tp (Silvex)	ug/L ug/L								
2,4,6-trichlorophenol	ug/L								
2,4-d	ug/L								
2,4-dichlorophenol	ug/L								
2,4-dimethylphenol	ug/L								
2,4-dinitrophenol	ug/L								
2,4-dinitrotoluene	ug/L								
2,6-dichlorophenol	ug/L								
2,6-dinitrotoluene	ug/L								
2-acetylaminofluorene	ug/L								_
2-butanone (mek)	ug/L	<5	<5	<5	<5	<5	<5		<5
2-chloronaphthalene	ug/L								
2-chlorophenol	ug/L	<5	<5	<5	<i>-</i> E	<5	<5		<5
2-hexanone (mbk)	ug/L	< 5	<5	< 5	<5	<2	\ <u>`</u>		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
2-methylnaphthalene 2-methylphenol	ug/L ug/L								
2-naphthylamine	ug/L								
2-nitroaniline	ug/L								
2-nitrophenol	ug/L								
3,3´-dichlorobenzidine	ug/L								
3,3'-dimethylbenzidine	ug/L								
3-methylcholanthrene	ug/L								
3-nitroaniline	ug/L								
4,4´-ddd	ug/L								
4,4´-dde	ug/L								
4,4'-ddt	ug/L								
4,6-dinitro-2-methylphenol	ug/L								
4-aminobiphenyl	ug/L								
4-bromophenyl phenyl ether 4-chloro-3-methylphenol	ug/L								
4-chloroaniline	ug/L ug/L								
4-chlorophenyl phenyl ether	ug/L ug/L								
4-methyl-2-pentanone (mibk)	ug/L ug/L	<5	<5	<5	<5	<5	<5		<5
4-nitroaniline	ug/L		-5	-5	-5				
4-nitrophenol	ug/L								
5-nitro-o-toluidine	ug/L								
7,12-dimethylbenz(a)anthracene	ug/L								
Acenaphthene	ug/L								
Acenaphthylene	ug/L								
Acetone	ug/L	<10	<10	<10	<10	<10	<10		<10
Acetonitrile	ug/L								
Acetophenone	ug/L								
Acrolein	ug/L		_	_	_	_	_		_
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5		<5
Allerin	ug/L	40.4				000			
Alkalinity, as caco3	mg/L	464	559	559		382			
Allyl chloride	ug/L								
Alpha-bhc	ug/L	l							

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-91

Constituents	1/9/2018	4/17/2018	7/2/2018	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	1/7/2021
(3 4)-methylphenol				<8			_		
1,1,1,2-tetrachloroethane		<1		<1	<1	<1	<1	<1	
1,1,1-trichloroethane		<1		<1	<1	<1 <1	<1	<1	
1,1,2,2-tetrachloroethane		<1 <1		<1 <1	<1 <1	<1	<1 <1	<1 <1	
1,1,2-inchloroethane	1.7	<1.0		<1.0	2.7	<1.0	<1.0	1.5	
1,1-dichloroethylene		<1		<1	<1	<1	<1	<1	
1,1-dichloropropene				<1				·	
1,2,3-trichloropropane		<1		<1	<1	<1	<1	<1	
1,2,4,5-tetrachlorobenzene				<8					
1,2,4-trichlorobenzene				<1		_	_	_	
1,2-dibromo-3-chloropropane		<1		<1	<1	<1	<5	<5	
1,2-dibromoethane 1,2-dichlorobenzene		<1 <1		<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	
1,2-dichloroethane		<1		<1	<1	<1	<1	<1	
1,2-dichloropropane		<1		<1	<1	<1	<1	<1	
1,2-dinitrobenzene				<8					
1,3,5-trinitrobenzene				<8					
1,3-dichlorobenzene				<1					
1,3-dichloropropane				<1					
1,3-dinitrobenzene		-4		<8		-4			
1,4-dichlorobenzene 1,4-naphthoquinone		<1		<1 <8	<1	<1	<1	<1	
1,4-naphthoquinone 1,4-phenylenediamine				<8					
1,4-phenylenediamine				<8					
2,2-dichloropropane				<1					
2,3,4,6-tetrachlorophenol				<8					
2,4,5-t				<.5					
2,4,5-tp (silvex)				<.5					
2,4,5-trichlorophenol				<8					
2,4,6-trichlorophenol 2,4-d				<8 <2					
2,4-dichlorophenol				<8					
2,4-dimethylphenol				<8					
2,4-dinitrophenol				<8					
2,4-dinitrotoluene				<8					
2,6-dichlorophenol				<8					
2,6-dinitrotoluene				<8					
2-acetylaminofluorene		.=		<8					
2-butanone (mek) 2-chloronaphthalene		<5		<5 <8	<5	<5	<5	<5	
2-chlorophenol				<8					
2-hexanone (mbk)		<5		<5	<5	<5	<5	<5	
2-methylnaphthalene				<8	-	_		_	
2-methylphenol				<8					
2-naphthylamine				<8					
2-nitroaniline				<8					
2-nitrophenol 3,3´-dichlorobenzidine				<8 <8					
3,3'-dimethylbenzidine				<8					
3-methylcholanthrene				<8					
3-nitroaniline				<8					
4,4´-ddd				<.05					
4,4´-dde				<.05					
4,4'-ddt				<.05					
4,6-dinitro-2-methylphenol				<8 <8					
4-aminobiphenyl 4-bromophenyl phenyl ether				<8 <8					
4-chloro-3-methylphenol				<8					
4-chloroaniline				<8					
4-chlorophenyl phenyl ether				<8					
4-methyl-2-pentanone (mibk)		<5		<5	<5	<5	<5	<5	
4-nitroaniline				<8					
4-nitrophenol				<8					
5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene				<8 <8					
7,12-dimethylbenz(a)anthracene Acenaphthene				<8					
Acenaphthylene				<8					
Acetone		<10		<10	<10	<10	<10	<10	
Acetonitrile				<10					
Acetophenone				<8					
Acrolein				<10					
Acrylonitrile		<5		<5	<5	<5	<5	<5	
Allerin				<.05					
Alkalinity, as caco3 Allyl chloride				<1					
Allyl chloride Alpha-bhc				<.05					
, up.i.d bito				00				1	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-91

Constituents	4/5/2021	10/8/2021	4/6/2022	10/25/2022	4/11/2023	11/9/2023	4/16/2024	10/15/2024
(3 4)-methylphenol	_					<8		
1,1,1,2-tetrachloroethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,1,1,1-inchloroethane	<1	<1	<1 <1	<1	<1 <1	<1	<1 <1	<1
1,1,2-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloropropene		-1		-1		<1	-1	-1
1,2,3-trichloropropane 1,2,4,5-tetrachlorobenzene	<1	<1	<1	<1	<1	<1 <8	<1	<1
1,2,4-trichlorobenzene						<1		
1,2-dibromo-3-chloropropane	<5	<5	<5	<5	<5	<1	<5	<5
1,2-dibromoethane	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,2-dichloroethane 1,2-dichloropropane	<1	<1 <1	<1 <1	<1	<1 <1	<1	<1 <1	<1
1,2-dinitrobenzene	''	- '	''	- 1	` '	<8	- 1	''
1,3,5-trinitrobenzene						<8		
1,3-dichlorobenzene						<1		
1,3-dichloropropane						<1		
1,3-dinitrobenzene	<1	<1	<1	<1	<1	<8 <1	<1	<1
1,4-naphthoguinone	`'	`	`'	31	` ` '	<8	*1	- 1
1,4-phenylenediamine						<8		
1-naphthylamine						<8		
2,2-dichloropropane						<1		
2,3,4,6-tetrachlorophenol 2,4,5-t						<8 <.5		
2,4,5-tp (silvex)						<.5		
2,4,5-trichlorophenol						<8		
2,4,6-trichlorophenol						<8		
2,4-d						<2		
2,4-dichlorophenol						<8 <8		
2,4-dimethylphenol						<8		
2,4-dinitrotoluene						<8		
2,6-dichlorophenol						<8		
2,6-dinitrotoluene						<8		
2-acetylaminofluorene			-10	-10	-40	<8	-10	-10
2-butanone (mek) 2-chloronaphthalene	<5	<5	<10	<10	<10	<5 <8	<10	<10
2-chlorophenol						<8		
2-hexanone (mbk)	<5	<5	<5	<5	<5	<5	<5	<5
2-methylnaphthalene						<8		
2-methylphenol						<8 <8		
2-naphthylamine 2-nitroaniline						<8		
2-nitrophenol						<8		
3,3´-dichlorobenzidine						<8		
3,3'-dimethylbenzidine						<8		
3-methylcholanthrene						<8 <8		
3-nitroaniline 4,4'-ddd						<.05		
4,4'-ddd 4,4'-dde						<.05		
4,4'-ddt						<.05		
4,6-dinitro-2-methylphenol						<8		
4-aminobiphenyl						<8		
4-bromophenyl phenyl ether 4-chloro-3-methylphenol						<8 <8		
4-chloroaniline						<8		
4-chlorophenyl phenyl ether						<8		
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5	<5	<5	<5
4-nitroaniline						<8		
4-nitrophenol 5-nitro-o-toluidine						<8 <8		
7,12-dimethylbenz(a)anthracene						<8		
Acenaphthene						<8		
Acenaphthylene						<8		
Acetone	<10	<10	<10	<10	<10	<10	<10	<10
Acetonitrile Acetophenone						<10 <8		
Acetophenone Acrolein						<8 <10		
Acrylonitrile	<5	<5	<5	<5	<5	<5	<5	<5
Aldrin						<.05		
Alkalinity, as caco3								
Allyl chloride Alpha-bhc						<1 <.05		
7 upria-bilo						₹.00		

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-91

Constituents	Units	10/16/2014	4/3/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	7/11/2017	10/9/2017
Anthracene	ug/L								
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2		<2
Arochlor 1016	ug/L								
Arochlor 1221 Arochlor 1232	ug/L								
Arochlor 1232 Arochlor 1242	ug/L ug/L								
Arochlor 1248	ug/L ug/L								
Arochlor 1254	ug/L								
Arochlor 1260	ug/L								
Arsenic, total	ug/L	<4	<4	<4	<4	<4	<4		4
Azobenzene	ug/L								
Barium, total	ug/L	266	303	348	162	255	162		663
Benzene	ug/L	<1	<1	<1	<1	<1	<1		<1
Benzo(a)anthracene Benzo(a)pyrene	ug/L ug/L								
Benzo(b)fluoranthene	ug/L ug/L								
Benzo(g,h,i)perylene	ug/L								
Benzo(k)fluoranthene	ug/L								
Benzyl alcohol	ug/L								
Beryllium, total	ug/L	<4	<4	<4	<4	<4	<4		<4
Beta-bhc	ug/L								
Bis (2-chloroethoxy) methane	ug/L								
Bis(2-chloroethyl) ether	ug/L								
Bis(2-chloroisopropyl) ether Bis(2-ethylhexyl) phthalate	ug/L ug/L	<10	<10	<10	<10	<10	<10		
Bromochloromethane	ug/L ug/L	<10	<1	<1	<1	<10	<10		<1
Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1		<1
Bromoform	ug/L	<1	<1	<1	<1	<1	<1		<1
Bromomethane	ug/L	<1	<1	<1	<1	<1	<1		<1
Butyl benzyl phthalate	ug/L								
Cadmium, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8		<.8
Calcium, total	mg/L	119	140	132		120			
Carbon disulfide	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0
Carbon tetrachloride Chlordane	ug/L ug/L	<1	<1	<1	<1	<1	<1		<1
Chloride	mg/L	13	18	<10		17			
Chlorobenzene	ug/L	<1	<1	<1	<1		<1		<1
Chlorobenzilate	ug/L	-	-				-		
Chloroethane	ug/L	<1	<1	<1	<1	<1	<1		<1
Chloroform	ug/L	<1	<1	<1	<1	<1	<1		<1
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1		<1
Chloroprene	ug/L	.0	.0	.0					
Chromium, total	ug/L	<8	<8	<8	<8	<8	<8		<8
Chrysene Cis-1,2-dichloroethylene	ug/L ug/L	<1.0	1.5	<1.0	<1.0	<1.0	<1.0		<1.0
Cis-1,3-dichloropropene	ug/L	<1.0	<1	<1.0	<1.0	<1.0	<1.0		<1.0
Cobalt, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8		<.8
Copper, total	ug/L	<4.0	<4.0	<4.0	<4.0	<4.0	4.6	<4.0	<4.0
Cyanide, total	mg/L								
Delta-bhc	ug/L								
Diallate	ug/L								
Dibenzo(a,h)anthracene	ug/L								
Dibenzofuran Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1		<1
Dibromomethane	ug/L ug/L	<1	<1 <1	<1	<1	<1	-1		<1
Dichlorodifluoromethane	ug/L	`'	`'	~1	`'	``	`'		
Dieldrin	ug/L								
Diethyl phthalate	ug/L								
Dimethoate	ug/L								
Dimethylphthalate	ug/L								
Di-n-butyl phthalate	ug/L								
Di-n-octyl phthalate	ug/L								
Dinoseb Diphenylamine	ug/L								
Disulfoton	ug/L ug/L								
Endosulfan i	ug/L ug/L								
Endosulfan ii	ug/L								
Endosulfan sulfate	ug/L								
Endrin	ug/L								
Endrin aldehyde	ug/L								
Ethyl methacrylate	ug/L								
Ethyl methanesulfonate	ug/L								
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1		<1
Famphur	ug/L								
Fluoranthene Fluorene	ug/L								
Gamma-bhc (lindane)	ug/L ug/L								

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-91

Constituents	1/9/2018	4/17/2018	7/2/2018	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	1/7/2021
Anthracene				<8					
Antimony, total		<2		<2	<2	<2	<2	<2	
Arochlor 1016				<.1					
Arochlor 1221 Arochlor 1232				<.2 <.2					
Arochlor 1232				<.2					
Arochlor 1248				<.2					
Arochlor 1254				<.1					
Arochlor 1260				<.1					
Arsenic, total		<4		<4	<4	<4	<4	<4	
Azobenzene	236	126		<8 167	183	363	165	268	
Barium, total Benzene	230	<1		<1	<1	<1	<1	<1	
Benzo(a)anthracene		, ,		<8	` '	`'	, ,		
Benzo(a)pyrene				<8					
Benzo(b)fluoranthene				<8					
Benzo(g,h,i)perylene				<8					
Benzo(k)fluoranthene				<8					
Benzyl alcohol Beryllium, total		<4		<8 <4	<4	<4	<4	<4	
Beta-bhc		\ 4		<.05	\ 4	~4	~4	\4	
Bis (2-chloroethoxy) methane				<8					
Bis(2-chloroethyl) ether				<8					
Bis(2-chloroisopropyl) ether				<8					
Bis(2-ethylhexyl) phthalate				<6					
Bromochloromethane Bromodichloromethane		<1		<1	<1	<1	<1	<1	
Bromodicnioromethane Bromoform		<1 <1		<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	
Bromomethane		<1		<1	<1	<1	<1	<1	
Butyl benzyl phthalate		•		<8	.,				
Cadmium, total		<.8		<.8	<.8	<.8	<.8	<.8	
Calcium, total									
Carbon disulfide		<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	
Carbon tetrachloride		<1		<1	<1	<1	<1	<1	
Chlordane Chloride				<.1					
Chlorobenzene		<1		<1	<1	<1	<1	<1	
Chlorobenzilate				<8		·	·		
Chloroethane		<1		<1	<1	<1	<1	<1	
Chloroform		<1		<1	<1	<1	<1	<1	
Chloromethane		<1		<1	<1	<1	<1	<1	
Chloroprene Chromium, total		<8		<1 <8	<8	<8	<8	<8	
Chrysene		\0		<8	~0	~0			
Cis-1,2-dichloroethylene		<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	
Cis-1,3-dichloropropene		<1		<1	<1	<1	<1	<1	
Cobalt, total		<.8		<.8	<.8	<.8	<.4	<.4	
Copper, total		<4.0		<4.0	<4.0	<4.0	<4.0	<4.0	
Cyanide, total Delta-bhc				<.005					
Delta-bric Diallate				<.05 <8					
Dialiate Dibenzo(a,h)anthracene				<8					
Dibenzofuran				<8					
Dibromochloromethane		<1		<1	<1	<1	<1	<1	
Dibromomethane		<1		<1	<1	<1	<1	<1	
Dichlorodifluoromethane				<1					
Dieldrin Diethyl phthalate				<.05 <8					
Dimethoate				<.4					
Dimethylphthalate				<8					
Di-n-butyl phthalate				<8					
Di-n-octyl phthalate				<8					
Dinoseb				<.5					
Diphenylamine Disulfoton				<8					
Disulfoton Endosulfan i				<.4 <.05					
Endosullari i Endosulfan ii				<.05					
Endosulfan sulfate				<.05					
Endrin				<.05					
Endrin aldehyde				<.05					
Ethyl methacrylate				<10					
Ethyl methanesulfonate		ا مر		<8	ا در				
Ethylbenzene Famphur		<1		<1 <.4	<1	<1	<1	<1	
Fampnur Fluoranthene				<.4					
Fluorene				<8					
Gamma-bhc (lindane)	1			<.05					

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-91

Constituents	4/5/2021	10/8/2021	4/6/2022	10/25/2022	4/11/2023	11/9/2023	4/16/2024	10/15/2024
Anthracene						<8		
Antimony, total	<2	<2	<2	<2	<2	<2	<2	<2
Arochlor 1016						<.2		
Arochlor 1221						<.2		
Arochlor 1232 Arochlor 1242						<.2 <.2		
Arochlor 1248						<.2		
Arochlor 1254						<.2		
Arochlor 1260						<.2		
Arsenic, total	<4	<4	<4	<4	<4	<4	<4	<4
Azobenzene						<8		
Barium, total	118	235	111	203	116	241	186	242
Benzene	<1	<1	<1	<1	<1	<1	<1	<1
Benzo(a)anthracene						<8		
Benzo(a)pyrene Benzo(b)fluoranthene						<8 <8		
Benzo(g,h,i)perylene						<8		
Benzo(k)fluoranthene						<8		
Benzyl alcohol						<8		
Beryllium, total	<4	<4	<4	<4	<4	<4	<4	<4
Beta-bhc						<.05		
Bis (2-chloroethoxy) methane						<8		
Bis(2-chloroethyl) ether						<8		
Bis(2-chloroisopropyl) ether						<8		
Bis(2-ethylhexyl) phthalate						<6		
Bromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane Butyl benzyl phthalate	<1	<1	<1	<1	<1	<1 <8	<1	<1
Cadmium, total	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Calcium, total	\.0	₹.0	\.0	₹.0	\.0	₹.0	٧.٥	₹.0
Carbon disulfide	<1.0	<1.0	2.6	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon tetrachloride	<1	<1	<1	<1	<1	<1	<1	<1
Chlordane		·		·	,	<.1		
Chloride								
Chlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzilate						<8		
Chloroethane	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	<1	<1	<1	<1	<1	<1	<1	<1
Chloroprene		-0	-0	-0	_0	<1	-0	-0
Chronium, total	<8	<8	<8	<8	<8	<8 <8	<8	<8
Chrysene Cis-1,2-dichloroethylene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cis-1,3-dichloropropene	<1	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1
Cobalt, total	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4
Copper, total	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Cyanide, total						<.005		
Delta-bhc						<.05		
Diallate						<8		
Dibenzo(a,h)anthracene						<8		
Dibenzofuran						<8		
Dibromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane Dichlorodifluoromethane	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane Dieldrin						<1 <.05		
Dieldrin Diethyl phthalate						<.05 <8		
Dimethoate						<.4		
Dimethylphthalate						<8		
Di-n-butyl phthalate						<8		
Di-n-octyl phthalate						<8		
Dinoseb						<.5		
Diphenylamine						<8		
Disulfoton						<.4		
Endosulfan i						<.05		
Endosulfan ii						<.05		
Endosulfan sulfate						<.05		
Endrin						<.05		
Endrin aldehyde Ethyl methacrylate						<.05 <10		
Etnyl methacrylate Ethyl methanesulfonate						<10 <8		
Ethyl methanesulionate Ethylbenzene	<1	<1	<1	<1	<1	<0 <1	<1	<1
Eurylberizerie Famphur	`'	~1	``	~1	``'	<.4	~1	~1
Fluoranthene						<8		
Fluorene						<8		
Gamma-bhc (lindane)						<.05		

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-91

Constituents	Units	10/16/2014	4/3/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	7/11/2017	10/9/2017
Heptachlor	ug/L								
Heptachlor epoxide	ug/L								
Hexachlorobenzene	ug/L								
Hexachlorobutadiene	ug/L								
Hexachlorocyclopentadiene	ug/L								
Hexachloroethane	ug/L								
Hexachloropropene	ug/L								
Indeno(1,2,3-cd)pyrene	ug/L								
Isobutanol	mg/L								
Isodrin	ug/L								
Isophorone	ug/L								
Isosafrole	ug/L								
Kepone	ug/L								
Lead, total	ug/L	<4	<4	<4	<4	<4	<4		<4
Magnesium, total	mg/L	47.6	54.4	55.8		47.3			
Mercury, total	ug/L								
Methacrylonitrile	ug/L								
Methapyrilene	ug/L								
Methoxychlor	ug/L					_			
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1		<1
Methyl methacrylate	ug/L								
Methyl methanesulfonate	ug/L								
Methyl parathion	ug/L	_	_	_	_	_	_		_
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5		<5
Naphthalene	ug/L	_					_		
Nickel, total	ug/L	<4	<4	<4	<4	<4	<4		<4
Nitrobenzene	ug/L			العر					
Nitrogen, ammonia	mg/L	<1	<1	<1		<1			
N-nitrosodiethylamine	ug/L								
N-nitrosodimethylamine	ug/L								
N-nitrosodi-n-butylamine	ug/L								
N-nitroso-di-n-propylamine	ug/L								
N-nitrosodiphenylamine	ug/L								
N-nitrosomethylethylamine	ug/L								
N-nitrosopiperidine	ug/L								
N-nitrosopyrrolidine	ug/L								
O,o,o-triethyl phosphorothioate O-toluidine	ug/L								
	ug/L								
Parathion	ug/L								
P-dimethylaminoazobenzene Pentachlorobenzene	ug/L ug/L								
Pentachloronitrobenzene (pcnb)	ug/L ug/L								
Pentachlorophenol	ug/L ug/L								
Phenacetin	ug/L ug/L								
Phenanthrene	ug/L ug/L								
Phenol	ug/L								
Phorate	ug/L								
Potassium, total	mg/L	<1.0	<1.0	<1.0		2.1			
Pronamide	ug/L	\1.0	1.0	1.0		2.1			
Propionitrile	ug/L								
Pyrene	ug/L								
Safrole	ug/L								
Selenium, total	ug/L	<4.0	<4.0	<4.0	<4.0	<4.0	6.5	<4.0	4.7
Silver, total	ug/L ug/L	<4.0	<4.0	<4.0 <4	<4	<4.0	<4		<4
Sodium, total	mg/L	8.3	8.0	8.1		7.2	"		
Solids, total dissolved	mg/L	537	477	577		464			
Solids, total dissolved Solids, total suspended	mg/L	7	19	311		704			
Styrene	ug/L	<1	<1	<1	<1	<1	<1		<1
Sulfate	mg/L	10.9	8.4	7.1	-1	8.7	``'		`'
Sulfide, total	mg/L	10.9	0.4	7.1		0.7			
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1		<1
Thallium, total	ug/L	<4	<4	<1	<4	<4	<4		<4
Thionazin	ug/L ug/L		~~		~4				~
Tin, total	ug/L								
Toluene	ug/L	<1	<1	<1	<1	<1	<1		<1
Toxaphene	ug/L	`'	-1	-1	*1	`'	`'		"
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1		<1
Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1		<1
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5		<5
Trichloroethylene	ug/L ug/L	<1	<1	<1	<1	<1	<1		<1
Trichlorofluoromethane	ug/L ug/L	<1	<1	<1	<1	<1	<1		<1
Vanadium, total	ug/L ug/L	<20	<20	<20	<20	<20	<20		<20
Vinyl acetate	ug/L ug/L	<5	<5	<5	<5	<5	<5		<5
Vinyl chloride	ug/L ug/L	<1	<1	<1	<1	<1	<1		<1
	ug/L ug/L	<2	<2	<2	<2	<2	<2		<2
Xylenes, total									

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-91

Constituents	1/9/2018	4/17/2018	7/2/2018	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	1/7/2021
Heptachlor				<.05					
Heptachlor epoxide Hexachlorobenzene				<.05 <.05					
Hexachlorobutadiene				<8					
Hexachlorocyclopentadiene				<8					
Hexachloroethane				<8					
Hexachloropropene				<8					
Indeno(1,2,3-cd)pyrene Isobutanol				<8 <1					
Isodrin				<8					
Isophorone				<8					
Isosafrole				<8					
Kepone		-4		<8	<4				
Lead, total Magnesium, total		<4		<4	\4	<4	<4	<4	
Mercury, total				<.5					
Methacrylonitrile				<1					
Methapyrilene				<8					
Methoxychlor Methyl iodide		<1		<.05 <1	<1	<1	<1	<1	
Methyl methacrylate		`'		<1	~1	``		``	
Methyl methanesulfonate				<8					
Methyl parathion				<.4					
Methylene chloride		<5		<5	<5	<5	<5	<5	
Naphthalene Nickel, total		<4		<8 <4	<4	<4	<4	<4	
Nitrobenzene		^4		<8	<4	<4	<4	<4	
Nitrogen, ammonia									
N-nitrosodiethylamine				<8					
N-nitrosodimethylamine				<8					
N-nitrosodi-n-butylamine N-nitroso-di-n-propylamine				<8 <8					
N-nitrosodiphenylamine				<8					
N-nitrosomethylethylamine				<8					
N-nitrosopiperidine				<8					
N-nitrosopyrrolidine				<8					
O,o,o-triethyl phosphorothioate O-toluidine				<.4 <8					
Parathion				<.4					
P-dimethylaminoazobenzene				<8					
Pentachlorobenzene				<8					
Pentachloronitrobenzene (pcnb) Pentachlorophenol				<8 <8					
Phenacetin				<8					
Phenanthrene				<8					
Phenol				<8					
Phorate				<.4					
Potassium, total Pronamide				<8					
Propionitrile				<10					
Pyrene				<8					
Safrole				<8					
Selenium, total	<4.0	5.6 <4	<4.0	<4.0 <4	<4.0 <4	<4.0 <4	<4.0 <4	4.1 <4	<4.0
Silver, total Sodium, total		^4			< 4	^4	\	^4	
Solids, total dissolved									
Solids, total suspended									
Styrene		<1		<1	<1	<1	<1	<1	
Sulfate Sulfide, total				<.1					
Tetrachloroethylene		<1		<1	<1	<1	<1	<1	
Thallium, total		<4		<4	<2	<2	<2	<2	
Thionazin				<.4					
Tin, total		ا ا		<20	_				
Toluene Toxaphene		<1		<1 <.2	<1	<1	<1	<1	
Trans-1,2-dichloroethylene		<1		<1	<1	<1	<1	<1	
Trans-1,3-dichloropropene		<1		<1	<1	<1	<1	<1	
Trans-1,4-dichloro-2-butene		<5		<5	<5	<5	<5	<5	
Trichloroethylene		<1		<1	<1	<1	<1	<1	
Trichlorofluoromethane Vanadium, total		<1 <20		<1 <20	<1 <20	<1 <20	<1 <20	<1 <20	
Vinyl acetate		<20 <5		<5	<20 <5	<5	<20 <5	<5	
Vinyl decide		<1		<1	<1	<1	<1	<1	
Xylenes, total		<2		<2	<2	<2	<2	<2	
Zinc, total		<8.0		<20.0	<20.0	24.7	<20.0	<20.0	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-91

Constituents	4/5/2021	10/8/2021	4/6/2022	10/25/2022	4/11/2023	11/9/2023	4/16/2024	10/15/2024
Heptachlor						<.05		
Heptachlor epoxide						<.05		
Hexachlorobenzene						<.05		
Hexachlorobutadiene						<8		
Hexachlorocyclopentadiene Hexachloroethane						<8 <8		
Hexachloropropene						<8		
Indeno(1,2,3-cd)pyrene						<8		
Isobutanol						<1		
Isodrin						<8		
Isophorone						<8		
Isosafrole						<8		
Kepone						<8		
Lead, total	<4	<4	<4	<4	<4	<4	<4	<4
Magnesium, total Mercury, total						<.5		
Methacrylonitrile						<1 <1		
Methapyrilene						<8		
Methoxychlor						<.05		
Methyl iodide	<1	<1	<1	<1	<1	<2	<1	<1
Methyl methacrylate						<1		
Methyl methanesulfonate						<8		
Methyl parathion						<.4		
Methylene chloride	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene		_				<8		
Nickel, total	<4	<4	<4	<4	<4	<4	<4	<4
Nitrobenzene Nitrogen, ammonia						<8		
N-nitrosodiethylamine						<8		
N-nitrosodimethylamine						<8		
N-nitrosodi-n-butylamine						<8		
N-nitroso-di-n-propylamine						<8		
N-nitrosodiphenylamine						<8		
N-nitrosomethylethylamine						<8		
N-nitrosopiperidine						<8		
N-nitrosopyrrolidine						<8		
O,o,o-triethyl phosphorothioate						<.4		
O-toluidine						<8		
Parathion						<.4		
P-dimethylaminoazobenzene Pentachlorobenzene						<8 <8		
Pentachloronitrobenzene (pcnb)						<8		
Pentachlorophenol						<8		
Phenacetin						<8		
Phenanthrene						<8		
Phenol						<8		
Phorate						<.4		
Potassium, total						_		
Pronamide						<8		
Propionitrile						<10		
Pyrene						<8		
Safrole Selenium, total	5.3	<4.0	<4.0	<4.0	<4.0	<8 <4.0	<4.0	<4.0
Selenium, total Silver, total	5.3 <4	<4.0 <4						
Sodium, total	""	~4	~4	~~	**	74	~4	~4
Solids, total dissolved								
Solids, total suspended								
Styrene	<1	<1	<1	<1	<1	<1	<1	<1
Sulfate								
Sulfide, total						<.1		
Tetrachloroethylene	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	<2	<2	<2	<2	<2	<2	<2	<2
Thionazin						<.4		
Tin, total		_1	_1			<20	_1	_1
Toluene Toxaphene	<1	<1	<1	<1	<1	<1 <.2	<1	<1
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1	<.z	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	- <1	<1	- <1	<1	<1	<1	<1	- <1
Vanadium, total	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl chloride	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes, total	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-93

Constituents	Units	10/16/2014	4/6/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
(3 4)-methylphenol	ug/L								
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloropropene	ug/L								.
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2,4,5-tetrachlorobenzene	ug/L								
1,2,4-trichlorobenzene 1,2-dibromo-3-chloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,2-dibromoethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1 <1
1,2-dibromoetriarie	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dinitrobenzene	ug/L								
1,3,5-trinitrobenzene	ug/L								
1,3-dichlorobenzene	ug/L								
1,3-dichloropropane	ug/L								
1,3-dinitrobenzene	ug/L								
1,4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,4-naphthoquinone	ug/L		-	.					
1,4-phenylenediamine	ug/L								
1-naphthylamine	ug/L								
2,2-dichloropropane	ug/L								
2,3,4,6-tetrachlorophenol	ug/L								
2,4,5-t	ug/L								
2,4,5-tp (silvex)	ug/L								
2,4,5-trichlorophenol	ug/L								
2,4,6-trichlorophenol	ug/L								
2,4-d	ug/L								
2,4-dichlorophenol	ug/L								
2,4-dimethylphenol	ug/L								
2,4-dinitrophenol	ug/L								
2,4-dinitrotoluene	ug/L								
2,6-dichlorophenol	ug/L								
2,6-dinitrotoluene	ug/L								
2-acetylaminofluorene	ug/L	_	_	_	_	_	_	_	_
2-butanone (mek)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
2-chloronaphthalene	ug/L								
2-chlorophenol	ug/L				.r				
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
2-methylnaphthalene	ug/L								
2-methylphenol	ug/L								
2-naphthylamine 2-nitroaniline	ug/L								
2-nitrophenol	ug/L ug/L								
3,3'-dichlorobenzidine	ug/L ug/L								
3,3'-dimethylbenzidine	ug/L ug/L								
3-methylcholanthrene	ug/L ug/L								
3-nitroaniline	ug/L ug/L								
4,4'-ddd	ug/L ug/L								
4,4'-ddu	ug/L ug/L								
4,4'-ddt	ug/L								
4,6-dinitro-2-methylphenol	ug/L								
4-aminobiphenyl	ug/L								
4-bromophenyl phenyl ether	ug/L								
4-chloro-3-methylphenol	ug/L								
4-chloroaniline	ug/L								
4-chlorophenyl phenyl ether	ug/L								
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
4-nitroaniline	ug/L								
4-nitrophenol	ug/L								
5-nitro-o-toluidine	ug/L								
7,12-dimethylbenz(a)anthracene	ug/L								
Acenaphthene	ug/L								
Acenaphthylene	ug/L								
Acetone	ug/L	<10	<10	<10	<10	<10	<10	<10	<10
Acetonitrile	ug/L								
Acetophenone	ug/L								
Acrolein	ug/L								
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Aldrin	ug/L								
Alkalinity, as caco3	mg/L	497	476	476		440			
Allyl chloride	ug/L								
Alpha-bhc	ug/L								

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-93

Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	7/2/2021	10/8/2021	4/6/2022
(3 4)-methylphenol	<8								
1,1,1,2-tetrachloroethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1		<1 <1	<1 <1
1,1,1,1 therhoroethane	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1		<1	<1 <1
1,1,2-trichloroethane	<1	<1	<1	<1	<1	<1		<1	<1
1,1-dichloroethane	<1	<1	<1	<1	<1	<1		<1	<1
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1		<1	<1
1,1-dichloropropene	<1				.4				
1,2,3-trichloropropane 1,2,4,5-tetrachlorobenzene	<1 <8	<1	<1	<1	<1	<1		<1	<1
1.2.4-trichlorobenzene	<1								
1,2-dibromo-3-chloropropane	<1	<1	<1	<5	<5	<5		<5	<5
1,2-dibromoethane	<1	<1	<1	<1	<1	<1		<1	<1
1,2-dichlorobenzene	<1	<1	<1	<1	<1	<1		<1	<1
1,2-dichloroethane 1,2-dichloropropane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1		<1 <1	<1 <1
1,2-dictioroproparie	<8	~1	`1		~1	`'			
1,3,5-trinitrobenzene	<8								
1,3-dichlorobenzene	<1								
1,3-dichloropropane	<1								
1,3-dinitrobenzene	<8								
1,4-dichlorobenzene	<1	<1	<1	<1	<1	<1		<1	<1
1,4-naphthoquinone 1,4-phenylenediamine	<8 <8								
1-naphthylamine	<8								
2,2-dichloropropane	<1								
2,3,4,6-tetrachlorophenol	<8								
2,4,5-t 2,4,5-tp (silvex)	<.5								
2,4,5-tp (silvex)	<.5 <8								
2,4,6-trichlorophenol	<8								
2,4-d	<2								
2,4-dichlorophenol	<8								
2,4-dimethylphenol	<8								
2,4-dinitrophenol 2,4-dinitrotoluene	<8 <8								
2,6-dichlorophenol	<8								
2,6-dinitrotoluene	<8								
2-acetylaminofluorene	<8								
2-butanone (mek)	<5	<5	<5	<5	<5	<5		<5	<10
2-chloronaphthalene	<8 <8								
2-chlorophenol 2-hexanone (mbk)	<5	<5	<5	<5	<5	<5		<5	<5
2-methylnaphthalene	<8	10	10	10	10	-0		10	10
2-methylphenol	<8								
2-naphthylamine	<8								
2-nitroaniline	<8								
2-nitrophenol 3,3´-dichlorobenzidine	<8 <8								
3,3'-dimethylbenzidine	<8								
3-methylcholanthrene	<8								
3-nitroaniline	<8								
4,4'-ddd	<.05								
4,4´-dde	<.05								
4,4'-ddt 4,6-dinitro-2-methylphenol	<.05 <8								
4,0-diffitio-2-metrylphenol	<8								
4-bromophenyl phenyl ether	<8								
4-chloro-3-methylphenol	<8								
4-chloroaniline	<8								
4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk)	<8 <5	<5	<5	<5	<5	<5		<5	<5
4-metryi-2-peritarione (mibk) 4-nitroaniline	<8	^5	-5	\5	\5	\ 5		\5	\0
4-nitrophenol	<8								
5-nitro-o-toluidine	<8								
7,12-dimethylbenz(a)anthracene	<8								
Acenaphthylana	<8 <8								
Acenaphthylene Acetone	<8 <10	<10	<10	<10	<10	<10		<10	<10
Acetonie	<10 <10	~10	~10	~10	~10	~10		_ 10	10
Acetophenone	<8								
Acrolein	<10								
Acrylonitrile	<5	<5	<5	<5	<5	<5		<5	<5
Aldrin	<.05								
Alkalinity, as caco3 Allyl chloride	<1								
Allyl chloride Alpha-bhc	<.05								
, upital billo	00								

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-93

Constituents	10/25/2022	4/11/2023	10/13/2023	4/16/2024	10/15/2024
(3 4)-methylphenol			<8		
1,1,1,2-tetrachloroethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1	<1	<1
1,1-dichloroethane	<1	<1	<1	<1	<1
1,1-dichloroethylene	<1	<1	<1	<1	<1
1,1-dichloropropene 1,2,3-trichloropropane	<1	<1	<1 <1	<1	<1
1,2,4,5-tetrachlorobenzene	- 1	-11	<8	`'	- '
1,2,4-trichlorobenzene			<1		
1,2-dibromo-3-chloropropane	<5	<5	<1	<5	<5
1,2-dibromoethane 1,2-dichlorobenzene	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1.2-dichloroethane	<1	<1	<1	<1	<1
1,2-dichloropropane	<1	<1	<1	<1	<1
1,2-dinitrobenzene			<8		
1,3,5-trinitrobenzene			<8 <1		
1,3-dichlorobenzene 1,3-dichloropropane			<1 <1		
1,3-dinitrobenzene			<8		
1,4-dichlorobenzene	<1	<1	<1	<1	<1
1,4-naphthoquinone			<8		
1,4-phenylenediamine 1-naphthylamine			<8 <8		
1-naphthylamine 2,2-dichloropropane			<8 <1		
2,3,4,6-tetrachlorophenol			<8		
2,4,5-t			<.5		
2,4,5-tp (silvex)			<.5		
2,4,5-trichlorophenol 2,4,6-trichlorophenol			<8 <8		
2,4-d			<2		
2,4-dichlorophenol			<8		
2,4-dimethylphenol			<8		
2,4-dinitrophenol			<8		
2,4-dinitrotoluene 2,6-dichlorophenol			<8 <8		
2,6-dinitrotoluene			<8		
2-acetylaminofluorene			<8		
2-butanone (mek)	<10	<10	<5	<10	<10
2-chloronaphthalene 2-chlorophenol			<8 <8		
2-hexanone (mbk)	<5	<5	<5	<5	<5
2-methylnaphthalene			<8		
2-methylphenol			<8		
2-naphthylamine 2-nitroaniline			<8 <8		
2-nitroaniine 2-nitrophenol			<8		
3,3'-dichlorobenzidine			<8		
3,3'-dimethylbenzidine			<8		
3-methylcholanthrene			<8		
3-nitroaniline 4,4´-ddd			<8 <.05		
4,4'-dde			<.05		
4,4'-ddt			<.05		
4,6-dinitro-2-methylphenol			<8		
4-aminobiphenyl 4-bromophenyl phenyl ether			<8 <8		
4-chloro-3-methylphenol			<8		
4-chloroaniline			<8		
4-chlorophenyl phenyl ether	_	_	<8	_	_
4-methyl-2-pentanone (mibk) 4-nitroaniline	<5	<5	<5 <8	<5	<5
4-nitroaniine 4-nitrophenol			<8 <8		
5-nitro-o-toluidine			<8		
7,12-dimethylbenz(a)anthracene			<8		
Acenaphthene			<8		
Acenaphthylene Acetone	<10	<10	<8 <10	<10	<10
Acetonie	``\	~10	<10 <10	~10	~10
Acetophenone			<8		
Acrolein			<10		
Acrylonitrile	<5	<5	<5 - 05	<5	<5
Aldrin Alkalinity, as caco3			<.05		
Allyl chloride			<1		
Alpha-bhc			<.05		

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-93

Constituents	Units	10/16/2014	4/6/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
Anthracene	ug/L								
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2
Arochlor 1016	ug/L								
Arochlor 1221	ug/L								
Arochlor 1232	ug/L								
Arochlor 1242	ug/L								
Arochlor 1248	ug/L								
Arochlor 1254	ug/L								
Arochlor 1260	ug/L								
Arsenic, total	ug/L	5.1	5.9	5.2	16.1	6.5	5.5	<4.0	5.4
Azobenzene	ug/L	0.40	070	074				400	404
Barium, total	ug/L	248	272	274	297	232	202	183	191
Benzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Benzo(a)anthracene	ug/L								
Benzo(a)pyrene Benzo(b)fluoranthene	ug/L ug/L								
Benzo(g,h,i)perylene	ug/L								
Benzo(k)fluoranthene	ug/L								
Benzyl alcohol	ug/L								
Beryllium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Beta-bhc	ug/L	, , ,	**	***			"	, , ,	***
Bis (2-chloroethoxy) methane	ug/L								
Bis(2-chloroethyl) ether	ug/L								
Bis(2-chloroisopropyl) ether	ug/L								
Bis(2-ethylhexyl) phthalate	ug/L								
Bromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Butyl benzyl phthalate	ug/L								
Cadmium, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Calcium, total	mg/L	143	127	130		126			
Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chlordane	ug/L								
Chloride	mg/L	<10.0	<10.0	<10.0		3.7			
Chlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzilate	ug/L				_		_		
Chloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloroprene	ug/L	-0	-0	-0	-0	-0	-0	-0	-0
Chronium, total	ug/L	<8	<8	<8	<8	<8	<8	<8	<8
Chrysene Cis-1,2-dichloroethylene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	ug/L ug/L	7.3	9.7	7.5	14.7	6.6	8.6	5.2	5.9
Copper, total	ug/L	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Cyanide, total	mg/L	V4.0	\4.0	V4.0	\4.0	\4.0	\4.0	٧4.0	\4.0
Delta-bhc	ug/L								
Diallate	ug/L								
Dibenzo(a,h)anthracene	ug/L								
Dibenzofuran	ug/L								
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	ug/L		•	·	·		· .		'
Dieldrin	ug/L								
Diethyl phthalate	ug/L								
Dimethoate	ug/L								
Dimethylphthalate	ug/L								
Di-n-butyl phthalate	ug/L								
Di-n-octyl phthalate	ug/L								
Dinoseb	ug/L								
Diphenylamine	ug/L								
Disulfoton	ug/L								
Endosulfan i	ug/L								
Endosulfan ii	ug/L								
Endosulfan sulfate	ug/L								
Endrin	ug/L								
Endrin aldehyde	ug/L								
Ethyl methacrylate	ug/L								
Ethyl methanesulfonate	ug/L								
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Famphur	ug/L								
Fluoranthene	ug/L								
Fluorene	ug/L								
Gamma-bhc (lindane)	ug/L					<u> </u>			

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-93

Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	7/2/2021	10/8/2021	4/6/2022
Anthracene	<8	_	_	_	_	_		_	_
Antimony, total Arochlor 1016	<2 <.1	<2	<2	<2	<2	<2		<2	<2
Arochlor 1221	<.2								
Arochlor 1232	<.2								
Arochlor 1242	<.2								
Arochlor 1248	<.2								
Arochlor 1254 Arochlor 1260	<.1 <.1								
Arsenic, total	18.4	67.3	13.6	17.5	4.8	10.5		11.4	11.1
Azobenzene	<8								
Barium, total	249	443	222	206	178	192 <1		178	188 <1
Benzene Benzo(a)anthracene	<1 <8	<1	<1	<1	<1	`		<1	`
Benzo(a)pyrene	<8								
Benzo(b)fluoranthene	<8								
Benzo(g,h,i)perylene	<8 <8								
Benzo(k)fluoranthene Benzyl alcohol	<8								
Beryllium, total	<4	<4	<4	<4	<4	<4		<4	<4
Beta-bhc	<.05								
Bis (2-chloroethoxy) methane	<8 <8								
Bis(2-chloroethyl) ether Bis(2-chloroisopropyl) ether	<8 <8								
Bis(2-ethylhexyl) phthalate	<6								
Bromochloromethane	<1	<1	<1	<1	<1	<1		<1	<1
Bromodichloromethane Bromoform	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1		<1 <1	<1 <1
Bromomethane	<1	<1	<1	<1	<1	<1		<1	<1
Butyl benzyl phthalate	<8								
Cadmium, total	<.8	<.8	<.8	<.8	<.8	<.8		<.8	<.8
Calcium, total Carbon disulfide	<1	<1	<1	<1	<1	<1		<1	<1
Carbon distillide Carbon tetrachloride	<1	<1	<1	<1	<1	<1		<1	<1
Chlordane	<.1	.	·		·			<u> </u>	.
Chloride									
Chlorobenzene Chlorobenzilate	<1 <8	<1	<1	<1	<1	<1		<1	<1
Chloroethane	<1	<1	<1	<1	<1	<1		<1	<1
Chloroform	<1	<1	<1	<1	<1	<1		<1	<1
Chloromethane	<1 <1	<1	<1	<1	<1	<1		<1	<1
Chloroprene Chromium, total	<8	<8	<8	<8	<8	<8		<8	<8
Chrysene	<8	-		-					
Cis-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1		<1	<1
Cis-1,3-dichloropropene Cobalt, total	<1 9.9	<1 18.9	<1 8.3	<1 11.3	<1 4.6	<1 7.9		<1 7.1	<1 8.7
Copper, total	<4.0	<4.0	<4.0	<4.0	<4.0	8.5	<4.0	<4.0	<4.0
Cyanide, total	<.005		_		_				
Delta-bhc	<.05								
Diallate Dibenzo(a,h)anthracene	<8 <8								
Dibenzofuran	<8								
Dibromochloromethane	<1	<1	<1	<1	<1	<1		<1	<1
Dibromomethane	<1	<1	<1	<1	<1	<1		<1	<1
Dichlorodifluoromethane Dieldrin	<1 <.05								
Diethyl phthalate	<8								
Dimethoate	<.4								
Dimethylphthalate	<8 <8								
Di-n-butyl phthalate Di-n-octyl phthalate	<8 <8								
Dinoseb	<.5								
Diphenylamine	<8								
Disulfoton Endosulfan i	<.4 <.05								
Endosulian i Endosulfan ii	<.05								
Endosulfan sulfate	<.05								
Endrin	<.05								
Endrin aldehyde	<.05 <10								
Ethyl methacrylate Ethyl methanesulfonate	<10 <8								
Ethylbenzene	<1	<1	<1	<1	<1	<1		<1	<1
Famphur	<.4								
Fluoranthene Fluorene	<8 <8								
Fluorene Gamma-bhc (lindane)	<.05								

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-93

Anthracene	11.9 243 <1	15.2 242
Arochlor 1016	11.9 243	15.2
Arochlor 1221	243	
Arochlor 1242	243	
Arochlor 1248	243	
Arochlor 1254	243	
Arochlor 1260	243	
Arsenic, total 58.5 9.3 59.6 Azobenzene 8 Barium, total 231 201 249	243	
Azobenzene	243	
		242
Renzene <1 <1 <1	<1	l
		<1
Benzo(a)anthracene		
Benzo(b)fluoranthene <8		
Benzo(g,h,i)perylene <8		
Benzo(k)fluoranthene <8		
Benzyl alcohol <8		
Beryllium, total	<4	<4
Beta-bhc <.05 Bis (2-chloroethoxy) methane <8		
Bis (2-chloroethyl) ether <8		
Bis(2-chloroisopropyl) ether		
Bis(2-ethylhexyl) phthalate <6		
Bromochloromethane <1 <1 <1	<1	<1
Bromodichloromethane <1 <1 <1	<1	<1
Bromoform <1 <1 <1 <1 Bromomethane <1 <1 <1 <1	<1 <1	<1 <1
Butyl benzyl phthalate	~1	``'
Cadmium, total <.8 <.8 <.8	<.8	<.8
Calcium, total		
Carbon disulfide <1 <1 <1	<1	<1
Carbon tetrachloride <1 <1 <1	<1	<1
Chloridane <.1		
Chlorobenzene <1 <1 <1	<1	<1
Chlorobenzilate <8		
Chloroethane <1 <1 <1	<1	<1
Chloroform <1 <1 <1	<1	<1
Chloromethane	<1	<1
Chromium, total <8 <8 <8	<8	<8
Chrysene <8	·	
Cis-1,2-dichloroethylene <1 <1 <1	<1	<1
Cis-1,3-dichloropropene <1 <1 <1	<1	<1
Cobalt, total 8.6 9.0 8.3 Copper, total <4.0 <4.0 <4.0	9.8 <4.0	9.9 <4.0
Cyanide, total	\4.0	\\\4.0
Delta-bhc <.05		
Diallate <8		
Dibenzo(a,h)anthracene <8		
Dibenzofuran <8	-4	
Dibromochloromethane	<1 <1	<1 <1
Dichlorodifluoromethane Cl	~1	`
Dieldrin <.05		
Diethyl phthalate <8		
Dimethoate <.4		
Dimethylphthalate <8 Di-n-butyl phthalate <8		
Di-n-octyl phthalate		
Dinoseb <.5		
Diphenylamine <8		
Disulfoton <.4		
Endosulfan i <.05 Endosulfan ii <.05 <.05		
Endosulfan ii <.05 Endosulfan sulfate <.05		
Endosulian sunate <.05		
Endrin aldehyde <.05		
Ethyl methacrylate <10		
Ethyl methanesulfonate <8		
Ethylbenzene <1 <1 <1	<1	<1
Famphur <.4 Fluoranthene <8		
Fluorene <8		
Gamma-bhc (lindane) <.05		

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-93

Constituents	Units	10/16/2014	4/6/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
Heptachlor	ug/L								
Heptachlor epoxide	ug/L								
Hexachlorobenzene	ug/L								
Hexachlorobutadiene	ug/L								
Hexachlorocyclopentadiene	ug/L								
Hexachloroethane	ug/L								
Hexachloropropene	ug/L								
Indeno(1,2,3-cd)pyrene	ug/L								
Isobutanol	mg/L								
Isodrin	ug/L								
Isophorone Isosafrole	ug/L ug/L								
Kepone	ug/L ug/L								
Lead, total	ug/L ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Magnesium, total	mg/L	63.3	44.5	58.7	~-	56.6		`~	-
Mercury, total	ug/L	00.0	44.0	00.7		00.0			
Methacrylonitrile	ug/L								
Methapyrilene	ug/L								
Methoxychlor	ug/L								
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Methyl methacrylate	ug/L				•				
Methyl methanesulfonate	ug/L								
Methyl parathion	ug/L								
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene	ug/L	_	_	-		_		_	
Nickel, total	ug/L	34.6	42.6	36.0	26.5	31.8	27.3	28.2	26.2
Nitrobenzene	ug/L								
Nitrogen, ammonia	mg/L	<1	<1	<1		<1			
N-nitrosodiethylamine	ug/L								
N-nitrosodimethylamine	ug/L								
N-nitrosodi-n-butylamine	ug/L								
N-nitroso-di-n-propylamine	ug/L								
N-nitrosodiphenylamine	ug/L								
N-nitrosomethylethylamine	ug/L								
N-nitrosopiperidine	ug/L								
N-nitrosopyrrolidine	ug/L								
O,o,o-triethyl phosphorothioate	ug/L								
O-toluidine	ug/L								
Parathion	ug/L								
P-dimethylaminoazobenzene	ug/L								
Pentachlorobenzene	ug/L								
Pentachloronitrobenzene (pcnb)	ug/L								
Pentachlorophenol	ug/L								
Phenacetin	ug/L								
Phenanthrene	ug/L								
Phenol	ug/L								
Phorate	ug/L								
Potassium, total	mg/L	8.0	<1.0	7.3		9.9			
Pronamide	ug/L								
Propionitrile	ug/L								
Pyrene	ug/L								
Safrole	ug/L			- 4					
Selenium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Sodium, total	mg/L	10.2	9.3 505	8.8		9.2			
Solids, total dissolved	mg/L	191		900		444			
Solids, total suspended	mg/L	2150	148	-1	-1		<1	<1	<1
Styrene	ug/L	<1	<1	<1 39.0	<1	<1	``	_ ``	
Sulfate Sulfide, total	mg/L	35.4	36.0	39.0		33.0			
Tetrachloroethylene	mg/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	ug/L ug/L	<4	<4	<1	<4	<4	<4	<4	<4
Thionazin		\4	\4	~1	~4	\ <u>`</u>	\		~4
Tin, total	ug/L								
Toluene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
	ug/L		\ 1	`1			`1		` '
Toxaphene Trans-1,2-dichloroethylene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene		<1	<1	<1 <1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene Trans-1,4-dichloro-2-butene	ug/L	<5	<1 <5	<1 <5	<1 <5	<5	<5	<5	<1 <5
	ug/L	<5 <1	<5 <1	<5 <1		<5 <1	<5 <1	<5 <1	
Trichloroethylene	ug/L	<1	<1 <1	<1 <1	<1 <1	<1	<1	<1	<1 <1
Trichlorofluoromethane	ug/L								
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	ug/L	<5	<5	<5	<5 -1	<5	<5	<5	<5
Vinyl chloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2	<2	
Zinc, total	ug/L ug/L	<20.0	<8.0	<8.0	<8.0	<8.0	<8.0		

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-93

Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	7/2/2021	10/8/2021	4/6/2022
Heptachlor	<.05								
Heptachlor epoxide	<.05								
Hexachlorobenzene	<.05								
Hexachlorobutadiene	<8								
Hexachlorocyclopentadiene	<8								
Hexachloroethane	<8								
Hexachloropropene	<8 <8								
Indeno(1,2,3-cd)pyrene	<0 <1								
Isobutanol Isodrin	<8								
Isophorone	<8								
Isosafrole	<8								
Kepone	<8								
Lead, total	<4	<4	<4	<4	<4	<4		<4	<4
Magnesium, total	.,			''					
Mercury, total	<.5								
Methacrylonitrile	<1								
Methapyrilene	<8								
Methoxychlor	<.05								
Methyl iodide	<1	<1	<1	<1	<1	<1		<1	<1
Methyl methacrylate	<1								
Methyl methanesulfonate	<8								
Methyl parathion	<.4								
Methylene chloride	<5	<5	<5	<5	<5	<5		<5	<5
Naphthalene	<8								
Nickel, total	35.7	24.2	26.3	18.1	27.6	23.1		21.3	20.2
Nitrobenzene	<8								
Nitrogen, ammonia									
N-nitrosodiethylamine	<8								
N-nitrosodimethylamine	<8								
N-nitrosodi-n-butylamine	<8								
N-nitroso-di-n-propylamine	<8								
N-nitrosodiphenylamine	<8								
N-nitrosomethylethylamine	<8								
N-nitrosopiperidine	<8								
N-nitrosopyrrolidine	<8								
O,o,o-triethyl phosphorothioate	<.4								
O-toluidine	<8								
Parathion	<.4 <8								
P-dimethylaminoazobenzene Pentachlorobenzene	<8								
Pentachloronitrobenzene (pcnb)	<8								
Pentachlorophenol	<8								
Phenacetin	<8								
Phenanthrene	<8								
Phenol	<8								
Phorate	<.4								
Potassium, total									
Pronamide	<8								
Propionitrile	<10								
Pyrene	<8								
Safrole	<8								
Selenium, total	<4	<4	<4	<4	<4	<4		<4	<4
Silver, total	<4	<4	<4	<4	<4	<4		<4	<4
Sodium, total									
Solids, total dissolved									
Solids, total suspended									
Styrene	<1	<1	<1	<1	<1	<1		<1	<1
Sulfate									
Sulfide, total	<.1			.				_	
Tetrachloroethylene	<1	<1	<1	<1	<1	<1		<1	<1
Thallium, total	<4	<2	<2	<2	<2	<2		<2	<2
Thionazin	<.4								
Tin, total	<20	-4	-4	ا ہے	-4	-4		-4	
Toluene	<1	<1	<1	<1	<1	<1		<1	<1
Toxaphene	<.2 <1	.4	4	ا ہے ا	4	<1			
Trans-1,2-dichloroethylene		<1	<1	<1	<1 <1	<1 <1		<1 <1	<1
Trans-1,3-dichloropropene	<1	<1 <5	<1	<1		<1 <5			<1
Trans-1,4-dichloro-2-butene Trichloroethylene	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1		<5 <1	<5 <1
Trichlorofluoromethane	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1		<1	<1
Vanadium, total	<20	<20	<20	<20	<20	<20		<20	<20
Vinyl acetate	<20 <5	<20 <5	<20 <5	<5	<20 <5	<20 <5		<5	<20 <5
Vinyl chloride	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1		<1	<5 <1
viriyi GillOllu c	<2	<2	<2	<2	<2	<2		<2	<2
Xylenes, total									

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-93

Constituents	10/25/2022	4/11/2023	10/13/2023	4/16/2024	10/15/2024
Heptachlor			<.05		
Heptachlor epoxide Hexachlorobenzene			<.05 <.05		
Hexachlorobutadiene			<.03 <8		
Hexachlorocyclopentadiene			<8		
Hexachloroethane			<8		
Hexachloropropene			<8		
Indeno(1,2,3-cd)pyrene			<8		
Isobutanol Isodrin			<1 <8		
Isophorone			<8		
Isosafrole			<8		
Kepone			<8		
Lead, total	<4	<4	<4	<4	<4
Magnesium, total			- 5		
Mercury, total Methacrylonitrile			<.5 <1		
Methapyrilene			<8		
Methoxychlor			<.05		
Methyl iodide	<1	<1	<2	<1	<1
Methyl methacrylate			<1		
Methyl methanesulfonate			<8		
Methyl parathion Methylene chloride	<5	<5	<.4 <5	<5	<5
Naphthalene		-5	<8	-5	-3
Nickel, total	27.9	31.8	28.8	25.5	27.1
Nitrobenzene			<8		
Nitrogen, ammonia			.0		
N-nitrosodiethylamine N-nitrosodimethylamine			<8 <8		
N-nitrosodinetrylamine			<8		
N-nitroso-di-n-propylamine			<8		
N-nitrosodiphenylamine			<8		
N-nitrosomethylethylamine			<8		
N-nitrosopiperidine			<8		
N-nitrosopyrrolidine O,o,o-triethyl phosphorothioate			<8 <.4		
O-toluidine			<8		
Parathion			<.4		
P-dimethylaminoazobenzene			<8		
Pentachlorobenzene			<8		
Pentachloronitrobenzene (pcnb)			<8		
Pentachlorophenol Phenacetin			<8 <8		
Phenanthrene			<8		
Phenol			<8		
Phorate			<.4		
Potassium, total					
Pronamide			<8		
Propionitrile Pyrene			<10 <8		
Safrole			<8		
Selenium, total	<4	<4	<4	<4	<4
Silver, total	<4	<4	<4	<4	<4
Sodium, total					
Solids, total dissolved					
Solids, total suspended Styrene	<1	<1	<1	<1	<1
Sulfate	``'	~1		`'	`'
Sulfide, total			<.1		
Tetrachloroethylene	<1	<1	<1	<1	<1
Thallium, total	<2	<2	<2	<2	<2
Thionazin			<.4		
Tin, total Toluene	<1	<1	<20 <1	<1	<1
Toxaphene	``'	- 1	<.2	`	` '
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5
Trichloroethylene	<1 <1	<1	<1	<1	<1 <1
Trichlorofluoromethane Vanadium, total	<1 <20	<1 <20	<1 <20	<1 <20	<1 <20
Vanadium, total Vinyl acetate	<5	<20 <5	<20 <5	<20 <5	<5
Vinyl adetate Vinyl chloride	<1	<1	<1	<1	<1
Xylenes, total	<2	<2	<2	<2	<2
Zinc, total	<20.0	<20.0	<20.0	21.4	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-94

Constituents	Units	10/16/2014	4/3/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
(3 4)-methylphenol	ug/L							<8	
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L	16.1	11.3	8.2	8.6	9.8	7.7	8.3	5.7
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloropropene	ug/L							<1	.
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2,4,5-tetrachlorobenzene	ug/L							<8	
1,2,4-trichlorobenzene	ug/L							<1	
1,2-dibromo-3-chloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L	<1.0	<1.0	1.1	<1.0	1.9	1.4	1.5	1.3
1,2-dichloropropane	ug/L	3.8	<1.0	2.4	<1.0	2.8	2.7	3.2	2.9
1,2-dinitrobenzene	ug/L							<8	
1,3,5-trinitrobenzene	ug/L							<8	
1,3-dichlorobenzene	ug/L							<1	
1,3-dichloropropane	ug/L							<1	
1,3-dinitrobenzene	ug/L		-1	-1	_1			<8	
1,4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1 <8	<1
1,4-naphthoquinone	ug/L ug/L							<8 <8	
1,4-phenylenediamine 1-naphthylamine	ug/L ug/L							<8 <8	
1-napnthylamine 2,2-dichloropropane	ug/L ug/L							<8 <1	
2,3,4,6-tetrachlorophenol	ug/L ug/L							<8	
2,3,4,6-tetracrilorophenor	ug/L ug/L							<.5	
2,4,5-t 2,4,5-tp (silvex)	ug/L ug/L							<.5	
2,4,5-trichlorophenol	ug/L ug/L							<8	
2,4,6-trichlorophenol	ug/L ug/L							<8	
2,4-d	ug/L							<2	
2,4-dichlorophenol	ug/L							<8	
2,4-dimethylphenol	ug/L							<8	
2,4-dinitrophenol	ug/L							<8	
2,4-dinitrotoluene	ug/L							<8	
2,6-dichlorophenol	ug/L							<8	
2,6-dinitrotoluene	ug/L							<8	
2-acetylaminofluorene	ug/L							<8	
2-butanone (mek)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
2-chloronaphthalene	ug/L	-	_	Ţ	_	_		<8	
2-chlorophenol	ug/L							<8	
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
2-methylnaphthalene	ug/L							<8	
2-methylphenol	ug/L							<8	
2-naphthylamine	ug/L							<8	
2-nitroaniline	ug/L							<8	
2-nitrophenol	ug/L							<8	
3,3'-dichlorobenzidine	ug/L							<8	
3,3'-dimethylbenzidine	ug/L							<8>	
3-methylcholanthrene	ug/L							<8	
3-nitroaniline	ug/L							<8	
4,4´-ddd	ug/L							<.05	
4,4´-dde	ug/L							<.05	
4,4´-ddt	ug/L							<.05	
4,6-dinitro-2-methylphenol	ug/L							<8	
4-aminobiphenyl	ug/L							<8	
4-bromophenyl phenyl ether	ug/L							<8	
4-chloro-3-methylphenol	ug/L							<8	
4-chloroaniline	ug/L							<8	
4-chlorophenyl phenyl ether	ug/L							<8	
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
4-nitroaniline	ug/L							<8	
4-nitrophenol	ug/L							<8	
5-nitro-o-toluidine	ug/L							<8	
7,12-dimethylbenz(a)anthracene	ug/L							<8	
Acenaphthene	ug/L							<8	
Acenaphthylene	ug/L							<8	
Acetone	ug/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	38.8	<10.0
Acetonitrile	ug/L							<10	
Acetophenone	ug/L							<8	
Acrolein	ug/L							<10	
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Aldrin	ug/L							<.05	
Alkalinity, as caco3	mg/L	836	890	828		842			
Allyl chloride	ug/L							<1	
Alpha-bhc	ug/L							<.05	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-94

Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022	10/25/2022
(3 4)-methylphenol									
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1 <1
1,1,1-trichloroethane 1,1,2,2-tetrachloroethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,1,2,2-tetrachioroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	6.0	5.4	4.3	3.5	3.8	1.8	2.6	1.9	2.4
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloropropene									
1,2,3-trichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,4,5-tetrachlorobenzene									
1,2,4-trichlorobenzene 1,2-dibromo-3-chloropropane	<1	<1	<1	<5	<5	<5	<5	<5	<5
1.2-dibromoethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloropropane	4.5	3.0	2.4	2.2	2.7	1.6	2.2	1.7	2.1
1,2-dinitrobenzene 1,3,5-trinitrobenzene									
1,3,3-titilitioberizerie									
1,3-dichloropropane									
1,3-dinitrobenzene									
1,4-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-naphthoquinone									
1,4-phenylenediamine 1-naphthylamine									
1-napnthylamine 2,2-dichloropropane									
2,3,4,6-tetrachlorophenol									
2,4,5-t									
2,4,5-tp (silvex)									
2,4,5-trichlorophenol									
2,4,6-trichlorophenol 2,4-d									
2,4-dichlorophenol									
2,4-dimethylphenol									
2,4-dinitrophenol									
2,4-dinitrotoluene									
2,6-dichlorophenol									
2,6-dinitrotoluene 2-acetylaminofluorene									
2-butanone (mek)	<5	<5	<5	<5	<5	<5	<5	<10	<10
2-chloronaphthalene		.0			.0				
2-chlorophenol									
2-hexanone (mbk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
2-methylnaphthalene									
2-methylphenol 2-naphthylamine									
2-nitroaniline									
2-nitrophenol									
3,3'-dichlorobenzidine									
3,3'-dimethylbenzidine									
3-methylcholanthrene 3-nitroaniline									
4.4'-ddd									
4,4'-dde									
4,4'-ddt									
4,6-dinitro-2-methylphenol									
4-aminobiphenyl 4-bromophenyl phenyl ether									
4-chloro-3-methylphenol									
4-chloroaniline									
4-chlorophenyl phenyl ether									
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-nitroaniline									
4-nitrophenol 5-nitro-o-toluidine									
7,12-dimethylbenz(a)anthracene									
Acenaphthene									
Acenaphthylene									
Acetone	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Acetonitrile									
Acetophenone Acrolein									
Acrylonitrile	<5	<5	<5	<5	<5	<5	<5	<5	<5
Aldrin									
Alkalinity, as caco3				919		904		923	
Allyl chloride									
Alpha-bhc									

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-94

3.4)-methylphenol	Constituents	4/11/2023	10/13/2023	4/17/2024	10/15/2024
1.1.1-inchloroethane	(3 4)-methylphenol				
1,1,22-letrachloroethane					l l
1,12-uichloroethane					
1.1-dichloroethylene					. 1
1.1-dichloropropage					- 1
1.1-dichloropropape 1.2.4 is-chloropropape 1.2.4 is-chlorobenzene					
1.2.3-irchloropropane		` '	`'	* 1	"
1.2.4-irichlorobenzene		<1	<1	<1	<1
1.2-dibromo-3-chloropropane	1,2,4,5-tetrachlorobenzene				
1.2-dichlorobenzene		_	_	_	_
1.2-dichlorobenzene			-		
1.2-dichloroproprae 1.2-dichloroproprae 1.2-dichloroproprae 1.3-dichloroproprae 1.3-dichloroproprae 1.3-dichloroproprae 1.3-dichloroproprae 1.3-dichloroproprae 1.3-dichloroproprae 1.4-dichloroproprae 1.4-di					l l
1.2-dintrobenzene 1.3-dichloropenzene 1.4-dichloropenzene 1.4-dichloropenzene 1.4-dichloropenzene 1.4-dichloropenzene 1.4-dichloropenzene 1.4-dichloropenzene 1.3-dichloropenzene 1.4-dichloropenzene 1.4-plenylenediamine 1-naphthylamine 2.2-dichloropenene 2.4-dichloropenene 2.4-dichlorophenol 2.4-dichlorophenol 2.4-dichlorophenol 2.4-dinitrofoluene 2.4-dinitrofoluene 2.3-dichlorophenol 2.4-dinitrotoluene 2.3-dichlorophenol 2.4-dinitrotoluene 2.3-dinitrotoluene 2.3-dinitrotolu					- 1
1,2-dinitrobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,4-phthoquinone 1,4-phenylenediamine 1-naphthylamine 2,2-dichloropropane 2,3,4-6-tetchlorophenol 2,4-5-t 2,4-5-trichlorophenol 2,4-5-trichlorophenol 2,4-di-trichlorophenol 2,4-di-trichlorophenol 2,4-di-trichlorophenol 2,4-di-trichlorophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,6-dinitrotoluene 2-acetylaminofluorene 2-acetylaminofluorene 2-acetylaminofluorene 2-butanone (mek) 2-chloronaphthalene 2-chlorophenol 2-hexanone (mk)	II '				
1.3-dichlorobenzene 1.3-dichloropropane 1.3-dinitrobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-pahthoquinone 1.4-phenylenediamine 1apahthylamine 2.2-dichloropropane 2.3.4-6-tertachlorophenol 2.4.5-t 2.4.5-t; (slivex) 2.4.5-trichlorophenol 2.4-dichlorophenol 2.4-dichlorophenol 2.4-dinitrophenol 2.5-dinitrotoluene 2-acetylaminofluorene 2-butanone (mek) 2-chlorophenol 2-chlorophenol 2-hexanone (mbk) 3-dinitrophenol 2-nethylhaphthalene 2-methylphenol 2-naphthylamine 2-nitrophenol 3.3-dichlorobenzidine 3.3-dichlorobenzidine 3.3-dichlorobenzidine 3.3-dichlorobenzidine 3.3-dichlorobenzidine 3.1-dimethylbenzidine 3-methylchodanthrene 3-nitroaniline 4.4-ddd 4.4-ddd 4.4-ddd 4.4-ddd 4.4-ddd 4.4-ddd 4-introaniline 4-chloroaniline 4-chloroaniline 4-chloroaniline 4-chloroaniline 4-chlorophenyl phenyl ether 4-chloronaliline 4-chlorophenyl phenyl ether 4-chlorophenyl ether 4-methyl-2-pentanone (mibk) 4-side 4-si					
1.3-dintrobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-phenylenediamine 1-naphthylamine 2.2-dichloropopane 2.3.4.6-tetrachlorophenol 2.4.5-trib (silvex) 2.4.5-trib (silvex) 2.4-dichlorophenol 2.4-dintrobophenol 2.4-dintrotoluene 2.4-dintrotoluene 2.4-dintrotoluene 2.6-dichlorophenol 2.4-dintrotoluene 2.6-dichlorophenol 2.5-dintrotoluene 2-acetylaminoffluorene 2-acetylaminoffluorene 2-butanone (mek) 2-chlorophenol 2-hexanone (mbk) 3-chlorophenol 2-hexanone (mbk) 3-chlorophenol 2-hexanone (mbk) 3-dichlorobenzidine 3.3-dichlorobenzidine 3.3-dichlorobenzidine 3.3-dichlorobenzidine 3.3-dichlorobenzidine 3.3-dichlorobenzidine 3-nethyloholantrene 3-nitroaniline 4-4-ddt 4,4-ddt 4,4-ddt 4,4-ddt 4,4-ddt 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloronaliline 4-chloronaliline 4-chlorophenyl phenyl ether 4-chlorophenyl e	1,3,5-trinitrobenzene				
1.3-dintrobenzene					
1,4-dichlorobenzene					
1,4-aphthoquinone 1,4-phenylenediamine 1-naphthylamine 2,2-dichloropropane 2,3,4,6-terachlorophenol 2,4,5-t 2,4,5-trichlorophenol 2,4-fichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dimitrophenol 2,4-dimitrophenol 2,4-dimitrophenol 2,4-dimitrotoluene 2,6-dinitrotoluene 2-acetylaminofluorene 2-acetylaminofluorene 2-butanone (mek) 2-hexanone (mek) 2-methylnaphthalene 2-chloroaphthalene 2-hexanone (mbk) 3,7-dischlorobenol 2-naphthylamine 3,3-dischlorobenol 3,3-dischlorobenol 3,3-dischlorobenol 3,3-dischlorobenol 4,4-ddd 4,4-ddd 4,4-ddd 4,4-ddd 4,4-ddd 4,4-ddd 4,5-dintro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acetophenone Acroloini Acetonirile Acrylonitile Acrylonitile Acrylonitile Acrylonitile Acrylonitile Acrylonitile Acrylonitile Acrylonitile Alkalnity, as caco3 Allyl chloride			-4	-4	-4
1,4-phenylenediamine 1-naphthylamine 2,2-dichloropropane 2,3,4,6-tetrachlorophenol 2,4,5-tr 2,4,5-tp (silvex) 2,4-5-trichlorophenol 2,4-6-trichlorophenol 2,4-6-trichlorophenol 2,4-dimethylphenol 2,4-dimethylphenol 2,4-dinitrotoluene 2,6-dinitrotoluene 2,6-dinitrotoluene 2-acetylaminofluorene 2-acetylaminofluorene 2-butanone (mek) 2-hutanone (mek) 3-butanone (mek) 3-butanone (mek) 4-chlorophenol 2-hexanone (mbk) 4-methylphenol 2-naphthylamine 2-nitrophenol 2-naphthylamine 2-nitrophenol 3-ridrophenol 3-ridrophenol 3-ridrophenol 3-ridrophenol 3-ridrophenol 4-ddd 4,4-ddd 4,4-ddd 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorop-methylphenol 4-chlorop-methylphenol 4-chlorop-methylphenol 4-chlorop-methylphenol 4-chlorop-methylphenol 4-chlorop-methylphenol 4-chlorop-methylphenol 4-chlorop-methylphenol 5-nitro-o-loluidine 7-12-dimethylbenz(a)anthracene Acenaphthylen Acetophenol 5-nitro-o-loluidine 7-12-dimethylbenz(a)anthracene Acenaphthylene Acetophenol 6-nitro-o-loluidine 7-12-dimethylbenz(a)anthracene Acenaphthylene Acetophenone Acroloirine Acetophenone Acroloirine Acrylonitrile Acrylonitrile Acrylonitrile Alkalinty, as caco3		` '		<u> </u>	<u> </u>
1-naphthylamine 2,2-dichloropropane 2,3,4,6-tetrachlorophenol 2,4,5-t 2,4,5-tp (silvex) 2,4,5-trichlorophenol 2,4-d- 2,4-d- 2,4-dimethylphenol 2,4-dimethylphenol 2,4-dimitrophenol 2,4-dimitrophenol 2,4-dimitrophenol 2,4-dimitrophenol 2,6-dinitrotoluene 2,6-dinitrotoluene 2-acetylaminofluorene 2-acetylaminofluorene 2-butanone (mek) 2-butanone (mek) 2-chioronaphthalene 2-chiorophenol 2-hexanone (mbk) 4-chiorophenol 2-hayanone (mbk) 4-methylphenol 2-naphthylamine 2-nitrophenol 3,3-dichlorobenzidine 3,3-dimethylbenzidine 3-methylphenol 3,3-dichlorobenzidine 3-methylphenol 4-didd 4,4-ddd 4,4-ddd 4,4-ddd 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloro-3-methylphenol 4-chloro-amethylphenol 4-chlorophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-chloro-amethylphenol 5-nitro-o-toluidine 7-nitro-o-toluidine 7-nitrophenol 8-nitrophenol 8-nitrophenol 8-nitrophenol 9-nitro-o-toluidine 7-nitrophenol 9-nitro-o-toluidine 7-nitrophenol 8-nitrophenol 9-nitro-o-toluidine 7-nitrophenol 9-nitro-o-toluidine 7-nitrophenol 9-nitro-o-toluidine 7-nitrophenol 9-nitrophenol 9-nitrophen					
2.2-dichloropropane 2.3.4.6-tetrachlorophenol 2.4.5-1 (3.15 to 1) (3.1					
2.4.5-tp (silvex) 2.4.5-trichlorophenol 2.4.6-trichlorophenol 2.4.5-trichlorophenol 2.4-dintrotophenol 2.4-dintrotoluene 2.4-dinitrotoluene 2.6-dichlorophenol 2.4-dinitrotoluene 2.6-dichlorophenol 2.6-dinitrotoluene 2.6-dichlorophenol 2.6-dinitrotoluene 2dinitrotoluene 2dinitrotoluene 2dinitrotoluene 2dinitrotoluene 2dinitrotoluene 2dinitrotoluene 2dinitrotoluene 2dinitrotoluene 2dinitrophenol 2hexanone (mek) 2-hexanone (mbk) 2-hexanone (mbk) 2-methylphenol 2-naphthylamine 2-nitrophenol 3.3-dichlorobenzidine 3.3-dinethylbenzidine 3-methylcholanthrene 3-nitroaniline 4,4-ddd 4,4-ddd 4,4-ddd 4,4-ddd 4,4-ddd 4,4-ddt 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloron-3-methylphenol 4-chlorophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-chloro-3-methylphenol 4-nitroaniline 4-nitrophenol 5-nitro-0-toluidine 7,12-dimethylbenz(a)anthracene Aceanphthylene Acetophenoe Aceanphthylene Acetophenone Acroloitrile Aclylointitile Aldrin Alkalinity, as caco3 Allyl chloride					
2.4.5-tp (silvex) 2.4.5-trichlorophenol 2.4.d-d 2.4.6-trichlorophenol 2.4-dimethylphenol 2.4-dimitrophenol 2.4-dimitrophenol 2.4-dimitrobluene 2.6-dimitrobluene 2.6-dimitrobluene 2.6-dimitrobluene 2-acetylaminofluorene 2-acetylaminofluorene 2-butanone (mek) 2-chloropaphtalene 2-chloropaphtalene 2-chloropaphtalene 2-methylphenol 2-nexanone (mbk) 3-methylphenol 3.3-dimethylbenol 3.3-dimethylbenzidine 3.3-dimethylbenzidine 3.3-dimethylbenzidine 3-methylcholanthrene 3-nitroaniline 4,4-ddd 4,4-ddd 4,4-ddt 4,5-ddit 4,5-dott 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acenaphthylene Acetone Acetone Acetone Acetone Acroloritite Acetophenone Acroloritite Acetophenone Acroloritite Acetophenone Acroloritite Acotophenone Acroloritite Acotophenone Acroloritite Acotophenone Acroloride Alkalinity, as caco3 Alkalinity,					
2.4.5-trichlorophenol 2.4.6-trichlorophenol 2.4dirichlorophenol 2.4-dinitrophenol 2.4-dinitrophenol 2.4-dinitrophenol 2.4-dinitrophenol 2.4-dinitrotoluene 2.6-dichlorophenol 2.6-dichlorophenol 2.6-dichlorophenol 2.6-dichlorophenol 2.6-dinitrotoluene 2-acetylaminofluorene 2-butanone (mek) 2-chlorophenol 2-hexanone (mbk) 2-chlorophenol 2-nethylnaphthalene 2-methylphenol 2-naphthylamine 2-nitrophenol 3.3-dichlorobenzidine 3.3-diriothylbenzidine 3-methylcholanthrene 3-nitroaniline 4.4'-ddd 4.4'-ddd 4.4'-ddd 4.4'-ddd 4.6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloro-3-methylphenol 4-chloro-3-methylphenol 4-chloro-3-methylphenol 4-chloro-1-choludine 7.12-dimethylbenz(a)anthracene Acenaphthylene Acetophenoe Acroloiin Acetophenone Acroloiin Actylonitrile Acetophenone Acroloiin Acrylonitrile Actophenone Acroloiin Acrylonitrile Acetophenone Acroloiin Alkalinity, as caco3					
2,4-dichlorophenol 2,4-dimethylphenol 2,4-dimethylphenol 2,4-dimitrotoluene 2,6-dinitrotoluene 2,6-dinitrotoluene 2-acetylaminofluorene 2-acetylaminofluorene 2-butanone (mek) < 10 < 10 < 10 < 10 2-chloronaphthalene 2-chlorophenol 2-hexanone (mbk) < 5 < 5 < 5 < 5 2-methylphenol 2-nextnone (mbk) < 5 < 5 < 5 < 5 2-methylphenol 2-naphthylamine 2-nitroaniline 2-nitrophenol 3,3-'dichlorobenzidine 3,3-'dichlorobenzidine 3,3-'dichlorobenzidine 3,3-'dichlorobenzidine 3,1-dimethylbenzidine 3-methylcholanthrene 3-nitroaniline 4,4-'ddd 4,4-'ddd 4,4-'ddd 4,6-'dinitro-2-methylphenol 4-aminobijphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloroaniline 4-chloroaniline 4-chloroaniline 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) < 5 < 5 < 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 <					
2,4-dichlorophenol 2,4-dimitrophenol 2,4-dimitrophenol 2,4-dimitrobluene 2,6-dichlorophenol 2,6-dichlorophenol 2,6-dichlorophenol 2,6-dichlorophenol 2,6-dichlorophenol 2,6-dichlorophenol 2-acetylaminofluorene 2-butanone (mek)					
2.4-dichlorophenol 2.4-dimethylphenol 2.4-dinitrobluene 2.6-dichlorophenol 2.6-dichlorophenol 2.6-dinitrotoluene 2-acetylaminofluorene 2-acetylaminofluorene 2-butanone (mek) 2-chlorophenol 2-chlorophenol 2-hexanone (mbk) 3-chexanone (mbk) 3-methylphenol 2-naphthylamine 2-nitrophenol 3,3'-dichlorobenzidine 3,3'-dichlorobenzidine 3,3'-dimethylbenzidine 3,3'-didhorobenzidine 3,3'-didhorobenzidine 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-dde 4,4'-dde 4-natinyl-2-pentanone (mibk) 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-natinyl-2-pentanone (mibk) 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acetone Acetonitrile Acetophenone Acrolein Acrylonitrile Acstophenone Acrolein Acrylonitrile Acstophenone Acrolein Acrylonitrile Aldrin Alkalinity, as caco3 Alkalinity, as caco3 Alklalinity, as caco3 Allyl chloride					
2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrotoluene 2,6-dichlorophenol 2,6-dinitrotoluene 2-acetylaminofluorene 2-butanone (mek)					
2,4-dinitrotoluene 2,6-dinitrotoluene 2-acetylaminofluorene 2-acetylaminofluorene 2-butanone (mek) 2-chloronaphthalene 2-chlorophenol 2-hexanone (mbk) 3-methylnaphthalene 2-methylphenol 2-naphthylamine 2-nitrophenol 3,3'-diohlorobenzidine 3,3'-diohlorobenzidine 3,3'-diohlorobenzidine 3,3'-diohlorobenzidine 3,3'-diohlorobenzidine 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddt 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acetone Acetone Acetonitrie Acetophenone Acrolein Acrylonitrile Acrolein Acrylonitrile 4-foloroide 7,52 Alkalinity, as caco3 775 698 752					
2.6-dichlorophenol 2.6-dinitrotoluene 2-acetylaminofluorene 2-butanone (mek)					
2.6-dinitrotoluene 2-actylaminofluorene 2-butanone (mek)					
2-acetylaminofluorene 2-butanone (mek)					
2-butanone (mek)					
2-chloronaphthalene 2-chlorophenol 2-hexanone (mbk) 3-methylphenol 2-nethylphenol 2-nethylphenol 2-naphthylamine 2-nitroaniline 2-nitrophenol 3,3'-dichlorobenzidine 3,3'-dimethylbenzidine 3-methylcholanthrene 3-nitroaniline 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddt 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloroaniline 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-0-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acetone Acetone Acetonitrile Acetophenone Acrolein Acrylonitrile Acrylonitrile Acrylonitrile Alkalinity, as caco3 Altalinity, as caco3 Altylichloride		<10	<10	<10	<10
2-chlorophenol 2-hexanone (mbk) 2-methylnaphthalene 2-methylphenol 2-naphthylamine 2-nitroaniline 2-nitrophenol 3,3'-dichlorobenzidine 3,3'-dimethylbenzidine 3,3'-dimethylbenzidine 3,3'-dimethylbenzidine 3-methylcholanthrene 3-nitroaniline 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddt 4-forophenyl phenyl ether 4-chloro-3-methylphenol 4-chloroaniline 4-chloroaniline 4-chloroaniline 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Aceaphthene Acetone <10.0 15.6 <10.0 <10.0 Acetonitrile Acetophenone Acrolein Acrylonitrile Acrylonitrile Alkalinity, as caco3 Altyl chloride		10	10	110	10
2-hexanone (mbk)					
2-methylphenol 2-naphthylamine 2-nitrophenol 3,3'-dichlorobenzidine 3,3'-dimethylbenzidine 3,3'-dimethylbenzidine 3-methylcholanthrene 3-nitroaniline 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddt 4,6-dinitro-2-methylphenol 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloro-3-methylphenol 4-chloroaniline 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Aceaphthylene Acetone Acetone Acetone Acetone Acetone Acetonitrile Acetophenone Acrolein Acrylonitrile Acrylonitrile Acsylonitrile Alkalinity, as caco3 Altore Allyl chloride		<5	<5	<5	<5
2-naphthylamine 2-nitroaniline 2-nitrophenol 3,3'-dichlorobenzidine 3,3'-dimethylbenzidine 3-methylcholanthrene 3-nitroaniline 4,4'-ddd 4,4'-ddd 4,4'-dde 4,4'-ddt 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloroaniline 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acetone Acetone Acetonitrile Acetophenone Acrolein Acrylonitrile Acrylonitrile Acrylonitrile Aclylonitrile Alkalinity, as caco3 Allyl chloride					
2-nitrophenol 2-nitrophenol 3,3'-dichlorobenzidine 3,3'-dimethylbenzidine 3-methylcholanthrene 3-nitroaniline 4,4'-ddd 4,4'-ddd 4,4'-ddd 4-d-ddd 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloroaniline 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acetone Acenaphthylene Acetone Acetone Acetone Acrolein Acrylonitrile Acrylonitrile Acrylonitrile Alkalinity, as caco3 Allyl chloride					
2-nitrophenol 3,3'-dichlorobenzidine 3,3'-dimethylbenzidine 3-methylcholanthrene 3-nitroaniline 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddt 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloroaniline 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acenaphthylene Acetone Acetone Acetone Acetone Acrolein Acrylonitrile Acrylonitrile Acrylonitrile Alkalinity, as caco3 Allyl chloride					
3,3'-dichlorobenzidine 3,3'-dimethylbenzidine 3-methylcholanthrene 3-mitroaniline 4,4'-ddd 4,4'-ddd 4,4'-ddt 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acenaphthene Acetone Acetone Acetone Acetonitrile Acetophenone Acrolein Acrylonitrile Acrylonitrile Acrylonitrile Alkalinity, as caco3 Allyl chloride					
3,3'-dimethylbenzidine 3-methylcholanthrene 3-nitroaniline 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloroaniline 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acetone Acetone Acetone Acetone Acetonitrile Acetophenone Acrolein Acrylonitrile Acrylonitrile Alkalinity, as caco3 Allyl chloride					
3-methylcholanthrene 3-nitroaniline 4,4'-ddd 4,4'-ddd 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloroaniline 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acetone Acetone Acetone Acetone Acetone Acetone Acylonitrile Acylonitrile Acylonitrile Alkalinity, as caco3 Allyl chloride					
4,4'-ddd 4,4'-ddt 4,6'-dinitro-2-methylphenol 4-6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloroaniline 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acenaphthylene Acetone <10.0					
4,4'-dde 4,4'-ddt 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) <5					
4,4'-ddt 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) <5					
4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloroaniline 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acenaphthylene Acetone Acetone Acetone Acetone Acrolein Acrylonitrile Acrylonitrile Alkalinity, as caco3 Allyl chloride					
4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloro-3-methylphenol 4-chloro-aniline 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) <5 <5 <5 <5 <5 <5 <5 <					
4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk)					
4-chloro-3-methylphenol 4-chloroaniline 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acetone Acetone Acetone Acetonitrile Acetophenone Acrolein Acrylonitrile Acrylonitrile Alkalinity, as caco3 Allyl chloride					
4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acenaphthylene Acetone Acetonitrile Acetophenone Acrolein Acrylonitrile Acrylonitrile Aldrin Alkalinity, as caco3 Allyl chloride 4-st					
4-methyl-2-pentanone (mibk) <5					
4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acetone < 10.0		_	_	_	_
4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acenaphthylene Acetone < 10.0 15.6 < 10.0 < 10.0 Acetonitrile Acetophenone Acrolein Acrylonitrile < 5 < 5 < 5 < 5 Aldrin Alkalinity, as caco3 775 698 752 Allyl chloride		<5	<5	<5	<5
5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acetone					
7,12-dimethylbenz(a)anthracene Acenaphthene Acenaphthylene Acetonitrile Acetonitrile Acetophenone Acrolein Acrylonitrile Acldrin Alkalinity, as caco3 Allyl chloride					
Acenaphthene Acenaphthylene Acetone < 10.0					
Acenaphthylene Acetone <10.0					
Acetone					
Acetophenone Acrolein Acrylonitrile <5	Acetone	<10.0	15.6	<10.0	<10.0
Acrolein 4Crylonitrile					
Acrylonitrile					
Aldrin Alkalinity, as caco3 775 698 752 Allyl chloride		ا ا	·-	l	, <u>-</u>
Alkalinity, as caco3 775 698 752 Allyl chloride		<5	<5	<5	<5
Allyl chloride		775		698	752
		'''		550	702
<u> </u>	Alpha-bhc				

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-94

Constituents	Units	10/16/2014	4/3/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
Anthracene	ug/L							<8	
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2
Arochlor 1016	ug/L							<.1	
Arochlor 1221	ug/L							<.2	
Arochlor 1232	ug/L							<.2	
Arochlor 1242	ug/L							<.2	
Arochlor 1248	ug/L							<.2	
Arochlor 1254	ug/L							<.1	
Arochlor 1260	ug/L							<.1	
Arsenic, total	ug/L	10.4	7.3	8.1	9.1	27.7	11.6	21.1	28.0
Azobenzene	ug/L							<8	450
Barium, total	ug/L	316	383	367	342	576	322	401	452
Benzene	ug/L	4.2	2.6	3.2	3.5	4.5	2.8	3.6	2.4
Benzo(a)anthracene	ug/L							<8	
Benzo(a)pyrene	ug/L							<8	
Benzo(b)fluoranthene	ug/L							<8	
Benzo(g,h,i)perylene	ug/L							<8	
Benzo(k)fluoranthene	ug/L							<8	
Benzyl alcohol	ug/L							<8	
Beryllium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Beta-bhc	ug/L							<.05	
Bis (2-chloroethoxy) methane	ug/L							<8	
Bis(2-chloroethyl) ether	ug/L							<8	
Bis(2-chloroisopropyl) ether	ug/L	-40	-40	-40	-40	-40	-40	<8	
Bis(2-ethylhexyl) phthalate	ug/L	<10	<10	<10	<10	<10	<10	<6	
Bromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane Bromoform	ug/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
I and the second	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L	<u> </u>	<u> </u>	<u> </u>	_ ``	\ \	``	<8	<u> </u>
Butyl benzyl phthalate	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Cadmium, total Calcium, total	ug/L mg/L	188	207	190	\.o	214	\.0	\.0	\. 0
Carbon disulfide		<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chlordane	ug/L ug/L				``	`'	`'	<.1	`'
Chloride	mg/L	<10.0	<10.0	<10.0		7.3			
Chlorobenzene	ug/L	<10.0	<10.0	<10.0	<1	/.3 <1	<1	<1	<1
Chlorobenzilate	ug/L	`'	- 1		`'	`'	`'	<8	`'
Chloroethane	ug/L	16.4	13.0	9.5	9.2	11.8	8.9	8.6	5.6
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloroprene	ug/L							<1	
Chromium, total	ug/L	<8	<8	<8	<8	<8	<8	<8	<8
Chrysene	ug/L							<8	· ·
Cis-1,2-dichloroethylene	ug/L	144.0	102.0	88.2	89.5	63.0	43.3	56.4	28.6
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	ug/L	21.9	22.1	18.1	28.4	46.5	30.9	38.4	32.6
Copper, total	ug/L	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Cyanide, total	mg/L							<.005	
Delta-bhc	ug/L							<.05	
Diallate	ug/L							<8	
Dibenzo(a,h)anthracene	ug/L							<8	
Dibenzofuran	ug/L							<8	
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	ug/L							<1	
Dieldrin	ug/L							<.05	
Diethyl phthalate	ug/L							<8	
Dimethoate	ug/L							<.4	
Dimethylphthalate	ug/L							<8	
Di-n-butyl phthalate	ug/L							<8	
Di-n-octyl phthalate	ug/L							<8	
Dinoseb	ug/L							<.5	
Diphenylamine	ug/L							<8	
Disulfoton	ug/L							<.4	
Endosulfan i	ug/L							<.05	
Endosulfan ii	ug/L							<.05	
Endosulfan sulfate	ug/L							<.05	
Endrin	ug/L							<.05	
Endrin aldehyde	ug/L							<.05	
Ethane	ug/L								
Ethene	ug/L								
Ethyl methacrylate	ug/L							<10	
Ethyl methanesulfonate	ug/L							<8	
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Famphur	ug/L	·	· ·		·		·	<.4	.
Fluoranthene	ug/L							<8	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-94

Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022	10/25/2022
Anthracene									
Antimony, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arochlor 1016									
Arochlor 1221									
Arochlor 1232 Arochlor 1242									
Arochlor 1242									
Arochlor 1254									
Arochlor 1260									
Arsenic, total	6.4	18.6	13.4	26.4	27.6	43.9	25.3	51.5	31.5
Azobenzene									
Barium, total	504	388	374	366	332	414	401	401	356
Benzene	3.5	2.5	2.3	2.2	2.4	1.6	1.6	2.1	2.1
Benzo(a)anthracene Benzo(a)pyrene									
Benzo(a)pyrene Benzo(b)fluoranthene									
Benzo(g,h,i)perylene									
Benzo(k)fluoranthene									
Benzyl alcohol									
Beryllium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Beta-bhc									
Bis (2-chloroethoxy) methane									
Bis(2-chloroethyl) ether									
Bis(2-chloroisopropyl) ether Bis(2-ethylhexyl) phthalate									
Bromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Butyl benzyl phthalate									
Cadmium, total	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Calcium, total									
Carbon disulfide Carbon tetrachloride	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Chlordane	\	~1	` '		~1		~1	`'	`'
Chloride									
Chlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzilate									
Chloroethane	5.2	5.4	6.0	4.4	5.2	3.7	4.0	4.6	4.7
Chloroform	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroprene Chromium, total	<8	<8	<8	<8	<8	<8	<8	<8	<8
Chrysene		~0	70	~0	~0	\0	~0		~0
Cis-1,2-dichloroethylene	27.4	30.2	23.0	21.4	27.4	13.2	25.1	18.2	29.4
Cis-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	30.9	24.7	27.5	28.1	23.2	21.0	23.7	19.9	25.4
Copper, total	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	5.2	<4.0
Cyanide, total									
Delta-bhc Diallate									
Dibenzo(a,h)anthracene									
Dibenzofuran									
Dibromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane									
Dieldrin									
Diethyl phthalate									
Dimethoate Dimethylphthalate									
Dimetnyiphthalate Di-n-butyl phthalate									
Di-n-octyl phthalate									
Dinoseb									
Diphenylamine									
Disulfoton									
Endosulfan i									
Endosulfan ii									
Endosulfan sulfate									
Endrin Endrin aldehyde									
Endrin alderlyde Ethane				<10		<10			
Ethene				<10		<10			
Ethyl methacrylate				10					
Ethyl methanesulfonate									
Ethylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Famphur									
Fluoranthene									

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-94

Constituents	4/11/2023	10/13/2023	4/17/2024	10/15/2024
Anthracene		.0	.0	.0
Antimony, total Arochlor 1016	<2	<2	<2	<2
Arochlor 1221				
Arochlor 1232				
Arochlor 1242				
Arochlor 1248				
Arochlor 1254				
Arochlor 1260		20.4	05.0	0
Arsenic, total Azobenzene	68.7	28.1	95.9	75.8
Barium, total	370	413	308	305
Benzene	1.9	1.7	2.0	1.8
Benzo(a)anthracene				
Benzo(a)pyrene				
Benzo(b)fluoranthene				
Benzo(g,h,i)perylene Benzo(k)fluoranthene				
Benzyl alcohol				
Beryllium, total	<4	<4	<4	<4
Beta-bhc				
Bis (2-chloroethoxy) methane				
Bis(2-chloroethyl) ether				
Bis(2-chloroisopropyl) ether Bis(2-ethylhexyl) phthalate				
Bromochloromethane	<1	<1	<1	<1
Bromodichloromethane	<1	<1	<1	<1
Bromoform	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1
Butyl benzyl phthalate				
Cadmium, total Calcium, total	<.8	<.8	<.8	<.8
Carbon disulfide	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1
Chlordane				
Chloride				
Chlorobenzene	<1	<1	<1	<1
Chlorobenzilate Chloroethane	4.0	4.5	4.3	3.0
Chloroform		<1.5 <1	<1 <1	<1
Chloromethane	<1	<1	<1	<1
Chloroprene	_			_
Chromium, total	<8	<8	<8	<8
Chrysene Cis-1,2-dichloroethylene	11.4	29.4	5.2	6.0
Cis-1,3-dichloropropene	<1	<1	<1	<1
Cobalt, total	17.0	17.2	10.2	8.8
Copper, total	<4.0	<4.0	<4.0	<4.0
Cyanide, total				
Delta-bhc Diallate				
Dialiate Dibenzo(a,h)anthracene				
Dibenzofuran				
Dibromochloromethane	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1
Dichlorodifluoromethane				
Dieldrin Diethyl phthalate				
Dimethoate				
Dimethylphthalate				
Di-n-butyl phthalate				
Di-n-octyl phthalate				
Dinoseb Diphenylamine				
Diprienylamine Disulfoton				
Endosulfan i				
Endosulfan ii				
Endosulfan sulfate				
Endrin				
Endrin aldehyde Ethane				<5
Ethene				<5 <5
Ethyl methacrylate				-5
Ethyl methanesulfonate				
Ethylbenzene	<1	<1	<1	<1
Famphur Fluoranthene				
i idolaliliciic				

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-94

Constituents	Units	10/16/2014	4/3/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
Fluorene	ug/L							<8	
Gamma-bhc (lindane)	ug/L							<.05	
Heptachlor	ug/L							<.05	
Heptachlor epoxide	ug/L							<.05	
Hexachlorobenzene	ug/L							<.05	
Hexachlorobutadiene	ug/L							<8	
Hexachlorocyclopentadiene	ug/L							<8	
Hexachloroethane	ug/L							<8	
Hexachloropropene	ug/L							<8 <8	
Indeno(1,2,3-cd)pyrene	ug/L							<0 <1	
Isodrin	mg/L ug/L							<8	
Isophorone	ug/L							<8	
Isosafrole	ug/L ug/L							<8	
Kepone	ug/L							<8	
Lead, total	ug/L ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Magnesium, total	mg/L	80.0	83.9	84.5	7-1	87.4	`~	`~	`~
Mercury, total	ug/L	00.0	00.9	04.0		07.4		<.5	
Methacrylonitrile	ug/L							<1	
Methane	ug/L								
Methapyrilene	ug/L ug/L							<8	
Methoxychlor	ug/L ug/L							<.05	
Methyl iodide	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Methyl methacrylate	ug/L ug/L	`'	` '			`'	``	<1	~1
Methyl methanesulfonate	ug/L ug/L							<8	
Methyl parathion	ug/L ug/L							<.4	
Methylene chloride	ug/L ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene	ug/L		,5	-5	-5	\		<8	-5
Nickel, total	ug/L	21.4	20.8	20.8	24.0	35.8	20.9	36.2	20.9
Nitrobenzene	ug/L	21.4	20.0	20.0	24.0	33.0	20.9	<8	20.9
Nitrogen, ammonia	mg/L	<1	<1	<1		<1			
N-nitrosodiethylamine	ug/L		~1	~1				<8	
N-nitrosodimethylamine	ug/L							<8	
N-nitrosodi-n-butylamine	ug/L							<8	
N-nitroso-di-n-propylamine	ug/L							<8	
N-nitrosodiphenylamine	ug/L							<8	
N-nitrosomethylethylamine	ug/L							<8	
N-nitrosopiperidine	ug/L							<8	
N-nitrosopyrrolidine	ug/L							<8	
O,o,o-triethyl phosphorothioate	ug/L							<.4	
O-toluidine	ug/L							<8	
Parathion	ug/L							<.4	
P-dimethylaminoazobenzene	ug/L							<8	
Pentachlorobenzene	ug/L							<8	
Pentachloronitrobenzene (pcnb)	ug/L							<8	
Pentachlorophenol	ug/L							<8	
pH	pH							_	
Phenacetin	ug/L							<8	
Phenanthrene	ug/L							<8	
Phenol	ug/L							<8	
Phorate	ug/L							<.4	
Potassium, total	mg/L	<1	<1	<1		<1			
Pronamide	ug/L							<8	
Propionitrile	ug/L							<10	
Pyrene	ug/L							<8	
Safrole	ug/L							<8	
Selenium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Sodium, total	mg/L	21.5	20.6	12.7		14.9			
Solids, total dissolved	mg/L	797	800	804		781			
Solids, total suspended	mg/L	49	29						
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Sulfate	mg/L	21.5	20.0	18.3		18.6			
Sulfide, total	mg/L							<.1	
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total *	ug/L	<4	<4	<1	<4	<4	<4	<4	<4
Thionazin	ug/L							<.4	
Tin, total	ug/L							<20	
Toluene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Toxaphene	ug/L							<.2	
Trans-1,2-dichloroethylene	ug/L	1.2	1.2	<1.0	<1.0	1.2	<1.0	<1.0	<1.0
Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L	2.0	1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20	<20	<20
	ug/L	<5	<5	<5	<5	<5	<5	<5	<5

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-94

	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022	10/25/2022
Fluorene Gamma-bhc (lindane)									
Heptachlor									
Heptachlor epoxide									
Hexachlorobenzene Hexachlorobutadiene									
Hexachlorocyclopentadiene									
Hexachloroethane									
Hexachloropropene									
Indeno(1,2,3-cd)pyrene Isobutanol									
Isodrin									
Isophorone									
Isosafrole Kepone									
Lead, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Magnesium, total									
Mercury, total									
Methacrylonitrile Methane				4440		10500			
Methapyrilene				7770		10000			
Methoxychlor									
Methyl iodide	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl methacrylate Methyl methanesulfonate									
Methyl parathion									
Methylene chloride	<5	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene Nickel, total	24.6	19.3	23.9	20.8	20.8	13.5	16.1	12.4	18.0
Nitrobenzene	24.0	19.5	23.9	20.0	20.0	13.5	10.1	12.4	10.0
Nitrogen, ammonia									
N-nitrosodiethylamine									
N-nitrosodimethylamine N-nitrosodi-n-butylamine									
N-nitrosodi-n-propylamine									
N-nitrosodiphenylamine									
N-nitrosomethylethylamine									
N-nitrosopiperidine N-nitrosopyrrolidine									
O,o,o-triethyl phosphorothioate									
O-toluidine									
Parathion P-dimethylaminoazobenzene									
Pentachlorobenzene									
Pentachloronitrobenzene (pcnb)									
Pentachlorophenol				0.0		0.0		0.5	
pH Phenacetin				6.6		6.6		6.5	
Phenanthrene									
Phenol									
Phorate Potassium, total									
Pronamide									
Propionitrile									
Pyrene									
Safrole Selenium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Sodium, total									
Solids, total dissolved									
Solids, total suspended Styrene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulfate	-1	"	*1	"	*1	"	*1		- 1
Sulfide, total									
Tetrachloroethylene	<1 <4	<1 <2	<1	<1	<1	<1	<1	<1 <2	<1
Thallium, total Thionazin	<4	<2	<2	<2	<2	<2	<2	<2	<2
Tin, total									
Toluene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toxaphene Trans-1,2-dichloroethylene	<1.0	<1.0	<1.0	1.0	1.2	<1.0	<1.0	<1.0	1.2
Trans-1,2-dichloroethylene	<1.0 <1	<1.0 <1	<1.0 <1	1.0 <1	1.2 <1	<1.0 <1	<1.0 <1	<1.0 <1	1.2 <1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane Vanadium, total	<1 <20	<1 <20	<1 <20	<1 <20	<1 <20	<1 <20	<1 <20	<1 <20	<1 <20
Vinyl acetate	<5	<5	<5	<5	<5	<5	<5	<5	<5

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-94

Constituents	4/11/2023	10/13/2023	4/17/2024	10/15/2024
Fluorene				
Gamma-bhc (lindane) Heptachlor				
Heptachlor epoxide				
Hexachlorobenzene				
Hexachlorobutadiene Hexachlorocyclopentadiene				
Hexachloroethane				
Hexachloropropene				
Indeno(1,2,3-cd)pyrene				
Isodrin				
Isophorone				
Isosafrole				
Kepone Lead, total	<4	<4	<4	<4
Magnesium, total				"
Mercury, total				
Methacrylonitrile Methane				1380
Methapyrilene				1360
Methoxychlor				
Methyl iodide	<1	<1	<1	<1
Methyl methacrylate Methyl methanesulfonate				
Methyl parathion				
Methylene chloride	<5	<5	<5	<5
Naphthalene Nickel, total	12.0	9.6	9.2	7.4
Nitrobenzene	12.0	9.0	9.2	7.4
Nitrogen, ammonia				
N-nitrosodiethylamine				
N-nitrosodimethylamine N-nitrosodi-n-butylamine				
N-nitroso-di-n-propylamine				
N-nitrosodiphenylamine				
N-nitrosomethylethylamine				
N-nitrosopiperidine N-nitrosopyrrolidine				
O,o,o-triethyl phosphorothioate				
O-toluidine				
Parathion P-dimethylaminoazobenzene				
Pentachlorobenzene				
Pentachloronitrobenzene (pcnb)				
Pentachlorophenol pH	6.5		6.6	6.4
Phenacetin	0.5		0.0	0.4
Phenanthrene				
Phenol				
Phorate Potassium, total				
Pronamide				
Propionitrile				
Pyrene Safrole				
Sarrole Selenium, total	<4	<4	<4	<4
Silver, total	<4	<4	<4	<4
Sodium, total				
Solids, total dissolved Solids, total suspended				
Styrene	<1	<1	<1	<1
Sulfate				
Sulfide, total	٠.٨		ا بر	
Tetrachloroethylene Thallium, total	<1 <2	<1 <2	<1 <2	<1 <2
Thionazin		12		
Tin, total				
Toluene Toxaphene	<1	<1	<1	<1
Trans-1,2-dichloroethylene	<1.0	1.6	<1.0	<1.0
Trans-1,3-dichloropropene	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5
Trichloroethylene Trichlorofluoromethane	<1.0 <1	<1.0 <1	<1.0 <1	<1.0 <1
Vanadium, total	<20	<20	<20	<20
Vinyl acetate	< 5	<5	< 5	<5

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-94

Constituents	Units	10/16/2014	4/3/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
Vinyl chloride	ug/L	6.2	4.5	3.6	2.9	2.6	3.2	2.0	2.0
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	ug/L	<20.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	8.4

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-94

Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022	10/25/2022
Vinyl chloride	2.2	1.7	<1.0	1.1	1.1	<1.0	<1.0	<1.0	1.2
Xylenes, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	<20.0	<20.0	29.7	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-94

Constituents	4/11/2023	10/13/2023	4/17/2024	10/15/2024
Vinyl chloride	2.1	2.0	2.2	2.0
Xylenes, total	<2	<2	<2	<2
Zinc, total	<20.0	<20.0	<20.0	20.3

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-95

Constituents	Units	10/16/2014	4/6/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1.4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
2-butanone (mek)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	ug/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Alkalinity, as caco3	mg/L	418	373	373	-	358	-	-	-
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Barium, total	ug/L	37.1	38.5	34.1	40.3	32.1	52.1	35.6	40.5
Benzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Beryllium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Bromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	ug/L	<1	<1	<1	<1	<1	<1	- <1	<1
Bromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Calcium, total	mg/L	163	178	144		170		.0	.0
Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloride	mg/L	<10	<10	<10	•	<1		•	
Chlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	ug/L	<8	<8	<8	<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Copper, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Magnesium, total	mg/L	42.5	43.8	39.2		41.6		***	
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	ug/L ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Nickel, total	ug/L ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Nitrogen, ammonia	mg/L	<1	<1	<1		<1		***	
Potassium, total	mg/L	3.0	2.9	3.0		3.2			
Selenium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Sodium, total	mg/L	14.8	14.8	12.8		14.2		***	
Solids, total dissolved	mg/L	691	713	691		668			
Solids, total dissolved Solids, total suspended	mg/L	3	4	031		000			
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Sulfate	mg/L	318	239	241	71	235	`'	` '	`'
Tetrachloroethylene	ug/L	<1	239 <1	<1	<1	233 <1	<1	<1	<1
Thallium, total	ug/L ug/L	<4	<4	<1	<4	<4	<4	<4	<4
Toluene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L ug/L	<1	<1	<1 <1	<1	<1 <1	<1	<1	<1
Trichloroethylene	ug/L ug/L	<1	<1	<1	<1	<1 <1	<1	<1 <1	<1 <1
Vanadium, total		<20	<20	<20	<20	<20	<20	<20	<20
	ug/L	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	
Vinyl chlorida	ug/L		<5 <1		<5 <1			<5 <1	<5 -1
Vinyl chloride	ug/L	<1 <2	<1 <2	<1 <2	<1 <2	<1	<1 <2	<2	<1 <2
Xylenes, total	ug/L ug/L	<20.0	<2.0 <8.0	<8.0	<2 <8.0	<2 <8.0	<2 <8.0	<8.0	<8.0
Zinc, total	⊥ug/∟	~ 20.0	\0.0	~0.U	\0.U	~0. U	<u></u>	\0.0	\0.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-95

Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022	10/25/2022
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	<1	<1	<1	<5	<5	<5	<5	<5	<5
1,2-dibromoethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
2-butanone (mek)	<5	<5	<5	<5	<5	<5	<5	<10	<10
2-hexanone (mbk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Acrylonitrile	<5	<5	<5	<5	<5	<5	<5	<5	<5
Alkalinity, as caco3									
Antimony, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Barium, total	36.9	40.0	37.8	39.9	33.6	41.9	30.5	30.3	31.4
Benzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Beryllium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Bromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Calcium, total									
Carbon disulfide	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloride									
Chlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	<8	<8	<8	<8	<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	<.8	<.8	<.8	<.4	<.4	<.4	<.4	.4	<.4
Copper, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Dibromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Magnesium, total									
Methyl iodide	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	<5	<5	<5	<5	<5	<5	<5	<5	<5
Nickel, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Nitrogen, ammonia									
Potassium, total									
Selenium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Sodium, total									
Solids, total dissolved									
Solids, total suspended									
Styrene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulfate									
Tetrachloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	<4	<2	<2	<2	<2	<2	<2	<2	<2
Toluene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl chloride	<1	<1	<1	<1	<1	<1	<1	<1	<1
Hari e e e	<2	<2	<2	<2	<2	<2	<2	<2	<2
Xylenes, total	31.5	<20.0	26.5	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0

 $[\]ensuremath{^{\star}}$ - The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-95

Constituents	4/11/2023	10/13/2023	1/25/2024	4/17/2024	10/15/2024
1,1,1,2-tetrachloroethane	<1	<1		<1	<1
1,1,1-trichloroethane	<1	<1		<1	<1
1,1,2,2-tetrachloroethane	<1	<1		<1	<1
1,1,2-trichloroethane	<1	<1		<1	<1
1,1-dichloroethane	<1	<1		<1	<1
1,1-dichloroethylene	<1	<1		<1	<1
1,2,3-trichloropropane	<1	<1		<1	<1
1,2-dibromo-3-chloropropane	<5 <1	<5 <1		<5 <1	<5 <1
1,2-dibromoethane 1,2-dichlorobenzene	<1	<1 <1		<1	<1
1,2-dichloroethane	<1	<1		<1	<1
1,2-dichloropropane	<1	<1		<1	<1
1,4-dichlorobenzene	<1	<1		<1	<1
2-butanone (mek)	<10	<10		<10	<10
2-hexanone (mbk)	<5	<5		<5	<5
4-methyl-2-pentanone (mibk)	<5	<5		<5	<5
Acetone	<10.0	10.7	<10.0	<10.0	<10.0
Acrylonitrile	<5	<5		<5	<5
Alkalinity, as caco3					
Antimony, total	<2	<2		<2	<2
Arsenic, total	<4	<4		<4	<4
Barium, total	39.6	29.3		42.7	32.3
Benzene	<1	<1		<1	<1
Beryllium, total	<4	<4		<4	<4
Bromochloromethane	<1	<1		<1	<1
Bromodichloromethane Bromoform	<1 <1	<1 <1		<1 <1	<1 <1
Bromomethane	<1	<1		<1	<1
Cadmium, total	<.8	<.8		<.8	<.8
Calcium, total		٠.٥		٠.٠	1.0
Carbon disulfide	<1	<1		<1	<1
Carbon tetrachloride	<1	<1		<1	<1
Chloride					
Chlorobenzene	<1	<1		<1	<1
Chloroethane	<1	<1		<1	<1
Chloroform	<1	<1		<1	<1
Chloromethane	<1	<1		<1	<1
Chromium, total	<8	<8		<8	<8
Cis-1,2-dichloroethylene	<1	<1		<1	<1
Cis-1,3-dichloropropene	<1	<1		<1	<1
Cobalt, total	.4	<.4		<.4	<.4
Copper, total Dibromochloromethane	<4 <1	<4 <1		<4 <1	<4 <1
Dibromomethane	<1	<1 <1		<1	<1
Ethylbenzene	<1	<1		<1	<1
Lead, total	<4	<4		<4	<4
Magnesium, total	"	77			77
Methyl iodide	<1	<1		<1	<1
Methylene chloride	<5	<5		<5	<5
Nickel, total	<4	<4		<4	<4
Nitrogen, ammonia					
Potassium, total					
Selenium, total	<4	<4		<4	<4
Silver, total	<4	<4		<4	<4
Sodium, total					
Solids, total dissolved					
Solids, total suspended					
Styrene	<1	<1		<1	<1
Sulfate Tetrachloroethylene	<1	<1		<1	<1
Thallium, total	<2	<2		<2	<2
Toluene	<1	<1		<1	<1 <1
Trans-1,2-dichloroethylene	<1	<1		<1	<1
Trans-1,3-dichloropropene	<1	<1		<1	<1
Trans-1,4-dichloro-2-butene	<5	<5		<5	<5
Trichloroethylene	<1	<1		<1	<1
Trichlorofluoromethane	<1	<1		<1	<1
Vanadium, total	<20	<20		<20	<20
Vinyl acetate	<5	<5		<5	<5
Vinyl chloride	<1	<1		<1	<1
Xylenes, total	<2	<2		<2	<2
Zinc, total	<20.0	<20.0		<20.0	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-96

Constituents	Units	10/16/2014	4/6/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
(3 4)-methylphenol	ug/L							<8	
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane 1,1-dichloroethylene	ug/L ug/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,1-dichloropropene	ug/L ug/L	`'	~1	` '		``	``'	<1	' '
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2,4,5-tetrachlorobenzene	ug/L	•	•	•	·			- <8	,
1,2,4-trichlorobenzene	ug/L							<1	
1,2-dibromo-3-chloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dinitrobenzene 1,3,5-trinitrobenzene	ug/L ug/L							<8 <8	
1,3-dichlorobenzene	ug/L ug/L							<1	
1,3-dichloropropane	ug/L							<1	
1,3-dinitrobenzene	ug/L							<8	
1,4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,4-naphthoquinone	ug/L		-					<8	
1,4-phenylenediamine	ug/L							<8	
1-naphthylamine	ug/L							<8	
2,2-dichloropropane	ug/L							<1	
2,3,4,6-tetrachlorophenol	ug/L							<8	
2,4,5-t	ug/L							<.5	
2,4,5-tp (silvex)	ug/L							<.5	
2,4,5-trichlorophenol 2,4,6-trichlorophenol	ug/L ug/L							<8 <8	
2,4-,0-tricritoroprientiti 2,4-d	ug/L ug/L							<2	
2,4-dichlorophenol	ug/L							<8	
2,4-dimethylphenol	ug/L							<8	
2,4-dinitrophenol	ug/L							<8	
2,4-dinitrotoluene	ug/L							<8	
2,6-dichlorophenol	ug/L							<8	
2,6-dinitrotoluene	ug/L							<8	
2-acetylaminofluorene	ug/L							<8	
2-butanone (mek)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
2-chloronaphthalene	ug/L							<8	
2-chlorophenol	ug/L	<5	<5	<5	<5	<5	<5	<8	<5
2-hexanone (mbk) 2-methylnaphthalene	ug/L ug/L	\ \	< 5	< 5	< 5	\ \frac{1}{2}	\ <u>`</u>	<5 <8	\ 5
2-methylphenol	ug/L							<8	
2-naphthylamine	ug/L							<8	
2-nitroaniline	ug/L							<8	
2-nitrophenol	ug/L							<8	
3,3´-dichlorobenzidine	ug/L							<8	
3,3'-dimethylbenzidine	ug/L							<8	
3-methylcholanthrene	ug/L							<8	
3-nitroaniline	ug/L							<8	
4,4'-ddd	ug/L							<.05 <.05	
4,4´-dde 4,4´-ddt	ug/L ug/L							<.05 <.05	
4,6-dinitro-2-methylphenol	ug/L ug/L							<.03 <8	
4-aminobiphenyl	ug/L							<8	
4-bromophenyl phenyl ether	ug/L							<8	
4-chloro-3-methylphenol	ua/L							<8	
4-chloroaniline	ug/L							<8	
4-chlorophenyl phenyl ether	ug/L							<8	
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
4-nitroaniline	ug/L							<8	
4-nitrophenol	ug/L							<8	
5-nitro-o-toluidine	ug/L							<8	
7,12-dimethylbenz(a)anthracene Acenaphthene	ug/L ug/L							<8 <8	
Acenaphthylene	ug/L ug/L							<8	
Acetone	ug/L ug/L	<10	<10	<10	<10	<10	<10	<10	<10
Acetonie	ug/L ug/L	```	~10	~10	-10		``\	<10	~10
Acetophenone	ug/L							<8	
Acrolein	ug/L							<10	
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Aldrin	ug/L				_			<.05	
Alkalinity, as caco3	mg/L	584	476	476		548			
Allyl chloride	ug/L							<1	
Alpha-bhc	ug/L							<.05	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-96

Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020
(3 4)-methylphenol				
1,1,1,2-tetrachloroethane	<1	<1	<1	<1
1,1,1-trichloroethane	<1 <1	<1 <1	<1 <1	<1 <1
1,1,2,2-tetrachloroethane 1,1,2-trichloroethane	<1	<1	<1	<1
1,1-dichloroethane	<1	<1	<1	<1
1,1-dichloroethylene	<1	<1	<1	<1
1,1-dichloropropene	·		·	.
1,2,3-trichloropropane	<1	<1	<1	<1
1,2,4,5-tetrachlorobenzene				
1,2,4-trichlorobenzene				_
1,2-dibromo-3-chloropropane	<1	<1	<1	<5
1,2-dibromoethane	<1	<1	<1	<1
1,2-dichlorobenzene 1,2-dichloroethane	<1 <1	<1 <1	<1 <1	<1 <1
1,2-dichloropropane	<1	<1	<1	<1
1,2-dinitrobenzene	`'	` '	``	`'
1,3,5-trinitrobenzene				
1,3-dichlorobenzene				
1,3-dichloropropane				
1,3-dinitrobenzene				
1,4-dichlorobenzene	<1	<1	<1	<1
1,4-naphthoquinone				
1,4-phenylenediamine				
1-naphthylamine				
2,2-dichloropropane				
2,3,4,6-tetrachlorophenol				
2,4,5-tp (silvex)				
2,4,5-trichlorophenol				
2,4,6-trichlorophenol				
2,4-d				
2,4-dichlorophenol				
2,4-dimethylphenol				
2,4-dinitrophenol				
2,4-dinitrotoluene				
2,6-dichlorophenol				
2,6-dinitrotoluene				
2-acetylaminofluorene 2-butanone (mek)	<5	<5	<5	<5
2-chloronaphthalene	\	\3	\3	
2-chlorophenol				
2-hexanone (mbk)	<5	<5	<5	<5
2-methylnaphthalene				
2-methylphenol				
2-naphthylamine				
2-nitroaniline				
2-nitrophenol				
3,3'-dichlorobenzidine 3,3'-dimethylbenzidine				
3-methylcholanthrene				
3-nitroaniline				
4.4´-ddd				
4,4´-dde				
4,4'-ddt				
4,6-dinitro-2-methylphenol				
4-aminobiphenyl				
4-bromophenyl phenyl ether				
4-chloro-3-methylphenol				
4-chlorophenyl phenyl ether				
4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk)	<5	<5	<5	<5
4-nitroaniline	```	~5	~5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
4-nitrophenol				
5-nitro-o-toluidine				
7,12-dimethylbenz(a)anthracene				
Acenaphthene				
Acenaphthylene				
Acetone	<10	<10	<10	<10
Acetonitrile				
Acetophenone				
Acrolein		,-	. -	
Acrylonitrile	<5	<5	<5	<5
Aldrin Alkalinity, as caco3				
Allyl chloride				
Alpha-bhc				

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-96

Constituents	Units	10/16/2014	4/6/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
Anthracene	ug/L							<8	
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2
Arochlor 1016	ug/L							<.1	
Arochlor 1221	ug/L							<.2 <.2	
Arochlor 1232 Arochlor 1242	ug/L ug/L							<.2 <.2	
Arochlor 1248	ug/L ug/L							<.2	
Arochlor 1254	ug/L							<.1	
Arochlor 1260	ug/L							<.1	
Arsenic, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Azobenzene	ug/L							<8	
Barium, total	ug/L	588	617	577	540	540	486	495	491
Benzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Benzo(a)anthracene	ug/L ug/L							<8 <8	
Benzo(a)pyrene Benzo(b)fluoranthene	ug/L ug/L							<8	
Benzo(g,h,i)perylene	ug/L							<8	
Benzo(k)fluoranthene	ug/L							<8	
Benzyl alcohol	ug/L							<8	
Beryllium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Beta-bhc	ug/L							<.05	
Bis (2-chloroethoxy) methane	ug/L							<8	
Bis(2-chloroethyl) ether	ug/L							<8	
Bis(2-chloroisopropyl) ether Bis(2-ethylhexyl) phthalate	ug/L ug/L	<10	<10	<10	<10	<10	<10	<8 <6	
Bromochloromethane	ug/L ug/L	<10	<10 <1	<10	<10	<10	<10	<0 <1	<1
Bromodichloromethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Butyl benzyl phthalate	ug/L							<8	
Cadmium, total	ug/L	.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Calcium, total	mg/L	192	173	165		182			
Carbon disulfide	ug/L	<1 <1	<1 <1	<1	<1	<1 <1	<1 <1	<1	<1 <1
Carbon tetrachloride Chlordane	ug/L ug/L		<u> </u>	<1	<1	\ \ \ \ \	\ \	<1 <.1	<u> </u>
Chloride	mg/L	85.0	107.0	84.0		94.9		\. .1	
Chlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzilate	ug/L							<8	
Chloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloroprene	ug/L		.0	.0	.0			<1	.0
Chromium, total	ug/L	<8	<8	<8	<8	<8	<8	<8 <8	<8
Chrysene Cis-1,2-dichloroethylene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<0 <1	<1
Cis-1,3-dichloropropene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	ug/L	6.0	3.6	4.7	1.8	4.4	2.1	4.4	1.0
Copper, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Cyanide, total	mg/L							<.005	
Delta-bhc	ug/L							<.05	
Diallate	ug/L							<8	
Dibenzo(a,h)anthracene	ug/L							<8	
Dibenzofuran Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<8 <1	<1
Dibromomethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	ug/L	` '	` ' '	``	` '	`'	`'	<1	~1
Dieldrin	ug/L							<.05	
Diethyl phthalate	ug/L							<8	
Dimethoate	ug/L							<.4	
Dimethylphthalate	ug/L							<8	
Di-n-butyl phthalate	ug/L							<8	
Di-n-octyl phthalate	ug/L							<8	
Dinoseb	ug/L							<.5 <8	
Diphenylamine Disulfoton	ug/L ug/L							<.4	
Endosulfan i	ug/L							<.05	
Endosulfan ii	ug/L							<.05	
Endosulfan sulfate	ug/L							<.05	
Endrin	ug/L							<.05	
Endrin aldehyde	ug/L							<.05	
Ethyl methacrylate	ug/L							<10	
Ethyl methanesulfonate	ug/L				_			<8	
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Famphur Fluoranthene	ug/L							<.4 <8	
i luorattitiette	ug/L					1			
Fluorene	ug/L							<8	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-96

Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020
Anthracene				
Antimony, total	<2	<2	<2	<2
Arochlor 1016 Arochlor 1221				
Arochlor 1232				
Arochlor 1242				
Arochlor 1248				
Arochlor 1254				
Arochlor 1260	<4	<4	<4	<4
Arsenic, total Azobenzene	<u>~4</u>	\4	\4	\4
Barium, total	502	514	513	535
Benzene	<1	<1	<1	<1
Benzo(a)anthracene				
Benzo(a)pyrene				
Benzo(b)fluoranthene Benzo(g,h,i)perylene				
Benzo(g,n,n)perylene Benzo(k)fluoranthene				
Benzyl alcohol				
Beryllium, total	<4	<4	<4	<4
Beta-bhc				
Bis (2-chloroethoxy) methane				
Bis(2-chloroethyl) ether Bis(2-chloroisopropyl) ether				
Bis(2-chioroisopropyr) ether Bis(2-ethylhexyl) phthalate				
Bromochloromethane	<1	<1	<1	<1
Bromodichloromethane	<1	<1	<1	<1
Bromoform	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1
Butyl benzyl phthalate Cadmium, total	<.8	<.8	<.8	<.8
Calcium, total	\. 0	₹.0	₹.0	\.0
Carbon disulfide	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1
Chlordane				
Chloride	-4	-4	-4	-4
Chlorobenzene Chlorobenzilate	<1	<1	<1	<1
Chloroethane	<1	<1	<1	<1
Chloroform	<1	<1	<1	<1
Chloromethane	<1	<1	<1	<1
Chloroprene				
Chromium, total	<8	<8	<8	<8
Chrysene Cis-1,2-dichloroethylene	<1	<1	<1	<1
Cis-1,3-dichloropropene	<1	<1	<1	<1
Cobalt, total	2.6	2.2	3.0	3.5
Copper, total	<4	<4	<4	<4
Cyanide, total				
Delta-bhc Diallate				
Dialiate Dibenzo(a,h)anthracene				
Dibenzofuran				
Dibromochloromethane	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1
Dichlorodifluoromethane Dieldrin				
Diethyl phthalate				
Dimethoate				
Dimethylphthalate				
Di-n-butyl phthalate				
Di-n-octyl phthalate				
Dinoseb Diphenylamine				
Dipneriylarilile Disulfoton				
Endosulfan i				
Endosulfan ii				
Endosulfan sulfate				
Endrin				
Endrin aldehyde Ethyl methacrylate				
Ethyl methanesulfonate				
Ethylbenzene	<1	<1	<1	<1
Famphur	'	.		[]
Fluoranthene				
Fluorene				
Gamma-bhc (lindane)				

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-96

Constituents	Units	10/16/2014	4/6/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
Heptachlor	ug/L							<.05	
Heptachlor epoxide	ug/L							<.05	
Hexachlorobenzene	ug/L							<.05	
Hexachlorobutadiene	ug/L							<8	
Hexachlorocyclopentadiene	ug/L							<8	
Hexachloroethane	ug/L							<8	
Hexachloropropene	ug/L							<8	
Indeno(1,2,3-cd)pyrene	ug/L							<8	
Isobutanol	mg/L							<1	
Isodrin	ug/L							<8	
Isophorone	ug/L							<8 <8	
Isosafrole	ug/L							<8	
Kepone	ug/L	<4	<4	<4	<4	<4	<4	<o <4</o 	<4
Lead, total	ug/L	68.7	59.6	62.2	\4	63.0	\4	\4	\4
Magnesium, total	mg/L	00.7	39.0	02.2		03.0		- 5	
Mercury, total	ug/L							<.5 <1	
Methacrylonitrile	ug/L							<8	
Methapyrilene Methapyrilene	ug/L							<.05	
Methoxychlor Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1	<.05 <1	<1
Methyl methacrylate	ug/L			' 1		`'	_ ` '	<1	
	ug/L							<8	
Methyl methanesulfonate Methyl parathion	ug/L ug/L							<8 <.4	
Methylene chloride	ug/L ug/L	<5	<5	<5	<5	<5	<5	<.4 <5	<5
Naphthalene	ug/L ug/L	\^3		\0	_5	\^5	\ \	<8	_5
Nickel, total	ug/L ug/L	14.8	14.7	10.6	13.1	13.4	14.1	11.7	10.6
Nitrobenzene	ug/L ug/L	14.0	14.7	10.0	13.1	13.4	14.1	<8	10.0
Nitrogen, ammonia	mg/L	<1	<1	<1		<1		νο.	
N-nitrosodiethylamine	ug/L	, , ,	*1	7.1		1		<8	
N-nitrosodimethylamine	ug/L							<8	
N-nitrosodi-n-butylamine	ug/L							-\square	
N-nitroso-di-n-propylamine	ug/L							<8	
N-nitrosodiphenylamine	ug/L							-\square	
N-nitrosomethylethylamine	ug/L							<8	
N-nitrosopiperidine	ug/L							<8	
N-nitrosopyrrolidine	ug/L							<8	
O,o,o-triethyl phosphorothioate	ug/L							<.4	
O-toluidine	ug/L							<8	
Parathion	ug/L							<.4	
P-dimethylaminoazobenzene	ug/L							<8	
Pentachlorobenzene	ug/L							<8	
Pentachloronitrobenzene (pcnb)	ug/L							<8	
Pentachlorophenol	ug/L							<8	
Phenacetin	ug/L							<8	
Phenanthrene	ug/L							<8	
Phenol	ug/L							<8	
Phorate	ug/L							<.4	
Potassium, total	mg/L	1.8	1.6	1.8		1.6			
Pronamide	ug/L							<8	
Propionitrile	ug/L							<10	
Pyrene	ug/L							<8	
Safrole	ug/L							<8	
Selenium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Sodium, total	mg/L	19.0	17.2	16.4		17.1			
Solids, total dissolved	mg/L	904	735	828		807			
Solids, total suspended	mg/L	24	23						
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Sulfate	mg/L	108.0	85.7	78.9		66.3			
Sulfide, total	mg/L							<.1	
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	ug/L	<4	<4	<1	<4	<4	<4	<4	<4
Thionazin	ug/L							<.4	
Tin, total	ug/L							<20	
Toluene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Toxaphene	ug/L							<.2	
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	ug/L	<1	<1	<1	- <1	<1	<1	<1	· <1
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl decide Vinyl chloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
	ug/L	<2	<2	<2	<2	<2	<2	<2	<2
Xylenes, total									

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-96

Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020
Heptachlor				
Heptachlor epoxide				
Hexachlorobenzene Hexachlorobutadiene				
Hexachlorocyclopentadiene				
Hexachloroethane				
Hexachloropropene				
Indeno(1,2,3-cd)pyrene				
Isobutanol Isodrin				
Isophorone				
Isosafrole				
Kepone				
Lead, total	<4	<4	<4	<4
Magnesium, total				
Mercury, total Methacrylonitrile				
Methapyrilene				
Methoxychlor				
Methyl iodide	<1	<1	<1	<1
Methyl methacrylate				
Methyl methanesulfonate Methyl parathion				
Methylene chloride	<5	<5	<5	<5
Naphthalene				١
Nickel, total	11.6	13.0	9.5	12.8
Nitrobenzene				
Nitrogen, ammonia N-nitrosodiethylamine				
N-nitrosodietrylamine				
N-nitrosodi-n-butylamine				
N-nitroso-di-n-propylamine				
N-nitrosodiphenylamine				
N-nitrosomethylethylamine N-nitrosopiperidine				
N-nitrosopyrrolidine				
O,o,o-triethyl phosphorothioate				
O-toluidine				
Parathion				
P-dimethylaminoazobenzene Pentachlorobenzene				
Pentachloronitrobenzene (pcnb)				
Pentachlorophenol				
Phenacetin				
Phenanthrene				
Phenol				
Phorate Potassium, total				
Pronamide				
Propionitrile				
Pyrene				
Safrole	-1	-1	-1	-1
Selenium, total Silver, total	<4 <4	<4 <4	<4 <4	<4 <4
Sodium, total	~4	~4	~4	
Solids, total dissolved				
Solids, total suspended				
Styrene	<1	<1	<1	<1
Sulfate Sulfide, total				
Tetrachloroethylene	<1	<1	<1	<1
Thallium, total	<4	<2	<2	<2
Thionazin				
Tin, total				ار
Toluene Toxaphene	<1	<1	<1	<1
Trans-1,2-dichloroethylene	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1
Trichlorofluoromethane	<1 <20	<1 <20	<1 <20	<1
Vanadium, total Vinyl acetate	<20 <5	<20 <5	<20 <5	<20 <5
Viriyi acetate Vinyl chloride	<1	<1	<1	<1
Xylenes, total	<2	<2	<2	<2
Zinc, total	<20	<20	<20	<20

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-96R

Constituents	Units	4/5/2021	7/2/2021	10/8/2021	4/6/2022	10/25/2022	4/11/2023	7/7/2023	7/20/2023	10/13/2023
(3 4)-methylphenol	ug/L			<8		<8	_			
1,1,1,2-tetrachloroethane	ug/L	<1		<1	<1	<1	<1			<1
1,1,1-trichloroethane	ug/L	<1		<1	<1	<1	<1			<1
1,1,2,2-tetrachloroethane	ug/L ug/L	<1 <1		<1 <1	<1 <1	<1 <1	<1 <1			<1 <1
1,1,2-mcmoroemane	ug/L ug/L	<1		<1	<1	<1	<1			<1
1,1-dichloroethylene	ug/L	<1		<1	<1	<1	<1			<1
1,1-dichloropropene	ug/L			<1		<1				
1,2,3-trichloropropane	ug/L	<1		<1	<1	<1	<1			<1
1,2,4,5-tetrachlorobenzene	ug/L			<8		<8				
1,2,4-trichlorobenzene	ug/L	_		<1	_	<1				
1,2-dibromo-3-chloropropane	ug/L	<5		<1	<5	<1	<5			<5
1,2-dibromoethane 1,2-dichlorobenzene	ug/L	<1		<1	<1 <1	<1 <1	<1 <1			<1 <1
1,2-dichloropenzene	ug/L ug/L	<1 <1		<1 <1	<1 <1	<1	<1			<1 <1
1,2-dichloropropane	ug/L ug/L	<1		<1	<1	<1	<1			<1
1,2-dinitrobenzene	ug/L	''		<8	''	<8	- 1			''
1,3,5-trinitrobenzene	ug/L			<8		<8				
1,3-dichlorobenzene	ug/L			<1		<1				
1,3-dichloropropane	ug/L			<1		<1				
1,3-dinitrobenzene	ug/L			<8>		<8>				
1,4-dichlorobenzene	ug/L	<1		<1	<1	<1	<1			<1
1,4-naphthoquinone	ug/L			<8		<8				
1,4-phenylenediamine	ug/L			<8		<8				
1-naphthylamine 2,2-dichloropropane	ug/L ug/L			<8 <1		<8 <1				
2,3,4,6-tetrachlorophenol	ug/L ug/L			<8		<8				
2,4,5-t	ug/L			<.5		<.5				
2,4,5-tp (silvex)	ug/L			<.5		<.5				
2,4,5-trichlorophenol	ug/L			<8		<8				
2,4,6-trichlorophenol	ug/L			<8		<8				
2,4-d	ug/L			<2		<2				
2,4-dichlorophenol	ug/L			<8		<8				
2,4-dimethylphenol	ug/L			<8		<8				
2,4-dinitrophenol	ug/L			<8		<8				
2,4-dinitrotoluene 2,6-dichlorophenol	ug/L ug/L			<8 <8		<8 <8				
2,6-dinitrotoluene	ug/L ug/L			<8		<8				
2-acetylaminofluorene	ug/L			<8		<8				
2-butanone (mek)	ug/L	<5		<5	<10	<5	<10			<10
2-chloronaphthalene	ug/L			<8		<8				
2-chlorophenol	ug/L			<8>		<8>				
2-hexanone (mbk)	ug/L	<5		<5	<5	<5	<5			<5
2-methylnaphthalene	ug/L			<8		<8				
2-methylphenol	ug/L			<8		<8				
2-naphthylamine 2-nitroaniline	ug/L			<8 <8		<8 <8				
2-nitrophenol	ug/L ug/L			<8		<8				
3,3'-dichlorobenzidine	ug/L			<8		<8				
3,3'-dimethylbenzidine	ug/L			<8		<8				
3-methylcholanthrene	ug/L			<8		<8				
3-nitroaniline	ug/L			<8		<8				
4,4´-ddd	ug/L			<.05		<.06				
4,4'-dde	ug/L			<.05		<.06				
4,4'-ddt	ug/L			<.05		<.06				
4,6-dinitro-2-methylphenol	ug/L			<8		<8				
4-aminobiphenyl 4-bromophenyl phenyl ether	ug/L ug/L			<8 <8		<8 <8				
4-chloro-3-methylphenol	ug/L ug/L			<8		<8				
4-chloroaniline	ug/L ug/L			<8		<8				
4-chlorophenyl phenyl ether	ug/L			<8		<8				
4-methyl-2-pentanone (mibk)	ug/L	<5		<5	<5	<5	<5			<5
4-nitroaniline	ug/L			<8		<8				
4-nitrophenol	ug/L			<8		<8>				
5-nitro-o-toluidine	ug/L			<8		<8				
7,12-dimethylbenz(a)anthracene	ug/L			<8		<8				
Acenaphthene	ug/L			<8		<8				
Acenaphthylene Acetone	ug/L	<10		<8 <10	<10	<8 <10	<10			<10
Acetone Acetonitrile	ug/L ug/L	<10		<10 <10	<10	<10 <10	<10			<10
Acetophenone	ug/L ug/L			<8		<10 <8				
Acrolein	ug/L ug/L			<10		<10				
Acrylonitrile	ug/L	<5		<5	<5	<5	<5			<5
Aldrin	ug/L			<.05		<.06				"
Alkalinity, as caco3	mg/L						434			370
Allyl chloride	ug/L			<1		<1				
Alpha-bhc	ug/L			<.05		<.06				

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-96R

Constituents	4/16/2024	10/15/2024
(3 4)-methylphenol		
1,1,1,2-tetrachloroethane	<1	<1
1,1,1-trichloroethane	<1 <1	<1 <1
1,1,2,2-tetrachloroethane 1,1,2-trichloroethane	<1	<1
1,1-dichloroethane	<1	<1
1,1-dichloroethylene	<1	<1
1,1-dichloropropene		
1,2,3-trichloropropane	<1	<1
1,2,4,5-tetrachlorobenzene 1,2,4-trichlorobenzene		
1,2-dibromo-3-chloropropane	<5	<5
1,2-dibromoethane	<1	<1
1,2-dichlorobenzene	<1	<1
1,2-dichloroethane	<1	<1
1,2-dichloropropane	<1	<1
1,2-dinitrobenzene 1,3,5-trinitrobenzene		
1,3-dichlorobenzene		
1,3-dichloropropane		
1,3-dinitrobenzene		
1,4-dichlorobenzene	<1	<1
1,4-naphthoquinone		
1,4-phenylenediamine 1-naphthylamine		
2,2-dichloropropane		
2,3,4,6-tetrachlorophenol		
2,4,5-t		
2,4,5-tp (silvex)		
2,4,5-trichlorophenol		
2,4,6-trichlorophenol 2,4-d		
2,4-dichlorophenol		
2,4-dimethylphenol		
2,4-dinitrophenol		
2,4-dinitrotoluene		
2,6-dichlorophenol		
2,6-dinitrotoluene 2-acetylaminofluorene		
2-butanone (mek)	<10	<10
2-chloronaphthalene	"	
2-chlorophenol		
2-hexanone (mbk)	<5	<5
2-methylnaphthalene		
2-methylphenol 2-naphthylamine		
2-nitroaniline		
2-nitrophenol		
3,3'-dichlorobenzidine		
3,3'-dimethylbenzidine		
3-methylcholanthrene 3-nitroaniline		
4,4´-ddd		
4,4´-dde		
4,4'-ddt		
4,6-dinitro-2-methylphenol		
4-aminobiphenyl		
4-bromophenyl phenyl ether 4-chloro-3-methylphenol		
4-chloroaniline		
4-chlorophenyl phenyl ether		
4-methyl-2-pentanone (mibk)	<5	<5
4-nitroaniline		
4-nitrophenol 5-nitro-o-toluidine		
7,12-dimethylbenz(a)anthracene		
Acenaphthene		
Acenaphthylene		
Acetone	<10	<10
Acetonitrile		
Acroloin		
Acrolein Acrylonitrile	<5	<5
Aldrin	`` ``	~3
Alkalinity, as caco3		
Allyl chloride		
Alpha-bhc	ı	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-96R

Constituents	Units	4/5/2021	7/2/2021	10/8/2021	4/6/2022	10/25/2022	4/11/2023	7/7/2023	7/20/2023	10/13/2023
Anthracene	ug/L			<8		<8				
Antimony, total	ug/L	<2		<2	<2	<2	<2			<2
Arochlor 1016	ug/L			<.10		<.13				
Arochlor 1221	ug/L			<.20		<.26				
Arochlor 1232	ug/L			<.20		<.26				
Arochlor 1242	ug/L			<.20		<.26				
Arochlor 1248	ug/L			<.20		<.26				
Arochlor 1254	ug/L			<.10		<.13				
Arochlor 1260 Arsenic, total	ug/L	29.8	29.1	<.10	10.4	<.13	<4.0	12.9	<4.0	15.0
Azobenzene	ug/L ug/L	29.0	29.1	18.6 <8	10.4	38.7 <8	\4.0	12.9	\4.0	15.0
Barium, total	ug/L ug/L	1160	696	667	406	661	190			576
Benzene	ug/L	<1	030	<1	<1	<1	<1			<1
Benzo(a)anthracene	ug/L			<8	- '	<8	•			
Benzo(a)pyrene	ug/L			<8		<8				
Benzo(b)fluoranthene	ug/L			<8		<8				
Benzo(g,h,i)perylene	ug/L			<8		<8				
Benzo(k)fluoranthene	ug/L			<8		<8				
Benzyl alcohol	ug/L			<8		<8				
Beryllium, total	ug/L	<4		<4	<4	<4	<4			<4
Beta-bhc	ug/L			<.05		<.06				
Bis (2-chloroethoxy) methane	ug/L			<8>		<8				
Bis(2-chloroethyl) ether	ug/L			<8		<8				
Bis(2-chloroisopropyl) ether	ug/L			<8		<8				
Bis(2-ethylhexyl) phthalate	ug/L	.		6		<6				
Bromochloromethane	ug/L	<1		<1	<1	<1	<1			<1
Bromodichloromethane	ug/L	<1		<1	<1	<1	<1			<1
Bromoform Bromomethane	ug/L ug/L	<1 <1		<1 <1	<1 <1	<1 <1	<1 <1			<1 <1
Bromometnane Butyl benzyl phthalate	ug/L ug/L			<1 <8	<u> </u>	<8	~1			
Cadmium, total	ug/L ug/L	<.8		<.8	<.8	<.8	<.8			<.8
Carbon disulfide	ug/L ug/L	<1		<.o	<.o	<.o	<.o			<1
Carbon tetrachloride	ug/L	<1		<1	<1	<1	<1			<1
Chlordane	ug/L			<.10	- '	<.13	•			- '
Chlorobenzene	ug/L	<1		<1	<1	<1	<1			<1
Chlorobenzilate	ug/L	-		<8	•	<8				-
Chloroethane	ug/L	<1		<1	<1	<1	<1			<1
Chloroform	ug/L	<1		<1	<1	<1	<1			<1
Chloromethane	ug/L	<1		<1	<1	<1	<1			<1
Chloroprene	ug/L			<1		<1				
Chromium, total	ug/L	<8		<8	<8	<8	<8			<8
Chrysene	ug/L			<8		<8				.
Cis-1,2-dichloroethylene	ug/L	<1		<1	<1	<1	<1			<1
Cis-1,3-dichloropropene	ug/L	<1	44.0	<1	<1	<1	<1	44.0	40.0	<1
Cobalt, total	ug/L	16.8	11.9	11.4	7.6	11.1	2.2	11.2	10.0	10.6
Copper, total	ug/L	<4		<4	<4	<4	<4			<4
Cyanide, total Delta-bhc	mg/L ug/L			<.005 <.05		<.005 <.06				
Delta-blic Diallate	ug/L ug/L			<.03 <8		<.00 <8				
Dialiate Dibenzo(a,h)anthracene	ug/L ug/L			<8		<8				
Dibenzofuran	ug/L ug/L			<8		<8				
Dibromochloromethane	ug/L	<1		<1	<1	<1	<1			<1
Dibromomethane	ug/L	<1		<1	<1	<1	<1			<1
Dichlorodifluoromethane	ug/L	-		<1	•	<1	·			-
Dieldrin	ug/L			<.05		<.06				
Diethyl phthalate	ug/L			<8		<8				
Dimethoate	ug/L			<.5		<.5				
Dimethylphthalate	ug/L			<8		<8				
Di-n-butyl phthalate	ug/L			<8>		<8				
Di-n-octyl phthalate	ug/L			<8		<8				
Dinoseb	ug/L			<.5		<.5				
Diphenylamine	ug/L			<8		<8				
Disulfoton	ug/L			<.5		<.5				
Endosulfan i	ug/L			<.05		<.06				
Endosulfan ii	ug/L			<.05		<.06				
Endosulfan sulfate	ug/L			<.05		<.06				
Endrin	ug/L			<.05 <.05		<.06 <.06				
Endrin aldehyde	ug/L			<.05		<.06 <10				
Ethyl methacrylate Ethyl methanesulfonate	ug/L ug/L			<10 <8		<10 <8				
Ethylbenzene	ug/L ug/L	<1		<8 <1	<1	<8 <1	<1			<1
Ethylbenzene Famphur	ug/L ug/L	` `		<.5	<u> </u>	<.5	<u> </u>			
Fluoranthene	ug/L ug/L			<.s		<.s				
Fluorene	ug/L ug/L			<8		<8				
Gamma-bhc (lindane)	ug/L ug/L			<.05		<.06				
Heptachlor	ug/L ug/L			<.05		<.06				
Heptachlor epoxide	ug/L			<.05		<.06				
	, ~g, =	ı		00		50				

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-96R

		Allaly
Constituents	4/16/2024	10/15/2024
Anthracene		
Antimony, total	<2	<2
Arochlor 1016		
Arochlor 1221 Arochlor 1232		
Arochlor 1232		
Arochlor 1248		
Arochlor 1254		
Arochlor 1260		
Arsenic, total	<4.0	6.6
Azobenzene	404	000
Barium, total	124 <1	338 <1
Benzene Benzo(a)anthracene		<u> </u>
Benzo(a)pyrene		
Benzo(b)fluoranthene		
Benzo(g,h,i)perylene		
Benzo(k)fluoranthene		
Benzyl alcohol		
Beryllium, total	<4	<4
Beta-bhc Bis (2-chloroethoxy) methane		
Bis(2-chloroethyl) ether		
Bis(2-chloroisopropyl) ether		
Bis(2-ethylhexyl) phthalate		
Bromochloromethane	<1	<1
Bromodichloromethane	<1	<1
Bromoform	<1	<1
Bromomethane	<1	<1
Butyl benzyl phthalate Cadmium, total	<.8	<.8
Carbon disulfide	<1	<.o
Carbon tetrachloride	<1	<1
Chlordane		
Chlorobenzene	<1	<1
Chlorobenzilate		
Chloroethane	<1	<1
Chloroform	<1	<1
Chloromethane	<1	<1
Chloroprene Chromium, total	<8	<8
Chrysene	\ \	٠0
Cis-1,2-dichloroethylene	<1	<1
Cis-1,3-dichloropropene	<1	<1
Cobalt, total	1.8	10.5
Copper, total	<4	<4
Cyanide, total		
Delta-bhc Diallate		
Dibenzo(a,h)anthracene		
Dibenzofuran		
Dibromochloromethane	<1	<1
Dibromomethane	<1	<1
Dichlorodifluoromethane		
Dieldrin		
Diethyl phthalate		
Dimethoate		
Dimethylphthalate		
Di-n-butyl phthalate Di-n-octyl phthalate		
Dinoseb		
Diphenylamine		
Disulfoton		
Endosulfan i		
Endosulfan ii		
Endosulfan sulfate Endrin		
1		
Endrin aldehyde Ethyl methacrylate		
Ethyl methanesulfonate		
Ethylbenzene	<1	<1
Famphur		
Fluoranthene		
Fluorene		
Gamma-bhc (lindane)		
Heptachlor Heptachlor epoxide		
L DEDIACION EDOXIDE	1	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-96R

Constituents	Units	4/5/2021	7/2/2021	10/8/2021	4/6/2022	10/25/2022	4/11/2023	7/7/2023	7/20/2023	10/13/2023
Hexachlorobenzene	ug/L			<.05		<.06				
Hexachlorobutadiene	ug/L			<8		<8				
Hexachlorocyclopentadiene	ug/L			<8		<8				
Hexachloroethane Hexachloropropene	ug/L ug/L			<8 <8		<8 <8				
Indeno(1,2,3-cd)pyrene	ug/L ug/L			<8		<8				
Isobutanol	mg/L			<1		<1				
Isodrin	ug/L			<8		<8				
Isophorone	ug/L			<8		<8				
Isosafrole	ug/L			<8		<8				
Kepone	ug/L			<8		<8				
Lead, total	ug/L	<4		<4	<4	<4	<4			<4
Mercury, total	ug/L			<.5		<.5				
Methacrylonitrile	ug/L			<1		<1				
Methapyrilene	ug/L			<8		<8				
Methoxychlor	ug/L			<.05		<.06				
Methyl iodide	ug/L	<1		<2	<1	<2	<1			<1
Methyl methacrylate	ug/L			<1		<1				
Methyl methanesulfonate	ug/L			<8		<8				
Methyl parathion	ug/L			<.5	_	<.5	_			_
Methylene chloride	ug/L	<5		<5	<5	<5	<5			<5
Naphthalene	ug/L			<8	2 -	<8				
Nickel, total	ug/L	8.8		5.9	6.8	4.5	5.6			4.6
Nitrobenzene	ug/L			<8		<8				
N-nitrosodiethylamine	ug/L			<8		<8				
N-nitrosodimethylamine	ug/L			<8 <8		<8 <8				
N-nitrosodi-n-butylamine N-nitroso-di-n-propylamine	ug/L ug/L			<8		<8				
N-nitrosodiphenylamine	ug/L ug/L			<8		<8				
N-nitrosomethylethylamine	ug/L ug/L			<8		<8				
N-nitrosopiperidine	ug/L			<8		<8				
N-nitrosopyrrolidine	ug/L			<8		<8				
O,o,o-triethyl phosphorothioate	ug/L			<.5		<.5				
O-toluidine	ug/L			<8		<8				
Parathion	ug/L			<.5		<.5				
P-dimethylaminoazobenzene	ug/L			<8		<8				
Pentachlorobenzene	ug/L			<8		<8				
Pentachloronitrobenzene (pcnb)	ug/L			<8		<8				
Pentachlorophenol	ug/L			<8		<8				
pH	рĤ						6.6			6.4
Phenacetin	ug/L			<8		<8				
Phenanthrene	ug/L			<8		<8				
Phenol	ug/L			<8		<8				
Phorate	ug/L			<.5		<.5				
Pronamide	ug/L			<8		<8				
Propionitrile	ug/L			<10		<10				
Pyrene	ug/L			<8		<8				
Safrole	ug/L	-10		<8	0.4	<8 <4.0	7.0	<4.0		-10
Selenium, total	ug/L	<4.0 <4		<4.0 <4	9.1 <4	<4.0 <4	7.8 <4	<4.0		<4.0 <4
Silver, total Styrene	ug/L ug/L	<1		<1	<1	<1	<1			<1
Sulfide, total	mg/L	`'		<.1	`'	<.3	~1			`'
Tetrachloroethylene	ug/L	<1		<1	<1	<.s	<1			<1
Thallium, total	ug/L	<2		<2	<2	<2	<2			<2
Thionazin	ug/L			<.5		<.5	12			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Tin, total	ug/L			<20		<20				
Toluene	ug/L	<1		<1	<1	<1	<1			<1
Toxaphene	ug/L			<.20	.	<.26				1
Trans-1,2-dichloroethylene	ug/L	<1		<1	<1	<1	<1			<1
Trans-1,3-dichloropropene	ug/L	<1		<1	<1	<1	<1			<1
Trans-1,4-dichloro-2-butene	ug/L	<5		<5	<5	<5	<5			<5
Trichloroethylene	ug/L	<1		<1	<1	<1	<1			<1
Trichlorofluoromethane	ug/L	<1		<1	<1	<1	<1			<1
Vanadium, total	ug/L	<20		<20	<20	<20	<20			<20
Vinyl acetate	ug/L	<5		<5	<5	<5	<5			<5
Vinyl chloride	ug/L	<1		<1	<1	<1	<1			<1
Xylenes, total	ug/L	<2		<2	<2	<2	<2			<2
Zinc, total	ug/L	<20		<20	<20	<20	<20	1		<20

 $[\]ensuremath{^{\star}}$ - The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-96R

Constituents	4/16/2024	10/15/2024
Hexachlorobenzene		
Hexachlorobutadiene		
Hexachlorocyclopentadiene		
Hexachloroethane		
Hexachloropropene		
Indeno(1,2,3-cd)pyrene		
Isobutanol		
Isodrin		
Isophorone		
Isosafrole		
Kepone Lead, total	<4	<4
Mercury, total	`~	74
Methacrylonitrile		
Methapyrilene		
Methoxychlor		
Methyl iodide	<1	<1
Methyl methacrylate		
Methyl methanesulfonate		
Methyl parathion		
Methylene chloride	<5	<5
Naphthalene		
Nickel, total	5.3	4.6
Nitrobenzene		
N-nitrosodiethylamine		
N-nitrosodimethylamine		
N-nitrosodi-n-butylamine		
N-nitroso-di-n-propylamine N-nitrosodiphenylamine		
N-nitrosodiprienylamine N-nitrosomethylethylamine		
N-nitrosomethylethylamine N-nitrosopiperidine		
N-nitrosopyrrolidine		
O,o,o-triethyl phosphorothioate		
O-toluidine		
Parathion		
P-dimethylaminoazobenzene		
Pentachlorobenzene		
Pentachloronitrobenzene (pcnb)		
Pentachlorophenol		
pH		
Phenacetin		
Phenanthrene		
Phenol		
Phorate		
Pronamide		
Propionitrile		
Pyrene		
Safrole	7.4	<4.0
Selenium, total Silver, total	7.4 <4	<4.0 <4
Styrene	<1	<1
Sulfide, total	`'	`'
Tetrachloroethylene	<1	<1
Thallium, total	<2	<2
Thionazin		~_
Tin, total		
Toluene	<1	<1
Toxaphene		- 1
Trans-1,2-dichloroethylene	<1	<1
Trans-1,3-dichloropropene	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5
Trichloroethylene	<1	<1
Trichlorofluoromethane	<1	<1
Vanadium, total	<20	<20
Vinyl acetate	<5	<5
Vinyl chloride	<1	<1
Xylenes, total	<2	<2
Zinc, total	<20	<20

 $[\]ensuremath{^{\star}}$ - The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-97

Constituents	Units	10/16/2014	4/3/2015	10/1/2015	4/14/2016	10/13/2016	4/10/2017	10/9/2017	4/17/2018
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1		
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1		
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1		
1,1,2-trichloroethane	ug/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1		
1,1-dichloroethane 1,1-dichloroethylene	ug/L ug/L	<1 <1	<1 <1	<1	<1	<1	<1 <1		
1,2,3-trichloropropane	ug/L ug/L	<1	<1	<1	<1	<1	<1		
1,2-dibromo-3-chloropropane	ug/L	<1	<1	<1	<1	<1	<1		
1,2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1		
1,2-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1		
1,2-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1		
1,2-dichloropropane	ug/L	<1	<1	<1	<1	<1	<1		
1,4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1		
2-butanone (mek) 2-hexanone (mbk)	ug/L ug/L	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5		
4-methyl-2-pentanone (mibk)	ug/L ug/L	<5 <5	<5	<5 <5	<5	<5	<5		
Acetone (misk)	ug/L	<10	<10	<10	<10	<10	<10		
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5		
Alkalinity, as caco3	mg/L	555	455	435	-	350			
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2		
Arsenic, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Barium, total	ug/L	160	179	202	535	244	264		
Benzene	ug/L	<1	<1	<1	<1	<1	<1		
Beryllium, total	ug/L	<4	<4	<4	<4	<4	<4		
Bromochloromethane	ug/L	<1	<1	<1	<1	<1	<1		
Bromodichloromethane Bromoform	ug/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1		
Bromotorm Bromomethane	ug/L ug/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1		
Cadmium, total	ug/L ug/L	<.8	<.8	<.8	<.8	<.8	<.8		
Calcium, total	mg/L	115	110	142	٧.٥	167	٧.٥		
Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1		
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1		
Chloride	mg/L	11.0	13.0	12.0		17.3			
Chlorobenzene	ug/L	<1	<1	<1	<1	<1	<1		
Chloroethane	ug/L	<1	<1	<1	<1	<1	<1		
Chloroform	ug/L	<1	<1	<1	<1	<1	<1		
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1		
Chromium, total	ug/L	<8	<8	<8	<8	<8	<8	-4	-4
Cis-1,2-dichloroethylene Cis-1,3-dichloropropene	ug/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1
Cobalt, total	ug/L ug/L	<.8	<.8	<.8	1.8	<.8	<.8	<.8	<.8
Copper, total	ug/L	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	٠.٥	1.0
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1		
Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1		
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1		
Lead, total	ug/L	<4	<4	<4	<4	<4	<4		
Magnesium, total	mg/L	45.0	41.5	50.7		55.8			
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1		
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5		
Nickel, total	ug/L	<4.0 <1	<4.0 <1	5.8 <1	13.4	<4.0 <1	<4.0		
Nitrogen, ammonia pH	mg/L pH	`	``	~1		~1			
Potassium, total	mg/L	2.1	1.5	3.7		6.3			
Selenium, total	ug/L	<4	<4	<4	<4	<4	<4		
Silver, total	ug/L	<4	<4	<4	<4	<4	<4		
Sodium, total	mg/L	16.1	18.7	17.5		24.5			
Solids, total dissolved	mg/L	527	451	503		588			
Solids, total suspended	mg/L	72	4						
Styrene	ug/L	<1	<1	<1	<1	<1	<1		
Sulfate	mg/L	23.2	17.2	18.2	ار	16.8	ا من		
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1		
Thallium, total Toluene	ug/L ug/L	<4 <1	<4 <1	<4 <1	<4 <1	<4 <1	<4 <1		
Trans-1,2-dichloroethylene	ug/L ug/L	<1	<1	<1	<1	<1	<1		
Trans-1,3-dichloropropene	ug/L ug/L	<1	<1	<1	<1	<1	<1		
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5		
Trichloroethylene	ug/L	<1	<1	<1	<1	<1	<1		
Trichlorofluoromethane	ug/L	<1	<1	<1	<1	<1	<1		
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20		
Vinyl acetate	ug/L	<5	<5	<5	<5	<5	<5		
Vinyl chloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2		
Zinc, total	ug/L	<20	<8	<8	<8	<8	<8		

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-97

1,1,1-thichicrebrane	Constituents	10/22/2018	4/22/2019	10/23/2019	4/10/2020	10/19/2020	4/5/2021	10/8/2021	4/6/2022	10/25/2022
1,1,2-technomehane										<1
1.1.2-inchioroethane	1,1,1-trichloroethane				<1	<1	<1	<1		<1
1,1-dichioroethylane	1,1,2,2-tetrachloroethane				<1			<1		<1
1.1-dichrocethylene	1,1,2-trichloroethane				<1	<1		<1	-	<1
1,2,3-inchioropropane	1,1-dichloroethane				<1	<1	<1	<1	<1	<1
1,2-distromo-dentropropage	1,1-dichloroethylene				<1	<1	<1	<1	<1	<1
1,2-dichioronezame	1,2,3-trichloropropane				<1	<1	<1	<1	<1	<1
1,2-distromorehane	1,2-dibromo-3-chloropropane				<5	<5	<5	<5	<5	<5
1,2-dichlorobenzene					<1	<1	<1	<1	<1	<1
1,2-dichloroprapane					<1	<1	<1	<1	<1	<1
1,2-dichiloropropane					<1	<1	<1	<1	<1	<1
1,4 dichlorobenzene									<1	<1
2-butanone (mick)									<1	<1
2-hexanone (mbk)							- 1		-	<10
A-methyl-Z-pentainone (mibk)										<5
Accylonitrile										<5
Akalinity, as caco3										<10
Aklaininty, as acoo3										<5
Antimony, total						٠,0	7.5	٦٥	7.5	\3
Arsenic, fotal						-2	-2	-2	-2	<2
Barrum_total Bergene 279 289 287 259 300 277 289 287 259 300 277 289 287 259 300 277 289 287 259 300 277 289 287 259 300 277 289 287 259 300 277 289 287 259 300 277 289 287 259 300 277 289 287 259 300 277 289 287 259 300 277 289 287 259 300 277 289 287 259 300 277 289 287 259 300 277 289 287 259 300 277 289 287 259 300 277 289 287 259 289 287 259 300 277 289 287 259 289 287 259 300 277 289 287 259 289 287 259 300 277 289 287 259 287 259 287 259 287 259 287 259 287 259 287 259 287 259 287 259 259 287 259 287 259 259 287 259 259 287 259 259 287 259 259 287 259 2		-1	_1							< <u>2</u>
Benzene Beryllum, total		<4	<u> </u>	<4						
Beryllium, total Stromochromethane Stromochloromethane Str										
Bromochloromethane										<1
Bromodichloromethane										<4
Bromoform										<1
Bromethane					-	-	- 1	•		<1
Calcium, total Calcium (total Calcium (total Calcium (total Calcium (total Caron disuffide Caron (total children) Caron (total chi					-	-			-	<1
Calcium, total Carbon disulfide Carbon disulf										<1
Carbon disulfide Carbon disulfide Carbon tetrachloide Carbon tetrachloide Carbon tetrachloide Carbon tetrachloide Chloroide Chloroide Chloroide Chlorosethane Chlorosethane Chlorosethane Chlorosethane Chloromethane Clastify Clast					<.8	<.8	<.8	<.8	<.8	<.8
Carbon tetrachloride Chlorobenzene Chloromethane Chlor										
Chloride Chloroberane Chloroberane Chloroberane Chloroberane Chloroberane Chloroberane Chloroform Chloroberane Chloroform Chloroform Chloroform Chloromethane Cls-1,2-dichloroptylene Cls-1,3-dichloroptylene Cls-1,3-dichloroptyl										<1
Chlorobenzene Chloroform					<1	<1	<1	<1	<1	<1
Chloroethane Chloroform Chloroform Chloroform Chloromethane Chloromethane Chloromethane Chloromium, total Chloromium, total Chloromium, total Cis-1,2-dichloroethylene Cis-1,3-dichloroethylene Cis-1,3-dichloroeth	11 -									
Chlorofrom	Chlorobenzene				<1	<1	<1	<1	<1	<1
Chiomomethane Chromium, total Chiomomethane Chromium, total Chiomomethane Chromium, total Chiomomethane Chiomo	Chloroethane				<1	<1	<1	<1	<1	<1
Cis-1,2-dichloroethylene	Chloroform				<1	<1	<1	<1	<1	<1
Cis-1,2-dichloroethylene	Chloromethane				<1	<1	<1	<1	<1	<1
Cis 1,3-dichloropropene	Chromium, total				<8	<8	<8	<8	<8	<8
Cobalt, total	Cis-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobatt, total					<1	<1	<1	<1	<1	<1
Copper, total		<.8	<.8	<.8	<.4	<.4	<.4	<.4	<.4	<.4
Dibromochloromethane		-	_				<4.0	<4.0	<4.0	<4.0
Dibromomethane CT										<1
Ethylbenzene					<1	<1	<1	<1	<1	<1
Lead, total							<1		<1	<1
Magnesium, total Methyl locide										<4
Methyl iodide					•	•	•	•		•
Methylene chloride					<1	<1	<1	<1	<1	<1
Nickel, total Nitrogen, ammonia PH Potassium, total Selenium, total Selenium, total Selenium, total Selenium, total Selenium, total Selenium, total Sodium, total Sodium, total Solids, total dissolved Solids, total dissolved Solids, total suspended Styrene Sulfate Tetrachloroethylene Sulfate Selenium, total Sele										<5
Nitrogen, ammonia pH									_	
PH					~4.0	~4. 0	~ ∓.0	~4. 0	~ ∓.0	~4.0
Potassium, total Selenium, total Selenium, total Selenium, total Selenium, total Selenium, total Solium, total Solium, total Solium, total Solius, total dissolved Solids, total suspended Styrene Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Selection S					7 2					
Selenium, total Selenium,					1.2					
Silver, total Solium, total Solids, total dissolved Solids, total dissolved Solids, total suspended Styrene Sulfate Sulf					-1	-1	-1	-1	-1	<4
Sodium, total Solids, total dissolved Solids, total dissolved Solids, total suspended Styrene Sulfate										<4 <4
Solids, total dissolved Solids, total suspended Styrene Styrene Styrene Styrene Sulfate Sulfate Styrene Styrene Sulfate Sulfate Styrene Styrene Sulfate Sulfate Sulfate Styrene Styrene Sulfate Sulfate Sulfate Styrene Styrene Sulfate Su	Sodium total				\4	<4	< 4	<4	<u> </u>	< 4
Solids, total suspended Styrene Sulfate Sulfate										
Styrene Sulfate Canada										
Sulfate Tetrachloroethylene C C C C C C C C C							ا ه.			
Tetrachloroethylene					<1	<1	<1	<1	<1	<1
Thallium, total										
Toluene										<1
Trans-1,2-dichloroethylene										<2
Trans-1,3-dichloropropene										<1
Trans-1,4-dichloro-2-butene										<1
Trichloroethylene					-				-	<1
Trichlorofluoromethane										<5
Vanadium, total										<1
Vinyl acetate	Trichlorofluoromethane									<1
Vinyl acetate	Vanadium, total				<20	<20	<20	<20	<20	<20
										<5
Vinyl chloride		<1	<1	<1						<1
							<2		<2	<2
										<20

 $[\]ensuremath{^{\star}}$ - The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-97

Constituents	4/11/2023	10/13/2023	4/17/2024	7/18/2024	10/15/2024
1,1,1,2-tetrachloroethane	<1	<1	<1		<1
1,1,1-trichloroethane	<1	<1	<1		<1
1,1,2,2-tetrachloroethane	<1	<1	<1		<1
1,1,2-trichloroethane	<1	<1	<1		<1
1,1-dichloroethane	<1	<1 <1	<1		<1
1,1-dichloroethylene 1,2,3-trichloropropane	<1 <1	<1 <1	<1 <1		<1 <1
1,2-dibromo-3-chloropropane	<5	<5	<5		<5
1,2-dibromoethane	<1	<1	<1 <1		<1
1,2-dichlorobenzene	<1	<1	<1		<1
1,2-dichloroethane	<1	<1	<1		<1
1,2-dichloropropane	<1	<1	<1		<1
1,4-dichlorobenzene	<1	<1	<1		<1
2-butanone (mek)	<10	<10	<10		<10
2-hexanone (mbk)	<5	<5	<5		<5
4-methyl-2-pentanone (mibk)	<5	<5	<5		<5
Acetone Acrylonitrile	<10 <5	<10 <5	<10 <5		<10 <5
Alkalinity, as caco3	\ \ \	\ 5	~5		\5
Antimony, total	<2	<2	<2		<2
Arsenic, total	<4	<4	<4		<4
Barium, total	290	264	315		274
Benzene	<1	<1	<1		<1
Beryllium, total	<4	<4	<4		<4
Bromochloromethane	<1	<1	<1		<1
Bromodichloromethane	<1	<1	<1		<1
Bromoform	<1	<1	<1		<1
Bromomethane	<1	<1	<1		<1
Cadmium, total	<.8	<.8	<.8		<.8
Calcium, total Carbon disulfide	<1	<1	<1		<1
Carbon tetrachloride	<1	<1	<1		<1
Chloride	''	7.1	"		"
Chlorobenzene	<1	<1	<1		<1
Chloroethane	<1	<1	<1		<1
Chloroform	<1	<1	<1		<1
Chloromethane	<1	<1	<1		<1
Chromium, total	<8	<8	<8		<8
Cis-1,2-dichloroethylene	<1	<1	<1		<1
Cis-1,3-dichloropropene	<1	<1	<1		<1
Cobalt, total Copper, total	<.4 <4.0	<.4 <4.0	<.4 7.1	<4.0	<.4 <4.0
Dibromochloromethane	<1	<1 <1	/.1 <1	\4.0	<1
Dibromomethane	<1	<1	<1		<1
Ethylbenzene	<1	<1	<1		<1
Lead, total	<4	<4	<4		<4
Magnesium, total					
Methyl iodide	<1	<1	<1		<1
Methylene chloride	<5	<5	<5		<5
Nickel, total	<4.0	<4.0	<4.0		<4.0
Nitrogen, ammonia					
pH Potassium, total					
Potassium, total Selenium, total	<4	<4	<4		<4
Silver, total	<4	<4	<4		<4
Sodium, total		•			
Solids, total dissolved					
Solids, total suspended					
Styrene	<1	<1	<1		<1
Sulfate					
Tetrachloroethylene	<1	<1	<1		<1
Thallium, total	<2	<2	<2		<2
Toluene Trans-1,2-dichloroethylene	<1 <1	<1 <1	<1 <1		<1 <1
Trans-1,2-dichloroethylene	<1	<1 <1	<1 <1		<1 <1
Trans-1,4-dichloro-2-butene	<5	<5	<5		<5
Trichloroethylene	<1	<1 <1	<1		<1
Trichlorofluoromethane	<1	<1	<1		<1
Vanadium, total	<20	<20	<20		<20
Vinyl acetate	<5	<5	<5		<5
Vinyl chloride	<1	<1	<1		<1
Xylenes, total	<2	<2	<2		<2
Zinc, total	<20	<20	<20		<20

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-98

Constituents	Units	10/13/2016	4/10/2017	10/9/2017	4/17/2018	10/22/2018	4/22/2019	10/23/2019	4/10/2020
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<5
1,2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
2-butanone (mek)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	ug/L	<10.0	<10.0	18.4	<10.0	<10.0	<10.0	<10.0	<10.0
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic, total	ug/L	7.4	25.3	<4.0 129.0	7.8	<4.0	<4.0 133.0	4.8	<4.0
Barium, total	ug/L	171.0	241.0		193.0	102.0		94.4 <1	157.0
Benzene Benzelium total	ug/L	<1 <4	<1 <4	<1 <4	<1 <4	<1 <4	<1 <4	<1 <4	<1 <4
Beryllium, total	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromochloromethane Bromodichloromethane	ug/L	<1	<1 <1	<1	<1	<1	<1	<1	<1
Bromoform	ug/L ug/L	<1	<1 <1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L ug/L	<1	<1 <1	<1	<1	<1	<1	<1	<1
Cadmium. total	ug/L ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Carbon disulfide	ug/L ug/L	<1	<.o	<1	<1 <1	<.o	<1 <1	<.0 <1	<1
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	ug/L	<8.0	9.8	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0
Cis-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	ug/L	3.0	4.4	.8	5.0	<.8	1.3	2.4	2.0
Copper. total	ug/L	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Nickel, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Selenium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	ug/L	<4	<4	<4	<4	<4	<2	<2	<2
Toluene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl chloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	ug/L	<8	<8>	<8	<8	<8	<20	<20	<20

 $[\]ensuremath{^{\star}}$ - The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-98

Constituents	10/19/2020	4/5/2021	10/8/2021	4/6/2022	10/25/2022	4/11/2023	10/13/2023	4/17/2024	10/15/2024
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-dibromoethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
2-butanone (mek)	<5	<5 <5	<5	<10	<10	<10	<10	<10	<10
2-hexanone (mbk)	<5		<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	<5 <10.0								
Acetone		<10.0 <5		<10.0 <5			<10.0 <5		
Acrylonitrile Antimony, total	<5 <2								
Antimony, total Arsenic, total	<4.0	<4.0	<4.0	<4.0	<4.0	6.4	6.3	48.0	<4.0
Barium, total	147.0	125.0	149.0	117.0	183.0	136.0	217.0	325.0	137.0
Benzene	147.0	125.0 <1	149.0	<1	103.0	136.0	217.0 <1	325.0	137.0
Beryllium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Bromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Carbon disulfide	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0
Cis-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	2.2	.6	2.2	.7	3.6	2.1	5.5	4.7	1.9
Copper, total	<4.0	4.1	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Methyl iodide	<1	<1 <5	<1 <5	<1	<1	<1 <5	<1	<1	<1
Methylene chloride	<5 <4	<5 <4	<5 <4	<5	<5	<5 <4	<5 <4	<5 <4	<5 <4
Nickel, total	<4 <4								
Selenium, total Silver. total	<4 <4								
Sliver, total Styrene	<4 <1								
Styrene Tetrachloroethylene	<1	<1 <1	<1 <1	<1	<1	<1	<1	<1	<1
Thallium, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Toluene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1	<1	<1 <1	<1
Trichlorofluoromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl chloride	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	<20	<20	<20	<20	<20	<20	<20	<20	<20

 $[\]ensuremath{^{\star}}$ - The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-99

Constituents	Units	10/13/2016	4/10/2017	10/9/2017	4/17/2018	10/22/2018	4/22/2019	10/23/2019	4/10/2020
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<5
1,2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
2-butanone (mek)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	ug/L	<10	<10	<10	<10	<10	<10	<10	<10
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic, total	ug/L	<4	<4 100.0	<4	<4	<4 81.0	<4	<4	<4
Barium, total	ug/L	131.0	109.0	140.0	93.9		110.0	123.0	124.0
Benzene Beryllium, total	ug/L	<1 <4	<1 <4	<1 <4	<1 <4	<1 <4	<1 <4	<1 <4	<1 <4
Bromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	ug/L ug/L	<1	<1 <1	<1 <1	<1	<1	<1	<1	<1 <1
Bromoform	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	ug/L ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Carbon disulfide	ug/L	<1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1	<1 <1
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	ug/L	<8.0	23.4	<8.0	- -8.0	<8.0	<8.0	<8.0	<8.0
Cis-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	ug/L	5.2	3.4	6.0	2.5	.8	3.1	2.7	4.1
Copper, total	ug/L	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Nickel, total	ug/L	5.6	5.1	8.8	4.3	<4.0	5.1	7.1	6.5
Selenium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	ug/L	<4	<4	<4	<4	<4	<2	<2	<2
Toluene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl chloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	ug/L	<8.0	<8.0	11.2	<8.0	23.6	27.8	20.8	<20.0

 $[\]ensuremath{^{\star}}$ - The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-99

Constituents	10/19/2020	4/5/2021	10/8/2021	4/6/2022	10/25/2022	4/11/2023	10/13/2023	4/18/2024	10/15/2024
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1.1-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-dibromoethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1.2-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
2-butanone (mek)	<5	<5	<5	<10	<10	<10	<10	<10	<10
2-hexanone (mbk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	<10	<10	<10	<10	<10	<10	<10	<10	<10
Acrylonitrile	<5	<5	<5	<5	<5	<5	<5	<5	<5
Antimony, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Barium, total	118.0	117.0	130.0	110.0	134.0	89.4	134.0	164.0	88.8
Benzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Beryllium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Bromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	· <.8	<.8	<.8	<.8	<.8	<.8	<.8	· <.8	<.8
Carbon disulfide	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0
Cis-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	3.8	3.2	4.0	3.5	3.6	2.2	3.3	4.1	.9
Copper. total	<4.0	5.3	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Lead. total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Methyl iodide	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	- <5	<5	<5	<5	- <5	<5	- <5	<5	<5
Nickel, total	6.9	5.1	5.5	5.3	6.2	<4.0	5.3	6.3	<4.0
Selenium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Styrene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Tetrachloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Toluene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl acetate Vinyl chloride	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1
Xylenes, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
Zino, total	~20.0	~20.0	~20.0	~20.0	~20.0	~20.0	~20.0	~20.0	~20.0

 $[\]ensuremath{^{\star}}$ - The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for SRAMP A

Constituents	Units	10/14/2016	4/10/2017	4/22/2019	12/17/2019	4/10/2020	4/5/2021
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L	<1.0	<1.0	1.4	<1.0	<1.0	<1.0
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	ug/L	<1	<1	<1	<1	<5	<5
1.2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L	<1.0	<1.0	1.7	<1.0	<1.0	<1.0
1,4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1
2-butanone (mek)	ug/L	- <5	- <5	- <5	<5	- <5	- <5
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5
Acetone	ug/L	<10	<10	<10	<10	<10	<10
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5
Antimony, total	ug/L ug/L	<2	<2	<2	~3	<2	<2
Arsenic, total	ug/L ug/L	<4	<4	<4		<4	<4
Barium, total	ug/L ug/L	232	196	250		247	155
Benzene		232 <1	196 <1	250 <1	<1	24 <i>1</i> <1	<1
	ug/L		<1 <4	<1 <4	<1		
Beryllium, total	ug/L	<4	-	<4 <5		<4	<4
Bod (5 day)	mg/L	<5	25	-			<5
Bromochloromethane	ug/L	<1	<1	<1	<1	<1	<1
Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1
Bromoform	ug/L	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L	<1	<1	<1	<1	<1	<1
Cadmium, total	ug/L	<.8	<.8	<.8		<.8	<.8
Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1
Chemical oxygen demand	mg/L	<10	<10	<20			<20
Chlorobenzene	ug/L	<1	<1	<1	<1	<1	<1
Chloroethane	ug/L	<1	<1	<1	<1	<1	<1
Chloroform	ug/L	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1
Chromium, total	ug/L	<8	<8	<8		<8	<8
Cis-1,2-dichloroethylene	ug/L	<1.0	1.3	2.8	<1.0	<1.0	<1.0
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1
Cobalt, total	ug/L	<.8	<.8	<.8		<.4	<.4
Copper, total	ug/L	<4	<4	<4		<4	<4
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1
Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1
Lead, total	ug/L	<4	<4	<4		<4	<4
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5
Nickel, total	ug/L	<4	<4	<4	-	<4	<4
Nitrogen, ammonia	mg/L	<1	<1	<1		· l	<1
pH	pH	8.1	7.8	7.9			8.3
Selenium, total	ug/L	<4	<4	<4		<4	<4
Silver, total	ug/L	<4	<4	<4		<4	<4
Solids, total suspended	mg/L	<2	<2	<4			<3
Styrene	ug/L	<1	<1	<1	<1	<1	<1
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1
Thallium, total	ug/L ug/L	<4	<4	<2	~"	<2	<2
Toluene		<1	<1	<2 <1	<1	<2 <1	<2 <1
	ug/L	<1		-	- 1		<1 <1
Trans-1,2-dichloroethylene	ug/L		<1	<1	<1	<1	
Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	ug/L	<1	<1	<1	<1	<1	<1
Vanadium, total	ug/L	<20	<20	<20		<20	<20
Vinyl acetate	ug/L	<5	<5	<5	<5	<5	<5
Vinyl chloride	ug/L	<1	<1	<1	<1	<1	<1
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2
Zinc, total	ug/L	<8	<8	<20		<20	<20

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for SRAMP B

Constituents	Units	4/22/2019	12/17/2019	4/10/2020	10/19/2020	4/5/2021	4/6/2022	4/11/2023	4/16/2024
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	ug/L	<1	<1	<5	<5	<5	<5	<5	<5
1,2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
1,4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
2-butanone (mek)	ug/L	<5	<5	<5	<5	<5	<10	<10	<10
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	ug/L	<10	<10	<10	<10	<10	<10	<10	<10
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Antimony, total	ug/L	<2		<2	<2	<2	<2	<2	<2
Arsenic, total	ug/L	<4		<4	<4	<4	<4	<4	<4
Barium, total	ug/L	36.8		32.6	32.0	22.8	18.7	15.3	16.1
Benzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Beryllium, total	ug/L	<4		<4	<4	<4	<4	<4	<4
Bod (5 day)	mg/L	<5		•	•				
Bromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	ug/L	<1	<1	<1	<1	- <1	<1	<1	<1
Bromoform	ug/L	<i < td=""><td><i< td=""><td><1</td><td><1</td><td><1</td><td>- -1</td><td><1</td><td><1</td></i<></td></i <>	<i< td=""><td><1</td><td><1</td><td><1</td><td>- -1</td><td><1</td><td><1</td></i<>	<1	<1	<1	- -1	<1	<1
Bromomethane	ug/L	<1	<1	<1	<1	- <1	<1	<1	<1
Cadmium, total	ug/L	<.8		<.8	<.8	<.8	<.8	<.8	<.8
Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chemical oxygen demand	mg/L	<20	•	•	•		•		
Chlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	ug/L	<8	`'	<8	<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	ug/L ug/L	<.8	`'	<.4	<.4	<.4	<.4	<.4	<.4
Copper, total	ug/L ug/L	<4		<4	<4	<4	<4	<4	<4
Dibromochloromethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	ug/L	<4	`'	<4	<4	<4	<4	<4	<4
Methyl iodide	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	ug/L ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Nickel, total		<4	```	<4	<4	<4	<4	<4	<4
· ·	ug/L	<1		~ 4	~ 4	\4	~ 4	\ -	\ -
Nitrogen, ammonia	mg/L	7.6							
pH Selenium, total	pH	7.6 <4		<4	<4	<4	<4	<4	<4
	ug/L								<4
Silver, total	ug/L	<4		<4	<4	<4	<4	<4	\ *4
Solids, total suspended	mg/L	<3							
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	ug/L	<2		<2	<2	<2	<2	<2	<2
Toluene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	ug/L	<20		<20	<20	<20	<20	<20	<20
Vinyl acetate	ug/L	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl chloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	ug/L	<20		<20	<20	<20	<20	<20	<20

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for SW-1

Constituents	Units	10/17/2014	4/14/2016	10/14/2016	4/10/2017	4/17/2018	7/2/2018	10/22/2018
1,1,1,2-tetrachloroethane	ug/L			<1	<1	<1		<1
1,1,1-trichloroethane	ug/L			<1	<1	<1		<1
1,1,2,2-tetrachloroethane	ug/L			<1	<1	<1		<1
1,1,2-trichloroethane	ug/L			<1	<1	<1		<1
1,1-dichloroethane	ug/L			<1.0	1.1	1.2	<1.0	<1.0
1,1-dichloroethylene	ug/L			<1	<1	<1		<1
1,2,3-trichloropropane	ug/L			<1	<1	<1		<1
1,2-dibromo-3-chloropropane	ug/L			<1	<1	<1		<1
1.2-dibromoethane	ug/L			<1	<1	<1		<1
1,2-dibromoetriarie	ug/L ug/L			<1.0	<1.0	3.6	<1.0	<1.0
				<1.0	<1.0	3.0 <1	<1.0	
1,2-dichloroethane 1,2-dichloropropane	ug/L			<1	<1	<1		<1
	ug/L							<1
1,4-dichlorobenzene	ug/L			<1	<1	<1		<1
2-butanone (mek)	ug/L			<5	<5	<5		<5
2-hexanone (mbk)	ug/L			<5	<5	<5		<5
4-methyl-2-pentanone (mibk)	ug/L			<5	<5	<5		<5
Acetone	ug/L			<10	<10	<10		<10
Acrylonitrile	ug/L			<5	<5	<5		<5
Antimony, total	ug/L			<2	<2	<2		<2
Arsenic, total	ug/L			<4	<4	<4		<4
Barium, total	ug/L			150	201	169		182
Benzene	ug/L			<1	<1	<1		<1
Beryllium, total	ug/L			<4	<4	<4		<4
Bromochloromethane	ug/L			<1	<1	<1		<1
Bromodichloromethane	ug/L			<1	<1	<1		<1
Bromoform	ug/L			<1	<1	<1		<1
Bromomethane	ug/L			<1	<1	<1		<1
Cadmium, total	ug/L			<.8	<.8	<.8		<.8
Carbon disulfide	ug/L			<1 <1	<1 <1	<1 <1		<1
Carbon tetrachloride				<1	<1	<1		<1
	ug/L	24	-10	`1		\ 1		`1
Chemical oxygen demand	mg/L	21	<10					
Chloride	mg/L	17	24		4.0			4.0
Chlorobenzene	ug/L			<1.0	<1.0	1.1	<1.0	<1.0
Chloroethane	ug/L			<1	<1	<1		<1
Chloroform	ug/L			<1	<1	<1		<1
Chloromethane	ug/L			<1	<1	<1		<1
Chromium, total	ug/L			<8	<8	<8		<8
Cis-1,2-dichloroethylene	ug/L			<1	<1	<1		<1
Cis-1,3-dichloropropene	ug/L			<1	<1	<1		<1
Cobalt, total	ug/L			<.8	<.8	<.8		<.8
Copper, total	ug/L			<4	<4	<4		<4
Dibromochloromethane	ug/L			<1	<1	<1		<1
Dibromomethane	ug/L			<1	<1	<1		<1
Ethylbenzene	ug/L			<1	<1	<1		<1
Iron, dissolved	ug/L	<100	<100					
Lead, total	ug/L			<4	<4	<4		<4
Methyl iodide	ug/L			<1	<1	<1		<1
Methylene chloride	ug/L			<5	<5	<5		<5
Nickel, total	ug/L			<4.0	<4.0	4.1		<4.0
Nitrogen, ammonia	mg/L	<1	<1	\ - 4.0	\ - 4.0	7.1		٧٠.٠
			`'					
Phenols, total	mg/L	<.1		-4	-4	-4		
Selenium, total	ug/L			<4	<4	<4		<4
Silver, total	ug/L			<4	<4	<4		<4
Solids, total suspended	mg/L			<2				
Styrene	ug/L			<1	<1	<1		<1
Tetrachloroethylene	ug/L			<1	<1	<1		<1
Thallium, total	ug/L			<4	<4	<4		<4
Toluene	ug/L			<1	<1	<1		<1
Total organic halogens (tox)	mg/L	.021						
Trans-1,2-dichloroethylene	ug/L			<1	<1	<1		<1
Trans-1,3-dichloropropene	ug/L			<1	<1	<1		<1
Trans-1,4-dichloro-2-butene	ug/L			<5	<5	<5		<5
Trichloroethylene	ug/L			<1	<1	<1		<1
Trichlorofluoromethane	ug/L			<1	<1	<1		<1
Vanadium, total	ug/L			<20	<20	<20		<20
Vinyl acetate	ug/L ug/L			<5	<5	<5		<5
Vinyl acetate Vinyl chloride					<1	<5 <1		<5 <1
	ug/L			<1				
Xylenes, total	ug/L			<2	<2	<2		<2
Zinc, total	ug/L			<8	<8	<8		<8

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 10 – Historic SSI and SSL– Not Required

Table 11 – Corrective Action Trend Analysis– Not Required

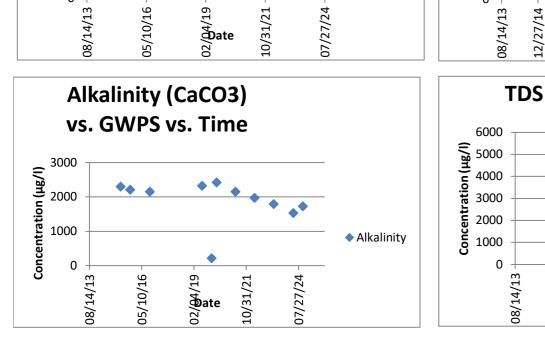
Leachate Level Summary	
2024 Annual Water Quality Report	
Marshall County Sanitary Landfill	
Permit No. 64-SDP-02-75P	

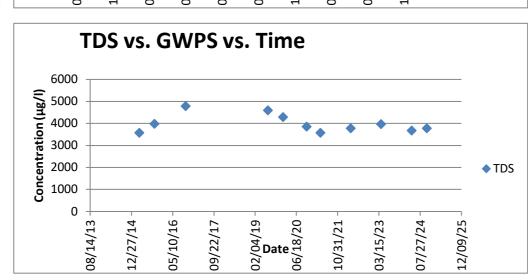
Monthly Leachate Levels - Marshall County Landfill 2024

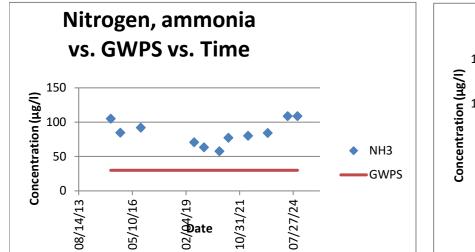
	OPER	ATING LANI	DFILL - LINE	D	CLOSED LANDFILL - UNLINED							
		Area B4			Area B1	Area B3	Area	C/D				
Date	LPZ-101	LPZ-102	GPZ - 105	LPZ-106	LW -73	LW-75	LW-78	LW-79				
	(cell bse)	(in trench)	Grndwater	(cell bse)								
	10.0 Depth	8.3 Depth	12.1 Depth	7.8 Depth	30.08 Dept	45.23 Depth	25.90 Depth	23.00 Depth				
1/4/24	10 dry			7.8 dry	29.66	32.26	17.71	15.64				
2/8/24	10 dry	7.95 12		7.8 dry	29.65	31.54	17.75	15.05				
3/12//2024	10 dry	8.1 12		7.8 dry	29.66	31.66	17.66	15.51				
4/17/24	10 dry	8.01	12.02	7.8 dry	29.64	32.05	17.43	15.4				
5/15/24	10 dry	8.03	11.86	7.8 dry	29.66	31.6	17.37	14.75				
6/25/24	10 dry	8.06	11.94	7.8 dry	29.65	31.01	17.17	13.96				
7/23/24	10 dry	8.05	11.89	7.8 dry	29.66	30.89	17.18	13.85				
8/8/24	10 dry	8.07	11.91	7.8 dry	29.67	30.86	17.21	13.46				
9/5/24	10 dry	8.09	11.95	7.8 dry	29.66	31.01	17.21	13.51				
10/15/24	10 dry	'		7.8 dry	29.68	31.4	17.38	14.34				
11/18/24	10 dry 8.02 11.99		11.99	7.8 dry	29.67	31.1	17.32	14.54				
12/9/24	10 dry 8.09		12.04	7.8 dry	29.69	31.18	17.36	14.37				

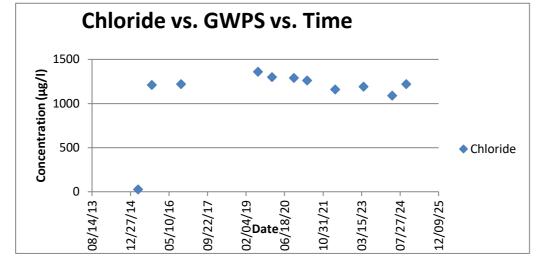
Table 13 – Gas Monitoring Summary

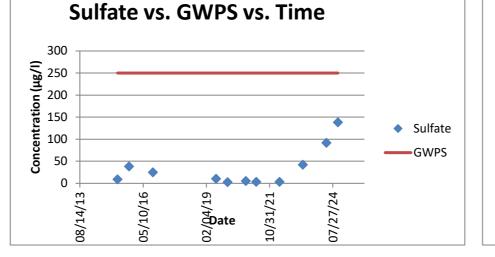
Table 13
Explosive Gas Monitoring
Annual Water Quality Report
Marshall County Sanitary Landfill
Permit No. 64-SDP-02-75P

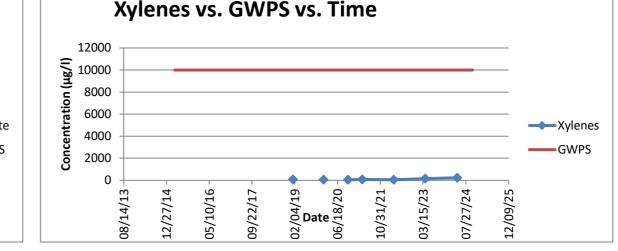

	25-Jan-24	16-Apr-24	18-Jul-24	15-Oct-24
Reference Location	LEL	LEL	LEL	LEL
	%	%	%	%
Scale House Interior	0	0	0	0
Old Scale House Interior	0	0	0	0
Electronics Shed North of Scale	0	0	0	0
Main Shop	0	0	0	0
Attached Cold Shop/Garage	0	0	0	0
Storage Shed East of Shop	0	0	0	0
GP-1	0	0	0	0
GP-2	0	0	0	0
GP-3	0	0	0	0
GP-4	0	0	0	0
GP-5	0	0	0	0
GP-6	0	0	22.8	0
GP-7	24.3	34.6	0	0
GP-8 (MW-213)	0	0	0	0
GU-2	0	0	0	0
GU-3	0	0	0	0

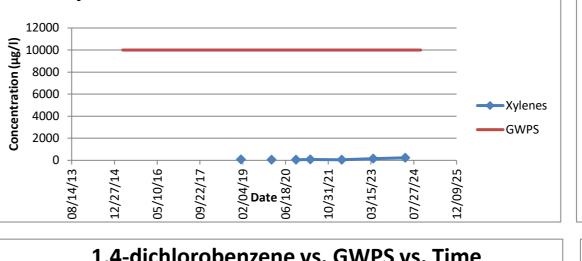

Table 14 – LW-75 Leachate Quality Data

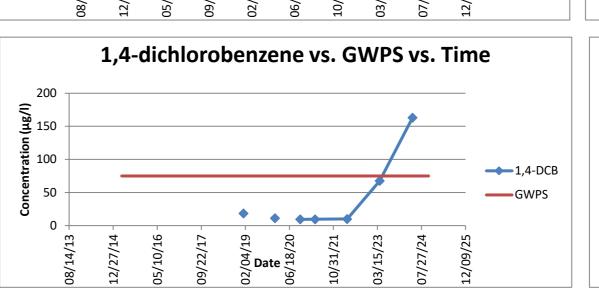

Table 14 Leachate Well LW-75 - Leachate Quality over Time

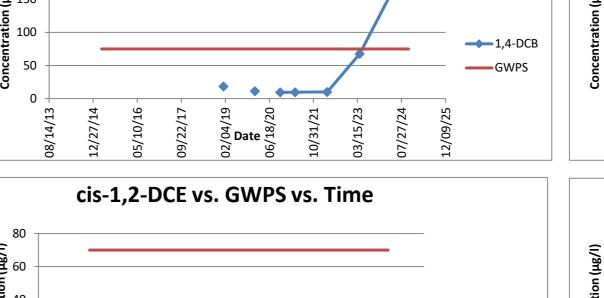

Annual Water Quality Report Marshall County Sanitary Landfill

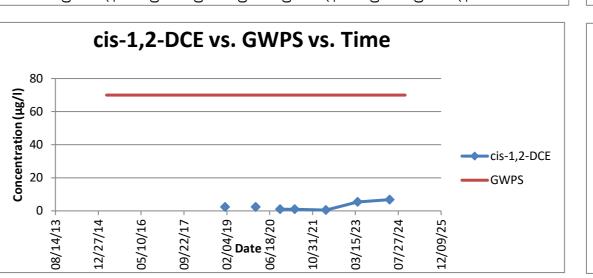

	Permit No. 6	4-SDP-02-75P																												
	BOD	Alkalinity	/	Nitrogen	(NH3)	На	Lo	ow H	High TDS		chloride		Sulfate		Benzene		Ethyl Benzene	!	Xylene	<u>.</u>	1,4-dichlorobenzene		cis-1,2-dichloroethene	9	Vinyl Chlorid	<u> </u>	Cobalt		Metha	ane
Sample Date	Concentration GW	•		'PS Concentr		GWPS Concentration			GWPS Concen	ntration (GWPS Concentration	າ (GWPS Concentration	on G	WPS Concentration	on GW	/PS Concentration		VPS Concentration		Concentration	G۷	WPS Concentration		GWPS Concentratio		PS Concentration	G	WPS Conce	
	mg/L mg	g/L mg/L	mg,	/L mg/L	n	mg/L mg/L	m	ng/L n	mg/L mg/L	r	mg/L mg/L	r	ng/L mg/L	m	ng/L ug/L	ug/	L ug/L	ug	/L ug/L	ug/L (ug/L	ug	/L ug/L	u	ıg/L ug/L	ug,	L ug/L	Uį	g/L mg/L	mg/L
4/3/2015	n	one	2300 n	one	105	30		5	9	3570	none	26	none	9	250		5		700	10000			75		70		2		2.1	none
10/1/2015	n	one	2210 n	one	84.8	30		5	9	3980	none	1210	none :	38.5	250		5		700	10000			75		70		2		2.1	none
10/13/2016	n	one	2150 n	one	92.2	30		5	9	4790	none	1220	none 2	24.7	250		5		700	10000			75		70		2		2.1	none
1/15/2019	n	one	n	one		30		5	9		none		none		250	7.8	5	77.8	700	86 10000	18	3.2	75	2.5	70	1	2		2.1	none
7/8/2019	n	one	2320 n	one	71	30	7	5	9	4590	none	1360	none	10.2	250		5		700	10000			75		70		2		2.1	none
10/23/2019	67 n	one	n	one		30		5	9		none		none		250		5		700	10000			75		70		2		2.1	none
1/7/2020	58 n	one	211 n	one	63.3	30	7.2	5	9	4290	none	1300	none	2.6	250	2.5	5	48.4	700 6	5.2 10000	11	.2	75	2.5	70	1	2	19	2.1	5.32 none
4/10/2020		one	2420 n	one		30	6.9	5	9		none		none		250		5		700	10000			75		70		2		2.1	11.5 none
10/19/2020	52 n	one	n	one	57.9	30		5	9	3860	none	1290	none	5.2	250	3.4	5 3	38.6	700 49	9.2 10000	9	.4	75	1	70	1	2	13.8	2.1	none
4/5/2021	64 n	one	2150 n	one	77.3	30	7	5	9	3570		1260		3.5	250	4.8	5 3	39.9	700 7	1.4 10000	9	.6	75	1	70	0.5	2	13.8	2.1	6.53 none
4/6/2022			1970 n	one	80.3	30	6.9	5	9	3780		1160		3.2	250	5.2		35.3		2.1 10000	1	10	75	0.5	70	0.5	2	20	2.1	6.41
4/10/2023			1790 n		84.1	30	6.7	5	9	3970		1190		42.2	250	9.4		275		61 10000	67	'.5	75	5.4	70	3.4	2	30.9	2.1	1.36 none
4/16/2024			1530 n		109	30	7.1	5	9	3680		1090		92	250	8.9	5			31 10000	16	63	75	6.8	70	3.4	2	22.1	2.1	none
10/15/2024	82 n	one	1730 n	one	109	30	6.6	5	9	3780	none	1220	none	138	250		5		700	10000			75		70		2	18.8	2.1	5.53 none
ВО	D vs. GWPS v	vs. Time				pH vs. GWF	PS vs	. Tim	ne				Sulfate	e vs.	GWPS vs.	Time			Xyl	enes vs	s. GWPS vs. Tir	ne			Vi	nyl C	hloride vs. (GWF	PS vs. Ti	ime
Concentration (hg/l) 120 100 80 60 40 20	•	•	*	◆ BOD	Concentration (µg/l) 8 - 6 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7		•	*		- →	─ pH ─ Low GWPS ─ High GWPS		Concentration (hg/l) 250 200 150 150 50		**	•	Sulfa		12000 Guration (Fig. 10000 August 100000 August 10000 August 100000 August 100000 August 10000 August 100					— Xylenes — GWPS	Concentration (l/g/l) 3					→ Vinyl Chloride → GWPS

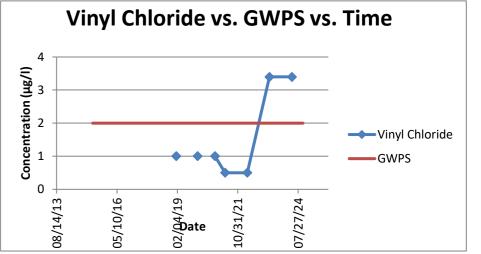

Benzene vs. GWPS vs. Time

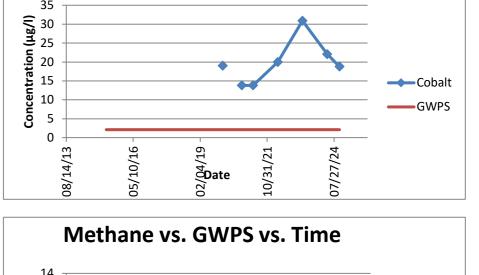

Ethyl Benzene vs. GWPS vs. Time


→Ethyl Benzene


400


200





Cobalt vs. GWPS vs. Time

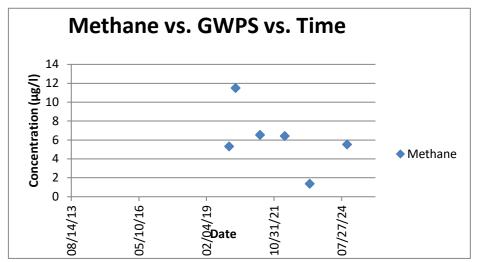
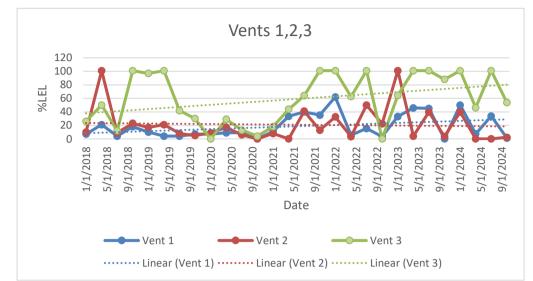
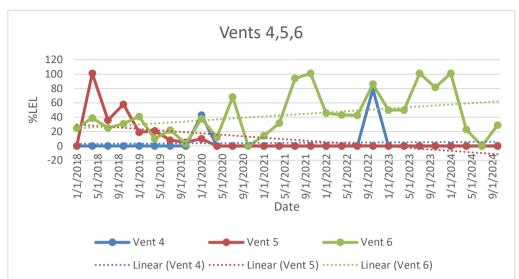
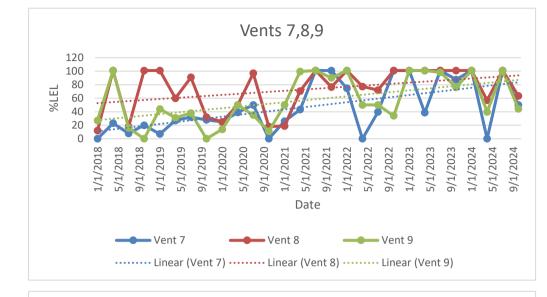
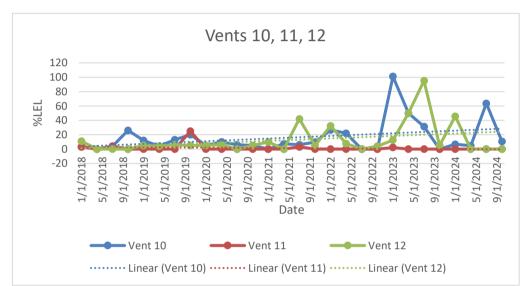


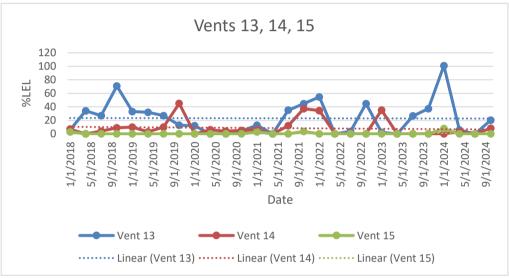
Table 15 – Vent Gas Evaluation Summary

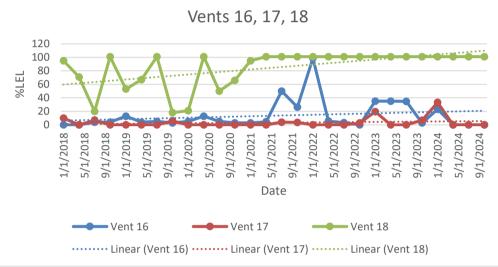

Table 15
SRAMP Vent Gas Evaluation
Annual Water Quality Report
Marshall County Sanitary Landfill
Permit No. 64-SDP-02-75P

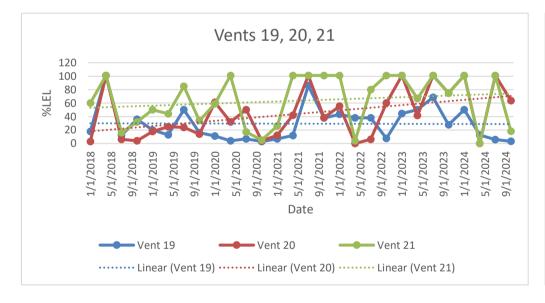

Y: 101 = a value that exceeds 100% of the LEL

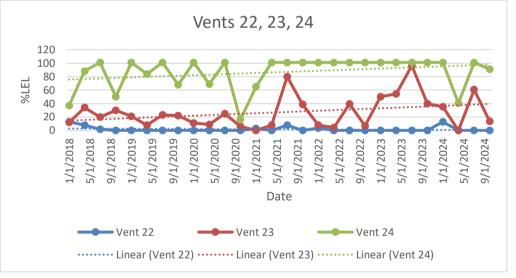

Date	Vent 1	Vent 2	Vent 3	Vent 4	Vent 5	Vent 6	Vent 7	Vent 8	Vent 9	Vent 10	Vent 11	Vent 12	Vent 13	Vent 14	Vent 15	Vent 16	Vent 17	Vent 18	Vent 19	Vent 20	Vent 21	Vent 22	Vent 23	Vent 24	Vent 25	Vent 26	Vent 27
1/9/2018	7	10	26	0	0	25	0	12	27	3	3	11	6	7	3	0	10	95	18	3	60	13	12	37	92	4	6
4/17/2018	21	101	50	0	101	39	23	101	101	0	0	0	34	0	0	0	0	71	101	101	101	8	34	88	32	0	0
7/2/2018	4	9	12	0	36	25	8	18	16	4	4	0	27	4	0	4	7	20	12	6	16	2	20	101	30	0	0
10/22/2018	18	23	101	0	58	31	20	101	0	26	0	0	71	9	0	4	0	101	36	4	32	0	30	50	101	0	8
1/15/2019	10	17	97	0	19	41	7	101	44	12	0	5	33	10	0	13	0	53	20	18	50	0	21	101	50	0	0
4/22/2019	4	21	101	0	21	10	27	60	31	4	0	4	32	3	0	4	0	67	13	25	44	0	8	84	29	0	0
7/8/2019	4	8	42	0	8	22	32	91	38	13	0	6	27	10	0	5	0	101	50	24	85	0	23	101	57	0	0
10/23/2019	7	5	30	0	5	3	28	32	0	20	25	5	13	45	0	3	6	18	16	14	34	0	22	68	35	0	0
1/7/2020	7	9	0	43	10	38	25	25	14	5	0	5	12	0	0	5	0	21	11	61	59	0	11	101	34	0	0
4/10/2020	9	17	29	0	0	12	39	50	50	10	0	6	0	6	0	13	0	101	4	32	101	0	9	69	50	0	0
7/8/2020	9	6	13	0	0	68	50	97	35	6	0	0	0	4	0	5	0	50	7	50	17	0	25	101	12	0	0
10/19/2020	0	0	4	0	0	0	0	18	11	5	0	5	4	5	0	3	0	66	3	4	5	0	6	16	13	0	0
1/7/2021	11	8	18	0	0	14	26	19	50	0	0	10	13	6	3	3	0	95	7	12	26	3	0	65	3	0	3
4/5/2021	33.5	0	43.9	0	0	31.8	43.2	70.5	99.5	7.4	0	0	0	0	0	4.6	0	101	11.8	42.1	101	0	8	101	85.5	0	0
7/2/2021	40	41	64	0	0	94	101	101	101	6	3	42	35	12	0	50	4	101	86	101	101	8	80	101	82	0	0
10/8/2021	35.2	13	101	0	0	101	101	76.5	90.2	9.6	0	5	44.7	37.2	3.8	26.2	3.8	101	37.9	38.4	101	0	38.6	101	50	0	0
1/17/2022	62	32.6	101	0	0	45.8	74.6	101	101	26.7	0	32.3	54.5	34.34	0	98.8	0	101	43.3	55.5	101	3.8	8	101	45.5	0	5.2
4/6/2022	5.4	3.4	62.6	0	0	43.2	0	77.3	50	22.1	0	7.8	0	0	0	5.6	0	101	38.1	0	4	0	4.2	101	4.8	0	0
7/8/2022	15.4	50	101	0	0	42.6	39.6	72	50	0	0	0	3.6	0	0	3.4	0	101	38.1	6	80	0	39.6	101	70	0	0
10/25/2022	3.6	22.3	0	79	0	86	101	101	34	0	0	4	44.7	0	0	0	2.8	101	7.4	60.1	101	0	7	101	4.4	0	3.4
1/23/2023		101	64.5	0	0	50	101	101	101	101	2.2	12.5	2.4	35.2	0	35.3	19.5	101	44.4	101	101	0	50.1	101	10.2	0	29.3
4/10/2023	45.8	4	101	0	0	50	38.5	101	101	50	0	50	0	0	0	35.2	0	101	50	41.7	66.7	0	54.5	101	101	0	0
7/7/2023	45.1	39.8	101	0	0	101	101	101	98.3	31.3	0	95.1	26.5	0	0	34.8	0	101	68.6	101	101	0	96.4	101	91.1	0	0
10/13/2023	0	3.6	88.1	0	0	81.5	87.5	101	76.2	0	0	5.2	37.2	0	0	2.8	6.8	101	27.7	75	74.6	0	39.9	101	7.6	0	0
1/25/2024	50	39.8	101	0	0	101	101	101	101	6.6	0	45.6	101	0	7.8	23.1	33.2	101	50	101	101	12.8	35.4	101	0	0	41.2
4/16/2024	7.4	0	46.2	0	0	22.8	0	57	39.9	4.8	0	0	5.8	3.2	0	0	0	101	12.6	0	0	0	0	40.6	3.8	0	0
7/18/2024	33.8	0	101	0	0	0	101	101	101	63.6	0	0	0	0	0	0	0	101	5.9	101	101	0	60.6	101	101	0	0
10/15/2024	1.2	2.2	54	0	0	29	50	63.6	44.4	10.8	0	0	20.2	8.2	0	0	0	101	3.4	63.6	18.2	0	13.6	90.8	27	0	0

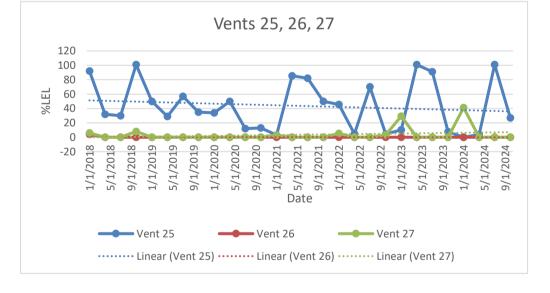

Table 15
SRAMP Vent Gas Evaluation
Annual Water Quality Report
Marshall County Sanitary Landfill
Permit No. 64-SDP-02-75P

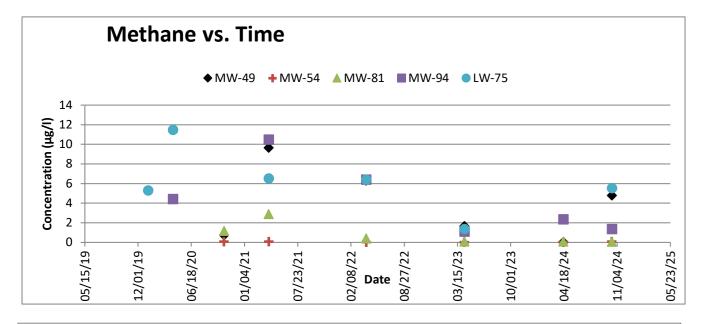

KEY: 101 = a value that exceeds 100% of the LEL

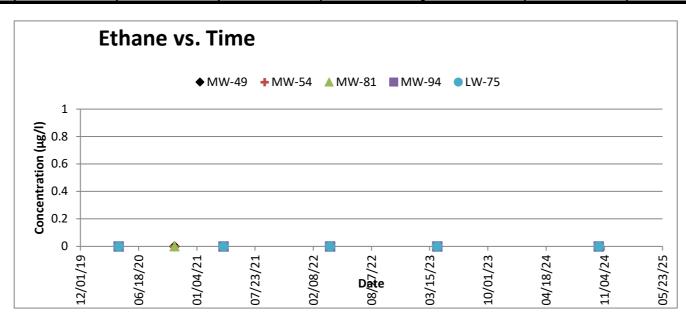


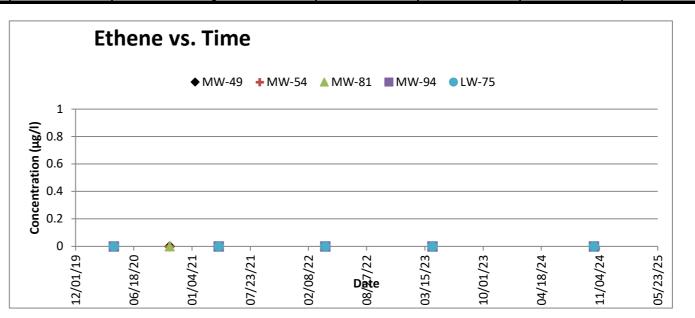


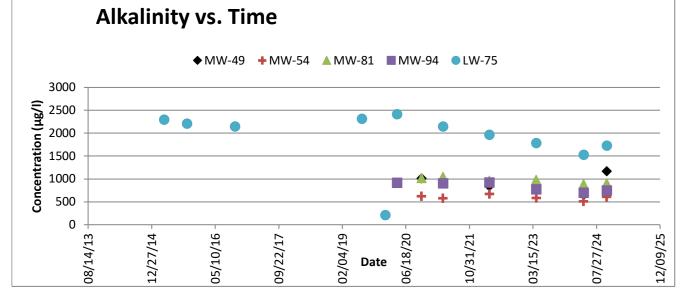


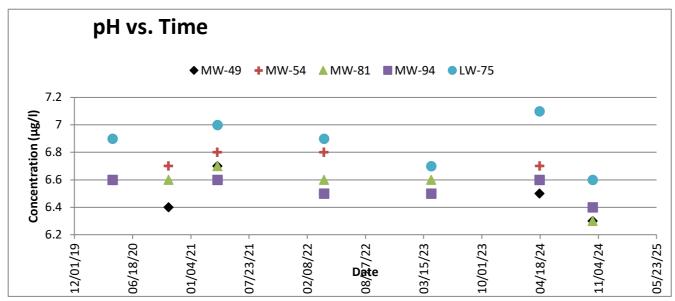



Table 16 – Dissolved Methane, Ethane, Ethene, and Alkalinity and pH CAMP Testing Summary


Table 16


Methane, Ethane, Ethene, Alkalinity, and pH over Time


Annual Water Quality Report Marshall County Sanitary Landfill Permit No. 64-SDP-02-75P


ſ	Methane Ethane							_thane E ^r					Ethene					Alkalinity						рН				
ſ	ЛW-49	MW-54	MW-81	MW-94	LW-75	MW-49	MW-54	MW-81	MW-94	LW-75	MW-49	MW-54	MW-81	MW-94	LW-75	MW-49	MW-54	MW-81	MW-94	LW-75	MW-49	MW-54	MW-81	MW-94	LW-75			
ple Date	Concentration	Concentration	Concentration	Concentration	Concentration	GWPS	Concentration	GWPS	GWPS	Concentration	GWPS	Concentration	GWPS	Concentration	GWPS	Concentration	GWPS	Concentration	GWPS	Concentration	GWPS	Concentration	GWPS	Concentration	GWPS			
r	ng/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	ug/L											
4/3/2015																				2300)							
10/1/2015																				2210)							
0/13/2016																				2150)							
1/15/2019													1															
7/8/2019																				2320)							
0/23/2019													1															
1/7/2020					5.32	2														211								
4/10/2020				4.44	11.5	5			<0.010	<0.013				<0.010	<0.013				91	9 2420)			6	.6			
0/19/2020	0.737	0.068	1.16	i l		<0.010	<0.014	<0.010			<0.010	<0.014	<0.010			101	0 624	1020			6.4	6.	7	6.6				
4/5/2021	9.66	0.063	2.88	10.5	6.53	< 0.013	<0.010	<0.010	<0.010	<0.010	<0.013	<0.010	<0.010	<0.010	<0.010	96	0 581	1050	90	4 2150	6.7	6.5	8	6.7 6	.6			
4/6/2022	6.3	0.00476	0.398	6.41	6.41	<0.00773	<0.00773	<0.00773	<0.00773	<0.0386	<0.0828	<0.0828	<0.0828	<0.0828	<0.0414	84	4 670	965	92	3 1970	6.5	6.	8	6.6	.5			
4/10/2023	1.66	0.0051	0.101	1.11	1.36	<0.007	<0.007	<0.007	<0.007	<0.007	<0.01	<0.01	<0.01	<0.01	<0.01	81	6 585	982	77	5 1790	6.5	5 		6.6	.5			
4/16/2024	0.0223	0.0091	0.0962	2.37												65	2 512	886	69	8 1530	6.5	6.	7	6.6	.6			
0/15/2024	4.77	0.078	0.056	1.38	5.53	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	117	0 612	907	75	2 1730	6.3	6.	4	6.3	.4			

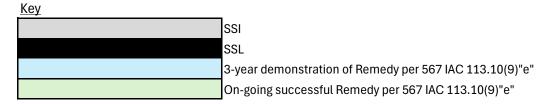


Table 17 – Progress of the Remedy

Table 17 Remedy Progress Annual Water Quality Report Marshall County Sanitary Landfill Permit No. 64-SDP-02-75P

Well	Constituent	Spring 2020	Fall 2020	Spring 2021	Fall 2021	Spring 2022	Fall 2022	Spring 2023	Fall 2023	Spring 2024	Fall 2024	Spring 2025	Fall 2025	Fall 2026
	Cobalt													
MW-87 (AZPOC) - related to	1,2-dichloropropane													
Supplemental Well MW-81	cis-1,2-dichloroethene													
	Vinyl Chloride													
MW-89 (AZPOC) - related to Supplemental Well MW-54	Cobalt													
	Arsenic													
M/M/ 04 (A7DOO) walatadta	Cobalt													
MW-91 (AZPOC) - related to Supplemental Well MW-49	Selenium													
Supplemental Well MW-49	1,1-dichloroethane													
	Vinyl Chloride													
	Arsenic													
MW-97 (AZPOC) - related to	Cobalt													
Supplemental Well MW-94	cis-1,2-dichloroethene													
	Vinyl Chloride													

Appendix A Field Sampling Forms

MARSHALL COUNTY SANITARY LANDFILL PERMIT # 64-SDP-2-75P

4/16/2024 Weather Conditions: Overcast mist breezy 50 degrees Sampled by: Todd Whipple

IDNR Form 542-1322

Monitoring Well: MW-49 (dg)

Primary Sampling Method: Secondary Sampling Method: No-Purge for Appendix I

Purge & Sample for all analytes beyond Appendix I

Date

4/16/2024

Time

9:10

Water Level Water Elevation

999.88

20.11

Notes

GENERAL INFORMATION

TOC	1019.99
Well Depth	26.42
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

NO PURGE METHOD

TOC	1019.99
Well Depth	26.25
Top Screen	1003.57
Bottom Screen	993.57
Bottom Well	993.97
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	21.00
Top sample	998.99
Bottom sample	994.99
Turbidity(NTU)	14.83

ANALYTES, CONTAINERS, AND VOLUMES								
Analyte		Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)			
All	Field NTU	10	10		14.83			
Appendix I	Metals	150	150		14.83			
Appendix I	VOC	240	240		14.83			
Full Appendix II	10 more containers	5620						
TSS	TSS	1000						
Supplemental	bis 2	946						
Supplemental	add VOC, alkalinity	370	0					
Total			400	0				

RGE & SAMPLE	METHOD - Purg	e by Waterra Inertia	al Lift Pump, then w	rell rest, then sam	ole collection				
TOC	1019.99	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry
Well Depth	26.42	Before purging	4/16/2024	9:10	20.11	999.88	2	1.9	yes
		After purging				1019.99			
		Top of Screen Janua	ary 1990			1003.57			
						16.42	feet above (+) o	r below (-) top sci	reen
		Bottom of Well Janu	ary 1990			993.57			
		Bottom of Well	4/16/2024		26.25	993.74			
						0.17	feet sedimentati	on	
		Before Sampling		9:24	24.64	995.35			
		Recovery		10:42	21.31	998.68			
		Recovery				1019.99			
		Recovery				1019.99			
		Recovery				1019.99		<u> </u>	<u> </u>

Monitoring Well: MW-54 (dg)

GENERAL INFORMATION

TOC	1035.44
Well Depth	31.95
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

TOC	1035.44
Well Depth	31.80
Top Screen	1013.49
Bottom Screen	1003.49
Bottom Well	1003.49
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	26.00
Top sample	1009.44
Bottom sample	1005.44
Turbidity(NTU)	19.53

Date	Time	Water Level	Water Elevation	Notes
4/16/2024	8:46	17.46	1017.98	

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		19.53
Appendix I	Metals	150	150		19.53
Appendix I	VOC	240	240		19.53
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis 2	946			
Supplemental	add VOC, alkalinity	370	0		
Total			400	0	

RGE & SAMPLE	EMETHOD - Purge	by waterra inertia	ai Liit Pump, then v	ven rest, then sam	ne conection				
TOC	1035.44	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	31.95	Before purging	4/16/2024	8:46	17.46	1017.98	3	1.3	no
		After purging				1035.44			•
		Top of Screen Janua	ary 1990			1013.49			
						21.95	feet above (+) o	r below (-) top sci	reen
		Bottom of Well Janu	ary 1990			1003.49			
		Bottom of Well	4/16/2024		31.80	1003.64			
						0.15	feet sedimentati	on	
		Before Sampling		9:01	25.45	1009.99			
		Recovery		10:40	21.48	1013.96			
		Recovery				1035.44			
		Recovery				1035.44			
		Recovery				1035.44			

Monitoring Well: MW-66 (ug)

GENERAL INFORMATION

TOC	1032.39
Well Depth	51.86
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

	-
TOC	1032.39
Well Depth	51.86
Top Screen	995.53
Bottom Screen	980.53
Bottom Well	980.53
Sampler Length (ft)	
Sampler Volume (mL)	440.00
Feet cordage	
Top sample	1032.39
Bottom sample	1032.39
Turbidity(NTU)	

Date	Time	Water Level	Water Elevation	Notes
4/16/2024		>51.8	#VALUE!	DRY

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10			
Appendix I	Metals	250			
Appendix I	VOC	120			
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental					
Supplemental	Minerals	750			
Total			0	0	

TOC	1032.39	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	51.86	Before purging				1032.39	3	0.4	no
		After purging				1032.39			
		Top of Screen May 1	1990			995.53			
						36.86	feet above (+) o	r below (-) top scr	reen
		Bottom of Well May	1990			980.53			
		Bottom of Well	10/25/2022		51.80	980.59			
						0.06	feet sedimentati	on	
		Before Sampling				1032.39			
		Recovery				1032.39			
		Recovery				1032.39			
		Recovery				1032.39			
		Recovery				1032.39			

Monitoring Well: MW-81 (dg)

GENERAL INFORMATION

TOC	1009.27
Well Depth	35.00
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

110 1 OILOE IIIE III	<u> </u>
TOC	1009.27
Well Depth	35.00
Top Screen	989.27
Bottom Screen	974.27
Bottom Well	974.27
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	28.00
Top sample	981.27
Bottom sample	977.27
Turbidity(NTU)	1.56

Date	Time	Water Level	Water Elevation	Notes
4/16/2024	11:20	22.49	986.78	

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		1.56
Appendix I	Metals	150	150		1.56
Appendix I	VOC	240	240		1.56
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis 2	946			
Supplemental	add VOC, alkalinity	370	0		
Total			400	0	

IRGE & SAMPLE	METHOD - Purge	by waterra inertia	i Lift Pump, then v	ven rest, then sam	pie collection				
TOC	1009.27	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	35.00	Before purging	4/16/2024	11:20	22.49	986.78	3	1.5	no
		After purging				1009.27		•	•
		Top of Screen Janua	ary 1990			989.27			
						20.00	feet above (+) o	r below (-) top scr	reen
		Bottom of Well Janu	ary 1990			974.27			
		Bottom of Well	4/16/2024		33.90	975.37			
						1.10	feet sedimentati	on	
		Before Sampling		11:32	26.50	982.77			
		Recovery		14:43	22.64	986.63			
		Recovery				1009.27			
		Recovery				1009.27			
		Recovery				1009.27			

Monitoring Well: MW-85 (ug)

GENERAL INFORMATION

TOC	1039.27
Well Depth	72.07
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

NO I DIVOL MILITI	00
TOC	1039.27
Well Depth	72.07
Top Screen	982.20
Bottom Screen	967.20
Bottom Well	967.20
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	64.00
Top sample	975.27
Bottom sample	971.27
Turbidity(NTU)	6.76

Date	Time	Water Level	Water Elevation	Notes
4/16/2024	7:51	37.42	1001.85	•

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		6.76
Appendix I	Metals	150	150		6.76
Appendix I	VOC	240	240		6.76
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental		946			
Supplemental	Minerals	370	0		
Total			400	0	

TOC	1039.27	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	72.07	Before purging	4/16/2024	7:51	37.42	1001.85	3	0.5	no
		After purging				1039.27			
	Top of Screen January 1990					982.20			
						57.07	feet above (+) o	r below (-) top scr	reen
		Bottom of Well Janu	Bottom of Well January 1990			967.20			
		Bottom of Well	4/16/2024		71.20	968.07			
						0.87	feet sedimentati	on	
		Before Sampling		8:03	52.40	986.87			
		Recovery		10:50	38.31	1000.96			
		Recovery				1039.27			
		Recovery				1039.27			
		Recovery				1039.27			

Monitoring Well: MW-87 (dg)

GENERAL INFORMATION

TOC	964.2
Well Depth	21.58
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

TOC	964.2
Well Depth	21.58
Top Screen	952.62
Bottom Screen	942.62
Bottom Well	942.62
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	14.50
Top sample	949.70
Bottom sample	945.70
Turbidity(NTU)	1.82

Date	Time	Water Level	Water Elevation	Notes	
4/16/2024	11:02	5.25	958.95		

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		1.82
Appendix I	Metals	150	150		1.82
Appendix I	VOC	240	240		1.82
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis 2	946			
Supplemental	Minerals	370	0		
Total			400	0	_

TOC	964.2	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	21.58	Before purging	4/16/2024	11:02	5.25	958.95	3	1.1	no
		After purging				964.20			
		Top of Screen Janu	ary 1990			952.62			
						11.58	feet above (+) o	r below (-) top sci	reen
		Bottom of Well Janu	iary 1990			942.62			
		Bottom of Well	4/16/2024		21.00	943.20			
						0.58	feet sedimentati	on	
		Before Sampling		11:11	11.76	952.44			
		Recovery		14:41	6.19	958.01			
		Recovery				964.20			
		Recovery				964.20			
		Recovery				964.20			<u> </u>

Monitoring Well: MW-89 (dg)

GENERAL INFORMATION

TOC	1012.79
Well Depth	27.50
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

	-
TOC	1012.79
Well Depth	27.50
Top Screen	995.25
Bottom Screen	985.25
Bottom Well	985.25
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	22.00
Top sample	990.79
Bottom sample	986.79
Turbidity(NTU)	2.11

Date	Time	Water Level	Water Elevation	Notes	
4/16/2024	10:44	8.26	1004.53		_

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		2.11
Appendix I	Metals	150	150		2.11
Appendix I	VOC	240	240		2.11
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis 2	946			
Supplemental	Minerals	370	0		
Total		-	400	0	

URGE & SAMPLE	E METHOD - Purge t	by waterra inertia	ai Litt Pump, then v	ven rest, then samp	ie collection				
TOC	1012.79	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	27.50	Before purging	4/16/2024	10:44	8.26	1004.53	3	1.0	no
		After purging				1012.79			
		Top of Screen Janua	ary 1990			995.25			
						17.54	feet above (+) o	r below (-) top scr	reen
		Bottom of Well Janu	ary 1990			985.25			
		Bottom of Well	4/16/2024		27.30	985.49			
						0.24	feet sedimentati	on	
		Before Sampling		10:55	18.60	994.19			
		Recovery		14:36	10.12	1002.67			
		Recovery				1012.79			
		Recovery				1012.79			
		Recovery				1012.79			

Monitoring Well: MW-91 (dg)

GENERAL INFORMATION

TOC	978.57
Well Depth	17.50
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

	
TOC	978.57
Well Depth	17.50
Top Screen	971.07
Bottom Screen	961.07
Bottom Well	961.07
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	12.00
Top sample	966.57
Bottom sample	962.57
Turbidity(NTU)	1.69

Date Time Water Level Water Elevation Notes 4/16/2024 10:05 8.79 969.78

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		1.69
Appendix I	Metals	150	150		1.69
Appendix I	VOC	240	240		1.69
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis 2	946			
Supplemental	Minerals	370	0		
Total		-	400	0	

URGE & SAMPLE	: METHOD - Purge	by waterra inertia	ai Litt Pump, then v	veli rest, then samp	ie collection				
TOC	978.57	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	17.50	Before purging	4/16/2024	10:05	8.79	969.78	3	2.1	no
	•	After purging				978.57			
		Top of Screen Janu	ary 1990			971.07			
						7.50	feet above (+) o	r below (-) top scr	een
		Bottom of Well Janu	ary 1990			961.07			
		Bottom of Well	4/16/2024		17.00	961.57			
						0.50	feet sedimentati	on	
		Before Sampling		10:13	10.79	967.78			
		Recovery		14:34	8.01	970.56			
		Recovery				978.57			
		Recovery				978.57			
		Recovery				978.57			

Monitoring Well: MW-93 (dg)

GENERAL INFORMATION

TOC	921.91
Well Depth	22.25
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

	
TOC	921.91
Well Depth	22.25
Top Screen	909.74
Bottom Screen	899.74
Bottom Well	899.74
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	18.50
Top sample	903.41
Bottom sample	899.41
Turbidity(NTU)	5.75

Date	Time	Water Level	Water Elevation	Notes
4/16/2024	11:43	18.41	903.5	

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		5.75
Appendix I	Metals	150	150		5.75
Appendix I	VOC	240	240		5.75
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis 2	946			
Supplemental	Minerals	370	0		
Total		-	400	0	_

JRGE & SAMPLE	METHOD - Purge	e by waterra inertia	ai Liπ Pump, then v	ven rest, then sam	ole collection				
TOC	921.91	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	22.25	Before purging	4/16/2024	11:43	18.41	903.50	2	3.2	dry
	•	After purging				921.91		•	•
		Top of Screen Janu	ary 1990			909.74			
						12.17	feet above (+) o	r below (-) top scr	reen
		Bottom of Well Janu	iary 1990			899.74			
		Bottom of Well	4/16/2024		22.20	899.71			
						-0.03	feet sedimentati	on	
		Before Sampling		11:52	21.50	900.41			
		Recovery		14:49	18.62	903.29			
		Recovery				921.91			
		Recovery				921.91			
		Recovery				921.91			

Monitoring Well: MW-94 (dg)

GENERAL INFORMATION

TOC	1030.99
Well Depth	27.85
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

TOC	1030.99
Well Depth	27.85
Top Screen	1013.14
Bottom Screen	1003.14
Bottom Well	1003.14
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	22.00
Top sample	1008.99
Bottom sample	1004.99
Turbidity(NTU)	6.96

Date	Time	Water Level	Water Elevation	Notes
4/16/2024	8:29	15.36	1015.63	

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		6.96
Appendix I	Metals	150	150		6.96
Appendix I	VOC	240	240		6.96
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis 2	946			
Supplemental	add VOC, alkalinity	370	0		
Total			400	0	

TOC	1030.99	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	27.85	Before purging	4/16/2024	8:29	15.36	1015.63	3	1.5	No
		After purging				1030.99			
		Top of Screen Janua	ary 1990			1013.14			
						17.85	feet above (+) o	r below (-) top scr	reen
		Bottom of Well Janu	ary 1990			1003.14			
		Bottom of Well	4/16/2024		27.50	1003.49			
						0.35	feet sedimentati	on	
		Before Sampling		8:40	20.90	1010.09			
		Recovery		10:35	15.75	1015.24			
		Recovery				1030.99			
		Recovery				1030.99			
		Recovery				1030.99			

Monitoring Well: MW-95 (dg)

GENERAL INFORMATION

TOC	973.55
Well Depth	23.39
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

TOC	973.55
Well Depth	23.39
Top Screen	960.16
Bottom Screen	950.16
Bottom Well	950.16
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	17.50
Top sample	956.05
Bottom sample	952.05
Turbidity(NTU)	2.27

Date Time Water Level Water Elevation Notes 4/16/2024 7:35 7.45 966.1

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		2.27
Appendix I	Metals	150	150		2.27
Appendix I	VOC	240	240		2.27
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental		946			
Supplemental	Minerals	370	0		
Total			400	0	

TOC	973.55	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	23.39	Before purging	4/16/2024	7:35	7.45	966.10	3	1.2	No
		After purging				973.55			
		Top of Screen Janua	ary 1990			960.16			
						13.39	feet above (+) or	r below (-) top scr	reen
		Bottom of Well Janu	ıary 1990			950.16			
		Bottom of Well	4/16/2024		23.40	950.15			
						-0.01	feet sedimentation	on	
		Before Sampling		7:44	16.21	957.34			
		Recovery		10:46	10.11	963.44			
		Recovery				973.55			
		Recovery				973.55			
		Recovery				973.55			

Monitoring Well: MW-96R (dg)

GENERAL INFORMATION

TOC	941.85
Well Depth	20.80
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

Date

4/16/2024

NO PURGE METHOD

TOC	941.85			
Well Depth	20.80			
Top Screen	931.05			
Bottom Screen	921.05			
Bottom Well	921.05			
Sampler Length (ft)	4.00			
Sampler Volume (mL)	440.00			
Feet cordage	15.00			
Top sample	926.85			
Bottom sample	922.85			
Turbidity(NTU)	14.22	red		
		-		

Water Level Water Elevation

931.22

10.63

Notes

Time

7:55

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		14.22
Appendix I	Metals	150	150		14.22
Appendix I	VOC	240	240		14.22
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis 2	946			
Supplemental	Minerals	370	0		
Total			400	0	

TOC	941.85	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	20.80	Before purging	4/16/2024	7:55	10.63	931.22	5	3.0	No
		After purging				941.85			
		Top of Screen Janua	ary 1990			931.05			
						10.80	feet above (+) o	r below (-) top sci	reen
		Bottom of Well Janu	ary 1990			921.05			
		Bottom of Well	4/16/2024		20.80	921.05			
						0.00	feet sedimentati	on	
		Before Sampling		8:18	16.78	925.07			
		Recovery		14:55	9.98	931.87			
		Recovery				941.85		•	
		Recovery				941.85			
		Recovery				941.85			

Monitoring Well: MW-97 (dg)

GENERAL INFORMATION

OLIVEIVAL IIVI OKI	iAIIOII
TOC	1015.38
Well Depth	37.10
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

TOC	1015.38
Well Depth	37.10
Top Screen	988.28
Bottom Screen	978.28
Bottom Well	978.28
Sampler Length (f	(t) 4.00
Sampler Volume (m	nL) 440.00
Feet cordage	31.00
Top sample	984.38
Bottom sample	980.38
Turbidity(NTU)	2.20

Date	Time	Water Level	Water Elevation	Notes	
4/16/2024	8:09	11.17	1004.21		

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		2.20
Appendix I	Metals	150	150		2.20
Appendix I	VOC	240	240		2.20
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis2	946			
Supplemental	Minerals	370	0		
Total			400	0	

TOC	1015.38	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	37.10	Before purging	4/16/2024	8:09	11.17	1004.21	3	0.7	No
		After purging				1015.38			
		Top of Screen Janua	ary 1990			988.28			
						27.10	feet above (+) o	r below (-) top scr	een
		Bottom of Well Janu	ary 1990			978.28			
		Bottom of Well	4/16/2024		36.80	978.58			
						0.30	feet sedimentati	on	
		Before Sampling		8:20	24.00	991.38			
		Recovery		10:33	15.78	999.60			
		Recovery				1015.38			
		Recovery				1015.38			
		Recovery				1015.38			

Monitoring Well: MW- 98 (up)

GENERAL INFORMATION

TOC	953.24
Well Depth	21.65
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

TOC	953.24
Well Depth	21.65
Top Screen	941.81
Bottom Screen	931.81
Bottom Well	931.59
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	16.00
Top sample	937.24
Bottom sample	933.24
Turbidity(NTU)	393.50

Date Time Water Level **Water Elevation** Notes 947.68 4/16/2024 9:48 5.56

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		393.50
Appendix I	Metals	150	150		393.50
Appendix I	VOC	240	240		393.50
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis2	946			
Supplemental		370	0		
Total			400	0	

IRGE & SAMPLE	WETHOD - Purge	by waterra mertia	i Liπ Pump, then v	ven rest, then sam	pie collection	-			
TOC	953.24	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	21.65	Before purging	4/16/2024	9:48	5.56	947.68	3	1.1	No
		After purging				953.24		•	•
		Top of Screen Janua	ary 1990			941.81			
						11.43	feet above (+) o	r below (-) top scr	reen
		Bottom of Well Janu	ary 1990			931.59			
		Bottom of Well	4/16/2024		21.65	931.59			
						0.00	feet sedimentati	on	
		Before Sampling		9:56	12.32	940.92			
		Recovery		14:30	5.51	947.73			
		Recovery				953.24			
		Recovery				953.24			
		Recovery				953.24		<u> </u>	

Monitoring Well: MW-99 (up)

GENERAL INFORMATION

TOC	913.98
Well Depth	21.90
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

TOC	913.98
Well Depth	21.90
Top Screen	902.35
Bottom Screen	892.35
Bottom Well	892.08
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	16.50
Top sample	897.48
Bottom sample	893.48
Turbidity(NTU)	1.60

Date	Time	Water Level	Water Elevation	Notes
4/16/2024	9:34	11.8	902.18	

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		1.60
Appendix I	Metals	150	150		1.60
Appendix I	VOC	240	240		1.60
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis2	946			
Supplemental		370	0		
Total			400	0	

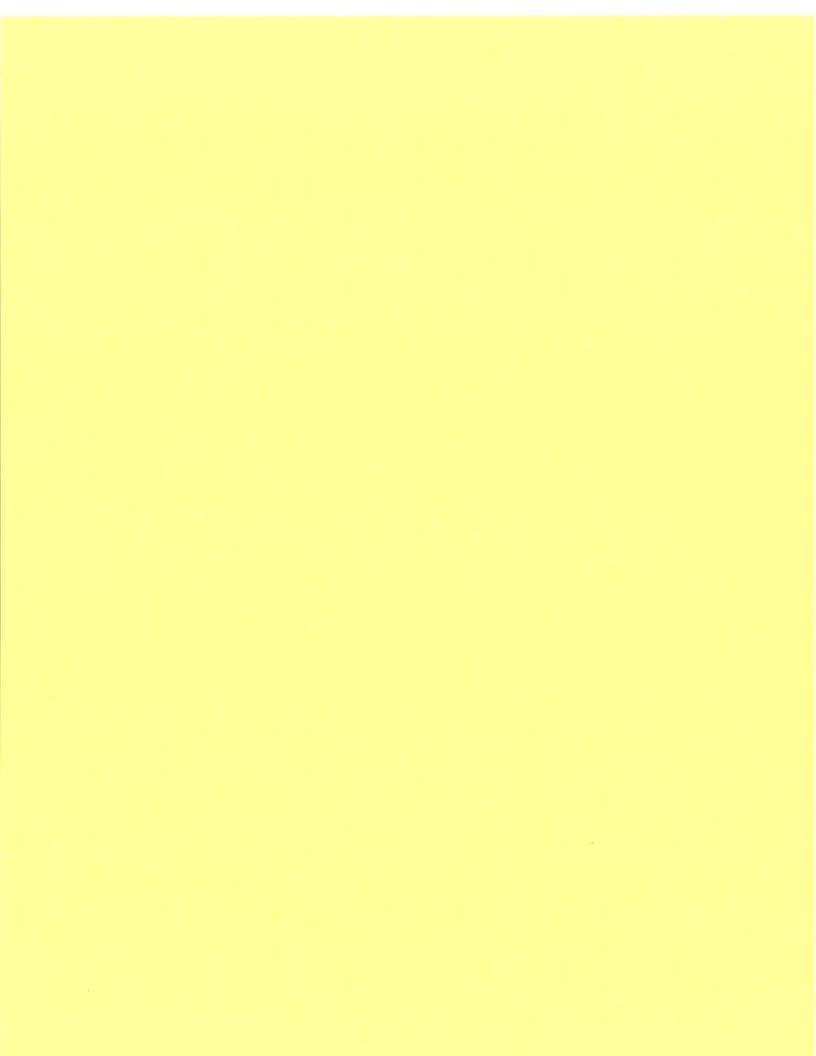
TOC	913.98	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	21.90	Before purging	4/16/2024	9:34	11.8	902.18	3	1.8	No
		After purging				913.98			
		Top of Screen Janua	ary 1990			902.35			
						11.63	feet above (+) o	r below (-) top scr	reen
		Bottom of Well Janu	ary 1990			892.08			
		Bottom of Well	4/16/2024		21.90	892.08			
						0.00	feet sedimentati	on	
		Before Sampling		9:43	12.80	901.18			
		Recovery		10:53	11.84	902.14			
		Recovery				913.98			
		Recovery				913.98			
		Recovery				913.98			

MARSHALL COUNTY SANITARY LANDFILL

PERMIT # 64-SDP-2-75P

4/16/2024 Sampled by: Todd Whipple Weather Conditions: Overcast mist breezy 50 degrees

IDNR Form 542-1324


	Date	lime	l ype	Flowing	Quantity	Discolored	Odor	Litter	1
SRAMP B	4/16/2024	8:30	Tile Outlet	trickle	250 mL/30 sec	No	No	No	l

NTU	рН	Conductivity	Temp.(C)
2.09			

IDNR Form 542-1324

	Date	Time	туре	Flowing	Quantity	Discolored	Odor	Litter	ĺ
PECS B	4/16/2024		Surface Water	No	Dry	No	No	No	l

NIU	рн	Conductivity	remp.(C)
NTH	nH	Conductivity	Temn (C)

MARSHALL COUNTY SANITARY LANDFILL PERMIT # 64-SDP-2-75P

10/15/2024 Sampled by: Todd Whipple Weather Conditions: Sunny breezy 40-57 degrees

IDNR Form 542-1322

Monitoring Well: MW-49 (dg)

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I

Purge & Sample for all analytes beyond Appendix I

GENERAL INFORMATION

TOC	1019.99
Well Depth	26.42
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purae Equipment -	Waterra

NO PURGE METHOD

TOC	1019.99
Well Depth	26.25
Top Screen	1003.57
Bottom Screen	993.57
Bottom Well	993.97
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	20.00
Top sample	999.99
Bottom sample	995.99
Turbidity(NTU)	8.80

 Date
 Time
 Water Level
 Water Elevation
 Notes

 10/15/2024
 12:38
 16.39
 1003.6

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		8.80
Appendix I	Metals	150	150		8.80
Appendix I	VOC	240	240		8.80
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis 2	946			
Supplemental	add VOC, alkalinity	370	0		
Total			400	0	

TOC	1019.99	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	26.42	Before purging	10/15/2024	12:38	16.39	1003.60		0.0	
		After purging				1019.99			
		Top of Screen Janu	ary 1990			1003.57			
						16.42	feet above (+) or	r below (-) top scr	een
		Bottom of Well Janu	ary 1990			993.57			
		Bottom of Well	10/15/2024		26.25	993.74			
						0.17	feet sedimentation	on	
		Before Sampling				1019.99			
		Recovery				1019.99			
		Recovery				1019.99			
		Recovery				1019.99			
		Recovery				1019.99			

Monitoring Well: MW-54 (dg)

GENERAL INFORMATION

TOC	1035.44
Well Depth	31.95
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

NO I ONCE MEIN			
TOC	1035.44		
Well Depth	31.80		
Top Screen	1013.49		
Bottom Screen	1003.49		
Bottom Well	1003.49		
Sampler Length (ft)	4.00		
Sampler Volume (mL)	440.00		
Feet cordage	25.00		
Top sample	1010.44		
Bottom sample	1006.44		
Turbidity(NTU)	5.99		

Date	Time	Water Level	Water Elevation	Notes
10/15/2024	12:20	18.01	1017.43	

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		5.99
Appendix I	Metals	150	150		5.99
Appendix I	VOC	240	240		5.99
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis 2	946			
Supplemental	add VOC, alkalinity	370	0		
Total			400	0	

TOC	1035.44	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	31.95	Before purging	10/15/2024	12:20	18.01	1017.43		0.0	
		After purging				1035.44			•
		Top of Screen Janua	ary 1990			1013.49			
						21.95	feet above (+) o	r below (-) top sci	reen
		Bottom of Well Janu	ary 1990			1003.49			
		Bottom of Well	10/15/2024		31.80	1003.64			
						0.15	feet sedimentati	on	
		Before Sampling				1035.44			
		Recovery				1035.44			
		Recovery				1035.44			
		Recovery				1035.44			•
		Recovery				1035.44			

Monitoring Well: MW-66 (ug)

GENERAL INFORMATION

OLIVEIVAL IIVI OIVI	ATION
TOC	1032.39
Well Depth	51.86
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

NO I ONCE MEIN	00
TOC	1032.39
Well Depth	51.86
Top Screen	995.53
Bottom Screen	980.53
Bottom Well	980.53
Sampler Length (ft)	
Sampler Volume (mL)	440.00
Feet cordage	
Top sample	1032.39
Bottom sample	1032.39
Turbidity(NTU)	

Date	Time	Water Level	Water Elevation	Notes
10/15/2024		>51.8	#VALUE!	DRY

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10			
Appendix I	Metals	250			
Appendix I	VOC	120			
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental					
Supplemental	Minerals	750			
Total			0	0	

TOC	1032.39	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	51.86	Before purging				1032.39	3	0.4	no
		After purging				1032.39			
		Top of Screen May	1990			995.53			
						36.86	feet above (+) o	r below (-) top scr	reen
		Bottom of Well May	1990			980.53			
		Bottom of Well	10/25/2022		51.80	980.59			
						0.06	feet sedimentati	on	
		Before Sampling				1032.39			
		Recovery				1032.39			
		Recovery				1032.39			
		Recovery				1032.39			
		Recovery				1032.39			<u> </u>

Monitoring Well: MW-81 (dg)

GENERAL INFORMATION

OLIVE IIII OIVI	OENERAL IN ORMATION					
TOC	1009.27					
Well Depth	35.00					
Capped	YES					
Standing Water	NO					
Litter	NO					
Level Tape	Solinst 101					
NTU Meter	Hach 2100P					
No-Purge Equipment -	Solinst 429					
Purge Equipment -	Waterra					

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

10 1 01(02 111211102				
TOC	1009.27			
Well Depth	35.00			
Top Screen	989.27			
Bottom Screen	974.27			
Bottom Well	974.27			
Sampler Length (ft)	4.00			
Sampler Volume (mL)	440.00			
Feet cordage	28.00			
Top sample	981.27			
Bottom sample	977.27			
Turbidity(NTU)	2.50			

Date	Time	Water Level	Water Elevation	Notes
10/15/2024	15:48	21.11	988.16	

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		2.50
Appendix I	Metals	150	150		2.50
Appendix I	VOC	240	240		2.50
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis 2	946			
Supplemental	add VOC, alkalinity	370	0		
Total			400	0	

TOC	1009.27	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	35.00	Before purging	10/15/2024	15:48	21.11	988.16		0.0	
		After purging				1009.27			
		Top of Screen Janua	ary 1990			989.27			
						20.00	feet above (+) o	r below (-) top scr	reen
		Bottom of Well Janu	ary 1990			974.27			
		Bottom of Well	10/15/2024		33.90	975.37			
						1.10	feet sedimentati	on	
		Before Sampling				1009.27			
		Recovery				1009.27			
		Recovery				1009.27			
		Recovery				1009.27			
		Recovery				1009.27			

Monitoring Well: MW-85 (ug)

GENERAL INFORMATION

TOC	1039.27
Well Depth	72.07
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

10 1 01102 m211102				
TOC	1039.27			
Well Depth	72.07			
Top Screen	982.20			
Bottom Screen	967.20			
Bottom Well	967.20			
Sampler Length (ft)	4.00			
Sampler Volume (mL)	440.00			
Feet cordage	65.00			
Top sample	974.27			
Bottom sample	970.27			
Turbidity(NTU)	2.99			

Date	Time	Water Level	Water Elevation	Notes
10/15/2024	11:33	35.38	1003.89	

ANALYTES, CONTAINERS, AND VOLUMES

Analyte		Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		2.99
Appendix I	Metals	150	150		2.99
Appendix I	VOC	240	240		2.99
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental		946			
Supplemental	Minerals	370	0		
Total			400	0	

TOC	1039.27	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	72.07	Before purging	10/15/2024	11:33	35.38	1003.89		0.0	
		After purging				1039.27			
		Top of Screen Janua	ary 1990			982.20			
						57.07	feet above (+) o	r below (-) top scr	reen
		Bottom of Well Janu	ary 1990			967.20			
		Bottom of Well	10/15/2024		71.20	968.07			
						0.87	feet sedimentati	on	
		Before Sampling				1039.27			
		Recovery				1039.27			
		Recovery				1039.27			
		Recovery				1039.27			
		Recovery				1039.27			

Monitoring Well: MW-87 (dg)

GENERAL INFORMATION

TOC	964.2
Well Depth	21.58
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

	-
TOC	964.2
Well Depth	21.58
Top Screen	952.62
Bottom Screen	942.62
Bottom Well	942.62
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	15.00
Top sample	949.20
Bottom sample	945.20
Turbidity(NTU)	2.53

Date	Time	Water Level	Water Elevation	Notes
10/15/2024	15:36	7.98	956.22	•

ANALYTES, CONTAINERS, AND VOLUMES

Analyte		Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		2.53
Appendix I	Metals	150	150		2.53
Appendix I	VOC	240	240		2.53
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis 2	946			
Supplemental	Minerals	370	0		
Total			400	0	

TOC	964.2	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	21.58	Before purging	10/15/2024	15:36	7.98	956.22		0.0	
		After purging				964.20			
		Top of Screen Janu	ary 1990			952.62			
						11.58	feet above (+) or	r below (-) top scr	een
		Bottom of Well Janu	iary 1990			942.62			
		Bottom of Well	10/15/2024		21.00	943.20			
						0.58	feet sedimentation	on	
		Before Sampling				964.20			
		Recovery				964.20			
		Recovery				964.20			
		Recovery				964.20			
		Recovery				964.20			

Monitoring Well: MW-89 (dg)

GENERAL INFORMATION

CENTER ON CHARLES					
TOC	1012.79				
Well Depth	27.50				
Capped	YES				
Standing Water	NO				
Litter	NO				
Level Tape	Solinst 101				
NTU Meter	Hach 2100P				
No-Purge Equipment -	Solinst 429				
Purge Equipment -	Waterra				

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

TOC	1012.79
Well Depth	27.50
Top Screen	995.25
Bottom Screen	985.25
Bottom Well	985.25
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	22.00
Top sample	990.79
Bottom sample	986.79
Turbidity(NTU)	2.66

Date Time Water Level Water Elevation Notes 10/15/2024 15:20 8.75 1004.04

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		2.66
Appendix I	Metals	150	150		2.66
Appendix I	VOC	240	240		2.66
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis 2	946			
Supplemental	Minerals	370	0		
Total			400	0	

TOC	1012.79	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	27.50	Before purging	10/15/2024	15:20	8.75	1004.04		0.0	
		After purging				1012.79			
		Top of Screen Janu	ary 1990			995.25			
						17.54	feet above (+) or	r below (-) top scr	een
		Bottom of Well Janu	lary 1990			985.25			
		Bottom of Well	10/15/2024		27.30	985.49			
						0.24	feet sedimentation	on	
		Before Sampling				1012.79			
		Recovery				1012.79			
		Recovery				1012.79			
		Recovery				1012.79			
		Recovery				1012.79			

Monitoring Well: MW-91 (dg)

GENERAL INFORMATION

TOC	978.57
Well Depth	17.50
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

TOC	978.57
Well Depth	17.50
Top Screen	971.07
Bottom Screen	961.07
Bottom Well	961.07
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	12.00
Top sample	966.57
Bottom sample	962.57
Turbidity(NTU)	3.20

Date	Time	Water Level	Water Elevation	Notes
10/15/2024	15:09	11.50	967.07	

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		3.20
Appendix I	Metals	150	150		3.20
Appendix I	VOC	240	240		3.20
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis 2	946			
Supplemental	Minerals	370	0		
Total		-	400	0	

TOC	978.57	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	17.50	Before purging	10/15/2024	15:09	11.50	967.07		0.0	
		After purging				978.57		•	
		Top of Screen Janua	ary 1990			971.07			
						7.50	feet above (+) o	r below (-) top scr	reen
		Bottom of Well Janu	ary 1990			961.07			
		Bottom of Well	10/15/2024		17.00	961.57			
						0.50	feet sedimentati	on	
		Before Sampling				978.57			
		Recovery				978.57			
		Recovery				978.57			
		Recovery				978.57			
		Recovery				978.57			

Monitoring Well: MW-93 (dg)

GENERAL INFORMATION

TOC	921.91
Well Depth	22.25
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

TOC	921.91
Well Depth	22.25
Top Screen	909.74
Bottom Screen	899.74
Bottom Well	899.74
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	18.50
Top sample	903.41
Bottom sample	899.41
Turbidity(NTU)	3.49

Date	Time	Water Level	Water Elevation	Notes
10/15/2024	9.53	18 42	903 49	

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		3.49
Appendix I	Metals	150	150		3.49
Appendix I	VOC	240	240		3.49
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis 2	946			
Supplemental	Minerals	370	0		
Total			400	0	

RGE & SAMPLE	METHOD - Purge	by waterra inertia	ai Liπ Pump, then v	ven rest, then sam	ole collection				
TOC	921.91	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	22.25	Before purging	10/15/2024	9:53	18.42	903.49		0.0	
		After purging				921.91			
		Top of Screen Janua	ary 1990			909.74			
						12.17	feet above (+) o	r below (-) top sci	reen
		Bottom of Well Janu	ary 1990			899.74			
		Bottom of Well	10/15/2024		22.20	899.71			
						-0.03	feet sedimentati	on	
		Before Sampling				921.91			
		Recovery				921.91			
		Recovery				921.91			
		Recovery				921.91			
		Recovery				921.91			

Monitoring Well: MW-94 (dg)

GENERAL INFORMATION

SENERAL IN ORMATION					
TOC	1030.99				
Well Depth	27.85				
Capped	YES				
Standing Water	NO				
Litter	NO				
Level Tape	Solinst 101				
NTU Meter	Hach 2100P				
No-Purge Equipment -	Solinst 429				
Purge Equipment -	Waterra				

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

TOC	1030.99
Well Depth	27.85
Top Screen	1013.14
Bottom Screen	1003.14
Bottom Well	1003.14
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	22.00
Top sample	1008.99
Bottom sample	1004.99
Turbidity(NTU)	4.00

Date Time Water Level Water Elevation Notes 10/15/2024 12:03 16.10 1014.89

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		4.00
Appendix I	Metals	150	150		4.00
Appendix I	VOC	240	240		4.00
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis 2	946			
Supplemental	add VOC, alkalinity	370	0		
Total			400	0	

RGE & SAMPLE	EMETHOD - Purge b	iy waterra inertia	ii Lift Pump, then we	en rest, then samp	ne conection				
TOC	1030.99	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	27.85	Before purging	10/15/2024	12:03	16.10	1014.89		0.0	
		After purging				1030.99			
		Top of Screen Janua	ary 1990			1013.14			
						17.85	feet above (+) or	below (-) top scr	reen
		Bottom of Well Janu	ary 1990			1003.14			
		Bottom of Well	10/15/2024		27.50	1003.49			
						0.35	feet sedimentation	on	
		Before Sampling				1030.99			
		Recovery				1030.99			
		Recovery				1030.99			
		Recovery				1030.99			
		Recovery				1030.99			

Monitoring Well: MW-95 (dg)

GENERAL INFORMATION

<u> </u>	
TOC	973.55
Well Depth	23.39
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

NO I DIVOL METH	00
TOC	973.55
Well Depth	23.39
Top Screen	960.16
Bottom Screen	950.16
Bottom Well	950.16
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	18.00
Top sample	955.55
Bottom sample	951.55
Turbidity(NTU)	4.31

Date	Time	Water Level	Water Elevation	Notes	
10/15/2024	11.07	5 41	968 14		

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		4.31
Appendix I	Metals	150	150		4.31
Appendix I	VOC	240	240		4.31
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental		946			
Supplemental	Minerals	370	0		
Total			400	0	

TOC	973.55	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	23.39	Before purging	10/15/2024	11:07	5.41	968.14		0.0	
		After purging				973.55			
		Top of Screen Janua	ary 1990			960.16			
						13.39	feet above (+) o	r below (-) top scr	reen
		Bottom of Well Janu	ary 1990			950.16			
		Bottom of Well	10/15/2024		23.40	950.15			
						-0.01	feet sedimentati	on	
		Before Sampling				973.55			
		Recovery				973.55			
		Recovery				973.55			
		Recovery				973.55			
		Recovery				973.55			

Monitoring Well: MW-96R (dg)

GENERAL INFORMATION

OLIVE IVI OIVI	<i>17</i> 11 1 0 1 1
TOC	941.85
Well Depth	20.80
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

red

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

TOC	941.85
Well Depth	20.80
Top Screen	931.05
Bottom Screen	921.05
Bottom Well	921.05
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	15.00
Top sample	926.85
Bottom sample	922.85
Turbidity(NTU)	14.54

Time Water Level **Water Elevation** Notes Date 10/15/2024 13:59 13.81 928.04

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		14.54
Appendix I	Metals	150	150		14.54
Appendix I	VOC	240	240		14.54
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis 2	946			
Supplemental	Minerals	370	0		
Total		_	400	0	

TOC	941.85	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	20.80	Before purging	10/15/2024	13:59	13.81	928.04		0.0	
		After purging				941.85			
		Top of Screen Janu	ary 1990			931.05			
						10.80	feet above (+) o	r below (-) top scr	reen
		Bottom of Well Janu	uary 1990			921.05			
		Bottom of Well	10/15/2024		20.80	921.05			
						0.00	feet sedimentati	on	
		Before Sampling				941.85			
		Recovery				941.85			
		Recovery				941.85			
		Recovery				941.85			
		Recovery				941.85			

Monitoring Well: MW-97 (dg)

GENERAL INFORMATION

TOC	1015.38
Well Depth	37.10
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

110 1 OILOL MEIL	<u> </u>
TOC	1015.38
Well Depth	37.10
Top Screen	988.28
Bottom Screen	978.28
Bottom Well	978.28
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	31.00
Top sample	984.38
Bottom sample	980.38
Turbidity(NTU)	1.95

Date	Time	Water Level	Water Elevation	Notes
10/15/2024	11:49	14.15	1001.23	

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		1.95
Appendix I	Metals	150	150		1.95
Appendix I	VOC	240	240		1.95
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis2	946			
Supplemental	Minerals	370	0		
Total		-	400	0	

TOC	1015.38	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	37.10	Before purging	10/15/2024	11:49	14.15	1001.23		0.0	
		After purging				1015.38		•	•
		Top of Screen Janua	ary 1990			988.28			
						27.10	feet above (+) o	r below (-) top scr	reen
		Bottom of Well Janu	ary 1990			978.28			
		Bottom of Well	10/15/2024		36.80	978.58			
						0.30	feet sedimentati	on	
		Before Sampling				1015.38			
		Recovery				1015.38			
		Recovery				1015.38			
		Recovery				1015.38		•	•
		Recovery				1015.38			

Monitoring Well: MW- 98 (up)

GENERAL INFORMATION

TOC	953.24
Well Depth	21.65
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

TOC	953.24
Well Depth	21.65
Top Screen	941.81
Bottom Screen	931.81
Bottom Well	931.59
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	15.50
Top sample	937.74
Bottom sample	933.74
Turbidity(NTU)	6.06

Time Water Level **Water Elevation** Notes Date 946.48 10/15/2024 14:53 6.76

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		6.06
Appendix I	Metals	150	150		6.06
Appendix I	VOC	240	240		6.06
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis2	946			
Supplemental		370	0		
Total		_	400	0	_

TOC	953.24	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	21.65	Before purging	10/15/2024	14:53	6.76	946.48		0.0	
		After purging				953.24			
		Top of Screen Janu	ary 1990			941.81			
						11.43	feet above (+) o	r below (-) top scr	reen
		Bottom of Well Janu	uary 1990			931.59			
		Bottom of Well	10/15/2024		21.65	931.59			
						0.00	feet sedimentati	on	
		Before Sampling				953.24			
		Recovery				953.24			
		Recovery				953.24			
		Recovery				953.24			
		Recovery				953.24			

Monitoring Well: MW-99 (up)

GENERAL INFORMATION

TOC	913.98
Well Depth	21.90
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

	
TOC	913.98
Well Depth	21.90
Top Screen	902.35
Bottom Screen	892.35
Bottom Well	892.08
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	16.00
Top sample	897.98
Bottom sample	893.98
Turbidity(NTU)	3.34

Date	Time	Water Level	Water Elevation	Notes
10/15/2024	10:10	11.74	902.24	

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		3.34
Appendix I	Metals	150	150		3.34
Appendix I	VOC	240	240		3.34
Full Appendix II	10 more containers	5620			
TSS	TSS	1000			
Supplemental	bis2	946			
Supplemental		370	0		
Total			400	0	

RGE & SAMPLE	: METHOD - Purge	e by waterra inertia	ai Liπ Pump, then w	ren rest, then samp	ole collection				
TOC	913.98	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	21.90	Before purging	10/15/2024	10:10	11.74	902.24		0.0	
		After purging				913.98			
		Top of Screen Janu	ary 1990			902.35			
						11.63	feet above (+) o	r below (-) top scr	reen
		Bottom of Well Janu	ary 1990			892.08			
		Bottom of Well	10/15/2024		21.90	892.08			
						0.00	feet sedimentati	on	
		Before Sampling				913.98			
		Recovery				913.98			
		Recovery				913.98			
		Recovery				913.98			
		Recovery				913.98			

MARSHALL COUNTY SANITARY LANDFILL

PERMIT # 64-SDP-2-75P

10/15/2024 Sampled by: Todd Whipple Weather Conditions: Sunny breezy 40-57 degrees

IDNR Form 542-1324

	Date	Time	Туре	Flowing	Quantity	Discolored	Odor	Litter	1
SRAMP B	10/15/2024		Tile Outlet	No	Dry	No	No	No	l

NTU	рН	Conductivity	Temp.(C)

IDNR Form 542-1324

	Date	Time	Туре	Flowing	Quantity	Discolored	Odor	Litter	ĺ
PECS B	10/15/2024		Surface Water	No	Dry	No	No	No	1

NIU	рН	Conductivity	Temp.(C)

Appendix B Statistical Reports

Appendix B.1 – Spring Statistical Evaluation Report

GROUND WATER STATISTICS

FOR THE

MARSHALL COUNTY SANITARY LANDFILL

First Semi-Annual Monitoring Event in 2024

Prepared for:

Marshall County Sanitary Landfill
2313 Marshalltown Blvd.

Marshalltown, Marshall County, IA 50158

Prepared by:
Jeffrey A. Holmgren
Otter Creek Environmental Services, LLC
40W565 Foxwick Court
Elgin, IL 60124
(847) 464-1355

May 2024

INTRODUCTION

This report summarizes the results of the statistical analysis used to evaluate the ground water quality data obtained during the first semi-annual monitoring event in 2024 at the Marshall County Sanitary Landfill in Marshall County, Iowa. The statistical plan was designed to detect a release from the facility at the earliest indication so that it is protective of human health and the environment. The interwell method is described and then applied to the Marshall County Landfill data. The statistical plan conforms with IAC 567, Chapter 113.10 and the USEPA Unified Guidance document ("Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities", March 2009).

Ground Water Monitoring Program

The groundwater monitoring network for Marshall County Sanitary Landfill includes upgradient wells MW-66, MW-85, MW-98, and MW-99 and downgradient detection sample points GU-2, GU-3, MW-49, MW-54, MW-81, MW-87, MW-89, MW-91, MW-93, MW-94, MW-95, MW-96(R), and MW-97. Detections of volatile organic compounds (VOCs) at wells along the north and west edges of the facility prompted a site remedial and mitigating action plan (SRAMP). Wells MW-89, MW-91, and MW-87 were installed to monitor the effectiveness of the SRAMP. Monitoring well MW-93 was installed adjacent to the leachate holding lagoon. Each of the groundwater monitoring wells is to be sampled at least semiannually and analyzed for the detection monitoring parameters listed in 113.10(5), which includes 15 inorganic constituents and 47 organic compounds, summarized in Table 1 below.

Table 1: Detection monitoring constituents listed in Appendix I of IAC 567, Chapter 113.

Organic Compounds:

Acetone trans-1.4-Dichloro-2-butene Iodomethane Acrylonitrile 1,1-Dichloroethane 4-Methyl-2-pentanone Benzene 1.2-Dichloroethane Styrene Bromochloromethane 1.1-Dichloroethene 1,1,1,2-Tetrachloroethane cis-1.2-Dichloroethene 1.1.2.2-Tetrachloroethane Bromodichloromethane trans-1,2-Dichloroethene Tetrachloroethene Bromoform 1.2-Dichloropropane Carbon disulfide Toluene Carbon tetrachloride cis-1,3-Dichloropropene 1,1,1-Trichloroethane trans-1,3-Dichloropropene 1.1.2-Trichloroethane Chlorobenzene Chloroethane Ethylbenzene Trichloroethene Chloroform 2-Hexanone Trichlorofluoromethane Dibromochloromethane Bromomethane 1,2,3-Trichloropropane 1.2-Dibromo-3-chloropropane Chloromethane Vinvl acetate 1,2-Dibromoethane Dibromomethane Vinyl chloride 1.2-Dichlorobenzene Methylene chloride Xylenes (Total) 1,4-Dichlorobenzene 2-Butanone

Inorganic constituents:

Antimony, Total Chromium, Total Selenium, Total Arsenic, Total Cobalt, Total Silver, Total Silver, Total Barium, Total Copper, Total Cadmium, Total Lead, Total Vanadium, Total Cadmium, Total Nickel, Total Zinc, Total

The ground water data obtained during the first semi-annual monitoring event in 2024 are summarized in Attachment A.

STATISTICAL METHODOLOGIES FOR DETECTION MONITORING

IAC 567, Chapter 113.10(4) provides several options for statistically evaluating the ground water data at those wells that monitor the open cells or contiguous MSWLF units. The preferred methods for comparing ground water data are using either prediction limits or using control charts. The interwell method was applied to the Marshall County Landfill data using the DUMPStat® statistical program. Ground water statistics are to be done on the inorganic constituents listed. The organic constituents are compared to maximum contaminant levels (MCLs) or practical quantitation limits (PQLs), in lieu of statistical comparisons to historical concentrations.

Interwell Statistics: Upgradient versus Downgradient Comparisons

Interwell statistics are appropriate when the upgradient and downgradient wells monitor the same ground water formation and there is similar variability in the upgradient and downgradient zones. Site prediction limits are determined by pooling the historical ground water data from hydraulically upgradient wells. This statistical method compares the current downgradient determinations to site prediction limits and checks for exceedances. The type of prediction limit utilized (e.g., parametric or nonparametric) is based on the detection frequency and the data distribution of each parameter in the background data. The distribution of the background data is tested for normality using the Shapiro-Wilk test (Gibbons, 1994 and USEPA 1992). If the constituent is normally distributed, a normal prediction limit is used. If normality is rejected by the Shapiro-Wilk test, the background data is transformed by taking the natural logarithm. The Shapiro-Wilk test is then reapplied on the transformed data. If it is not rejected, lognormal prediction limits are used. If after transforming the data, normality is still rejected, nonparametric prediction limits are used for that analyte. The nonparametric prediction limit is the largest determination in the background measurements. For constituents where the background detection frequency is greater than 0% but less than 50%, nonparametric prediction limits will be used. If the detection frequency is 0% after thirteen samples have been collected, the practical quantitation limit (PQL) becomes the nonparametric prediction limit.

Results of the Interwell Statistics

The background data used in this statistical analysis includes the ground water data collected from ground water wells MW-66, MW-85, MW-98, and MW-99 during the period from October 2014 through the current data. A summary of the background data from monitoring wells MW-66, MW-85, MW-98, and MW-99, used to determine the site prediction limits, is listed in Attachment B, Table 1 "Upgradient Data". This statistical method compares the current downgradient determinations to site prediction limits and checks for exceedances. Table 2 "Most Current Downgradient Monitoring Data", summarizes the current data from downgradient wells MW-87, MW-89, MW-91, MW-93, MW-95, and MW-97 compared to the site prediction limits. Prediction limit exceedances are flagged with asterisks.

For the data obtained during the first semi-annual monitoring event in 2024, the site prediction limit exceedances detected are summarized in the table below.

Trace Metal Prediction Limit Exceedance	s During the First Semi-	Annual Monitoring Event in 2024

Well	Trace Metal Detected	Result, μg/L	Prediction Limit, μg/L	Prediction Limit Type	Verified/ Awaiting Verification
	Arsenic	11.9	7.8000	Nonparametric	Verified
MW-93	Cobalt	9.8	6.0584	Normal	Verified
	Nickel	25.5	8.8000	Nonparametric	Verified
MW-97	Copper	7.1	5.3000	Nonparametric	Awaiting Verification

The detection frequencies of the parameters in the up and down gradient monitoring wells are summarized in Table 3. Excluding barium and cobalt, these constituents are rarely detected in the upgradient wells. With the detection frequencies being less than 50% for all but barium and cobalt, nonparametric site prediction limits are used for those trace metals. Table 4 summarizes the results of the Shapiro-Wilk test. Table 5 is a summary of the statistics and prediction limits determined for the metals. Time series graphs of each of the parameters at each well with the corresponding prediction limits are attached.

A statistical power curve indicates the expected false assessments for the site as a whole. The false positive rate for interwell analyses is the percentage of failures when the upgradient versus downgradient true mean difference equals zero. False negative rate indicates the chance of missing contamination at a single well for a single constituent. The statistical power is a function of the number of wells included, the number of constituents compared, the detection frequencies, and the data distributions involved. For interwell analysis, the site-wide false positive rate is 1% and the test becomes sensitive to 3 standard deviation unit increases over background.

The verified metals exceedances were evaluated against the ground water protection standards (GWPS) using confidence limits calculated in accordance with the Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, USEPA, March 2009 (Attachment C). The analysis was conducted to evaluate whether verified concentrations are significantly above the water quality standard. The 95% lower confidence limit (LCL) for the mean of the historical data was used to evaluate whether the regulated unit is in compliance with the ground-water protection standards under 40 CFR 264 (e.g. whether the verified constituent is detected at a significant level above the GWPS). An exceedance is verified if the LCL is above the Regulatory GWPS.

The 95% LCL for cobalt at MW-93 (8.160 μ g/L) exceeds the Iowa Statewide Standard of 2.1 μ g/L. The remainder of the calculated 95% LCLs are below the respective GWPS.

Supplemental Wells

Monitoring wells MW-49, MW-54, MW-81, MW-94, and MW-96R are now designated as supplemental wells, where only trend analysis is required. The data for each well is tested for existing trends using Sen's nonparametric estimate of trend (Attachment D). An increasing trend was identified for arsenic at MW-94. Decreasing trends were identified for nickel at MW-54, nickel at MW-94, and barium at MW96R.

Intrawell statistics

Because MW-93 monitors a leachate storage lagoon, the current data was also compared to background using intrawell statistics. Intrawell statistics are appropriate for facilities where the upgradient wells do not accurately characterize the natural ground water conditions downgradient from the facility. This may be due to different hydrogeological conditions where the wells are screened, having too few upgradient wells to account for the spatial variability, or the site exhibiting no definable hydraulic gradient. Intrawell statistics compare new measurements to the historical data at each ground water monitoring well independently. It is recommended that at least eight background samples be obtained prior to performing the statistics.

The most useful technique for intrawell comparisons is the combined Shewhart-CUSUM control chart. This control chart procedure is useful because it will detect releases both in terms of the constituent concentration and cumulative increases. This method is also extremely sensitive to sudden and gradual releases. A requirement for constructing these control charts is that the parameter is detected at a frequency greater than or equal to 25%, otherwise the data variance is not properly defined.

The combined Shewhart-CUSUM control chart assumes that the data are independent and normally distributed with a fixed mean and a constant variance. Independent data is much more critical than the normality assumption. To achieve independence, it is recommended that data are collected no more frequently than quarterly to account for seasonal variation. The combined Shewhart-CUSUM control chart is extremely robust to deviations from normality. Because the control charts do not use a specific multiplier based on a normal distribution, it is more conservative to assume normality.

It is recommended that at least eight rounds of data be available to provide a reliable estimate of the mean and standard deviation of the parameter concentration, although the control charts will be generated with as few as four data points. Having only four data points may produce greater uncertainty in the mean and standard deviation of the background data, leading to higher control limits, thus having a potentially high false negative rate.

Many groundwater monitoring parameters are not detected at a frequency great enough to generate the combined Shewhart-CUSUM control charts. For constituents that are detected less than 25% of the time at a particular well, the data should be plotted as a time series until a sufficient number of data points are available to provide a 99% confidence nonparametric prediction limit. Thirteen independent measurements (with 1 resample) are necessary to achieve a 99% confidence (1% false positive rate) nonparametric prediction limit. Eight independent measurements (for pass 1 of 2 resamples) are necessary to achieve a 99% confidence nonparametric prediction limit. The nonparametric prediction limit is the largest determination out of the data set collected for that well and parameter. If the detection frequency is 0% after thirteen samples have been collected, the practical quantitation limit (PQL) becomes the nonparametric prediction limit.

In developing the statistical background, the historical data must be thoroughly screened for anomalous data due to sampling error, analytical error, or simply by chance alone. An erroneous data point, if not removed prior to the mean and variance computations, would yield a larger control limit thus increasing the false negative rate. The DUMPStat® program screens for outliers using the Dixon test. If the Dixon test indicates an outlier, the value is compared to three times the median value for intrawell analyses. If the

value fails both criteria of the two-stage screening, the value is considered a statistical outlier and will not be used in the mean and variance determinations. Anomalous data will still be plotted on the graphs (with a unique symbol) but will not be included in the calculations.

The verification resample plan is an integral function of the statistical plan to reduce the probability that anomalous data obtained after the background has been established, is indicative of a landfill release.

The background data for each well and constituent is tested for existing trends using Sen's nonparametric estimate of trend. If contamination exists prior to completing the background, the control limits could be potentially high and this control chart method would not be able to detect an increasing trend unless the increase is severe.

Results of the Intrawell Statistics

The Appendix I trace metals data from well MW-93 were evaluated using the combined Shewhart-CUSUM control chart method. The previous background included the data obtained from October 2014 through April 2018. As ground water monitoring at a municipal solid waste facility proceeds, it is recommended to update background data sets periodically with valid detection monitoring results that are representative of background groundwater quality not affected by leakage from a monitored unit. Failure to update background will exclude factors such as natural temporal variation, changes in field or laboratory methodologies, and changes in the water table due to meteorological conditions or other influences. Ongoing operations at a facility such as excavations or drainage control may affect the ground water flow direction and water quality. An increase in the number of statistical failures, not related to the landfill, is routinely observed for sites neglecting to update the statistical background with valid data points.

Since there were no exceedances attributed to the lagoon and also that there was insufficient background to determine nonparametric limits, the background was updated to include data collected from October 2014 through 2020.

A summary of the intrawell statistics is included in Attachment E, Table 1 "Summary Statistics and Intermediate Computations for Combined Shewhart-CUSUM Control Charts." The control charts or time series graphs follow the summary table.

For the parameters compared to background, there were no control limit exceedances detected. No increasing trends were detected in the background data.

A control chart factor was selected to provide a balance of the site-wide false positive and false negative rates. A statistical power curve indicates the expected false assessments for the site as a whole. For intrawell analysis, the site-wide false positive rate is 5% and the test becomes sensitive to 3 standard deviation units over background.

Volatile Organic Compounds

Volatile Organic Compounds (VOCs) are generally man-made compounds not present in ambient ground water. If VOCs are detected above their statistical limit (i.e., the laboratory PQL or reporting limit), a verification resample will be conducted at the next scheduled sampling event. A statistical exceedance will

be indicated if the VOC detection is confirmed by the subsequent monitoring. VOCs detected in the ground water at Marshall County Landfill during the first semi-annual monitoring event in 2024 monitoring are summarized below.

VOCs Detected During the First Semi-Annual Monitoring Event in 2024

Well	VOC Detected	Result, μg/L	Reporting Limit, μg/L	Verified or Awaiting Verification	Ground Water Standard
	1,1-Dichloroethane	1.1	1	Verified	140 ^b
MW-49	1,4-Dichlorobenzene	3.3	1	Verified	75ª
W -49	Chloroethane	4.6	1	Verified	2800 ^b
	cis-1,2-Dichloroethene	2.4	1	Verified	70ª
MW-54	1,4-Dichlorobenzene	2.3	1	Verified	75ª
	1,1-Dichloroethane	28.2	1	Verified	140 ^b
	1,2-Dichloroethane	12.3	1	Verified	5ª
	1,2-Dichloropropane	6.5	1	Verified	5ª
	1,4-Dichlorobenzene	4.7	1	Verified	75ª
MW-81	Chlorobenzene	1.7	1	Verified	100ª
MW-81	Chloroethane	6.8	1	Verified	2800 ^b
	cis-1,2-Dichloroethene	164	1	Verified	70ª
	trans-1,2-Dichloroethene	2.2	1	Verified	100ª
	Trichloroethene	1.4	1	Verified	5ª
	Vinyl chloride	6.8	1	Verified	2ª
	1,1-Dichloroethane	1.3	1	Verified	140 ^b
	1,2-Dichloropropane	1.1	1	Verified	5 ^a
N 6777 O 4	Benzene	2.0	1	Verified	75ª
MW-94	Chloroethane	4.3	1	Verified	2800 ^b
	cis-1,2-Dichloroethene	5.2	1	Verified	70ª
	Vinyl chloride	2.2	1	Verified	2ª

a - USEPA MCL

This table indicates that these VOCs are generally verified detections. A site remedial and mitigating action plan was implemented due to the presence of these VOCs. Historical VOC detections are summarized in Attachment F.

The verified VOC detections were evaluated against the ground water protection standards (GWPS) using confidence limits calculated in accordance with the Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, USEPA, March 2009 (Attachment G).

b – Iowa Statewide Standard

The 95% LCL for 1,2-dichloropropane at MW-81 (7.623 μ g/L) exceeds the USEPA MCL of 5 μ g/L. The 95% LCL for *cis*-1,2-dichloroethene at MW-81 (135.323 μ g/L) exceeds the USEPA MCL of 70 μ g/L. The 95% LCL for vinyl chloride at MW-81 (6.454 μ g/L) exceeds the USEPA MCL of 2 μ g/L.

The remainder of the verified VOC detections are statistically below the respective ground water quality standards.

Attachment A

Summary of the Data obtained during the First Semi-Annual Monitoring Event in 2024

Table 1

Analytical Data Summary for 4/16/2024 to 4/18/2024

Constituents	Units	MW-49	MW-54	MW-81	MW-85	MW-87	MW-89	MW-91	MW-93	MW-94	MW-95	MW-96R
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L	1.1	<1.0	28.2	<1.0	<1.0	<1.0	<1.0	<1.0	1.3	<1.0	<1.0
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1.2-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L	<1.0	<1.0	12.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloropropane	ug/L	<1.0	<1.0	6.5	<1.0	<1.0	<1.0	<1.0	<1.0	1.1	<1.0	<1.0
1,4-dichlorobenzene	ug/L	3.3	2.3	4.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-butanone (mek)	ug/L	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Acetone (mibk)	ug/L	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
		<5	<5	<5		<5				<5	<5	<5
Acrylonitrile	ug/L	652	512	<5 886	<5	<5	<5	<5	<5	698	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ <u>`</u>
Alkalinity, as caco3	mg/L				-0	-0	-0	<2	-0			
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2		<2 11.0	<2 05.0	<2	<2
Arsenic, total	ug/L	53.7	4.8	6.8	<4.0	<4.0	<4.0	<4.0	11.9	95.9	<4.0	<4.0
Barium, total	ug/L	429.0	449.0	1940.0	144.0	117.0	240.0	186.0	243.0	308.0	42.7	124.0
Benzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	2	<1	<1
Beryllium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Bromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	ug/L	.9	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzene	ug/L	<1.0	<1.0	1.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	ug/L	4.6	<1.0	6.8	<1.0	<1.0	<1.0	<1.0	<1.0	4.3	<1.0	<1.0
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	ug/L	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	ug/L	2.4	<1.0	164.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.2	<1.0	<1.0
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	ug/L	5.8	10.6	10.5	.4	<.4	<.4	<.4	9.8	10.2	<.4	1.8
Copper, total	ug/L	7.5	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Nickel, total	ug/L	16.2	22.4	13.4	<4.0	<4.0	<4.0	<4.0	25.5	9.2	<4.0	5.3
pH	pH	6.5	6.7	6.6	- 1.0	- 1.0	1.0		20.0	6.6		0.0
Selenium, total	ug/L	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	7.4
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Tetrachloroethylene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	ug/L ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Toluene	ug/L ug/L	<1	<1	<1	<1	< <u>1</u>	<1	<1	<1	<1	<1	<1 <1
Trans-1,2-dichloroethylene	ug/L ug/L	<1.0	<1.0	2.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trans-1,3-dichloropropene	ug/L ug/L	<1	<1	2.2 <1	<1	<1.0	<1.0	<1	<1	<1.0	<1.0	<1.0
Trans-1,4-dichloro-2-butene	ug/L ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
II '	ug/L	<1.0	<1.0			<1.0	<1.0				<1.0	<1.0
Trichloroethylene	ug/L			1.4	<1.0				<1.0	<1.0		
Trichlorofluoromethane	ug/L	<1	<1	<1 <20	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl chloride	ug/L	<1.0	<1.0	6.8	<1.0	<1.0	<1.0	<1.0	<1.0	2.2	<1.0	<1.0
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	ug/L	22.7	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	21.4	<20.0	<20.0	<20.0

 $^{^{\}star}$ - The displayed value is the arithmetic mean of multiple database matches.

Table 1

Analytical Data Summary for 4/16/2024 to 4/18/2024

0	MAY 07	MANA/ 00	NAVA 00	CD AMD D
Constituents	MW-97	MW-98	MW-99	SRAMP B
1,1,1,2-tetrachloroethane	<1	<1	<1 <1	<1
1,1,1-trichloroethane 1,1,2,2-tetrachloroethane	<1 <1	<1 <1	<1	<1 <1
1,1,2-trichloroethane	<1	<1	<1	<1
1,1-dichloroethane	<1.0	<1.0	<1.0	<1.0
1,1-dichloroethylene	<1	<1	<1	<1
1,2,3-trichloropropane	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	<5	<5	<5	<5
1,2-dibromoethane	<1	<1	<1	<1
1,2-dichlorobenzene	<1	<1	<1	<1
1,2-dichloroethane	<1.0	<1.0	<1.0	<1.0
1,2-dichloropropane	<1.0	<1.0	<1.0	<1.0
1,4-dichlorobenzene 2-butanone (mek)	<1.0	<1.0 <10	<1.0 <10	<1.0
2-hexanone (mbk)	<10 <5	<10 <5	<5	<10 <5
4-methyl-2-pentanone (mibk)	<5 <5	<5	<5	<5
Acetone	<10	<10	<10	<10
Acrylonitrile	<5	<5	<5	<5
Alkalinity, as caco3				
Antimony, total	<2	<2	<2	<2
Arsenic, total	<4.0	48.0	<4.0	<4.0
Barium, total	315.0	325.0	164.0	16.1
Benzene	<1	<1	<1	<1
Beryllium, total	<4	<4	<4	<4
Bromochloromethane Bromodichloromethane	<1 <1	<1 <1	<1 <1	<1 <1
Bromoform	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1
Cadmium, total	<.8	<.8	<.8	<.8
Carbon disulfide	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1
Chlorobenzene	<1.0	<1.0	<1.0	<1.0
Chloroethane	<1.0	<1.0	<1.0	<1.0
Chloroform	<1	<1	<1	<1
Chromethane	<1	<1	<1	<1
Chromium, total Cis-1,2-dichloroethylene	<8 <1.0	<8 <1.0	<8 <1.0	<8 <1.0
Cis-1,3-dichloropropene	<1	<1	<1	<1.0
Cobalt, total	<.4	4.7	4.1	<.4
Copper, total	7.1	<4.0	<4.0	<4.0
Dibromochloromethane	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1
Ethylbenzene	<1	<1	<1	<1
Lead, total	<4	<4	<4	<4
Methyl iodide	<1	<1	<1	<1
Methylene chloride Nickel, total	<5 <4.0	<5 <4.0	<5 6.3	<5 <4.0
pH	\4.0	\4.0	0.5	٧4.0
Selenium, total	<4.0	<4.0	<4.0	<4.0
Silver, total	<4	<4	<4	<4
Styrene	<1	<1	<1	<1
Tetrachloroethylene	<1	<1	<1	<1
Thallium, total	<2	<2	<2	<2
Toluene	<1	<1	<1	<1
Trans-1,2-dichloroethylene	<1.0	<1.0	<1.0	<1.0
Trans-1,3-dichloropropene Trans-1,4-dichloro-2-butene	<1 <5	<1 <5	<1 <5	<1 <5
Trichloroethylene	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	<1.0	<1.0	<1.0	<1.0
Vanadium, total	<20	<20	<20	<20
Vinyl acetate	<5	<5	<5	<5
Vinyl chloride	<1.0	<1.0	<1.0	<1.0
Xylenes, total	<2	<2	<2	<2 <20.0
Zinc, total	<20.0	<20.0	<20.0	

 $^{^{\}star}$ - The displayed value is the arithmetic mean of multiple database matches.

Attachment B

Summary Tables and Graphs for the Interwell Comparisons

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Antimony, total	ug/L	MW-66	10/16/2014	ND	2.0000		
Antimony, total	ug/L	MW-66	01/14/2015	ND	2.0000		
Antimony, total	ug/L	MW-66	04/03/2015	ND	2.0000		
Antimony, total	ug/L	MW-66	07/06/2015	ND	2.0000		
Antimony, total	ug/L	MW-66	10/01/2015	ND	2.0000		
Antimony, total	ug/L	MW-66	04/14/2016	ND	2.0000		
Antimony, total	ug/L	MW-66	10/13/2016	ND	2.0000		
Antimony, total	ug/L	MW-66	04/10/2017	ND	2.0000		
Arsenic, total	ug/L	MW-66	10/16/2014	ND	4.0000		
Arsenic, total	ug/L	MW-66	01/14/2015	ND	4.0000		
Arsenic, total	ug/L	MW-66 MW-66	04/03/2015	ND ND	4.0000		
Arsenic, total Arsenic, total	ug/L ug/L	MW-66	07/06/2015 10/01/2015	ND	4.0000 4.0000		
Arsenic, total	ug/L ug/L	MW-66	04/14/2016	ND	4.0000		
Arsenic, total	ug/L ug/L	MW-66	10/13/2016	ND	4.0000		
Arsenic, total	ug/L ug/L	MW-66	04/10/2017	ND	4.0000		
Barium, total	ug/L	MW-66	10/16/2014	IND	325.0000		
Barium, total	ug/L	MW-66	01/14/2015		412.0000		
Barium, total	ug/L	MW-66	04/03/2015		524.0000		
Barium, total	ug/L	MW-66	07/06/2015		560.0000		
Barium, total	ug/L	MW-66	10/01/2015		612.0000		
Barium, total	ug/L	MW-66	04/14/2016		395.0000		
Barium, total	ug/L	MW-66	10/13/2016		413.0000		
Barium, total	ug/L	MW-66	04/10/2017		371.0000		
Beryllium, total	ug/L	MW-66	10/16/2014	ND	4.0000		
Beryllium, total	ug/L	MW-66	01/14/2015	ND	4.0000		
Beryllium, total	ug/L	MW-66	04/03/2015	ND	4.0000		
Beryllium, total	ug/L	MW-66	07/06/2015	ND	4.0000		
Beryllium, total	ug/L	MW-66	10/01/2015	ND	4.0000		
Beryllium, total	ug/L	MW-66	04/14/2016	ND	4.0000		
Beryllium, total	ug/L	MW-66	10/13/2016	ND	4.0000		
Beryllium, total	ug/L	MW-66	04/10/2017	ND	4.0000		
Cadmium, total	ug/L	MW-66	10/16/2014	ND	0.8000		
Cadmium, total	ug/L	MW-66	01/14/2015	ND	0.8000		
Cadmium, total	ug/L	MW-66	04/03/2015	ND	0.8000		
Cadmium, total	ug/L	MW-66	07/06/2015	ND	0.8000		
Cadmium, total	ug/L	MW-66	10/01/2015	ND	0.8000		
Cadmium, total	ug/L	MW-66	04/14/2016	ND	0.8000		
Cadmium, total	ug/L	MW-66	10/13/2016	ND	0.8000		
Cadmium, total	ug/L	MW-66	04/10/2017	ND	0.8000		
Chromium, total	ug/L	MW-66	10/16/2014	ND	8.0000		
Chromium, total	ug/L	MW-66	01/14/2015	ND	8.0000		
Chromium, total	ug/L	MW-66	04/03/2015	ND	8.0000		
Chromium, total	ug/L	MW-66	07/06/2015	ND	8.0000		
Chromium, total	ug/L	MW-66	10/01/2015	ND	8.0000		
Chromium, total	ug/L	MW-66	04/14/2016	ND ND	8.0000		
Chromium, total	ug/L	MW-66	10/13/2016		8.0000		
Cobalt total	ug/L	MW-66 MW-66	04/10/2017	ND ND	0.0000		
Cobalt, total	ug/L ug/L	MW-66	10/16/2014 01/14/2015	ND ND	0.8000 0.8000		
Cobalt, total	ug/L ug/L	MW-66	04/03/2015	ND	0.8000		
Cobalt, total	ug/L ug/L	MW-66	07/06/2015	ND	0.8000		
Cobalt, total	ug/L ug/L	MW-66	10/01/2015	ND	0.8000		
Cobalt, total	ug/L	MW-66	04/14/2016	ND	0.8000		
Cobalt, total	ug/L	MW-66	10/13/2016		0.9000		
Cobalt, total	ug/L	MW-66	04/10/2017	ND	0.8000		
Copper, total	ug/L	MW-66	10/16/2014	ND	4.0000		
Copper, total	ug/L	MW-66	01/14/2015	ND	4.0000		
Copper, total	ug/L	MW-66	04/03/2015	ND	4.0000		
Copper, total	ug/L	MW-66	07/06/2015	ND	4.0000		
Copper, total	ug/L	MW-66	10/01/2015	ND	4.0000		
Copper, total	ug/L	MW-66	04/14/2016	ND	4.0000		
Copper, total	ug/L	MW-66	10/13/2016	ND	4.0000		
Copper, total	ug/L	MW-66	04/10/2017	ND	4.0000		
Lead, total	ug/L	MW-66	10/16/2014	ND	4.0000		
Lead, total	ug/L	MW-66	01/14/2015	ND	4.0000		
Lead, total	ug/L	MW-66	04/03/2015	ND	4.0000		
Lead, total	ug/L	MW-66	07/06/2015	ND	4.0000		
Lead, total	ug/L	MW-66	10/01/2015	ND	4.0000		
Lead, total	ug/L	MW-66	04/14/2016	ND	4.0000		
Lead, total	ug/L	MW-66	10/13/2016	ND	4.0000		
Lead, total	ug/L	MW-66	04/10/2017	ND	4.0000		
Nickel, total	ug/L	MW-66	10/16/2014	ND	4.0000		
Nickel, total	ug/L	MW-66	01/14/2015	ND	4.0000		

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Nickel, total	ug/L	MW-66	04/03/2015	ND	4.0000		
Nickel, total	ug/L	MW-66	07/06/2015	ND	4.0000		
Nickel, total	ug/L	MW-66	10/01/2015	ND	4.0000		
Nickel, total	ug/L	MW-66	04/14/2016	ND	4.0000		
Nickel, total	ug/L	MW-66	10/13/2016	ND	4.0000		
Nickel, total	ug/L	MW-66	04/10/2017	ND	4.0000		
Selenium, total	ug/L	MW-66	10/16/2014	ND	4.0000		
Selenium, total	ug/L	MW-66	01/14/2015	ND	4.0000		
Selenium, total	ug/L	MW-66	04/03/2015	ND	4.0000		
Selenium, total	ug/L	MW-66	07/06/2015	ND	4.0000		
Selenium, total	ug/L	MW-66	10/01/2015	ND	4.0000 4.0000		
Selenium, total	ug/L	MW-66	04/14/2016	ND			
Selenium, total	ug/L	MW-66	10/13/2016	ND	4.0000		
Selenium, total	ug/L	MW-66 MW-66	04/10/2017 10/16/2014	ND ND	4.0000		
Silver, total	ug/L	MW-66		ND	4.0000		
Silver, total	ug/L	MW-66	01/14/2015	ND	4.0000		
Silver, total	ug/L	MW-66	04/03/2015	ND	4.0000		
Silver, total	ug/L	MW-66	07/06/2015	1 1	4.0000		
Silver, total	ug/L	MW-66	10/01/2015	ND ND	4.0000		
Silver, total	ug/L	1	04/14/2016	1 1	4.0000		
Silver, total	ug/L	MW-66 MW-66	10/13/2016	ND	4.0000		
Silver, total Thallium, total	ug/L ug/L	MW-66	04/10/2017 10/16/2014	ND ND	4.0000 4.0000	2.0000	**
Thallium, total	ug/L ug/L	MW-66	01/14/2015	ND	4.0000	2.0000	**
Thallium, total	ug/L ug/L	MW-66	04/03/2015	ND	4.0000	2.0000	**
Thallium, total		MW-66	07/06/2015	ND	4.0000	2.0000	**
Thallium, total	ug/L ug/L	MW-66	10/01/2015	ND	1.0000	2.0000	**
Thallium, total	ug/L ug/L	MW-66	04/14/2016	ND	4.0000	2.0000	**
Thallium, total	ug/L ug/L	MW-66	10/13/2016	ND	4.0000	2.0000	**
Thallium, total	ug/L ug/L	MW-66	04/10/2017	ND	4.0000	2.0000	**
Vanadium, total	ug/L	MW-66	10/16/2014	ND	20.0000	2.0000	
Vanadium, total	ug/L ug/L	MW-66	01/14/2015	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-66	04/03/2015	ND	20.0000		
		MW-66	07/06/2015	ND	I		
Vanadium, total	ug/L	MW-66	10/01/2015	ND	20.0000 20.0000		
Vanadium, total	ug/L	MW-66		ND	20.0000		
Vanadium, total Vanadium, total	ug/L	MW-66	04/14/2016 10/13/2016	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-66	04/10/2017	ND	20.0000		
Zinc, total	ug/L	MW-66	10/16/2014	ND	20.0000		
Zinc, total	ug/L ug/L	MW-66	01/14/2015	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-66	04/03/2015	IND	54.6000	20.0000	
Zinc, total	ug/L	MW-66	07/06/2015	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-66	10/01/2015	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-66	04/14/2016	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-66	10/13/2016	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-66	04/10/2017	ND	8.0000	20.0000	**
Antimony, total	ug/L	MW-85	10/16/2014	ND	2.0000	20.0000	
Antimony, total	ug/L	MW-85	01/14/2015	ND	2.0000		
Antimony, total	ug/L	MW-85	04/03/2015	ND	2.0000		
Antimony, total	ug/L	MW-85	07/06/2015	ND	2.0000		
Antimony, total	ug/L	MW-85	10/01/2015	ND	2.0000		
Antimony, total	ug/L	MW-85	04/14/2016	ND	2.0000		
Antimony, total	ug/L	MW-85	10/13/2016	ND	2.0000		
Antimony, total	ug/L	MW-85	04/10/2017	ND	2.0000		
Antimony, total	ug/L	MW-85	10/09/2017	ND	2.0000		
Antimony, total	ug/L	MW-85	04/17/2018	ND	2.0000		
Antimony, total	ug/L	MW-85	10/22/2018	ND	2.0000		
Antimony, total	ug/L	MW-85	04/22/2019	ND	2.0000		
Antimony, total	ug/L	MW-85	10/23/2019	ND	2.0000		
Antimony, total	ug/L	MW-85	04/10/2020	ND	2.0000		
Antimony, total	ug/L	MW-85	10/19/2020	ND	2.0000		
Antimony, total	ug/L	MW-85	04/05/2021	ND	2.0000		
Antimony, total	ug/L	MW-85	10/08/2021	ND	2.0000		
Antimony, total	ug/L	MW-85	04/06/2022	ND	2.0000		
Antimony, total	ug/L	MW-85	10/25/2022	ND	2.0000		
Antimony, total	ug/L	MW-85	04/11/2023	ND	2.0000		
Antimony, total	ug/L	MW-85	10/13/2023	ND	2.0000		
Antimony, total	ug/L	MW-85	04/17/2024	ND	2.0000		
Arsenic, total	ug/L	MW-85	10/16/2014	ND	4.0000		
Arsenic, total	ug/L	MW-85	01/14/2015	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/03/2015	ND	4.0000		
Arsenic, total	ug/L	MW-85	07/06/2015	ND	4.0000		
,							1
Arsenic, total	ug/L	MW-85	10/01/2015	ND	4.0000		

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Arsenic, total	ug/L	MW-85	10/13/2016	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/10/2017	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/09/2017	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/17/2018	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/22/2018	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/22/2019	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/23/2019	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/10/2020	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/19/2020	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/05/2021	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/08/2021	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/06/2022	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/25/2022	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/11/2023	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/13/2023	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/17/2024	ND	4.0000		
Barium, total	ug/L	MW-85	10/16/2014		138.0000		
Barium, total	ug/L	MW-85	01/14/2015		157.0000		
Barium, total	ug/L	MW-85	04/03/2015		167.0000		
Barium, total	ug/L	MW-85	07/06/2015		143.0000		
Barium, total	ug/L	MW-85	10/01/2015		135.0000		
Barium, total	ug/L	MW-85	04/14/2016		155.0000		
Barium, total Barium, total	ug/L	MW-85 MW-85	10/13/2016		149.0000		
l –	ug/L ug/L	MW-85	04/10/2017 10/09/2017		175.0000 143.0000		
Barium, total	ug/L ug/L	MW-85	04/17/2018		143.0000		
Barium, total Barium, total	ug/L ug/L	MW-85	10/22/2018		146.0000		
Barium, total	ug/L ug/L	MW-85	04/22/2019		152.0000		
Barium, total	ug/L	MW-85	10/23/2019		126.0000		
Barium, total	ug/L	MW-85	04/10/2020		160.0000		
Barium, total	ug/L	MW-85	10/19/2020		151.0000		
Barium, total	ug/L	MW-85	04/05/2021		135.0000		
Barium, total	ug/L	MW-85	10/08/2021		121.0000		
Barium, total	ug/L	MW-85	04/06/2022		133.0000		
Barium, total	ug/L	MW-85	10/25/2022		138.0000		
Barium, total	ug/L	MW-85	04/11/2023		141.0000		
Barium, total	ug/L	MW-85	10/13/2023		143.0000		
Barium, total	ug/L	MW-85	04/17/2024		144.0000		
Beryllium, total	ug/L	MW-85	10/16/2014	ND	4.0000		
Beryllium, total	ug/L	MW-85	01/14/2015	ND	4.0000		
Beryllium, total	ug/L	MW-85	04/03/2015	ND	4.0000		
Beryllium, total	ug/L	MW-85	07/06/2015	ND	4.0000		
Beryllium, total	ug/L	MW-85	10/01/2015	ND	4.0000		
Beryllium, total	ug/L	MW-85	04/14/2016	ND	4.0000		
Beryllium, total	ug/L	MW-85	10/13/2016	ND	4.0000		
Beryllium, total	ug/L	MW-85	04/10/2017	ND	4.0000		
Beryllium, total	ug/L	MW-85	10/09/2017	ND	4.0000		
Beryllium, total	ug/L	MW-85	04/17/2018	ND	4.0000		
Beryllium, total	ug/L	MW-85	10/22/2018	ND	4.0000		
Beryllium, total	ug/L	MW-85	04/22/2019	ND	4.0000		
Beryllium, total	ug/L	MW-85	10/23/2019	ND	4.0000		
Beryllium, total	ug/L	MW-85	04/10/2020	ND	4.0000		
Beryllium, total	ug/L	MW-85	10/19/2020	ND	4.0000		
Beryllium, total	ug/L	MW-85	04/05/2021	ND	4.0000		
Beryllium, total	ug/L	MW-85	10/08/2021	ND	4.0000		
Beryllium, total	ug/L	MW-85	04/06/2022	ND	4.0000		
Beryllium, total	ug/L	MW-85	10/25/2022 04/11/2023	ND ND	4.0000		
Beryllium, total Beryllium, total	ug/L	MW-85 MW-85	10/13/2023	ND ND	4.0000		
Beryllium, total	ug/L ug/L	MW-85	04/17/2024	ND	4.0000 4.0000		
Cadmium, total	ug/L ug/L	MW-85	10/16/2014	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-85	01/14/2015	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-85	04/03/2015	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-85	07/06/2015	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-85	10/01/2015	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-85	04/14/2016	ND	0.8000		
	ug/L ug/L	MW-85	10/13/2016	ND	0.8000		
(Cadmillim total	1 44/L		04/10/2017	ND	0.8000		
Cadmium, total				1 .40			1
Cadmium, total	ug/L	MW-85 MW-85		ND	U 8000 I		
Cadmium, total Cadmium, total	ug/L ug/L	MW-85	10/09/2017	ND	0.8000		
Cadmium, total Cadmium, total Cadmium, total	ug/L ug/L ug/L	MW-85 MW-85	10/09/2017 04/17/2018	ND	0.8000		
Cadmium, total Cadmium, total Cadmium, total Cadmium, total	ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85	10/09/2017 04/17/2018 10/22/2018	ND ND	0.8000 0.8000		
Cadmium, total Cadmium, total Cadmium, total Cadmium, total Cadmium, total	ug/L ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85 MW-85	10/09/2017 04/17/2018 10/22/2018 04/22/2019	ND ND ND	0.8000 0.8000 0.8000		
Cadmium, total Cadmium, total Cadmium, total Cadmium, total	ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85	10/09/2017 04/17/2018 10/22/2018	ND ND	0.8000 0.8000		

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Cadmium, total	ug/L	MW-85	10/19/2020	ND	0.8000		
Cadmium, total	ug/L	MW-85	04/05/2021	ND	0.8000		
Cadmium, total	ug/L	MW-85	10/08/2021	ND	0.8000		
Cadmium, total	ug/L	MW-85	04/06/2022	ND	0.8000		
Cadmium, total	ug/L	MW-85	10/25/2022	ND	0.8000		
Cadmium, total	ug/L	MW-85	04/11/2023	ND	0.8000		
Cadmium, total	ug/L	MW-85 MW-85	10/13/2023	ND	0.8000		
Cadmium, total	ug/L	MW-85	04/17/2024	ND ND	0.8000		
Chromium, total	ug/L ug/L	MW-85	10/16/2014 01/14/2015	ND	8.0000 8.0000		
Chromium, total	ug/L	MW-85	04/03/2015	ND	8.0000		
Chromium, total	ug/L	MW-85	07/06/2015	ND	8.0000		
Chromium, total	ug/L	MW-85	10/01/2015	ND	8.0000		
Chromium, total	ug/L	MW-85	04/14/2016	ND	8.0000		
Chromium, total	ug/L	MW-85	10/13/2016	ND	8.0000		
Chromium, total	ug/L	MW-85	04/10/2017	ND	8.0000		
Chromium, total	ug/L	MW-85	10/09/2017	ND	8.0000		
Chromium, total	ug/L	MW-85	04/17/2018	ND	8.0000		
Chromium, total	ug/L	MW-85	10/22/2018	ND	8.0000		
Chromium, total	ug/L	MW-85	04/22/2019	ND	8.0000		
Chromium, total	ug/L	MW-85	10/23/2019	ND	8.0000		
Chromium, total	ug/L	MW-85 MW-85	04/10/2020	ND ND	8.0000		
Chromium, total	ug/L ug/L	MW-85	10/19/2020 04/05/2021	ND	8.0000 8.0000		
Chromium, total	ug/L ug/L	MW-85	10/08/2021	ND	8.0000		
Chromium, total	ug/L ug/L	MW-85	04/06/2022	ND	8.0000		
Chromium, total	ug/L	MW-85	10/25/2022	ND	8.0000		
Chromium, total	ug/L	MW-85	04/11/2023	ND	8.0000		
Chromium, total	ug/L	MW-85	10/13/2023	ND	8.0000		
Chromium, total	ug/L	MW-85	04/17/2024	ND	8.0000		
Cobalt, total	ug/L	MW-85	10/16/2014	ND	0.8000		
Cobalt, total	ug/L	MW-85	01/14/2015	ND	0.8000		
Cobalt, total	ug/L	MW-85	04/03/2015	ND	0.8000		
Cobalt, total	ug/L	MW-85	07/06/2015	ND	0.8000		
Cobalt, total	ug/L	MW-85	10/01/2015	ND	0.8000		
Cobalt, total	ug/L	MW-85	04/14/2016	ND	0.8000		
Cobalt, total	ug/L	MW-85	10/13/2016	ND ND	0.8000		
Cobalt, total	ug/L ug/L	MW-85 MW-85	04/10/2017 10/09/2017	ND	0.8000 0.8000		
Cobalt, total	ug/L ug/L	MW-85	04/17/2018	ND	0.8000		
Cobalt, total	ug/L	MW-85	10/22/2018	ND	0.8000		
Cobalt, total	ug/L	MW-85	04/22/2019	ND	0.8000		
Cobalt, total	ug/L	MW-85	10/23/2019	ND	0.8000		
Cobalt, total	ug/L	MW-85	04/10/2020		0.4000		
Cobalt, total	ug/L	MW-85	10/19/2020		0.4000		
Cobalt, total	ug/L	MW-85	04/05/2021	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-85	10/08/2021	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-85	04/06/2022	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-85	10/25/2022	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-85	04/11/2023	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-85 MW-85	10/13/2023	ND	0.4000	0.8000	
Cobalt, total Copper, total	ug/L ug/L	MW-85	04/17/2024 10/16/2014	ND	0.4000 4.0000		\vdash
Copper, total	ug/L ug/L	MW-85	01/14/2015	ND	4.0000		
Copper, total	ug/L	MW-85	04/03/2015	ND	4.0000		
Copper, total	ug/L	MW-85	07/06/2015	ND	4.0000		
Copper, total	ug/L	MW-85	10/01/2015	ND	4.0000		
Copper, total	ug/L	MW-85	04/14/2016	ND	4.0000		
Copper, total	ug/L	MW-85	10/13/2016	ND	4.0000		
Copper, total	ug/L	MW-85	04/10/2017	ND	4.0000		
Copper, total	ug/L	MW-85	10/09/2017	ND	4.0000		
Copper, total	ug/L	MW-85	04/17/2018	ND	4.0000		
Copper, total	ug/L	MW-85	10/22/2018	ND	4.8000		
Copper, total	ug/L	MW-85 MW-85	04/22/2019 10/23/2019	ND	4.0000 4.0000		
Copper, total	ug/L ug/L	MW-85	04/10/2020	ND	4.0000		
Copper, total	ug/L ug/L	MW-85	10/19/2020	ND	4.0000		
Copper, total	ug/L ug/L	MW-85	04/05/2021	ND	4.0000		
Copper, total	ug/L	MW-85	10/08/2021	ND	4.0000		
Copper, total	ug/L	MW-85	04/06/2022	ND	4.0000		
Copper, total	ug/L	MW-85	10/25/2022	ND	4.0000		
Copper, total	ug/L	MW-85	04/11/2023	ND	4.0000		
Copper, total	ug/L	MW-85	10/13/2023	ND	4.0000		
Copper, total	ug/L	MW-85	04/17/2024	ND	4.0000		
			·			·	

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Lead, total	ug/L	MW-85	10/16/2014	ND	4.0000		
Lead, total	ug/L	MW-85	01/14/2015	ND	4.0000		
Lead, total	ug/L	MW-85	04/03/2015	ND	4.0000		
Lead, total	ug/L	MW-85	07/06/2015	ND	4.0000		
Lead, total	ug/L	MW-85	10/01/2015	ND	4.0000		
Lead, total	ug/L	MW-85	04/14/2016	ND	4.0000		
l	ug/L ug/L	MW-85	10/13/2016	ND	4.0000		
Lead, total		1					
Lead, total	ug/L	MW-85	04/10/2017	ND	4.0000		
Lead, total	ug/L	MW-85	10/09/2017	ND	4.0000		
Lead, total	ug/L	MW-85	04/17/2018	ND	4.0000		
Lead, total	ug/L	MW-85	10/22/2018	ND	4.0000		
Lead, total	ug/L	MW-85	04/22/2019	ND	4.0000		
Lead, total	ug/L	MW-85	10/23/2019	ND	4.0000		
Lead, total	ug/L	MW-85	04/10/2020	ND	4.0000		
Lead, total	ug/L	MW-85	10/19/2020	ND	4.0000		
Lead, total	ug/L	MW-85	04/05/2021	ND	4.0000		
Lead, total	ug/L	MW-85	10/08/2021	ND	4.0000		
Lead, total	ug/L	MW-85	04/06/2022	ND	4.0000		
Lead, total	ug/L	MW-85	10/25/2022	ND	4.0000		
Lead, total	U	MW-85	04/11/2023	ND	4.0000		
l	ug/L	1					
Lead, total	ug/L	MW-85	10/13/2023	ND	4.0000		
Lead, total	ug/L	MW-85	04/17/2024	ND	4.0000		_
Nickel, total	ug/L	MW-85	10/16/2014	ND	4.0000		
Nickel, total	ug/L	MW-85	01/14/2015	ND	4.0000		
Nickel, total	ug/L	MW-85	04/03/2015	ND	4.0000		
Nickel, total	ug/L	MW-85	07/06/2015	ND	4.0000		
Nickel, total	ug/L	MW-85	10/01/2015	ND	4.0000		
Nickel, total	ug/L	MW-85	04/14/2016	ND	4.0000		
Nickel, total	ug/L	MW-85	10/13/2016	ND	4.0000		
Nickel, total	ug/L	MW-85	04/10/2017	ND	4.0000		
Nickel, total	ug/L	MW-85	10/09/2017	ND	4.0000		
Nickel, total	ug/L	MW-85	04/17/2018	ND	4.0000		
Nickel, total		MW-85	10/22/2018	ND			*
l	ug/L			ND	20.6000		
Nickel, total	ug/L	MW-85	04/22/2019	ND	4.0000		
Nickel, total	ug/L	MW-85	10/23/2019	ND	4.0000		
Nickel, total	ug/L	MW-85	04/10/2020	ND	4.0000		
Nickel, total	ug/L	MW-85	10/19/2020	ND	4.0000		
Nickel, total	ug/L	MW-85	04/05/2021	ND	4.0000		
Nickel, total	ug/L	MW-85	10/08/2021	ND	4.0000		
Nickel, total	ug/L	MW-85	04/06/2022	ND	4.0000		
Nickel, total	ug/L	MW-85	10/25/2022	ND	4.0000		
Nickel, total	ug/L	MW-85	04/11/2023	ND	4.0000		
Nickel, total	ug/L	MW-85	10/13/2023	ND	4.0000		
Nickel, total	ug/L	MW-85	04/17/2024	ND	4.0000		
Selenium, total	ug/L	MW-85	10/16/2014	ND	4.0000		
Selenium, total	ug/L	MW-85	01/14/2015	ND	4.0000		
l =		1		ND			
Selenium, total	ug/L	MW-85	04/03/2015		4.0000		
Selenium, total	ug/L	MW-85	07/06/2015	ND	4.0000		
Selenium, total	ug/L	MW-85	10/01/2015	ND	4.0000		
Selenium, total	ug/L	MW-85	04/14/2016	ND	4.0000		
Selenium, total	ug/L	MW-85	10/13/2016	ND	4.0000		
Selenium, total	ug/L	MW-85	04/10/2017	ND	4.0000		
Selenium, total	ug/L	MW-85	10/09/2017	ND	4.0000		
Selenium, total	ug/L	MW-85	04/17/2018	ND	4.0000		
Selenium, total	ug/L	MW-85	10/22/2018	ND	4.0000		
Selenium, total	ug/L	MW-85	04/22/2019	ND	4.0000		
Selenium, total	ug/L	MW-85	10/23/2019	ND	4.0000		
Selenium, total	ug/L	MW-85	04/10/2020	ND	4.0000		
Selenium, total	ug/L	MW-85	10/19/2020	ND	4.0000		
Selenium, total	ug/L ug/L	MW-85	04/05/2021	ND	4.0000		
Selenium, total	ug/L	MW-85	10/08/2021	ND	4.0000		
Selenium, total	ug/L	MW-85	04/06/2022	ND	4.0000		
Selenium, total	ug/L	MW-85	10/25/2022	ND	4.0000		
Selenium, total	ug/L	MW-85	04/11/2023	ND	4.0000		
Selenium, total	ug/L	MW-85	10/13/2023	ND	4.0000		
Selenium, total	ug/L	MW-85	04/17/2024	ND	4.0000		
Silver, total	ug/L	MW-85	10/16/2014	ND	4.0000		
Silver, total	ug/L	MW-85	01/14/2015	ND	4.0000		
			04/03/2015	ND	4.0000		
Silver total		MW-85					
Silver, total	ug/L	MW-85					
Silver, total	ug/L ug/L	MW-85	07/06/2015	ND	4.0000		
Silver, total Silver, total	ug/L ug/L ug/L	MW-85 MW-85	07/06/2015 10/01/2015	ND ND	4.0000 4.0000		
Silver, total Silver, total Silver, total	ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85	07/06/2015 10/01/2015 04/14/2016	ND ND ND	4.0000 4.0000 4.0000		
Silver, total Silver, total	ug/L ug/L ug/L	MW-85 MW-85	07/06/2015 10/01/2015	ND ND	4.0000 4.0000		

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Silver, total	ug/L	MW-85	10/09/2017	ND	4.0000		
Silver, total	ug/L	MW-85	04/17/2018	ND	4.0000		
Silver, total	ug/L	MW-85	10/22/2018	ND	4.0000		
Silver, total	ug/L	MW-85	04/22/2019	ND	4.0000		
Silver, total	ug/L	MW-85	10/23/2019	ND	4.0000		
Silver, total	ug/L	MW-85	04/10/2020	ND	4.0000		
Silver, total	ug/L	MW-85	10/19/2020	ND	4.0000		
Silver, total	ug/L	MW-85	04/05/2021	ND	4.0000		
Silver, total	ug/L	MW-85	10/08/2021	ND	4.0000		
Silver, total	ug/L	MW-85	04/06/2022	ND	4.0000		
Silver, total	ug/L	MW-85	10/25/2022	ND	4.0000		
Silver, total	ug/L	MW-85	04/11/2023	ND	4.0000		
Silver, total	ug/L	MW-85	10/13/2023	ND	4.0000		
Silver, total	ug/L	MW-85	04/17/2024	ND	4.0000		
Thallium, total	ug/L	MW-85	10/16/2014	ND	4.0000	2.0000 *	**
Thallium, total	ug/L	MW-85	01/14/2015	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-85	04/03/2015	ND	4.0000	2.0000 *	**
Thallium, total	ug/L	MW-85	07/06/2015	ND	4.0000		**
Thallium, total	ug/L	MW-85	10/01/2015	ND	1.0000	2.0000 *	**
Thallium, total	ug/L	MW-85	04/14/2016	ND	4.0000		**
Thallium, total	ug/L	MW-85	10/13/2016	ND	4.0000		**
Thallium, total	ug/L	MW-85	04/10/2017	ND	4.0000		**
Thallium, total	ug/L	MW-85	10/09/2017	ND	4.0000		**
Thallium, total	ug/L ug/L	MW-85	04/17/2018	ND	4.0000		**
Thallium, total	ug/L ug/L	MW-85	10/22/2018	ND	4.0000	2.0000 *	**
Thallium, total	ug/L ug/L	MW-85	04/22/2019	ND	2.0000	2.0000	
Thallium, total	ug/L ug/L	MW-85	10/23/2019	ND	2.0000		
Thallium, total	ug/L ug/L	MW-85	04/10/2020	ND	2.0000		
Thallium, total	ug/L ug/L	MW-85	10/19/2020	ND	2.0000		
Thallium, total	ug/L	MW-85	04/05/2021	ND	2.0000		
Thallium, total	ug/L	MW-85	10/08/2021	ND	2.0000		
Thallium, total	ug/L	MW-85	04/06/2022	ND	2.0000		
Thallium, total	ug/L	MW-85	10/25/2022	ND	2.0000		
Thallium, total	ug/L	MW-85	04/11/2023	ND	2.0000		
Thallium, total	ug/L	MW-85	10/13/2023	ND	2.0000		
Thallium, total	ug/L	MW-85	04/17/2024	ND	2.0000		
Vanadium, total	ug/L	MW-85	10/16/2014	ND	20.0000		
Vanadium, total	ug/L	MW-85	01/14/2015	ND	20.0000		
Vanadium, total	ug/L	MW-85	04/03/2015	ND	20.0000		
Vanadium, total	ug/L	MW-85	07/06/2015	ND	20.0000		
Vanadium, total	ug/L	MW-85	10/01/2015	ND	20.0000		
Vanadium, total	ug/L	MW-85	04/14/2016	ND	20.0000		
Vanadium, total	ug/L	MW-85	10/13/2016	ND	20.0000		
Vanadium, total	ug/L	MW-85	04/10/2017	ND	20.0000		
Vanadium, total	ug/L	MW-85	10/09/2017	ND	20.0000		
Vanadium, total	ug/L	MW-85	04/17/2018	ND	20.0000		
Vanadium, total	ug/L	MW-85	10/22/2018	ND	20.0000		
Vanadium, total	ug/L	MW-85	04/22/2019	ND	20.0000		
Vanadium, total	ug/L	MW-85	10/23/2019	ND	20.0000		
Vanadium, total	ug/L	MW-85	04/10/2020	ND	20.0000		
Vanadium, total	ug/L	MW-85	10/19/2020	ND	20.0000		
Vanadium, total	ug/L	MW-85	04/05/2021	ND	20.0000		
Vanadium, total	ug/L	MW-85	10/08/2021	ND	20.0000		
Vanadium, total	ug/L	MW-85	04/06/2022	ND	20.0000		
Vanadium, total	ug/L	MW-85	10/25/2022	ND	20.0000		
Vanadium, total	ug/L	MW-85	04/11/2023	ND	20.0000		
Vanadium, total	ug/L	MW-85	10/13/2023	ND	20.0000		
Vanadium, total	ug/L	MW-85	04/17/2024	ND	20.0000		
Zinc, total	ug/L	MW-85	10/16/2014	ND	20.0000		
Zinc, total	ug/L	MW-85	01/14/2015	ND	8.0000	20.0000 *	**
Zinc, total	ug/L	MW-85	04/03/2015		27.0000		
Zinc, total	ug/L	MW-85	07/06/2015		9.1000		
Zinc, total	ug/L	MW-85	10/01/2015	ND	8.0000	20.0000 *	**
Zinc, total	ug/L	MW-85	04/14/2016	ND	8.0000		**
Zinc, total	ug/L	MW-85	10/13/2016	ND	8.0000		**
	ug/L ug/L	MW-85	04/10/2017	ND	8.0000		**
Zinc total	1 49/L	MW-85	10/09/2017	ND	8.0000		**
Zinc, total	ug/I				8.0000	20.0000	**
Zinc, total	ug/L		04/17/2010			ZU UUUU "	
Zinc, total Zinc, total	ug/L	MW-85	04/17/2018	ND		*	k
Zinc, total Zinc, total Zinc, total	ug/L ug/L	MW-85 MW-85	10/22/2018		125.0000	*	*
Zinc, total Zinc, total Zinc, total Zinc, total	ug/L ug/L ug/L	MW-85 MW-85 MW-85	10/22/2018 04/22/2019	ND	125.0000 20.0000	*	*
Zinc, total Zinc, total Zinc, total Zinc, total Zinc, total Zinc, total	ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85 MW-85	10/22/2018 04/22/2019 10/23/2019	ND ND	125.0000 20.0000 20.0000	*	*
Zinc, total	ug/L ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85 MW-85 MW-85	10/22/2018 04/22/2019 10/23/2019 04/10/2020	ND ND ND	125.0000 20.0000 20.0000 20.0000	*	*
Zinc, total Zinc, total Zinc, total Zinc, total Zinc, total Zinc, total	ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85 MW-85	10/22/2018 04/22/2019 10/23/2019	ND ND	125.0000 20.0000 20.0000	*	*

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Zinc, total	ug/L	MW-85	10/08/2021	ND	20.0000		
Zinc, total	ug/L	MW-85	04/06/2022	ND	20.0000		
Zinc, total	ug/L	MW-85	10/25/2022	ND	20.0000		
Zinc, total	ug/L	MW-85	04/11/2023	ND	20.0000		
Zinc, total	ug/L	MW-85	10/13/2023	ND	20.0000		
Zinc, total	ug/L	MW-85	04/17/2024	ND	20.0000		
Antimony, total	ug/L	MW-98	10/13/2016	ND	2.0000		
Antimony, total	ug/L	MW-98	04/10/2017	ND	2.0000		
Antimony, total	ug/L	MW-98	10/09/2017	ND	2.0000		
Antimony, total	ug/L	MW-98	04/17/2018	ND	2.0000		
Antimony, total	ug/L	MW-98	10/22/2018	ND	2.0000		
Antimony, total	ug/L	MW-98	04/22/2019	ND	2.0000		
Antimony, total	ug/L	MW-98	10/23/2019	ND	2.0000		
Antimony, total	ug/L	MW-98	04/10/2020	ND	2.0000		
Antimony, total	ug/L	MW-98	10/19/2020	ND	2.0000		
Antimony, total	ug/L	MW-98	04/05/2021	ND	2.0000		
Antimony, total	ug/L	MW-98	10/08/2021	ND	2.0000		
Antimony, total	ug/L	MW-98	04/06/2022	ND	2.0000		
Antimony, total	ug/L	MW-98	10/25/2022	ND	2.0000		
Antimony, total	ug/L	MW-98	04/11/2023	ND	2.0000		
Antimony, total	ug/L	MW-98	10/13/2023	ND	2.0000		
Antimony, total	ug/L	MW-98	04/17/2024	ND	2.0000		
Arsenic, total	ug/L	MW-98	10/13/2016		7.4000		
Arsenic, total	ug/L ug/L	MW-98	04/10/2017		25.3000		*
Arsenic, total	ug/L	MW-98	10/09/2017	ND	4.0000		
Arsenic, total	ug/L ug/L	MW-98	04/17/2018	. 10	7.8000		
Arsenic, total	ug/L ug/L	MW-98	10/22/2018	ND	4.0000		
Arsenic, total	ug/L ug/L	MW-98	04/22/2019	ND	4.0000		
Arsenic, total	ug/L	MW-98	10/23/2019	140	4.8000		
Arsenic, total	ug/L ug/L	MW-98	04/10/2020	ND	4.0000		
Arsenic, total	ug/L ug/L	MW-98	10/19/2020	ND	4.0000		
Arsenic, total	ug/L ug/L	MW-98	04/05/2021	ND	4.0000		
		MW-98	10/08/2021	ND			
Arsenic, total	ug/L			ND	4.0000		
Arsenic, total	ug/L	MW-98	04/06/2022	ND	4.0000		
Arsenic, total	ug/L	MW-98	10/25/2022	ND	4.0000		
Arsenic, total	ug/L	MW-98	04/11/2023		6.4000		
Arsenic, total	ug/L	MW-98	10/13/2023		6.3000		*
Arsenic, total	ug/L	MW-98	04/17/2024		48.0000 171.0000		
Barium, total	ug/L	MW-98 MW-98	10/13/2016		241.0000		
Barium, total	ug/L ug/L	MW-98	04/10/2017 10/09/2017		129.0000		
Barium, total	ug/L ug/L	MW-98	04/17/2018		193.0000		
Barium, total	ug/L ug/L	MW-98	10/22/2018		102.0000		
Barium, total Barium, total	ug/L ug/L	MW-98	04/22/2019		133.0000		
Barium, total	ug/L ug/L	MW-98	10/23/2019		94.4000		
	ug/L ug/L	MW-98	04/10/2020		157.0000		
Barium, total		MW-98	10/19/2020		147.0000		
Barium, total	ug/L	1					
Barium, total	ug/L	MW-98 MW-98	04/05/2021		125.0000		
Barium, total	ug/L	1	10/08/2021		149.0000 117.0000		
Barium, total	ug/L	MW-98 MW-98	04/06/2022				
Barium, total	ug/L		10/25/2022		183.0000 136.0000		
Barium, total	ug/L	MW-98	04/11/2023				
Barium, total Barium, total	ug/L	MW-98 MW-98	10/13/2023 04/17/2024		217.0000 325.0000		
,	ug/L	MW-98	10/13/2016	ND	4.0000		
Beryllium, total Beryllium, total	ug/L ug/L	MW-98	04/10/2017	ND			
Beryllium, total		MW-98	10/09/2017	ND	4.0000 4.0000		
Beryllium, total	ug/L ug/L	MW-98	04/17/2018	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-98	10/22/2018	ND	4.0000		
Beryllium, total		MW-98	04/22/2019	ND			
Beryllium, total	ug/L				4.0000		
Beryllium, total	ug/L	MW-98 MW-98	10/23/2019	ND ND	4.0000 4.0000		
	ug/L		04/10/2020	ND			
Beryllium, total Beryllium, total	ug/L	MW-98	10/19/2020		4.0000		
Beryllium, total	ug/L	MW-98	04/05/2021	ND	4.0000		
	ug/L	MW-98	10/08/2021	ND	4.0000		
Beryllium, total	ug/L	MW-98	04/06/2022	ND	4.0000		
Beryllium, total	ug/L	MW-98	10/25/2022	ND	4.0000		
Beryllium, total	ug/L	MW-98	04/11/2023	ND	4.0000		
Beryllium, total	ug/L	MW-98	10/13/2023	ND	4.0000		
Beryllium, total	ug/L	MW-98	04/17/2024	ND	4.0000		-
Cadmium, total	ug/L	MW-98	10/13/2016	ND	0.8000		
Cadmium, total	ug/L	MW-98	04/10/2017	ND	0.8000		
	ug/L	MW-98	10/09/2017	ND	0.8000		1
Cadmium, total Cadmium, total	ug/L	MW-98	04/17/2018	ND	0.8000		

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Cadmium, total ug/L MW-98 10/22/2018 ND 0.8000 Ug/L WW-98 10/23/2019 ND 0.8000 Ug/L WW-98 10/23/2019 ND 0.8000 Ug/L WW-98 10/13/2020 ND 0.8000 Ug/L WW-98 10/03/2021 ND 0.8000 Ug/L WW-98 10/03/2021 ND 0.8000 Ug/L WW-98 10/03/2021 ND 0.8000 Ug/L WW-98 10/03/2022 ND 0.8000 Ug/L WW-98 10/13/2022 ND 0.8000 Ug/L WW-98 10/13/2023 ND 0.8000 Ug/L WW-98 10/13/2023 ND 0.8000 Ug/L WW-98 10/13/2023 ND 0.8000 Ug/L WW-98 10/13/2016 ND 8.0000 Ug/L WW-98 10/13/2019 ND 8.0000 Ug/L WW-98 10/13/2020 ND 8.0000 Ug/L WW-9	Constituent	Units	Well	Date		Result	Adjusted	
Cadmium, total ug/L WW-98 10/23/2019 ND 0.8000	Cadmium, total	ug/L	MW-98	10/22/2018	ND	0.8000		
Cadmium, total ug/L WW-98 04/10/2020 ND 0.8000 Cadmium, total ug/L WW-98 04/05/2021 ND 0.8000 Ug/L WW-98 04/05/2022 ND 0.8000 Ug/L WW-98 04/11/2023 ND 0.8000 Ug/L WW-98 04/11/2024 ND 0.8000 Ug/L WW-98 04/11/2021 ND 0.8000 Ug/L WW-98 04/12/2019 ND 0.8000 Ug/L WW-98 04/12/2019 ND 0.8000 Ug/L WW-98 04/12/2021 ND 0.8	Cadmium, total	ug/L				0.8000		
Cadmium, total ug/L MW-98 10/19/2020 ND 0.8000	11 '		1					
Cadmium, total ug/L MW-98 M-05/2021 ND 0.8000 Cadmium, total ug/L MW-98 M-06/2022 ND 0.8000 Cadmium, total ug/L MW-98 M-06/2022 ND 0.8000 Cadmium, total ug/L MW-98 M-07/2023 ND 0.8000 Cadmium, total ug/L MW-98 M-07/2024 ND 0.8000 Chromium, total ug/L MW-98 M-07/2024 ND 0.8000 Chromium, total ug/L MW-98 M-07/2027 ND 8.0000 Chromium, total ug/L MW-98 M-07/2020 ND 8.0000 M-07/2020 ND			1					
Cadmium, total ug/L MV-98 10/08/2021 ND 0.8000 Cadmium, total ug/L MV-98 10/25/2022 ND 0.8000 Cadmium, total ug/L MV-98 10/25/2023 ND 0.8000 Cadmium, total ug/L MV-98 10/13/2023 ND 0.8000 MV-98			1					
Cadmium, total ug/L MV-98 M-08/E0202 ND 0.8000 Cadmium, total ug/L MV-98 MV-17/E024 ND 0.8000 Cadmium, total ug/L MV-98 MV-17/E024 ND 0.8000 Cadmium, total ug/L MV-98 MV-17/E024 ND 0.8000 MV-17/E		0						
Cadmium, total ug/L MW-98 M/25/2022 ND 0.8000 Cadmium, total ug/L MW-98 M/11/2023 ND 0.8000 Cadmium, total ug/L MW-98 M/12/2023 ND 0.8000 M/25/2021 ND 0.0000 M/25/2021 ND 0.0000 M/25/2021 ND 0.0000 M/25/2021 ND 0.0000 M/25/2			1					
Cadmium, total ug/L MW-98 04/11/2023 ND 0.8000 Cadmium, total ug/L MW-98 04/17/2024 ND 0.8000 Cadmium, total ug/L MW-98 04/17/2024 ND 0.8000 MW-98 O4/17/2024 ND 0.8000 MW-98 O4/17/2024 ND 0.8000 MW-98 O4/17/2024 ND 0.8000 MW-98 O4/17/2024 ND 0.8000 MW-98 O4/17/2018 ND 8.0000 MW-98 O4/17/2019 ND 8.0000 MW-98 O4/17/2020 ND 8.0000 MW-98 O4/10/2020 ND 8.0000 MW-98 O4/05/2021 ND 8.0000 MW-98 O4/17/2023 ND 8.0000 MW-98 O4/17/2024 ND 9.0000 MW-98 O4/17/2024								
Cadmium, total ug/L MW-98 04/17/2024 ND 0.8000								
Cadmium, total ug/L MW-98 04/17/2024 ND 0.8000								
Chromium, total ug/L MW-98 0.113/2016 ND 8.0000 Chromium, total ug/L MW-98 0.110/2017 ND 8.0000 MW-98 0.1009/2017 ND 8.0000 MW-98 0.1009/2019 ND 8.0000 MW-98 0.1009/2012 ND 8.0000 MW-98 0.1009/2013 ND 8.0000 MW-98 0.1009/2013 ND 8.0000 MW-98 0.1009/2013 ND 8.0000 MW-98 0.1009/2017 MW-98 0.1009	II =							
Chromium, total ug/L WW-98 04/10/2017 ND 8,0000 Chromium, total ug/L WW-98 04/17/2018 ND 8,0000 Chromium, total ug/L WW-98 04/17/2018 ND 8,0000 Chromium, total ug/L WW-98 04/22/2019 ND 8,0000 Chromium, total ug/L WW-98 04/22/2019 ND 8,0000 Chromium, total ug/L WW-98 04/22/2019 ND 8,0000 Chromium, total ug/L WW-98 04/10/2020 ND 8,0000 Chromium, total ug/L WW-98 04/10/2020 ND 8,0000 Chromium, total ug/L WW-98 04/10/2020 ND 8,0000 Chromium, total ug/L WW-98 04/05/2021 ND 8,0000 Chromium, total ug/L WW-98 04/05/2021 ND 8,0000 Chromium, total ug/L WW-98 04/05/2022 ND 8,0000 Chromium, total ug/L WW-98 04/11/2023 ND 8,0000 Chromium, total ug/L WW-98 04/11/2023 ND 8,0000 Chromium, total ug/L WW-98 04/11/2023 ND 8,0000 Chromium, total ug/L WW-98 04/11/2024 ND 8,0000 Chromium, total ug/L WW-98 04/11/2024 ND 8,0000 Cobalt, total ug/L WW-98 04/11/2024 ND 0,0000 Cobalt, total ug/L WW-98 04/11/2020 2,2000 Cobalt, total ug/L WW-98 04/10/2020 0,000 0,0								
Chromium, total ug/L WW-98 04/09/2017 ND 8.0000 Chromium, total ug/L WW-98 04/22/2018 ND 8.0000 WW-98 04/22/2019 ND 8.0000 WW-98 04/22/2019 ND 8.0000 WW-98 04/22/2019 ND 8.0000 WW-98 04/22/2019 ND 8.0000 WW-98 04/09/2020 ND 8.0000 WW-98 04/09/2021 ND 8.0000 WW-98 04/09/2021 ND 8.0000 WW-98 04/09/2021 ND 8.0000 WW-98 04/09/2022 ND 8.0000 WW-98 04/10/2023 ND 8.0000 WW-98 04/10/2023 ND 8.0000 WW-98 04/10/2024 ND 8.0000 WW-98 04/10/2021 Ug/L WW-98 04/10/2021 Ug/L WW-98 04/10/2021 Ug/L WW-98 04/10/2021 Ug/L WW-98 04/10/2020 Ug/L Ug/L WW-98 04/10/2020 ND Ug/L Ug/L WW-98 04/10/2020 ND Ug/L Ug/L WW-			1					
Chromium, total commun, total chromium, total ug/L MW-98 04/11/2023 ND 8.0000 Chromium, total ug/L MW-98 04/11/2023 ND 8.0000 Chromium, total ug/L MW-98 04/11/2024 ND 8.0000 Cobalt, total ug/L MW-98 04/11/2021 ND 8.0000 Cobalt, total ug/L MW-98 04/11/2017 0.8000 Cobalt, total ug/L MW-98 04/11/2018 5.0000 Cobalt, total ug/L MW-98 10/23/2019 2.4000 Cobalt, total ug/L MW-98 04/22/2019 1.3000 Cobalt, total ug/L MW-98 10/23/2019 2.2000 Cobalt, total ug/L MW-98 10/23/2019 2.2000 Cobalt, total ug/L MW-98 10/68/2021 2.2000 Cobalt, total ug/L MW-98 10/68/2022 0.2000 Cobalt, total ug/L MW-98 10/68/2022 0.7000 Cobalt, total ug/L MW-98 10/68/2021 0.6000 Cobalt, total ug/L MW-98 10/68/2021 0.6000 Cobalt, total ug/L MW-98 04/68/2022 0.7000 Cobalt, total ug/L MW-98 04/68/2022 ND 04/000 Copper, total ug/L MW-98 04/68/2021 ND 04/000 Copper, total ug/L MW-98 04/68/2021 ND 04/000 Copper, total ug/L MW-98 04/68/2021 ND 04/000 Copper, total ug/L MW-9			MW-98		ND			
Chromium, total Chromium, total Chromium, total Ug/L MW-98	Chromium, total	ug/L	MW-98	04/17/2018	ND	8.0000		
Chromium, total commun, tota	Chromium, total	ug/L	MW-98	10/22/2018	ND	8.0000		
Chromium, total chromium, to	Chromium, total	ug/L	MW-98	04/22/2019	ND	8.0000		
Chromium, total Chromium, total Chromium, total Ug/L MW-98	Chromium, total	ug/L		10/23/2019		8.0000		
Chromium, total			1					
Chromium, total Chromium, to								
Chromium, total Ug/L WW-98 10/12/2022 ND 8.0000 ND 8.0000 ND 9 10/12/2023 ND 8.0000 ND 9 10/12/2024 ND 9.0000 ND 9 10/12/2024 ND 9 10/12/202								
Chromium, total Chromium, total Chromium, total Chromium, total Chromium, total Chromium, total Ug/L WW-98 04/11/2023 ND 8.0000 Wg/L WW-98 04/11/2024 ND 8.0000 Wg/L WW-98 04/10/2017 Wg/L WW-98 04/10/2020 Wg/L WW-98 04/06/2021 Wg/L WW-98 04/06/2022 Wg/L WW-98 04/06/2021 Wg/L WW-98 04/06/2022 Wg/L WW-98 04/06/2021 Wg/L WW-98 04/06								
Chromium, total Chromium, total Chromium, total Ug/L WW-98		· ·						
Chromium, total								
Chomium, total ug/L WW-98 04/17/2024 ND 8.0000								
Cobalt, total								
Cobalt, total					טויו			
Cobalt, total		0	1					
Cobalt, total ug/L MW-98 04/17/2018 ND 0.8000	11 '		1					
Cobalt, total								
Cobalt, total			MW-98		ND			
Cobalt, total			MW-98	04/22/2019		1.3000		
Cobalt, total	Cobalt, total	ug/L	MW-98	10/23/2019		2.4000		
Cobalt, total	Cobalt, total	ug/L	MW-98	04/10/2020		2.0000		
Cobalt, total	Cobalt, total	ug/L	MW-98	10/19/2020		2.2000		
Cobalt, total			1					
Cobalt, total			1					
Cobalt, total Ug/L WW-98 10/13/2023 5.5000 Cobalt, total Ug/L WW-98 10/13/2024 4.7000 Copper, total Ug/L WW-98 04/17/2024 4.7000 Copper, total Ug/L WW-98 04/17/2016 ND 4.0000 Copper, total Ug/L WW-98 04/10/2017 ND 4.0000 Copper, total Ug/L WW-98 10/09/2017 ND 4.0000 Copper, total Ug/L WW-98 04/17/2018 ND 4.0000 Copper, total Ug/L WW-98 04/17/2018 ND 4.0000 Copper, total Ug/L WW-98 04/22/2019 ND 4.0000 Copper, total Ug/L WW-98 04/22/2019 ND 4.0000 Copper, total Ug/L WW-98 04/22/2019 ND 4.0000 Copper, total Ug/L WW-98 04/10/2020 ND 4.0000 Copper, total Ug/L WW-98 04/10/2020 ND 4.0000 Copper, total Ug/L WW-98 04/10/2020 ND 4.0000 Copper, total Ug/L WW-98 04/05/2021 4.1000 Copper, total Ug/L WW-98 04/05/2021 4.1000 Copper, total Ug/L WW-98 04/05/2021 DA 0.0000 Copper, total Ug/L WW-98 04/05/2022 ND 4.0000 Copper, total Ug/L WW-98 04/05/2022 ND 4.0000 Copper, total Ug/L WW-98 04/11/2023 ND 4.0000 Copper, total Ug/L WW-98 04/11/2024 ND 4.0000 Copper, total Ug/L WW-98 04/11/2024 ND 4.0000 Ucad, total Ug/L WW-98 04/10/2017 ND 4.0000 Ucad, total Ug/L WW-98 04/10/2018 ND 4.0000 Ucad, total Ug/L WW-98 04/10/2020 ND 4.0000 Ucad, total Ug/L WW-98 04/10/2020 ND 4.0000 Ucad, total Ug/L WW-98 04/05/2021 ND 4.0000 Ucad, total Ug/L WW-98 04/05/2021 ND 4.0000 Ucad, total Ug/L WW-98 04/05/2021 ND 4.0000 U								
Cobalt, total			1					
Cobalt, total Ug/L MW-98 04/17/2024 4.7000 Copper, total Ug/L MW-98 10/13/2016 ND 4.0000 Copper, total Ug/L MW-98 10/19/2017 ND 4.0000 Copper, total Ug/L MW-98 10/19/2017 ND 4.0000 Copper, total Ug/L MW-98 04/17/2018 ND 4.0000 Copper, total Ug/L MW-98 10/19/2018 ND 4.0000 Copper, total Ug/L MW-98 10/19/2018 ND 4.0000 Copper, total Ug/L MW-98 10/19/2019 ND 4.0000 Copper, total Ug/L MW-98 10/19/2020 ND 4.0000 Copper, total Ug/L MW-98 10/19/2022 ND 4.0000 Copper, total Ug/L MW-98 10/19/2022 ND 4.0000 Copper, total Ug/L MW-98 10/19/2022 ND 4.0000 Copper, total Ug/L MW-98 10/19/2023 ND 4.0000 Copper, total Ug/L MW-98 10/19/2023 ND 4.0000 Copper, total Ug/L MW-98 10/19/2023 ND 4.0000 Copper, total Ug/L MW-98 10/19/2021 ND 4.0000 Copper, total Ug/L MW-98 10/19/2017 ND 4.0000 Lead, total Ug/L MW-98 04/17/2018 ND 4.0000 Lead, total Ug/L MW-98 04/10/2017 ND 4.0000 Lead, total Ug/L MW-98 04/10/2017 ND 4.0000 Lead, total Ug/L MW-98 04/10/2018 ND 4.0000 Lead, total Ug/L MW-98 04/10/2019 ND 4.0000 Lead, total Ug/L MW-98 04/10/2020 ND 4.0000 Lead, total Ug/L MW-98 04/05/2021 ND 4.0000 Lead, total Ug/L MW-98 04/05/2021 ND 4.0000 Lead, total Ug/L MW-98 04/05/2021 ND 4.0000 Lead, total Ug/L MW-98 04/05/2022 N	II =	U	1					
Copper, total								
Copper, total					ND			
Copper, total	II = 11 1 1							
Copper, total			1					
Copper, total			1					
Copper, total	II = 11 1 1		1					
Copper, total	II = 11 1 1							
Copper, total								
Copper, total	II = 11 1 1		MW-98	04/10/2020	ND			
Copper, total					ND			
Copper, total			1					
Copper, total	II 🕳 ' ' ' '							
Copper, total								
Copper, total								
Copper, total ug/L MW-98 04/17/2024 ND 4.0000								
Lead, total	''' '							
Lead, total ug/L MW-98 04/10/2017 ND 4.0000 Lead, total ug/L MW-98 10/09/2017 ND 4.0000 Lead, total ug/L MW-98 04/17/2018 ND 4.0000 Lead, total ug/L MW-98 04/17/2018 ND 4.0000 Lead, total ug/L MW-98 04/22/2019 ND 4.0000 Lead, total ug/L MW-98 10/23/2019 ND 4.0000 Lead, total ug/L MW-98 04/10/2020 ND 4.0000 Lead, total ug/L MW-98 10/19/2020 ND 4.0000 Lead, total ug/L MW-98 10/19/2020 ND 4.0000 Lead, total ug/L MW-98 04/05/2021 ND 4.0000 Lead, total ug/L MW-98 10/08/2021 ND 4.0000 Lead, total ug/L MW-98 04/06/2022 ND 4.0000 Lead, total ug/L MW-98 04/06/2022 ND 4.0000 Lead, total ug/L MW-98 10/25/2022 ND 4.0000 Lead, total ug/L								$\vdash\vdash$
Lead, total ug/L MW-98 10/09/2017 ND 4.0000 Lead, total ug/L MW-98 04/17/2018 ND 4.0000 Lead, total ug/L MW-98 10/22/2018 ND 4.0000 Lead, total ug/L MW-98 10/22/2019 ND 4.0000 Lead, total ug/L MW-98 10/23/2019 ND 4.0000 Lead, total ug/L MW-98 04/10/2020 ND 4.0000 Lead, total ug/L MW-98 10/19/2020 ND 4.0000 Lead, total ug/L MW-98 04/05/2021 ND 4.0000 Lead, total ug/L MW-98 10/08/2021 ND 4.0000 Lead, total ug/L MW-98 10/08/2021 ND 4.0000 Lead, total ug/L MW-98 04/06/2022 ND 4.0000 Lead, total ug/L MW-98 04/06/2022 ND 4.0000 Lead, total ug/L MW-98 10/25/2022 ND 4.0000 Lead, total ug/L	II '							
Lead, total ug/L MW-98 04/17/2018 ND 4.0000 Lead, total ug/L MW-98 10/22/2018 ND 4.0000 Lead, total ug/L MW-98 04/22/2019 ND 4.0000 Lead, total ug/L MW-98 10/23/2019 ND 4.0000 Lead, total ug/L MW-98 04/10/2020 ND 4.0000 Lead, total ug/L MW-98 10/19/2020 ND 4.0000 Lead, total ug/L MW-98 04/05/2021 ND 4.0000 Lead, total ug/L MW-98 10/08/2021 ND 4.0000 Lead, total ug/L MW-98 04/06/2022 ND 4.0000 Lead, total ug/L MW-98 04/06/2022 ND 4.0000 Lead, total ug/L MW-98 04/06/2022 ND 4.0000 Lead, total ug/L MW-98 10/25/2022 ND 4.0000 Lead, total ug/L								
Lead, total ug/L MW-98 10/22/2018 ND 4.0000 Lead, total ug/L MW-98 04/22/2019 ND 4.0000 Lead, total ug/L MW-98 10/23/2019 ND 4.0000 Lead, total ug/L MW-98 04/10/2020 ND 4.0000 Lead, total ug/L MW-98 10/19/2020 ND 4.0000 Lead, total ug/L MW-98 04/05/2021 ND 4.0000 Lead, total ug/L MW-98 04/05/2021 ND 4.0000 Lead, total ug/L MW-98 04/06/2022 ND 4.0000 Lead, total ug/L MW-98 04/05/2022 ND 4.0000 Lead, total ug/L MW-98 10/25/2022 ND 4.0000 Lead, total ug/L								
Lead, total ug/L MW-98 04/22/2019 ND 4.0000 Lead, total ug/L MW-98 10/23/2019 ND 4.0000 Lead, total ug/L MW-98 04/10/2020 ND 4.0000 Lead, total ug/L MW-98 10/19/2020 ND 4.0000 Lead, total ug/L MW-98 10/05/2021 ND 4.0000 Lead, total ug/L MW-98 04/06/2022 ND 4.0000 Lead, total ug/L MW-98 10/25/2022 ND 4.0000 Lead, total ug/L MW-98 10/25/2022 ND 4.0000								
Lead, total ug/L MW-98 10/23/2019 ND 4.0000 Lead, total ug/L MW-98 04/10/2020 ND 4.0000 Lead, total ug/L MW-98 10/19/2020 ND 4.0000 Lead, total ug/L MW-98 04/05/2021 ND 4.0000 Lead, total ug/L MW-98 10/08/2021 ND 4.0000 Lead, total ug/L MW-98 04/06/2022 ND 4.0000 Lead, total ug/L MW-98 10/25/2022 ND 4.0000 Lead, total ug/L								
Lead, total ug/L MW-98 04/10/2020 ND 4.0000 Lead, total ug/L MW-98 10/19/2020 ND 4.0000 Lead, total ug/L MW-98 04/05/2021 ND 4.0000 Lead, total ug/L MW-98 10/08/2021 ND 4.0000 Lead, total ug/L MW-98 04/06/2022 ND 4.0000 Lead, total ug/L MW-98 10/25/2022 ND 4.0000 Lead, total Ug/L MW-98 Ug/L								
Lead, total ug/L MW-98 10/19/2020 ND 4.0000 Lead, total ug/L MW-98 04/05/2021 ND 4.0000 Lead, total ug/L MW-98 10/08/2021 ND 4.0000 Lead, total ug/L MW-98 04/06/2022 ND 4.0000 Lead, total ug/L MW-98 10/25/2022 ND 4.0000								
Lead, total ug/L MW-98 10/08/2021 ND 4.0000 Lead, total ug/L MW-98 04/06/2022 ND 4.0000 Lead, total ug/L MW-98 10/25/2022 ND 4.0000	Lead, total	ug/L				4.0000		
Lead, total ug/L MW-98 04/06/2022 ND 4.0000 Lead, total ug/L MW-98 10/25/2022 ND 4.0000								
Lead, total ug/L MW-98 10/25/2022 ND 4.0000								
			1					
Leau, total ug/L MW-98 U4/11/2023 ND 4.0000								
-	Lead, total	ug/L	IVIVV-98	04/11/2023	ND	4.0000		

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Lead, total	ug/L	MW-98	10/13/2023	ND	4.0000		
Lead, total	ug/L	MW-98	04/17/2024	ND	4.0000		
Nickel, total	ug/L	MW-98	10/13/2016	ND ND	4.0000		
Nickel, total Nickel, total	ug/L ug/L	MW-98 MW-98	04/10/2017 10/09/2017	ND	4.0000 4.0000		
Nickel, total	ug/L	MW-98	04/17/2018	ND	4.0000		
Nickel, total	ug/L	MW-98	10/22/2018	ND	4.0000		
Nickel, total	ug/L	MW-98	04/22/2019	ND	4.0000		
Nickel, total	ug/L	MW-98	10/23/2019	ND	4.0000		
Nickel, total	ug/L	MW-98	04/10/2020	ND	4.0000		
Nickel, total Nickel, total	ug/L ug/L	MW-98 MW-98	10/19/2020 04/05/2021	ND ND	4.0000		
Nickel, total	ug/L ug/L	MW-98	10/08/2021	ND	4.0000 4.0000		
Nickel, total	ug/L	MW-98	04/06/2022	ND	4.0000		
Nickel, total	ug/L	MW-98	10/25/2022	ND	4.0000		
Nickel, total	ug/L	MW-98	04/11/2023	ND	4.0000		
Nickel, total	ug/L	MW-98	10/13/2023	ND	4.0000		
Nickel, total	ug/L	MW-98	04/17/2024	ND	4.0000		
Selenium, total	ug/L	MW-98	10/13/2016	ND ND	4.0000		
Selenium, total Selenium, total	ug/L ug/L	MW-98 MW-98	04/10/2017 10/09/2017	ND	4.0000 4.0000		
Selenium, total	ug/L	MW-98	04/17/2018	ND	4.0000		
Selenium, total	ug/L	MW-98	10/22/2018	ND	4.0000		
Selenium, total	ug/L	MW-98	04/22/2019	ND	4.0000		
Selenium, total	ug/L	MW-98	10/23/2019	ND	4.0000		
Selenium, total	ug/L	MW-98	04/10/2020	ND	4.0000		
Selenium, total	ug/L	MW-98	10/19/2020	ND	4.0000		
Selenium, total	ug/L	MW-98	04/05/2021	ND	4.0000		
Selenium, total Selenium, total	ug/L	MW-98 MW-98	10/08/2021 04/06/2022	ND ND	4.0000 4.0000		
Selenium, total	ug/L ug/L	MW-98	10/25/2022	ND	4.0000		
Selenium, total	ug/L	MW-98	04/11/2023	ND	4.0000		
Selenium, total	ug/L	MW-98	10/13/2023	ND	4.0000		
Selenium, total	ug/L	MW-98	04/17/2024	ND	4.0000		
Silver, total	ug/L	MW-98	10/13/2016	ND	4.0000		
Silver, total	ug/L	MW-98	04/10/2017	ND	4.0000		
Silver, total	ug/L	MW-98	10/09/2017	ND	4.0000		
Silver, total	ug/L	MW-98	04/17/2018	ND	4.0000		
Silver, total Silver, total	ug/L ug/L	MW-98 MW-98	10/22/2018 04/22/2019	ND ND	4.0000 4.0000		
Silver, total	ug/L	MW-98	10/23/2019	ND	4.0000		
Silver, total	ug/L	MW-98	04/10/2020	ND	4.0000		
Silver, total	ug/L	MW-98	10/19/2020	ND	4.0000		
Silver, total	ug/L	MW-98	04/05/2021	ND	4.0000		
Silver, total	ug/L	MW-98	10/08/2021	ND	4.0000		
Silver, total	ug/L	MW-98	04/06/2022	ND	4.0000		
Silver, total Silver, total	ug/L ug/L	MW-98 MW-98	10/25/2022 04/11/2023	ND ND	4.0000 4.0000		
Silver, total	ug/L ug/L	MW-98	10/13/2023	ND	4.0000		
Silver, total	ug/L	MW-98	04/17/2024	ND	4.0000		
Thallium, total	ug/L	MW-98	10/13/2016	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-98	04/10/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-98	10/09/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-98 MW-98	04/17/2018 10/22/2018	ND ND	4.0000 4.0000	2.0000 2.0000	**
Thallium, total Thallium, total	ug/L ug/L	MW-98	04/22/2019	ND ND	2.0000	∠.0000	
Thallium, total	ug/L ug/L	MW-98	10/23/2019	ND	2.0000		
Thallium, total	ug/L	MW-98	04/10/2020	ND	2.0000		
Thallium, total	ug/L	MW-98	10/19/2020	ND	2.0000		
Thallium, total	ug/L	MW-98	04/05/2021	ND	2.0000		
Thallium, total	ug/L	MW-98	10/08/2021	ND	2.0000		
Thallium, total	ug/L	MW-98	04/06/2022	ND	2.0000		
Thallium, total Thallium, total	ug/L	MW-98 MW-98	10/25/2022	ND	2.0000		
Thallium, total	ug/L ug/L	MW-98	04/11/2023 10/13/2023	ND ND	2.0000 2.0000		
Thallium, total	ug/L ug/L	MW-98	04/17/2024	ND	2.0000		
Vanadium, total	ug/L	MW-98	10/13/2016	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/10/2017	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/09/2017	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/17/2018	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/22/2018	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/22/2019	ND	20.0000		
Vanadium, total Vanadium, total	ug/L ug/L	MW-98 MW-98	10/23/2019 04/10/2020	ND ND	20.0000 20.0000		
	1 44/L	14144-90	J-1 10/2020	שויו	20.0000		1

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Vanadium, total	ug/L	MW-98	10/19/2020	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/05/2021	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/08/2021	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/06/2022	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/25/2022	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/11/2023	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/13/2023	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/17/2024	ND	20.0000		
Zinc, total	ug/L	MW-98	10/13/2016	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-98	04/10/2017	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-98	10/09/2017	ND	8.0000	20.0000	**
							**
Zinc, total	ug/L	MW-98	04/17/2018	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-98	10/22/2018	ND	8.0000	20.0000	^^
Zinc, total	ug/L	MW-98	04/22/2019	ND	20.0000		
Zinc, total	ug/L	MW-98	10/23/2019	ND	20.0000		
Zinc, total	ug/L	MW-98	04/10/2020	ND	20.0000		
Zinc, total	ug/L	MW-98	10/19/2020	ND	20.0000		
Zinc, total	ug/L	MW-98	04/05/2021	ND	20.0000		
Zinc, total	ug/L	MW-98	10/08/2021	ND	20.0000		
Zinc, total	ug/L	MW-98	04/06/2022	ND	20.0000		
Zinc, total	ug/L	MW-98	10/25/2022	ND	20.0000		
,		MW-98		ND			
Zinc, total	ug/L	1	04/11/2023		20.0000		
Zinc, total	ug/L	MW-98	10/13/2023	ND	20.0000		
Zinc, total	ug/L	MW-98	04/17/2024	ND	20.0000		_
Antimony, total	ug/L	MW-99	10/13/2016	ND	2.0000		
Antimony, total	ug/L	MW-99	04/10/2017	ND	2.0000		
Antimony, total	ug/L	MW-99	10/09/2017	ND	2.0000		
Antimony, total	ug/L	MW-99	04/17/2018	ND	2.0000		
Antimony, total	ug/L	MW-99	10/22/2018	ND	2.0000		
Antimony, total	ug/L	MW-99	04/22/2019	ND	2.0000		
Antimony, total	ug/L	MW-99	10/23/2019	ND	2.0000		
		MW-99		ND	2.0000		
Antimony, total	ug/L		04/10/2020				
Antimony, total	ug/L	MW-99	10/19/2020	ND	2.0000		
Antimony, total	ug/L	MW-99	04/05/2021	ND	2.0000		
Antimony, total	ug/L	MW-99	10/08/2021	ND	2.0000		
Antimony, total	ug/L	MW-99	04/06/2022	ND	2.0000		
Antimony, total	ug/L	MW-99	10/25/2022	ND	2.0000		
Antimony, total	ug/L	MW-99	04/11/2023	ND	2.0000		
Antimony, total	ug/L	MW-99	10/13/2023	ND	2.0000		
Antimony, total	ug/L	MW-99	04/18/2024	ND	2.0000		
Arsenic, total	ug/L	MW-99	10/13/2016	ND	4.0000		
Arsenic, total	ug/L	MW-99	04/10/2017	ND	4.0000		
		MW-99		ND	4.0000		
Arsenic, total	ug/L	1	10/09/2017				
Arsenic, total	ug/L	MW-99	04/17/2018	ND	4.0000		
Arsenic, total	ug/L	MW-99	10/22/2018	ND	4.0000		
Arsenic, total	ug/L	MW-99	04/22/2019	ND	4.0000		
Arsenic, total	ug/L	MW-99	10/23/2019	ND	4.0000		
Arsenic, total	ug/L	MW-99	04/10/2020	ND	4.0000		
Arsenic, total	ug/L	MW-99	10/19/2020	ND	4.0000		
Arsenic, total	ug/L	MW-99	04/05/2021	ND	4.0000		
Arsenic, total	ug/L	MW-99	10/08/2021	ND	4.0000		
Arsenic, total	ug/L	MW-99	04/06/2022	ND	4.0000		
,		MW-99		ND			
Arsenic, total	ug/L		10/25/2022		4.0000		
Arsenic, total	ug/L	MW-99	04/11/2023	ND	4.0000		
Arsenic, total	ug/L	MW-99	10/13/2023	ND	4.0000		
Arsenic, total	ug/L	MW-99	04/18/2024	ND	4.0000		_
Barium, total	ug/L	MW-99	10/13/2016		131.0000		
Barium, total	ug/L	MW-99	04/10/2017		109.0000		
Barium, total	ug/L	MW-99	10/09/2017		140.0000		
Barium, total	ug/L	MW-99	04/17/2018		93.9000		
Barium, total	ug/L	MW-99	10/22/2018		81.0000		
Barium, total	ug/L	MW-99	04/22/2019		110.0000		
Barium, total	ug/L	MW-99	10/23/2019		123.0000		
Barium, total	ug/L ug/L	MW-99	04/10/2020		124.0000		
					118.0000		
Barium, total	ug/L	MW-99	10/19/2020				
Barium, total	ug/L	MW-99	04/05/2021		117.0000		
Barium, total	ug/L	MW-99	10/08/2021		130.0000		
Barium, total	ug/L	MW-99	04/06/2022		110.0000		
Danum, iotai	ug/L	MW-99	10/25/2022		134.0000		
Barium, total		MW-99	04/11/2023		89.4000		
	ua/L	10100-99					
Barium, total Barium, total	ug/L ug/L				134,0000		
Barium, total Barium, total Barium, total	ug/L	MW-99	10/13/2023		134.0000 164.0000		
Barium, total Barium, total				ND	134.0000 164.0000 4.0000		

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Beryllium, total	ug/L	MW-99	10/09/2017	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/17/2018	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/22/2018	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/22/2019	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/23/2019	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/10/2020	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/19/2020	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/05/2021	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/08/2021	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/06/2022	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/25/2022	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/11/2023	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/13/2023	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/18/2024	ND	4.0000		
Cadmium, total	ug/L	MW-99	10/13/2016	ND	0.8000		
Cadmium, total	ug/L	MW-99	04/10/2017	ND	0.8000		
Cadmium, total	ug/L	MW-99	10/09/2017	ND	0.8000		
Cadmium, total	ug/L	MW-99	04/17/2018	ND	0.8000		
Cadmium, total	ug/L	MW-99	10/22/2018	ND	0.8000		
Cadmium, total	ug/L	MW-99	04/22/2019	ND	0.8000		
Cadmium, total	ug/L	MW-99	10/23/2019	ND	0.8000		
Cadmium, total	ug/L	MW-99	04/10/2020	ND	0.8000		
Cadmium, total	ug/L	MW-99	10/19/2020	ND	0.8000		
Cadmium, total	ug/L	MW-99	04/05/2021	ND	0.8000		
Cadmium, total	ug/L	MW-99	10/08/2021	ND	0.8000		
Cadmium, total	ug/L	MW-99	04/06/2022	ND	0.8000		
Cadmium, total	ug/L	MW-99	10/25/2022	ND	0.8000		
Cadmium, total	ug/L	MW-99	04/11/2023	ND	0.8000		
Cadmium, total	ug/L	MW-99	10/13/2023	ND	0.8000		
Cadmium, total	ug/L	MW-99	04/18/2024	ND	0.8000		
Chromium, total	ug/L	MW-99	10/13/2016	ND	8.0000		
Chromium, total	ug/L	MW-99	04/10/2017		23.4000		
Chromium, total	ug/L	MW-99	10/09/2017	ND	8.0000		
Chromium, total	ug/L	MW-99	04/17/2018	ND	8.0000		
Chromium, total	ug/L	MW-99	10/22/2018	ND	8.0000		
Chromium, total	ug/L	MW-99	04/22/2019	ND	8.0000		
Chromium, total	ug/L	MW-99	10/23/2019	ND	8.0000		
Chromium, total	ug/L	MW-99	04/10/2020	ND	8.0000		
Chromium, total	ug/L	MW-99	10/19/2020	ND	8.0000		
Chromium, total	ug/L	MW-99	04/05/2021	ND	8.0000		
Chromium, total	ug/L	MW-99	10/08/2021	ND	8.0000		
Chromium, total	ug/L	MW-99	04/06/2022	ND	8.0000		
Chromium, total	ug/L	MW-99	10/25/2022	ND	8.0000		
Chromium, total	ug/L	MW-99	04/11/2023	ND	8.0000		
Chromium, total	ug/L	MW-99	10/13/2023	ND	8.0000		
Chromium, total	ug/L	MW-99	04/18/2024	ND	8.0000		
Cobalt, total	ug/L	MW-99	10/13/2016	.,0	5.2000		
Cobalt, total	ug/L	MW-99	04/10/2017		3.4000		
Cobalt, total	ug/L	MW-99	10/09/2017		6.0000		
Cobalt, total	ug/L	MW-99	04/17/2018		2.5000		
Cobalt, total	ug/L ug/L	MW-99	10/22/2018		0.8000		*
Cobalt, total	ug/L ug/L	MW-99	04/22/2019		3.1000		
Cobalt, total	ug/L ug/L	MW-99	10/23/2019		2.7000		
Cobalt, total	ug/L ug/L	MW-99	04/10/2020		4.1000		
Cobalt, total	ug/L	MW-99	10/19/2020		3.8000		
Cobalt, total	ug/L	MW-99	04/05/2021		3.2000		
Cobalt, total	ug/L	MW-99	10/08/2021		4.0000		
Cobalt, total	ug/L ug/L	MW-99	04/06/2022		3.5000		
Cobalt, total	ug/L ug/L	MW-99	10/25/2022		3.6000		
Cobalt, total	ug/L ug/L	MW-99	04/11/2023		2.2000		
Cobalt, total	ug/L ug/L	MW-99	10/13/2023		3.3000		
Cobalt, total	ug/L ug/L	MW-99	04/18/2024		4.1000		
Copper, total	ug/L ug/L	MW-99	10/13/2016	ND	4.0000		
Copper, total	ug/L ug/L	MW-99	04/10/2017	ND	4.0000		
Copper, total	ug/L ug/L	MW-99	10/09/2017	ND	4.0000		
	ug/L ug/L	MW-99		ND	4.0000		
Copper, total			04/17/2018				
Copper, total	ug/L	MW-99	10/22/2018	ND	4.0000		
Copper, total	ug/L	MW-99	04/22/2019	ND	4.0000		
Copper, total	ug/L	MW-99	10/23/2019	ND	4.0000		
Copper, total	ug/L	MW-99	04/10/2020	ND	4.0000		
Copper, total	ug/L ug/L	MW-99 MW-99	10/19/2020	ND	4.0000		
Copper, total		. N/1///_UU	04/05/2021	1	5.3000		1
Copper total				NID			
Copper, total Copper, total	ug/L ug/L	MW-99 MW-99	10/08/2021 04/06/2022	ND ND	4.0000 4.0000		

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Copper, total	ug/L	MW-99	10/25/2022	ND	4.0000		
Copper, total	ug/L	MW-99	04/11/2023	ND	4.0000		
Copper, total	ug/L	MW-99	10/13/2023	ND	4.0000		
Copper, total	ug/L	MW-99	04/18/2024	ND	4.0000		
Lead, total Lead, total	ug/L ug/L	MW-99 MW-99	10/13/2016 04/10/2017	ND ND	4.0000		
Lead, total	ug/L ug/L	MW-99	10/09/2017	ND	4.0000 4.0000		
Lead, total	ug/L	MW-99	04/17/2018	ND	4.0000		
Lead, total	ug/L	MW-99	10/22/2018	ND	4.0000		
Lead, total	ug/L	MW-99	04/22/2019	ND	4.0000		
Lead, total	ug/L	MW-99	10/23/2019	ND	4.0000		
Lead, total	ug/L	MW-99	04/10/2020	ND	4.0000		
Lead, total	ug/L	MW-99	10/19/2020	ND	4.0000		
Lead, total	ug/L	MW-99	04/05/2021	ND	4.0000		
Lead, total	ug/L	MW-99	10/08/2021	ND	4.0000		
Lead, total	ug/L	MW-99	04/06/2022	ND	4.0000		
Lead, total	ug/L	MW-99	10/25/2022	ND	4.0000		
Lead, total	ug/L	MW-99	04/11/2023	ND	4.0000		
Lead, total	ug/L	MW-99	10/13/2023	ND	4.0000		
Lead, total	ug/L	MW-99	04/18/2024	ND	4.0000		
Nickel, total	ug/L	MW-99	10/13/2016		5.6000		
Nickel, total	ug/L	MW-99	04/10/2017		5.1000		
Nickel, total	ug/L	MW-99	10/09/2017		8.8000		
Nickel, total	ug/L	MW-99 MW-99	04/17/2018	ND	4.3000		
Nickel, total	ug/L		10/22/2018	ND	4.0000		
Nickel, total	ug/L	MW-99 MW-99	04/22/2019 10/23/2019		5.1000		
Nickel, total Nickel, total	ug/L ug/L	MW-99	04/10/2020		7.1000 6.5000		
Nickel, total	ug/L ug/L	MW-99	10/19/2020		6.9000		
Nickel, total	ug/L	MW-99	04/05/2021		5.1000		
Nickel, total	ug/L	MW-99	10/08/2021		5.5000		
Nickel, total	ug/L	MW-99	04/06/2022		5.3000		
Nickel, total	ug/L	MW-99	10/25/2022		6.2000		
Nickel, total	ug/L	MW-99	04/11/2023	ND	4.0000		
Nickel, total	ug/L	MW-99	10/13/2023		5.3000		
Nickel, total	ug/L	MW-99	04/18/2024		6.3000		
Selenium, total	ug/L	MW-99	10/13/2016	ND	4.0000		
Selenium, total	ug/L	MW-99	04/10/2017	ND	4.0000		
Selenium, total	ug/L	MW-99	10/09/2017	ND	4.0000		
Selenium, total	ug/L	MW-99	04/17/2018	ND	4.0000		
Selenium, total	ug/L	MW-99	10/22/2018	ND	4.0000		
Selenium, total	ug/L	MW-99	04/22/2019	ND	4.0000		
Selenium, total	ug/L	MW-99	10/23/2019	ND	4.0000		
Selenium, total	ug/L	MW-99	04/10/2020	ND	4.0000		
Selenium, total	ug/L	MW-99	10/19/2020	ND	4.0000		
Selenium, total	ug/L	MW-99	04/05/2021	ND	4.0000		
Selenium, total	ug/L	MW-99	10/08/2021	ND	4.0000		
Selenium, total	ug/L	MW-99	04/06/2022	ND	4.0000		
Selenium, total	ug/L	MW-99	10/25/2022	ND	4.0000		
Selenium, total	ug/L	MW-99	04/11/2023	ND	4.0000		
Selenium, total Selenium, total	ug/L ug/L	MW-99 MW-99	10/13/2023 04/18/2024	ND ND	4.0000 4.0000		
Silver, total	ug/L ug/L	MW-99	10/13/2016	ND	4.0000		\vdash
Silver, total	ug/L ug/L	MW-99	04/10/2017	ND	4.0000		
Silver, total	ug/L	MW-99	10/09/2017	ND	4.0000		
Silver, total	ug/L	MW-99	04/17/2018	ND	4.0000		
Silver, total	ug/L	MW-99	10/22/2018	ND	4.0000		
Silver, total	ug/L	MW-99	04/22/2019	ND	4.0000		
Silver, total	ug/L	MW-99	10/23/2019	ND	4.0000		
Silver, total	ug/L	MW-99	04/10/2020	ND	4.0000		
Silver, total	ug/L	MW-99	10/19/2020	ND	4.0000		
Silver, total	ug/L	MW-99	04/05/2021	ND	4.0000		
Silver, total	ug/L	MW-99	10/08/2021	ND	4.0000		
Silver, total	ug/L	MW-99	04/06/2022	ND	4.0000		
Silver, total	ug/L	MW-99	10/25/2022	ND	4.0000		
Silver, total	ug/L	MW-99	04/11/2023	ND	4.0000		
Silver, total	ug/L	MW-99	10/13/2023	ND	4.0000		
Silver, total	ug/L	MW-99	04/18/2024	ND	4.0000		
Thallium, total	ug/L	MW-99	10/13/2016	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-99	04/10/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-99	10/09/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-99	04/17/2018	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-99	10/22/2018	ND	4.0000	2.0000	^ ^
Thallium, total	ug/L	MW-99	04/22/2019	ND	2.0000		

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Thallium, total	ug/L	MW-99	10/23/2019	ND	2.0000		
Thallium, total	ug/L	MW-99	04/10/2020	ND	2.0000		
Thallium, total	ug/L	MW-99	10/19/2020	ND	2.0000		
Thallium, total	ug/L	MW-99	04/05/2021	ND	2.0000		
Thallium, total	ug/L	MW-99	10/08/2021	ND	2.0000		
Thallium, total	ug/L	MW-99	04/06/2022	ND	2.0000		
Thallium, total	ug/L	MW-99	10/25/2022	ND	2.0000		
Thallium, total	ug/L	MW-99	04/11/2023	ND	2.0000		
Thallium, total	ug/L	MW-99	10/13/2023	ND	2.0000		
Thallium, total	ug/L	MW-99	04/18/2024	ND	2.0000		
Vanadium, total	ug/L	MW-99	10/13/2016	ND	20.0000		
Vanadium, total	ug/L	MW-99	04/10/2017	ND	20.0000		
Vanadium, total	ug/L	MW-99	10/09/2017	ND	20.0000		
Vanadium, total	ug/L	MW-99	04/17/2018	ND	20.0000		
Vanadium, total	ug/L	MW-99	10/22/2018	ND	20.0000		
Vanadium, total	ug/L	MW-99	04/22/2019	ND	20.0000		
Vanadium, total	ug/L	MW-99	10/23/2019	ND	20.0000		
Vanadium, total	ug/L	MW-99	04/10/2020	ND	20.0000		
Vanadium, total	ug/L	MW-99	10/19/2020	ND	20.0000		
Vanadium, total	ug/L	MW-99	04/05/2021	ND	20.0000		
Vanadium, total	ug/L	MW-99	10/08/2021	ND	20.0000		
Vanadium, total	ug/L	MW-99	04/06/2022	ND	20.0000		
Vanadium, total	ug/L	MW-99	10/25/2022	ND	20.0000		
Vanadium, total	ug/L	MW-99	04/11/2023	ND	20.0000		
Vanadium, total	ug/L	MW-99	10/13/2023	ND	20.0000		
Vanadium, total	ug/L	MW-99	04/18/2024	ND	20.0000		
Zinc, total	ug/L	MW-99	10/13/2016	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-99	04/10/2017	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-99	10/09/2017		11.2000		
Zinc, total	ug/L	MW-99	04/17/2018	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-99	10/22/2018		23.6000		
Zinc, total	ug/L	MW-99	04/22/2019		27.8000		
Zinc, total	ug/L	MW-99	10/23/2019		20.8000		
Zinc, total	ug/L	MW-99	04/10/2020	ND	20.0000		
Zinc, total	ug/L	MW-99	10/19/2020	ND	20.0000		
Zinc, total	ug/L	MW-99	04/05/2021	ND	20.0000		
Zinc, total	ug/L	MW-99	10/08/2021	ND	20.0000		
Zinc, total	ug/L	MW-99	04/06/2022	ND	20.0000		
Zinc, total	ug/L	MW-99	10/25/2022	ND	20.0000		
Zinc, total	ug/L	MW-99	04/11/2023	ND	20.0000		
Zinc, total	ug/L	MW-99	10/13/2023	ND	20.0000		
Zinc, total	ug/L	MW-99	04/18/2024	ND	20.0000		

* - Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 2 **Most Current Downgradient Monitoring Data**

Constituent	Units	Well	Date		Result		Pred. Limit
Antimony, total	ug/L	MW-87	04/16/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-87	04/16/2024	ND	4.0000		7.8000
Barium, total	ug/L	MW-87	04/16/2024		117.0000		460.7031
Beryllium, total	ug/L	MW-87	04/16/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-87	04/16/2024	ND	0.8000		0.8000
Chromium, total	ug/L	MW-87	04/16/2024	ND	8.0000		23.4000
Cobalt, total	ug/L	MW-87	04/16/2024	ND	0.4000		6.0584
Copper, total	ug/L	MW-87	04/16/2024	ND	4.0000		5.3000
Lead, total	ug/L	MW-87	04/16/2024	ND	4.0000		4.0000
Nickel, total	ug/L	MW-87	04/16/2024	ND	4.0000		8.8000
Selenium, total	ug/L	MW-87	04/16/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-87	04/16/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-87	04/16/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-87	04/16/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-87	04/16/2024	ND	20.0000		54.6000
Antimony, total	ug/L	MW-89	04/16/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-89	04/16/2024	ND	4.0000		7.8000
Barium, total	ug/L	MW-89	04/16/2024		240.0000		460.7031
Beryllium, total	ug/L	MW-89	04/16/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-89	04/16/2024	ND	0.8000		0.8000
Chromium, total	ug/L	MW-89	04/16/2024	ND	8.0000		23.4000
Cobalt, total	ug/L	MW-89	04/16/2024	ND	0.4000		6.0584
Copper, total	ug/L	MW-89	04/16/2024	ND	4.0000		5.3000
Lead, total	ug/L	MW-89	04/16/2024	ND	4.0000		4.0000
Nickel, total	ug/L	MW-89	04/16/2024	ND	4.0000		8.8000
Selenium, total	ug/L	MW-89	04/16/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-89	04/16/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-89	04/16/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-89	04/16/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-89	04/16/2024 04/16/2024	ND ND	20.0000		54.6000
Antimony, total	ug/L	MW-91 MW-91	04/16/2024	ND	2.0000 4.0000		2.0000 7.8000
Arsenic, total Barium, total	ug/L ug/L	MW-91	04/16/2024	ND	186.0000		460.7031
Beryllium, total	ug/L ug/L	MW-91	04/16/2024	ND	4.0000		4.0000
Cadmium, total	ug/L ug/L	MW-91	04/16/2024	ND	0.8000		0.8000
Chromium, total	ug/L	MW-91	04/16/2024	ND	8.0000		23.4000
Cobalt, total	ug/L	MW-91	04/16/2024	ND	0.4000		6.0584
Copper, total	ug/L	MW-91	04/16/2024	ND	4.0000		5.3000
Lead, total	ug/L	MW-91	04/16/2024	ND	4.0000		4.0000
Nickel, total	ug/L	MW-91	04/16/2024	ND	4.0000		8.8000
Selenium, total	ug/L	MW-91	04/16/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-91	04/16/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-91	04/16/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-91	04/16/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-91	04/16/2024	ND	20.0000		54.6000
Antimony, total	ug/L	MW-93	04/16/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-93	04/16/2024		11.9000	***	7.8000
Barium, total	ug/L	MW-93	04/16/2024		243.0000		460.7031
Beryllium, total	ug/L	MW-93	04/16/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-93	04/16/2024	ND	0.8000		0.8000
Chromium, total	ug/L	MW-93	04/16/2024	ND	8.0000		23.4000
Cobalt, total	ug/L	MW-93	04/16/2024		9.8000	***	6.0584
Copper, total	ug/L	MW-93	04/16/2024	ND	4.0000		5.3000
Lead, total	ug/L	MW-93	04/16/2024	ND	4.0000		4.0000
Nickel, total	ug/L	MW-93	04/16/2024		25.5000	***	8.8000
Selenium, total	ug/L	MW-93	04/16/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-93	04/16/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-93	04/16/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-93	04/16/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-93	04/16/2024	NID.	21.4000		54.6000
Antimony, total	ug/L	MW-95	04/17/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-95	04/17/2024	ND	4.0000		7.8000
Barium, total	ug/L	MW-95	04/17/2024	NID	42.7000		460.7031
Beryllium, total	ug/L	MW-95	04/17/2024	ND	4.0000		4.0000
Cadmium, total Chromium, total	ug/L	MW-95	04/17/2024	ND	0.8000		0.8000
	ug/L	MW-95	04/17/2024	ND	8.0000		23.4000
Cobalt, total	ug/L	MW-95 MW-95	04/17/2024 04/17/2024	ND ND	0.4000		6.0584
Copper, total Lead, total	ug/L ug/L	MW-95	04/17/2024	ND	4.0000		5.3000
Nickel, total	ug/L ug/L	MW-95	04/17/2024	ND	4.0000 4.0000		4.0000 8.8000
Selenium, total	ug/L ug/L	MW-95	04/17/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-95	04/17/2024	ND	4.0000		4.0000
	· ~9· –		J.,, LOL 1	. ,,,,			1.0000

^{* -} Current value failed - awaiting verification.

** - Current value passed - previous exceedance not verified.

*** - Current value failed - exceedance verified.

**** - Current value passed - awaiting one more verification.

***** - Insufficient background data to compute prediction limit.

ND = Not Detected, Result = detection limit.

Table 2 **Most Current Downgradient Monitoring Data**

Constituent	Units	Well	Date		Result		Pred. Limit
Thallium, total	ug/L	MW-95	04/17/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-95	04/17/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-95	04/17/2024	ND	20.0000		54.6000
Antimony, total	ug/L	MW-97	04/17/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-97	04/17/2024	ND	4.0000		7.8000
Barium, total	ug/L	MW-97	04/17/2024		315.0000		460.7031
Beryllium, total	ug/L	MW-97	04/17/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-97	04/17/2024	ND	0.8000		0.8000
Chromium, total	ug/L	MW-97	04/17/2024	ND	8.0000		23.4000
Cobalt, total	ug/L	MW-97	04/17/2024	ND	0.4000		6.0584
Copper, total	ug/L	MW-97	04/17/2024		7.1000	*	5.3000
Lead, total	ug/L	MW-97	04/17/2024	ND	4.0000		4.0000
Nickel, total	ug/L	MW-97	04/17/2024	ND	4.0000		8.8000
Selenium, total	ug/L	MW-97	04/17/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-97	04/17/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-97	04/17/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-97	04/17/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-97	04/17/2024	ND	20.0000		54.6000

^{* -} Current value failed - awaiting verification.

** - Current value passed - previous exceedance not verified.

*** - Current value failed - exceedance verified.

**** - Current value failed - exceedance verified.

**** - Current value passed - awaiting one more verification.

***** - Insufficient background data to compute prediction limit.

ND = Not Detected, Result = detection limit.

Table 3

Detection Frequencies in Upgradient and Downgradient Wells

Constituent	Detect	Upgradient N	Proportion	Detect	Downgradient N	Proportion
Antimony, total	0	62	0.000	0	190	0.000
Arsenic, total	5	60	0.083	41	196	0.209
Barium, total	62	62	1.000	192	192	1.000
Beryllium, total	0	62	0.000	0	190	0.000
Cadmium, total	0	62	0.000	5	190	0.026
Chromium, total	2	62	0.032	7	190	0.037
Cobalt, total	34	61	0.557	36	195	0.185
Copper, total	4	62	0.065	31	194	0.160
Lead, total	0	62	0.000	12	190	0.063
Nickel, total	14	61	0.230	75	192	0.391
Selenium, total	0	62	0.000	5	194	0.026
Silver, total	0	62	0.000	0	190	0.000
Thallium, total	0	62	0.000	0	190	0.000
Vanadium, total	0	62	0.000	11	191	0.058
Zinc, total	7	61	0.115	53	191	0.277

N = Total number of measurements in all wells. Detect = Total number of detections in all wells. Proportion = Detect/N.

Table 4 **Shapiro-Wilk Multiple Group Test of Normality**

Constituent	Detect	N	Detect Freq	G raw	G log	G cbrt	G sqrt	G sqr	G cub	Crit Value	Dist Form	Model Type
Antimony, total	0	62	0.000									nonpar
Arsenic, total	5	60	0.083	0.427	0.013					2.326	normal	nonpar
Barium, total	62	62	1.000	0.041	1.560					2.326	normal	normal
Beryllium, total	0	62	0.000									nonpar
Cadmium, total	0	62	0.000									nonpar
Chromium, total	2	62	0.032									nonpar
Cobalt, total	34	61	0.557	1.012	0.001					2.326	normal	normal
Copper, total	4	62	0.065									nonpar
Lead, total	0	62	0.000									nonpar
Nickel, total	14	61	0.230	1.049	0.057					2.326	normal	nonpar
Selenium, total	0	62	0.000									nonpar
Silver, total	0	62	0.000									nonpar
Thallium, total	0	62	0.000									nonpar
Vanadium, total	0	62	0.000									nonpar
Zinc, total	7	61	0.115	0.439	0.418					2.326	normal	nonpar

 * - Distribution override for that constituent. Fit to distribution is confirmed if G <= critical value. Model type may not match distributional form when detection frequency < 50%.

Table 5 **Summary Statistics and Prediction Limits**

Constituent	Units	Detect	N	Mean	SD	alpha	Factor	Pred Limit	Туре		Conf
Antimony, total	ug/L	0	62					2.0000	nonpar	***	0.99
Arsenic, total	ug/L	5	60					7.8000	nonpar		0.99
Barium, total	ug/L	62	62	182.8016	115.3977	0.0100	2.4082	460.7031	normal		
Beryllium, total	ug/L	0	62					4.0000	nonpar	***	0.99
Cadmium, total	ug/L	0	62					0.8000	nonpar	***	0.99
Chromium, total	ug/L	2	62					23.4000	nonpar		0.99
Cobalt, total	ug/L	34	61	1.5951	1.8523	0.0100	2.4096	6.0584	normal		
Copper, total	ug/L	4	62					5.3000	nonpar		0.99
Lead, total	ug/L	0	62					4.0000	nonpar	***	0.99
Nickel, total	ug/L	14	61					8.8000	nonpar		0.99
Selenium, total	ug/L	0	62					4.0000	nonpar	***	0.99
Silver, total	ug/L	0	62					4.0000	nonpar	***	0.99
Thallium, total	ug/L	0	62					2.0000	nonpar	***	0.99
Vanadium, total	ug/L	0	62					20.0000	nonpar	***	0.99
Zinc, total	ug/L	7	61					54.6000			0.99

Conf = confidence level for passing initial test or one verification resample at all downgradient wells for a single constituent (nonparametric test only).

* - Insufficient Data.

** - Calculated limit raised to Manual Reporting Limit.

*** - Nonparametric limit based on ND value.

- Nonparametric limit based of IND value.

For transformed data, mean and SD in transformed units and prediction limit in original units.

All sample sizes and statistics are based on outlier free data.

For nonparametric limits, median reporting limits are substituted for extreme reporting limit values.

Table 6

Dixon's Test Outliers 1% Significance Level

Constituent	Units	Well	Date	Result	ND Qualifier	Date Range	N	Critical Value
Arsenic, total	ug/L	MW-98	04/17/2024	48.0000		10/13/2016-04/17/2024	15	0.6177
Cobalt, total	ug/L	MW-99	10/22/2018	0.8000		10/13/2016-04/18/2024	16	0.5973

N = Total number of independent measurements in background at each well.

Date Range = Dates of the first and last measurements included in background at each well.

Critical Value depends on the significance level and on N-1 when the two most extreme values are tested or N for the most extreme value.

Table 8 Historical Downgradient Data for Constituent-Well Combinations that Failed the Current Statistical Evaluation or are in Verification Resampling Mode


Arsenic, total	.19/L .19/L .19/L .19/L .19/L .19/L .19/L .19/L .19/L .19/L	MW-93 MW-93 MW-93 MW-93 MW-93 MW-93 MW-93 MW-93 MW-93 MW-93 MW-93 MW-93 MW-93	08/21/2008 10/03/2008 12/08/2008 02/11/2009 04/02/2009 10/16/2009 04/20/2010 10/08/2011 10/06/2011 04/05/2011 10/09/2012	ND ND ND ND ND ND ND	20.0000 4.0000 4.0000 4.0000 4.0000 4.0000 11.1000 4.0000 4.0000	*	7.8000 7.8000 7.8000 7.8000 7.8000 7.8000 7.8000 7.8000
Arsenic, total	.g/L .g/L .g/L .g/L .g/L .g/L .g/L .g/L	MW-93 MW-93 MW-93 MW-93 MW-93 MW-93 MW-93 MW-93 MW-93 MW-93	12/08/2008 02/11/2009 04/02/2009 10/16/2009 04/20/2010 10/08/2010 04/05/2011 10/06/2011 04/10/2012 10/09/2012	ND ND ND ND	4.0000 4.0000 4.0000 4.0000 10.9000 11.1000 4.0000	*	7.8000 7.8000 7.8000 7.8000 7.8000
Arsenic, total	.g/L .g/L .g/L .g/L .g/L .g/L .g/L .g/L	MW-93 MW-93 MW-93 MW-93 MW-93 MW-93 MW-93 MW-93 MW-93	02/11/2009 04/02/2009 10/16/2009 04/20/2010 10/08/2010 04/05/2011 10/06/2011 04/10/2012 10/09/2012	ND ND ND	4.0000 4.0000 4.0000 10.9000 11.1000 4.0000	*	7.8000 7.8000 7.8000 7.8000
Arsenic, total	.g/L .g/L .g/L .g/L .g/L .g/L .g/L .g/L	MW-93 MW-93 MW-93 MW-93 MW-93 MW-93 MW-93 MW-93	04/02/2009 10/16/2009 04/20/2010 10/08/2010 04/05/2011 10/06/2011 04/10/2012 10/09/2012	ND ND	4.0000 4.0000 10.9000 11.1000 4.0000	*	7.8000 7.8000 7.8000
Arsenic, total	.g/L .g/L .g/L .g/L .g/L .g/L .g/L .g/L	MW-93 MW-93 MW-93 MW-93 MW-93 MW-93 MW-93	10/16/2009 04/20/2010 10/08/2010 04/05/2011 10/06/2011 04/10/2012 10/09/2012	ND ND	4.0000 10.9000 11.1000 4.0000	*	7.8000 7.8000
Arsenic, total under the control of	.g/L .g/L .g/L .g/L .g/L .g/L .g/L .g/L	MW-93 MW-93 MW-93 MW-93 MW-93 MW-93	04/20/2010 10/08/2010 04/05/2011 10/06/2011 04/10/2012 10/09/2012	ND	10.9000 11.1000 4.0000	*	7.8000
Arsenic, total under the control of	.g/L .g/L .g/L .g/L .g/L .g/L .g/L .g/L	MW-93 MW-93 MW-93 MW-93 MW-93	10/08/2010 04/05/2011 10/06/2011 04/10/2012 10/09/2012		10.9000 11.1000 4.0000	*	7.8000
Arsenic, total undersenic, und	.g/L .g/L .g/L .g/L .g/L .g/L .g/L .g/L	MW-93 MW-93 MW-93 MW-93 MW-93	10/08/2010 04/05/2011 10/06/2011 04/10/2012 10/09/2012		11.1000 4.0000	*	
Arsenic, total undersenic, und	.g/L .g/L .g/L .g/L .g/L .g/L .g/L	MW-93 MW-93 MW-93 MW-93	04/05/2011 10/06/2011 04/10/2012 10/09/2012		4.0000		
Arsenic, total under the control of	19/L 19/L 19/L 19/L 19/L	MW-93 MW-93 MW-93	10/06/2011 04/10/2012 10/09/2012				7.8000
Arsenic, total Arsenic, total Arsenic, total Arsenic, total Arsenic, total Arsenic, total	18/F 18/F 18/F 18/F 18/F	MW-93 MW-93 MW-93	04/10/2012 10/09/2012	.,_			7.8000
Arsenic, total u Arsenic, total u Arsenic, total u Arsenic, total u	ug/L ug/L ug/L ug/L	MW-93 MW-93	10/09/2012		4.2000		7.8000
Arsenic, total u Arsenic, total u Arsenic, total u	ug/L ug/L ug/L	MW-93			4.4000		7.8000
Arsenic, total u	ug/L ug/L		04/04/2013	ND	4.0000		7.8000
Arsenic, total u	ug/L ug/L		10/16/2013	ND	4.0000		7.8000
	ug/L	MW-93	04/10/2014		9.2000	*	7.8000
		MW-93	10/16/2014		5.1000		7.8000
	ug/L	MW-93	04/06/2015		5.9000		7.8000
	ug/L	MW-93	10/01/2015		5.2000		7.8000
	ug/L	MW-93	04/14/2016		16.1000	*	7.8000
	ug/L	MW-93	10/13/2016		6.5000		7.8000
		I					
	ug/L	MW-93 MW-93	04/10/2017 10/09/2017	ND	5.5000 4.0000		7.8000 7.8000
	ug/L	MW-93	04/17/2018	ואט	5.4000		7.8000
	ug/L					*	
	ug/L	MW-93	10/22/2018		18.4000	*	7.8000
	ug/L	MW-93	04/22/2019		67.3000	*	7.8000
	ug/L	MW-93	10/23/2019		13.6000	*	7.8000
	ug/L	MW-93	04/10/2020		17.5000	^	7.8000
	ug/L	MW-93	10/19/2020		4.8000	.	7.8000
	ug/L	MW-93	04/05/2021		10.5000	*	7.8000
	ug/L	MW-93	10/08/2021		11.4000	*	7.8000
	ug/L	MW-93	04/06/2022		11.1000		7.8000
	ug/L	MW-93	10/25/2022		58.5000	*	7.8000
	ug/L	MW-93	04/11/2023		9.3000	*	7.8000
	ug/L	MW-93	10/13/2023		59.6000	*	7.8000
	ug/L	MW-93	04/16/2024		11.9000	*	7.8000
	ug/L	MW-93	08/21/2008	ND	10.0000		6.0584
	ug/L	MW-93	10/03/2008	ND	4.0000		6.0584
	ıg/L	MW-93	12/08/2008	ND	4.0000		6.0584
	ıg/L	MW-93	02/11/2009	ND	4.0000		6.0584
	ug/L	MW-93	04/02/2009	ND	4.0000		6.0584
	ug/L	MW-93	10/16/2009	ND	4.0000	.	6.0584
	ug/L	MW-93	04/20/2010		11.6000	*	6.0584
	ug/L	MW-93	10/08/2010		16.2000	*	6.0584
Cobalt, total u	ug/L	MW-93	04/05/2011		9.2000	*	6.0584
Cobalt, total u	ug/L	MW-93	10/06/2011		8.6000	*	6.0584
Cobalt, total u	ug/L	MW-93	04/10/2012		4.8000		6.0584
	ug/L	MW-93	10/09/2012		4.5000		6.0584
	ug/L	MW-93	04/04/2013		4.5000		6.0584
	ug/L	MW-93	10/16/2013		4.6000		6.0584
Cobalt, total u	ug/L	MW-93	04/10/2014		11.2000	*	6.0584
Cobalt, total u	ug/L	MW-93	10/16/2014		7.3000	*	6.0584
Cobalt, total u	ug/L	MW-93	04/06/2015		9.7000	*	6.0584
Cobalt, total u	ığ/L	MW-93	10/01/2015		7.5000	*	6.0584
	ığ/L	MW-93	04/14/2016		14.7000	*	6.0584
	ığ/L	MW-93	10/13/2016		6.6000	*	6.0584
	ıg/L	MW-93	04/10/2017		8.6000	*	6.0584
	ıg/L	MW-93	10/09/2017		5.2000		6.0584
	ıg/L	MW-93	04/17/2018		5.9000		6.0584
	ıg/L	MW-93	10/22/2018		9.9000	*	6.0584
	ıg/L	MW-93	04/22/2019		18.9000	*	6.0584
	ug/L	MW-93	10/23/2019		8.3000	*	6.0584
	ıg/L	MW-93	04/10/2020		11.3000	*	6.0584
	ig/L	MW-93	10/19/2020		4.6000		6.0584
	ug/L	MW-93	04/05/2021		7.9000	*	6.0584
	ıg/L	MW-93	10/08/2021		7.1000	*	6.0584
	ıg/L	MW-93	04/06/2022		8.7000	*	6.0584
	ıg/L	MW-93	10/25/2022		8.6000	*	6.0584
	ug/L	MW-93	04/11/2023		9.0000	*	6.0584
	ug/L	MW-93	10/13/2023		8.3000	*	6.0584
	ug/L	MW-93	04/16/2024		9.8000	*	6.0584
	ıg/L	MW-93	08/21/2008		29.0000	*	8.8000
	Jr		30,2.,2000				0.0000

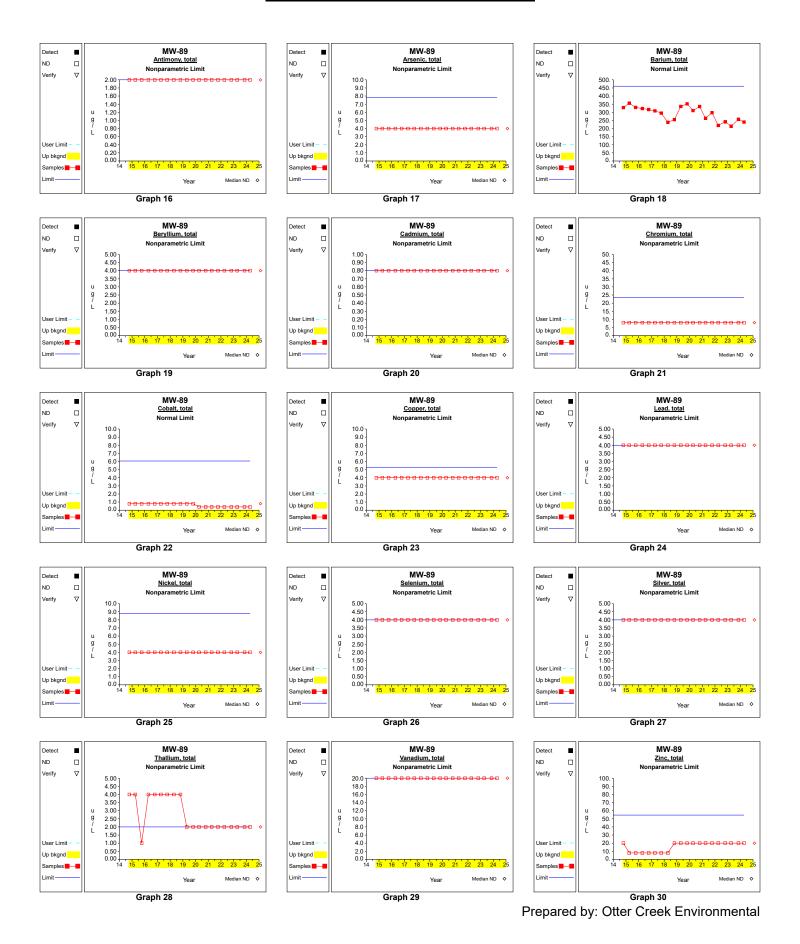
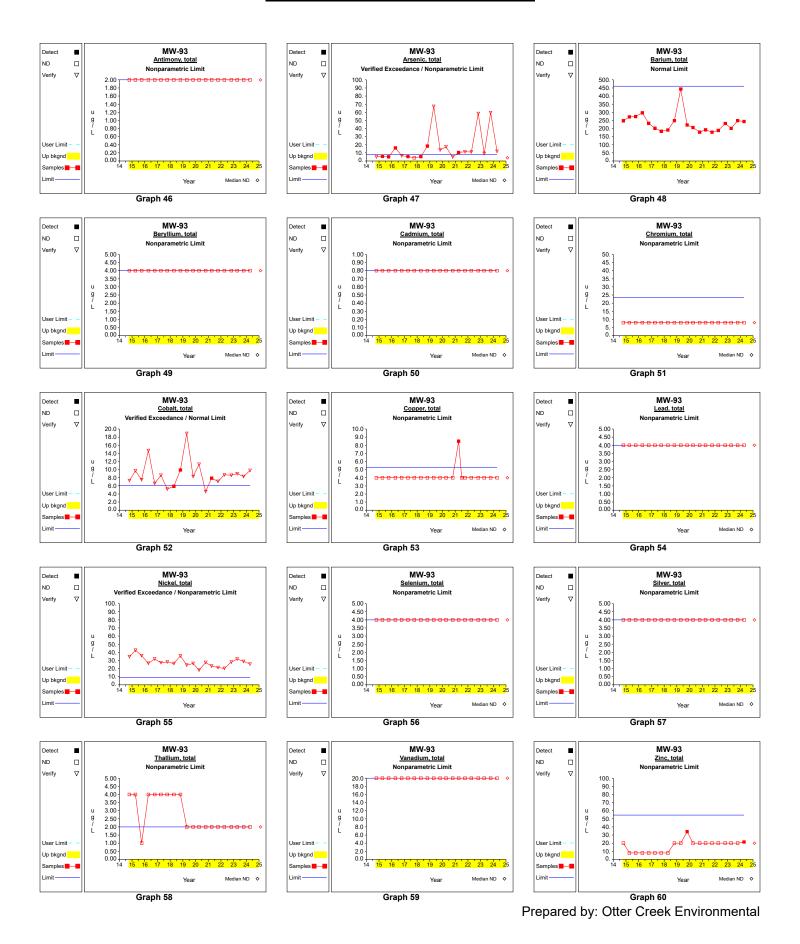
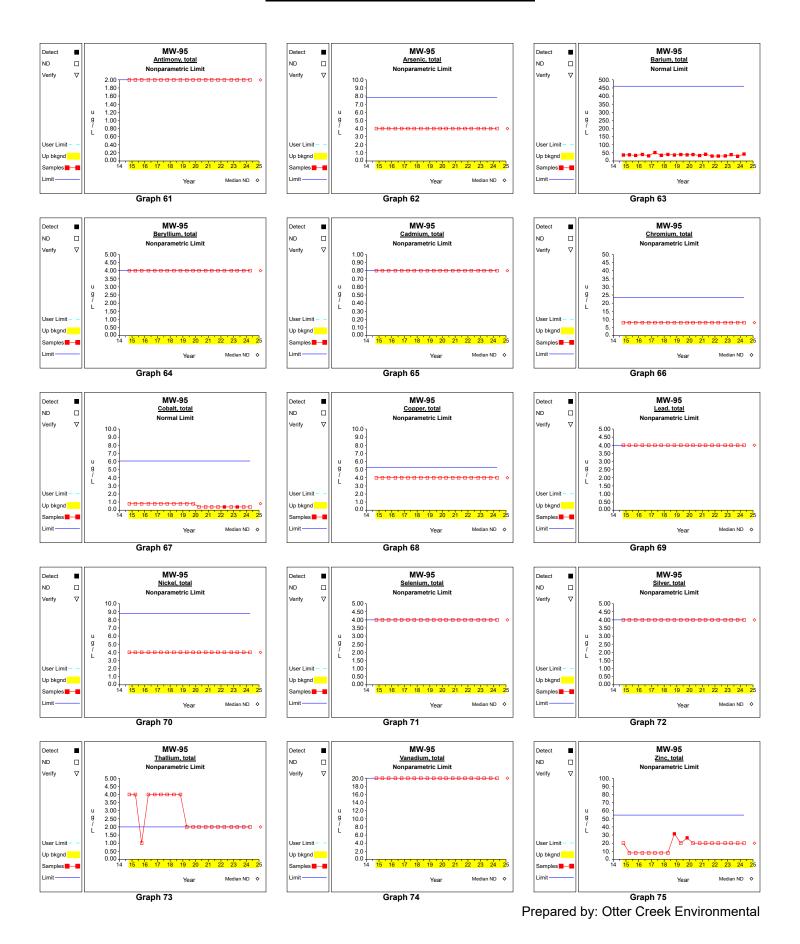
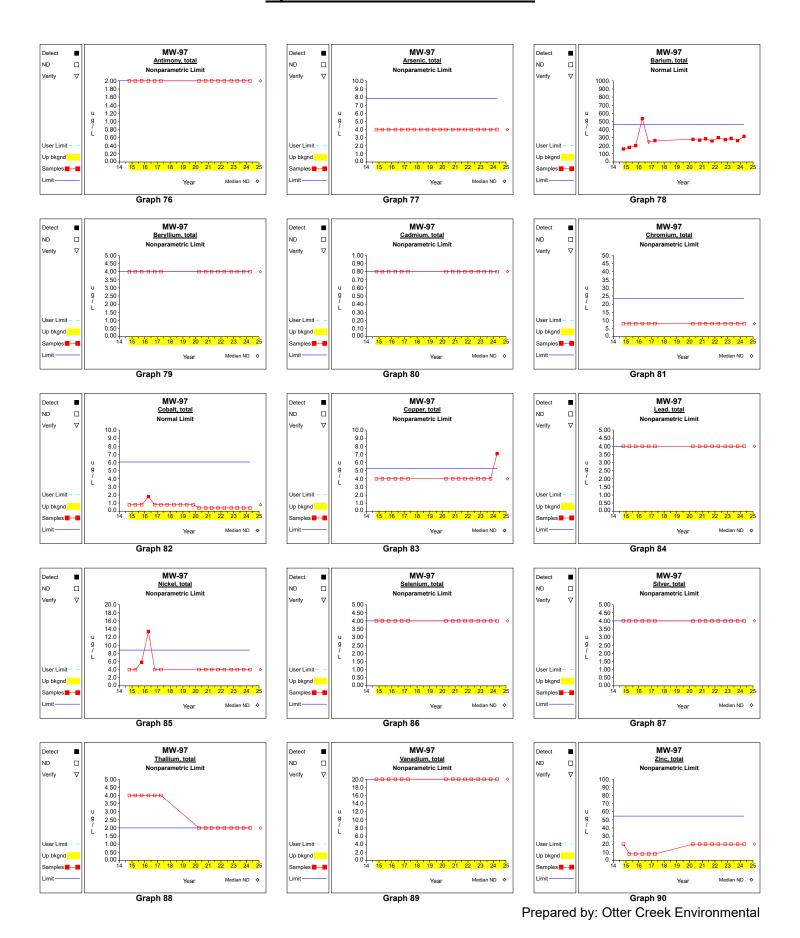

^{* -} Significantly increased over background.
** - Detect at limit for 100% NDs in background (NPPL only).
*** - Manual exclusion.
ND = Not Detected, Result = detection limit.

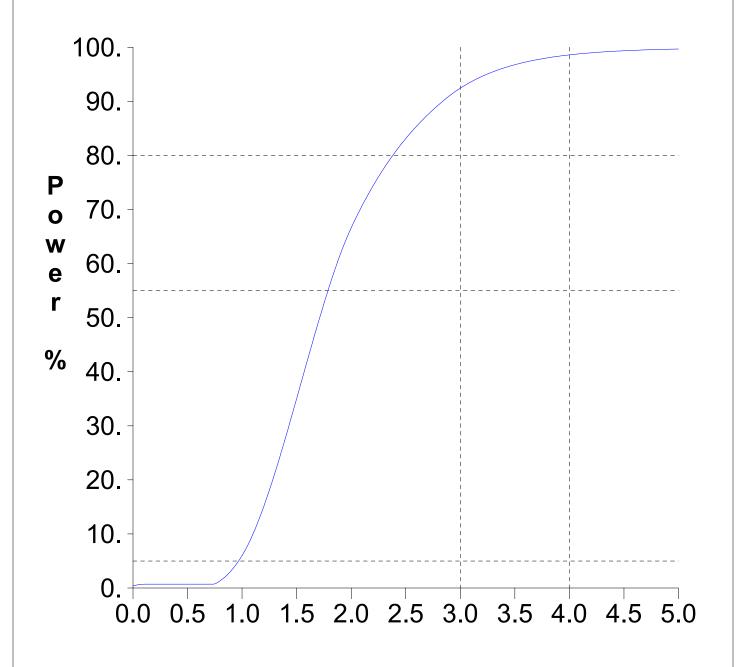
Table 8 Historical Downgradient Data for Constituent-Well Combinations that Failed the Current Statistical Evaluation or are in Verification Resampling Mode


Constituent	Units	Well	Date		Result		Pred. Limit
Nickel, total	ug/L	MW-93	10/03/2008		28.9000	*	8.8000
Nickel, total	ug/L	MW-93	12/08/2008		23.8000	*	8.8000
Nickel, total	ug/L	MW-93	02/11/2009		30.4000	*	8.8000
Nickel, total	ug/L	MW-93	04/02/2009		32.1000		8.8000
Nickel, total	ug/L	MW-93	10/16/2009		30.2000	*	8.8000
Nickel, total	ug/L	MW-93	01/29/2010		35.3000	*	8.8000
Nickel, total	ug/L	MW-93	04/20/2010		45.5000	*	8.8000
Nickel, total	ug/L	MW-93	10/08/2010		69.8000		8.8000
Nickel, total	ug/L	MW-93	04/05/2011		37.5000	*	8.8000
Nickel, total	ug/L	MW-93	10/06/2011		31.9000	*	8.8000
Nickel, total	ug/L	MW-93	04/10/2012		29.6000	*	8.8000
Nickel, total	ug/L	MW-93	10/09/2012		23.5000	*	8.8000
Nickel, total	ug/L	MW-93	04/04/2013		13.8000	*	8.8000
Nickel, total	ug/L	MW-93	10/16/2013		21.5000	*	8.8000
Nickel, total	ug/L	MW-93	04/10/2014		43.1000		8.8000
Nickel, total	ug/L	MW-93	10/16/2014		34.6000	*	8.8000
Nickel, total	ug/L	MW-93	04/06/2015		42.6000	*	8.8000
Nickel, total	ug/L	MW-93	10/01/2015		36.0000	*	8.8000
Nickel, total	ug/L	MW-93	04/14/2016		26.5000	*	8.8000
Nickel, total	ug/L	MW-93	10/13/2016		31.8000	*	8.8000
Nickel, total	ug/L	MW-93	04/10/2017		27.3000	*	8.8000
Nickel, total	ug/L	MW-93	10/09/2017		28.2000	*	8.8000
Nickel, total	ug/L	MW-93	04/17/2018		26.2000	*	8.8000
Nickel, total	ug/L	MW-93	10/22/2018		35.7000	*	8.8000
Nickel, total	ug/L	MW-93	04/22/2019		24.2000	*	8.8000
Nickel, total	ug/L	MW-93	10/23/2019		26.3000	*	8.8000
Nickel, total	ug/L	MW-93	04/10/2020		18.1000	*	8.8000
Nickel, total	ug/L	MW-93	10/19/2020		27.6000	*	8.8000
Nickel, total	ug/L	MW-93	04/05/2021		23.1000	*	8.8000
Nickel, total	ug/L	MW-93	10/08/2021		21.3000	*	8.8000
Nickel, total	ug/L	MW-93	04/06/2022		20.2000	*	8.8000
Nickel, total	ug/L	MW-93	10/25/2022		27.9000	*	8.8000
Nickel, total	ug/L	MW-93	04/11/2023		31.8000	*	8.8000
Nickel, total	ug/L	MW-93	10/13/2023		28.8000	*	8.8000
Nickel, total	ug/L	MW-93 MW-97	04/16/2024 10/16/2013		25.5000 4.7000		8.8000 5.3000
Copper, total	ug/L	MW-97	04/10/2014		4.7000		5.3000
Copper, total Copper, total	ug/L ug/L	MW-97	10/16/2014	ND	4.0000		5.3000
Copper, total	ug/L ug/L	MW-97	04/03/2015	ND	4.0000		5.3000
		MW-97	10/01/2015	ND	4.0000		5.3000
Copper, total Copper, total	ug/L ug/L	MW-97	04/14/2016	ND	4.0000		5.3000
		MW-97	10/13/2016	ND	4.0000		5.3000
Copper, total Copper, total	ug/L ug/L	MW-97	04/10/2017	ND ND	4.0000		5.3000
Copper, total	ug/L ug/L	MW-97	04/10/2017	ND ND	4.0000		5.3000
Copper, total	ug/L ug/L	MW-97	10/19/2020	ND ND	4.0000		5.3000
Copper, total	ug/L ug/L	MW-97	04/05/2021	ND ND	4.0000		5.3000
Copper, total	ug/L ug/L	MW-97	10/08/2021	ND	4.0000		5.3000
Copper, total	ug/L ug/L	MW-97	04/06/2022	ND	4.0000		5.3000
Copper, total	ug/L ug/L	MW-97	10/25/2022	ND	4.0000		5.3000
Copper, total	ug/L ug/L	MW-97	04/11/2023	ND	4.0000		5.3000
Copper, total	ug/L ug/L	MW-97	10/13/2023	ND	4.0000		5.3000
Copper, total	ug/L ug/L	MW-97	04/17/2024	ן און	7.1000	*	5.3000
Coppor, total	~9/ -		O II II I Z Z Z Z		7.1000		3.3300

^{* -} Significantly increased over background.
** - Detect at limit for 100% NDs in background (NPPL only).
*** - Manual exclusion.
ND = Not Detected, Result = detection limit.






Up vs. Down Prediction Limits

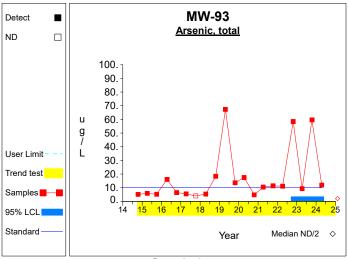
Up vs. Down Prediction Limits

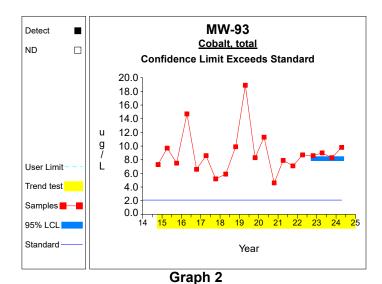
False Positive and False Negative Rates for Current Upgradient vs. Downgradient Monitoring Program

S. D. Units

Attachment C

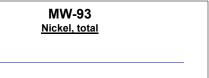
Assessment Statistics for Trace Metals

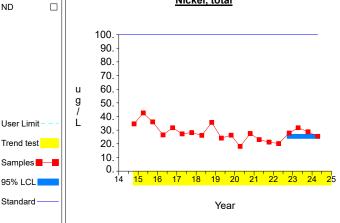

marshall2024s1 May 2024


Table 1 Confidence Intervals for Comparing the Mean of the Last 4 Measurements to an Assessment Monitoring Standard

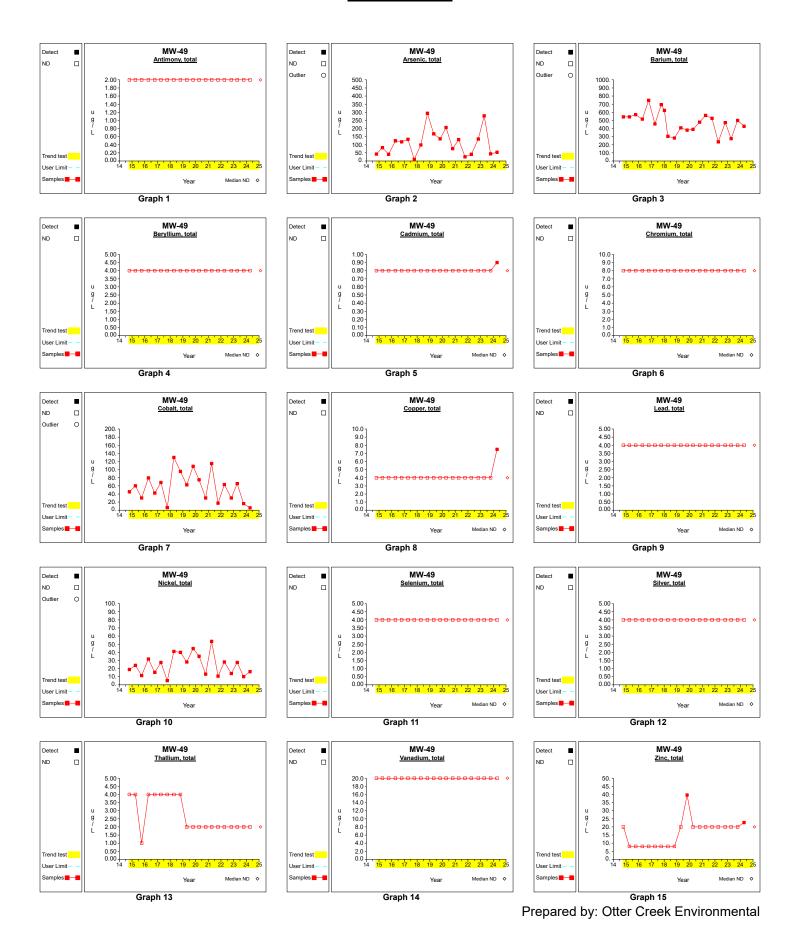
Constituent	Units	Well	N	Mean	SD	Factor	95% LCL	95% UCL	Standard	Trend	
Arsenic, total	ug/L	MW-93	4	34.825	27.996	1.176	1.893	67.757	10.000		
Cobalt, total	ug/L	MW-93	4	8.925	0.650	1.176	8.160	9.690	2.100		**
Nickel, total	ug/L	MW-93	4	28.500	2.604	1.176	25.437	31.563	100.000		

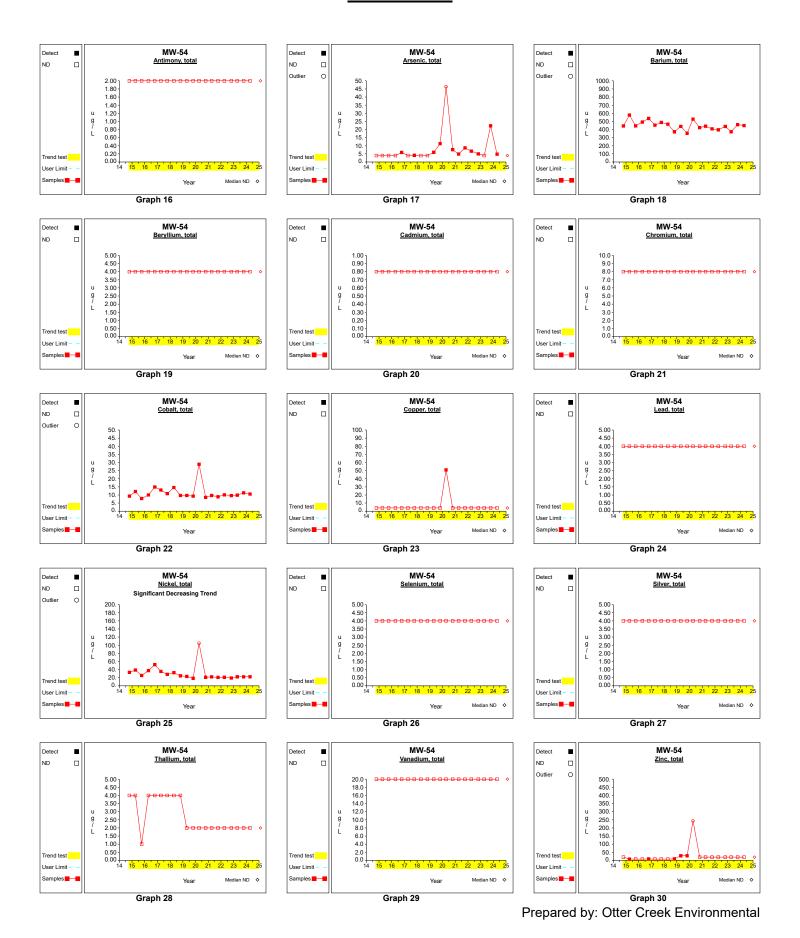
^{* -} Insufficient Data ** - Significant Exceedance LCL = Lower Confidence Limit UCL = Upper Confidence Limit

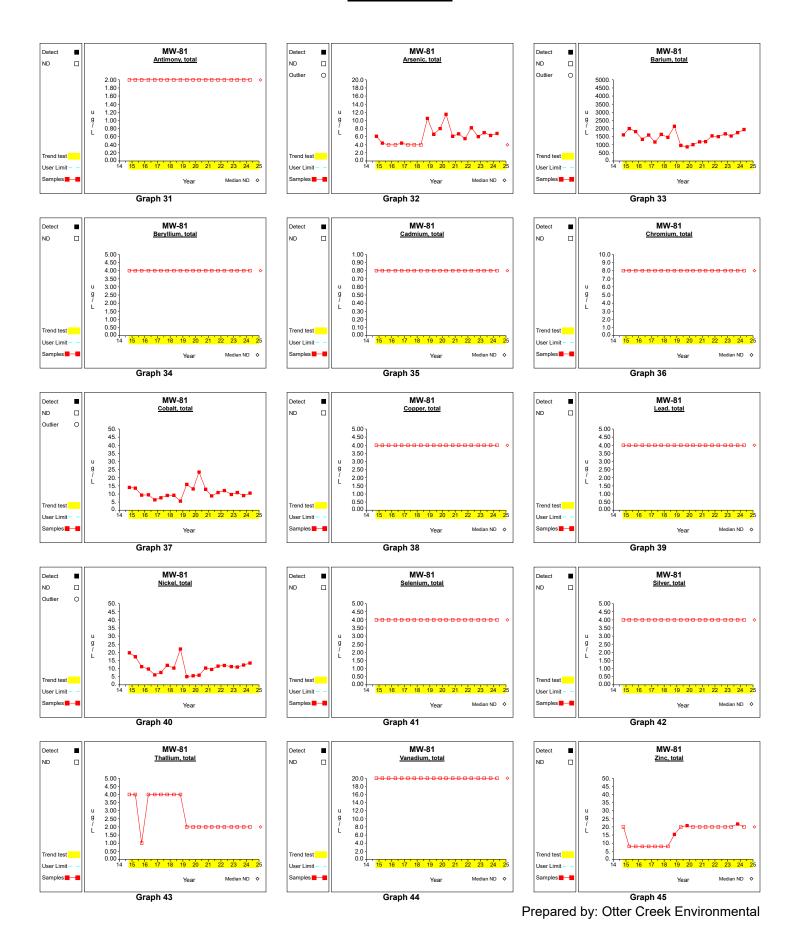

Confidence Limits (Assessment)



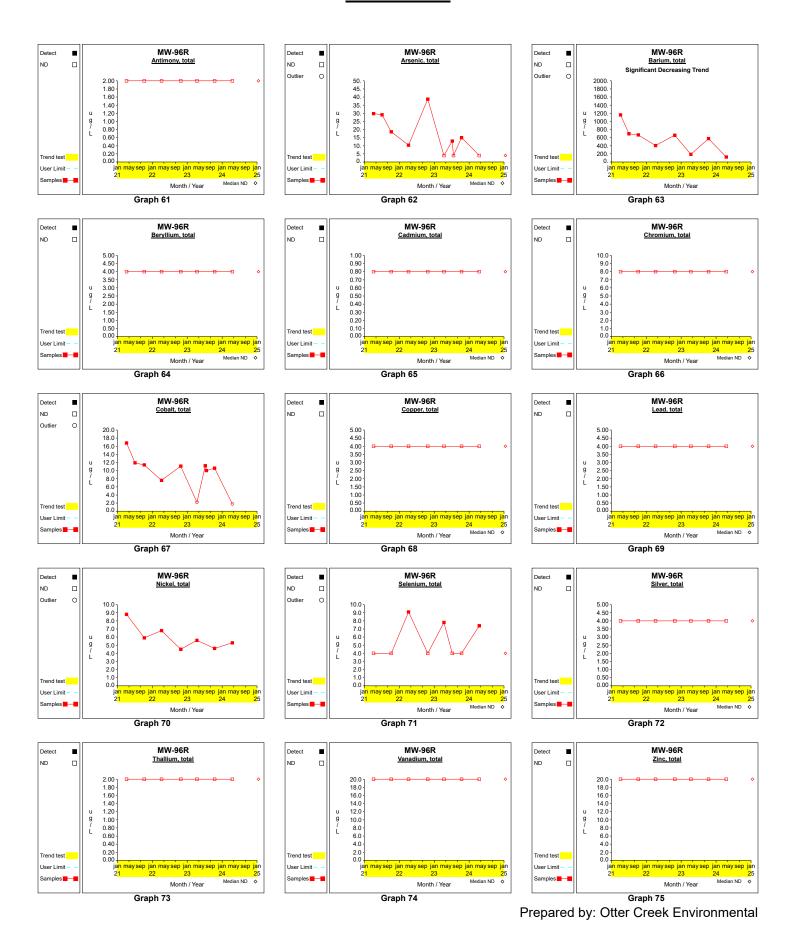
Detect




Graph 3


Attachment D

Supplemental Wells Time Series of Trace Metals


marshall2024s1 May 2024

Attachment E

Summary Table and Graphs – Intrawell Statistics

marshall2024s1 May 2024

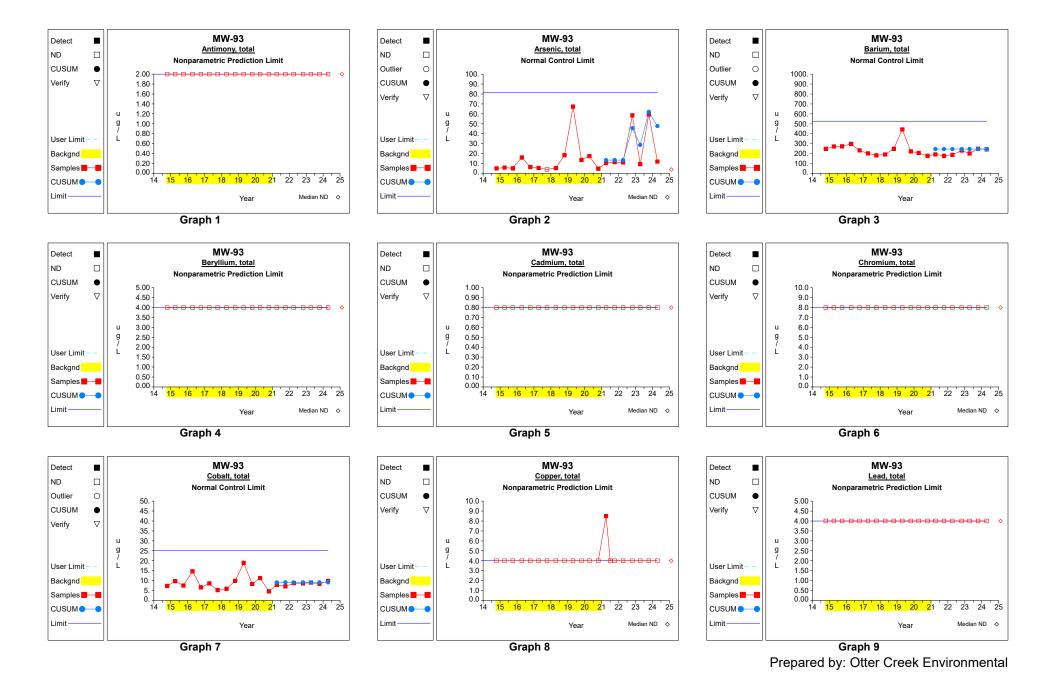
Table 1 Summary Statistics and Intermediate Computations for Combined Shewhart-CUSUM Control Charts

Constituent	Units	Well	N(back)	N(mon)	N(tot)	Mean	SD	R(i-1)	R(i)	S(i-1)	S(i)	Limit	Туре	Conf	
Antimony, total	ug/L	MW-93	13	7	35			2.0000	2.0000			2.0000	nonpar	.99	**
Arsenic, total	ug/L	MW-93	13	7	35	13.4846	17.0367	59.6000	11.9000	62.0983	47.7361	81.6313	normal		
Barium, total	ug/L	MW-93	13	7	35	245.9231	70.0053	249.0000	243.0000	245.9231	245.9231	525.9443	normal		
Beryllium, total	ug/L	MW-93	13	7	35			4.0000	4.0000			4.0000	nonpar	.99	**
Cadmium, total	ug/L	MW-93	13	7	35			0.8000	0.8000			0.8000	nonpar	.99	**
Chromium, total	ug/L	MW-93	13	7	35			8.0000	8.0000			8.0000	nonpar	.99	**
Cobalt, total	ug/L	MW-93	13	7	35	9.1154	3.9987	8.3000	9.8000	9.1154	9.1154	25.1103	normal		
Copper, total	ug/L	MW-93	13	8	36			4.0000	4.0000			4.0000	nonpar	.99	**
Lead, total	ug/L	MW-93	13	7	35			4.0000	4.0000			4.0000	nonpar	.99	**
Nickel, total	ug/L	MW-93	13	7	36	29.6231	6.3359	28.8000	25.5000	29.6231	29.6231	54.9667	normal		
Selenium, total	ug/L	MW-93	13	7	35			4.0000	4.0000			4.0000	nonpar	.99	**
Silver, total	ug/L	MW-93	13	7	35			4.0000	4.0000			4.0000	nonpar	.99	**
Thallium, total	ug/L	MW-93	13	7	35			2.0000	2.0000			4.0000	nonpar	.99	**
Vanadium, total	ug/L	MW-93	13	7	35			20.0000	20.0000			20.0000	nonpar	.99	**
Zinc, total	ug/L	MW-93	13	7	35			20.0000	21.4000			34.2000	nonpar	.99	**

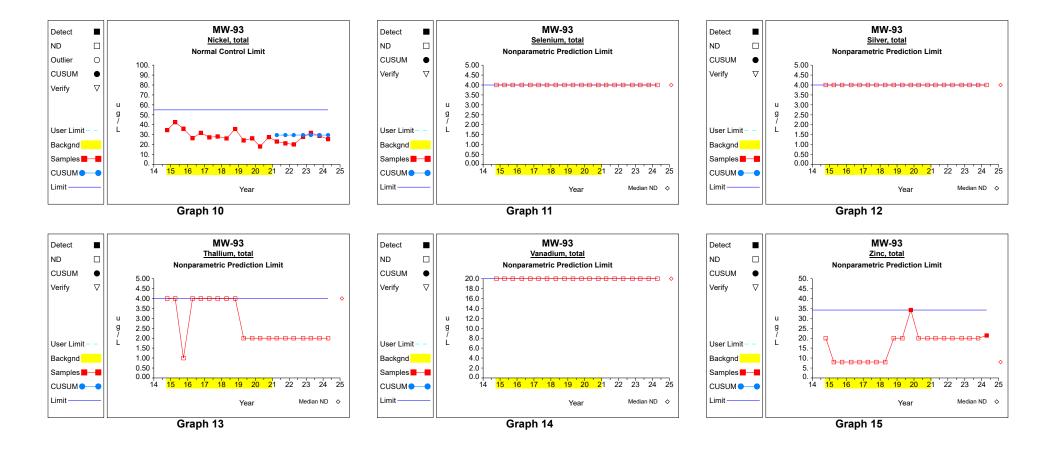
N(back) and N(mon) = Non-outlier measurements in the background and monitoring periods.

N(tot) = All independent measurements for that constituent and well.

For transformed data, mean and SD in transformed units and control limit in original units.


Conf = conflictor evel for passing initial test or one verification resample (nonparametric test only).

^{* -} Insufficient Data.


^{** -} Detection Frequency < 25%.

^{*** -} Zero Variance.

Intra-Well Control Charts / Prediction Limits

Intra-Well Control Charts / Prediction Limits

False Positive and False Negative Rates for Current Intra-Well Control Charts Monitoring Program

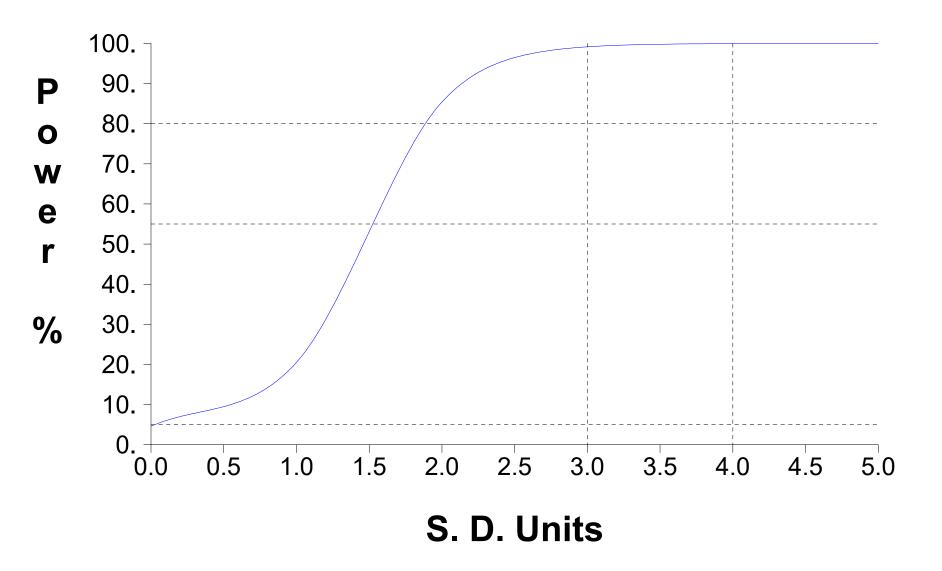


Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Antimony, total	ug/L	MW-93	10/16/2014	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	04/06/2015	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	10/01/2015	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	04/14/2016	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	10/13/2016	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	04/10/2017	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	10/09/2017	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	04/17/2018	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	10/22/2018	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	04/22/2019	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	10/23/2019	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	04/10/2020	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	10/19/2020	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	04/05/2021	,	2.0000	ND				
Antimony, total	ug/L	MW-93	10/08/2021		2.0000	ND				
Antimony, total	ug/L	MW-93	04/06/2022		2.0000	ND				
Antimony, total	ug/L	MW-93	10/25/2022		2.0000	ND				
Antimony, total	ug/L	MW-93	04/11/2023		2.0000	ND				
Antimony, total	ug/L	MW-93	10/13/2023		2.0000	ND				
Antimony, total	ug/L	MW-93	04/16/2024		2.0000	ND				
Arsenic, total	ug/L	MW-93	10/16/2014	yes	5.1000					
Arsenic, total	ug/L	MW-93	04/06/2015	ves	5.9000					
Arsenic, total	ug/L	MW-93	10/01/2015	yes	5.2000					
Arsenic, total	ug/L	MW-93	04/14/2016	yes	16.1000					
Arsenic, total	ug/L	MW-93	10/13/2016	yes	6.5000					
Arsenic, total	ug/L	MW-93	04/10/2017	yes	5.5000					
Arsenic, total	ug/L	MW-93	10/09/2017	ves	4.0000	ND				
Arsenic, total	ug/L	MW-93	04/17/2018	yes	5.4000					
Arsenic, total	ug/L	MW-93	10/22/2018	yes	18.4000					
Arsenic, total	ug/L	MW-93	04/22/2019	yes	67.3000					
Arsenic, total	ug/L	MW-93	10/23/2019	ves	13.6000					
Arsenic, total	ug/L	MW-93	04/10/2020	yes	17.5000					
Arsenic, total	ug/L	MW-93	10/19/2020	yes	4.8000					
Arsenic, total	ug/L	MW-93	04/05/2021	,	10.5000			13.4846		
Arsenic, total	ug/L	MW-93	10/08/2021		11.4000			13.4846		
Arsenic, total	ug/L	MW-93	04/06/2022		11.1000			13.4846		
Arsenic, total	ug/L	MW-93	10/25/2022		58.5000			45.7225		
Arsenic, total	ug/L	MW-93	04/11/2023		9.3000			28.7604		
Arsenic, total	ug/L	MW-93	10/13/2023		59.6000			62.0983		
Arsenic, total	ug/L	MW-93	04/16/2024		11.9000			47.7361		
Barium, total	ug/L	MW-93	10/16/2014	yes	248.0000					
Barium, total	ug/L	MW-93	04/06/2015	yes	272.0000					
Barium, total	ug/L	MW-93	10/01/2015	yes	274.0000					
Barium, total	ug/L	MW-93	04/14/2016	yes	297.0000					
Barium, total	ug/L	MW-93	10/13/2016	yes	232.0000					
Barium, total	ug/L	MW-93	04/10/2017	yes	202.0000					
Barium, total	ug/L	MW-93	10/09/2017	yes	183.0000					
Barium, total	ug/L	MW-93	04/17/2018	yes	191.0000					
Barium, total	ug/L	MW-93	10/22/2018	yes	249.0000					
Barium, total	ug/L	MW-93	04/22/2019	ves	443.0000					

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Barium, total	ug/L	MW-93	10/23/2019	yes	222.0000					
Barium, total	ug/L	MW-93	04/10/2020	yes	206.0000					
Barium, total	ug/L	MW-93	10/19/2020	yes	178.0000					
Barium, total	ug/L	MW-93	04/05/2021		192.0000			245.9231		
Barium, total	ug/L	MW-93	10/08/2021		178.0000			245.9231		
Barium, total	ug/L	MW-93	04/06/2022		188.0000			245.9231		
Barium, total	ug/L	MW-93	10/25/2022		231.0000			245.9231		
Barium, total	ug/L	MW-93	04/11/2023		201.0000			245.9231		
Barium, total	ug/L	MW-93	10/13/2023		249.0000			245.9231		
Barium, total	ug/L	MW-93	04/16/2024		243.0000			245.9231		
Beryllium, total	ug/L	MW-93	10/16/2014	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	04/06/2015	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	10/01/2015	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	04/14/2016	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	10/13/2016	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	04/10/2017	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	10/09/2017	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	04/17/2018	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	10/22/2018	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	04/22/2019	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	10/23/2019	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	04/10/2020	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	10/19/2020	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	04/05/2021	,	4.0000	ND				
Beryllium, total	ug/L	MW-93	10/08/2021		4.0000	ND				
Beryllium, total	ug/L	MW-93	04/06/2022		4.0000	ND				
Beryllium, total	ug/L	MW-93	10/25/2022		4.0000	ND				
Beryllium, total	ug/L	MW-93	04/11/2023		4.0000	ND				
Beryllium, total	ug/L	MW-93	10/13/2023		4.0000	ND				
Beryllium, total	ug/L	MW-93	04/16/2024		4.0000	ND				
Cadmium, total	ug/L	MW-93	10/16/2014	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	04/06/2015	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	10/01/2015	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	04/14/2016	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	10/13/2016	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	04/10/2017	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	10/09/2017	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	04/17/2018	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	10/22/2018	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	04/22/2019	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	10/23/2019	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	04/10/2020	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	10/19/2020	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	04/05/2021		0.8000	ND				
Cadmium, total	ug/L	MW-93	10/08/2021		0.8000	ND				
Cadmium, total	ug/L	MW-93	04/06/2022		0.8000	ND				
Cadmium, total	ug/L	MW-93	10/25/2022		0.8000	ND				
Cadmium, total	ug/L	MW-93	04/11/2023		0.8000	ND				
Cadmium, total	ug/L	MW-93	10/13/2023		0.8000	ND				
Cadmium, total	ug/L	MW-93	04/16/2024		0.8000	ND				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Chromium, total			Date	Background	Result		Outlier	CUSUM	Adjusted	
Ol	ug/L	MW-93	10/16/2014	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	04/06/2015	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	10/01/2015	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	04/14/2016	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	10/13/2016	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	04/10/2017	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	10/09/2017	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	04/17/2018	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	10/22/2018	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	04/22/2019	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	10/23/2019	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	04/10/2020	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	10/19/2020	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	04/05/2021	,	8.0000	ND				
Chromium, total	ug/L	MW-93	10/08/2021		8.0000	ND				
Chromium, total	ug/L	MW-93	04/06/2022		8.0000	ND				
Chromium, total	ug/L	MW-93	10/25/2022		8.0000	ND				
Chromium, total	ug/L	MW-93	04/11/2023		8.0000	ND				
Chromium, total	ug/L	MW-93	10/13/2023		8.0000	ND				
Chromium, total	ug/L	MW-93	04/16/2024		8.0000	ND				
Cobalt, total	ug/L	MW-93	10/16/2014	yes	7.3000					
Cobalt, total	ug/L	MW-93	04/06/2015	yes	9.7000					
Cobalt, total	ug/L	MW-93	10/01/2015	yes	7.5000					
Cobalt, total	ug/L	MW-93	04/14/2016	yes	14.7000					
Cobalt, total	ug/L	MW-93	10/13/2016	yes	6.6000					
Cobalt, total	ug/L	MW-93	04/10/2017	yes	8.6000					
Cobalt, total	ug/L	MW-93	10/09/2017	yes	5.2000					
Cobalt, total	ug/L	MW-93	04/17/2018	yes	5.9000					
Cobalt, total	ug/L	MW-93	10/22/2018	yes	9.9000					
Cobalt, total	ug/L	MW-93	04/22/2019	yes	18.9000					
Cobalt, total	ug/L	MW-93	10/23/2019	yes	8.3000					
Cobalt, total	ug/L	MW-93	04/10/2020	yes	11.3000					
Cobalt, total	ug/L	MW-93	10/19/2020	yes	4.6000					
Cobalt, total	ug/L	MW-93	04/05/2021	,	7.9000			9.1154		
Cobalt, total	ug/L	MW-93	10/08/2021		7.1000			9.1154		
Cobalt, total	ug/L	MW-93	04/06/2022		8.7000			9.1154		
Cobalt, total	ug/L	MW-93	10/25/2022		8.6000			9.1154		
Cobalt, total	ug/L	MW-93	04/11/2023		9.0000			9.1154		
Cobalt, total	ug/L	MW-93	10/13/2023		8.3000			9.1154		
Cobalt, total	ug/L	MW-93	04/16/2024		9.8000			9.1154		
Copper, total	ug/L	MW-93	10/16/2014	yes	4.0000	ND		2		
Copper, total	ug/L	MW-93	04/06/2015	yes	4.0000	ND				
Copper, total	ug/L	MW-93	10/01/2015	yes	4.0000	ND				
Copper, total	ug/L	MW-93	04/14/2016	yes	4.0000	ND				
Copper, total	ug/L	MW-93	10/13/2016	yes	4.0000	ND				
Copper, total	ug/L	MW-93	04/10/2017	yes	4.0000	ND				
Copper, total	ug/L	MW-93	10/09/2017	yes	4.0000	ND				
Copper, total	ug/L	MW-93	04/17/2018	yes	4.0000	ND				
Copper, total	ug/L	MW-93	10/22/2018	yes	4.0000	ND				
Copper, total	ug/L	MW-93	04/22/2019	yes	4.0000	ND				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Copper, total	ug/L	MW-93	10/23/2019	yes	4.0000	ND				
Copper, total	ug/L	MW-93	04/10/2020	yes	4.0000	ND				
Copper, total	ug/L	MW-93	10/19/2020	yes	4.0000	ND				
Copper, total	ug/L	MW-93	04/05/2021	-	8.5000					**
Copper, total	ug/L	MW-93	07/02/2021		4.0000	ND				
Copper, total	ug/L	MW-93	10/08/2021		4.0000	ND				
Copper, total	ug/L	MW-93	04/06/2022		4.0000	ND				
Copper, total	ug/L	MW-93	10/25/2022		4.0000	ND				
Copper, total	ug/L	MW-93	04/11/2023		4.0000	ND				
Copper, total	ug/L	MW-93	10/13/2023		4.0000	ND				
Copper, total	ug/L	MW-93	04/16/2024		4.0000	ND				
Lead, total	ug/L	MW-93	10/16/2014	yes	4.0000	ND				
Lead, total	ug/L	MW-93	04/06/2015	yes	4.0000	ND				
Lead, total	ug/L	MW-93	10/01/2015	ves	4.0000	ND				
Lead, total	ug/L	MW-93	04/14/2016	yes	4.0000	ND				
Lead, total	ug/L	MW-93	10/13/2016	yes	4.0000	ND				
Lead, total	ug/L	MW-93	04/10/2017	ves	4.0000	ND				
Lead, total	ug/L ug/L	MW-93	10/09/2017	,	4.0000	ND				
· /		MW-93	04/17/2018	yes	4.0000	ND				
Lead, total	ug/L			yes						
Lead, total	ug/L	MW-93	10/22/2018	yes	4.0000	ND				
Lead, total	ug/L	MW-93	04/22/2019	yes	4.0000	ND				
Lead, total	ug/L	MW-93	10/23/2019	yes	4.0000	ND				
Lead, total	ug/L	MW-93	04/10/2020	yes	4.0000	ND				
Lead, total	ug/L	MW-93	10/19/2020	yes	4.0000	ND				
Lead, total	ug/L	MW-93	04/05/2021		4.0000	ND				
Lead, total	ug/L	MW-93	10/08/2021		4.0000	ND				
Lead, total	ug/L	MW-93	04/06/2022		4.0000	ND				
Lead, total	ug/L	MW-93	10/25/2022		4.0000	ND				
Lead, total	ug/L	MW-93	04/11/2023		4.0000	ND				
Lead, total	ug/L	MW-93	10/13/2023		4.0000	ND				
Lead, total	ug/L	MW-93	04/16/2024		4.0000	ND				
Nickel, total	ug/L	MW-93	10/16/2014	yes	34.6000					
Nickel, total	ug/L	MW-93	04/06/2015	yes	42.6000					
Nickel, total	ug/L	MW-93	10/01/2015	yes	36.0000					
Nickel, total	ug/L	MW-93	04/14/2016	yes	26.5000					
Nickel, total	ug/L	MW-93	10/13/2016	yes	31.8000					
Nickel, total	ug/L	MW-93	04/10/2017	yes	27.3000					
Nickel, total	ug/L	MW-93	10/09/2017	yes	28.2000					
Nickel, total	ug/L	MW-93	04/17/2018	yes	26.2000					
Nickel, total	ug/L	MW-93	10/22/2018	yes	35.7000					
Nickel, total	ug/L	MW-93	04/22/2019	yes	24.2000					
Nickel, total	ug/L	MW-93	10/23/2019	yes	26.3000					
Nickel, total	ug/L	MW-93	04/10/2020	yes	18.1000					
Nickel, total	ug/L	MW-93	10/19/2020	yes	27.6000					
Nickel, total	ug/L	MW-93	04/05/2021	, , , ,	23.1000			29.6231		
Nickel, total	ug/L	MW-93	10/08/2021		21.3000			29.6231		
Nickel, total	ug/L	MW-93	04/06/2022		20.2000			29.6231		
Nickel, total	ug/L ug/L	MW-93	10/25/2022		27.9000			29.6231		
Nickel, total	ug/L ug/L	MW-93	04/11/2023		31.8000			29.6231		
		MW-93	10/13/2023		28.8000			29.6231		
Nickel, total	ug/L	10100-93	10/13/2023		20.0000			29.0231		1

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Nickel, total	ug/L	MW-93	04/16/2024		25.5000			29.6231		
Selenium, total	ug/L	MW-93	10/16/2014	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	04/06/2015	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	10/01/2015	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	04/14/2016	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	10/13/2016	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	04/10/2017	ves	4.0000	ND				
Selenium, total	ug/L	MW-93	10/09/2017	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	04/17/2018	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	10/22/2018	ves	4.0000	ND				
Selenium, total	ug/L	MW-93	04/22/2019	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	10/23/2019	ves	4.0000	ND				
Selenium, total	ug/L	MW-93	04/10/2020	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	10/19/2020	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	04/05/2021	, , , ,	4.0000	ND				
Selenium, total	ug/L	MW-93	10/08/2021		4.0000	ND				
Selenium, total	ug/L	MW-93	04/06/2022		4.0000	ND				
Selenium, total	ug/L	MW-93	10/25/2022		4.0000	ND				
Selenium, total	ug/L	MW-93	04/11/2023		4.0000	ND				
Selenium, total	ug/L	MW-93	10/13/2023		4.0000	ND				
Selenium, total	ug/L	MW-93	04/16/2024		4.0000	ND				
Silver, total	ug/L	MW-93	10/16/2014	ves	4.0000	ND				
Silver, total	ug/L ug/L	MW-93	04/06/2015	yes	4.0000	ND				
Silver, total	ug/L ug/L	MW-93	10/01/2015	yes yes	4.0000	ND				
Silver, total	ug/L ug/L	MW-93	04/14/2016	yes	4.0000	ND				
Silver, total	ug/L ug/L	MW-93	10/13/2016	,	4.0000	ND				
Silver, total	ug/L	MW-93	04/10/2017	yes ves	4.0000	ND				
Silver, total		MW-93	10/09/2017	,	4.0000	ND				
Silver, total	ug/L	MW-93		yes	4.0000	ND				
	ug/L ug/L	MW-93	04/17/2018 10/22/2018	yes	4.0000	ND				
Silver, total				yes		ND				
Silver, total	ug/L	MW-93	04/22/2019	yes	4.0000					
Silver, total	ug/L	MW-93 MW-93	10/23/2019	yes	4.0000 4.0000	ND ND				
Silver, total	ug/L		04/10/2020	yes						
Silver, total	ug/L	MW-93	10/19/2020	yes	4.0000	ND				
Silver, total	ug/L	MW-93	04/05/2021		4.0000	ND				
Silver, total	ug/L	MW-93	10/08/2021		4.0000	ND				
Silver, total	ug/L	MW-93	04/06/2022		4.0000	ND				
Silver, total	ug/L	MW-93	10/25/2022		4.0000	ND				
Silver, total	ug/L	MW-93	04/11/2023		4.0000	ND				
Silver, total	ug/L	MW-93	10/13/2023		4.0000	ND				
Silver, total	ug/L	MW-93	04/16/2024		4.0000	ND				
Thallium, total	ug/L	MW-93	10/16/2014	yes	4.0000	ND				
Thallium, total	ug/L	MW-93	04/06/2015	yes	4.0000	ND			4 0000	***
Thallium, total	ug/L	MW-93	10/01/2015	yes	1.0000	ND			4.0000	
Thallium, total	ug/L	MW-93	04/14/2016	yes	4.0000	ND				
Thallium, total	ug/L	MW-93	10/13/2016	yes	4.0000	ND				
Thallium, total	ug/L	MW-93	04/10/2017	yes	4.0000	ND				
Thallium, total	ug/L	MW-93	10/09/2017	yes	4.0000	ND				
Thallium, total	ug/L	MW-93	04/17/2018	yes	4.0000	ND				
Thallium, total	ug/L	MW-93	10/22/2018	yes	4.0000	ND				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Thallium, total	ug/L	MW-93	04/22/2019	yes	2.0000	ND			4.0000	***
Thallium, total	ug/L	MW-93	10/23/2019	yes	2.0000	ND			4.0000	***
Thallium, total	ug/L	MW-93	04/10/2020	yes	2.0000	ND			4.0000	***
Thallium, total	ug/L	MW-93	10/19/2020	yes	2.0000	ND			4.0000	***
Thallium, total	ug/L	MW-93	04/05/2021	-	2.0000	ND				
Thallium, total	ug/L	MW-93	10/08/2021		2.0000	ND				
Thallium, total	ug/L	MW-93	04/06/2022		2.0000	ND				
Thallium, total	ug/L	MW-93	10/25/2022		2.0000	ND				
Thallium, total	ug/L	MW-93	04/11/2023		2.0000	ND				
Thallium, total	ug/L	MW-93	10/13/2023		2.0000	ND				
Thallium, total	ug/L	MW-93	04/16/2024		2.0000	ND				
Vanadium, total	ug/L	MW-93	10/16/2014	yes	20.0000	ND				
Vanadium, total	ug/L	MW-93	04/06/2015	yes	20.0000	ND				
Vanadium, total	ug/L	MW-93	10/01/2015	yes	20.0000	ND				
Vanadium, total	ug/L	MW-93	04/14/2016	yes	20.0000	ND				
Vanadium, total	ug/L	MW-93	10/13/2016	yes	20.0000	ND				
Vanadium, total	ug/L	MW-93	04/10/2017	yes	20.0000	ND				
Vanadium, total	ug/L	MW-93	10/09/2017	yes	20.0000	ND				
Vanadium, total	ug/L	MW-93	04/17/2018	yes	20.0000	ND				
Vanadium, total	ug/L	MW-93	10/22/2018	yes	20.0000	ND				
Vanadium, total	ug/L	MW-93	04/22/2019	yes	20.0000	ND				
Vanadium, total	ug/L	MW-93	10/23/2019	ves	20.0000	ND				
Vanadium, total	ug/L	MW-93	04/10/2020	yes	20.0000	ND				
Vanadium, total	ug/L	MW-93	10/19/2020	yes	20.0000	ND				
Vanadium, total	ug/L	MW-93	04/05/2021		20.0000	ND				
Vanadium, total	ug/L	MW-93	10/08/2021		20.0000	ND				
Vanadium, total	ug/L	MW-93	04/06/2022		20.0000	ND				
Vanadium, total	ug/L	MW-93	10/25/2022		20.0000	ND				
Vanadium, total	ug/L	MW-93	04/11/2023		20.0000	ND				
Vanadium, total	ug/L	MW-93	10/13/2023		20.0000	ND				
Vanadium, total	ug/L	MW-93	04/16/2024		20.0000	ND				
Zinc, total	ug/L	MW-93	10/16/2014	yes	20.0000	ND			8.0000	***
Zinc, total	ug/L	MW-93	04/06/2015	yes	8.0000	ND				
Zinc, total	ug/L	MW-93	10/01/2015	yes	8.0000	ND				
Zinc, total	ug/L	MW-93	04/14/2016	yes	8.0000	ND				
Zinc, total	ug/L	MW-93	10/13/2016	yes	8.0000	ND				
Zinc, total	ug/L	MW-93	04/10/2017	yes	8.0000	ND				
Zinc, total	ug/L	MW-93	10/09/2017	yes	8.0000	ND				
Zinc, total	ug/L	MW-93	04/17/2018	yes	8.0000	ND				
Zinc, total	ug/L	MW-93	10/22/2018	yes	20.0000	ND			8.0000	***
Zinc, total	ug/L	MW-93	04/22/2019	yes	20.0000	ND			8.0000	***
Zinc, total	ug/L	MW-93	10/23/2019	yes	34.2000					
Zinc, total	ug/L	MW-93	04/10/2020	yes	20.0000	ND			8.0000	***
Zinc, total	ug/L	MW-93	10/19/2020	yes	20.0000	ND			8.0000	***
Zinc, total	ug/L	MW-93	04/05/2021		20.0000	ND				
Zinc, total	ug/L	MW-93	10/08/2021		20.0000	ND				
Zinc, total	ug/L	MW-93	04/06/2022		20.0000	ND				
Zinc, total	ug/L	MW-93	10/25/2022		20.0000	ND				
Zinc, total	ug/L	MW-93	04/11/2023		20.0000	ND				
Zinc, total	ug/L	MW-93	10/13/2023		20.0000	ND				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2

Analytical Data and CUSUM Summary

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	
Zinc, total	ug/L	MW-93	04/16/2024		21.4000				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

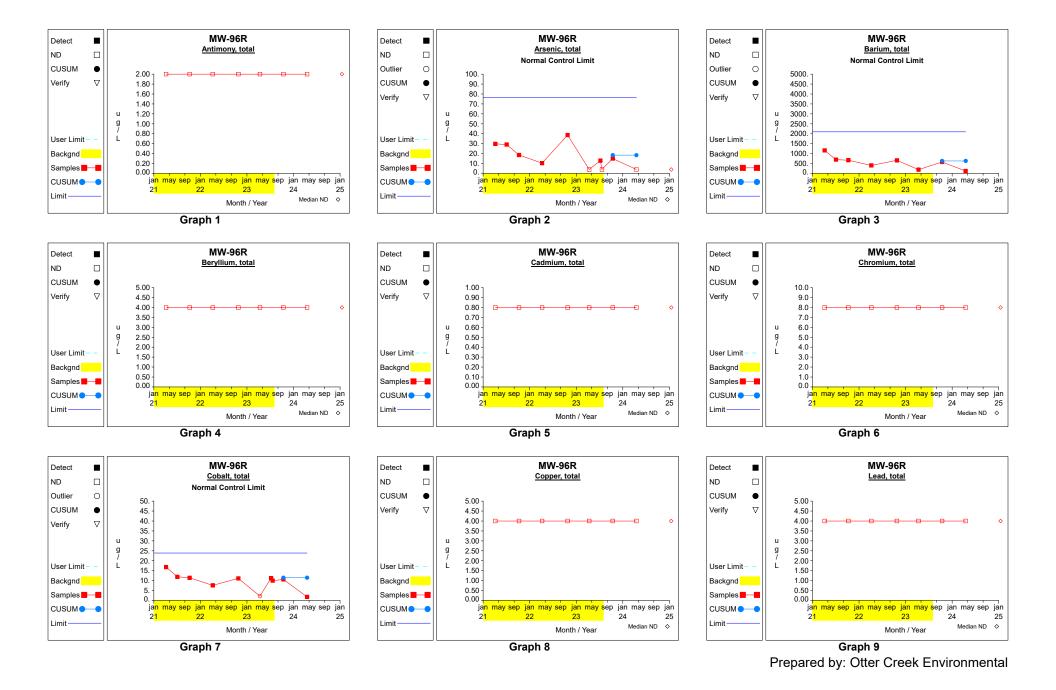
Table 1 Summary Statistics and Intermediate Computations for Combined Shewhart-CUSUM Control Charts

Constituent	Units	Well	N(back)	N(mon)	N(tot)	Mean	SD	R(i-1)	R(i)	S(i-1)	S(i)	Limit	Туре	Conf	
Antimony, total	ug/L	MW-96R	5	2	7								nonpar *		**
Arsenic, total	ug/L	MW-96R	8	2	10	18.4375	12.9037	15.0000	4.0000	18.4375	18.4375	76.5042	normal		
Barium, total	ug/L	MW-96R	6	2	8	630.0000	325.9945	576.0000	124.0000	630.0000	630.0000	2096.9752	normal		
Beryllium, total	ug/L	MW-96R	5	2	7								nonpar *		**
Cadmium, total	ug/L	MW-96R	5	2	7								nonpar *		**
Chromium, total	ug/L	MW-96R	5	2	7								nonpar *		**
Cobalt, total	ug/L	MW-96R	7	2	10	11.4286	2.7669	10.6000	1.8000	11.4286	11.4286	23.8796	normal		
Copper, total	ug/L	MW-96R	5	2	7								nonpar *		**
Lead, total	ug/L	MW-96R	5	2	7								nonpar *		**
Nickel, total	ug/L	MW-96R	5	2	7	6.3200	1.6115	4.6000	5.3000	6.3200	6.3200	13.5718	normal		
Selenium, total	ug/L	MW-96R	6	2	8	5.4833	2.3345	4.0000	7.4000	5.4833	5.4833	15.9884	normal		
Silver, total	ug/L	MW-96R	5	2	7								nonpar *		**
Thallium, total	ug/L	MW-96R	5	2	7								nonpar *		**
Vanadium, total	ug/L	MW-96R	5	2	7								nonpar *		**
Zinc, total	ug/L	MW-96R	5	2	7								nonpar *		**

N(back) and N(mon) = Non-outlier measurements in the background and monitoring periods.

N(tot) = All independent measurements for that constituent and well.

For transformed data, mean and SD in transformed units and control limit in original units.


Conf = conflictor Petrol Petro

^{* -} Insufficient Data.

^{** -} Detection Frequency < 25%.

^{*** -} Zero Variance.

Intra-Well Control Charts / Prediction Limits

Intra-Well Control Charts / Prediction Limits

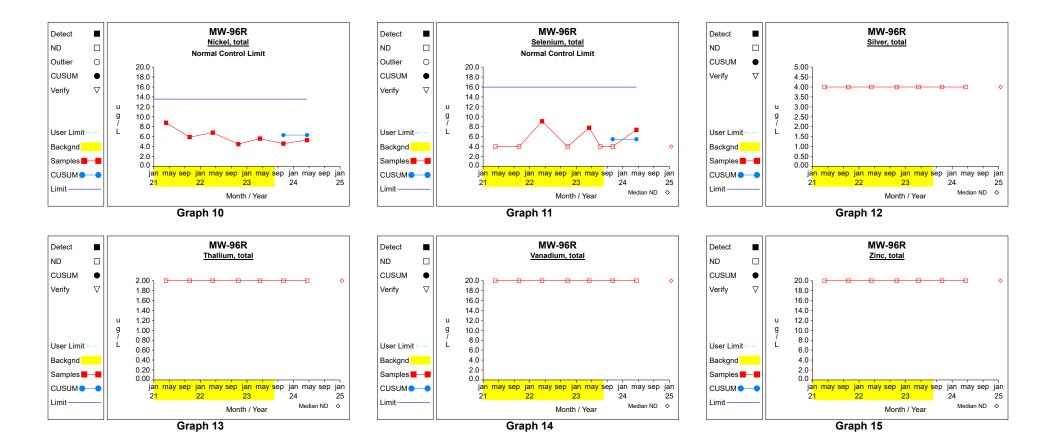


Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Antimony, total	ug/L	MW-96R	04/05/2021	yes	2.0000	ND				
Antimony, total	ug/L	MW-96R	10/08/2021	yes	2.0000	ND				
Antimony, total	ug/L	MW-96R	04/06/2022	yes	2.0000	ND				
Antimony, total	ug/L	MW-96R	10/25/2022	yes	2.0000	ND				
Antimony, total	ug/L	MW-96R	04/11/2023	yes	2.0000	ND				
Antimony, total	ug/L	MW-96R	10/13/2023	,	2.0000	ND				
Antimony, total	ug/L	MW-96R	04/16/2024		2.0000	ND				
Arsenic, total	ug/L	MW-96R	04/05/2021	yes	29.8000					
Arsenic, total	ug/L	MW-96R	07/02/2021	ves	29.1000					
Arsenic, total	ug/L	MW-96R	10/08/2021	yes	18.6000					
Arsenic, total	ug/L	MW-96R	04/06/2022	yes	10.4000					
Arsenic, total	ug/L	MW-96R	10/25/2022	yes	38.7000					
Arsenic, total	ug/L	MW-96R	04/11/2023	yes	4.0000	ND				
Arsenic, total	ug/L	MW-96R	07/07/2023	ves	12.9000					
Arsenic, total	ug/L	MW-96R	07/20/2023	yes	4.0000	ND				
Arsenic, total	ug/L	MW-96R	10/13/2023	, , ,	15.0000	.,,		18.4375		
Arsenic, total	ug/L	MW-96R	04/16/2024		4.0000	ND		18.4375		
Barium, total	ug/L	MW-96R	04/05/2021	ves	1160.0000	.,,		10.1070		
Barium, total	ug/L	MW-96R	07/02/2021	yes	696.0000					
Barium, total	ug/L	MW-96R	10/08/2021	yes	667.0000					
Barium, total	ug/L	MW-96R	04/06/2022	yes	406.0000					
Barium, total	ug/L ug/L	MW-96R	10/25/2022	yes	661.0000					
Barium, total		MW-96R	04/11/2023		190.0000					
Barium, total	ug/L ug/L	MW-96R	10/13/2023	yes	576.0000			630.0000		
Barium, total	ug/L ug/L	MW-96R	04/16/2024		124.0000			630.0000		
Beryllium, total	ug/L	MW-96R	04/05/2021	yes	4.0000	ND		030.0000		
Beryllium, total		MW-96R	10/08/2021	,	4.0000	ND				
Beryllium, total	ug/L	MW-96R	04/06/2022	yes	4.0000	ND				
	ug/L			yes						
Beryllium, total	ug/L	MW-96R	10/25/2022	yes	4.0000	ND ND				
Beryllium, total	ug/L	MW-96R	04/11/2023	yes	4.0000					
Beryllium, total	ug/L	MW-96R	10/13/2023		4.0000	ND ND				
Beryllium, total	ug/L	MW-96R	04/16/2024		4.0000					-
Cadmium, total	ug/L	MW-96R	04/05/2021	yes	0.8000	ND				
Cadmium, total	ug/L	MW-96R	10/08/2021	yes	0.8000	ND				
Cadmium, total	ug/L	MW-96R	04/06/2022	yes	0.8000	ND				
Cadmium, total	ug/L	MW-96R	10/25/2022	yes	0.8000	ND				
Cadmium, total	ug/L	MW-96R	04/11/2023	yes	0.8000	ND				
Cadmium, total	ug/L	MW-96R	10/13/2023		0.8000	ND				
Cadmium, total	ug/L	MW-96R	04/16/2024		0.8000	ND				
Chromium, total	ug/L	MW-96R	04/05/2021	yes	8.0000	ND				
Chromium, total	ug/L	MW-96R	10/08/2021	yes	8.0000	ND				
Chromium, total	ug/L	MW-96R	04/06/2022	yes	8.0000	ND				
Chromium, total	ug/L	MW-96R	10/25/2022	yes	8.0000	ND				
Chromium, total	ug/L	MW-96R	04/11/2023	yes	8.0000	ND				
Chromium, total	ug/L	MW-96R	10/13/2023		8.0000	ND				
Chromium, total	ug/L	MW-96R	04/16/2024		8.0000	ND				_
Cobalt, total	ug/L	MW-96R	04/05/2021	yes	16.8000					
Cobalt, total	ug/L	MW-96R	07/02/2021	yes	11.9000					
Cobalt, total	ug/L	MW-96R	10/08/2021	yes	11.4000					
Cobalt, total	ug/L	MW-96R	04/06/2022	yes	7.6000					

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Cobalt, total	ug/L	MW-96R	10/25/2022	ves	11.1000		Gutiloi	0000	rajuotou	
Cobalt, total	ug/L ug/L	MW-96R	04/11/2023	yes	2.2000		yes			*
Cobalt, total	ug/L ug/L	MW-96R	07/07/2023	ves	11.2000		yes			
		MW-96R		,	10.0000					
Cobalt, total	ug/L		07/20/2023	yes				44 4000		
Cobalt, total	ug/L	MW-96R	10/13/2023		10.6000			11.4286		
Cobalt, total	ug/L	MW-96R	04/16/2024		1.8000	ND		11.4286		
Copper, total	ug/L	MW-96R	04/05/2021	yes	4.0000	ND				
Copper, total	ug/L	MW-96R	10/08/2021	yes	4.0000	ND				
Copper, total	ug/L	MW-96R	04/06/2022	yes	4.0000	ND				
Copper, total	ug/L	MW-96R	10/25/2022	yes	4.0000	ND				
Copper, total	ug/L	MW-96R	04/11/2023	yes	4.0000	ND				
Copper, total	ug/L	MW-96R	10/13/2023		4.0000	ND				
Copper, total	ug/L	MW-96R	04/16/2024		4.0000	ND				
Lead, total	ug/L	MW-96R	04/05/2021	yes	4.0000	ND				
Lead, total	ug/L	MW-96R	10/08/2021	yes	4.0000	ND				
Lead, total	ug/L	MW-96R	04/06/2022	yes	4.0000	ND				
Lead, total	ug/L	MW-96R	10/25/2022	yes	4.0000	ND				
Lead, total	ug/L	MW-96R	04/11/2023	yes	4.0000	ND				
Lead, total	ug/L	MW-96R	10/13/2023		4.0000	ND				
Lead, total	ug/L	MW-96R	04/16/2024		4.0000	ND				
Nickel, total	ug/L	MW-96R	04/05/2021	yes	8.8000					
Nickel, total	ug/L	MW-96R	10/08/2021	yes	5.9000					
Nickel, total	ug/L	MW-96R	04/06/2022	ves	6.8000					
Nickel, total	ug/L	MW-96R	10/25/2022	yes	4.5000					
Nickel, total	ug/L	MW-96R	04/11/2023	yes	5.6000					
Nickel, total	ug/L	MW-96R	10/13/2023	,	4.6000			6.3200		
Nickel, total	ug/L	MW-96R	04/16/2024		5.3000			6.3200		
Selenium, total	ug/L	MW-96R	04/05/2021	yes	4.0000	ND		0.0200		
Selenium, total	ug/L	MW-96R	10/08/2021	ves	4.0000	ND				
Selenium, total	ug/L	MW-96R	04/06/2022	yes	9.1000					
Selenium, total	ug/L	MW-96R	10/25/2022	yes	4.0000	ND				
Selenium, total	ug/L	MW-96R	04/11/2023	yes	7.8000	.,,				
Selenium, total	ug/L	MW-96R	07/07/2023	yes	4.0000	ND				
Selenium, total	ug/L ug/L	MW-96R	10/13/2023	yes	4.0000	ND		5.4833		
Selenium, total	ug/L ug/L	MW-96R	04/16/2024		7.4000	ND		5.4833		
Silver, total	ug/L ug/L	MW-96R	04/05/2021	yes	4.0000	ND		3.4033		
Silver, total	ug/L ug/L	MW-96R	10/08/2021	ves	4.0000	ND				
Silver, total	ug/L ug/L	MW-96R	04/06/2022	,	4.0000	ND				
,		MW-96R	10/25/2022	yes	4.0000	ND				
Silver, total Silver. total	ug/L	MW-96R	04/11/2023	yes	4.0000	ND				
	ug/L			yes						
Silver, total	ug/L	MW-96R	10/13/2023		4.0000	ND				
Silver, total	ug/L	MW-96R	04/16/2024		4.0000	ND				
Thallium, total	ug/L	MW-96R	04/05/2021	yes	2.0000	ND				
Thallium, total	ug/L	MW-96R	10/08/2021	yes	2.0000	ND				
Thallium, total	ug/L	MW-96R	04/06/2022	yes	2.0000	ND				
Thallium, total	ug/L	MW-96R	10/25/2022	yes	2.0000	ND				
Thallium, total	ug/L	MW-96R	04/11/2023	yes	2.0000	ND				
Thallium, total	ug/L	MW-96R	10/13/2023		2.0000	ND				
Thallium, total	ug/L	MW-96R	04/16/2024		2.0000	ND				
Vanadium, total	ug/L	MW-96R	04/05/2021	yes	20.0000	ND				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Vanadium, total	ug/L	MW-96R	10/08/2021	yes	20.0000	ND				
Vanadium, total	ug/L	MW-96R	04/06/2022	yes	20.0000	ND				
Vanadium, total	ug/L	MW-96R	10/25/2022	yes	20.0000	ND				
Vanadium, total	ug/L	MW-96R	04/11/2023	yes	20.0000	ND				
Vanadium, total	ug/L	MW-96R	10/13/2023	-	20.0000	ND				
Vanadium, total	ug/L	MW-96R	04/16/2024		20.0000	ND				
Zinc, total	ug/L	MW-96R	04/05/2021	yes	20.0000	ND				П
Zinc, total	ug/L	MW-96R	10/08/2021	yes	20.0000	ND				
Zinc, total	ug/L	MW-96R	04/06/2022	yes	20.0000	ND				
Zinc, total	ug/L	MW-96R	10/25/2022	yes	20.0000	ND				
Zinc, total	ug/L	MW-96R	04/11/2023	yes	20.0000	ND				
Zinc, total	ug/L	MW-96R	10/13/2023	-	20.0000	ND				
Zinc, total	ug/L	MW-96R	04/16/2024		20.0000	ND				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 4

Dixon's Test Outliers 1% Significance Level

Constituent	Units	Well	Date	Result	ND Qualifier	Date Range	N	Critical Value
Cobalt, total	ug/L	MW-96R	04/11/2023	2.2000		04/05/2021-07/20/2023	8	0.6808

N = Total number of independent measurements in background at each well.

Date Range = Dates of the first and last measurements included in background at each well.

Critical Value depends on the significance level and on N-1 when the two most extreme values are tested or N for the most extreme value.

Attachment F

Summary Table of Historical VOC Detections

marshall2024s1 May 2024

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
1,1-dichloroethane	GU-2	10/08/2010		2.8	1.0	
1,1-dichloroethane	GU-2	4/04/2011		4.6		ug/L
Benzene	GU-2	10/08/2010		1.6		ug/L
Benzene	GU-2	4/04/2011		2.3		ug/L
Chloroethane	GU-2	10/08/2010		4.9		ug/L
Chloroethane	GU-2 GU-2	4/04/2011 10/08/2010		6.8 2.9		ug/L
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	GU-2 GU-2	4/04/2011		2.8		ug/L ug/L
Vinyl chloride	GU-2	10/08/2010		4.3		ug/L ug/L
Vinyl chloride	GU-2	4/04/2011		3.4		ug/L
1.1-dichloroethane	GU-3	8/11/2011		2.8		ug/L
Benzene	GU-3	8/11/2011		3.5		ug/L
Chloroethane	GU-3	8/11/2011		7.4		ug/L
Cis-1,2-dichloroethylene	GU-3	8/11/2011		3.6		ug/L
Vinyl chloride	GU-3	8/11/2011		4.6		ug/L
1,1-dichloroethane	LW-75	4/11/2023		3.8	1.0	ug/L
1,4-dichlorobenzene	LW-75	1/15/2019		18.2	5.0	ug/L
1,4-dichlorobenzene	LW-75	1/07/2020		11.2	5.0	ug/L
1,4-dichlorobenzene	LW-75	10/19/2020		9.4	1.0	ug/L
1,4-dichlorobenzene	LW-75	4/05/2021		9.6	1.0	ug/L
1,4-dichlorobenzene	LW-75	4/06/2022		10.0	1.0	ug/L
1,4-dichlorobenzene	LW-75	4/11/2023		67.5		ug/L
4-methyl-2-pentanone (mibk)	LW-75	4/11/2023		11.6		ug/L
Acetone	LW-75	10/19/2020		17.0		ug/L
Acetone	LW-75	4/05/2021		15.5		ug/L
Benzene	LW-75	1/15/2019		7.8		ug/L
Benzene	LW-75	10/19/2020		3.4		ug/L
Benzene	LW-75	4/05/2021		4.8		ug/L
Benzene	LW-75	4/06/2022		5.2		ug/L
Benzene	LW-75	4/11/2023		9.4		ug/L
Carbon disulfide	LW-75	4/11/2023		2.1		ug/L
Chloroethane	LW-75	10/19/2020		1.6 4.2		ug/L
Chloroethane Chloroethane	LW-75	4/05/2021		3.8		ug/L
Chloroethane	LW-75 LW-75	4/06/2022 4/11/2023		1.9		ug/L ug/L
Cis-1,2-dichloroethylene	LW-75	4/05/2021		1.0		ug/L ug/L
Cis-1,2-dichloroethylene	LW-75	4/11/2023		5.4		ug/L ug/L
Ethylbenzene	LW-75	1/15/2019		77.8		ug/L
Ethylbenzene	LW-75	1/07/2020		48.4		ug/L
Ethylbenzene	LW-75	10/19/2020		38.6		ug/L
Ethylbenzene	LW-75	4/05/2021		39.9		ug/L
Ethylbenzene	LW-75	4/06/2022		35.3		ug/L
Ethylbenzene	LW-75	4/11/2023		275.0		ug/L
Methylene chloride	LW-75	4/11/2023		33.1		ug/L
Styrene	LW-75	4/11/2023		1.6	1.0	ug/L
Toluene	LW-75	4/06/2022		2.5	1.0	ug/L
Toluene	LW-75	4/11/2023		73.8		ug/L
Vinyl chloride	LW-75	4/11/2023		3.4		ug/L
Xylenes, total	LW-75	1/15/2019		86.0		ug/L
Xylenes, total	LW-75	1/07/2020		65.2		ug/L
Xylenes, total	LW-75	10/19/2020		49.2		ug/L
Xylenes, total	LW-75	4/05/2021		71.4		ug/L
Xylenes, total	LW-75	4/06/2022		62.1		ug/L
Xylenes, total 1,1-dichloroethane	LW-75 MW-205	4/11/2023		161.0 10.2	2.0	ug/L
1,1-dichloroethane	MW-205	10/14/2016 4/10/2017		7.1	1.0	ug/L ug/L
1,1-dichloroethane	MW-205	10/09/2017		7.1		ug/L ug/L
1,1-dichloroethane	MW-205	4/17/2018		7.7		ug/L ug/L
1,1-dichloroethane	MW-205	10/22/2018		3.3		ug/L ug/L
1,1-dichloroethane	MW-205	4/22/2019		5.7		ug/L ug/L
1,1-dichloroethane	MW-205	10/23/2020		4.8	1.0	
1.1-dichloroethane	MW-205	4/05/2021		2.8		ug/L ug/L
1,2-dichlorobenzene	MW-205	4/17/2018		1.1		ug/L ug/L
1,2-dichloropropane	MW-205	4/10/2017		2.0		ug/L
1,2-dichloropropane	MW-205	4/17/2018		3.3		ug/L
1,2-dichloropropane	MW-205	4/22/2019		1.3		ug/L
1,2-dichloropropane	MW-205	4/05/2021		1.4		ug/L
1,4-dichlorobenzene	MW-205	10/14/2016		7.2		ug/L
1,4-dichlorobenzene	MW-205	4/10/2017		8.5		ug/L
1,4-dichlorobenzene	MW-205	10/09/2017		8.0		ug/L
1,4-dichlorobenzene	MW-205	4/17/2018		11.9		ug/L
1,4-dichlorobenzene	MW-205	10/22/2018		9.4		ug/L
1,4-dichlorobenzene	MW-205	10/23/2020		8.7		ug/L
1,4-dichlorobenzene	MW-205	4/05/2021		10.2	1.0	
Acetone	MW-205	10/09/2017		22.2		ug/L
Benzene	MW-205	4/02/2008		4.6	1.0	ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Benzene	MW-205	10/03/2008		5.9	1.0	ug/L
Benzene	MW-205	4/01/2009		5.8	1.0	ug/L
Benzene	MW-205	10/08/2012		4.3	1.0	ug/L
Benzene	MW-205	10/16/2013		5.6	1.0	ug/L
Benzene	MW-205	4/09/2014		3.0	1.0	ug/L
Benzene	MW-205	10/17/2014		7.2	1.0	ug/L
Benzene	MW-205	4/06/2015		10.8	1.0	ug/L
Benzene	MW-205	4/14/2016		12.1	1.0	ug/L
Benzene	MW-205	10/14/2016		12.3	1.0	ug/L
Benzene	MW-205	4/10/2017		10.8	1.0	ug/L
Benzene	MW-205	10/09/2017		8.7	1.0	ug/L
Benzene	MW-205	4/17/2018		5.6	1.0	ug/L
Benzene	MW-205	10/22/2018		10.8	1.0	ug/L
Benzene	MW-205	4/22/2019		11.9	1.0	ug/L
Benzene	MW-205	10/23/2020		13.6	1.0	ug/L
Benzene	MW-205	4/05/2021		7.2	1.0	ug/L
Chlorobenzene	MW-205	10/14/2016		2.9	1.0	ug/L
Chlorobenzene	MW-205	4/10/2017		2.6	1.0	ug/L
Chlorobenzene	MW-205	10/09/2017		1.9	1.0	ug/L
Chlorobenzene	MW-205	4/17/2018		2.4	1.0	ug/L
Chlorobenzene	MW-205	4/22/2019		4.9	1.0	ug/L
Chlorobenzene	MW-205	10/23/2020		3.4	1.0	ug/L
Chlorobenzene	MW-205	4/05/2021		3.2	1.0	ug/L
Chloroethane	MW-205	10/14/2016		7.1	1.0	ug/L
Chloroethane	MW-205	4/10/2017		5.0	1.0	ug/L
Chloroethane	MW-205	10/09/2017		3.8	1.0	ug/L
Chloroethane	MW-205	4/17/2018		3.4	1.0	ug/L
Chloroethane	MW-205	10/22/2018		3.3	1.0	ug/L
Chloroethane	MW-205	4/22/2019		4.3	1.0	ug/L
Chloroethane	MW-205	10/23/2020		3.9	1.0	ug/L
Chloroethane	MW-205	4/05/2021		1.9	1.0	ug/L
Cis-1,2-dichloroethylene	MW-205	10/14/2016		6.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-205	4/10/2017		1.7	1.0	ug/L
Cis-1,2-dichloroethylene	MW-205	10/09/2017		5.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-205	4/17/2018		5.9	1.0	ug/L
Cis-1,2-dichloroethylene	MW-205	4/22/2019		1.2	1.0	ug/L
Cis-1,2-dichloroethylene	MW-205	10/23/2020		2.3	1.0	ug/L
Cis-1,2-dichloroethylene	MW-205	4/05/2021		1.3	1.0	ug/L
Ethylbenzene	MW-205	10/09/2017		1.1	1.0	ug/L
Ethylbenzene	MW-205	10/22/2018		14.0	1.0	ug/L
Ethylbenzene	MW-205	4/22/2019		4.8	1.0	ug/L
Toluene	MW-205	10/14/2016		1.0	1.0	ug/L
Toluene	MW-205	4/10/2017		1.0	1.0	ug/L
Toluene	MW-205	4/22/2019		1.9	1.0	ug/L
Trans-1,2-dichloroethylene	MW-205	4/17/2018		1	1	ug/L
Trichloroethylene	MW-205	4/02/2008		4.1	1.0	ug/L
Trichloroethylene	MW-205	10/03/2008		8.0	1.0	ug/L
Trichloroethylene	MW-205	4/01/2009		2.3	1.0	ug/L
Trichloroethylene	MW-205	10/08/2012		5.2	1.0	ug/L
Trichloroethylene	MW-205	10/16/2013		5.6	1.0	ug/L
Trichloroethylene	MW-205	4/09/2014		6.1	1.0	ug/L
Trichloroethylene	MW-205	10/17/2014		19.3	1.0	ug/L
Trichloroethylene	MW-205	4/06/2015		8.8	1.0	ug/L
Trichloroethylene	MW-205	4/14/2016		1.2	1.0	ug/L
Trichloroethylene	MW-205	10/14/2016		1.2		ug/L
Trichloroethylene	MW-205	4/17/2018		1.7	1.0	
Vinyl chloride	MW-205	10/14/2016		1.8	1.0	ug/L
Vinyl chloride	MW-205	4/10/2017		1.9	1.0	ug/L
Vinyl chloride	MW-205	10/09/2017		1.2	1.0	ug/L
Vinyl chloride	MW-205	4/17/2018		1.0	1.0	ug/L
Xylenes, total	MW-205	4/22/2019		4	2	ug/L
1,1-dichloroethane	MW-213	4/05/2021		2.2	1.0	ug/L
1,1-dichloroethane	MW-213	4/06/2022		3.3	1.0	ug/L
1,1-dichloroethane	MW-213	10/25/2022		2.7	1.0	ug/L
1,1-dichloroethane	MW-213	4/10/2023		2.5	1.0	ug/L
1,1-dichloroethane	MW-213	10/13/2023		3.2	1.0	ug/L
1,2-dichloropropane	MW-213	4/10/2017		1.6	1.0	ug/L
1,2-dichloropropane	MW-213	4/22/2019		3.8	1.0	ug/L
1,2-dichloropropane	MW-213	10/23/2020		6.1	1.0	ug/L
1.2-dichloropropane	MW-213	4/05/2021		7.6	1.0	ug/L
1,2-dichloropropane	MW-213	4/06/2022		7.7	1.0	ug/L
1,2-dichloropropane	MW-213	10/25/2022		6.5	1.0	ug/L
1,2-dichloropropane	MW-213	4/10/2023		5.6	1.0	ug/L
	MW-213	10/13/2023		4.1	1.0	ug/L ug/L
1 Z-dichioropropane					1.0	
1,2-dichloropropane Benzene	MW-213	10/25/2022		1.1	1.0	ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Benzene	MW-213	10/13/2023		1.4	1.0	ug/L
Chloroethane	MW-213	10/23/2020		1.5	1.0	ug/L
Chloroethane	MW-213	4/05/2021		2.6	1.0	ug/L
Chloroethane	MW-213	4/06/2022		2.6	1.0	ug/L
Chloroethane	MW-213	10/25/2022		3.0	1.0	ug/L
Chloroethane	MW-213	4/10/2023		2.5	1.0	ug/L
Chloroethane	MW-213	10/13/2023		4.2	1.0	
Cis-1,2-dichloroethylene	MW-213	10/14/2016		8.8	1.0	ug/L
Cis-1,2-dichloroethylene	MW-213	4/10/2017		4.7	1.0	ug/L
Cis-1,2-dichloroethylene	MW-213	4/17/2018		1.6	1.0	ug/L
Cis-1,2-dichloroethylene	MW-213	10/22/2018		1.5	1.0	ug/L
Cis-1,2-dichloroethylene	MW-213	4/22/2019		19.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-213	10/23/2020		44.9	1.0	ug/L
Cis-1,2-dichloroethylene	MW-213 MW-213	4/05/2021		37.8	1.0	ug/L
Cis-1,2-dichloroethylene		4/06/2022		43.5	1.0	ug/L
Cis-1,2-dichloroethylene	MW-213	10/25/2022		31.9	1.0	ug/L
Cis-1,2-dichloroethylene	MW-213	4/10/2023		21.0	1.0	
Cis-1,2-dichloroethylene	MW-213	10/13/2023		32.6	1.0	ug/L
/inyl chloride	MW-213	10/23/2020		1.4	1.0	ug/L
/inyl chloride	MW-213	4/05/2021		3.0	1.0	
/inyl chloride	MW-213	4/06/2022		2.4	1.0	ug/L
/inyl chloride	MW-213	10/25/2022		3.1	1.0	ug/L
/inyl chloride	MW-213	4/10/2023		2.5	1.0	ug/L
/inyl chloride	MW-213	10/13/2023		4.3	1.0	
I,1-dichloroethane	MW-214	10/14/2016		1.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-214	10/14/2016		3.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-214	4/10/2017		2.7	1.0	ug/L
Cis-1,2-dichloroethylene	MW-214	10/09/2017		2.8	1.0	ug/L
Cis-1,2-dichloroethylene	MW-214	4/17/2018		3.4	1.0	ug/L
Cis-1,2-dichloroethylene	MW-214	10/22/2018		1.4	1.0	
Cis-1,2-dichloroethylene	MW-214	4/22/2019		4.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-214	10/23/2020		6.5	1.0	ug/L
Cis-1,2-dichloroethylene	MW-214	4/05/2021		3.3	1.0	ug/L
Tetrachloroethylene	MW-214	10/14/2016		12.2	1.0	ug/L
Tetrachloroethylene	MW-214	4/10/2017		9.9	1.0	ug/L
Tetrachloroethylene	MW-214	10/09/2017		8.8	1.0	ug/L
Tetrachloroethylene	MW-214	4/17/2018		8.6	1.0	ug/L
Tetrachloroethylene	MW-214	10/22/2018		4.1	1.0	ug/L
Tetrachloroethylene	MW-214	4/22/2019		8.5	1.0	ug/L
Tetrachloroethylene	MW-214	10/23/2020		7.8	1.0	ug/L
Tetrachloroethylene	MW-214	4/05/2021		5.4	1.0	ug/L
Trichloroethylene	MW-214	4/02/2008		5.2	1.0	ug/L
Trichloroethylene	MW-214	10/03/2008		5.9	1.0	ug/L
Trichloroethylene	MW-214	4/01/2009		4.1	1.0	ug/L
Trichloroethylene	MW-214	10/08/2012		3.6	1.0	ug/L
Trichloroethylene	MW-214	10/16/2013		2.9	1.0	ug/L
Trichloroethylene	MW-214	4/09/2014		2.0	1.0	ug/L
Trichloroethylene	MW-214	10/17/2014		2.0	1.0	ug/L
Trichloroethylene	MW-214	4/06/2015		1.8	1.0	
Trichloroethylene	MW-214	4/14/2016		2.1	1.0	ug/L
Trichloroethylene	MW-214	10/14/2016		3.0	1.0	ug/L
Trichloroethylene	MW-214	4/10/2017		2.4		ug/L
Frichloroethylene	MW-214	10/09/2017		2.8	1.0	
Frichloroethylene	MW-214	4/17/2018		2.6		ug/L
Trichloroethylene	MW-214	4/22/2019		3.3		ug/L
Frichloroethylene	MW-214	10/23/2020		5.8	1.0	ug/L
Frichloroethylene	MW-214	4/05/2021		2.9		ug/L
1,1,1-trichloroethane	MW-49	10/23/1992		10.5	1.0	
I,1,1-trichloroethane	MW-49	1/21/1993		17.7		ug/L
1,1,1-trichloroethane	MW-49	4/22/1993		14.7		ug/L
I,1,1-trichloroethane	MW-49	7/13/1993		11.4	1.0	
1,1,1-trichloroethane	MW-49	1/25/1994		18.1		ug/L
I,1,1-trichloroethane	MW-49	4/14/1994		12.8		ug/L
1,1,1-trichloroethane	MW-49	7/08/1994		10.1	1.0	
1.1.1-trichloroethane	MW-49	10/20/1994		7.5		ug/L
1,1,1-trichloroethane	MW-49	1/04/1995		8.0		ug/L
1,1,1-trichloroethane	MW-49	4/21/1995		9.0	1.0	
1,1,1-trichloroethane	MW-49	7/07/1995		9.8		ug/L ug/L
1, 1, 1-trichloroethane	MW-49	10/12/1995		9.6		ug/L ug/L
1,1,1-trichloroethane						ug/L ug/L
	MW-49	1/10/1996		8.1		
1,1,1-trichloroethane	MW-49	7/17/1996		4.5	1.0	
1,1,1-trichloroethane	MW-49	10/08/1996		5.2		ug/L
1,1,1-trichloroethane	MW-49	1/21/1997		2.7		ug/L
1,1,1-trichloroethane	MW-49	4/11/1997		2.3	1.0	
	N 41 A / 4 A					
1,1,1-trichloroethane 1,1,1-trichloroethane 1,1,1-trichloroethane	MW-49 MW-49	1/27/1998 1/06/2000		2.8 1.0		ug/L ug/L

Table 1
Historical Volatile Organic Compound Detections

1.1-dichloroethane MW-49 3728/2008 2.9 1.0 ug/L 1.1-dichloroethane MW-49 804/2008 2.7 1.0 ug/L 1.1-dichloroethane MW-49 804/2008 2.7 1.0 ug/L 1.1-dichloroethane MW-49 4/02/2009 2.6 1.0 ug/L 1.1-dichloroethane MW-49 4/02/2010 3.0 1.0 ug/L 1.1-dichloroethane MW-49 4/02/2011 2.0 1.0 ug/L 1.1-dichloroethane MW-49 4/02/2011 2.0 1.0 ug/L 1.1-dichloroethane MW-49 4/02/2013 2.0 1.0 ug/L 1.1-dichloroethane MW-49 4/02/2013 2.0 1.0 ug/L 1.1-dichloroethane MW-49 4/04/2013 2.0 1.0 ug/L 1.1-dichloroethane MW-49 4/04/2014 2.2 1.0 ug/L 1.1-dichloroethane MW-49 4/04/2014 1.1 ug/L 1.1-dichloroethane MW-49 4/04/2015 1.5 1.0 ug/L 1.1-dichloroethane MW-49 4/14/2016 1.3 1.0 ug/L 1.1-dichloroethane MW-49 4/10/2017 1.7 1.0 ug/L 1.1-dichloroethane MW-49 4/10/2017 1.7 1.0 ug/L 1.1-dichloroethane MW-49 4/10/2017 1.7 1.0 ug/L 1.1-dichloroethane MW-49 4/10/2019 2.6 1.0 ug/L 1.1-dichloroethane MW-49 4/10/2019 2.6 1.0 ug/L 1.1-dichloroethane MW-49 4/10/2019 2.6 1.0 ug/L 1.1-dichloroethane MW-49 4/10/2010 2.6 1.0 ug/L 1.1-dichloroethane MW-49 4/10/2020 2.6 1.0 ug/L 1.1-di	Constituent	Well	Date	Identifier	Result	Limit	Units
1,1-dichloroethane							
1.1-dichloroethane							
1,-1-dichloroethane							
1,-1-dichloroethane							
1.1-dichloroethane							
1.1-dichloroethane							
1.1-dichloroethane	,	1	1				
1,1-dichloroethane							
1,1-dichloroethane							
1.1-dichloroethane							
1,1-dichloroethane							
1,1-dichloroethane			1				
1,1-dichloroethane							
1,1-dichloroethane							
1,1-dichloroethane							
1,1-dichloroethane							
1,1-dichloroethane							
1,1-dichloroethane							
1.1-dichloroethane							
1,1-dichloroethane			1				
1,1-dichloroethane MW-49 10/22/2018 1,2 1,0 ug/L 1,1-dichloroethane MW-49 4/22/2019 3,4 1,0 ug/L 1,1-dichloroethane MW-49 10/23/2019 2,6 1,0 ug/L 1,1-dichloroethane MW-49 4/10/2020 2,6 1,0 ug/L 1,1-dichloroethane MW-49 10/13/2020 2,5 1,0 ug/L 1,1-dichloroethane MW-49 10/13/2021 1,4 1,0 ug/L 1,1-dichloroethane MW-49 10/13/2021 1,4 1,0 ug/L 1,1-dichloroethane MW-49 10/08/2021 1,4 1,0 ug/L 1,1-dichloroethane MW-49 10/08/2022 1,0 1,0 ug/L 1,1-dichloroethane MW-49 10/08/2022 1,0 1,0 ug/L 1,1-dichloroethane MW-49 10/25/2022 1,7 1,0 ug/L 1,1-dichloroethane MW-49 10/25/2022 1,7 1,0 ug/L 1,1-dichloroethane MW-49 10/13/2023 1,4 1,0 ug/L 1,1-dichloroethane MW-49 10/13/2023 1,4 1,0 ug/L 1,1-dichloroethane MW-49 4/11/2023 1,6 1,0 ug/L 1,1-dichloroethane MW-49 10/13/2023 1,6 1,0 ug/L 1,1-dichloroethane MW-49 10/13/2023 1,6 1,0 ug/L 1,1-dichloroethylene MW-49 10/13/2023 1,0 ug/L 1,1-dichloroethylene MW-49 10/13/2001 1,1 ug/L 1,1-dichloroethylene MW-49 10/18/2001 9,1 ug/L 1,1-dichloroethylene MW-49 70/71/995 1,2 ug/L 1,1-dichloroethylene MW-49 10/18/2001 9,1 ug/L 2,-dichloroethane MW-49 10/18/2001 1,1 ug/L 2,-dichloroethane MW-49 10/08/2000 1,7 1,0 ug/L 2,-dichloroethane MW-49 10/08/2000 1,3 1,0 ug/L 2,-dichloroethane MW-49 10/08/2000 1,3 1,0 ug/L 2,-dichloroethane MW-49 10/08/2000 1,4 1,0 ug/L 2,-dichloroethane MW-49 10/08/2000 1,4 1,0 ug/L 2,-dichloroethane MW-49 10/18/2001 1,1 ug/L 2,-dichloroethane MW-49 10/18/2000 1,0 ug/L 2,-dichloroethane MW-49 10/18/2001 1,1 ug/L 2,-dichloroethane MW-49 10/18/2000 1,3 1,0 ug/L 2,-dichloroethane MW-49 10/18/2000 1,0 ug/L 2,-dichloroethane MW-49 10/18/2001							
1,1-dichloroethane							
1,-dichloroethane							
1,1-dichloroethane							
1,-1-dichloroethane							ug/L
1,1-dichloroethane	1,1-dichloroethane	MW-49	4/10/2020			1.0	ug/L
1,1-dichloroethane MW-49 4/06/2022 1.9 1.0 ug/L 1,1-dichloroethane MW-49 4/06/2022 1.7 1.0 ug/L 1,1-dichloroethane MW-49 4/06/2022 1.7 1.0 ug/L 1,1-dichloroethane MW-49 4/11/2023 1.4 1.0 ug/L 1,1-dichloroethane MW-49 4/17/2024 1.1 1.0 ug/L 1,1-dichloroethylene MW-49 4/17/2024 1.1 1.0 ug/L 1,1-dichloroethylene MW-49 7/07/1995 1.2 1.0 ug/L 1,1-dichloroethylene MW-49 10/18/2001 9.1 1.0 ug/L 1,1-dichloroethane MW-49 10/18/2001 9.1 1.0 ug/L 1,2-dichloroethane MW-49 10/08/2000 1.7 1.0 ug/L 1,2-dichloroethane MW-49 9/11/2000 1.3 1.0 ug/L 1,2-dichloroethane MW-49 4/27/2001 1.1 1.0 ug/L 1,2-dichloroethane MW-49 4/27/2001 1.1 1.0 ug/L 1,2-dichloroethane MW	1,1-dichloroethane	MW-49	10/19/2020		2.5	1.0	ug/L
1,1-dichloroethane	1,1-dichloroethane	MW-49	4/05/2021		1.4	1.0	
1,1-dichloroethane MW-49 4/06/2022 1.0 1.0 ug/L 1,1-dichloroethane MW-49 10/25/2022 1.7 1.0 ug/L 1,1-dichloroethane MW-49 4/11/2023 1.4 1.0 ug/L 1,1-dichloroethane MW-49 1/13/2023 1.6 1.0 ug/L 1,1-dichloroethylene MW-49 1/15/1994 3.9 1.0 ug/L 1,1-dichloroethylene MW-49 7/07/1995 1.2 1.0 ug/L 1,1-dichloroethylene MW-49 7/07/1995 1.2 1.0 ug/L 1,2-dichloroethane MW-49 10/18/2001 1.7 1.0 ug/L 1,2-dichloroethane MW-49 10/18/2000 1.7 1.0 ug/L 1,2-dichloroethane MW-49 9/11/2000 1.3 1.0 ug/L 1,2-dichloroethane MW-49 10/18/2001 1.1 1.0 ug/L 1,2-dichloroethane MW-49 1/23/2001 1.4 1.0 ug/L <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
1,1-dichloroethane	1,1-dichloroethane	MW-49	4/06/2022		1.0	1.0	
1,1-dichloroethane MW-49 4/11/2023 1,4 1,0 ug/L 1,1-dichloroethane MW-49 10/13/2023 1,6 1,0 ug/L 1,1-dichloroethylene MW-49 1/17/2024 1,1 1,0 ug/L 1,1-dichloroethylene MW-49 1/25/1994 3,9 1,0 ug/L 1,1-dichloroethylene MW-49 10/18/2001 9,1 1,0 ug/L 1,1-dichloroethylene MW-49 10/18/2001 9,1 1,0 ug/L 1,2-dichloroethane MW-49 10/18/2000 1,7 1,0 ug/L 1,2-dichloroethane MW-49 9/11/2000 1,3 1,0 ug/L 1,2-dichloroethane MW-49 9/11/2000 1,3 1,0 ug/L 1,2-dichloroethane MW-49 9/12/2001 1,1 1,0 ug/L 1,2-dichloroethane MW-49 1/25/2002 1,0 1,0 1,0 1,2-dichloroethane MW-49 1/12/2002 1,0 1,0 1,0 1,2-dichlorobenzene MW-49 10/10/2007 6 5,0 1,0		MW-49					
1.1-dichloroethane MW-49 4/17/2024 1.6 1.0 ug/L 1.1-dichloroethylene MW-49 4/17/2024 1.1 1.0 ug/L 1.1-dichloroethylene MW-49 7/07/1995 1.2 1.0 ug/L 1.1-dichloroethylene MW-49 7/07/1995 1.2 1.0 ug/L 1.2-dichloroethane MW-49 10/04/1999 1.4 1.0 ug/L 1.2-dichloroethane MW-49 7/05/2000 1.7 1.0 ug/L 1.2-dichloroethane MW-49 7/05/2000 1.7 1.0 ug/L 1.2-dichloroethane MW-49 10/08/2000 1.4 1.0 ug/L 1.2-dichloroethane MW-49 4/27/2001 1.1 1.0 ug/L 1.2-dichloroethane MW-49 1/25/2002 1.0 1.0 ug/L 1.2-dichloroethane MW-49 10/10/2007 6 5 ug/L 1.2-dichloroethane MW-49 10/10/2007 6 5 ug/L		MW-49	4/11/2023				
1,1-dichloroethane MW-49 4/17/2024 1,1 1,0 ug/L 1,1-dichloroethylene MW-49 1/25/1994 3.9 1.0 ug/L 1,1-dichloroethylene MW-49 7/07/1995 1.2 1.0 ug/L 1,1-dichloroethane MW-49 10/18/2001 9.1 1.0 ug/L 1,2-dichloroethane MW-49 10/04/1999 1.4 1.0 ug/L 1,2-dichloroethane MW-49 9/11/2000 1.3 1.0 ug/L 1,2-dichloroethane MW-49 9/11/2000 1.3 1.0 ug/L 1,2-dichloroethane MW-49 4/27/2001 1.1 1.0 ug/L 1,2-dichloroethane MW-49 7/23/2001 1.4 1.0 ug/L 1,2-dichloroethane MW-49 10/14/2002 1.2 1.0 ug/L 1,2-dichloroethane MW-49 10/14/2002 1.2 1.0 ug/L 1,2-dichlorobenzene MW-49 10/10/2007 .6 5. ug/L							
1,1-dichloroethylene MW-49 1/25/1994 3.9 1.0 ug/L 1,1-dichloroethylene MW-49 7/07/1995 1.2 1.0 ug/L 1,1-dichloroethylene MW-49 10/18/2001 9.1 1.0 ug/L 1,2-dichloroethane MW-49 10/04/1999 1.4 1.0 ug/L 1,2-dichloroethane MW-49 7/05/2000 1.7 1.0 ug/L 1,2-dichloroethane MW-49 10/08/2000 1.4 1.0 ug/L 1,2-dichloroethane MW-49 10/08/2000 1.4 1.0 ug/L 1,2-dichloroethane MW-49 7/23/2001 1.4 1.0 ug/L 1,2-dichloroethane MW-49 10/14/2002 1.2 1.0 ug/L 1,2-dichlorobentane MW-49 10/10/2007 6 5 ug/L 1,2-dichlorobenzene MW-49 3/28/2008 6.3 1.0 ug/L 1,4-dichlorobenzene MW-49 8/04/2008 7.8 1.0 ug/L <	,		1		- 1		
1,1-dichloroethylene MW-49 7/07/1995 1,2 1,0 ug/L 1,1-dichloroethylene MW-49 10/18/2001 9.1 1.0 ug/L 1,2-dichloroethane MW-49 7/05/2000 1.7 1.0 ug/L 1,2-dichloroethane MW-49 9/11/2000 1.3 1.0 ug/L 1,2-dichloroethane MW-49 9/11/2000 1.3 1.0 ug/L 1,2-dichloroethane MW-49 4/27/2001 1.1 1.0 ug/L 1,2-dichloroethane MW-49 4/27/2001 1.1 1.0 ug/L 1,2-dichloroethane MW-49 1/25/2002 1.0 1.0 ug/L 1,2-dichloroethane MW-49 10/14/2002 1.2 1.0 ug/L 1,2-dichloroethane MW-49 10/14/2002 1.2 1.0 ug/L 1,2-dichlorobenzene MW-49 3/28/2008 6.3 1.0 ug/L 1,4-dichlorobenzene MW-49 8/27/2008 7.8 1.0 ug/L <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>							
1,1-dichloroethylene MW-49 10/18/2001 9.1 1.0 ug/L 1,2-dichloroethane MW-49 10/04/1999 1.4 1.0 ug/L 1,2-dichloroethane MW-49 7/05/2000 1.7 1.0 ug/L 1,2-dichloroethane MW-49 9/11/2000 1.3 1.0 ug/L 1,2-dichloroethane MW-49 10/08/2000 1.4 1.0 ug/L 1,2-dichloroethane MW-49 7/23/2001 1.4 1.0 ug/L 1,2-dichloroethane MW-49 10/14/2002 1.0 1.0 ug/L 1,2-dichloroethane MW-49 10/14/2002 1.2 1.0 ug/L 1,2-dichloroethane MW-49 10/10/2007 6 5 ug/L 1,4-dichlorobenzene MW-49 3/28/2008 6.3 1.0 ug/L 1,4-dichlorobenzene MW-49 8/04/2008 9.0 1.0 ug/L 1,4-dichlorobenzene MW-49 10/03/2008 8.3 1.0 ug/L							
1,2-dichloroethane MW-49 10/04/1999 1.4 1.0 ug/L 1,2-dichloroethane MW-49 7/05/2000 1.7 1.0 ug/L 1,2-dichloroethane MW-49 9/11/2000 1.3 1.0 ug/L 1,2-dichloroethane MW-49 10/08/2000 1.4 1.0 ug/L 1,2-dichloroethane MW-49 4/27/2001 1.1 1.0 ug/L 1,2-dichloroethane MW-49 1/25/2002 1.0 1.0 ug/L 1,2-dichloroethane MW-49 10/14/2002 1.2 1.0 ug/L 1,2-dichloroethane MW-49 10/14/2002 1.2 1.0 ug/L 1,2-dichlorobenzene MW-49 10/10/2007 6 5 ug/L 1,4-dichlorobenzene MW-49 3/28/2008 6.3 1.0 ug/L 1,4-dichlorobenzene MW-49 8/04/2008 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/03/2008 8.3 1.0 ug/L			1				
1,2-dichloroethane MW-49 7/05/2000 1.7 1.0 ug/L 1,2-dichloroethane MW-49 9/11/2000 1.3 1.0 ug/L 1,2-dichloroethane MW-49 10/08/2000 1.4 1.0 ug/L 1,2-dichloroethane MW-49 4/27/2001 1.1 1.0 ug/L 1,2-dichloroethane MW-49 1/25/2002 1.0 1.0 ug/L 1,2-dichloroethane MW-49 10/14/2002 1.2 1.0 ug/L 1,2-dichloroethane MW-49 10/14/2002 1.2 1.0 ug/L 1,2-dichloroethane MW-49 10/14/2002 1.2 1.0 ug/L 1,4-dichlorobenzene MW-49 3/28/2008 6.3 1.0 ug/L 1,4-dichlorobenzene MW-49 8/04/2008 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 12/08/2008 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/28/2008 7.8 1.0 ug/L <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
1,2-dichloroethane 1,4-dichlorobenzene 1,4-dichlo						-	
1,2-dichloroethane MW-49 10/08/2000 1.4 1.0 ug/L 1,2-dichloroethane MW-49 4/27/2001 1.1 1.0 ug/L 1,2-dichloroethane MW-49 7/23/2001 1.4 1.0 ug/L 1,2-dichloroethane MW-49 1/25/2002 1.0 1.0 ug/L 1,2-dichloroethane MW-49 10/14/2002 1.2 1.0 ug/L 1,2-dichloroethane MW-49 10/14/2002 1.2 1.0 ug/L 1,4-dichlorobenzene MW-49 3/28/2008 6.3 1.0 ug/L 1,4-dichlorobenzene MW-49 8/04/2008 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/03/2008 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/03/2008 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/03/2008 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/02/2008 8.8 1.0 ug/L							
1,2-dichloroethane MW-49 4/27/2001 1.1 1.0 ug/L 1,2-dichloroethane MW-49 1/25/2002 1.0 1.0 ug/L 1,2-dichloroethane MW-49 10/14/2002 1.0 ug/L 1,2-dichloroethane MW-49 10/10/2007 .6 .5 ug/L 1,4-dichlorobenzene MW-49 3/28/2008 6.3 1.0 ug/L 1,4-dichlorobenzene MW-49 6/27/2008 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 8/04/2008 9.0 1.0 ug/L 1,4-dichlorobenzene MW-49 10/03/2008 8.3 1.0 ug/L 1,4-dichlorobenzene MW-49 10/03/2008 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/02/2009 8.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/02/2009 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/02/2010 9.2 1.0 ug/L 1,4-d							
1,2-dichloroethane MW-49 7/23/2001 1.4 1.0 ug/L 1,2-dichloroethane MW-49 1/25/2002 1.0 1.0 ug/L 1,2-dichloroethane MW-49 10/14/2002 1.2 1.0 ug/L 1,2-dichloroethane MW-49 10/10/2007 6 5.5 ug/L 1,4-dichlorobenzene MW-49 3/28/2008 6.3 1.0 ug/L 1,4-dichlorobenzene MW-49 8/04/2008 9.0 1.0 ug/L 1,4-dichlorobenzene MW-49 10/03/2008 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 12/08/2008 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 12/08/2008 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/02/2009 8.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/08/2010 9.2 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2011 8.1 1.0 ug/L							
1,2-dichloroethane MW-49 1/25/2002 1.0 ug/L 1,2-dichloroethane MW-49 10/14/2002 1.2 1.0 ug/L 1,2-dichloroethane MW-49 10/10/2007 .6 .5 ug/L 1,4-dichlorobenzene MW-49 3/28/2008 6.3 1.0 ug/L 1,4-dichlorobenzene MW-49 8/04/2008 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 8/04/2008 9.0 1.0 ug/L 1,4-dichlorobenzene MW-49 10/03/2008 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/03/2008 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/02/2009 8.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/02/2009 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2011 8.1 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2011 8.1 1.0 ug/L 1,4-d							
1,2-dichloroethane MW-49 10/14/2002 1.2 1.0 ug/L 1,2-dichloroethane MW-49 10/10/2007 6 .5 ug/L 1,4-dichlorobenzene MW-49 3/28/2008 6.3 1.0 ug/L 1,4-dichlorobenzene MW-49 6/27/2008 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 8/04/2008 9.0 1.0 ug/L 1,4-dichlorobenzene MW-49 10/03/2008 8.3 1.0 ug/L 1,4-dichlorobenzene MW-49 12/08/2009 8.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/02/2009 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/02/2009 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2010 5.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2011 8.1 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2012 8.4 1.0 ug/L <							
1,2-dichloroethane MW-49 10/10/2007 .6 .5 ug/L 1,4-dichlorobenzene MW-49 3/28/2008 6.3 1.0 ug/L 1,4-dichlorobenzene MW-49 6/27/2008 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 8/04/2008 9.0 1.0 ug/L 1,4-dichlorobenzene MW-49 10/03/2008 8.3 1.0 ug/L 1,4-dichlorobenzene MW-49 4/02/2009 8.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/20/2019 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/20/2010 9.2 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2011 8.1 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2011 4.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2012 8.4 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2013 7.2 1.0 ug/L <							
1,4-dichlorobenzene MW-49 6/27/2008 7.8 1.0 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L							
1,4-dichlorobenzene MW-49 6/27/2008 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 8/04/2008 9.0 1.0 ug/L 1,4-dichlorobenzene MW-49 10/03/2008 8.3 1.0 ug/L 1,4-dichlorobenzene MW-49 12/08/2008 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/02/2009 8.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/02/2010 9.2 1.0 ug/L 1,4-dichlorobenzene MW-49 10/08/2010 5.6 1.0 ug/L 1,4-dichlorobenzene MW-49 10/08/2011 8.1 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2012 8.4 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2012 8.4 1.0 ug/L 1,4-dichlorobenzene MW-49 4/04/2013 10.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2014 4.9 1.0 ug/L			1				
1,4-dichlorobenzene							
1,4-dichlorobenzene	,						
1,4-dichlorobenzene MW-49 12/08/2008 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/02/2009 8.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/21/2009 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 10/08/2010 5.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2011 8.1 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2011 8.1 1.0 ug/L 1,4-dichlorobenzene MW-49 10/06/2011 4.9 1.0 ug/L 1,4-dichlorobenzene MW-49 10/09/2012 8.4 1.0 ug/L 1,4-dichlorobenzene MW-49 4/04/2013 10.9 1.0 ug/L 1,4-dichlorobenzene MW-49 10/16/2013 7.2 1.0 ug/L 1,4-dichlorobenzene MW-49 4/06/2015 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 4/06/2015 8.7 1.0 ug/L <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1,4-dichlorobenzene MW-49 4/02/2009 8.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/21/2009 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/20/2010 9.2 1.0 ug/L 1,4-dichlorobenzene MW-49 10/08/2010 5.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2011 8.1 1.0 ug/L 1,4-dichlorobenzene MW-49 10/06/2011 4.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2012 8.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/09/2012 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/16/2013 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2014 4.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/06/2015 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 4/14/2016 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2015 8.6 1.0 ug/L							
1,4-dichlorobenzene MW-49 10/21/2009 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/20/2010 9.2 1.0 ug/L 1,4-dichlorobenzene MW-49 10/08/2010 5.6 1.0 ug/L 1,4-dichlorobenzene MW-49 10/08/2011 8.1 1.0 ug/L 1,4-dichlorobenzene MW-49 10/06/2011 4.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2012 8.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/09/2012 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/04/2013 10.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2013 7.2 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2014 4.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/06/2015 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 4/14/2016 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2017 7.8 1.0	,						
1,4-dichlorobenzene MW-49 4/20/2010 9.2 1.0 ug/L 1,4-dichlorobenzene MW-49 10/08/2010 5.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2011 8.1 1.0 ug/L 1,4-dichlorobenzene MW-49 10/06/2011 4.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2012 8.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/09/2012 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/04/2013 10.9 1.0 ug/L 1,4-dichlorobenzene MW-49 10/16/2013 7.2 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2014 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 4/06/2015 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 10/01/2015 8.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2016 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2017 7.8 1.0							
1,4-dichlorobenzene MW-49 10/08/2010 5.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2011 8.1 1.0 ug/L 1,4-dichlorobenzene MW-49 10/06/2011 4.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2012 8.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/09/2012 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/04/2013 10.9 1.0 ug/L 1,4-dichlorobenzene MW-49 10/16/2013 7.2 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2014 4.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/06/2015 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2015 8.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2015 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2017 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2017 5.8 1.0							
1,4-dichlorobenzene MW-49 4/05/2011 8.1 1.0 ug/L 1,4-dichlorobenzene MW-49 10/06/2011 4.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2012 8.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/09/2012 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/04/2013 10.9 1.0 ug/L 1,4-dichlorobenzene MW-49 10/16/2013 7.2 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2014 4.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2014 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 4/06/2015 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2015 8.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2016 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2017 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/17/2018 1.8 1.0						1.0	ug/L
,4-dichlorobenzene MW-49 10/06/2011 4.9 1.0 ug/L ,4-dichlorobenzene MW-49 4/10/2012 8.4 1.0 ug/L ,4-dichlorobenzene MW-49 10/09/2012 1.8 1.0 ug/L ,4-dichlorobenzene MW-49 4/04/2013 10.9 1.0 ug/L ,4-dichlorobenzene MW-49 4/10/2013 7.2 1.0 ug/L ,4-dichlorobenzene MW-49 4/10/2014 4.9 1.0 ug/L ,4-dichlorobenzene MW-49 10/16/2014 8.7 1.0 ug/L ,4-dichlorobenzene MW-49 4/06/2015 8.7 1.0 ug/L ,4-dichlorobenzene MW-49 4/06/2015 8.6 1.0 ug/L ,4-dichlorobenzene MW-49 4/14/2016 8.9 1.0 ug/L ,4-dichlorobenzene MW-49 4/10/2017 7.8 1.0 ug/L ,4-dichlorobenzene MW-49 4/10/2017 5.8 1.0 ug/L	,		1			1.0	ug/L
1,4-dichlorobenzene MW-49 4/10/2012 8.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/09/2012 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/04/2013 10.9 1.0 ug/L 1,4-dichlorobenzene MW-49 10/16/2013 7.2 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2014 4.9 1.0 ug/L 1,4-dichlorobenzene MW-49 10/16/2014 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 4/06/2015 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 10/01/2015 8.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/14/2016 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2017 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/17/2018 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/17/2018 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/22/2019 1.4 1.0							
1,4-dichlorobenzene MW-49 10/09/2012 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/04/2013 10.9 1.0 ug/L 1,4-dichlorobenzene MW-49 10/16/2013 7.2 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2014 4.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/06/2015 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 4/06/2015 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 10/01/2015 8.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/14/2016 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2017 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/17/2018 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/17/2018 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/22/2019 11.4 1.0 ug/L 1,4-dichlorobenzene MW-49 4/22/2019 7.4 1.0							
1,4-dichlorobenzene MW-49 4/04/2013 10.9 1.0 ug/L 1,4-dichlorobenzene MW-49 10/16/2013 7.2 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2014 4.9 1.0 ug/L 1,4-dichlorobenzene MW-49 10/16/2014 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 4/06/2015 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 10/01/2015 8.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/14/2016 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2017 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2017 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/17/2018 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/17/2018 2.5 1.0 ug/L 1,4-dichlorobenzene MW-49 4/22/2019 11.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/23/2019 7.4 1.0							
1,4-dichlorobenzene MW-49 10/16/2013 7.2 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2014 4.9 1.0 ug/L 1,4-dichlorobenzene MW-49 10/16/2014 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 4/06/2015 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 10/01/2015 8.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/14/2016 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 10/13/2016 9.2 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2017 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/17/2018 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/17/2018 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/22/2019 11.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/23/2019 7.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/19/2020 6.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2021 6.4 1.0 ug/L							•
1,4-dichlorobenzene MW-49 4/10/2014 4.9 1.0 ug/L 1,4-dichlorobenzene MW-49 10/16/2014 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 4/06/2015 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 10/01/2015 8.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/14/2016 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 10/13/2016 9.2 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2017 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/09/2017 5.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/17/2018 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/22/2018 2.5 1.0 ug/L 1,4-dichlorobenzene MW-49 4/22/2019 11.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/23/2019 7.4 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2021 6.6 1.0							
1,4-dichlorobenzene MW-49 10/16/2014 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 4/06/2015 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 10/01/2015 8.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/14/2016 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2017 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2017 5.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/17/2018 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/12/2018 2.5 1.0 ug/L 1,4-dichlorobenzene MW-49 4/22/2019 11.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/19/2020 6.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2021 6.4 1.0 ug/L							
1,4-dichlorobenzene MW-49 4/06/2015 8.7 1.0 ug/L 1,4-dichlorobenzene MW-49 10/01/2015 8.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/14/2016 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 10/13/2016 9.2 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2017 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/09/2017 5.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/17/2018 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/22/2018 2.5 1.0 ug/L 1,4-dichlorobenzene MW-49 4/22/2019 11.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/23/2019 7.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/19/2020 6.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2021 6.4 1.0 ug/L	1,4-dichlorobenzene	MW-49	4/10/2014		4.9	1.0	ug/L
1,4-dichlorobenzene MW-49 10/01/2015 8.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/14/2016 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 10/13/2016 9.2 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2017 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/09/2017 5.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/17/2018 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/22/2018 2.5 1.0 ug/L 1,4-dichlorobenzene MW-49 4/22/2019 11.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/23/2019 7.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/19/2020 6.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2021 6.4 1.0 ug/L						1.0	ug/L
1,4-dichlorobenzene MW-49 4/14/2016 8.9 1.0 ug/L 1,4-dichlorobenzene MW-49 10/13/2016 9.2 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2017 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/09/2017 5.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/17/2018 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/22/2018 2.5 1.0 ug/L 1,4-dichlorobenzene MW-49 4/22/2019 11.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/23/2019 7.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/19/2020 6.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2021 6.4 1.0 ug/L							
1,4-dichlorobenzene MW-49 10/13/2016 9.2 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2017 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/09/2017 5.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/17/2018 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/22/2018 2.5 1.0 ug/L 1,4-dichlorobenzene MW-49 4/22/2019 11.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/23/2019 7.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/19/2020 6.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2021 6.4 1.0 ug/L	1,4-dichlorobenzene	MW-49			8.6	1.0	ug/L
1,4-dichlorobenzene MW-49 10/13/2016 9.2 1.0 ug/L 1,4-dichlorobenzene MW-49 4/10/2017 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/09/2017 5.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/17/2018 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/22/2018 2.5 1.0 ug/L 1,4-dichlorobenzene MW-49 4/22/2019 11.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/23/2019 7.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/19/2020 6.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2021 6.4 1.0 ug/L	1,4-dichlorobenzene	MW-49	4/14/2016		8.9	1.0	ug/L
1,4-dichlorobenzene MW-49 4/10/2017 7.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/09/2017 5.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/17/2018 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/22/2018 2.5 1.0 ug/L 1,4-dichlorobenzene MW-49 4/22/2019 11.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/23/2019 7.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/19/2020 6.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2021 6.4 1.0 ug/L	1,4-dichlorobenzene	MW-49	10/13/2016		9.2	1.0	
1,4-dichlorobenzene MW-49 10/09/2017 5.8 1.0 ug/L 1,4-dichlorobenzene MW-49 4/17/2018 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/22/2018 2.5 1.0 ug/L 1,4-dichlorobenzene MW-49 4/22/2019 11.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/23/2019 7.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/19/2020 6.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2021 6.4 1.0 ug/L			4/10/2017				
1,4-dichlorobenzene MW-49 4/17/2018 1.8 1.0 ug/L 1,4-dichlorobenzene MW-49 10/22/2018 2.5 1.0 ug/L 1,4-dichlorobenzene MW-49 4/22/2019 11.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/23/2019 7.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/19/2020 6.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2021 6.4 1.0 ug/L							
1,4-dichlorobenzene MW-49 10/22/2018 2.5 1.0 ug/L 1,4-dichlorobenzene MW-49 4/22/2019 11.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/23/2019 7.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/19/2020 6.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2021 6.4 1.0 ug/L							
1,4-dichlorobenzene MW-49 4/22/2019 11.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/23/2019 7.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/19/2020 6.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2021 6.4 1.0 ug/L							
1,4-dichlorobenzene MW-49 10/23/2019 7.4 1.0 ug/L 1,4-dichlorobenzene MW-49 10/19/2020 6.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2021 6.4 1.0 ug/L							
1,4-dichlorobenzene MW-49 10/19/2020 6.6 1.0 ug/L 1,4-dichlorobenzene MW-49 4/05/2021 6.4 1.0 ug/L			1				
1,4-dichlorobenzene MW-49 4/05/2021 6.4 1.0 ug/L							
							•
1,4-dichlorobenzene MW-49 10/08/2021 6.0 1.0 ug/L	1,7-416111010061126116						

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
,4-dichlorobenzene	MW-49	4/06/2022		3.6	1.0	ug/L
,4-dichlorobenzene	MW-49	10/25/2022		6.3	1.0	ug/L
,4-dichlorobenzene	MW-49	4/11/2023		7.4	1.0	ug/L
,4-dichlorobenzene	MW-49	10/13/2023		6.1	1.0	ug/L
,4-dichlorobenzene	MW-49	4/17/2024		3.3	1.0	ug/L
Acetone	MW-49	10/21/2009		48.4	10.0	ug/L
Acetone	MW-49	4/05/2011		69.3	10.0	ug/L
Acetone	MW-49	10/09/2017		20.0	10.0	ug/L
Acetone	MW-49	4/17/2018		76.0	10.0	ug/L
Acetone	MW-49	10/22/2018		36.8	10.0	ug/L
Acetone	MW-49	4/06/2022		24.1	10.0	ug/L
Benzene	MW-49	7/07/1995		1.0	1.0	ug/L
Benzene	MW-49	7/17/1996		1.9	1.0	ug/L
Benzene	MW-49	10/08/1996		1.1	1.0	ug/L
Benzene	MW-49	1/21/1997		2.5	1.0	ug/L
Benzene	MW-49	4/11/1997		3.1	1.0	ug/L
Benzene	MW-49	7/17/1997		2.5	1.0	ug/L
Benzene	MW-49	10/15/1997		2.2	1.0	ug/L
Benzene	MW-49	1/27/1998		1.6	1.0	ug/L
Benzene	MW-49	7/21/1998		1.7	1.0	ug/L
Benzene	MW-49	1/26/1999		1.8	1.0	ug/L
Benzene	MW-49	4/19/1999		2.4	1.0	ug/L
Benzene	MW-49	10/04/1999		1.9	1.0	ug/L
Benzene	MW-49	1/06/2000		1.3	1.0	ug/L
Benzene	MW-49	7/05/2000		1.3	1.0	ug/L
Benzene	MW-49	9/11/2000		1.4	1.0	ug/L
Benzene	MW-49	10/08/2000		1.4	1.0	ug/L
Benzene	MW-49	1/18/2001		1.7	1.0	ug/L
Benzene	MW-49	4/27/2001		1.7	1.0	ug/L
Benzene	MW-49	7/23/2001		2.8	1.0	ug/L
Benzene	MW-49	10/18/2001		1.7	1.0	ug/L
Benzene	MW-49	1/25/2002		1.6	1.0	ug/L
Benzene	MW-49	4/24/2002		2.4	1.0	
Benzene	MW-49	7/22/2002		2.4	1.0	ug/L
Benzene	MW-49	1/29/2003		1.3	1.0	ug/L
Benzene	MW-49	7/11/2003		2.1	1.0	ug/L
Benzene	MW-49	10/06/2003		2.0	1.0	ug/L
Benzene	MW-49	1/12/2004		2.0	1.0	ug/L
Benzene	MW-49	4/26/2004		2.6	1.0	ug/L
Benzene	MW-49	4/11/2005		2.4	1.0	ug/L
Benzene	MW-49	10/05/2005		2.1	1.0	ug/L
Benzene	MW-49	4/05/2006		2.3	1.0	ug/L
Benzene	MW-49	10/04/2006		2.0	1.0	ug/L
Benzene	MW-49	4/12/2007		2.3	1.0	ug/L
Benzene	MW-49	10/10/2007		2.0	1.0	ug/L
Benzene	MW-49	3/28/2008		2.5	1.0	ug/L
Benzene	MW-49	6/27/2008		2.6	1.0	ug/L
Benzene	MW-49	8/04/2008		2.6	1.0	ug/L
Benzene	MW-49	12/08/2008		2.2	1.0	ug/L
Benzene	MW-49	4/02/2009		2.7	1.0	ug/L
Benzene	MW-49	10/21/2009		2.6	1.0	ug/L
Benzene	MW-49	4/20/2010		2.0	1.0	
Benzene	MW-49	4/05/2011		2.6	1.0	
Benzene	MW-49	10/06/2011		1.0	1.0	ug/L
Benzene	MW-49	4/10/2012		2.2	1.0	ug/L
Benzene	MW-49	4/04/2013		2.2		ug/L
Benzene	MW-49	10/16/2014		2.9		ug/L
Benzene	MW-49	4/06/2015		2.3	1.0	
Benzene	MW-49	10/01/2015		1.9		ug/L
Benzene	MW-49	4/14/2016		2.6		ug/L
Benzene	MW-49	10/13/2016		3.5	1.0	
Benzene	MW-49	4/10/2017		3.0		ug/L
Benzene	MW-49	10/09/2017		1.2		ug/L
Benzene	MW-49	4/17/2018		1.9	1.0	
Benzene	MW-49	10/22/2018		2.5		ug/L
Benzene	MW-49	4/22/2019		4.3		ug/L
Benzene	MW-49	10/23/2019		3.5	1.0	
Benzene	MW-49	4/10/2020		3.7		ug/L ug/L
Benzene	MW-49	10/19/2020		2.0		ug/L ug/L
	MW-49	4/05/2021				
Benzene				2.8		ug/L
Benzene	MW-49	10/08/2021		1.9		ug/L
	MW-49	4/06/2022		2.4		ug/L
Benzene	N 4\A / 40					
Benzene	MW-49	10/25/2022		2.4		ug/L
	MW-49 MW-49 MW-49	10/25/2022 4/11/2023 10/13/2023		2.4 2.9 1.1	1.0	

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Bis(2-ethylhexyl) phthalate	MW-49	4/06/2015		65	10	ug/L
Chlorobenzene	MW-49	4/22/2019		1.1	1.0	ug/L
Chlorobenzene	MW-49	4/10/2020		1.1	1.0	ug/L
Chlorobenzene Chlorobenzene	MW-49 MW-49	10/19/2020 4/05/2021		1.0 1.0		ug/L
Chlorobenzene	MW-49	10/08/2021		1.0	1.0	ug/L ug/L
Chlorobenzene	MW-49	10/25/2022		1.1		ug/L ug/L
Chlorobenzene	MW-49	10/13/2023		1.0	1.0	
Chloroethane	MW-49	3/28/2008		17.8	1.0	ug/L
Chloroethane	MW-49	6/27/2008		15.5	1.0	ug/L
Chloroethane	MW-49	8/04/2008		16.5		ug/L
Chloroethane	MW-49	10/03/2008		18.1	1.0	ug/L
Chloroethane Chloroethane	MW-49 MW-49	12/08/2008		18.1		ug/L
Chloroethane	MW-49	4/02/2009 10/21/2009		18.1 18.6	1.0	ug/L ug/L
Chloroethane	MW-49	4/20/2010		15.8	1.0	
Chloroethane	MW-49	10/08/2010		13.6		ug/L
Chloroethane	MW-49	4/05/2011		17.2	1.0	ug/L
Chloroethane	MW-49	10/06/2011		11.6	1.0	
Chloroethane	MW-49	4/10/2012		11.8		ug/L
Chloroethane	MW-49	10/09/2012		10.0	1.0	ug/L
Chloroethane Chloroethane	MW-49 MW-49	4/04/2013 10/16/2013		11.3 5.7	1.0	
Chloroethane	MW-49	4/10/2013		11.2	1.0	ug/L ug/L
Chloroethane	MW-49	10/16/2014		12.9	1.0	
Chloroethane	MW-49	4/06/2015		8.9		ug/L
Chloroethane	MW-49	10/01/2015		8.7		ug/L
Chloroethane	MW-49	4/14/2016		9.0	1.0	ug/L
Chloroethane	MW-49	10/13/2016		11.9	1.0	
Chloroethane	MW-49	4/10/2017		10.1		ug/L
Chloroethane	MW-49 MW-49	10/09/2017		8.7 5.5	1.0	
Chloroethane Chloroethane	MW-49	4/17/2018 10/22/2018		11.0	1.0	ug/L ug/L
Chloroethane	MW-49	4/22/2019		8.2	1.0	
Chloroethane	MW-49	10/23/2019		10.2	1.0	ug/L
Chloroethane	MW-49	4/10/2020		9.4		ug/L
Chloroethane	MW-49	10/19/2020		9.8	1.0	ug/L
Chloroethane	MW-49	4/05/2021		6.8	1.0	
Chloroethane	MW-49	10/08/2021		7.3		ug/L
Chloroethane Chloroethane	MW-49 MW-49	4/06/2022 10/25/2022		5.6 7.4	1.0	ug/L ug/L
Chloroethane	MW-49	4/11/2023		6.6		ug/L
Chloroethane	MW-49	10/13/2023		6.6		ug/L
Chloroethane	MW-49	4/17/2024		4.6	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49	3/28/2008		42.6		ug/L
Cis-1,2-dichloroethylene	MW-49	6/27/2008		41.0		ug/L
Cis-1,2-dichloroethylene	MW-49	8/04/2008		41.3	1.0	
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-49 MW-49	10/03/2008 12/08/2008		45.3 42.2	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-49	4/02/2009		42.8		ug/L ug/L
Cis-1,2-dichloroethylene	MW-49	10/21/2009		41.1	1.0	
Cis-1,2-dichloroethylene	MW-49	4/20/2010		38.2	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49	10/08/2010		33.1		ug/L
Cis-1,2-dichloroethylene	MW-49	4/05/2011		41.1		ug/L
Cis-1,2-dichloroethylene	MW-49	10/06/2011		28.8	1.0	ug/L
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-49 MW-49	4/10/2012 10/09/2012		32.6 25.8		ug/L ug/L
Cis-1,2-dichloroethylene	MW-49	4/04/2013		28.1		ug/L ug/L
Cis-1,2-dichloroethylene	MW-49	10/16/2013		24.0		ug/L
Cis-1,2-dichloroethylene	MW-49	4/10/2014		23.3		ug/L
Cis-1,2-dichloroethylene	MW-49	10/16/2014		23.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49	4/06/2015		13.6		ug/L
Cis-1,2-dichloroethylene	MW-49	10/01/2015		11.2		ug/L
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-49 MW-49	4/14/2016 10/13/2016		13.8 13.8	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-49	4/10/2017		10.3		ug/L ug/L
Cis-1,2-dichloroethylene	MW-49	10/09/2017		16.9	1.0	
Cis-1,2-dichloroethylene	MW-49	4/17/2018		2.7		ug/L
Cis-1,2-dichloroethylene	MW-49	4/22/2019		2.6	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49	4/10/2020		1.1		ug/L
Cis-1,2-dichloroethylene	MW-49	10/19/2020		6.2		ug/L
Cis-1,2-dichloroethylene	MW-49	10/08/2021		2.0		ug/L
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-49 MW-49	10/25/2022 10/13/2023		1.6 2.1	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-49	4/17/2024		2.4		ug/L ug/L
Trichloroethylene	MW-49	1/21/1993		1.2		ug/L

Table 1
Historical Volatile Organic Compound Detections

Trichloroethylene MW-49 4/22/1993 Trichloroethylene MW-49 7/13/1993 Trichloroethylene MW-49 1/25/1994 Trichloroethylene MW-49 4/14/1994 Trichloroethylene MW-49 7/08/1994 Trichloroethylene MW-49 10/20/1994 Trichloroethylene MW-49 1/04/1995 Trichloroethylene MW-49 4/21/1995 Trichloroethylene MW-49 7/07/1995 Trichloroethylene MW-49 1/10/1996 Trichloroethylene MW-49 7/17/1996	3.3 5.5 3.2 1.8 2.5 4.7 4.1 4.7 4.4 3.4 2.7	1.0 1.0 1.0 1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L
Trichloroethylene MW-49 1/25/1994 Trichloroethylene MW-49 4/14/1994 Trichloroethylene MW-49 7/08/1994 Trichloroethylene MW-49 10/20/1994 Trichloroethylene MW-49 1/04/1995 Trichloroethylene MW-49 4/21/1995 Trichloroethylene MW-49 7/07/1995 Trichloroethylene MW-49 10/12/1995 Trichloroethylene MW-49 1/10/1996	3.2 1.8 2.5 4.7 4.1 4.7 4.4 3.4	1.0 1.0 1.0 1.0 1.0	ug/L ug/L ug/L
Trichloroethylene MW-49 4/14/1994 Trichloroethylene MW-49 7/08/1994 Trichloroethylene MW-49 10/20/1994 Trichloroethylene MW-49 1/04/1995 Trichloroethylene MW-49 4/21/1995 Trichloroethylene MW-49 7/07/1995 Trichloroethylene MW-49 10/12/1995 Trichloroethylene MW-49 1/10/1996	1.8 2.5 4.7 4.1 4.7 4.4 3.4	1.0 1.0 1.0 1.0	ug/L ug/L
Trichloroethylene MW-49 7/08/1994 Trichloroethylene MW-49 10/20/1994 Trichloroethylene MW-49 1/04/1995 Trichloroethylene MW-49 4/21/1995 Trichloroethylene MW-49 7/07/1995 Trichloroethylene MW-49 10/12/1995 Trichloroethylene MW-49 1/10/1996	2.5 4.7 4.1 4.7 4.4 3.4	1.0 1.0 1.0	ug/L
Trichloroethylene	4.7 4.1 4.7 4.4 3.4	1.0 1.0	
Trichloroethylene	4.1 4.7 4.4 3.4	1.0	
Trichloroethylene	4.7 4.4 3.4		
Trichloroethylene	4.4 3.4		ug/L ug/L
Trichloroethylene	3.4	1.0	ug/L ug/L
Trichloroethylene MW-49 1/10/1996		1.0	ug/L
Trichloroethylene MW 40 7/17/1006		1.0	ug/L
Holliotoeutylene	5.7	1.0	ug/L
Trichloroethylene MW-49 10/08/1996	5.8	1.0	ug/L
Trichloroethylene MW-49 1/21/1997	9.5	1.0	ug/L
Trichloroethylene MW-49 4/11/1997	10.4	1.0	ug/L
Trichloroethylene MW-49 7/17/1997	10.8	1.0	ug/L
Trichloroethylene	9.6 7.6	1.0 1.0	ug/L
Trichloroethylene MW-49 1/27/1998 Trichloroethylene MW-49 4/21/1998	12.2	1.0	ug/L ug/L
Trichloroethylene MW-49 7/21/1998	12.2	1.0	ug/L ug/L
Trichloroethylene MW-49 10/09/1998	9.5	1.0	ug/L
Trichloroethylene MW-49 1/26/1999	11.1	1.0	ug/L
Trichloroethylene MW-49 4/19/1999	13.1	1.0	ug/L
Trichloroethylene MW-49 7/29/1999	10.4	1.0	ug/L
Trichloroethylene MW-49 10/04/1999	9.8	1.0	ug/L
Trichloroethylene MW-49 1/06/2000	7.9	1.0	ug/L
Trichloroethylene MW-49 4/13/2000	5.0	1.0	ug/L
Trichloroethylene MW-49 7/05/2000	12.0	1.0	ug/L
Trichloroethylene	6.4 4.0	1.0 1.0	ug/L ug/L
Trichloroethylene	1.2	1.0	ug/L ug/L
Trichloroethylene MW-49 4/27/2001	1.2	1.0	ug/L
Trichloroethylene MW-49 7/23/2001	2.4	1.0	ug/L
Trichloroethylene MW-49 10/18/2001	1.5	1.0	ug/L
Trichloroethylene MW-49 1/25/2002	2.0	1.0	ug/L
Trichloroethylene MW-49 4/26/2004	.4	.3	ug/L
Trichloroethylene MW-49 6/27/2008	1.0	1.0	ug/L
Trichloroethylene MW-49 8/04/2008	1.5	1.0	ug/L
Trichloroethylene MW-49 4/02/2009	1.0	1.0	ug/L
Trichloroethylene	1.9 6.6	1.0 1.0	ug/L
Viriyi Chloride	6.6	1.0	ug/L ug/L
Vinyl chloride	7.2	1.0	ug/L
Vinyl chloride	6.0	1.0	ug/L
Vinyl chloride MW-49 12/08/2008	6.8	1.0	ug/L
Vinyl chloride MW-49 4/02/2009	7.2	1.0	ug/L
Vinyl chloride MW-49 10/21/2009	6.8	1.0	ug/L
Vinyl chloride MW-49 4/20/2010	5.6	1.0	ug/L
Vinyl chloride	5.1	1.0	ug/L
Vinyl chloride	7.0	1.0	ug/L
Vinyl chloride MW-49 10/06/2011 Vinyl chloride MW-49 4/10/2012	3.2 5.7	1.0 1.0	ug/L ug/L
Vinyl chloride	3.7	1.0	ug/L ug/L
Vinyl chloride	4.5	1.0	ug/L
Vinyl chloride	3.4		ug/L
Vinyl chloride MW-49 4/10/2014	3.8	1.0	ug/L
Vinyl chloride MW-49 10/16/2014	4.6	1.0	ug/L
Vinyl chloride MW-49 4/06/2015	3.1	1.0	ug/L
Vinyl chloride	3.1	1.0	ug/L
Vinyl chloride	4.0	1.0	ug/L
Vinyl chloride	5.1 5.5	1.0	ug/L
Vinyl chloride MW-49 4/10/2017 Vinyl chloride MW-49 10/09/2017	3.2	1.0 1.0	ug/L ug/L
Vinyl chloride	1.1	1.0	ug/L ug/L
Vinyl chloride	2.6	1.0	ug/L
Vinyl chloride	2.8	1.0	ug/L
Vinyl chloride MW-49 10/23/2019	1.4	1.0	ug/L
Vinyl chloride MW-49 4/10/2020	1.1	1.0	
Vinyl chloride	2.4	1.0	
1,1,1-trichloroethane	16.8	1.0	ug/L
1,1,1-trichloroethane	20.8 29.4	1.0	ug/L
1,1,1-trichloroethane	49.9	1.0 1.0	ug/L ug/L
1,1,1-trichloroethane	1.1	1.0	ug/L ug/L
1,1,1-trichloroethane	1.4		ug/L
1,1,1-trichloroethane MW-54 1/06/2000	1.5		ug/L

Table 1
Historical Volatile Organic Compound Detections

1,1-1-trichloroethane	Constituent	Well	Date	Identifier	Result	Limit	Units
1,1-1-trichloroethane	1,1,1-trichloroethane	MW-54	4/13/2000		1.0	1.0	ug/L
1,1-dichloroethane	1,1,1-trichloroethane	MW-54	7/05/2000		.9	.5	ug/L
1,1-dichloroethane	1,1,1-trichloroethane	MW-54	9/11/2000		.8	.5	ug/L
1,1-dichloroethane	1,1-dichloroethane	MW-54	3/28/2008		1.8	1.0	ug/L
1,1-dichloroethane	1,1-dichloroethane	MW-54	6/25/2008		1.4	1.0	ug/L
1,1-dichloroethane MW-54 4/02/2009 1,2 1,0 1,1-dichloroethane MW-54 4/20/2010 2,2 1,0 1,1-dichloroethane MW-54 4/20/2010 5,0 1,0 1,1-dichloroethane MW-54 4/05/2011 8,8 1,0 1,1-dichloroethane MW-54 4/05/2011 8,7 1,0 1,1-dichloroethane MW-54 4/10/2012 14,6 1,0 1,1-dichloroethane MW-54 4/10/2012 14,6 1,0 1,1-dichloroethane MW-54 4/10/2012 16,0 1,0 1,1-dichloroethane MW-54 4/04/2013 17,0 1,0 1,1-dichloroethane MW-54 4/04/2013 17,0 1,0 1,1-dichloroethane MW-54 4/10/2013 19,7 1,0 1,1-dichloroethane MW-54 4/10/2014 18,9 1,0 1,1-dichloroethane MW-54 4/06/2015 13,4 1,0 1,1-dichloroethane MW-54 4/06/2015 13,4 1,0 1,1-dichloroethane MW-54 4/06/2015 13,4 1,0 1,1-dichloroethane MW-54 4/10/2014 17,5 1,0 1,1-dichloroethane MW-54 4/10/2014 17,5 1,0 1,1-dichloroethane MW-54 4/10/2015 12,2 1,0 1,1-dichloroethane MW-54 4/10/2015 12,2 1,0 1,1-dichloroethane MW-54 4/10/2016 13,0 1,0 1,1-dichloroethane MW-54 4/10/2017 10,4 1,0 1,1-dichloroethane MW-54 4/10/2017 10,4 1,0 1,1-dichloroethane MW-54 4/10/2017 10,4 1,0 1,1-dichloroethane MW-54 4/10/2018 3,8 1,0 1,1-dichloroethane MW-54 4/10/2018 3,8 1,0 1,1-dichloroethane MW-54 4/10/2019 2,9 1,0 1,1-dichloroethane MW-54 4/10/2009 2,0 1,0 1,1-dichloro	1,1-dichloroethane	MW-54	8/04/2008		1.2	1.0	ug/L
1,1-dichloroethane MW-54 4/20/2010 2,2 1.0 1,1-dichloroethane MW-54 10/08/2010 5.0 1.0 1,1-dichloroethane MW-54 4/08/2011 8.8 1.0 1,1-dichloroethane MW-54 4/08/2011 8.7 1.0 1,1-dichloroethane MW-54 4/08/2011 8.7 1.0 1,1-dichloroethane MW-54 4/10/2012 14.6 1.0 1,1-dichloroethane MW-54 4/10/2012 14.6 1.0 1,1-dichloroethane MW-54 4/10/2013 17.0 1.0 1,1-dichloroethane MW-54 4/04/2013 17.0 1.0 1,1-dichloroethane MW-54 4/04/2013 19.7 1.0 1,1-dichloroethane MW-54 4/10/2014 18.9 1.0 1,1-dichloroethane MW-54 4/10/2014 17.5 1.0 1,1-dichloroethane MW-54 4/10/2015 13.4 1.0 1,1-dichloroethane MW-54 4/10/2015 12.2 1.0 1,1-dichloroethane MW-54 4/10/2016 13.0 1.0 1,1-dichloroethane MW-54 4/10/2016 13.0 1.0 1,1-dichloroethane MW-54 4/10/2017 10.4 1.0 1,1-dichloroethane MW-54 4/10/2019 2.9 1.0 1,1-dichloroethane MW-54 4/10/2019 2.9 1.0 1,1-dichloroethane MW-54 4/10/2009 2.1 1.0 1,1-dichloroethane MW-54 4/10/2009 2.2 1.0 1,1-dichlo	1,1-dichloroethane	MW-54	12/08/2008		1.7	1.0	ug/L
1,1-dichloroethane MW-54 4/20/2010 5.0 1.0 1,1-dichloroethane MW-54 4/05/2011 8.8 1.0 1,1-dichloroethane MW-54 4/05/2011 8.7 1.0 1,1-dichloroethane MW-54 4/05/2011 8.7 1.0 1,1-dichloroethane MW-54 4/10/2012 14.6 1.0 1,1-dichloroethane MW-54 4/10/2012 16.0 1.0 1,1-dichloroethane MW-54 4/04/2013 17.0 1.0 1,1-dichloroethane MW-54 4/10/2013 19.7 1.0 1,1-dichloroethane MW-54 4/10/2014 18.9 1.0 1,1-dichloroethane MW-54 4/10/2014 17.5 1.0 1,1-dichloroethane MW-54 4/10/2014 17.5 1.0 1,1-dichloroethane MW-54 4/06/2015 13.4 1.0 1,1-dichloroethane MW-54 4/10/2014 17.5 1.0 1,1-dichloroethane MW-54 4/10/2015 12.2 1.0 1,1-dichloroethane MW-54 4/10/2016 11.0 1.0 1,1-dichloroethane MW-54 4/10/2016 13.0 1.0 1,1-dichloroethane MW-54 4/10/2017 10.4 1.0 1,1-dichloroethane MW-54 4/10/2017 10.4 1.0 1,1-dichloroethane MW-54 4/17/2018 7.8 1.0 1,1-dichloroethane MW-54 4/17/2018 7.8 1.0 1,1-dichloroethane MW-54 4/17/2018 7.8 1.0 1,1-dichloroethane MW-54 4/17/2019 4.7 1.0 1,1-dichloroethane MW-54 4/17/2019 2.9 1.0 1,1-dichloroethane MW-54 4/10/2017 11.2 1.0 1,1-dichloroethane MW-54 4/10/2010 1.9 1.0 1,1-dichloroethane MW-54 4/10/2010 1.9 1.0 1,1-dichloroethane MW-54 4/10/2000 1.0 1.0 1,1-dichloroeth	1,1-dichloroethane	MW-54	4/02/2009		1.2	1.0	ug/L
1,1-dichloroethane MW-54 4/05/2011 8.8 1.0 1,1-dichloroethane MW-54 4/05/2011 8.7 1.0 1,1-dichloroethane MW-54 10/06/2011 8.7 1.0 1,1-dichloroethane MW-54 4/10/2012 14.6 1.0 1,1-dichloroethane MW-54 4/10/2012 16.0 1.0 1,1-dichloroethane MW-54 4/04/2013 17.0 1.0 1,1-dichloroethane MW-54 4/04/2013 19.7 1.0 1,1-dichloroethane MW-54 4/10/2013 19.7 1.0 1,1-dichloroethane MW-54 4/10/2014 18.9 1.0 1,1-dichloroethane MW-54 4/10/2014 17.5 1.0 1,1-dichloroethane MW-54 4/10/2015 13.4 1.0 1,1-dichloroethane MW-54 4/10/2015 12.2 1.0 1,1-dichloroethane MW-54 4/10/2016 13.0 1.0 1,1-dichloroethane MW-54 4/10/2016 13.0 1.0 1,1-dichloroethane MW-54 4/10/2017 10.4 1.0 1,1-dichloroethane MW-54 4/10/2017 11.2 1.0 1,1-dichloroethane MW-54 4/10/2019 2.9 1.0 1,1-dichloroethane MW-54 4/10/2019 2.9 1.0 1,1-dichloroethane MW-54 10/19/2020 1.9 1.0 1,1-dichloroethane MW-54 10/19/2020 1.0 1,	1,1-dichloroethane	MW-54	10/21/2009		1.4	1.0	ug/L
1,1-dichloroethane	1,1-dichloroethane		4/20/2010		2.2	1.0	ug/L
1,1-dichloroethane	1,1-dichloroethane	MW-54			5.0		ug/L
1,1-dichloroethane	1,1-dichloroethane	MW-54	4/05/2011		8.8		ug/L
1,1-dichloroethane	1,1-dichloroethane	MW-54	10/06/2011		8.7	1.0	ug/L
1,1-dichloroethane							ug/L
1,1-dichloroethane							ug/L
1,1-dichloroethane							ug/L
1,1-dichloroethane							ug/L
1,1-dichloroethane							ug/L
1,1-dichloroethane							ug/L
1,1-dichloroethane							ug/L
1,1-dichloroethane							ug/L
1,1-dichloroethane							ug/L
1,1-dichloroethane							ug/L
1,1-dichloroethane							ug/L
1,1-dichloroethane							ug/L
1,1-dichloroethane	l '						ug/L
1,1-dichloroethane							ug/L
1,1-dichloroethane							ug/L
1,1-dichloroethane							ug/L
1,1-dichloroethane							ug/L
1,1-dichlorobethylene MW-54 10/18/2001 18.9 1.0 1,4-dichlorobenzene MW-54 3/28/2008 1.7 1.0 1,4-dichlorobenzene MW-54 6/25/2008 2.9 1.0 1,4-dichlorobenzene MW-54 8/04/2008 2.4 1.0 1,4-dichlorobenzene MW-54 12/08/2008 1.3 1.0 1,4-dichlorobenzene MW-54 4/02/2009 2.2 1.0 1,4-dichlorobenzene MW-54 10/21/2009 2.1 1.0 1,4-dichlorobenzene MW-54 4/02/2010 1.6 1.0 1,4-dichlorobenzene MW-54 4/05/2011 1.0 1.0 1,4-dichlorobenzene MW-54 10/06/2011 1.0 1.0 1,4-dichlorobenzene MW-54 10/16/2013 1.5 1.0 1,4-dichlorobenzene MW-54 4/10/2014 1.7 1.0 1,4-dichlorobenzene MW-54 10/16/2014 2.3 1.0 1,4-dichlorobenzene MW-54 10/16/2015 2.							ug/L
1,4-dichlorobenzene MW-54 3/28/2008 1.7 1.0 1,4-dichlorobenzene MW-54 6/25/2008 2.9 1.0 1,4-dichlorobenzene MW-54 8/04/2008 2.4 1.0 1,4-dichlorobenzene MW-54 12/08/2008 1.3 1.0 1,4-dichlorobenzene MW-54 4/02/2009 2.2 1.0 1,4-dichlorobenzene MW-54 4/02/2009 2.1 1.0 1,4-dichlorobenzene MW-54 4/20/2010 1.6 1.0 1,4-dichlorobenzene MW-54 4/05/2011 1.0 1.0 1,4-dichlorobenzene MW-54 10/06/2011 1.0 1.0 1,4-dichlorobenzene MW-54 10/16/2013 1.5 1.0 1,4-dichlorobenzene MW-54 4/10/2014 1.7 1.0 1,4-dichlorobenzene MW-54 4/10/2014 1.7 1.0 1,4-dichlorobenzene MW-54 4/10/2014 2.3 1.0 1,4-dichlorobenzene MW-54 4/10/2014 2.7	l '						ug/L
1,4-dichlorobenzene MW-54 6/25/2008 2.9 1.0 1,4-dichlorobenzene MW-54 8/04/2008 2.4 1.0 1,4-dichlorobenzene MW-54 12/08/2008 1.3 1.0 1,4-dichlorobenzene MW-54 12/08/2009 2.2 1.0 1,4-dichlorobenzene MW-54 4/02/2009 2.1 1.0 1,4-dichlorobenzene MW-54 4/20/2010 1.6 1.0 1,4-dichlorobenzene MW-54 4/05/2011 1.0 1.0 1,4-dichlorobenzene MW-54 10/06/2011 1.0 1.0 1,4-dichlorobenzene MW-54 10/16/2013 1.5 1.0 1,4-dichlorobenzene MW-54 4/10/2014 1.7 1.0 1,4-dichlorobenzene MW-54 10/16/2013 1.5 1.0 1,4-dichlorobenzene MW-54 4/10/2014 2.3 1.0 1,4-dichlorobenzene MW-54 10/16/2014 2.3 1.0 1,4-dichlorobenzene MW-54 10/16/2015 2.1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ug/L</td>							ug/L
1,4-dichlorobenzene MW-54 8/04/2008 2.4 1.0 1,4-dichlorobenzene MW-54 12/08/2008 1.3 1.0 1,4-dichlorobenzene MW-54 4/02/2009 2.2 1.0 1,4-dichlorobenzene MW-54 4/02/2009 2.1 1.0 1,4-dichlorobenzene MW-54 4/02/2010 1.6 1.0 1,4-dichlorobenzene MW-54 4/05/2011 1.0 1.0 1,4-dichlorobenzene MW-54 10/06/2011 1.0 1.0 1,4-dichlorobenzene MW-54 10/16/2013 1.5 1.0 1,4-dichlorobenzene MW-54 4/10/2014 1.7 1.0 1,4-dichlorobenzene MW-54 10/16/2014 2.3 1.0 1,4-dichlorobenzene MW-54 4/06/2015 2.1 1.0 1,4-dichlorobenzene MW-54 4/10/10/2015 2.1 1.0 1,4-dichlorobenzene MW-54 4/10/2016 2.3 1.0 1,4-dichlorobenzene MW-54 10/13/2016 2.3<							ug/L
1,4-dichlorobenzene MW-54 12/08/2008 1.3 1.0 1,4-dichlorobenzene MW-54 4/02/2009 2.2 1.0 1,4-dichlorobenzene MW-54 10/21/2009 2.1 1.0 1,4-dichlorobenzene MW-54 4/02/2010 1.6 1.0 1,4-dichlorobenzene MW-54 4/05/2011 1.0 1.0 1,4-dichlorobenzene MW-54 10/16/2013 1.5 1.0 1,4-dichlorobenzene MW-54 10/16/2013 1.5 1.0 1,4-dichlorobenzene MW-54 10/16/2013 1.5 1.0 1,4-dichlorobenzene MW-54 4/10/2014 1.7 1.0 1,4-dichlorobenzene MW-54 10/16/2014 2.3 1.0 1,4-dichlorobenzene MW-54 10/16/2014 2.3 1.0 1,4-dichlorobenzene MW-54 10/01/2015 2.1 1.0 1,4-dichlorobenzene MW-54 10/01/2015 2.3 1.0 1,4-dichlorobenzene MW-54 4/10/2016 2.3							ug/L
1,4-dichlorobenzene MW-54 4/02/2009 2.2 1.0 1,4-dichlorobenzene MW-54 10/21/2009 2.1 1.0 1,4-dichlorobenzene MW-54 4/20/2010 1.6 1.0 1,4-dichlorobenzene MW-54 4/20/2011 1.0 1.0 1,4-dichlorobenzene MW-54 10/06/2011 1.0 1.0 1,4-dichlorobenzene MW-54 10/16/2013 1.5 1.0 1,4-dichlorobenzene MW-54 4/10/2014 1.7 1.0 1,4-dichlorobenzene MW-54 4/10/2014 1.7 1.0 1,4-dichlorobenzene MW-54 4/10/2014 2.3 1.0 1,4-dichlorobenzene MW-54 4/10/2014 2.3 1.0 1,4-dichlorobenzene MW-54 4/14/2016 2.1 1.0 1,4-dichlorobenzene MW-54 4/10/2017 2.7 1.0 1,4-dichlorobenzene MW-54 4/10/2017 2.7 1.0 1,4-dichlorobenzene MW-54 4/10/2017 3.5							ug/L
1,4-dichlorobenzene							ug/L
1,4-dichlorobenzene							ug/L
1,4-dichlorobenzene							ug/L
1,4-dichlorobenzene MW-54 10/06/2011 1.0 1.0 1,4-dichlorobenzene MW-54 10/16/2013 1.5 1.0 1,4-dichlorobenzene MW-54 4/10/2014 1.7 1.0 1,4-dichlorobenzene MW-54 10/16/2014 2.3 1.0 1,4-dichlorobenzene MW-54 4/06/2015 2.1 1.0 1,4-dichlorobenzene MW-54 10/01/2015 2.3 1.0 1,4-dichlorobenzene MW-54 4/14/2016 2.1 1.0 1,4-dichlorobenzene MW-54 4/10/2016 2.1 1.0 1,4-dichlorobenzene MW-54 4/10/2017 2.7 1.0 1,4-dichlorobenzene MW-54 4/10/2017 2.7 1.0 1,4-dichlorobenzene MW-54 4/10/2017 3.5 1.0 1,4-dichlorobenzene MW-54 4/17/2018 4.3 1.0 1,4-dichlorobenzene MW-54 4/22/2019 2.5 1.0 1,4-dichlorobenzene MW-54 10/23/2019 3.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ug/L</td>							ug/L
1,4-dichlorobenzene MW-54 10/16/2013 1.5 1.0 1,4-dichlorobenzene MW-54 4/10/2014 1.7 1.0 1,4-dichlorobenzene MW-54 10/16/2014 2.3 1.0 1,4-dichlorobenzene MW-54 4/06/2015 2.1 1.0 1,4-dichlorobenzene MW-54 10/01/2015 2.3 1.0 1,4-dichlorobenzene MW-54 4/14/2016 2.1 1.0 1,4-dichlorobenzene MW-54 10/13/2016 2.3 1.0 1,4-dichlorobenzene MW-54 4/10/2017 2.7 1.0 1,4-dichlorobenzene MW-54 10/09/2017 3.5 1.0 1,4-dichlorobenzene MW-54 4/17/2018 4.3 1.0 1,4-dichlorobenzene MW-54 4/22/2019 2.5 1.0 1,4-dichlorobenzene MW-54 10/19/2020 3.8 1.0 1,4-dichlorobenzene MW-54 4/05/2021 2.9 1.0 1,4-dichlorobenzene MW-54 10/08/2021 2.8 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ug/L</td>							ug/L
1,4-dichlorobenzene MW-54 4/10/2014 1.7 1.0 1,4-dichlorobenzene MW-54 10/16/2014 2.3 1.0 1,4-dichlorobenzene MW-54 4/06/2015 2.1 1.0 1,4-dichlorobenzene MW-54 10/01/2015 2.3 1.0 1,4-dichlorobenzene MW-54 4/14/2016 2.1 1.0 1,4-dichlorobenzene MW-54 10/13/2016 2.3 1.0 1,4-dichlorobenzene MW-54 4/10/2017 2.7 1.0 1,4-dichlorobenzene MW-54 10/09/2017 3.5 1.0 1,4-dichlorobenzene MW-54 4/17/2018 4.3 1.0 1,4-dichlorobenzene MW-54 4/22/2019 2.5 1.0 1,4-dichlorobenzene MW-54 10/23/2019 3.5 1.0 1,4-dichlorobenzene MW-54 10/19/2020 3.8 1.0 1,4-dichlorobenzene MW-54 4/05/2021 2.9 1.0 1,4-dichlorobenzene MW-54 10/08/2021 2.8 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ug/L</td>							ug/L
1,4-dichlorobenzene MW-54 10/16/2014 2.3 1.0 1,4-dichlorobenzene MW-54 4/06/2015 2.1 1.0 1,4-dichlorobenzene MW-54 10/01/2015 2.3 1.0 1,4-dichlorobenzene MW-54 10/01/2015 2.3 1.0 1,4-dichlorobenzene MW-54 4/14/2016 2.1 1.0 1,4-dichlorobenzene MW-54 10/13/2016 2.3 1.0 1,4-dichlorobenzene MW-54 4/10/2017 2.7 1.0 1,4-dichlorobenzene MW-54 10/09/2017 3.5 1.0 1,4-dichlorobenzene MW-54 4/17/2018 4.3 1.0 1,4-dichlorobenzene MW-54 4/22/2019 2.5 1.0 1,4-dichlorobenzene MW-54 10/23/2019 3.5 1.0 1,4-dichlorobenzene MW-54 10/19/2020 3.8 1.0 1,4-dichlorobenzene MW-54 4/05/2021 2.9 1.0 1,4-dichlorobenzene MW-54 10/08/2021 2.8<							ug/L
1,4-dichlorobenzene MW-54 4/06/2015 2.1 1.0 1,4-dichlorobenzene MW-54 10/01/2015 2.3 1.0 1,4-dichlorobenzene MW-54 4/14/2016 2.1 1.0 1,4-dichlorobenzene MW-54 10/13/2016 2.3 1.0 1,4-dichlorobenzene MW-54 4/10/2017 2.7 1.0 1,4-dichlorobenzene MW-54 10/09/2017 3.5 1.0 1,4-dichlorobenzene MW-54 4/17/2018 4.3 1.0 1,4-dichlorobenzene MW-54 4/22/2019 2.5 1.0 1,4-dichlorobenzene MW-54 10/23/2019 3.5 1.0 1,4-dichlorobenzene MW-54 10/19/2020 3.8 1.0 1,4-dichlorobenzene MW-54 4/05/2021 2.9 1.0 1,4-dichlorobenzene MW-54 10/08/2021 2.8 1.0 1,4-dichlorobenzene MW-54 4/06/2022 2.4 1.0 1,4-dichlorobenzene MW-54 4/10/2023 3.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ug/L ug/L</td>							ug/L ug/L
1,4-dichlorobenzene MW-54 10/01/2015 2.3 1.0 1,4-dichlorobenzene MW-54 4/14/2016 2.1 1.0 1,4-dichlorobenzene MW-54 10/13/2016 2.3 1.0 1,4-dichlorobenzene MW-54 4/10/2017 2.7 1.0 1,4-dichlorobenzene MW-54 10/09/2017 3.5 1.0 1,4-dichlorobenzene MW-54 4/17/2018 4.3 1.0 1,4-dichlorobenzene MW-54 4/22/2019 2.5 1.0 1,4-dichlorobenzene MW-54 10/23/2019 3.5 1.0 1,4-dichlorobenzene MW-54 10/19/2020 3.8 1.0 1,4-dichlorobenzene MW-54 4/05/2021 2.9 1.0 1,4-dichlorobenzene MW-54 10/08/2021 2.8 1.0 1,4-dichlorobenzene MW-54 4/06/2022 2.4 1.0 1,4-dichlorobenzene MW-54 10/25/2022 3.1 1.0 1,4-dichlorobenzene MW-54 4/11/2023 1.6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1,4-dichlorobenzene MW-54 4/14/2016 2.1 1.0 1,4-dichlorobenzene MW-54 10/13/2016 2.3 1.0 1,4-dichlorobenzene MW-54 4/10/2017 2.7 1.0 1,4-dichlorobenzene MW-54 10/09/2017 3.5 1.0 1,4-dichlorobenzene MW-54 4/17/2018 4.3 1.0 1,4-dichlorobenzene MW-54 4/22/2019 2.5 1.0 1,4-dichlorobenzene MW-54 10/23/2019 3.5 1.0 1,4-dichlorobenzene MW-54 10/19/2020 3.8 1.0 1,4-dichlorobenzene MW-54 4/05/2021 2.9 1.0 1,4-dichlorobenzene MW-54 10/08/2021 2.8 1.0 1,4-dichlorobenzene MW-54 4/06/2022 2.4 1.0 1,4-dichlorobenzene MW-54 10/25/2022 3.1 1.0 1,4-dichlorobenzene MW-54 4/11/2023 1.6 1.0 1,4-dichlorobenzene MW-54 4/11/2023 1.6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ug/L</td>							ug/L
1,4-dichlorobenzene MW-54 10/13/2016 2.3 1.0 1,4-dichlorobenzene MW-54 4/10/2017 2.7 1.0 1,4-dichlorobenzene MW-54 10/09/2017 3.5 1.0 1,4-dichlorobenzene MW-54 4/17/2018 4.3 1.0 1,4-dichlorobenzene MW-54 4/22/2019 2.5 1.0 1,4-dichlorobenzene MW-54 10/23/2019 3.5 1.0 1,4-dichlorobenzene MW-54 10/19/2020 3.8 1.0 1,4-dichlorobenzene MW-54 4/05/2021 2.9 1.0 1,4-dichlorobenzene MW-54 10/08/2021 2.8 1.0 1,4-dichlorobenzene MW-54 4/06/2022 2.4 1.0 1,4-dichlorobenzene MW-54 10/25/2022 3.1 1.0 1,4-dichlorobenzene MW-54 4/11/2023 1.6 1.0 1,4-dichlorobenzene MW-54 10/13/2023 4.1 1.0							ug/L ug/L
1,4-dichlorobenzene MW-54 4/10/2017 2.7 1.0 1,4-dichlorobenzene MW-54 10/09/2017 3.5 1.0 1,4-dichlorobenzene MW-54 4/17/2018 4.3 1.0 1,4-dichlorobenzene MW-54 4/22/2019 2.5 1.0 1,4-dichlorobenzene MW-54 10/23/2019 3.5 1.0 1,4-dichlorobenzene MW-54 10/19/2020 3.8 1.0 1,4-dichlorobenzene MW-54 4/05/2021 2.9 1.0 1,4-dichlorobenzene MW-54 10/08/2021 2.8 1.0 1,4-dichlorobenzene MW-54 4/06/2022 2.4 1.0 1,4-dichlorobenzene MW-54 10/25/2022 3.1 1.0 1,4-dichlorobenzene MW-54 4/11/2023 1.6 1.0 1,4-dichlorobenzene MW-54 4/11/2023 4.1 1.0 1,4-dichlorobenzene MW-54 10/13/2023 4.1 1.0							
1,4-dichlorobenzene MW-54 10/09/2017 3.5 1.0 1,4-dichlorobenzene MW-54 4/17/2018 4.3 1.0 1,4-dichlorobenzene MW-54 4/22/2019 2.5 1.0 1,4-dichlorobenzene MW-54 10/23/2019 3.5 1.0 1,4-dichlorobenzene MW-54 10/19/2020 3.8 1.0 1,4-dichlorobenzene MW-54 4/05/2021 2.9 1.0 1,4-dichlorobenzene MW-54 10/08/2021 2.8 1.0 1,4-dichlorobenzene MW-54 4/06/2022 2.4 1.0 1,4-dichlorobenzene MW-54 10/25/2022 3.1 1.0 1,4-dichlorobenzene MW-54 4/11/2023 1.6 1.0 1,4-dichlorobenzene MW-54 4/11/2023 1.6 1.0 1,4-dichlorobenzene MW-54 10/13/2023 4.1 1.0							ug/L
1,4-dichlorobenzene MW-54 4/17/2018 4.3 1.0 1,4-dichlorobenzene MW-54 4/22/2019 2.5 1.0 1,4-dichlorobenzene MW-54 10/23/2019 3.5 1.0 1,4-dichlorobenzene MW-54 10/19/2020 3.8 1.0 1,4-dichlorobenzene MW-54 4/05/2021 2.9 1.0 1,4-dichlorobenzene MW-54 10/08/2021 2.8 1.0 1,4-dichlorobenzene MW-54 4/06/2022 2.4 1.0 1,4-dichlorobenzene MW-54 10/25/2022 3.1 1.0 1,4-dichlorobenzene MW-54 4/11/2023 1.6 1.0 1,4-dichlorobenzene MW-54 10/13/2023 4.1 1.0							ug/L ug/L
1,4-dichlorobenzene MW-54 4/22/2019 2.5 1.0 1,4-dichlorobenzene MW-54 10/23/2019 3.5 1.0 1,4-dichlorobenzene MW-54 10/19/2020 3.8 1.0 1,4-dichlorobenzene MW-54 4/05/2021 2.9 1.0 1,4-dichlorobenzene MW-54 10/08/2021 2.8 1.0 1,4-dichlorobenzene MW-54 4/06/2022 2.4 1.0 1,4-dichlorobenzene MW-54 10/25/2022 3.1 1.0 1,4-dichlorobenzene MW-54 4/11/2023 1.6 1.0 1,4-dichlorobenzene MW-54 10/13/2023 4.1 1.0							ug/L ug/L
1,4-dichlorobenzene MW-54 10/23/2019 3.5 1.0 1,4-dichlorobenzene MW-54 10/19/2020 3.8 1.0 1,4-dichlorobenzene MW-54 4/05/2021 2.9 1.0 1,4-dichlorobenzene MW-54 10/08/2021 2.8 1.0 1,4-dichlorobenzene MW-54 4/06/2022 2.4 1.0 1,4-dichlorobenzene MW-54 10/25/2022 3.1 1.0 1,4-dichlorobenzene MW-54 4/11/2023 1.6 1.0 1,4-dichlorobenzene MW-54 10/13/2023 4.1 1.0							ug/L ug/L
1,4-dichlorobenzene MW-54 10/19/2020 3.8 1.0 1,4-dichlorobenzene MW-54 4/05/2021 2.9 1.0 1,4-dichlorobenzene MW-54 10/08/2021 2.8 1.0 1,4-dichlorobenzene MW-54 4/06/2022 2.4 1.0 1,4-dichlorobenzene MW-54 10/25/2022 3.1 1.0 1,4-dichlorobenzene MW-54 4/11/2023 1.6 1.0 1,4-dichlorobenzene MW-54 10/13/2023 4.1 1.0							ug/L ug/L
1,4-dichlorobenzene MW-54 4/05/2021 2.9 1.0 1,4-dichlorobenzene MW-54 10/08/2021 2.8 1.0 1,4-dichlorobenzene MW-54 4/06/2022 2.4 1.0 1,4-dichlorobenzene MW-54 10/25/2022 3.1 1.0 1,4-dichlorobenzene MW-54 4/11/2023 1.6 1.0 1,4-dichlorobenzene MW-54 10/13/2023 4.1 1.0							
1,4-dichlorobenzene MW-54 10/08/2021 2.8 1.0 1,4-dichlorobenzene MW-54 4/06/2022 2.4 1.0 1,4-dichlorobenzene MW-54 10/25/2022 3.1 1.0 1,4-dichlorobenzene MW-54 4/11/2023 1.6 1.0 1,4-dichlorobenzene MW-54 10/13/2023 4.1 1.0	.,					1.0	ug/L
1,4-dichlorobenzene MW-54 4/06/2022 2.4 1.0 1,4-dichlorobenzene MW-54 10/25/2022 3.1 1.0 1,4-dichlorobenzene MW-54 4/11/2023 1.6 1.0 1,4-dichlorobenzene MW-54 10/13/2023 4.1 1.0							ug/L ug/L
1,4-dichlorobenzene							ug/L ug/L
1,4-dichlorobenzene							ug/L ug/L
1,4-dichlorobenzene MW-54 10/13/2023 4.1 1.0							ug/L ug/L
							ug/L ug/L
1,4-dichlorobenzene							
Acetone	l '						ug/L
Benzene MW-54 7/26/1999 2.1 1.0							ug/L
Benzene MW-54 10/04/1999 1.4 1.0							
Benzene MW-54 1/06/2000 1.2 1.0							ug/L
Benzene MW-54 4/13/2000 1.3 1.0							ug/L
Benzene MW-54 7/05/2000 1.7 1.0							ug/L
Benzene MW-54 9/11/2000 1.8 1.0							ug/L
Benzene MW-54 4/27/2001 2.1 1.0							ug/L
Benzene MW-54 7/23/2001 1.7 1.0							ug/L
Benzene MW-54 10/05/2005 1.0 1.0							ug/L
Benzene MW-54 4/05/2006 .6 .5							
Benzene MW-54 10/16/2013 1.0 1.0							ug/L
							ug/L
							ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Benzene	MW-54	10/09/2017		1.0	1.0	ug/L
Bis(2-ethylhexyl) phthalate Chloroethane	MW-54 MW-54	12/08/2008		16 9.7	8 1.0	ug/L
Chloroethane	MW-54	3/28/2008 6/25/2008		7.4	1.0	ug/L ug/L
Chloroethane	MW-54	8/04/2008		6.0	1.0	ug/L ug/L
Chloroethane	MW-54	10/03/2008		5.0	1.0	ug/L ug/L
Chloroethane	MW-54	12/08/2008		5.1	1.0	
Chloroethane	MW-54	4/02/2009		5.1	1.0	ug/L
Chloroethane	MW-54	10/21/2009		8.2	1.0	ug/L
Chloroethane	MW-54	4/20/2010		5.6	1.0	ug/L
Chloroethane	MW-54	10/08/2010		7.8	1.0	ug/L
Chloroethane	MW-54	4/05/2011		13.0	1.0	ug/L
Chloroethane	MW-54	10/06/2011		11.5	1.0	ug/L
Chloroethane Chloroethane	MW-54	4/10/2012		14.3	1.0	ug/L
Chloroethane	MW-54 MW-54	10/09/2012 4/04/2013		15.6 15.9	1.0 1.0	ug/L ug/L
Chloroethane	MW-54	10/16/2013		12.0	1.0	
Chloroethane	MW-54	4/10/2014		17.3	1.0	ug/L
Chloroethane	MW-54	10/16/2014		20.6	1.0	ug/L
Chloroethane	MW-54	4/06/2015		14.1	1.0	
Chloroethane	MW-54	10/01/2015		13.6	1.0	ug/L
Chloroethane	MW-54	4/14/2016		5.8	1.0	ug/L
Chloroethane	MW-54	10/13/2016		13.7	1.0	ug/L
Chloroethane	MW-54	4/10/2017		10.5	1.0	ug/L
Chloroethane	MW-54	10/09/2017		11.4	1.0	ug/L
Chloroethane	MW-54	4/17/2018		8.5	1.0	ug/L
Chloroethane	MW-54	10/22/2018		2.0	1.0	ug/L
Chloroethane	MW-54	4/22/2019		4.0	1.0	ug/L
Chloroethane	MW-54	10/23/2019		4.3	1.0	ug/L
Chloroethane Chloroethane	MW-54 MW-54	4/10/2020 10/19/2020		1.9 2.7	1.0 1.0	ug/L ug/L
Chloroethane	MW-54	10/19/2020		1.6	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-54	3/28/2008		4.5	1.0	
Cis-1,2-dichloroethylene	MW-54	6/25/2008		3.4	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	8/04/2008		2.9	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	12/08/2008		3.6	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	4/02/2009		2.9	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	10/21/2009		2.5	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	4/20/2010		2.2	1.0	
Cis-1,2-dichloroethylene	MW-54	10/08/2010		2.5	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	4/05/2011		3.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	10/06/2011		2.7	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	4/10/2012		3.2	1.0	
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-54 MW-54	10/09/2012 4/04/2013		2.9 3.2	1.0 1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-54	10/16/2013		3.9	1.0	
Cis-1,2-dichloroethylene	MW-54	4/10/2014		3.2	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	10/16/2014		2.9	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	4/06/2015		2.4	1.0	
Cis-1,2-dichloroethylene	MW-54	10/01/2015		2.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	4/14/2016		1.9	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	10/13/2016		2.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	4/10/2017		1.5		ug/L
Cis-1,2-dichloroethylene	MW-54	10/09/2017		1.9		ug/L
Cis-1,2-dichloroethylene	MW-54	4/17/2018		1.2		ug/L
Toluene	MW-54	4/22/2019		1.3		ug/L
Trichloroethylene Trichloroethylene	MW-54 MW-54	1/21/1993		1.0 2.2	1.0	ug/L
Trichloroethylene	MW-54	4/22/1993 7/13/1993		4.9		ug/L ug/L
Trichloroethylene	MW-54	7/13/1993		7.0		ug/L
Trichloroethylene	MW-54	10/04/1999		6.0	1.0	
Trichloroethylene	MW-54	1/06/2000		6.3		ug/L
Trichloroethylene	MW-54	4/13/2000		5.1		ug/L
Trichloroethylene	MW-54	7/05/2000		5.7	1.0	
Trichloroethylene	MW-54	9/11/2000		6.5		ug/L
Trichloroethylene	MW-54	10/08/2000		5.0		ug/L
Trichloroethylene	MW-54	4/27/2001		5.9		ug/L
Trichloroethylene	MW-54	7/23/2001		6.3		ug/L
Trichloroethylene	MW-54	10/18/2001		4.8		ug/L
Trichloroethylene	MW-54	1/25/2002		5.6		ug/L
Trichloroethylene	MW-54	4/24/2002		5.7	1.0	
Trichloroethylene	MW-54	7/22/2002		5.3		ug/L
Trichloroethylene Trichloroethylene	MW-54	10/14/2002		5.0		ug/L
Trichloroethylene	MW-54	1/29/2003		5.2	1.0	
Trichloroethylene	MW-54	7/11/2003		4.3	1 ()	ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Trichloroethylene	MW-54	4/26/2004		4.4	1.0	ug/L
Trichloroethylene	MW-54	10/05/2004		5.5	1.0	ug/L
Trichloroethylene	MW-54	4/11/2005		3.9	1.0	ug/L
Trichloroethylene	MW-54	10/05/2005		4.0	1.0	
Trichloroethylene	MW-54	4/05/2006		3.4	1.0	ug/L
Trichloroethylene	MW-54	10/04/2006		2.7	1.0	ug/L
Trichloroethylene	MW-54	4/12/2007		2.3	1.0	
Trichloroethylene	MW-54	10/10/2007		2.1	1.0	ug/L
Trichloroethylene	MW-54	3/28/2008		1.2	1.0	ug/L
Trichloroethylene	MW-54	12/08/2008		1.4	1.0	ug/L
√inyl chloride	MW-54	4/10/2012		1.1	1.0	ug/L
√inyl chloride	MW-54	10/09/2012		1.0	1.0	ug/L
/inyl chloride	MW-54	10/16/2014		1.0	1.0	
/inyl chloride	MW-54	10/01/2015		1.0	1.0	
/inyl chloride	MW-54	10/13/2016		2.0	1.0	ug/L
/inyl chloride	MW-54	4/10/2017		1.8	1.0	
/inyl chloride	MW-54	10/09/2017		1.6	1.0	
,1-dichloroethane	MW-66	8/05/2008		1.8	1.0	
Cis-1,2-dichloroethylene	MW-66	8/05/2008		1.1	1.0	
,1,1-trichloroethane	MW-81	7/13/1993		1.1	1.0	
,1,1-trichloroethane	MW-81	1/25/1994		2.2	1.0	ug/L
,1,1-trichloroethane	MW-81	4/14/1994		1.4	1.0	ug/L
,1,1-trichloroethane	MW-81	7/08/1994		1.2	1.0	ug/L
,1,1-trichloroethane	MW-81	10/20/1994		1.2	1.0	ug/L
,1,1-trichloroethane	MW-81	4/21/1995		1.1	1.0	
,1,1-trichloroethane	MW-81	7/07/1995		1.3	1.0	
,1,1-trichloroethane	MW-81	7/17/1996		1.6	1.0	ug/L
,1,1-trichloroethane	MW-81	10/08/1996		1.5	1.0	ug/L
,1,1-trichloroethane	MW-81	1/21/1997		1.4	1.0	ug/L
,1,1-trichloroethane	MW-81	4/11/1997		2.2	1.0	ug/L
,1,1-trichloroethane	MW-81	10/09/1998		1.1	1.0	ug/L
,1-dichloroethane	MW-81	3/28/2008		59.5	1.0	ug/L
,1-dichloroethane	MW-81	6/20/2008		50.6	1.0	ug/L
,1-dichloroethane	MW-81	8/04/2008		56.8	1.0	ug/L
,1-dichloroethane	MW-81	10/03/2008		70.7	1.0	ug/L
,1-dichloroethane	MW-81	12/08/2008		53.4	1.0	
,1-dichloroethane	MW-81	4/01/2009		54.3	1.0	ug/L
I,1-dichloroethane	MW-81	10/21/2009		58.2	1.0	ug/L
I,1-dichloroethane	MW-81	4/20/2010		47.6	1.0	
I,1-dichloroethane	MW-81	10/08/2010		34.8	1.0	ug/L
I,1-dichloroethane	MW-81	4/05/2011		44.1	1.0	ug/L
1,1-dichloroethane	MW-81	10/06/2011		41.3	1.0	
I,1-dichloroethane	MW-81	4/10/2012		38.1	1.0	
I,1-dichloroethane	MW-81	10/09/2012		42.8	1.0	ug/L
I,1-dichloroethane	MW-81	4/04/2013		39.0	1.0	ug/L
I,1-dichloroethane	MW-81	10/16/2013		49.2	1.0	
,1-dichloroethane	MW-81	4/10/2014		46.6	1.0	ug/L
.1-dichloroethane	MW-81	10/16/2014		44.6	1.0	ug/L
.1-dichloroethane	MW-81	4/03/2015		39.2	1.0	
.1-dichloroethane	MW-81	10/01/2015		38.6	1.0	ug/L ug/L
,1-dichloroethane	MW-81	4/14/2016		27.5	1.0	ug/L ug/L
, 1-dichloroethane	MW-81	10/13/2016		29.7		ug/L ug/L
,1-dichloroethane	MW-81	4/10/2017		29.7 25.9		ug/L ug/L
i, i-dichloroethane	MW-81	10/09/2017		33.9		ug/L ug/L
,1-dichloroethane	MW-81			24.5		
,1-dichloroethane		4/17/2018				ug/L
	MW-81	10/22/2018		19.0		ug/L
,1-dichloroethane	MW-81	4/22/2019		13.8		ug/L
,1-dichloroethane	MW-81	10/23/2019		11.0	1.0	
,1-dichloroethane	MW-81	4/10/2020		10.8		ug/L
,1-dichloroethane	MW-81	10/19/2020		27.9		ug/L
,1-dichloroethane	MW-81	4/05/2021		15.8	1.0	
,1-dichloroethane	MW-81	10/08/2021		29.3		ug/L
,1-dichloroethane	MW-81	4/06/2022		21.5		ug/L
I,1-dichloroethane	MW-81	10/25/2022		27.7	1.0	
,1-dichloroethane	MW-81	4/11/2023		23.9		ug/L
,1-dichloroethane	MW-81	10/13/2023		30.0		ug/L
1,1-dichloroethane	MW-81	4/16/2024		28.2	1.0	
I,1-dichloroethylene	MW-81	1/25/1994		3.6		ug/L
1,1-dichloroethylene	MW-81	7/07/1995		1.2		ug/L
,2-dichlorobenzene	MW-81	4/22/2019		1.9	1.0	ug/L
,2-dichlorobenzene	MW-81	10/23/2019		1.3	1.0	ug/L
,2-dichlorobenzene	MW-81	4/10/2020		2.0	1.0	ug/L
1,2-dichlorobenzene	MW-81	10/19/2020		1.1		ug/L
		7/08/1994		2.2	1.0	
1,2-dichloroethane	MW-81	1/00/1334				
1,2-dichloroethane 1,2-dichloroethane	MW-81	10/20/1994		2.1		ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
1,2-dichloroethane	MW-81	4/21/1995		1.6	1.0	ug/L
1,2-dichloroethane	MW-81	7/07/1995		1.7	1.0	ug/L
1,2-dichloroethane	MW-81	10/12/1995		3.1	1.0	ug/L
1,2-dichloroethane	MW-81	7/17/1996		1.6	1.0	ug/L
1,2-dichloroethane	MW-81	10/08/1996		3.0	1.0	ug/L
1,2-dichloroethane	MW-81	1/21/1997		2.2	1.0	ug/L
1,2-dichloroethane	MW-81	10/04/1999		3.5	1.0	ug/L
1,2-dichloroethane	MW-81	1/06/2000		3.4	1.0	ug/L
1,2-dichloroethane	MW-81	4/13/2000		2.9	1.0	ug/L
1,2-dichloroethane	MW-81	7/05/2000		6.6	1.0	ug/L
1,2-dichloroethane	MW-81	10/08/2000		3.7	1.0	ug/L
1,2-dichloroethane	MW-81	4/27/2001		2.6	1.0	ug/L
1,2-dichloroethane	MW-81	10/18/2001		3.3	1.0	ug/L
1,2-dichloroethane	MW-81	4/24/2002		4.2	1.0	ug/L
1,2-dichloroethane	MW-81	10/14/2002		3.5	1.0	ug/L
1,2-dichloroethane	MW-81	10/06/2003		3.7	1.0	ug/L
1,2-dichloroethane	MW-81	4/26/2004		2.8	1.0	ug/L
1,2-dichloroethane	MW-81	4/05/2006		3.0	1.0	ug/L
1,2-dichloroethane	MW-81	10/04/2006		2.0	1.0	ug/L
1,2-dichloroethane	MW-81	4/12/2007		2.4	1.0	ug/L
1,2-dichloroethane	MW-81	10/10/2007		2.4	1.0	ug/L
1,2-dichloroethane	MW-81	3/28/2008		2.1	1.0	ug/L
1,2-dichloroethane	MW-81	6/20/2008		2.9	1.0	ug/L
1,2-dichloroethane	MW-81	8/04/2008		2.7	1.0	ug/L
1,2-dichloroethane	MW-81	12/08/2008		2.7	1.0	ug/L
1,2-dichloroethane	MW-81	4/01/2009		2.7	1.0	ug/L
1,2-dichloroethane	MW-81	10/21/2009		3.4	1.0	ug/L
1,2-dichloroethane	MW-81	4/20/2010		3.6	1.0	ug/L
1,2-dichloroethane	MW-81	4/05/2011		3.2	1.0	ug/L
1,2-dichloroethane	MW-81	10/06/2011		4.5	1.0	ug/L
1,2-dichloroethane	MW-81	4/10/2012		3.7	1.0	ug/L
1,2-dichloroethane	MW-81	10/09/2012		6.5	1.0	ug/L
1,2-dichloroethane	MW-81	4/04/2013		5.4	1.0	ug/L
1,2-dichloroethane	MW-81	10/16/2013		10.8	1.0	ug/L
1,2-dichloroethane	MW-81	4/10/2014		11.3	1.0	ug/L
1,2-dichloroethane	MW-81	10/16/2014		7.7	1.0	ug/L
1,2-dichloroethane	MW-81	4/03/2015		6.5	1.0	ug/L
1,2-dichloroethane	MW-81	10/01/2015		8.7	1.0	ug/L
1,2-dichloroethane	MW-81	4/14/2016		4.7	1.0	ug/L
1,2-dichloroethane	MW-81	10/13/2016		6.4	1.0	ug/L
1,2-dichloroethane	MW-81	4/10/2017		4.2	1.0	ug/L
1,2-dichloroethane	MW-81	10/09/2017		9.9	1.0	ug/L
1,2-dichloroethane	MW-81	4/17/2018		5.8	1.0	ug/L
1,2-dichloroethane	MW-81	10/22/2018		2.9	1.0	ug/L
1,2-dichloroethane	MW-81	4/22/2019		2.1	1.0	ug/L
1,2-dichloroethane	MW-81	4/10/2020		2.4	1.0	ug/L
1,2-dichloroethane	MW-81	10/19/2020		7.7	1.0	ug/L
1,2-dichloroethane	MW-81	4/05/2021		3.9	1.0	ug/L
1,2-dichloroethane	MW-81	10/08/2021		9.8	1.0	ug/L
1,2-dichloroethane	MW-81	4/06/2022		5.7	1.0	ug/L
1,2-dichloroethane	MW-81	10/25/2022		12.8	1.0	ug/L
1,2-dichloroethane	MW-81	4/11/2023		6.9	1.0	ug/L
1,2-dichloroethane	MW-81	10/13/2023		15.6	1.0	ug/L
1,2-dichloroethane	MW-81	4/16/2024		12.3	1.0	ug/L
1,2-dichloropropane	MW-81	3/28/2008		12.2	1.0	ug/L
1,2-dichloropropane	MW-81	6/20/2008		5.1	1.0	ug/L
1,2-dichloropropane	MW-81	8/04/2008		9.1	1.0	ug/L
1,2-dichloropropane	MW-81	12/08/2008		12.0	1.0	ug/L
1,2-dichloropropane	MW-81	4/01/2009		17.3	1.0	ug/L
1,2-dichloropropane	MW-81	10/21/2009		10.0	1.0	ug/L
1,2-dichloropropane	MW-81	4/20/2010		7.0	1.0	ug/L
1,2-dichloropropane	MW-81	10/08/2010		5.9	1.0	ug/L
1,2-dichloropropane	MW-81	4/05/2011		14.7	1.0	ug/L
1,2-dichloropropane	MW-81	10/06/2011		16.7	1.0	ug/L
1,2-dichloropropane	MW-81	4/10/2012		12.6	1.0	ug/L
1,2-dichloropropane	MW-81	10/09/2012		17.5	1.0	ug/L
1,2-dichloropropane	MW-81	4/04/2013		16.7	1.0	ug/L
1,2-dichloropropane	MW-81	10/16/2013		22.7	1.0	ug/L
1,2-dichloropropane	MW-81	4/10/2014		18.1	1.0	ug/L
1,2-dichloropropane	MW-81	10/16/2014		19.6	1.0	ug/L
1,2-dichloropropane	MW-81	4/03/2015		16.1	1.0	ug/L
1,2-dichloropropane	MW-81	10/01/2015		15.8	1.0	ug/L
1,2-dichloropropane	MW-81	4/14/2016		11.1	1.0	ug/L
1,2-dichloropropane	MW-81	10/13/2016		10.6	1.0	ug/L
1,2-dichloropropane	MW-81	4/10/2017		9.1	1.0	ug/L
1,2-dichloropropane	MW-81	10/09/2017		12.6	1.0	ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
1,2-dichloropropane	MW-81	4/17/2018		8.6	1.0	ug/L
1,2-dichloropropane	MW-81	10/22/2018		4.9	1.0	ug/L
1,2-dichloropropane	MW-81	4/22/2019		1.9	1.0	ug/L
1,2-dichloropropane	MW-81	10/23/2019		1.5	1.0	
1,2-dichloropropane	MW-81	4/10/2020		1.1	1.0	ug/L
1,2-dichloropropane	MW-81	10/19/2020		7.9	1.0	ug/L
1,2-dichloropropane	MW-81	4/05/2021		4.0	1.0	
1,2-dichloropropane	MW-81	10/08/2021		9.3	1.0	ug/L
1,2-dichloropropane	MW-81	4/06/2022		2.6	1.0	ug/L
1,2-dichloropropane	MW-81	10/25/2022		8.1	1.0	ug/L
1,2-dichloropropane	MW-81	4/11/2023		3.5	1.0	ug/L
1,2-dichloropropane	MW-81	10/13/2023		8.4	1.0	ug/L
1,2-dichloropropane	MW-81	4/16/2024		6.5	1.0	ug/L
1,4-dichlorobenzene	MW-81	1/06/2000		1.4	1.0	ug/L
1,4-dichlorobenzene	MW-81	4/13/2000		1.0	1.0	ug/L
1,4-dichlorobenzene	MW-81	7/05/2000		1.4	1.0	ug/L
1,4-dichlorobenzene	MW-81	6/20/2008		2.9	1.0	ug/L
1,4-dichlorobenzene	MW-81	8/04/2008		2.2	1.0	ug/L
1,4-dichlorobenzene	MW-81	12/08/2008		2.0	1.0	ug/L
1,4-dichlorobenzene	MW-81	4/01/2009		1.3	1.0	
1,4-dichlorobenzene	MW-81	10/21/2009		2.4	1.0	ug/L
1,4-dichlorobenzene	MW-81	4/20/2010		3.5	1.0	ug/L
1,4-dichlorobenzene	MW-81	10/08/2010		1.8	1.0	ug/L
1,4-dichlorobenzene	MW-81	4/05/2011		1.6	1.0	ug/L
1,4-dichlorobenzene	MW-81	10/06/2011		1.9	1.0	ug/L
1,4-dichlorobenzene	MW-81	4/10/2012		2.0	1.0	ug/L
I.4-dichlorobenzene	MW-81	10/09/2012		1.9	1.0	ug/L
I.4-dichlorobenzene	MW-81	4/04/2013		2.3	1.0	ug/L
,4-dichlorobenzene	MW-81	10/16/2013		2.0	1.0	ug/L
I,4-dichlorobenzene	MW-81	4/10/2014		1.7	1.0	ug/L
1,4-dichlorobenzene	MW-81	10/16/2014		1.6	1.0	ug/L
.4-dichlorobenzene	MW-81	4/03/2015		1.5	1.0	ug/L
1,4-dichlorobenzene	MW-81	10/01/2015		1.5	1.0	
1,4-dichlorobenzene				2.2	1.0	
	MW-81	4/14/2016				ug/L
1,4-dichlorobenzene	MW-81	10/13/2016		3.2	1.0	ug/L
1,4-dichlorobenzene	MW-81	4/10/2017		2.8	1.0	ug/L
1,4-dichlorobenzene	MW-81	10/09/2017		3.4	1.0	ug/L
1,4-dichlorobenzene	MW-81	4/17/2018		4.2	1.0	ug/L
1,4-dichlorobenzene	MW-81	4/22/2019		8.0	1.0	ug/L
1,4-dichlorobenzene	MW-81	10/23/2019		7.6	1.0	ug/L
1,4-dichlorobenzene	MW-81	10/19/2020		6.6	1.0	ug/L
1,4-dichlorobenzene	MW-81	4/05/2021		5.2	1.0	ug/L
1,4-dichlorobenzene	MW-81	10/08/2021		5.0	1.0	ug/L
1,4-dichlorobenzene	MW-81	4/06/2022		4.6	1.0	ug/L
1,4-dichlorobenzene	MW-81	10/25/2022		5.8	1.0	ug/L
,4-dichlorobenzene	MW-81	4/11/2023		4.6	1.0	
1,4-dichlorobenzene	MW-81	10/13/2023		5.7	1.0	ug/L
I,4-dichlorobenzene	MW-81	4/16/2024		4.7	1.0	ug/L
Acetone	MW-81	3/28/2008		31.0	10.0	ug/L
Acetone	MW-81	10/21/2009		61.2	10.0	ug/L
Acetone	MW-81	10/22/2018		26.7	10.0	ug/L
Benzene	MW-81	7/13/1993		4.8	1.0	ug/L
Benzene	MW-81	1/25/1994		21.4	10.0	ug/L
Benzene	MW-81	4/14/1994		8.0	1.0	ug/L
Benzene	MW-81	7/08/1994		8.9		ug/L
Benzene	MW-81	10/20/1994		6.3		ug/L
Benzene	MW-81	1/04/1995		2.2		ug/L
Benzene	MW-81	10/08/1996		1.0	1.0	
Benzene	MW-81	4/19/1999		1.1		ug/L
Benzene	MW-81	10/04/1999		1.0		ug/L
Benzene	MW-81	1/06/2000		1.1	1.0	
Benzene	MW-81	7/05/2000		1.1		ug/L
Benzene	MW-81	4/24/2002		1.0		ug/L
Benzene	MW-81	4/22/2003		1.0	1.0	
Benzene	MW-81	3/28/2008		2.2		ug/L ug/L
Benzene	MW-81	6/20/2008		4.2		ug/L ug/L
Benzene	MW-81	8/04/2008		3.4		ug/L ug/L
Benzene	MW-81	12/08/2008		3.0		ug/L
Benzene	MW-81	4/01/2009		2.2		ug/L
Benzene	MW-81	10/21/2009		3.6		ug/L
Benzene	MW-81	4/20/2010		4.0		ug/L
Benzene	MW-81	10/08/2010		3.6		ug/L
Benzene	MW-81	4/05/2011		2.2		ug/L
Benzene	MW-81	10/06/2011		2.0	1.0	ug/L
_	1	1/40/0040		1 22		
Benzene	MW-81	4/10/2012		2.3	1.0	ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Benzene	MW-81	4/04/2013		1.1	1.0	ug/L
Benzene	MW-81	10/16/2013		1.2	1.0	ug/L
Benzene	MW-81	10/13/2016		1.3	1.0	ug/L
Benzene	MW-81	4/10/2017		1.5		ug/L
Benzene Benzene	MW-81 MW-81	10/09/2017 4/17/2018		1.1 1.0	1.0	ug/L
Benzene	MW-81	4/17/2018		2.9		ug/L ug/L
Benzene	MW-81	10/23/2019		2.7		ug/L
Benzene	MW-81	4/10/2020		2.9	1.0	ug/L
Benzene	MW-81	10/19/2020		1.5		ug/L
Benzene	MW-81	4/05/2021		1.1		ug/L
Bis(2-ethylhexyl) phthalate	MW-81	4/03/2015		36	10	ug/L
Chlorobenzene	MW-81	10/13/2016		1.1		ug/L
Chlorobenzene	MW-81	4/10/2017		1.0		ug/L
Chlorobenzene	MW-81	10/09/2017		1.1	1.0	
Chlorobenzene	MW-81	4/17/2018		1.1		ug/L
Chlorobenzene Chlorobenzene	MW-81 MW-81	4/22/2019 10/23/2019		1.4 1.4	1.0	ug/L ug/L
Chlorobenzene	MW-81	4/10/2020		1.4		ug/L ug/L
Chlorobenzene	MW-81	10/19/2020		1.5		ug/L ug/L
Chlorobenzene	MW-81	4/05/2021		1.2	1.0	
Chlorobenzene	MW-81	10/08/2021		1.3	1.0	
Chlorobenzene	MW-81	4/06/2022		1.2		ug/L
Chlorobenzene	MW-81	10/25/2022		1.7	1.0	ug/L
Chlorobenzene	MW-81	4/11/2023		1.4	1.0	
Chlorobenzene	MW-81	10/13/2023		1.9		ug/L
Chlorobenzene	MW-81	4/16/2024		1.7		ug/L
Chloroethane	MW-81	3/28/2008		13.4		ug/L
Chloroethane	MW-81 MW-81	6/20/2008		13.9		ug/L
Chloroethane Chloroethane	MW-81	8/04/2008 10/03/2008		13.4 14.2		ug/L ug/L
Chloroethane	MW-81	12/08/2008		15.0	1.0	
Chloroethane	MW-81	4/01/2009		14.0		ug/L
Chloroethane	MW-81	10/21/2009		18.1		ug/L
Chloroethane	MW-81	4/20/2010		14.4	1.0	
Chloroethane	MW-81	10/08/2010		12.9	1.0	ug/L
Chloroethane	MW-81	4/05/2011		14.0	1.0	ug/L
Chloroethane	MW-81	10/06/2011		13.2	1.0	
Chloroethane	MW-81	4/10/2012		12.2		ug/L
Chloroethane	MW-81	10/09/2012		11.5		ug/L
Chloroethane Chloroethane	MW-81 MW-81	4/04/2013 10/16/2013		10.2 12.5	1.0	ug/L ug/L
Chloroethane	MW-81	4/10/2014		13.4		ug/L ug/L
Chloroethane	MW-81	10/16/2014		13.3	1.0	ug/L
Chloroethane	MW-81	4/03/2015		13.7		ug/L
Chloroethane	MW-81	10/01/2015		8.6		ug/L
Chloroethane	MW-81	4/14/2016		7.5	1.0	
Chloroethane	MW-81	10/13/2016		11.5	1.0	
Chloroethane	MW-81	4/10/2017		9.8		ug/L
Chloroethane	MW-81	10/09/2017		8.7		ug/L
Chloroethane	MW-81	4/17/2018		7.1		ug/L
Chloroethane Chloroethane	MW-81 MW-81	10/22/2018 4/22/2019		5.2 6.0		ug/L ug/L
Chloroethane	MW-81	10/23/2019		7.8		ug/L ug/L
Chloroethane	MW-81	4/10/2020		6.0		ug/L ug/L
Chloroethane	MW-81	10/19/2020		9.2	1.0	ug/L
Chloroethane	MW-81	4/05/2021		5.6	1.0	ug/L
Chloroethane	MW-81	10/08/2021		5.7	1.0	
Chloroethane	MW-81	4/06/2022		5.0		ug/L
Chloroethane	MW-81	10/25/2022		7.2	1.0	
Chloroethane	MW-81	4/11/2023		5.4	1.0	
Chloroethane	MW-81	10/13/2023		6.5		ug/L
Chloroethane	MW-81	4/16/2024		6.8	1.0	
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-81 MW-81	3/28/2008 6/20/2008		133 209	1 1	ug/L ug/L
Cis-1,2-dichloroethylene	MW-81	8/04/2008		190	1	ug/L ug/L
Cis-1,2-dichloroethylene	MW-81	10/03/2008		206	1	ug/L ug/L
Cis-1,2-dichloroethylene	MW-81	12/08/2008		218	1	ug/L ug/L
Cis-1,2-dichloroethylene	MW-81	12/08/2008		188	5	ug/L
Cis-1,2-dichloroethylene	MW-81	4/01/2009		223	1	ug/L
Cis-1,2-dichloroethylene	MW-81	4/01/2009		215	5	ug/L
Cis-1,2-dichloroethylene	MW-81	10/21/2009		228	1	ug/L
Cis-1,2-dichloroethylene	MW-81	10/21/2009		220	5	ug/L
Cis-1,2-dichloroethylene	MW-81	4/20/2010		245	5	ug/L
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-81 MW-81	10/08/2010 4/05/2011		295	5	ug/L ug/L
		4/05/2011		305	5	uu/L

Table 1
Historical Volatile Organic Compound Detections

Cis-1_2-dichioresthylene	Constituent	Well	Date	Identifier	Result	Limit	Units
Cis-1_2-dichloroethylene MW-81 10/09/2012 295 5 ug/L Cis-1_2-dichloroethylene MW-81 10/16/2013 288 5 ug/L Cis-1_2-dichloroethylene MW-81 10/16/2014 288 1 ug/L Cis-1_2-dichloroethylene MW-81 10/16/2014 288 1 ug/L Cis-1_2-dichloroethylene MW-81 10/16/2014 288 1 ug/L Cis-1_2-dichloroethylene MW-81 10/16/2015 252 ug/L Cis-1_2-dichloroethylene MW-81 10/16/2015 201 1 ug/L Cis-1_2-dichloroethylene MW-81 10/12/2015 201 1 ug/L Cis-1_2-dichloroethylene MW-81 10/13/2016 243 1 ug/L Cis-1_2-dichloroethylene MW-81 10/13/2016 243 1 ug/L Cis-1_2-dichloroethylene MW-81 10/13/2016 243 1 ug/L Cis-1_2-dichloroethylene MW-81 4/10/2017 205 1 ug/L Cis-1_2-dichloroethylene MW-81 4/10/2018 1 ug/L Cis-1_2-dichloroethylene MW-81 4/2/2018 1 ug/L Cis-1_2-dichloroethylene MW-81 4/2/2019 84 ug/L Cis-1_2-dichloroethylene MW-81 4/2/2019 84 ug/L Cis-1_2-dichloroethylene MW-81 4/10/2020 83 ug/L Cis-1_2-dichloroethylene MW-81 4/10/2020 210 ug/L Cis-1_2-dichloroethylene MW-81 4/10/2020 210 ug/L Cis-1_2-dichloroethylene MW-81 4/10/2020 210 ug/L Cis-1_2-dichloroethylene MW-81 4/10/2020 1 ug/L Cis-1_2-dichloroethylene MW-81 4/10/2	Cis-1,2-dichloroethylene	MW-81	10/06/2011		250	5	ug/L
Cis-1_2-dichloroethylene MW-81 10/16/2013 238 5 ug/L	Cis-1,2-dichloroethylene	MW-81	4/10/2012		267		ug/L
Cis-1_2-dichloroethylene WW-81 10/16/2013 288 5 ug/L Cis-1_2-dichloroethylene WW-81 10/16/2014 288 1 ug/L Cis-1_2-dichloroethylene WW-81 10/16/2014 288 1 ug/L Cis-1_2-dichloroethylene WW-81 10/16/2015 252 1 ug/L Cis-1_2-dichloroethylene WW-81 10/13/2016 243 1 ug/L Cis-1_2-dichloroethylene WW-81 10/13/2018 195 1 ug/L Cis-1_2-dichloroethylene WW-81 10/13/2018 195 1 ug/L Cis-1_2-dichloroethylene WW-81 10/12/2019 84 1 ug/L Cis-1_2-dichloroethylene WW-81 10/12/2019 84 1 ug/L Cis-1_2-dichloroethylene WW-81 10/12/2019 87 1 ug/L Cis-1_2-dichloroethylene WW-81 10/19/2020 210 10 ug/L Cis-1_2-dichloroethylene WW-81 10/19/2020 10 ug/L Ci	Cis-1,2-dichloroethylene	MW-81	10/09/2012		295	5	ug/L
Cis-1_2-dichloroethylene MW-81 4/10/2014 286 10 ug/L Cis-1_2-dichloroethylene MW-81 10/10/2015 252 1 ug/L Cis-1_2-dichloroethylene MW-81 10/10/2015 252 1 ug/L Cis-1_2-dichloroethylene MW-81 10/10/2015 201 1 ug/L Cis-1_2-dichloroethylene MW-81 10/10/2016 247 1 ug/L Cis-1_2-dichloroethylene MW-81 10/10/2017 205 1 ug/L Cis-1_2-dichloroethylene MW-81 10/10/2017 188 5 ug/L Cis-1_2-dichloroethylene MW-81 10/10/2018 195 1 ug/L Cis-1_2-dichloroethylene MW-81 10/10/2019 84 1 ug/L Cis-1_2-dichloroethylene MW-81 10/10/2009 83 1 ug/L Cis-1_2-dichloroethylene MW-81 10/10/2000 188 1 ug/L Cis-1_2-dichloroethylene MW-81 10/10/2000 180 1 ug/L Cis-1_2-dichloroethylene MW-81 10/10/2000 1 ug/L Cis-1_2-dichloroe	Cis-1,2-dichloroethylene	MW-81	4/04/2013		238	5	ug/L
Cis+1_2-dichloroethylene MV-81 4/03/2015 252 1 ug/L Cis+1_2-dichloroethylene MV-81 4/03/2015 252 1 ug/L Cis+1_2-dichloroethylene MV-81 4/14/2016 247 1 ug/L Cis+1_2-dichloroethylene MV-81 4/14/2016 243 10 ug/L Cis-1_2-dichloroethylene MV-81 4/14/2017 205 1 ug/L Cis-1_2-dichloroethylene MV-81 4/14/2018 195 1 ug/L Cis-1_2-dichloroethylene MV-81 4/14/2018 101 1 ug/L Cis-1_2-dichloroethylene MV-81 4/14/2019 127 1 ug/L Cis-1_2-dichloroethylene MV-81 4/12/2019 127 1 ug/L Cis-1_2-dichloroethylene MV-81 4/10/2020 210 10 ug/L Cis-1_2-dichloroethylene MV-81 4/10/2020 212 1 ug/L Cis-1_2-dichloroethylene MV-81 4/10/2020 214 1 ug/L Cis-1_2-dichloroethylene MV-81 4/10/2020 214 1 ug/L Cis-1_2-dichloroethylene MV-81 4/10/2020 214 1 ug/L Cis-1_2-dichloroethylene MV-81 4/14/2020 11 1 ug/L Cis-1_2-dichloroethylene MV-81 4/14/2020 11 1 ug/L Cis-1_2-dichloroethylene MV-81 4/14/2020 1 ug/L Cis-1_2-dichloroethylene MV-81 4/14/2020 1 ug/L Cis-1_2-dichloroethylene MV-81 1/14/2020 1 ug/L Cis-1_2-dichloroethylene MV-81 1/14/2020 1 ug/L Cis-1_2-dichloroethylene MV-81 1/14/2020 1 ug/L Cis-1_2-dichloroeth	Cis-1,2-dichloroethylene	MW-81	10/16/2013		268	5	ug/L
Cis-1_2-dichloroethylene MW-81 4/03/2015 252 1 ug/L Cis-1_2-dichloroethylene MW-81 10/01/2015 201 1 ug/L Cis-1_2-dichloroethylene MW-81 10/13/2016 247 1 ug/L Cis-1_2-dichloroethylene MW-81 10/13/2016 243 10 ug/L Cis-1_2-dichloroethylene MW-81 10/09/2017 205 1 ug/L Cis-1_2-dichloroethylene MW-81 10/09/2017 188 5 ug/L Cis-1_2-dichloroethylene MW-81 10/09/2017 188 5 ug/L Cis-1_2-dichloroethylene MW-81 10/02/2018 101 1 ug/L Cis-1_2-dichloroethylene MW-81 10/02/2018 84 1 ug/L Cis-1_2-dichloroethylene MW-81 10/02/2019 84 1 ug/L Cis-1_2-dichloroethylene MW-81 10/02/2019 84 1 ug/L Cis-1_2-dichloroethylene MW-81 10/02/2019 83 1 ug/L Cis-1_2-dichloroethylene MW-81 10/02/2010 83 1 ug/L Cis-1_2-dichloroethylene MW-81 10/09/2020 103 1 ug/L Cis-1_2-dichloroethylene MW-81 10/09/2020 104 1 ug/L Cis-1_2-dichloroethylene MW-81 10/08/2021 188 1 ug/L Cis-1_2-dichloroethylene MW-81 10/08/2021 188 1 ug/L Cis-1_2-dichloroethylene MW-81 10/08/2022 192 1 ug/L Cis-1_2-dichloroethylene MW-81 10/08/2022 225 10 ug/L Cis-1_2-dichloroethylene MW-81 10/08/2022 181 1 ug/L Cis-1_2-dichloroethylene MW-81 10/08/2023 1 ug/L Cis-1_2-dichloroethylene MW-81 10/08/2023 1 ug/L Cis-1_2-dichloroethylene MW-81 10/0	Cis-1,2-dichloroethylene	MW-81	4/10/2014		226	10	ug/L
Cis-12_cdichloroethylene MV-81	Cis-1,2-dichloroethylene	MW-81	10/16/2014		288	1	ug/L
Cis+1_2-dichloroethylene MV-81 4/14/2016 247 1 ug/L Cis+1_2-dichloroethylene MV-81 10/13/2016 243 10 ug/L Cis+1_2-dichloroethylene MV-81 10/09/2017 205 1 ug/L Cis+1_2-dichloroethylene MV-81 10/09/2017 188 5 ug/L Cis+1_2-dichloroethylene MV-81 10/09/2018 101 1 ug/L Cis+1_2-dichloroethylene MV-81 10/22/2018 101 1 ug/L Cis+1_2-dichloroethylene MV-81 10/22/2018 101 1 ug/L Cis+1_2-dichloroethylene MV-81 10/23/2019 84 1 ug/L Cis+1_2-dichloroethylene MV-81 10/23/2019 83 1 ug/L Cis+1_2-dichloroethylene MV-81 10/12/2020 83 1 ug/L Cis+1_2-dichloroethylene MV-81 10/12/2020 83 1 ug/L Cis+1_2-dichloroethylene MV-81 10/12/2020 10 ug/L Cis+1_2-dichloroethylene MV-81 10/08/2021 148 1 ug/L Cis+1_2-dichloroethylene MV-81 10/08/2021 148 1 ug/L Cis+1_2-dichloroethylene MV-81 10/08/2021 188 1 ug/L Cis+1_2-dichloroethylene MV-81 10/08/2021 188 1 ug/L Cis+1_2-dichloroethylene MV-81 10/25/2022 225 10 ug/L Cis+1_2-dichloroethylene MV-81 10/25/2022 225 10 ug/L Cis+1_2-dichloroethylene MV-81 10/13/2023 140 1 ug/L Cis+1_2-dichloroethylene MV-81 10/13/2023 181 1 ug/L Cis+1_2-dichloroethylene MV-81 10/13/2023 1 ug	Cis-1,2-dichloroethylene	MW-81	4/03/2015		252	1	ug/L
Cis+1_2-dichloroethylene MV-81	Cis-1,2-dichloroethylene	MW-81	10/01/2015		201	1	ug/L
Cis+1_2-dichloroethylene MW-81 1009/2017 188 5 ug/L Cis+1_2-dichloroethylene MW-81 1009/2017 188 5 ug/L Cis+1_2-dichloroethylene MW-81 1002/2018 101 1 ug/L Cis+1_2-dichloroethylene MW-81 10/22/2019 84 1 ug/L Cis+1_2-dichloroethylene MW-81 10/23/2019 127 1 ug/L Cis+1_2-dichloroethylene MW-81 10/23/2019 127 1 ug/L Cis+1_2-dichloroethylene MW-81 10/23/2019 127 1 ug/L Cis+1_2-dichloroethylene MW-81 10/19/2020 130 1 ug/L Cis+1_2-dichloroethylene MW-81 10/19/2020 148 1 ug/L Cis+1_2-dichloroethylene MW-81 10/19/2020 148 1 ug/L Cis+1_2-dichloroethylene MW-81 10/08/2021 148 1 ug/L Cis+1_2-dichloroethylene MW-81 10/08/2021 188 1 ug/L Cis+1_2-dichloroethylene MW-81 10/08/2021 129 1 ug/L Cis+1_2-dichloroethylene MW-81 10/25/2022 225 10 ug/L Cis+1_2-dichloroethylene MW-81 10/25/2022 225 10 ug/L Cis+1_2-dichloroethylene MW-81 10/13/2023 181 1 ug/L Cis+1_2-dichloroethylene MW-81 10/13/2023 1 ug/L Cis+1_2-dichlor	Cis-1,2-dichloroethylene	MW-81	4/14/2016		247	1	ug/L
Cis+1_2-dichloroethylene MW-81 41/7/2018 195 1 ug/L Cis+1_2-dichloroethylene MW-81 41/7/2018 101 1 ug/L Cis+1_2-dichloroethylene MW-81 41/2/2019 84 1 ug/L Cis+1_2-dichloroethylene MW-81 41/2/2019 84 1 ug/L Cis+1_2-dichloroethylene MW-81 41/2/2019 84 1 ug/L Cis+1_2-dichloroethylene MW-81 41/2/2020 83 1 ug/L Cis+1_2-dichloroethylene MW-81 41/2/2020 210 10 ug/L Cis+1_2-dichloroethylene MW-81 41/2/2021 148 1 ug/L Cis+1_2-dichloroethylene MW-81 41/6/2021 148 1 ug/L Cis+1_2-dichloroethylene MW-81 41/6/2022 192 1 ug/L Cis+1_2-dichloroethylene MW-81 41/6/2022 225 10 ug/L Cis+1_2-dichloroethylene MW-81 41/6/2022 225 10 ug/L Cis+1_2-dichloroethylene MW-81 41/1/2033 140 1 ug/L Cis+1_2-dichloroethylene MW-81 41/1/2033 140 1 ug/L Cis+1_2-dichloroethylene MW-81 41/1/2033 140 1 ug/L Cis+1_2-dichloroethylene MW-81 41/6/2024 164 1 ug/L Cis+1_2-dichloroethylene MW-81 41/6/2028 3.6 1.0 ug/L Tetrachloroethylene MW-81 41/6/2098 3.1 1 ug/L Cis+1_2-dichloroethylene MW-81 41/6/2098 6.7 1.0 ug/L Tetrachloroethylene MW-81 41/6/2011 1.7 1.0 ug/L Tetrachloroethylene MW-81 41/6/2011 1.7 1.0 ug/L Tetrachloroethylene MW-81 10/09/2012 1.6 1.0 ug/L Tetrachloroethylene MW-81 10/09/2012 1.6 1.0 ug/L Tetrachloroethylene MW-81 10/09/2013 1.0 ug/L Tetrash-1_2-dichloroethylene MW-81 10/09/2013 1.0 ug	Cis-1,2-dichloroethylene	MW-81	10/13/2016		243		
Cis-1_2-dichloroethylene MW-81 10/22/2018 101 1 ug/L Cis-1_2-dichloroethylene MW-81 10/22/2018 84 1 ug/L Cis-1_2-dichloroethylene MW-81 10/23/2019 84 1 ug/L Cis-1_2-dichloroethylene MW-81 10/23/2019 83 1 ug/L Cis-1_2-dichloroethylene MW-81 4/10/2020 83 1 ug/L Cis-1_2-dichloroethylene MW-81 4/10/2020 210 10 ug/L Cis-1_2-dichloroethylene MW-81 4/10/2020 188 1 ug/L Cis-1_2-dichloroethylene MW-81 4/05/2021 148 1 ug/L Cis-1_2-dichloroethylene MW-81 4/05/2022 192 1 ug/L Cis-1_2-dichloroethylene MW-81 4/05/2022 225 10 ug/L Cis-1_2-dichloroethylene MW-81 4/10/2020 225 10 ug/L Cis-1_2-dichloroethylene MW-81 4/10/2022 225 10 ug/L Cis-1_2-dichloroethylene MW-81 4/11/2023 140 1 ug/L Cis-1_2-dichloroethylene MW-81 4/11/2023 140 1 ug/L Cis-1_2-dichloroethylene MW-81 4/11/2023 181 1 ug/L Cis-1_2-dichloroethylene MW-81 4/11/2023 181 1 ug/L Cis-1_2-dichloroethylene MW-81 4/16/2024 164 1 ug/L Cis-1_2-dichloroethylene MW-81 4/16/2024 164 1 ug/L Cis-1_2-dichloroethylene MW-81 8/10/2008 3.6 1.0 ug/L Tetrachloroethylene MW-81 8/10/2008 1.3 1.0 ug/L Tetrachloroethylene MW-81 4/10/2009 6.7 1.0 ug/L Tetrachloroethylene MW-81 4/10/2009 6.7 1.0 ug/L Tetrachloroethylene MW-81 10/06/2011 1.7 1.0 ug/L Tetrachloroethylene MW-81 10/06/2011 1.7 1.0 ug/L Tetrachloroethylene MW-81 10/06/2011 3.2 1.0 ug/L Trans-1_2-dichloroethylene MW-81 10/06/2011 3.2 1.0 ug/L Tran	Cis-1,2-dichloroethylene	MW-81	4/10/2017		205		ug/L
Cis-12-dichloroethylene MW-81 10/22/2018 101 1 ug/L	Cis-1,2-dichloroethylene	MW-81	10/09/2017		188	5	
Cis-12-dichloroethylene MW-81 4/22/2019 84 1 ug/L Cis-12-dichloroethylene MW-81 10/23/2019 127 1 ug/L Cis-12-dichloroethylene MW-81 10/19/2020 83 1 ug/L Cis-12-dichloroethylene MW-81 10/19/2020 210 10 ug/L Cis-12-dichloroethylene MW-81 4/05/2021 148 1 ug/L Cis-12-dichloroethylene MW-81 4/05/2021 188 1 ug/L Cis-12-dichloroethylene MW-81 10/08/2021 188 1 ug/L Cis-12-dichloroethylene MW-81 4/06/2022 192 1 ug/L Cis-12-dichloroethylene MW-81 4/06/2022 192 1 ug/L Cis-12-dichloroethylene MW-81 4/11/2023 140 1 ug/L Cis-12-dichloroethylene MW-81 4/11/2023 140 1 ug/L Cis-12-dichloroethylene MW-81 4/11/2023 140 1 ug/L Cis-12-dichloroethylene MW-81 4/11/2023 181 1 ug/L Cis-12-dichloroethylene MW-81 4/11/2023 181 1 ug/L Cis-12-dichloroethylene MW-81 4/11/2023 181 1 ug/L Cis-12-dichloroethylene MW-81 8/04/2008 3.6 1.0 ug/L Tetrachloroethylene MW-81 8/04/2008 1.1 1.0 ug/L Tetrachloroethylene MW-81 4/05/2011 1.7 1.0 ug/L Tetrachloroethylene MW-81 4/05/2011 1.7 1.0 ug/L Tetrachloroethylene MW-81 10/06/2011 1.7 1.0 ug/L Tetrachloroethylene MW-81 10/06/2011 1.0 ug/L Tetrachloroethylene MW-81 10/08/2008 1.2 1.0 ug/L Trans-12-dichloroethylene MW-81 10/08/2008 3.8 1.0 ug/L Trans-12-dichloroethylene MW-81 10/08/2008 3.8 1.0 ug/L Trans-12-dichloroethylene MW-81 10/08/2008 3.8 1.0 ug/L Trans-12-dichloroethylene MW-81 10/08/2008 3.0 0 ug/L Trans-12-dichloroethylene MW-81 10/08/2009 2.2	Cis-1,2-dichloroethylene	MW-81	4/17/2018		195	1	ug/L
Cis-12-dichloroethylene MW-81	Cis-1,2-dichloroethylene	MW-81	10/22/2018		101	1	ug/L
Cis-1,2-dichloroethylene MW-81 4/10/2020 83 1 ug/L Cis-1,2-dichloroethylene MW-81 4/05/2021 148 1 ug/L Cis-1,2-dichloroethylene MW-81 4/05/2021 148 1 ug/L Cis-1,2-dichloroethylene MW-81 4/05/2022 192 1 ug/L Cis-1,2-dichloroethylene MW-81 4/05/2022 225 10 ug/L Cis-1,2-dichloroethylene MW-81 4/05/2022 225 10 ug/L Cis-1,2-dichloroethylene MW-81 4/05/2023 140 1 ug/L Cis-1,2-dichloroethylene MW-81 4/17/2023 140 1 ug/L Cis-1,2-dichloroethylene MW-81 4/16/2024 164 1 ug/L Cis-1,2-dichloroethylene MW-81 4/16/2024 164 1 ug/L Cis-1,2-dichloroethylene MW-81 4/16/2024 164 1 ug/L Tetrachloroethylene MW-81 3/28/2008 3.6 1.0 ug/L Tetrachloroethylene MW-81 4/05/2011 1.7 1.0 ug/L Tetrachloroethylene MW-81 10/09/2012 1.6 1.0 ug/L Tetrachloroethylene MW-81 10/09/2012 1.6 1.0 ug/L Tetrachloroethylene MW-81 10/09/2012 1.6 1.0 ug/L Tetrachloroethylene MW-81 4/05/2013 1.0 1.0 ug/L Tetrachloroethylene MW-81 4/05/2013 1.0 ug/L Tetrachloroethylene MW-81 3/28/2008 2.2 1.0 ug/L Tetrachloroethylene MW-81 3/28/2008 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 3/28/2008 3.3 1.0 ug/L Trans-1,2-dichloroethylene MW-81 3/28/2008 3.3 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/03/2008 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/03/2008 3.3 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/03/2008 3.3 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/03/2008 3.0 1.0	Cis-1,2-dichloroethylene	MW-81	4/22/2019		84	1	ug/L
Cis-1,2-dichloroethylene MW-81 40/5/2021 148 1 ug/L Cis-1,2-dichloroethylene MW-81 10/08/2021 148 1 ug/L Cis-1,2-dichloroethylene MW-81 10/08/2021 128 1 ug/L Cis-1,2-dichloroethylene MW-81 10/08/2022 225 10 ug/L Cis-1,2-dichloroethylene MW-81 10/25/2022 225 10 ug/L Cis-1,2-dichloroethylene MW-81 41/12/203 140 1 ug/L Cis-1,2-dichloroethylene MW-81 41/12/203 140 1 ug/L Cis-1,2-dichloroethylene MW-81 10/13/2023 181 1 ug/L Cis-1,2-dichloroethylene MW-81 10/13/2023 181 1 ug/L Cis-1,2-dichloroethylene MW-81 32/8/2008 3.6 1.0 ug/L Cis-1,2-dichloroethylene MW-81 40/1/2008 1.1 1.0 ug/L Cis-1,2-dichloroethylene MW-81 40/1/2009 6.7 1.0 ug/L Cis-1,2-dichloroethylene MW-81 40/1/2009 6.7 1.0 ug/L Cis-1,2-dichloroethylene MW-81 40/5/2011 1.7 1.0 ug/L Cis-1,2-dichloroethylene MW-81 40/6/2013 1.0 ug/L Cis-1,2-dichloroethylene MW-81 40/4/2013 1.0 ug/L Cis-1,2-dichloroethylene MW-81 40/4/2013 1.0 ug/L Cis-1,2-dichloroethylene MW-81 6/20/2008 2.2 1.0 ug/L Cis-1,2-dichloroethylene MW-81 6/20/2008 2.2 1.0 ug/L Cis-1,2-dichloroethylene MW-81 6/20/2008 3.8 1.0 ug/L Cis-1,2-dichloroethylene MW-81 6/20/2008 3.8 1.0 ug/L Cis-1,2-dichloroethylene MW-81 6/20/2008 3.8 1.0 ug/L Cis-1,2-dichloroethylene MW-81 40/4/2013 3.0 ug/L Cis-1,2-dichloroethylene MW-81 40/6/2011 3.4 ug/L Ug/L Cis-1,2-dichloroethylene MW-81 40/6/2011 3.4 ug/L U	Cis-1,2-dichloroethylene	MW-81	10/23/2019		127	1	ug/L
Cis-12-dichloroethylene MW-81 4/05/2021 148 1 ug/L Us-12-dichloroethylene MW-81 4/06/2022 192 1 ug/L Us-12-dichloroethylene MW-81 4/06/2022 192 1 ug/L Us-12-dichloroethylene MW-81 4/06/2022 192 1 ug/L Us-12-dichloroethylene MW-81 4/11/2023 140 1 ug/L Us-12-dichloroethylene MW-81 4/11/2023 141 1 ug/L Us-12-dichloroethylene MW-81 4/11/2023 181 1 ug/L Us-12-dichloroethylene MW-81 4/16/2024 164 1 ug/L Us-12-dichloroethylene MW-81 3/28/2008 3.6 1.0 ug/L Us-12-dichloroethylene MW-81 3/28/2008 3.6 1.0 ug/L Us-12-dichloroethylene MW-81 4/05/2008 1.3 1.0 ug/L Us-12-dichloroethylene MW-81 4/05/2008 1.3 1.0 ug/L Us-12-dichloroethylene MW-81 4/05/2011 1.7 1.0 ug/L Us-12-dichloroethylene MW-81 4/05/2013 1.0 ug/L Us-12-dichloroethylene MW-81 4/05/2013 1.0 ug/L Us-12-dichloroethylene MW-81 6/20/2008 2.2 1.0 ug/L Us-12-dichloroethylene MW-81 3/28/2008 2.2 1.0 ug/L Us-12-dichloroethylene MW-81 3/28/2008 3.3 1.0 ug/L Us-12-dichloroethylene	Cis-1,2-dichloroethylene	MW-81	4/10/2020		83	1	ug/L
Cis-1,2-dichloroethylene MW-81 40/68/2022 192 1 ug/L	Cis-1,2-dichloroethylene	MW-81	10/19/2020		210	10	ug/L
Cis-1,2-dichloroethylene MW-81 10/08/2021 188 1 ug/L Us-1,2-dichloroethylene MW-81 10/25/2022 225 10 ug/L Us-1,2-dichloroethylene MW-81 10/25/2022 225 10 ug/L Us-1,2-dichloroethylene MW-81 10/13/2023 181 1 ug/L Us-1,2-dichloroethylene MW-81 12/08/2008 3.6 1.0 ug/L Us-1,2-dichloroethylene MW-81 3/04/2008 1.1 1.0 ug/L Us-1,2-dichloroethylene MW-81 3/04/2008 1.1 1.0 ug/L Us-1,2-dichloroethylene MW-81 4/01/2009 6.7 1.0 ug/L Us-1,2-dichloroethylene MW-81 4/05/2011 1.7 1.0 ug/L Us-1,2-dichloroethylene MW-81 4/05/2011 1.7 1.0 ug/L Us-1,2-dichloroethylene MW-81 10/06/2011 2.0 1.0 ug/L Us-1,2-dichloroethylene MW-81 10/06/2011 2.0 1.0 ug/L Us-1,2-dichloroethylene MW-81 4/04/2013 1.0 1.0 ug/L Us-1,2-dichloroethylene MW-81 4/04/2013 1.0 1.0 ug/L Us-1,2-dichloroethylene MW-81 4/04/2013 1.0 1.0 ug/L Us-1,2-dichloroethylene MW-81 8/04/2008 1.2 1.0 ug/L Us-1,2-dichloroethylene MW-81 8/04/2008 1.2 1.0 ug/L Us-1,2-dichloroethylene MW-81 8/04/2008 3.8 1.0 ug/L Us-1,2-dichloroethylene MW-81 10/03/2008 3.8 1.0 ug/L Us-1,2-dichloroethylene MW-81 10/03/2010 3.8 1.0 ug/L Us-1,2-dichloroethylene MW-81 10/08/2011 3.2 1.0 ug/L Us-1,2-dichloroethyle		MW-81	4/05/2021		148	1	
Cis-1,2-dichloroethylene MW-81 4/06/2022 225 10 ug/L		MW-81	10/08/2021		188	1	
Cis-1,2-dichloroethylene MW-81 10/25/2022 225 10 ug/L Cis-1,2-dichloroethylene MW-81 4/11/2023 140 1 ug/L Cis-1,2-dichloroethylene MW-81 4/16/2024 164 1 ug/L Tetrachloroethylene MW-81 3/28/2008 3.6 1.0 ug/L Tetrachloroethylene MW-81 3/28/2008 1.1 1.0 ug/L Tetrachloroethylene MW-81 3/28/2008 1.1 1.0 ug/L Tetrachloroethylene MW-81 3/28/2008 1.1 1.0 ug/L Tetrachloroethylene MW-81 4/05/2011 1.7 1.0 ug/L Tetrachloroethylene MW-81 4/05/2011 1.7 1.0 ug/L Tetrachloroethylene MW-81 4/05/2011 1.7 1.0 ug/L Tetrachloroethylene MW-81 10/06/2011 2.0 1.0 ug/L Tetrachloroethylene MW-81 10/06/2011 2.0 1.0 ug/L Tetrachloroethylene MW-81 10/06/2011 2.0 1.0 ug/L Tetrachloroethylene MW-81 4/05/2011 2.0 1.0 ug/L Tetrachloroethylene MW-81 4/05/2013 4.0 1.0 ug/L Tetrachloroethylene MW-81 4/04/2013 4.0 1.0 ug/L Toluene MW-81 4/04/2008 2.2 1.0 ug/L Toluene MW-81 8/04/2008 1.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 8/04/2008 3.3 1.0 ug/L Trans-1,2-dichloroethylene MW-81 6/20/2008 3.8 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/03/2008 2.3 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/03/2008 3.8 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/20/2008 3.8 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/20/2008 3.8 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/20/2009 4.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/02/2010 4.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/20/2009 4.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/20/2014 4.2						1	
Cis-12-dichloroethylene MW-81 M/11/2023 140 1 ug/L 1 u							
Cis-1,2-dichloroethylene MW-81 4/16/2024 164 1 ug/L	- ,						
Cis-1; 2-dichloroethylene MW-81 3/28/2008 3.6 1.0 ug/L							
Tetrachloroethylene							
Tetrachloroethylene						1.0	
Tetrachloroethylene							
Tetrachloroethylene							
Tetrachloroethylene	,	MW-81					
Tetrachloroethylene							
Tetrachloroethylene							
Tetrachloroethylene							
Tetrachloroethylene MW-81 10/16/2013 4.0 1.0 ug/L Toluene MW-81 8/04/2008 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 8/04/2008 3.3 1.0 ug/L Trans-1,2-dichloroethylene MW-81 3/28/2008 3.3 1.0 ug/L Trans-1,2-dichloroethylene MW-81 8/04/2008 3.3 1.0 ug/L Trans-1,2-dichloroethylene MW-81 8/04/2008 3.3 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/03/2008 2.8 1.0 ug/L Trans-1,2-dichloroethylene MW-81 12/08/2008 3.0 1.0 ug/L Trans-1,2-dichloroethylene MW-81 12/08/2008 3.0 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/01/2009 4.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/01/2009 4.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/02/2010 3.8 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/08/2010 3.8 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/05/2011 3.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/08/2011 3.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2012 3.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/09/2012 2.9 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2013 3.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2014 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2014 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2014 2.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2014 2.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2014 2.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2014 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2014 2.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2014 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2016 3.1 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2017 3.0 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2017 3.0 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2017 3.0 1.0 ug/L Trans-1,2-dichloroethyl							
Toluene							
Toluene							
Trans-1,2-dichloroethylene MW-81 3/28/2008 2.3 1.0 ug/L Trans-1,2-dichloroethylene MW-81 8(20/2008) 3.8 1.0 ug/L Trans-1,2-dichloroethylene MW-81 8(04/2008) 3.3 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/03/2008 2.8 1.0 ug/L Trans-1,2-dichloroethylene MW-81 12(08/2008) 3.0 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4(07/2009) 4.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/02/2010 4.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/08/2010 3.8 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/08/2011 3.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/05/2011 3.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/16/2013 3.1 1.0 ug/L Trans-1,2-dichloroethylene MW-81 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Trans-1,2-dichloroethylene MW-81 MV-81 8/04/2008 3.3 1.0 ug/L	II I						
Trans-1,2-dichloroethylene MW-81 10/03/2008 3.3 1.0 ug/L							
Trans-1,2-dichloroethylene MW-81 10/03/2008 2.8 1.0 ug/L							
Trans-1,2-dichloroethylene MW-81 12/08/2008 3.0 1.0 ug/L							
Trans-1,2-dichloroethylene MW-81 4/01/2009 4.2 1.0 ug/L							
Trans-1,2-dichloroethylene MW-81 4/20/2010 4.2 1.0 ug/L		MW-81			2.9	1.0	
Trans-1,2-dichloroethylene MW-81 10/08/2010 3.8 1.0 ug/L							
Trans-1,2-dichloroethylene MW-81 10/08/2010 3.8 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/05/2011 3.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/06/2011 3.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2012 3.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/09/2012 2.9 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/04/2013 3.1 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/16/2013 3.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2014 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/03/2015 3.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/03/2015 3.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/13/2016 3.1 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10							
Trans-1,2-dichloroethylene MW-81 MW-81 10/06/2011 3.2 1.0 ug/L							
Trans-1,2-dichloroethylene MW-81 4/10/2012 3.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2012 3.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/09/2012 2.9 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/09/2013 3.1 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/16/2013 3.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/16/2014 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/16/2014 2.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/01/2015 3.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/14/2016 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2017 3.0 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2017 3.0 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/1		MW-81	4/05/2011		3.4	1.0	
Trans-1,2-dichloroethylene MW-81 4/10/2012 3.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/09/2012 2.9 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/04/2013 3.1 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/16/2013 3.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2014 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2014 2.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/03/2015 3.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2016 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2016 3.1 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2017 3.0 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2017 3.0 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/20		MW-81				1.0	
Trans-1,2-dichloroethylene MW-81 4/04/2013 3.1 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/04/2013 3.1 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/16/2013 3.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2014 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/03/2015 3.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/03/2015 3.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2015 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2016 3.1 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2017 3.0 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2017 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2018 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/202		MW-81	4/10/2012		3.2	1.0	
Trans-1,2-dichloroethylene MW-81 4/04/2013 3.1 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/16/2013 3.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2014 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/16/2014 2.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/03/2015 3.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2015 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/14/2016 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2016 3.1 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2017 3.0 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/17/2018 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2020 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/20							
Trans-1,2-dichloroethylene MW-81 4/10/2014 2.6 1.0 ug/L							
Trans-1,2-dichloroethylene MW-81 10/16/2014 2.6 1.0 ug/L							
Trans-1,2-dichloroethylene MW-81 4/03/2015 3.2 1.0 ug/L							
Trans-1,2-dichloroethylene MW-81 4/03/2015 3.2 1.0 ug/L							
Trans-1,2-dichloroethylene MW-81 4/14/2016 2.6 1.0 ug/L							
Trans-1,2-dichloroethylene MW-81 4/14/2016 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/13/2016 3.1 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2017 3.0 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/09/2017 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/17/2018 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/22/2019 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/23/2019 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2020 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/19/2020 4.1 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/05/2021 1.8 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/25/2022 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/11					2.2		
Trans-1,2-dichloroethylene MW-81 10/13/2016 3.1 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2017 3.0 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/09/2017 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/17/2018 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/22/2019 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/23/2019 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2020 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/19/2020 4.1 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/08/2021 1.8 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/25/2022 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/11/2023 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/1							
Trans-1,2-dichloroethylene MW-81 4/10/2017 3.0 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/09/2017 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/17/2018 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/22/2019 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/23/2019 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2020 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/05/2021 1.8 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/08/2021 1.9 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/25/2022 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/11/2023 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/13/2023 2.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/16							
Trans-1,2-dichloroethylene MW-81 10/09/2017 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/17/2018 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/22/2019 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/23/2019 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2020 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/05/2021 1.8 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/08/2021 1.9 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/08/2021 1.9 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/11/2023 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/11/2023 2.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/16/2024 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/16/							
Trans-1,2-dichloroethylene MW-81 4/17/2018 2.4 1.0 ug/L							
Trans-1,2-dichloroethylene MW-81 4/22/2019 2.6 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/23/2019 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2020 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/19/2020 4.1 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/05/2021 1.8 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/08/2021 1.9 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/25/2022 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/11/2023 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/13/2023 2.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/16/2024 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/16/2024 2.2 1.0 ug/L Trichloroethylene MW-81 7/13/1993 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Trans-1,2-dichloroethylene MW-81 10/23/2019 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/10/2020 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/19/2020 4.1 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/05/2021 1.8 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/08/2021 1.9 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/25/2022 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/11/2023 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/13/2023 2.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/16/2024 2.2 1.0 ug/L Trichloroethylene MW-81 4/22/1993 2.8 1.0 ug/L Trichloroethylene MW-81 7/13/1993 14.6 1.0 ug/L Trichloroethylene MW-81 1/25/1994 61.							
Trans-1,2-dichloroethylene MW-81 4/10/2020 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/19/2020 4.1 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/05/2021 1.8 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/08/2021 1.9 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/25/2022 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/11/2023 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/13/2023 2.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/16/2024 2.2 1.0 ug/L Trichloroethylene MW-81 4/22/1993 2.8 1.0 ug/L Trichloroethylene MW-81 7/13/1993 14.6 1.0 ug/L Trichloroethylene MW-81 1/25/1994 61.2 1.0 ug/L							
Trans-1,2-dichloroethylene MW-81 10/19/2020 1.1 1.0 ug/L							
Trans-1,2-dichloroethylene MW-81 4/05/2021 1.8 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/08/2021 1.9 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/25/2022 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/11/2023 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/13/2023 2.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/16/2024 2.2 1.0 ug/L Trichloroethylene MW-81 4/22/1993 2.8 1.0 ug/L Trichloroethylene MW-81 7/13/1993 14.6 1.0 ug/L Trichloroethylene MW-81 1/25/1994 61.2 1.0 ug/L							
Trans-1,2-dichloroethylene MW-81 10/08/2021 1.9 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/25/2022 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/11/2023 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/13/2023 2.5 1.0 ug/L Trichloroethylene MW-81 4/16/2024 2.2 1.0 ug/L Trichloroethylene MW-81 4/22/1993 2.8 1.0 ug/L Trichloroethylene MW-81 7/13/1993 14.6 1.0 ug/L Trichloroethylene MW-81 1/25/1994 61.2 1.0 ug/L							
Trans-1,2-dichloroethylene MW-81 10/25/2022 2.4 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/11/2023 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/13/2023 2.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/16/2024 2.2 1.0 ug/L Trichloroethylene MW-81 4/22/1993 2.8 1.0 ug/L Trichloroethylene MW-81 7/13/1993 14.6 1.0 ug/L Trichloroethylene MW-81 1/25/1994 61.2 1.0 ug/L							
Trans-1,2-dichloroethylene MW-81 4/11/2023 2.2 1.0 ug/L Trans-1,2-dichloroethylene MW-81 10/13/2023 2.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/16/2024 2.2 1.0 ug/L Trichloroethylene MW-81 4/22/1993 2.8 1.0 ug/L Trichloroethylene MW-81 7/13/1993 14.6 1.0 ug/L Trichloroethylene MW-81 1/25/1994 61.2 1.0 ug/L							
Trans-1,2-dichloroethylene MW-81 10/13/2023 2.5 1.0 ug/L Trans-1,2-dichloroethylene MW-81 4/16/2024 2.2 1.0 ug/L Trichloroethylene MW-81 4/22/1993 2.8 1.0 ug/L Trichloroethylene MW-81 7/13/1993 14.6 1.0 ug/L Trichloroethylene MW-81 1/25/1994 61.2 1.0 ug/L							
Trans-1,2-dichloroethylene							
Trichloroethylene							
Trichloroethylene							
Trichloroethylene MW-81 1/25/1994 61.2 1.0 ug/L							
Inchloroemylene	Trichloroethylene	MW-81	4/14/1994		30.0	1.0	ug/L ug/L
Trichloroethylene							

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Trichloroethylene	MW-81	10/20/1994		48.7	1.0	ug/L
Trichloroethylene	MW-81	1/04/1995		59.2	1.0	ug/L
Trichloroethylene	MW-81	4/21/1995		41.2	1.0	ug/L
Trichloroethylene	MW-81	7/07/1995		50.1	1.0	ug/L
Trichloroethylene	MW-81	10/12/1995		64.4	1.0	ug/L
Trichloroethylene	MW-81	1/10/1996		59.7	1.0	ug/L
Trichloroethylene	MW-81	4/15/1996		61.1	1.0	ug/L
Trichloroethylene	MW-81	7/17/1996		34.6	1.0	ug/L
Trichloroethylene	MW-81	10/08/1996		46.0	1.0	ug/L
Trichloroethylene	MW-81	1/21/1997		38.8	1.0	ug/L
Trichloroethylene	MW-81	4/11/1997		42.4	1.0	ug/L
Trichloroethylene	MW-81	7/17/1997		42.9	1.0	ug/L
Trichloroethylene	MW-81	10/15/1997		45.5	1.0	ug/L
Trichloroethylene	MW-81	1/27/1998		44.1	1.0	ug/L
Trichloroethylene	MW-81	4/21/1998		36.7	1.0	ug/L
Trichloroethylene	MW-81	7/21/1998		33.5	1.0	ug/L
Trichloroethylene	MW-81	10/09/1998		35.8	1.0	ug/L
Trichloroethylene	MW-81	1/26/1999		41.2	1.0	ug/L
Trichloroethylene	MW-81	4/19/1999		35.4	1.0	ug/L
Trichloroethylene	MW-81	7/29/1999		33.0	1.0	ug/L
Trichloroethylene	MW-81	10/04/1999		52.8	1.0	ug/L
Trichloroethylene	MW-81 MW-81	1/06/2000		72.2	1.0	ug/L
Trichloroethylene	MW-81	4/13/2000		57.8 100.0	1.0 1.0	ug/L
Trichloroethylene	MW-81	7/05/2000 10/08/2000		55.9	1.0	ug/L
Trichloroethylene Trichloroethylene	MW-81	4/27/2001		57.8	1.0	ug/L ug/L
Trichloroethylene	MW-81	10/18/2001		61.9	1.0	ug/L ug/L
Trichloroethylene	MW-81	4/24/2002		71.3	1.0	ug/L ug/L
Trichloroethylene	MW-81	10/14/2002		41.2	1.0	ug/L ug/L
Trichloroethylene	MW-81	4/22/2003		49.9	1.0	ug/L
Trichloroethylene	MW-81	10/06/2003		38.4	1.0	ug/L ug/L
Trichloroethylene	MW-81	4/26/2004		39.4	1.0	ug/L ug/L
Trichloroethylene	MW-81	4/11/2005		44.5	1.0	ug/L ug/L
Trichloroethylene	MW-81	10/05/2005		20.2	1.0	ug/L
Trichloroethylene	MW-81	4/05/2006		32.5	1.0	ug/L
Trichloroethylene	MW-81	10/04/2006		21.1	1.0	ug/L
Trichloroethylene	MW-81	4/12/2007		16.2	1.0	ug/L ug/L
Trichloroethylene	MW-81	10/10/2007		37.2	1.0	ug/L
Trichloroethylene	MW-81	3/28/2008		21.3	1.0	ug/L
Trichloroethylene	MW-81	6/20/2008		22.0	1.0	ug/L
Trichloroethylene	MW-81	8/04/2008		15.8	1.0	ug/L
Trichloroethylene	MW-81	10/03/2008		17.8	1.0	ug/L
Trichloroethylene	MW-81	12/08/2008		12.0	1.0	ug/L
Trichloroethylene	MW-81	4/01/2009		36.2	1.0	ug/L
Trichloroethylene	MW-81	10/21/2009		10.2	1.0	ug/L
Trichloroethylene	MW-81	4/20/2010		6.4	1.0	ug/L
Trichloroethylene	MW-81	10/08/2010		5.2	1.0	ug/L
Trichloroethylene	MW-81	4/05/2011		21.2	1.0	ug/L
Trichloroethylene	MW-81	10/06/2011		12.5	1.0	ug/L
Trichloroethylene	MW-81	4/10/2012		10.1	1.0	ug/L
Trichloroethylene	MW-81	10/09/2012		12.2	1.0	ug/L
Trichloroethylene	MW-81	4/04/2013		11.9	1.0	ug/L
Trichloroethylene	MW-81	10/16/2013		18.3	1.0	ug/L
Trichloroethylene	MW-81	4/10/2014		7.1	1.0	ug/L
Trichloroethylene	MW-81	10/16/2014		10.0	1.0	ug/L
Trichloroethylene	MW-81	4/03/2015		6.7	1.0	ug/L
Trichloroethylene	MW-81	10/01/2015		12.2	1.0	
Trichloroethylene	MW-81	4/14/2016		4.7	1.0	ug/L
Trichloroethylene	MW-81	10/13/2016		2.1	1.0	
Trichloroethylene	MW-81	4/10/2017		5.4	1.0	ug/L
Trichloroethylene	MW-81	10/09/2017		9.4	1.0	
Trichloroethylene	MW-81	4/17/2018		4.3		ug/L
Trichloroethylene	MW-81	10/19/2020		3.0	1.0	ug/L
Trichloroethylene	MW-81	4/05/2021		2.0	1.0	ug/L
Trichloroethylene	MW-81	10/08/2021		2.3	1.0	ug/L
Trichloroethylene	MW-81	4/06/2022		1.0	1.0	ug/L
Trichloroethylene	MW-81	10/25/2022		2.9	1.0	ug/L
Trichloroethylene	MW-81	4/11/2023		2.6	1.0	ug/L
Trichloroethylene	MW-81	10/13/2023		3.3	1.0	ug/L
Trichloroethylene	MW-81	4/16/2024		1.4	1.0	
Vinyl chloride	MW-81	3/28/2008		7.6	1.0	
Vinyl chloride	MW-81	6/20/2008		15.7		ug/L
Vinyl chloride	MW-81	8/04/2008		12.4		ug/L
Vinyl chloride	MW-81	10/03/2008		7.5	1.0	
Vinyl chloride	MW-81	12/08/2008		13.2		ug/L
Vinyl chloride	MW-81	4/01/2009		8.3	1 0	ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Vinyl chloride	MW-81	10/21/2009		26.8	1.0	ug/L
Vinyl chloride	MW-81	4/20/2010		22.9	1.0	ug/L
Vinyl chloride	MW-81	10/08/2010		21.1	1.0	ug/L
Vinyl chloride	MW-81	4/05/2011		13.8	1.0	
Vinyl chloride	MW-81	10/06/2011		9.3	1.0	
Vinyl chloride	MW-81	4/10/2012		12.4	1.0	ug/L
Vinyl chloride	MW-81	10/09/2012		8.4	1.0	
Vinyl chloride	MW-81	4/04/2013		7.8	1.0	
Vinyl chloride	MW-81	10/16/2013		9.4	1.0	ug/L
Vinyl chloride	MW-81	4/10/2014		11.0	1.0	
Vinyl chloride	MW-81	10/16/2014		9.7	1.0	
Vinyl chloride	MW-81	4/03/2015		12.9	1.0	
Vinyl chloride	MW-81	10/01/2015		8.8	1.0	
Vinyl chloride	MW-81	4/14/2016		15.8	1.0	
Vinyl chloride	MW-81	10/13/2016		20.1	1.0	ug/L
Vinyl chloride	MW-81	4/10/2017		16.5	1.0	
Vinyl chloride	MW-81	10/09/2017		13.2	1.0	
Vinyl chloride	MW-81	4/17/2018		13.6	1.0	ug/L
Vinyl chloride	MW-81	10/22/2018		26.6	1.0	
Vinyl chloride	MW-81	4/22/2019		15.5		ug/L
Vinyl chloride	MW-81	10/23/2019		24.2	1.0	
Vinyl chloride Vinyl chloride	MW-81 MW-81	4/10/2020 10/19/2020		13.9	1.0	ug/L
,	MW-81	4/05/2021		15.4 11.3		ug/L
Vinyl chloride Vinyl chloride	MW-81	10/08/2021		7.2	1.0 1.0	ug/L ug/L
Vinyl chloride Vinyl chloride	MW-81	4/06/2022		7.2	1.0	
Vinyl chloride Vinyl chloride	MW-81	10/25/2022		8.4	1.0	
Vinyl chloride	MW-81	4/11/2023		7.7	1.0	ug/L ug/L
Vinyl chloride	MW-81	10/13/2023		6.7	1.0	
Vinyl chloride	MW-81	4/16/2024		6.8		ug/L ug/L
Acetone	MW-85	10/09/2017		15.4	10.0	
Acetone	MW-87	10/09/2017		18.4	10.0	ug/L ug/L
Benzene	MW-87	7/17/1997		1.3	1.0	ug/L ug/L
Bis(2-ethylhexyl) phthalate	MW-87	12/08/2008		28	8	ug/L ug/L
Bis(2-ethylhexyl) phthalate	MW-87	4/10/2014		13	10	ug/L ug/L
1,1-dichloroethane	MW-89	10/09/2012		4	1	ug/L
Acetone	MW-89	10/09/2017		18.2	10.0	ug/L ug/L
Bis(2-ethylhexyl) phthalate	MW-89	12/10/2008		60	10.0	ug/L ug/L
Bis(2-ethylhexyl) phthalate	MW-89	10/16/2013		9	8	ug/L
Bis(2-ethylhexyl) phthalate	MW-89	4/10/2014		18	10	ug/L
Bis(2-ethylhexyl) phthalate	MW-89	4/14/2016		19	13	ug/L
1,1,1-trichloroethane	MW-91	9/11/2000		1.1	1.0	ug/L
1,1,1-trichloroethane	MW-91	10/08/2000		1.0	1.0	ug/L
1,1-dichloroethane	MW-91	3/28/2008		5.5	1.0	ug/L
1,1-dichloroethane	MW-91	6/20/2008		4.4	1.0	
1,1-dichloroethane	MW-91	8/05/2008		6.5	1.0	
1,1-dichloroethane	MW-91	10/03/2008		9.3	1.0	
1,1-dichloroethane	MW-91	12/10/2008		6.8	1.0	ug/L
1,1-dichloroethane	MW-91	4/02/2009		5.3		ug/L
1,1-dichloroethane	MW-91	10/21/2009		2.5	1.0	
1,1-dichloroethane	MW-91	4/20/2010		4.4	1.0	
1,1-dichloroethane	MW-91	10/08/2010		4.3		ug/L
1,1-dichloroethane	MW-91	4/05/2011		4.5		ug/L
1,1-dichloroethane	MW-91	10/06/2011		3.9		ug/L
1,1-dichloroethane	MW-91	4/10/2012		3.9		ug/L
1,1-dichloroethane	MW-91	4/04/2013		1.0		ug/L
1,1-dichloroethane	MW-91	10/16/2013		3.4		ug/L
1,1-dichloroethane	MW-91	4/10/2014		1.8	1.0	
1,1-dichloroethane	MW-91	10/16/2014		2.4		ug/L
1,1-dichloroethane	MW-91	4/03/2015		6.1	1.0	
1,1-dichloroethane	MW-91	10/01/2015		3.6	1.0	
1,1-dichloroethane	MW-91	10/09/2017		2.5		ug/L
1,1-dichloroethane	MW-91	1/09/2018		1.7	1.0	ug/L
1,1-dichloroethane	MW-91	4/22/2019		2.7	1.0	ug/L
1,1-dichloroethane	MW-91	10/19/2020		1.5	1.0	
Bis(2-ethylhexyl) phthalate	MW-91	8/05/2008		8	8	ug/L
Bis(2-ethylhexyl) phthalate	MW-91	12/10/2008		9	8	ug/L
Bis(2-ethylhexyl) phthalate	MW-91	10/08/2010		15	10	
Bis(2-ethylhexyl) phthalate	MW-91	10/16/2013		142	84	
Carbon disulfide	MW-91	4/06/2022		2.6	1.0	
Cis-1,2-dichloroethylene	MW-91	6/20/2008		1.0	1.0	
Cis-1,2-dichloroethylene	MW-91	8/05/2008		3.8	1.0	ug/L
Cis-1,2-dichloroethylene	MW-91	4/20/2010		1.0		ug/L
Cis-1,2-dichloroethylene	MW-91	10/06/2011		1.1	1.0	
	MW-91	4/03/2015		1.5		ug/L
Cis-1,2-dichloroethylene	10100-01					

Table 1
Historical Volatile Organic Compound Detections

Trichloroethylene MW-91 9/11/2000	Constituent	Well	Date	Identifier	Result	Limit	Units
Trichloroethylene MW-91 4/24/2002 1.0 1.0 ug/L Trichloroethylene MW-91 10/05/2004 1.2 1.0 ug/L Trichloroethylene MW-91 10/05/2005 1.9 1.0 ug/L Trichloroethylene MW-91 10/05/2005 1.9 1.0 ug/L Trichloroethylene MW-91 10/05/2005 1.9 1.0 ug/L 1.1-dichloroethane MW-94 4/05/2011 41.9 1.0 ug/L 1.1-dichloroethane MW-94 4/05/2011 41.9 1.0 ug/L 1.1-dichloroethane MW-94 4/05/2011 43.5 1.0 ug/L 1.1-dichloroethane MW-94 4/05/2011 43.5 1.0 ug/L 1.1-dichloroethane MW-94 4/05/2011 43.5 1.0 ug/L 1.1-dichloroethane MW-94 4/00/2012 36.0 1.0 ug/L 1.1-dichloroethane MW-94 4/00/2013 36.0 1.0 ug/L 1.1-dichloroethane MW-94 4/00/2013 36.0 1.0 ug/L 1.1-dichloroethane MW-94 4/00/2013 24.3 1.0 ug/L 1.1-dichloroethane MW-94 4/00/2014 21.1 1.0 ug/L 1.1-dichloroethane MW-94 4/00/2014 21.1 1.0 ug/L 1.1-dichloroethane MW-94 4/00/2014 21.1 1.0 ug/L 1.1-dichloroethane MW-94 4/00/2015 11.3 1.0 ug/L 1.1-dichloroethane MW-94 4/00/2015 11.3 1.0 ug/L 1.1-dichloroethane MW-94 4/00/2015 13.3 1.0 ug/L 1.1-dichloroethane MW-94 4/00/2015 8.2 1.0 ug/L 1.1-dichloroethane MW-94 4/00/2015 8.2 1.0 ug/L 1.1-dichloroethane MW-94 4/00/2015 8.2 1.0 ug/L 1.1-dichloroethane MW-94 4/00/2017 7.7 1.0 ug/L 1.1-dichloroethane MW-94 4/00/2017 8.3 1.0 ug/L 1.1-dichloroethane MW-94 4/00/2017 8.3 1.0 ug/L 1.1-dichloroethane MW-94 4/00/2017 7.7 1.0 ug/L 1.1-dichloroethane MW-94 4/00/2017 8.3 1.	Trichloroethylene	MW-91	9/11/2000		1.0	1.0	ug/L
Trichloroethylene MW-91 10/14/2002	,		1/25/2002				
Trichloroethylene MW-91							
Trichloroethylene MW-91 4/11/2005 3 3 ug/L Trichloroethylene MW-94 10/08/2005 1.9 1.0 ug/L 1.1-dichloroethane MW-94 4/08/2011 41.9 1.0 ug/L 1.1-dichloroethane MW-94 4/08/2011 33.4 1.0 ug/L 1.1-dichloroethane MW-94 6/18/2011 33.4 1.0 ug/L 1.1-dichloroethane MW-94 6/18/2011 33.4 1.0 ug/L 1.1-dichloroethane MW-94 6/18/2011 43.5 1.0 ug/L 1.1-dichloroethane MW-94 4/10/2012 36.2 1.0 ug/L 1.1-dichloroethane MW-94 4/10/2012 36.0 1.0 ug/L 1.1-dichloroethane MW-94 4/10/2013 23.3 1.0 ug/L 1.1-dichloroethane MW-94 4/10/2013 24.3 1.0 ug/L 1.1-dichloroethane MW-94 4/10/2013 24.3 1.0 ug/L 1.1-dichloroethane MW-94 4/10/2014 16.1 1.0 ug/L 1.1-dichloroethane MW-94 4/10/2014 16.1 1.0 ug/L 1.1-dichloroethane MW-94 4/10/2014 16.1 1.0 ug/L 1.1-dichloroethane MW-94 4/10/2016 8.6 1.0 ug/L 1.1-dichloroethane MW-94 4/10/2017 7.7 1.0 ug/L 1.1-dichloroethane MW-94 4/10/2018 5.7 1.0 ug/L 1.1-dichloroethane MW-94 4/10/2018 5.1 1.0 ug/							
Irichloroethiyene MW-94							
1,1-dichloroethane							
1,1-dichloroethane							
1,1-dichloroethane							
1,1-dichloroethane MW-94 8/11/2011 30.9 1.0 ug/L 1,1-dichloroethane MW-94 10/06/2011 36.2 1.0 ug/L 1,1-dichloroethane MW-94 10/08/2012 36.2 1.0 ug/L 1,1-dichloroethane MW-94 10/08/2013 23.3 1.0 ug/L 1,1-dichloroethane MW-94 10/16/2013 23.3 1.0 ug/L 1,1-dichloroethane MW-94 10/16/2013 24.3 1.0 ug/L 1,1-dichloroethane MW-94 10/16/2014 12.1 1.0 ug/L 1,1-dichloroethane MW-94 10/16/2014 16.1 1.0 ug/L 1,1-dichloroethane MW-94 10/16/2014 8.6 1.0 ug/L 1,1-dichloroethane MW-94 10/18/2016 8.6 1.0 ug/L 1,1-dichloroethane MW-94 10/18/2016 9.8 1.0 ug/L 1,1-dichloroethane MW-94 10/18/2019 5.4 1.0 ug/L 1,1-dichloroethane MW-94 10/18/2019 5.4 1.0 ug/L 1,1-dichloroethane MW-94 10/18/2019 5.4 1.0 ug/L 1,1-dichloroethane MW-94 10/18/2019 3.5 1.0 ug/L 1,1-dichloroethane MW-94 10/18/2019 3.5 1.0 ug/L 1,1-dichloroethane MW-94 10/18/2020 3.5 1.0 ug/L 1,1-dichloroethane							
1,1-dichloresthane							
1,1-dichloroethane	1,1-dichloroethane	MW-94	10/06/2011		43.5	1.0	
1,1-dichloresthane	1,1-dichloroethane	MW-94	4/10/2012		36.2	1.0	ug/L
1.1-dichloroethane							
1.1-dichloroethane							
1.1-dichloroethane	'						
1.1-dichloroethane							
1.1-dichloroethane							
1,1-dichloroethane							
1.1-dichloroethane					-		
1,1-dichloroethane							
1,1-dichloroethane							
1,1-dichloroethane MW-94 4/22/2019 5,4 1.0 ug/L 1,1-dichloroethane MW-94 4/22/2019 5,4 1.0 ug/L 1,1-dichloroethane MW-94 4/10/2020 3.5 1.0 ug/L 1,1-dichloroethane MW-94 4/10/2020 3.5 1.0 ug/L 1,1-dichloroethane MW-94 4/10/2020 3.8 1.0 ug/L 1,1-dichloroethane MW-94 4/05/2021 1.8 1.0 ug/L 1,1-dichloroethane MW-94 4/05/2021 2.6 1.0 ug/L 1,1-dichloroethane MW-94 4/06/2022 1.9 1.0 ug/L 1,1-dichloroethane MW-94 4/06/2022 1.9 1.0 ug/L 1,1-dichloroethane MW-94 4/12/203 1.6 1.0 ug/L 1,1-dichloroethane MW-94 4/11/2023 1.6 1.0 ug/L 1,2-dichloroethane MW-94 4/10/2015 1.1 1.0 ug/L 1,2-dichloroethane MW-94 4/10/2015 1.1 1.0 ug/L 1,2-dichloroethane MW-94 4/10/2017 1.4 1.0 ug/L 1,2-dichloroethane MW-94 4/10/2017 1.5 1.0 ug/L 1,2-dichloroethane MW-94 4/10/2017 1.5 1.0 ug/L 1,2-dichloroethane MW-94 4/10/2017 1.5 1.0 ug/L 1,2-dichloropropane MW-94 4/10/2013 4.4 1.0 ug/L 1,2-dichloropropane MW-94 4/10/2013 4.4 1.0 ug/L 1,2-dichloropropane MW-94 4/10/2015 2.4 1.0 ug/L 1,2-dichloropropane MW-94 4/10/2015 2.4 1.0 ug/L 1,2-dichloropropane MW-94 4/10/2016 2.8 1.0 ug/L 1,2-dichloropropane MW-94 4/10/2016 2.8 1.0 ug/L 1,2-dichloropropane MW-94 4/10/2017 3.2 1.0 ug/L 1,2-dichloropropane MW-94 4/10/2017 3.2 1.0 ug/L 1,2-dichloropropane MW-94 4/10/2016 2.4 1.0 ug/L 1,2-dichloropropane MW-94 4/10/2016 2.4 1.0 ug/L 1,2-dichloropropane MW-94 4/10/2016 2.5 1.0 ug/L 1,2-dichloropropane MW-94 4/10/2016 2.5 1.0 ug/L 1,2-dichloropropane MW-94 4/10/2016 2.2 1.0	1,1-dichloroethane		10/09/2017		8.3	1.0	ug/L
1,1-dichloroethane					-	-	ug/L
1,1-dichloroethane	'						
1,1-dichloroethane							
1,1-dichloroethane							
1,1-dichloroethane							
1,1-dichloroethane							
1,1-dichloroethane	'						
1,1-dichloroethane							
1,1-dichloroethane							
1,1-dichloroethane	1,1-dichloroethane	MW-94	4/11/2023		1.6	1.0	
1,2-dichloroethane	1,1-dichloroethane	MW-94	10/13/2023		2.4	1.0	ug/L
1,2-dichloroethane							
1,2-dichloroethane							
1,2-dichloroethane							
1,2-dichloropropane							
1,2-dichloropropane							
1,2-dichloropropane							
1,2-dichloropropane							
1,2-dichloropropane							
1,2-dichloropropane	1,2-dichloropropane	MW-94	4/04/2013		4.4	1.0	ug/L
1,2-dichloropropane							
1,2-dichloropropane							
1,2-dichloropropane							
1,2-dichloropropane							
1,2-dichloropropane							
1,2-dichloropropane							
1,2-dichloropropane							
1,2-dichloropropane							
1,2-dichloropropane	1,2-dichloropropane	MW-94			2.4		
1,2-dichloropropane	1,2-dichloropropane		4/10/2020			1.0	ug/L
1,2-dichloropropane							
1,2-dichloropropane							
1,2-dichloropropane							
1,2-dichloropropane MW-94 4/11/2023 1.4 1.0 ug/L 1,2-dichloropropane MW-94 10/13/2023 2.2 1.0 ug/L 1,2-dichloropropane MW-94 4/17/2024 1.1 1.0 ug/L Acetone MW-94 1/14/2011 43.5 10.0 ug/L Acetone MW-94 10/09/2012 32.1 10.0 ug/L Acetone MW-94 10/09/2017 38.8 10.0 ug/L Acetone MW-94 10/13/2023 15.6 10.0 ug/L Benzene MW-94 4/14/2011 1.1 1.0 ug/L Benzene MW-94 4/05/2011 1.2 1.0 ug/L Benzene MW-94 4/10/2012 1.3 1.0 ug/L Benzene MW-94 10/09/2012 1.2 1.0 ug/L Benzene MW-94 4/04/2013 2.0 1.0 ug/L							
1,2-dichloropropane MW-94 10/13/2023 2.2 1.0 ug/L 1,2-dichloropropane MW-94 4/17/2024 1.1 1.0 ug/L Acetone MW-94 1/14/2011 43.5 10.0 ug/L Acetone MW-94 10/09/2012 32.1 10.0 ug/L Acetone MW-94 10/09/2017 38.8 10.0 ug/L Acetone MW-94 10/13/2023 15.6 10.0 ug/L Benzene MW-94 1/14/2011 1.1 1.0 ug/L Benzene MW-94 4/05/2011 1.2 1.0 ug/L Benzene MW-94 4/10/2012 1.3 1.0 ug/L Benzene MW-94 10/09/2012 1.2 1.0 ug/L Benzene MW-94 4/04/2013 2.0 1.0 ug/L							
1,2-dichloropropane							
Acetone MW-94 1/14/2011 43.5 10.0 ug/L Acetone MW-94 10/09/2012 32.1 10.0 ug/L Acetone MW-94 10/09/2017 38.8 10.0 ug/L Acetone MW-94 10/13/2023 15.6 10.0 ug/L Benzene MW-94 1/14/2011 1.1 1.0 ug/L Benzene MW-94 4/10/2011 1.2 1.0 ug/L Benzene MW-94 4/10/2012 1.3 1.0 ug/L Benzene MW-94 10/09/2012 1.2 1.0 ug/L Benzene MW-94 4/04/2013 2.0 1.0 ug/L							
Acetone MW-94 10/09/2012 32.1 10.0 ug/L Acetone MW-94 10/09/2017 38.8 10.0 ug/L Acetone MW-94 10/13/2023 15.6 10.0 ug/L Benzene MW-94 1/14/2011 1.1 1.0 ug/L Benzene MW-94 4/05/2011 1.2 1.0 ug/L Benzene MW-94 4/10/2012 1.3 1.0 ug/L Benzene MW-94 10/09/2012 1.2 1.0 ug/L Benzene MW-94 4/04/2013 2.0 1.0 ug/L							
Acetone MW-94 10/09/2017 38.8 10.0 ug/L Acetone MW-94 10/13/2023 15.6 10.0 ug/L Benzene MW-94 1/14/2011 1.1 1.0 ug/L Benzene MW-94 4/05/2011 1.2 1.0 ug/L Benzene MW-94 4/10/2012 1.3 1.0 ug/L Benzene MW-94 10/09/2012 1.2 1.0 ug/L Benzene MW-94 4/04/2013 2.0 1.0 ug/L	II						
Benzene MW-94 1/14/2011 1.1 1.0 ug/L Benzene MW-94 4/05/2011 1.2 1.0 ug/L Benzene MW-94 4/10/2012 1.3 1.0 ug/L Benzene MW-94 10/09/2012 1.2 1.0 ug/L Benzene MW-94 4/04/2013 2.0 1.0 ug/L							
Benzene MW-94 4/05/2011 1.2 1.0 ug/L Benzene MW-94 4/10/2012 1.3 1.0 ug/L Benzene MW-94 10/09/2012 1.2 1.0 ug/L Benzene MW-94 4/04/2013 2.0 1.0 ug/L			10/13/2023			10.0	ug/L
Benzene MW-94 4/10/2012 1.3 1.0 ug/L Benzene MW-94 10/09/2012 1.2 1.0 ug/L Benzene MW-94 4/04/2013 2.0 1.0 ug/L	II						
Benzene MW-94 10/09/2012 1.2 1.0 ug/L Benzene MW-94 4/04/2013 2.0 1.0 ug/L	II _						
Benzene MW-94 4/04/2013 2.0 1.0 ug/L	II _						
DOINZONG							
Benzene MW-94 4/10/2014 1.4 1.0 ug/L	II						

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Benzene	MW-94	10/16/2014		4.2	1.0	ug/L
Benzene	MW-94	4/03/2015		2.6	1.0	ug/L
Benzene	MW-94	10/01/2015		3.2	1.0	ug/L
Benzene	MW-94	4/14/2016		3.5	1.0	ug/L
Benzene Benzene	MW-94 MW-94	10/13/2016 4/10/2017		4.5 2.8	1.0 1.0	ug/L ug/L
Benzene	MW-94	10/09/2017		3.6	1.0	ug/L ug/L
Benzene	MW-94	4/17/2018		2.4	1.0	ug/L ug/L
Benzene	MW-94	10/22/2018		3.5	1.0	ug/L
Benzene	MW-94	4/22/2019		2.5	1.0	ug/L
Benzene	MW-94	10/23/2019		2.3	1.0	ug/L
Benzene	MW-94	4/10/2020		2.2	1.0	ug/L
Benzene	MW-94	10/19/2020		2.4	1.0	ug/L
Benzene	MW-94	4/05/2021		1.6	1.0	ug/L
Benzene	MW-94	10/08/2021		1.6	1.0	ug/L
Benzene	MW-94	4/06/2022		2.1	1.0	ug/L
Benzene	MW-94	10/25/2022		2.1	1.0	ug/L
Benzene	MW-94	4/11/2023		1.9	1.0	ug/L
Benzene	MW-94	10/13/2023		1.7	1.0	ug/L
Benzene	MW-94	4/17/2024		2.0	1.0	ug/L
Bis(2-ethylhexyl) phthalate	MW-94	10/09/2012		8	8	ug/L
Chloroethane	MW-94	1/14/2011		16.5	1.0	ug/L
Chloroethane	MW-94	4/05/2011		19.0	1.0	ug/L
Chloroethane	MW-94	6/18/2011		6.4	1.0	ug/L
Chloroethane	MW-94	8/11/2011		12.7	1.0	ug/L
Chloroethane	MW-94	10/06/2011		19.8	1.0	ug/L
Chloroethane	MW-94	4/10/2012		16.7	1.0	ug/L
Chloroethane	MW-94	10/09/2012		18.2	1.0	ug/L
Chloroethane	MW-94	4/04/2013		14.3	1.0	ug/L
Chloroethane	MW-94	10/16/2013		17.2	1.0	ug/L
Chloroethane	MW-94	4/10/2014		18.5	1.0	ug/L
Chloroethane Chloroethane	MW-94 MW-94	10/16/2014 4/03/2015		16.4 13.0	1.0 1.0	ug/L
Chloroethane	MW-94			9.5	1.0	ug/L ug/L
Chloroethane	MW-94	10/01/2015 4/14/2016		9.5	1.0	ug/L ug/L
Chloroethane	MW-94	10/13/2016		11.8	1.0	ug/L ug/L
Chloroethane	MW-94	4/10/2017		8.9	1.0	ug/L ug/L
Chloroethane	MW-94	10/09/2017		8.6	1.0	ug/L
Chloroethane	MW-94	4/17/2018		5.6	1.0	ug/L
Chloroethane	MW-94	10/22/2018		5.2	1.0	ug/L
Chloroethane	MW-94	4/22/2019		5.4	1.0	ug/L
Chloroethane	MW-94	10/23/2019		6.0	1.0	ug/L
Chloroethane	MW-94	4/10/2020		4.4	1.0	ug/L
Chloroethane	MW-94	10/19/2020		5.2	1.0	ug/L
Chloroethane	MW-94	4/05/2021		3.7	1.0	ug/L
Chloroethane	MW-94	10/08/2021		4.0	1.0	ug/L
Chloroethane	MW-94	4/06/2022		4.6	1.0	ug/L
Chloroethane	MW-94	10/25/2022		4.7	1.0	ug/L
Chloroethane	MW-94	4/11/2023		4.0	1.0	ug/L
Chloroethane	MW-94	10/13/2023		4.5	1.0	ug/L
Chloroethane	MW-94	4/17/2024		4.3	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	1/14/2011		112.0	1.0	
Cis-1,2-dichloroethylene	MW-94	4/05/2011		204.0	5.0	ug/L
Cis-1,2-dichloroethylene	MW-94	6/18/2011		114.0	1.0	
Cis-1,2-dichloroethylene	MW-94	8/11/2011		153.0		ug/L
Cis-1,2-dichloroethylene	MW-94	10/06/2011		89.4		ug/L
Cis-1,2-dichloroethylene	MW-94	4/10/2012		131.0	1.0	
Cis-1,2-dichloroethylene	MW-94	10/09/2012		170.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	4/04/2013		150.0	1.0	
Cis-1,2-dichloroethylene	MW-94	10/16/2013		140.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	4/10/2014		118.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	10/16/2014		144.0	1.0	
Cis-1,2-dichloroethylene	MW-94	4/03/2015		102.0	1.0	
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-94	10/01/2015		88.2	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94 MW-94	4/14/2016		89.5	1.0	
Cis-1,2-dichloroethylene	MW-94	10/13/2016 4/10/2017		63.0 43.3	1.0 1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-94	10/09/2017		56.4	1.0	
Cis-1,2-dichloroethylene	MW-94	4/17/2018		28.6	1.0	
Cis-1,2-dichloroethylene	MW-94	10/22/2018		27.4	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-94	4/22/2019		30.2	1.0	
Cis-1,2-dichloroethylene	MW-94	10/23/2019		23.0		ug/L ug/L
Cis-1,2-dichloroethylene	MW-94	4/10/2020		21.4		ug/L ug/L
Cis-1,2-dichloroethylene	MW-94	10/19/2020		27.4	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-94	4/05/2021		13.2		ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Cis-1,2-dichloroethylene	MW-94	4/06/2022		18.2	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	10/25/2022		29.4	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	4/11/2023		11.4	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	10/13/2023		29.4	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	4/17/2024		5.2	1.0	ug/L
Trans-1,2-dichloroethylene	MW-94	1/14/2011		2.5	1.0	ug/L
Trans-1,2-dichloroethylene	MW-94	4/05/2011		4.6	1.0	ug/L
Trans-1,2-dichloroethylene	MW-94	6/18/2011		2.6	1.0	ug/L
Trans-1,2-dichloroethylene	MW-94	8/11/2011		3.8	1.0	ug/L
Trans-1,2-dichloroethylene	MW-94	10/06/2011		2.1	1.0	ug/L
Trans-1,2-dichloroethylene	MW-94	4/10/2012		2.4	1.0	ug/L
Trans-1,2-dichloroethylene	MW-94	10/09/2012		1.8	1.0	ug/L
Trans-1,2-dichloroethylene	MW-94	4/04/2013		1.8	1.0	ug/L
Trans-1,2-dichloroethylene	MW-94	10/16/2013		1.9	1.0	ug/L
Trans-1,2-dichloroethylene	MW-94	4/10/2014		1.6	1.0	ug/L
Trans-1,2-dichloroethylene Trans-1,2-dichloroethylene	MW-94 MW-94	10/16/2014 4/03/2015		1.2 1.2	1.0 1.0	ug/L
Trans-1,2-dichloroethylene	MW-94	10/13/2016		1.2	1.0	ug/L ug/L
Trans-1,2-dichloroethylene	MW-94	4/10/2020		1.0	1.0	ug/L ug/L
Trans-1,2-dichloroethylene	MW-94	10/19/2020		1.0	1.0	ug/L ug/L
Trans-1,2-dichloroethylene	MW-94	10/19/2020	,	1.2	1.0	ug/L ug/L
Trans-1,2-dichloroethylene	MW-94	10/23/2022		1.6	1.0	ug/L ug/L
Trichloroethylene	MW-94	1/14/2011		59.7	1.0	ug/L
Trichloroethylene	MW-94	4/05/2011	,	109.0	1.0	ug/L ug/L
Trichloroethylene	MW-94	6/18/2011		58.1	1.0	ug/L
Trichloroethylene	MW-94	8/11/2011	,	47.4	1.0	ug/L
Trichloroethylene	MW-94	10/06/2011		42.0	1.0	ug/L
Trichloroethylene	MW-94	4/10/2012	,	37.0	1.0	ug/L
Trichloroethylene	MW-94	10/09/2012	,	28.1	1.0	ug/L
Trichloroethylene	MW-94	4/04/2013	,	21.2	1.0	ug/L
Trichloroethylene	MW-94	10/16/2013		7.7	1.0	ug/L
Trichloroethylene	MW-94	4/10/2014		5.4	1.0	ug/L
Trichloroethylene	MW-94	10/16/2014		2.0	1.0	ug/L
Trichloroethylene	MW-94	4/03/2015		1.5	1.0	ug/L
Vinyl chloride	MW-94	1/14/2011		5.0	1.0	ug/L
Vinyl chloride	MW-94	4/05/2011		5.5	1.0	ug/L
Vinyl chloride	MW-94	6/18/2011		4.0	1.0	ug/L
Vinyl chloride	MW-94	8/11/2011		4.1	1.0	ug/L
Vinyl chloride	MW-94	10/06/2011		3.6	1.0	ug/L
Vinyl chloride Vinyl chloride	MW-94 MW-94	4/10/2012		4.6 4.6	1.0 1.0	ug/L
Viriyi Chioride Vinyl chloride	MW-94	10/09/2012 4/04/2013		5.3	1.0	ug/L ug/L
Vinyl chloride	MW-94	10/16/2013		4.8	1.0	ug/L ug/L
Vinyl chloride	MW-94	4/10/2014		4.4	1.0	ug/L
Vinyl chloride	MW-94	10/16/2014		6.2	1.0	ug/L
Vinyl chloride	MW-94	4/03/2015		4.5	1.0	ug/L
Vinyl chloride	MW-94	10/01/2015	,	3.6	1.0	ug/L
Vinyl chloride	MW-94	4/14/2016	,	2.9	1.0	ug/L
Vinyl chloride	MW-94	10/13/2016	,	2.6	1.0	ug/L
Vinyl chloride	MW-94	4/10/2017	,	3.2	1.0	ug/L
Vinyl chloride	MW-94	10/09/2017	,	2.0	1.0	ug/L
Vinyl chloride	MW-94	4/17/2018	,	2.0	1.0	ug/L
Vinyl chloride	MW-94	10/22/2018	,	2.2	1.0	ug/L
Vinyl chloride	MW-94	4/22/2019	,	1.7	1.0	ug/L
Vinyl chloride	MW-94	4/10/2020		1.1	1.0	ug/L
Vinyl chloride	MW-94	10/19/2020	,	1.1		ug/L
Vinyl chloride	MW-94	10/25/2022		1.2	1.0	
Vinyl chloride	MW-94	4/11/2023	,	2.1	1.0	ug/L
Vinyl chloride	MW-94	10/13/2023	,	2.0	1.0	ug/L
Vinyl chloride	MW-94	4/17/2024		2.2		ug/L
Acetone Bis(2-ethylhexyl) phthalate	MW-95 MW-96	10/13/2023 10/09/2012		10.7	10.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-96	1/14/2011		1.2	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-96	4/05/2011	,	1.2	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-96	6/18/2011		1.1	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-96	8/11/2011	,	1.1	1.0	
Cis-1,2-dichloroethylene	MW-96	10/09/2012	,	1.0		ug/L ug/L
Bis(2-ethylhexyl) phthalate	MW-96R	10/08/2021		6	6	ug/L
Acetone	MW-98	10/09/2017		18.4	10.0	
	SRAMP A	4/22/2019		1.4	1.0	ug/L
1,1-dichloroethane						
1,2-dichloropropane	SRAMP A	4/22/2019		1.7	1.0	ug/L
				1.7 1.3 2.8	1.0 1.0	

Attachment G

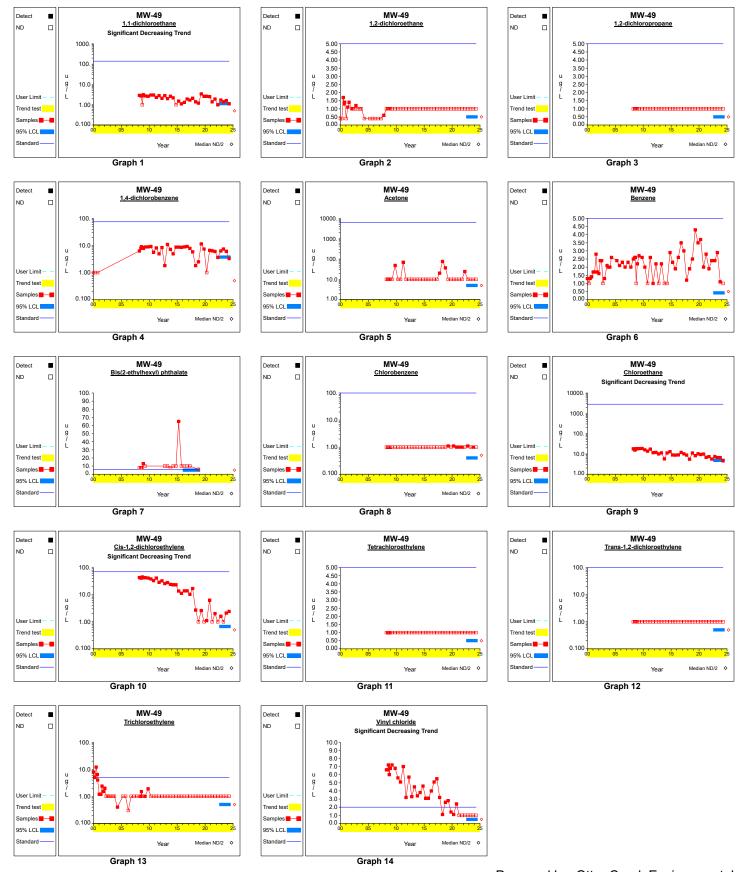
Assessment Statistics for VOCs

marshall2024s1 May 2024

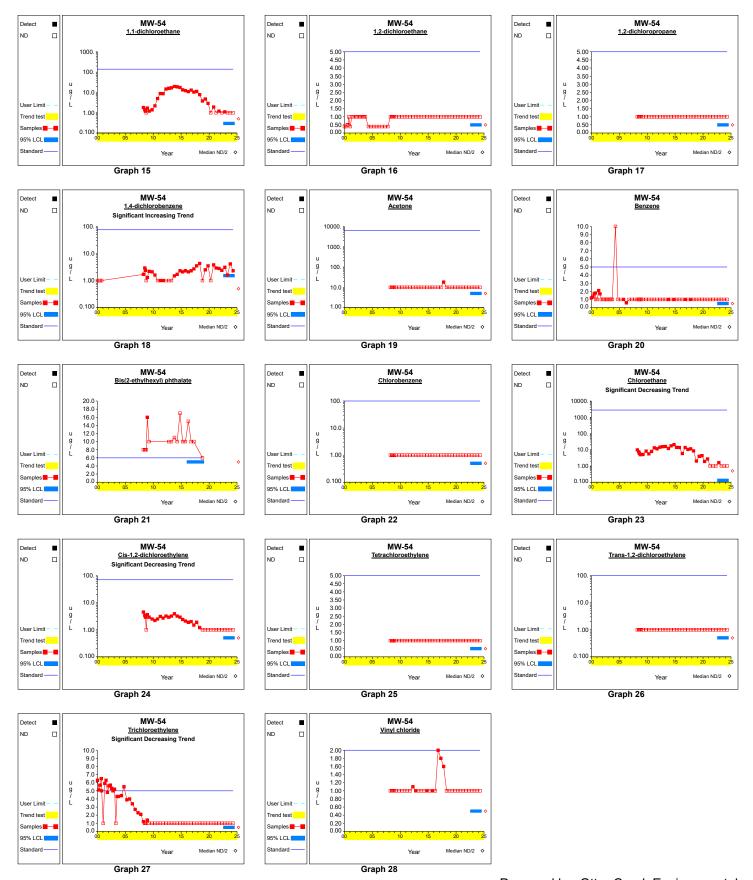
Marshall [VOC] May 2024

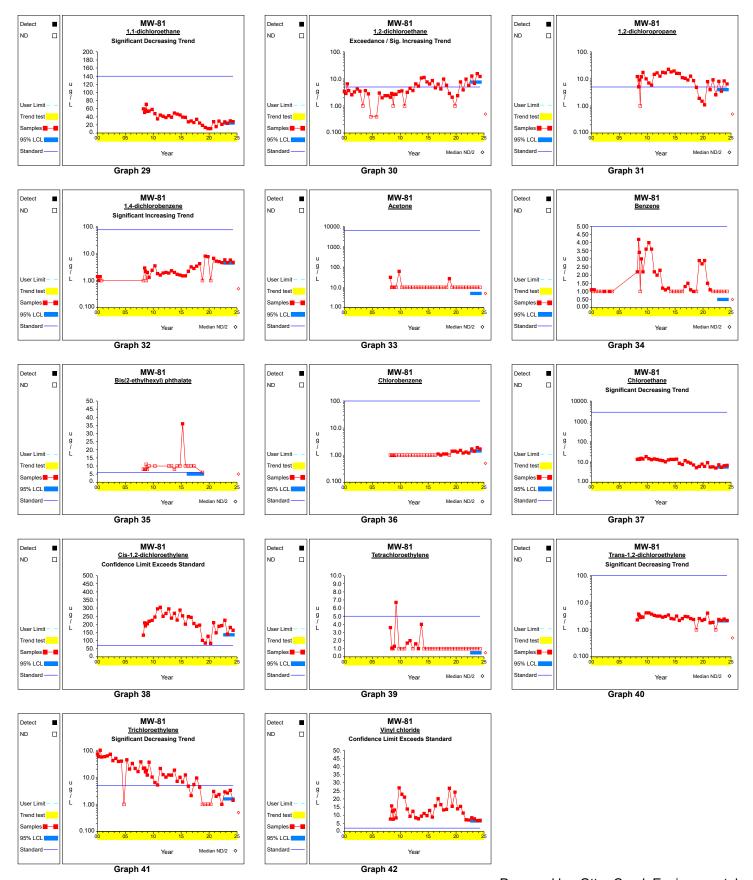
Table 1 Confidence Intervals for Comparing the Mean of the Last 4 Measurements to an Assessment Monitoring Standard

Constituent	Units	Well	N	Mean	SD	Factor	95% LCL	95% UCL	Standard	Trend	
1,1-dichloroethane	ug/L	MW-49	4	1.450	0.265	1.176	1.139	1.761	140.000	dec	
1,2-dichloroethane	ug/L	MW-49	4	0.500	0.000	1.176	0.500	0.500	5.000		
1,2-dichloropropane	ug/L	MW-49	4	0.500	0.000	1.176	0.500	0.500	5.000		
1,4-dichlorobenzene	ug/L	MW-49	4	5.775	1.746	1.176	3.721	7.829	75.000		
Acetone	ug/L	MW-49	4	5.000	0.000	1.176	5.000	5.000	6300.000		
Benzene	ug/L	MW-49	4	1.725	1.115	1.176	0.414	3.036	5.000		
Bis(2-ethylhexyl) phthalate	ug/L	MW-49	4	5.000	0.000	1.176	5.000	5.000	6.000		
Chlorobenzene	ug/L	MW-49	4	0.775	0.320	1.176	0.398	1.152	100.000		
Chloroethane	ug/L	MW-49	4	6.300	1.194	1.176	4.895	7.705	2800.000	dec	
Cis-1,2-dichloroethylene	ug/L	MW-49	4	1.650	0.835	1.176	0.668	2.632	70.000	dec	
Tetrachloroethylene	ug/L	MW-49	4	0.500	0.000	1.176	0.500	0.500	5.000	uoo	
Trans-1,2-dichloroethylene	ug/L	MW-49	4	0.500	0.000	1.176	0.500	0.500	100.000		
		MW-49	4	0.500	0.000	1.176	0.500	0.500	5.000		
Trichloroethylene	ug/L		4							doo	
Vinyl chloride	ug/L	MW-49	4	0.500	0.000	1.176	0.500	0.500	2.000	dec	\vdash
1,1-dichloroethane	ug/L	MW-54		0.650	0.300	1.176	0.297	1.003	140.000		
1,2-dichloroethane	ug/L	MW-54	4	0.500	0.000	1.176	0.500	0.500	5.000		
1,2-dichloropropane	ug/L	MW-54	4	0.500	0.000	1.176	0.500	0.500	5.000		
1,4-dichlorobenzene	ug/L	MW-54	4	2.775	1.075	1.176	1.510	4.040	75.000	inc	
Acetone	ug/L	MW-54	4	5.000	0.000	1.176	5.000	5.000	6300.000		
Benzene	ug/L	MW-54	4	0.500	0.000	1.176	0.500	0.500	5.000		
Bis(2-ethylhexyl) phthalate	ug/L	MW-54	4	5.000	0.000	1.176	5.000	5.000	6.000		
Chlorobenzene	ug/L	MW-54	4	0.500	0.000	1.176	0.500	0.500	100.000		
Chloroethane	ug/L	MW-54	4	0.775	0.550	1.176	0.128	1.422	2800.000	dec	
Cis-1,2-dichloroethylene	ug/L	MW-54	4	0.500	0.000	1.176	0.500	0.500	70.000	dec	
Tetrachloroethylene	ug/L	MW-54	4	0.500	0.000	1.176	0.500	0.500	5.000	200	
Trans-1,2-dichloroethylene	ug/L	MW-54	4	0.500	0.000	1.176	0.500	0.500	100.000		
Trichloroethylene	ug/L ug/L	MW-54	4	0.500	0.000	1.176	0.500	0.500	5.000	dec	
			4		0.000		0.500			uec	
Vinyl chloride	ug/L	MW-54		0.500		1.176		0.500	2.000		\vdash
1,1-dichloroethane	ug/L	MW-81	4	27.450	2.565	1.176	24.433	30.467	140.000	dec	**
1,2-dichloroethane	ug/L	MW-81	4	11.900	3.636	1.176	7.623	16.177	5.000	inc	^
1,2-dichloropropane	ug/L	MW-81	4	6.625	2.244	1.176	3.985	9.265	5.000		
1,4-dichlorobenzene	ug/L	MW-81	4	5.200	0.638	1.176	4.450	5.950	75.000	inc	
Acetone	ug/L	MW-81	4	5.000	0.000	1.176	5.000	5.000	6300.000		
Benzene	ug/L	MW-81	4	0.500	0.000	1.176	0.500	0.500	5.000		
Bis(2-ethylhexyl) phthalate	ug/L	MW-81	4	5.000	0.000	1.176	5.000	5.000	6.000		
Chlorobenzene	ug/L	MW-81	4	1.675	0.206	1.176	1.433	1.917	100.000		
Chloroethane	ug/L	MW-81	4	6.475	0.772	1.176	5.567	7.383	2800.000	dec	
Cis-1,2-dichloroethylene	ug/L	MW-81	4	177.500	35.856	1.176	135.323	219.677	70.000		**
Tetrachloroethylene	ug/L	MW-81	4	0.500	0.000	1.176	0.500	0.500	5.000		
Trans-1,2-dichloroethylene	ug/L	MW-81	4	2.325	0.150	1.176	2.149	2.501	100.000	dec	
Trichloroethylene	ug/L	MW-81	4	2.550	0.819	1.176	1.587	3.513	5.000	dec	
Vinyl chloride	ug/L	MW-81	4	7.400	0.804	1.176	6.454	8.346	2.000	uco	**
1,1-dichloroethane	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	140.000		
1,2-dichloroethane	ug/L ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	5.000		
·											
1,2-dichloropropane	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	5.000		
1,4-dichlorobenzene	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	75.000		
Acetone	ug/L	MW-89	4	5.000	0.000	1.176	5.000	5.000	6300.000		
Benzene	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	5.000		
Bis(2-ethylhexyl) phthalate	ug/L	MW-89	4	8.500	7.000	1.176	0.266	16.734	6.000		
Chlorobenzene	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	100.000		
Chloroethane	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	2800.000		
Cis-1,2-dichloroethylene	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	70.000		
Tetrachloroethylene	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	5.000		
Trans-1,2-dichloroethylene	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	100.000		
Trichloroethylene	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	5.000		
Vinyl chloride	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	2.000		
1,1-dichloroethane	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	140.000	dec	\vdash
1,2-dichloroethane	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	5.000	-50	
1,2-dichloropropane	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	5.000		
1,4-dichlorobenzene		MW-91	4	0.500	0.000	1.176	0.500	0.500	75.000		
	ug/L										
Acetone	ug/L	MW-91	4	5.000	0.000	1.176	5.000	5.000	6300.000		
Benzene	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	5.000		
Bis(2-ethylhexyl) phthalate	ug/L	MW-91	4	5.000	0.000	1.176	5.000	5.000	6.000		
Chlorobenzene	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	100.000		
Chloroethane	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	2800.000		
Cis-1,2-dichloroethylene	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	70.000		
Tetrachloroethylene	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	5.000		
Trans-1,2-dichloroethylene	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	100.000		
Trichloroethylene	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	5.000		
Vinyl chloride	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	2.000		
1,1-dichloroethane	ug/L	MW-94	4	1.925	0.562	1.176	1.264	2.586	140.000	dec	\vdash
1,2-dichloroethane	ug/L	MW-94	4	0.500	0.000	1.176	0.500	0.500	5.000	450	
1,2 dionioroculane	⊥ ug/L	14144-94		0.000	0.000	1.170	0.500	0.500	0.000		ш

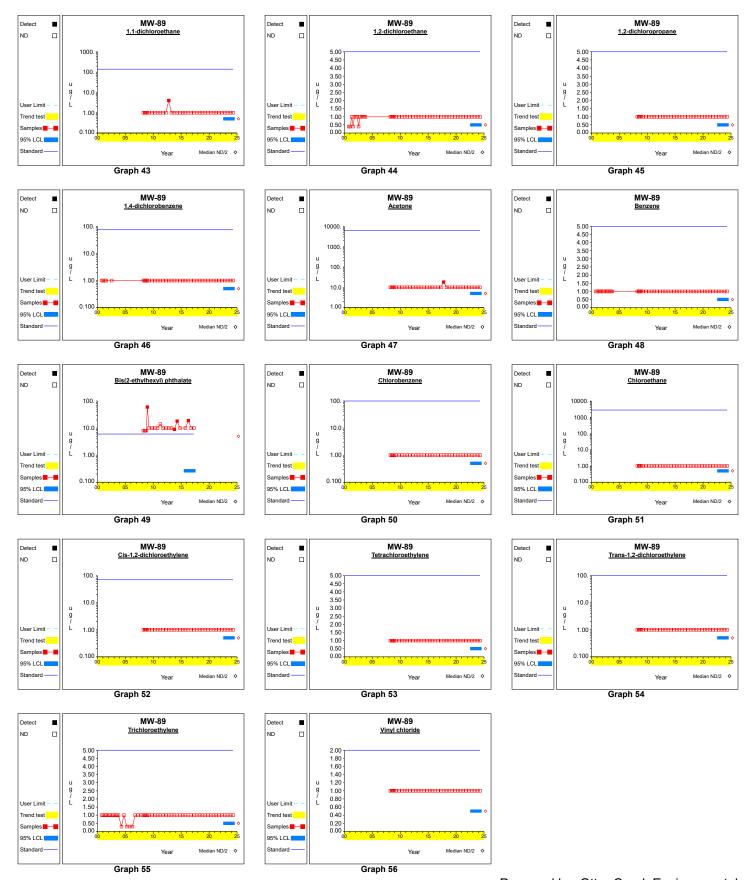

^{* -} Insufficient Data ** - Significant Exceedance LCL = Lower Confidence Limit UCL = Upper Confidence Limit

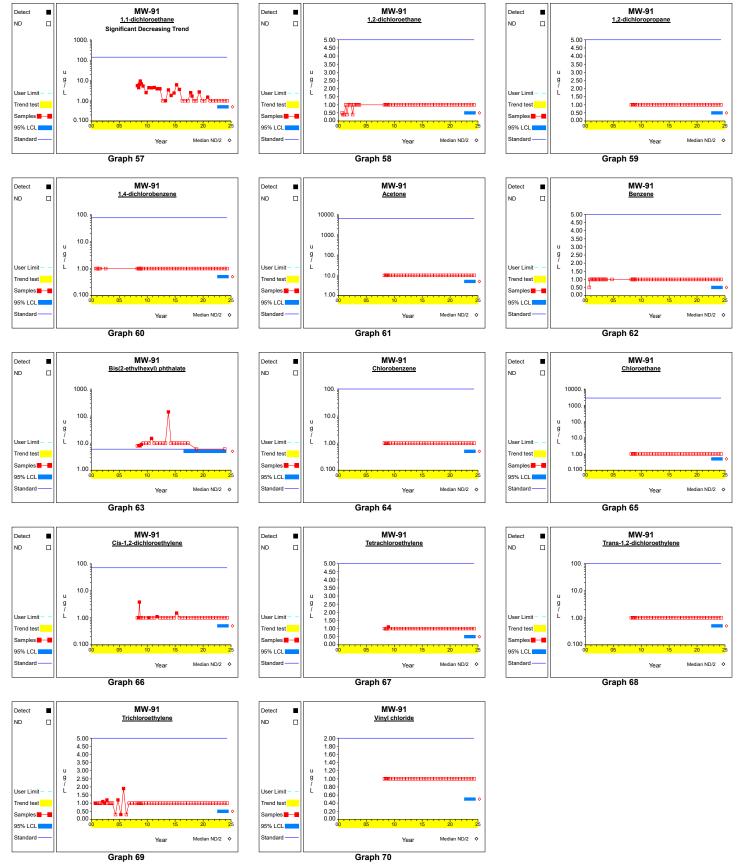
Marshall [VOC] May 2024

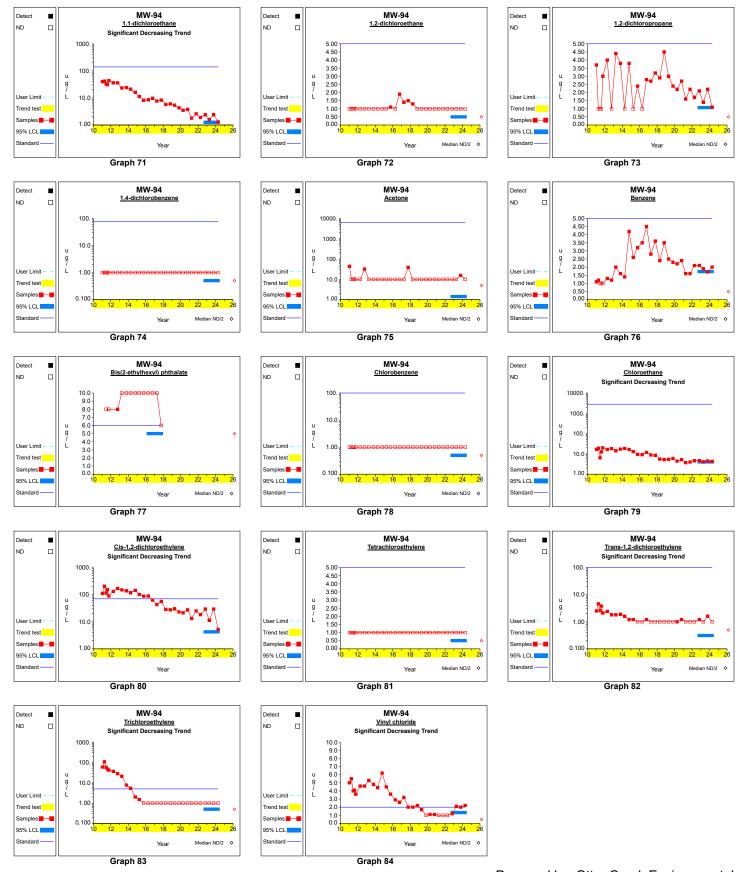

Table 1 Confidence Intervals for Comparing the Mean of the Last 4 Measurements to an Assessment Monitoring Standard

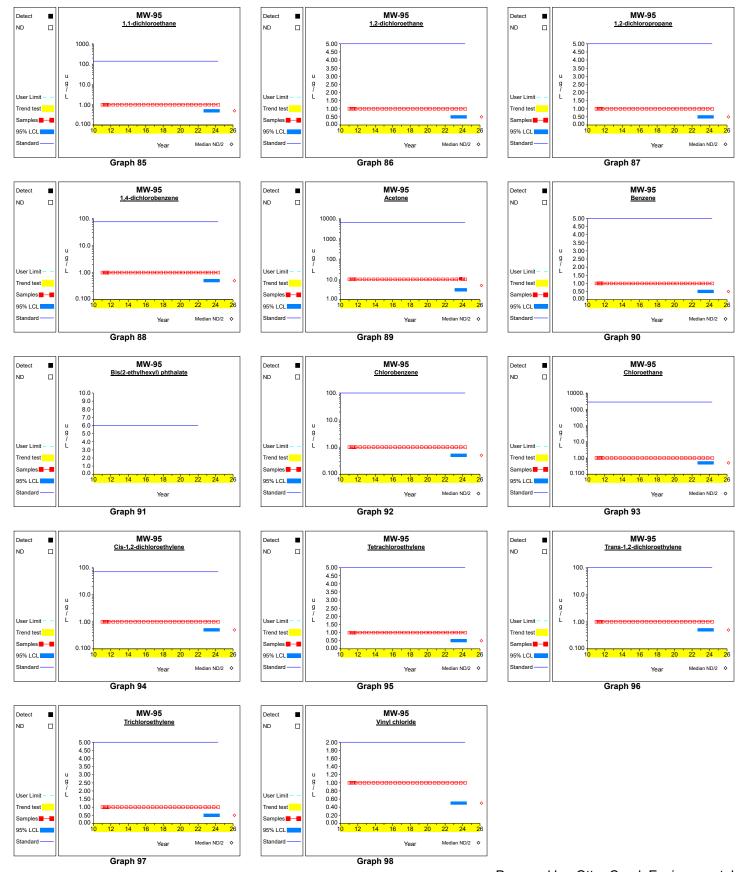

Constituent	Units	Well	N	Mean	SD	Factor	95% LCL	95% UCL	Standard	Trend	
1,2-dichloropropane	ug/L	MW-94	4	1.700	0.535	1.176	1.070	2.330	5.000		
1,4-dichlorobenzene	ug/L	MW-94	4	0.500	0.000	1.176	0.500	0.500	75.000		
Acetone	ug/L	MW-94	4	7.650	5.300	1.176	1.416	13.884	6300.000		
Benzene	ug/L	MW-94	4	1.925	0.171	1.176	1.724	2.126	5.000		
Bis(2-ethylhexyl) phthalate	ug/L	MW-94	4	5.000	0.000	1.176	5.000	5.000	6.000		
Chlorobenzene	ug/L	MW-94	4	0.500	0.000	1.176	0.500	0.500	100.000		
Chloroethane	ug/L	MW-94	4	4.375	0.299	1.176	4.024	4.726	2800.000	dec	
Cis-1,2-dichloroethylene	ug/L	MW-94	4	18.850	12.442	1.176	4.214	33.486	70.000	dec	
Tetrachloroethylene	ug/L	MW-94	4	0.500	0.000	1.176	0.500	0.500	5.000		
Trans-1,2-dichloroethylene	ug/L	MW-94	4	0.950	0.545	1.176	0.309	1.591	100.000	dec	
Trichloroethylene	ug/L	MW-94	4	0.500	0.000	1.176	0.500	0.500	5.000	dec	
Vinyl chloride	ug/L	MW-94	4	1.875	0.457	1.176	1.337	2.413	2.000	dec	
1,1-dichloroethane	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	140.000		
1,2-dichloroethane	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	5.000		
1,2-dichloropropane	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	5.000		
1,4-dichlorobenzene	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	75.000		
Acetone	ug/L	MW-95	4	6.425	2.850	1.176	3.073	9.777	6300.000		
Benzene	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	5.000		
Bis(2-ethylhexyl) phthalate	ug/L	MW-95	0								*
Chlorobenzene	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	100.000		
Chloroethane	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	2800.000		
Cis-1,2-dichloroethylene	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	70.000		
Tetrachloroethylene	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	5.000		
Trans-1,2-dichloroethylene	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	100.000		
Trichloroethylene	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	5.000		
Vinyl chloride	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	2.000		
1,1-dichloroethane	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	140.000		
1,2-dichloroethane	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	5.000		
1,2-dichloropropane	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	5.000		
1,4-dichlorobenzene	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	75.000		
Acetone	ug/L	MW-96R	4	5.000	0.000	1.176	5.000	5.000	6300.000		
Benzene	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	5.000		
Bis(2-ethylhexyl) phthalate	ug/L	MW-96R	2								*
Chlorobenzene	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	100.000		
Chloroethane	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	2800.000		
Cis-1,2-dichloroethylene	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	70.000		
Tetrachloroethylene	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	5.000		
Trans-1.2-dichloroethylene	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	100.000		
Trichloroethylene	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	5.000		
Vinvl chloride	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	2.000		

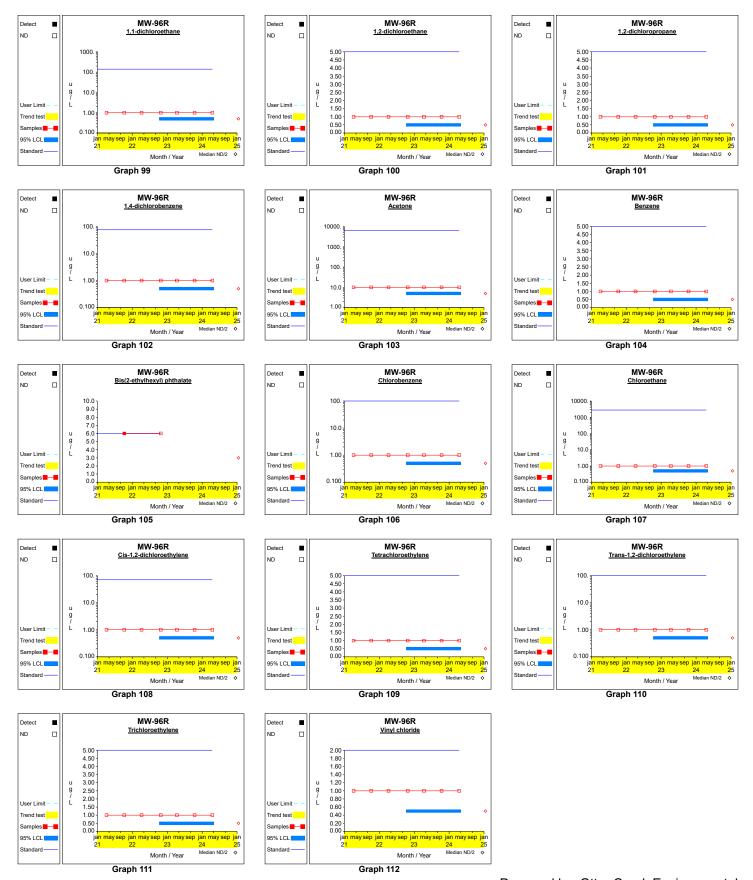
^{* -} Insufficient Data ** - Significant Exceedance LCL = Lower Confidence Limit UCL = Upper Confidence Limit




Prepared by: Otter Creek Environmental






Prepared by: Otter Creek Environmental

Appendix B.2 – Fall Statistical Evaluation Report

GROUND WATER STATISTICS

FOR THE

MARSHALL COUNTY SANITARY LANDFILL

Second Semi-Annual Monitoring Event in 2024

Prepared for:

Marshall County Sanitary Landfill
2313 Marshalltown Blvd.

Marshalltown, Marshall County, IA 50158

Prepared by:
Jeffrey A. Holmgren
Otter Creek Environmental Services, LLC
40W565 Foxwick Court
Elgin, IL 60124
(847) 464-1355

November 2024

INTRODUCTION

This report summarizes the results of the statistical analysis used to evaluate the ground water quality data obtained during the second semi-annual monitoring event in 2024 at the Marshall County Sanitary Landfill in Marshall County, Iowa. The statistical plan was designed to detect a release from the facility at the earliest indication so that it is protective of human health and the environment. The interwell method is described and then applied to the Marshall County Landfill data. The statistical plan conforms with IAC 567, Chapter 113.10 and the USEPA Unified Guidance document ("Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities", March 2009).

Ground Water Monitoring Program

The groundwater monitoring network for Marshall County Sanitary Landfill includes upgradient wells MW-66, MW-85, MW-98, and MW-99 and downgradient detection sample points GU-2, GU-3, MW-49, MW-54, MW-81, MW-87, MW-89, MW-91, MW-93, MW-94, MW-95, MW-96(R), and MW-97. Detections of volatile organic compounds (VOCs) at wells along the north and west edges of the facility prompted a site remedial and mitigating action plan (SRAMP). Wells MW-89, MW-91, and MW-87 were installed to monitor the effectiveness of the SRAMP. Monitoring well MW-93 was installed adjacent to the leachate holding lagoon. Each of the groundwater monitoring wells is to be sampled at least semiannually and analyzed for the detection monitoring parameters listed in 113.10(5), which includes 15 inorganic constituents and 47 organic compounds, summarized in Table 1 below.

Table 1: Detection monitoring constituents listed in Appendix I of IAC 567, Chapter 113.

Organic Compounds:

Acetone trans-1.4-Dichloro-2-butene Iodomethane Acrylonitrile 1,1-Dichloroethane 4-Methyl-2-pentanone 1,2-Dichloroethane Benzene Styrene Bromochloromethane 1.1-Dichloroethene 1.1.1.2-Tetrachloroethane cis-1.2-Dichloroethene 1.1.2.2-Tetrachloroethane Bromodichloromethane trans-1,2-Dichloroethene Tetrachloroethene Bromoform Carbon disulfide 1,2-Dichloropropane Toluene Carbon tetrachloride cis-1,3-Dichloropropene 1,1,1-Trichloroethane trans-1,3-Dichloropropene 1.1.2-Trichloroethane Chlorobenzene Chloroethane Ethylbenzene Trichloroethene Chloroform 2-Hexanone Trichlorofluoromethane Dibromochloromethane Bromomethane 1,2,3-Trichloropropane 1.2-Dibromo-3-chloropropane Chloromethane Vinvl acetate 1,2-Dibromoethane Dibromomethane Vinyl chloride 1.2-Dichlorobenzene Methylene chloride Xylenes (Total) 1,4-Dichlorobenzene 2-Butanone

Inorganic constituents:

Antimony, Total Chromium, Total Selenium, Total Arsenic, Total Cobalt, Total Silver, Total Silver, Total Barium, Total Copper, Total Cadmium, Total Lead, Total Vanadium, Total Cadmium, Total Nickel, Total Zinc, Total

The ground water data obtained during the second semi-annual monitoring event in 2024 are summarized in Attachment A.

STATISTICAL METHODOLOGIES FOR DETECTION MONITORING

IAC 567, Chapter 113.10(4) provides several options for statistically evaluating the ground water data at those wells that monitor the open cells or contiguous MSWLF units. The preferred methods for comparing ground water data are using either prediction limits or using control charts. The interwell method was applied to the Marshall County Landfill data using the DUMPStat® statistical program. Ground water statistics are to be done on the inorganic constituents listed. The organic constituents are compared to maximum contaminant levels (MCLs) or practical quantitation limits (PQLs), in lieu of statistical comparisons to historical concentrations.

Interwell Statistics: Upgradient versus Downgradient Comparisons

Interwell statistics are appropriate when the upgradient and downgradient wells monitor the same ground water formation and there is similar variability in the upgradient and downgradient zones. Site prediction limits are determined by pooling the historical ground water data from hydraulically upgradient wells. This statistical method compares the current downgradient determinations to site prediction limits and checks for exceedances. The type of prediction limit utilized (e.g., parametric or nonparametric) is based on the detection frequency and the data distribution of each parameter in the background data. The distribution of the background data is tested for normality using the Shapiro-Wilk test (Gibbons, 1994 and USEPA 1992). If the constituent is normally distributed, a normal prediction limit is used. If normality is rejected by the Shapiro-Wilk test, the background data is transformed by taking the natural logarithm. The Shapiro-Wilk test is then reapplied on the transformed data. If it is not rejected, lognormal prediction limits are used. If after transforming the data, normality is still rejected, nonparametric prediction limits are used for that analyte. The nonparametric prediction limit is the largest determination in the background measurements. For constituents where the background detection frequency is greater than 0% but less than 50%, nonparametric prediction limits will be used. If the detection frequency is 0% after thirteen samples have been collected, the practical quantitation limit (PQL) becomes the nonparametric prediction limit.

Results of the Interwell Statistics

The background data used in this statistical analysis includes the ground water data collected from ground water wells MW-66, MW-85, MW-98, and MW-99 during the period from October 2014 through the current data. A summary of the background data from monitoring wells MW-66, MW-85, MW-98, and MW-99, used to determine the site prediction limits, is listed in Attachment B, Table 1 "Upgradient Data". This statistical method compares the current downgradient determinations to site prediction limits and checks for exceedances. Table 2 "Most Current Downgradient Monitoring Data", summarizes the current data from downgradient wells MW-87, MW-89, MW-91, MW-93, MW-95, MW-96R, and MW-97 compared to the site prediction limits. Prediction limit exceedances are flagged with asterisks.

For the data obtained during the second semi-annual monitoring event in 2024, the site prediction limit exceedances detected are summarized in the table below.

Trace Metal Prediction Limit	Exceedances During the Second S	Semi-Annual Monitoring Event in 2024

Well	Trace Metal Detected	Result, μg/L	Prediction Limit, µg/L	Prediction Limit Type	Verified/ Awaiting Verification
	Arsenic	15.2	7.8000	Nonparametric	Verified
MW-93	Cobalt	9.9	5.9879	Normal	Verified
	Nickel	27.1	8.8000	Nonparametric	Verified
MW-96R	Cobalt	10.5	5.9879	Normal	Awaiting Verification

The detection frequencies of the parameters in the up and down gradient monitoring wells are summarized in Table 3. Excluding barium and cobalt, these constituents are rarely detected in the upgradient wells. With the detection frequencies being less than 50% for all but barium and cobalt, nonparametric site prediction limits are used for those trace metals. Table 4 summarizes the results of the Shapiro-Wilk test. Table 5 is a summary of the statistics and prediction limits determined for the metals. Time series graphs of each of the parameters at each well with the corresponding prediction limits are attached.

A statistical power curve indicates the expected false assessments for the site as a whole. The false positive rate for interwell analyses is the percentage of failures when the upgradient versus downgradient true mean difference equals zero. False negative rate indicates the chance of missing contamination at a single well for a single constituent. The statistical power is a function of the number of wells included, the number of constituents compared, the detection frequencies, and the data distributions involved. For interwell analysis, the site-wide false positive rate is 1% and the test becomes sensitive to 4 standard deviation unit increases over background.

The verified metals exceedances were evaluated against the ground water protection standards (GWPS) using confidence limits calculated in accordance with the Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, USEPA, March 2009 (Attachment C). The analysis was conducted to evaluate whether verified concentrations are significantly above the water quality standard. The 95% lower confidence limit (LCL) for the mean of the historical data was used to evaluate whether the regulated unit is in compliance with the ground-water protection standards under 40 CFR 264 (e.g. whether the verified constituent is detected at a significant level above the GWPS). An exceedance is verified if the LCL is above the Regulatory GWPS.

The 95% LCL for cobalt at MW-93 (8.367 μ g/L) exceeds the Iowa Statewide Standard of 2.1 μ g/L. The remainder of the calculated 95% LCLs are below the respective GWPS.

Supplemental Wells

Monitoring wells MW-49, MW-54, MW-81, MW-94, and MW-96R are designated as supplemental wells, where only trend analysis is required. The data for each well is tested for existing trends using Sen's nonparametric estimate of trend (Attachment D). An increasing trend was identified for arsenic at MW-94. Decreasing trends were identified for nickel at MW-54, cobalt and nickel at MW-94, and barium at MW96R.

Intrawell statistics

Because MW-93 monitors a leachate storage lagoon, the current data was also compared to background using intrawell statistics. MW-96R is also evaluated by intrawell statistics at the request of the IDNR. Intrawell statistics are appropriate for facilities where the upgradient wells do not accurately characterize the natural ground water conditions downgradient from the facility. This may be due to different hydrogeological conditions where the wells are screened, having too few upgradient wells to account for the spatial variability, or the site exhibiting no definable hydraulic gradient. Intrawell statistics compare new measurements to the historical data at each ground water monitoring well independently. It is recommended that at least eight background samples be obtained prior to performing the statistics.

The most useful technique for intrawell comparisons is the combined Shewhart-CUSUM control chart. This control chart procedure is useful because it will detect releases both in terms of the constituent concentration and cumulative increases. This method is also extremely sensitive to sudden and gradual releases. A requirement for constructing these control charts is that the parameter is detected at a frequency greater than or equal to 25%, otherwise the data variance is not properly defined.

The combined Shewhart-CUSUM control chart assumes that the data are independent and normally distributed with a fixed mean and a constant variance. Independent data is much more critical than the normality assumption. To achieve independence, it is recommended that data are collected no more frequently than quarterly to account for seasonal variation. The combined Shewhart-CUSUM control chart is extremely robust to deviations from normality. Because the control charts do not use a specific multiplier based on a normal distribution, it is more conservative to assume normality.

It is recommended that at least eight rounds of data be available to provide a reliable estimate of the mean and standard deviation of the parameter concentration, although the control charts will be generated with as few as four data points. Having only four data points may produce greater uncertainty in the mean and standard deviation of the background data, leading to higher control limits, thus having a potentially high false negative rate.

Many groundwater monitoring parameters are not detected at a frequency great enough to generate the combined Shewhart-CUSUM control charts. For constituents that are detected less than 25% of the time at a particular well, the data should be plotted as a time series until a sufficient number of data points are available to provide a 99% confidence nonparametric prediction limit. Thirteen independent measurements (with 1 resample) are necessary to achieve a 99% confidence (1% false positive rate) nonparametric prediction limit. Eight independent measurements (for pass 1 of 2 resamples) are necessary to achieve a 99% confidence nonparametric prediction limit. The nonparametric prediction limit is the largest determination out of the data set collected for that well and parameter. If the detection frequency is 0% after thirteen samples have been collected, the practical quantitation limit (PQL) becomes the nonparametric prediction limit.

In developing the statistical background, the historical data must be thoroughly screened for anomalous data due to sampling error, analytical error, or simply by chance alone. An erroneous data point, if not removed prior to the mean and variance computations, would yield a larger control limit thus increasing

the false negative rate. The DUMPStat® program screens for outliers using the Dixon test. Anomalous data will still be plotted on the graphs (with a unique symbol) but will not be included in the calculations.

The verification resample plan is an integral function of the statistical plan to reduce the probability that anomalous data obtained after the background has been established, is indicative of a landfill release.

The background data for each well and constituent is tested for existing trends using Sen's nonparametric estimate of trend. If contamination exists prior to completing the background, the control limits could be potentially high and this control chart method would not be able to detect an increasing trend unless the increase is severe.

Results of the Intrawell Statistics

The Appendix I trace metals data from well MW-93 and MW-96R were evaluated using the combined Shewhart-CUSUM control chart method. The previous background at MW-93 included the data obtained from October 2014 through April 2018. As ground water monitoring at a municipal solid waste facility proceeds, it is recommended to update background data sets periodically with valid detection monitoring results that are representative of background groundwater quality not affected by leakage from a monitored unit. Failure to update background will exclude factors such as natural temporal variation, changes in field or laboratory methodologies, and changes in the water table due to meteorological conditions or other influences. Ongoing operations at a facility such as excavations or drainage control may affect the ground water flow direction and water quality. An increase in the number of statistical failures, not related to the landfill, is routinely observed for sites neglecting to update the statistical background with valid data points.

Since there were no exceedances attributed to the lagoon and also that there was insufficient background to determine nonparametric limits, the background was updated to include data collected from October 2014 through 2020 for MW-93. There is generally insufficient background data at MW-96R.

A summary of the intrawell statistics is included in Attachment E, Table 1 "Summary Statistics and Intermediate Computations for Combined Shewhart-CUSUM Control Charts." The control charts or time series graphs follow the summary table.

For the parameters compared to background, there were no control limit exceedances detected. No increasing trends were detected in the background data.

A control chart factor was selected to provide a balance of the site-wide false positive and false negative rates. A statistical power curve indicates the expected false assessments for the site as a whole. For intrawell analysis, the site-wide false positive rate is 5% and the test becomes sensitive to 3 standard deviation units over background.

Volatile Organic Compounds

Volatile Organic Compounds (VOCs) are generally man-made compounds not present in ambient ground water. If VOCs are detected above their statistical limit (i.e., the laboratory PQL or reporting limit), a verification resample will be conducted at the next scheduled sampling event. A statistical exceedance will be indicated if the VOC detection is confirmed by the subsequent monitoring. VOCs detected in the ground

water at Marshall County Landfill during the second semi-annual monitoring event in 2024 monitoring are summarized below.

VOCs Detected During the Second Semi-Annual Monitoring Event in 2024

Well	VOC Detected	Result, μg/L	Reporting Limit, µg/L	Verified or Awaiting Verification	Ground Water Standard
	1,1-Dichloroethane	1.2	1	Verified	140 ^b
	1,4-Dichlorobenzene	7.9	1	Verified	75ª
MW-49	Benzene	3.7	1	Verified	75ª
	Chlorobenzene	1.1	1	Verified	100ª
	Chloroethane	5.5	1	Verified	2800 ^b
MW-54	1,4-Dichlorobenzene	2.9	1	Verified	75ª
	1,1-Dichloroethane	24.8	1	Verified	140 ^b
	1,2-Dichloroethane	11.2	1	Verified	5ª
	1,2-Dichloropropane	6.9	1	Verified	5ª
	1,4-Dichlorobenzene	5.6	1	Verified	75ª
	Chlorobenzene	1.8	1	Verified	100ª
MW-81	Chloroethane	6.0	1	Verified	2800 ^b
	cis-1,2-Dichloroethene	127	1	Verified	70ª
	trans-1,2-Dichloroethene	2.4	1	Verified	100ª
	Trichloroethene	2.2	1	Verified	5ª
	Vinyl chloride	6.5	1	Verified	2ª
	1,1-Dichloroethane	1.0	1	Verified	140 ^b
	1,2-Dichloropropane	1.0	1	Verified	5ª
	Benzene	1.8	1	Verified	75ª
MW-94	Chloroethane	3.0	1	Verified	2800 ^b
	cis-1,2-Dichloroethene	6.0	1	Verified	70ª
	Vinyl chloride	2.0	1	Verified	2ª

a - USEPA MCL

This table indicates that these VOCs are generally verified detections. A site remedial and mitigating action plan was implemented due to the presence of these VOCs. Historical VOC detections are summarized in Attachment F.

The verified VOC detections were evaluated against the ground water protection standards (GWPS) using confidence limits calculated in accordance with the Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, USEPA, March 2009 (Attachment G).

The 95% LCL for 1,2-dichloropropane at MW-81 (7.275 μg/L) exceeds the USEPA MCL of 5 μg/L.

 $b-Iowa\ Statewide\ Standard$

The 95% LCL for cis-1,2-dichloroethene at MW-81 (124.590 μ g/L) exceeds the USEPA MCL of 70 μ g/L. The 95% LCL for vinyl chloride at MW-81 (6.300 μ g/L) exceeds the USEPA MCL of 2 μ g/L.

The remainder of the verified VOC detections are statistically below the respective ground water quality standards.

Attachment A

Summary of the Data obtained during the Second Semi-Annual Monitoring Event in 2024

Table 1

Analytical Data Summary for 10/15/2024

Constituents	Units	LW-75	MW-213	MW-49	MW-54	MW-81	MW-85	MW-87	MW-89	MW-91	MW-93	MW-94	MW-95	MW-96R	MW-97	MW-98	MW-99
1,1,1,2-tetrachloroethane	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L		1.9	1.2	<1.0	24.8	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloroethylene	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	ug/L		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-dibromoethane	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1.2-dichlorobenzene	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1.2-dichloroethane	ug/L		<1.0	<1.0	<1.0	11.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichloropropane	ug/L		3.8	<1.0	<1.0	6.9	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-dichlorobenzene	ug/L		<1.0	7.9	2.9	5.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0
2-butanone (mek)	ug/L		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10
2-hexanone (mbk)	ug/L		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	<5
4-methyl-2-pentanone (mibk)	ug/L		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	<5
Acetone	ug/L		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10		<10	<10
Acrylonitrile	ug/L		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5		<5	<5
Alkalinity, as caco3	mg/L	1730	\ \ \	1170	612	907	\3	-5	٠٥	``	\3	752	\ \	٧٥	"	~ 5	~3
Antimony, total	ug/L	1730	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic, total		17.6	<4.0	520.0	5.4	6.0	<4.0	<4.0	<4.0	<4.0	15.2	75.8	<4.0	6.6		<4.0	<4.0
Barium, total	ug/L	17.0	720.0	213.0	481.0		136.0	100.0	215.0	242.0	242.0	305.0	32.3	338.0		137.0	88.8
,	ug/L				401.0 <1.0	1580.0 <1.0	<1.0	<1.0					32.3 <1.0	336.0 <1.0			00.0 <1.0
Benzene	ug/L		<1.0	3.7 <4		<1.0 <4			<1.0	<1.0 <4	<1.0	1.8 <4	<1.0 <4			<1.0 <4	<1.0 <4
Beryllium, total	ug/L	00	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	^{<4}
Bod (5 day)	mg/L	82															
Bromochloromethane	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	ug/L		<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8		<.8	<.8
Carbon disulfide	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chemical oxygen demand	mg/L	1050															
Chloride	mg/L	1220															
Chlorobenzene	ug/L		<1.0	1.1	<1.0	1.8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0
Chloroethane	ug/L		1.4	5.5	<1.0	6.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	ug/L		<8	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	ug/L		19	<1	<1	127	<1	<1	<1	<1	<1	6	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	ug/L	18.8	<.4	66.9	9.9	8.2	<.4	<.4	<.4	<.4	9.9	8.8	<.4	10.5	<.4	1.9	.9
Copper, total	ug/L		<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Dibromochloromethane	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethane	ug/L	<5	'	<5	<5	<5	•				·	<5		•	'	-	·
Ethene	ug/L	<5		<5	<5	<5						<5					
Ethylbenzene	ug/L	"	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	ug/L		<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Methane	ug/L	5530	`~	4770	78	560	`-	`-	`-		`-	1380	"	`~	"	~-	
Methyl iodide	ug/L ug/L	3330	<1	<1	/ 6 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride			<5	< 1 < 5	<5	<5	<5	<5	<5	<5	< 1 < 5	<5	<5	<5		<5	<5
	ug/L		<5 <4.0		22.6	9.4				<5 <4.0		<5 7.4				<4.0	<4.0
Nickel, total	ug/L	100	<4.0	33.9	22.6	9.4	<4.0	<4.0	<4.0	<4.0	27.1	7.4	<4.0	4.6	<4.0	<4.0	<4.0
Nitrogen, ammonia	mg/L	109															

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 1

Analytical Data Summary for 10/15/2024

Constituents	Units	LW-75	MW-213	MW-49	MW-54	MW-81	MW-85	MW-87	MW-89	MW-91	MW-93	MW-94	MW-95	MW-96R	MW-97	MW-98	MW-99
pH	pН	6.6		6.3	6.4	6.3						6.4					
Selenium, total	ug/L		<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	ug/L		<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Solids, total dissolved	mg/L	3780															
Solids, total suspended	mg/L	7															
Styrene	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulfate	mg/L	138															
Tetrachloroethylene	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	ug/L		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Toluene	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	ug/L		<1.0	<1.0	<1.0	2.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trans-1,3-dichloropropene	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L		<1.0	<1.0	<1.0	2.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	ug/L		<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	ug/L		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl chloride	ug/L		1.4	<1.0	<1.0	6.5	<1.0	<1.0	<1.0	<1.0	<1.0	2.0	<1.0	<1.0	<1.0	<1.0	<1.0
Xylenes, total	ug/L		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	ug/L		<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	20.3	<20.0	<20.0	<20.0	<20.0	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Attachment B

Summary Tables and Graphs for the Interwell Comparisons

marshall2024s2 November 2024

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Antimony, total	ug/L	MW-66	10/16/2014	ND	2.0000		
Antimony, total	ug/L	MW-66	01/14/2015	ND	2.0000		
Antimony, total	ug/L	MW-66	04/03/2015	ND	2.0000		
Antimony, total	ug/L	MW-66	07/06/2015	ND	2.0000		
Antimony, total	ug/L	MW-66	10/01/2015	ND	2.0000		
Antimony, total	ug/L	MW-66	04/14/2016	ND	2.0000		
Antimony, total	ug/L	MW-66	10/13/2016	ND	2.0000		
Antimony, total	ug/L	MW-66	04/10/2017	ND	2.0000		
Arsenic, total	ug/L	MW-66	10/16/2014	ND	4.0000		
Arsenic, total	ug/L	MW-66	01/14/2015	ND	4.0000		
Arsenic, total	ug/L	MW-66	04/03/2015	ND	4.0000		
Arsenic, total	ug/L	MW-66	07/06/2015	ND	4.0000		
Arsenic, total	ug/L	MW-66	10/01/2015	ND	4.0000		
Arsenic, total	ug/L	MW-66	04/14/2016	ND	4.0000		
Arsenic, total	ug/L	MW-66	10/13/2016	ND	4.0000		
Arsenic, total	ug/L	MW-66	04/10/2017	ND	4.0000		
Barium, total	ug/L	MW-66	10/16/2014		325.0000		
Barium, total	ug/L	MW-66	01/14/2015		412.0000		
Barium, total	ug/L	MW-66	04/03/2015		524.0000		
Barium, total	ug/L	MW-66	07/06/2015		560.0000		
Barium, total	ug/L	MW-66	10/01/2015		612.0000		
Barium, total	ug/L	MW-66	04/14/2016		395.0000		
Barium, total	ug/L	MW-66	10/13/2016		413.0000		
Barium, total	ug/L	MW-66	04/10/2017		371.0000		
Beryllium, total	ug/L	MW-66	10/16/2014	ND	4.0000		
Beryllium, total	ug/L	MW-66	01/14/2015	ND	4.0000		
Beryllium, total	ug/L	MW-66	04/03/2015	ND	4.0000		
Beryllium, total	ug/L	MW-66	07/06/2015	ND	4.0000		
Beryllium, total	ug/L	MW-66	10/01/2015	ND	4.0000		
Beryllium, total	ug/L	MW-66	04/14/2016	ND	4.0000		
Beryllium, total	ug/L	MW-66	10/13/2016	ND	4.0000		
Beryllium, total	ug/L	MW-66	04/10/2017	ND	4.0000		
Cadmium, total	ug/L	MW-66	10/16/2014	ND	0.8000		
Cadmium, total	ug/L	MW-66	01/14/2015	ND	0.8000		
Cadmium, total	ug/L	MW-66	04/03/2015	ND	0.8000		
Cadmium, total	ug/L	MW-66	07/06/2015	ND	0.8000		
Cadmium, total	ug/L	MW-66	10/01/2015	ND	0.8000		
Cadmium, total	ug/L	MW-66	04/14/2016	ND	0.8000		
Cadmium, total	ug/L	MW-66	10/13/2016	ND	0.8000		
Cadmium, total	ug/L	MW-66	04/10/2017	ND	0.8000		
Chromium, total	ug/L	MW-66	10/16/2014	ND	8.0000		
Chromium, total	ug/L	MW-66	01/14/2015	ND	8.0000		
Chromium, total	ug/L	MW-66	04/03/2015	ND	8.0000		
Chromium, total	ug/L	MW-66	07/06/2015	ND	8.0000		
Chromium, total	ug/L	MW-66	10/01/2015	ND	8.0000		
Chromium, total	ug/L	MW-66	04/14/2016	ND	8.0000		
Chromium, total	ug/L	MW-66	10/13/2016	ND	8.0000		
Chromium, total	ug/L	MW-66	04/10/2017	ND	8.0000		
Cobalt, total	ug/L	MW-66	10/16/2014	ND	0.8000		
Cobalt, total	ug/L	MW-66	01/14/2015	ND	0.8000		
Cobalt, total	ug/L	MW-66	04/03/2015	ND	0.8000		
Cobalt, total	ug/L	MW-66	07/06/2015	ND	0.8000		
Cobalt, total	ug/L	MW-66	10/01/2015	ND	0.8000		
Cobalt, total	ug/L	MW-66	04/14/2016	ND	0.8000		
Cobalt, total	ug/L	MW-66	10/13/2016		0.9000		
Cobalt, total	ug/L	MW-66	04/10/2017	ND	0.8000		
Copper, total	ug/L	MW-66	10/16/2014	ND	4.0000		
Copper, total	ug/L	MW-66	01/14/2015	ND	4.0000		
Copper, total	ug/L	MW-66	04/03/2015	ND	4.0000		
Copper, total	ug/L	MW-66	07/06/2015	ND	4.0000		
Copper, total	ug/L	MW-66	10/01/2015	ND	4.0000		
Copper, total	ug/L	MW-66	04/14/2016	ND	4.0000		
Copper, total	ug/L	MW-66	10/13/2016	ND	4.0000		
Copper, total	ug/L	MW-66	04/10/2017	ND	4.0000		
Lead, total	ug/L	MW-66	10/16/2014	ND	4.0000		
Lead, total	ug/L	MW-66	01/14/2015	ND	4.0000		
Lead, total	ug/L	MW-66	04/03/2015	ND	4.0000		
Lead, total	ug/L	MW-66	07/06/2015	ND	4.0000		
Lead, total	ug/L	MW-66	10/01/2015	ND	4.0000		
Lead, total	ug/L	MW-66	04/14/2016	ND	4.0000		
Lead, total	ug/L	MW-66	10/13/2016	ND	4.0000		
Lead, total	ug/L	MW-66	04/10/2017	ND	4.0000		
Nickel, total	ug/L	MW-66	10/16/2014	ND	4.0000		
Mickel, Iolai							

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Nickel, total	ug/L	MW-66	04/03/2015	ND	4.0000		
Nickel, total	ug/L	MW-66	07/06/2015	ND	4.0000		
Nickel, total	ug/L	MW-66	10/01/2015	ND	4.0000		
Nickel, total	ug/L	MW-66	04/14/2016	ND	4.0000		
Nickel, total	ug/L	MW-66	10/13/2016	ND	4.0000		
Nickel, total	ug/L	MW-66	04/10/2017	ND	4.0000		
Selenium, total	ug/L	MW-66	10/16/2014	ND	4.0000		
Selenium, total	ug/L	MW-66	01/14/2015	ND	4.0000		
Selenium, total	ug/L	MW-66	04/03/2015	ND	4.0000		
Selenium, total	ug/L	MW-66	07/06/2015	ND	4.0000		
Selenium, total	ug/L	MW-66	10/01/2015	ND	4.0000		
Selenium, total	ug/L	MW-66	04/14/2016	ND	4.0000		
Selenium, total	ug/L	MW-66	10/13/2016	ND	4.0000		
Selenium, total	ug/L	MW-66	04/10/2017	ND	4.0000		
Silver, total	ug/L	MW-66	10/16/2014	ND	4.0000		
Silver, total	ug/L	MW-66	01/14/2015	ND	4.0000		
Silver, total	ug/L	MW-66	04/03/2015	ND	4.0000		
Silver, total	ug/L	MW-66	07/06/2015	ND	4.0000		
Silver, total	ug/L	MW-66	10/01/2015	ND	4.0000		
Silver, total	ug/L	MW-66	04/14/2016	ND	4.0000		
Silver, total	ug/L	MW-66	10/13/2016	ND	4.0000		
Silver, total	ug/L	MW-66	04/10/2017	ND	4.0000	2 0000	**
Thallium, total	ug/L	MW-66	10/16/2014	ND ND	4.0000	2.0000 2.0000	**
Thallium, total	ug/L	MW-66 MW-66	01/14/2015 04/03/2015	ND ND	4.0000 4.0000		**
Thallium, total Thallium, total	ug/L	MW-66		ND ND	I	2.0000	**
Thallium, total	ug/L	MW-66	07/06/2015 10/01/2015	ND	4.0000 1.0000	2.0000 2.0000	**
Thallium, total	ug/L ug/L	MW-66	04/14/2016	ND	4.0000	2.0000	**
Thallium, total	ug/L ug/L	MW-66	10/13/2016	ND	4.0000	2.0000	**
Thallium, total	ug/L ug/L	MW-66	04/10/2017	ND	4.0000	2.0000	**
Vanadium, total	ug/L ug/L	MW-66	10/16/2014	ND	20.0000	2.0000	
Vanadium, total	ug/L	MW-66	01/14/2015	ND	20.0000		
Vanadium, total	ug/L	MW-66	04/03/2015	ND	20.0000		
Vanadium, total	ug/L	MW-66	07/06/2015	ND	20.0000		
Vanadium, total	ug/L	MW-66	10/01/2015	ND	20.0000		
Vanadium, total	ug/L	MW-66	04/14/2016	ND	20.0000		
Vanadium, total	ug/L	MW-66	10/13/2016	ND	20.0000		
Vanadium, total	ug/L	MW-66	04/10/2017	ND	20.0000		
Zinc, total	ug/L	MW-66	10/16/2014	ND	20.0000		
Zinc, total	ug/L	MW-66	01/14/2015	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-66	04/03/2015		54.6000		
Zinc, total	ug/L	MW-66	07/06/2015	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-66	10/01/2015	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-66	04/14/2016	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-66	10/13/2016	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-66	04/10/2017	ND	8.0000	20.0000	**
Antimony, total	ug/L	MW-85	10/16/2014	ND	2.0000		
Antimony, total	ug/L	MW-85	01/14/2015	ND	2.0000		
Antimony, total	ug/L	MW-85	04/03/2015	ND	2.0000		
Antimony, total	ug/L	MW-85	07/06/2015	ND	2.0000		
Antimony, total	ug/L	MW-85	10/01/2015	ND	2.0000		
Antimony, total	ug/L	MW-85	04/14/2016	ND	2.0000		
Antimony, total	ug/L	MW-85	10/13/2016	ND	2.0000		
Antimony, total	ug/L	MW-85	04/10/2017	ND	2.0000		
Antimony, total	ug/L	MW-85	10/09/2017	ND	2.0000		
Antimony, total	ug/L	MW-85	04/17/2018	ND	2.0000		
Antimony, total	ug/L	MW-85	10/22/2018	ND	2.0000		
Antimony, total	ug/L	MW-85	04/22/2019	ND	2.0000		
Antimony, total	ug/L	MW-85	10/23/2019	ND	2.0000		
Antimony, total	ug/L	MW-85	04/10/2020	ND	2.0000		
Antimony, total	ug/L	MW-85	10/19/2020	ND	2.0000		
Antimony, total	ug/L	MW-85	04/05/2021	ND	2.0000		
Antimony, total	ug/L	MW-85	10/08/2021	ND	2.0000		
Antimony, total	ug/L	MW-85	04/06/2022	ND	2.0000 2.0000		
Antimony, total	ug/L	MW-85	10/25/2022	ND			
Antimony, total	ug/L	MW-85	04/11/2023	ND	2.0000		
Antimony, total	ug/L	MW-85	10/13/2023	ND	2.0000		
Antimony, total	ug/L	MW-85	04/17/2024	ND	2.0000		
Antimony, total Arsenic, total	ug/L	MW-85	10/15/2024	ND	2.0000		-
	ug/L	MW-85 MW-85	10/16/2014	ND	4.0000		
Arsenic, total Arsenic, total	ug/L	MW-85	01/14/2015 04/03/2015	ND ND	4.0000 4.0000		
Arsenic, total	ug/L ug/L	MW-85	07/06/2015	ND	4.0000		
	ug/L ug/L	MW-85	10/01/2015	ND	4.0000		
Arsenic, total							

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Arsenic, total	ug/L	MW-85	04/14/2016	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/13/2016	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/10/2017	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/09/2017	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/17/2018	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/22/2018	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/22/2019	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/23/2019	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/10/2020	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/19/2020	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/05/2021	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/08/2021	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/06/2022	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/25/2022	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/11/2023	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/13/2023	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/17/2024	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/15/2024	ND	4.0000		
Barium, total	ug/L	MW-85	10/16/2014		138.0000		
Barium, total	ug/L	MW-85	01/14/2015		157.0000		
Barium, total	ug/L	MW-85	04/03/2015		167.0000		
Barium, total	ug/L	MW-85	07/06/2015		143.0000		
Barium, total	ug/L	MW-85	10/01/2015		135.0000		
Barium, total	ug/L	MW-85	04/14/2016		155.0000		
Barium, total	ug/L	MW-85	10/13/2016		149.0000		
Barium, total	ug/L	MW-85	04/10/2017		175.0000		
Barium, total	ug/L	MW-85	10/09/2017		143.0000		
Barium, total	ug/L	MW-85	04/17/2018		142.0000		
Barium, total	ug/L	MW-85	10/22/2018		146.0000		
Barium, total	ug/L	MW-85	04/22/2019		152.0000		
Barium, total	ug/L	MW-85	10/23/2019		126.0000		
Barium, total	ug/L	MW-85	04/10/2020		160.0000		
Barium, total	ug/L	MW-85	10/19/2020		151.0000		
Barium, total	ug/L	MW-85	04/05/2021		135.0000		
Barium, total	ug/L ug/L	MW-85	10/08/2021		121.0000		
Barium, total	ug/L ug/L	MW-85	04/06/2022		133.0000		
l =	ug/L ug/L	MW-85	10/25/2022		138.0000		
Barium, total		MW-85	04/11/2023		141.0000		
Barium, total	ug/L						
Barium, total	ug/L	MW-85 MW-85	10/13/2023 04/17/2024		143.0000 144.0000		
Barium, total Barium, total	ug/L ug/L	MW-85	10/15/2024		136.0000		
Beryllium, total	ug/L	MW-85	10/16/2014	ND	4.0000		
Beryllium, total	ug/L	MW-85	01/14/2015	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-85	04/03/2015	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-85	07/06/2015	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-85	10/01/2015	ND	4.0000		
		MW-85		ND	4.0000		
Beryllium, total	ug/L		04/14/2016				
Beryllium, total	ug/L	MW-85	10/13/2016	ND ND	4.0000		
Beryllium, total Beryllium, total	ug/L	MW-85	04/10/2017	ND	4.0000		
	ug/L	MW-85	10/09/2017		4.0000		
Beryllium, total	ug/L	MW-85	04/17/2018	ND	4.0000		
Beryllium, total	ug/L	MW-85	10/22/2018	ND	4.0000		
Beryllium, total	ug/L	MW-85 MW-85	04/22/2019 10/23/2019	ND	4.0000 4.0000		
Beryllium, total	ug/L			ND ND			
Beryllium, total	ug/L	MW-85	04/10/2020		4.0000		
Beryllium, total	ug/L	MW-85	10/19/2020	ND	4.0000		
Beryllium, total	ug/L	MW-85	04/05/2021	ND	4.0000		
Beryllium, total	ug/L	MW-85	10/08/2021	ND	4.0000		
Beryllium, total	ug/L	MW-85	04/06/2022	ND	4.0000		
Beryllium, total	ug/L	MW-85	10/25/2022	ND	4.0000		
Beryllium, total	ug/L	MW-85	04/11/2023	ND	4.0000		
Beryllium, total	ug/L	MW-85	10/13/2023	ND	4.0000		
Beryllium, total	ug/L	MW-85	04/17/2024	ND	4.0000		
Beryllium, total	ug/L	MW-85	10/15/2024	ND	4.0000		_
Cadmium, total	ug/L	MW-85	10/16/2014	ND	0.8000		
Cadmium, total	ug/L	MW-85	01/14/2015	ND	0.8000		
Cadmium, total	ug/L	MW-85	04/03/2015	ND	0.8000		
Cadmium, total	ug/L	MW-85	07/06/2015	ND	0.8000		
Cadmium, total	ug/L	MW-85	10/01/2015	ND	0.8000		
Cadmium, total	ug/L	MW-85	04/14/2016	ND	0.8000		
Cadmium, total	ug/L	MW-85	10/13/2016	ND	0.8000		
Cadmium, total	ug/L	MW-85	04/10/2017	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-85 MW-85	10/09/2017 04/17/2018	ND ND	0.8000 0.8000		
Cadmium, total							

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Cadmium, total	ug/L	MW-85	10/22/2018	ND	0.8000		
Cadmium, total	ug/L	MW-85	04/22/2019	ND	0.8000		
Cadmium, total	ug/L	MW-85	10/23/2019	ND	0.8000		
Cadmium, total	ug/L	MW-85	04/10/2020	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-85 MW-85	10/19/2020 04/05/2021	ND ND	0.8000 0.8000		
Cadmium, total	ug/L ug/L	MW-85	10/08/2021	ND	0.8000		
Cadmium, total	ug/L	MW-85	04/06/2022	ND	0.8000		
Cadmium, total	ug/L	MW-85	10/25/2022	ND	0.8000		
Cadmium, total	ug/L	MW-85	04/11/2023	ND	0.8000		
Cadmium, total	ug/L	MW-85	10/13/2023	ND	0.8000		
Cadmium, total	ug/L	MW-85	04/17/2024	ND	0.8000		
Cadmium, total	ug/L	MW-85	10/15/2024	ND	0.8000		
Chromium, total	ug/L	MW-85	10/16/2014	ND	8.0000		
Chromium, total Chromium, total	ug/L ug/L	MW-85 MW-85	01/14/2015 04/03/2015	ND ND	8.0000 8.0000		
Chromium, total	ug/L ug/L	MW-85	07/06/2015	ND	8.0000		
Chromium, total	ug/L	MW-85	10/01/2015	ND	8.0000		
Chromium, total	ug/L	MW-85	04/14/2016	ND	8.0000		
Chromium, total	ug/L	MW-85	10/13/2016	ND	8.0000		
Chromium, total	ug/L	MW-85	04/10/2017	ND	8.0000		
Chromium, total	ug/L	MW-85	10/09/2017	ND	8.0000		
Chromium, total	ug/L	MW-85	04/17/2018	ND	8.0000		
Chromium, total	ug/L	MW-85	10/22/2018	ND	8.0000		
Chromium, total	ug/L	MW-85	04/22/2019	ND	8.0000		
Chromium, total	ug/L	MW-85	10/23/2019	ND	8.0000		
Chromium, total	ug/L ug/L	MW-85 MW-85	04/10/2020 10/19/2020	ND ND	8.0000 8.0000		
Chromium, total	ug/L	MW-85	04/05/2021	ND	8.0000		
Chromium, total	ug/L	MW-85	10/08/2021	ND	8.0000		
Chromium, total	ug/L	MW-85	04/06/2022	ND	8.0000		
Chromium, total	ug/L	MW-85	10/25/2022	ND	8.0000		
Chromium, total	ug/L	MW-85	04/11/2023	ND	8.0000		
Chromium, total	ug/L	MW-85	10/13/2023	ND	8.0000		
Chromium, total	ug/L	MW-85	04/17/2024	ND	8.0000		
Chromium, total	ug/L	MW-85 MW-85	10/15/2024 10/16/2014	ND ND	8.0000 0.8000		
Cobalt, total	ug/L ug/L	MW-85	01/14/2015	ND	0.8000		
Cobalt, total	ug/L	MW-85	04/03/2015	ND	0.8000		
Cobalt, total	ug/L	MW-85	07/06/2015	ND	0.8000		
Cobalt, total	ug/L	MW-85	10/01/2015	ND	0.8000		
Cobalt, total	ug/L	MW-85	04/14/2016	ND	0.8000		
Cobalt, total	ug/L	MW-85	10/13/2016	ND	0.8000		
Cobalt, total	ug/L	MW-85	04/10/2017	ND	0.8000		
Cobalt, total	ug/L	MW-85	10/09/2017	ND	0.8000		
Cobalt, total	ug/L ug/L	MW-85 MW-85	04/17/2018 10/22/2018	ND ND	0.8000 0.8000		
Cobalt, total	ug/L ug/L	MW-85	04/22/2019	ND	0.8000		
Cobalt, total	ug/L	MW-85	10/23/2019	ND	0.8000		
Cobalt, total	ug/L	MW-85	04/10/2020		0.4000		
Cobalt, total	ug/L	MW-85	10/19/2020	.	0.4000		
Cobalt, total	ug/L	MW-85	04/05/2021	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-85	10/08/2021	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-85	04/06/2022	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-85	10/25/2022	ND	0.4000	0.8000	**
Cobalt, total	ug/L ug/L	MW-85 MW-85	04/11/2023 10/13/2023	ND ND	0.4000 0.4000	0.8000	**
Cobalt, total	ug/L ug/L	MW-85	04/17/2024	טאו	0.4000	0.0000	
Cobalt, total	ug/L	MW-85	10/15/2024	ND	0.4000	0.8000	**
Copper, total	ug/L	MW-85	10/16/2014	ND	4.0000	3.0000	
Copper, total	ug/L	MW-85	01/14/2015	ND	4.0000		
Copper, total	ug/L	MW-85	04/03/2015	ND	4.0000		
Copper, total	ug/L	MW-85	07/06/2015	ND	4.0000		
Copper, total	ug/L	MW-85	10/01/2015	ND	4.0000		
Copper, total	ug/L	MW-85 MW-85	04/14/2016	ND ND	4.0000		
Copper, total Copper, total	ug/L ug/L	MW-85	10/13/2016 04/10/2017	ND	4.0000 4.0000		
Copper, total	ug/L ug/L	MW-85	10/09/2017	ND	4.0000		
Copper, total	ug/L	MW-85	04/17/2018	ND	4.0000		
Copper, total	ug/L	MW-85	10/22/2018		4.8000		
Copper, total	ug/L	MW-85	04/22/2019	ND	4.0000		
Copper, total	ug/L	MW-85	10/23/2019		4.0000		
Copper, total Copper, total	ug/L ug/L	MW-85 MW-85	04/10/2020 10/19/2020	ND ND	4.0000 4.0000		

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Copper, total Lead, total	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85	04/05/2021 10/08/2021 04/06/2022 10/25/2022 04/11/2023 10/13/2023 04/17/2024 10/15/2024 10/16/2014 01/14/2015 04/03/2015	ND ND ND ND ND ND ND	4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000	
Copper, total Lead, total	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85	04/06/2022 10/25/2022 04/11/2023 10/13/2023 04/17/2024 10/15//2024 10/16/2014 01/14/2015	ND ND ND ND ND ND	4.0000 4.0000 4.0000 4.0000 4.0000	
Copper, total Copper, total Copper, total Copper, total Copper, total Copper, total Lead, total	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85	10/25/2022 04/11/2023 10/13/2023 04/17/2024 10/15/2024 10/16/2014 01/14/2015	ND ND ND ND ND	4.0000 4.0000 4.0000 4.0000	
Copper, total Copper, total Ucopper, total Ucopper, total Ucopper, total Ucad, total	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85	04/11/2023 10/13/2023 04/17/2024 10/15/2024 10/16/2014 01/14/2015	ND ND ND ND	4.0000 4.0000 4.0000	
Copper, total Copper, total Understand Copper, total Lead, total	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85	10/13/2023 04/17/2024 10/15/2024 10/16/2014 01/14/2015	ND ND ND	4.0000 4.0000	
Copper, total Copper, total Lead, total	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85 MW-85 MW-85 MW-85	04/17/2024 10/15/2024 10/16/2014 01/14/2015	ND ND ND	4.0000	
Copper, total u Lead, total u	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85 MW-85 MW-85	10/15/2024 10/16/2014 01/14/2015	ND ND		
Lead, total u	ug/L ug/L ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85 MW-85	10/16/2014 01/14/2015	ND	4.0000	
Lead, total u	ug/L ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85	01/14/2015			
Lead, total	ug/L ug/L ug/L ug/L	MW-85 MW-85			4.0000	
Lead, total u Lead, total u Lead, total u Lead, total u Lead, total u	ug/L ug/L ug/L	MW-85	04/03/2015	ND	4.0000	
Lead, total u Lead, total u Lead, total u Lead, total u	ug/L ug/L			ND	4.0000	
Lead, total u Lead, total u Lead, total u	ug/L		07/06/2015	ND	4.0000	
Lead, total u		MW-85	10/01/2015	ND	4.0000	
Lead, total	uu/L I	MW-85	04/14/2016	ND	4.0000	
		MW-85 MW-85	10/13/2016 04/10/2017	ND ND	4.0000	
	ug/L				4.0000	
	ug/L	MW-85	10/09/2017	ND	4.0000	
	ug/L	MW-85 MW-85	04/17/2018	ND ND	4.0000	
	ug/L	MW-85	10/22/2018 04/22/2019	ND	4.0000	
	ug/L	MW-85	10/23/2019	ND	4.0000 4.0000	
	ug/L ug/L	MW-85	04/10/2020	ND	4.0000	
	ug/L ug/L	MW-85	10/19/2020	ND	4.0000	
	ug/L	MW-85	04/05/2021	ND	4.0000	
	ug/L	MW-85	10/08/2021	ND	4.0000	
	ug/L	MW-85	04/06/2022	ND	4.0000	
	ug/L	MW-85	10/25/2022	ND	4.0000	
	ug/L	MW-85	04/11/2023	ND	4.0000	
	ug/L	MW-85	10/13/2023	ND	4.0000	
	ug/L	MW-85	04/17/2024	ND	4.0000	
	ug/L	MW-85	10/15/2024	ND	4.0000	
	ug/L	MW-85	10/16/2014	ND	4.0000	
	ug/L	MW-85	01/14/2015	ND	4.0000	
	ug/L	MW-85	04/03/2015	ND	4.0000	
	ug/L	MW-85	07/06/2015	ND	4.0000	
	ug/L	MW-85	10/01/2015	ND	4.0000	
	ug/L	MW-85	04/14/2016	ND	4.0000	
	ug/L	MW-85	10/13/2016	ND	4.0000	
	ug/L	MW-85	04/10/2017	ND	4.0000	
Nickel, total u	ug/L	MW-85	10/09/2017	ND	4.0000	
Nickel, total u	ug/L	MW-85	04/17/2018	ND	4.0000	
Nickel, total u	ug/L	MW-85	10/22/2018		20.6000	*
Nickel, total u	ug/L	MW-85	04/22/2019	ND	4.0000	
	ug/L	MW-85	10/23/2019	ND	4.0000	
	ug/L	MW-85	04/10/2020	ND	4.0000	
	ug/L	MW-85	10/19/2020	ND	4.0000	
	ug/L	MW-85	04/05/2021	ND	4.0000	
	ug/L	MW-85	10/08/2021	ND	4.0000	
	ug/L	MW-85	04/06/2022	ND	4.0000	
	ug/L	MW-85	10/25/2022	ND	4.0000	
	ug/L	MW-85	04/11/2023	ND	4.0000	
	ug/L	MW-85	10/13/2023	ND	4.0000	
	ug/L	MW-85 MW-85	04/17/2024 10/15/2024	ND ND	4.0000 4.0000	
	ug/L ug/L	MW-85	10/16/2014	ND	4.0000	\vdash
	ug/L	MW-85	01/14/2015	ND	4.0000	
	ug/L	MW-85	04/03/2015	ND	4.0000	
	ug/L	MW-85	07/06/2015	ND	4.0000	
	ug/L	MW-85	10/01/2015	ND	4.0000	
	ug/L	MW-85	04/14/2016	ND	4.0000	
	ug/L	MW-85	10/13/2016	ND	4.0000	
	ug/L	MW-85	04/10/2017	ND	4.0000	
	ug/L	MW-85	10/09/2017	ND	4.0000	
	ug/L	MW-85	04/17/2018	ND	4.0000	
	ug/L	MW-85	10/22/2018	ND	4.0000	
	ug/L	MW-85	04/22/2019	ND	4.0000	
	ug/L	MW-85	10/23/2019	ND	4.0000	
	ug/L	MW-85	04/10/2020	ND	4.0000	
	ug/L	MW-85	10/19/2020	ND	4.0000	
	ug/L	MW-85	04/05/2021	ND	4.0000	
	ug/L	MW-85	10/08/2021	ND	4.0000	
	ug/L	MW-85	04/06/2022	ND	4.0000	
	ug/L	MW-85	10/25/2022	ND	4.0000	
	ug/L	MW-85	04/11/2023	ND	4.0000	

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Selenium, total	ug/L	MW-85	10/13/2023	ND	4.0000		
Selenium, total	ug/L	MW-85	04/17/2024	ND	4.0000		
Selenium, total	ug/L	MW-85	10/15/2024	ND	4.0000		
Silver, total	ug/L	MW-85	10/16/2014	ND	4.0000		
Silver, total	ug/L	MW-85	01/14/2015	ND	4.0000		
Silver, total	ug/L	MW-85	04/03/2015	ND	4.0000		
Silver, total	ug/L	MW-85	07/06/2015	ND	4.0000		
Silver, total	ug/L	MW-85	10/01/2015	ND	4.0000		
Silver, total	ug/L	MW-85	04/14/2016	ND	4.0000		
Silver, total	ug/L	MW-85	10/13/2016	ND	4.0000		
Silver, total	ug/L	MW-85	04/10/2017	ND	4.0000		
Silver, total	ug/L	MW-85	10/09/2017	ND	4.0000		
Silver, total	ug/L	MW-85	04/17/2018	ND	4.0000		
Silver, total	ug/L	MW-85	10/22/2018	ND	4.0000		
Silver, total	ug/L	MW-85	04/22/2019	ND	4.0000		
Silver, total	ug/L	MW-85	10/23/2019	ND	4.0000		
Silver, total	ug/L	MW-85	04/10/2020	ND	4.0000		
Silver, total	ug/L	MW-85	10/19/2020	ND	4.0000		
Silver, total	ug/L	MW-85	04/05/2021	ND	4.0000		
Silver, total	ug/L	MW-85	10/08/2021	ND	4.0000		
Silver, total	ug/L	MW-85	04/06/2022	ND	4.0000		
Silver, total	ug/L	MW-85	10/25/2022	ND	4.0000		
Silver, total	ug/L	MW-85	04/11/2023	ND	4.0000		
Silver, total	ug/L	MW-85	10/13/2023	ND	4.0000		
Silver, total	ug/L	MW-85	04/17/2024	ND	4.0000		
Silver, total	ug/L	MW-85	10/15/2024	ND	4.0000	0.0000	**
Thallium, total	ug/L	MW-85	10/16/2014	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-85	01/14/2015	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-85	04/03/2015	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-85	07/06/2015	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-85	10/01/2015	ND	1.0000	2.0000	**
Thallium, total	ug/L	MW-85	04/14/2016	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-85	10/13/2016	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-85	04/10/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-85	10/09/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-85	04/17/2018	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-85	10/22/2018	ND	4.0000	2.0000	^ ^
Thallium, total	ug/L	MW-85	04/22/2019	ND	2.0000		
Thallium, total	ug/L	MW-85	10/23/2019	ND	2.0000		
Thallium, total	ug/L	MW-85	04/10/2020	ND	2.0000		
Thallium, total	ug/L	MW-85	10/19/2020	ND	2.0000		
Thallium, total	ug/L	MW-85	04/05/2021	ND	2.0000		
Thallium, total	ug/L	MW-85	10/08/2021	ND	2.0000		
Thallium, total	ug/L	MW-85	04/06/2022	ND	2.0000		
Thallium, total	ug/L	MW-85	10/25/2022	ND	2.0000		
Thallium, total	ug/L	MW-85	04/11/2023	ND	2.0000		
Thallium, total	ug/L	MW-85	10/13/2023	ND	2.0000		
Thallium, total Thallium, total	ug/L	MW-85 MW-85	04/17/2024 10/15/2024	ND ND	2.0000		
	ug/L	MW-85	10/15/2024	ND	2.0000		_
Vanadium, total Vanadium, total	ug/L ug/L	MW-85	01/14/2015	ND	20.0000 20.0000		
Vanadium, total	ug/L ug/L	MW-85	04/03/2015	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	07/06/2015	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	10/01/2015	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	04/14/2016	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	10/13/2016	ND	20.0000		
Vanadium, total	ug/L	MW-85	04/10/2017	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	10/09/2017	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	04/17/2018	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	10/22/2018	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	04/22/2019	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	10/23/2019	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	04/10/2020	ND	20.0000		
Vanadium, total	ug/L	MW-85	10/19/2020	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	04/05/2021	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	10/08/2021	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	04/06/2022	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	10/25/2022	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	04/11/2023	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	10/13/2023	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	04/17/2024	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	10/15/2024	ND	20.0000		
Zinc, total	ug/L ug/L	MW-85	10/16/2014	ND	20.0000		
	ug/L ug/L	MW-85	01/14/2015	ND	8.0000	20.0000	**
Zinc, total							

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Zinc, total	ug/L	MW-85	04/03/2015		27.0000		
Zinc, total	ug/L	MW-85	07/06/2015		9.1000		
Zinc, total	ug/L	MW-85	10/01/2015	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-85	04/14/2016	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-85	10/13/2016	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-85	04/10/2017	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-85	10/09/2017	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-85	04/17/2018	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-85	10/22/2018		125.0000		*
Zinc, total	ug/L	MW-85	04/22/2019	ND	20.0000		
Zinc, total	ug/L	MW-85	10/23/2019	ND	20.0000		
Zinc, total	ug/L	MW-85	04/10/2020	ND	20.0000		
Zinc, total	ug/L	MW-85	10/19/2020	ND	20.0000		
Zinc, total	ug/L	MW-85	04/05/2021	ND	20.0000		
Zinc, total	ug/L	MW-85	10/08/2021	ND	20.0000		
Zinc, total	ug/L	MW-85	04/06/2022	ND ND	20.0000		
Zinc, total	ug/L	MW-85	10/25/2022		20.0000		
Zinc, total	ug/L	MW-85	04/11/2023	ND ND	20.0000		
Zinc, total	ug/L	MW-85 MW-85	10/13/2023 04/17/2024	ND	20.0000 20.0000		
Zinc, total Zinc, total	ug/L ug/L	MW-85	10/15/2024	ND	20.0000		
	ug/L			ND	2.0000		
Antimony, total Antimony, total	ug/L ug/L	MW-98 MW-98	10/13/2016 04/10/2017	ND	2.0000		
Antimony, total	ug/L ug/L	MW-98	10/09/2017	ND	2.0000		
Antimony, total	ug/L ug/L	MW-98	04/17/2018	ND	2.0000		
Antimony, total	ug/L	MW-98	10/22/2018	ND	2.0000		
Antimony, total	ug/L	MW-98	04/22/2019	ND	2.0000		
Antimony, total	ug/L	MW-98	10/23/2019	ND	2.0000		
Antimony, total	ug/L	MW-98	04/10/2020	ND	2.0000		
Antimony, total	ug/L	MW-98	10/19/2020	ND	2.0000		
Antimony, total	ug/L	MW-98	04/05/2021	ND	2.0000		
Antimony, total	ug/L	MW-98	10/08/2021	ND	2.0000		
Antimony, total	ug/L	MW-98	04/06/2022	ND	2.0000		
Antimony, total	ug/L	MW-98	10/25/2022	ND	2.0000		
Antimony, total	ug/L	MW-98	04/11/2023	ND	2.0000		
Antimony, total	ug/L	MW-98	10/13/2023	ND	2.0000		
Antimony, total	ug/L	MW-98	04/17/2024	ND	2.0000		
Antimony, total	ug/L	MW-98	10/15/2024	ND	2.0000		
Arsenic, total	ug/L	MW-98	10/13/2016		7.4000		
Arsenic, total	ug/L	MW-98	04/10/2017		25.3000		*
Arsenic, total	ug/L	MW-98	10/09/2017	ND	4.0000		
Arsenic, total	ug/L	MW-98	04/17/2018		7.8000		
Arsenic, total	ug/L	MW-98	10/22/2018	ND	4.0000		
Arsenic, total	ug/L	MW-98	04/22/2019	ND	4.0000		
Arsenic, total	ug/L	MW-98	10/23/2019		4.8000		
Arsenic, total	ug/L	MW-98	04/10/2020	ND	4.0000		
Arsenic, total	ug/L	MW-98	10/19/2020	ND	4.0000		
Arsenic, total	ug/L	MW-98	04/05/2021	ND	4.0000		
Arsenic, total	ug/L	MW-98	10/08/2021	ND	4.0000		
Arsenic, total	ug/L	MW-98	04/06/2022	ND	4.0000		
Arsenic, total Arsenic, total	ug/L ug/L	MW-98	10/25/2022	ND	4.0000		
Arsenic, total	ug/L ug/L	MW-98 MW-98	04/11/2023 10/13/2023		6.4000 6.3000		
Arsenic, total	ug/L ug/L	MW-98	04/17/2024		48.0000		*
Arsenic, total	ug/L ug/L	MW-98	10/15/2024	ND	4.0000		
Barium, total	ug/L	MW-98	10/13/2016	.40	171.0000		
Barium, total	ug/L ug/L	MW-98	04/10/2017		241.0000		
Barium, total	ug/L	MW-98	10/09/2017		129.0000		
Barium, total	ug/L	MW-98	04/17/2018		193.0000		
Barium, total	ug/L	MW-98	10/22/2018		102.0000		
Barium, total	ug/L	MW-98	04/22/2019		133.0000		
Barium, total	ug/L	MW-98	10/23/2019		94.4000		
Barium, total	ug/L	MW-98	04/10/2020		157.0000		
Barium, total	ug/L	MW-98	10/19/2020		147.0000		
Barium, total	ug/L	MW-98	04/05/2021		125.0000		
Barium, total	ug/L	MW-98	10/08/2021		149.0000		
Barium, total	ug/L	MW-98	04/06/2022		117.0000		
Barium, total	ug/L	MW-98	10/25/2022		183.0000		
Barium, total	ug/L	MW-98	04/11/2023		136.0000		
Barium, total	ug/L	MW-98	10/13/2023		217.0000		
Barium, total	ug/L	MW-98	04/17/2024		325.0000		
Barium, total	ug/L	MW-98	10/15/2024		137.0000		
Beryllium, total	ug/L	MW-98	10/13/2016	ND	4.0000		
Beryllium, total	ug/L	MW-98	04/10/2017	ND	4.0000		

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Beryllium, total	ug/L	MW-98	10/09/2017	ND	4.0000		
Beryllium, total	ug/L	MW-98	04/17/2018	ND	4.0000		
Beryllium, total	ug/L	MW-98	10/22/2018	ND	4.0000		
Beryllium, total	ug/L	MW-98	04/22/2019	ND	4.0000		
Beryllium, total	ug/L	MW-98	10/23/2019	ND	4.0000		
Beryllium, total	ug/L	MW-98	04/10/2020	ND	4.0000		
Beryllium, total	ug/L	MW-98	10/19/2020	ND	4.0000		
Beryllium, total	ug/L	MW-98	04/05/2021	ND	4.0000		
Beryllium, total	ug/L	MW-98	10/08/2021	ND	4.0000		
Beryllium, total	ug/L	MW-98	04/06/2022	ND	4.0000		
Beryllium, total	ug/L	MW-98	10/25/2022	ND	4.0000		
Beryllium, total	ug/L	MW-98	04/11/2023	ND	4.0000		
Beryllium, total	ug/L	MW-98	10/13/2023	ND	4.0000		
Beryllium, total	ug/L	MW-98	04/17/2024	ND	4.0000		
Beryllium, total	ug/L	MW-98	10/15/2024	ND	4.0000		
Cadmium, total	ug/L	MW-98	10/13/2016	ND	0.8000		
Cadmium, total	ug/L	MW-98	04/10/2017	ND	0.8000		
Cadmium, total	ug/L	MW-98	10/09/2017	ND	0.8000		
Cadmium, total	ug/L	MW-98	04/17/2018	ND	0.8000		
Cadmium, total	ug/L	MW-98	10/22/2018	ND	0.8000		
Cadmium, total	ug/L	MW-98	04/22/2019	ND	0.8000		
Cadmium, total	ug/L	MW-98	10/23/2019	ND	0.8000		
Cadmium, total	ug/L	MW-98	04/10/2020	ND	0.8000		
Cadmium, total	ug/L	MW-98	10/19/2020	ND	0.8000		
Cadmium, total	ug/L	MW-98	04/05/2021	ND	0.8000		
Cadmium, total	ug/L	MW-98	10/08/2021	ND	0.8000		
Cadmium, total	ug/L	MW-98	04/06/2022	ND	0.8000		
Cadmium, total	ug/L	MW-98	10/25/2022	ND	0.8000		
Cadmium, total	ug/L	MW-98	04/11/2023	ND	0.8000		
Cadmium, total	ug/L	MW-98	10/13/2023	ND	0.8000		
Cadmium, total	ug/L	MW-98	04/17/2024	ND	0.8000		
Cadmium, total	ug/L	MW-98	10/15/2024	ND	0.8000		
Chromium, total	ug/L	MW-98	10/13/2016	ND	8.0000		
Chromium, total	ug/L	MW-98	04/10/2017		9.8000		
Chromium, total	ug/L	MW-98	10/09/2017	ND	8.0000		
Chromium, total	ug/L	MW-98	04/17/2018	ND	8.0000		
Chromium, total	ug/L	MW-98	10/22/2018	ND	8.0000		
Chromium, total	ug/L	MW-98	04/22/2019	ND	8.0000		
Chromium, total	ug/L	MW-98	10/23/2019	ND	8.0000		
Chromium, total	ug/L	MW-98	04/10/2020	ND	8.0000		
Chromium, total	ug/L	MW-98	10/19/2020	ND	8.0000		
Chromium, total	ug/L	MW-98	04/05/2021	ND	8.0000		
Chromium, total	ug/L	MW-98	10/08/2021	ND	8.0000		
Chromium, total	ug/L	MW-98	04/06/2022	ND	8.0000		
Chromium, total	ug/L	MW-98	10/25/2022	ND	8.0000		
Chromium, total	ug/L	MW-98	04/11/2023	ND	8.0000		
Chromium, total	ug/L	MW-98	10/13/2023	ND	8.0000		
Chromium, total	ug/L	MW-98	04/17/2024	ND	8.0000		
Chromium, total	ug/L ug/L	MW-98	10/15/2024	ND	8.0000		
Cobalt, total	ug/L	MW-98	10/13/2024	.40	3.0000		
Cobalt, total	ug/L ug/L	MW-98	04/10/2017		4.4000		
Cobalt, total	ug/L ug/L	MW-98	10/09/2017		0.8000		
Cobalt, total	ug/L ug/L	MW-98	04/17/2018		5.0000		
Cobalt, total	ug/L ug/L	MW-98	10/22/2018	ND	0.8000		
Cobalt, total	ug/L	MW-98	04/22/2019	,,,5	1.3000		
Cobalt, total	ug/L	MW-98	10/23/2019		2.4000		
Cobalt, total	ug/L	MW-98	04/10/2020		2.0000		
Cobalt, total	ug/L ug/L	MW-98	10/19/2020		2.2000		
Cobalt, total	ug/L ug/L	MW-98	04/05/2021		0.6000		
Cobalt, total	ug/L ug/L	MW-98	10/08/2021		2.2000		
Cobalt, total	ug/L ug/L	MW-98	04/06/2022		0.7000		
Cobalt, total	ug/L ug/L	MW-98	10/25/2022		3.6000		
Cobalt, total	ug/L ug/L	MW-98	04/11/2023		2.1000		
Cobalt, total		MW-98					
	ug/L		10/13/2023 04/17/2024		5.5000		
Cobalt, total	ug/L	MW-98			4.7000		
Cobalt, total	ug/L	MW-98	10/15/2024	NID	1.9000		
Copper, total	ug/L	MW-98	10/13/2016	ND	4.0000		
Copper, total	ug/L	MW-98	04/10/2017	ND	4.0000		
Copper, total	ug/L	MW-98	10/09/2017	ND	4.0000		
Copper, total	ug/L	MW-98	04/17/2018	ND	4.0000		
Copper, total	ug/L	MW-98	10/22/2018	ND	4.0000		
Copper, total Copper, total	ug/L	MW-98 MW-98	04/22/2019 10/23/2019	ND ND	4.0000		
		L N/IV/V_UX	111/23/2014	INII I	4.0000		
Copper, total	ug/L ug/L	MW-98	04/10/2020	ND	4.0000		

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Copper, total	ug/L	MW-98	10/19/2020	ND	4.0000		
Copper, total	ug/L	MW-98	04/05/2021		4.1000		
Copper, total	ug/L	MW-98	10/08/2021	ND	4.0000		
Copper, total	ug/L	MW-98	04/06/2022	ND	4.0000		
Copper, total	ug/L ug/L	MW-98 MW-98	10/25/2022 04/11/2023	ND ND	4.0000 4.0000		
Copper, total	ug/L	MW-98	10/13/2023	ND	4.0000		
Copper, total	ug/L	MW-98	04/17/2024	ND	4.0000		
Copper, total	ug/L	MW-98	10/15/2024	ND	4.0000		
Lead, total	ug/L	MW-98	10/13/2016	ND	4.0000		
Lead, total	ug/L	MW-98	04/10/2017	ND	4.0000		
Lead, total	ug/L	MW-98	10/09/2017	ND	4.0000		
Lead, total	ug/L	MW-98	04/17/2018	ND	4.0000		
Lead, total Lead, total	ug/L ug/L	MW-98 MW-98	10/22/2018 04/22/2019	ND ND	4.0000 4.0000		
Lead, total	ug/L ug/L	MW-98	10/23/2019	ND	4.0000		
Lead, total	ug/L	MW-98	04/10/2020	ND	4.0000		
Lead, total	ug/L	MW-98	10/19/2020	ND	4.0000		
Lead, total	ug/L	MW-98	04/05/2021	ND	4.0000		
Lead, total	ug/L	MW-98	10/08/2021	ND	4.0000		
Lead, total	ug/L	MW-98	04/06/2022	ND	4.0000		
Lead, total	ug/L	MW-98	10/25/2022	ND	4.0000		
Lead, total	ug/L	MW-98	04/11/2023	ND	4.0000		
Lead, total	ug/L	MW-98	10/13/2023	ND	4.0000		
Lead, total Lead, total	ug/L ug/L	MW-98 MW-98	04/17/2024 10/15/2024	ND ND	4.0000 4.0000		
Nickel, total	ug/L ug/L	MW-98	10/13/2024	ND	4.0000		
Nickel, total	ug/L	MW-98	04/10/2017	ND	4.0000		
Nickel, total	ug/L	MW-98	10/09/2017	ND	4.0000		
Nickel, total	ug/L	MW-98	04/17/2018	ND	4.0000		
Nickel, total	ug/L	MW-98	10/22/2018	ND	4.0000		
Nickel, total	ug/L	MW-98	04/22/2019	ND	4.0000		
Nickel, total	ug/L	MW-98	10/23/2019	ND	4.0000		
Nickel, total	ug/L	MW-98	04/10/2020	ND	4.0000		
Nickel, total	ug/L	MW-98	10/19/2020	ND ND	4.0000		
Nickel, total Nickel, total	ug/L ug/L	MW-98 MW-98	04/05/2021 10/08/2021	ND	4.0000 4.0000		
Nickel, total	ug/L ug/L	MW-98	04/06/2022	ND	4.0000		
Nickel, total	ug/L	MW-98	10/25/2022	ND	4.0000		
Nickel, total	ug/L	MW-98	04/11/2023	ND	4.0000		
Nickel, total	ug/L	MW-98	10/13/2023	ND	4.0000		
Nickel, total	ug/L	MW-98	04/17/2024	ND	4.0000		
Nickel, total	ug/L	MW-98	10/15/2024	ND	4.0000		
Selenium, total	ug/L	MW-98	10/13/2016	ND	4.0000		
Selenium, total Selenium, total	ug/L ug/L	MW-98 MW-98	04/10/2017 10/09/2017	ND ND	4.0000 4.0000		
Selenium, total	ug/L ug/L	MW-98	04/17/2018	ND	4.0000		
Selenium, total	ug/L	MW-98	10/22/2018	ND	4.0000		
Selenium, total	ug/L	MW-98	04/22/2019	ND	4.0000		
Selenium, total	ug/L	MW-98	10/23/2019	ND	4.0000		
Selenium, total	ug/L	MW-98	04/10/2020	ND	4.0000		
Selenium, total	ug/L	MW-98	10/19/2020	ND	4.0000		
Selenium, total	ug/L	MW-98	04/05/2021	ND	4.0000		
Selenium, total Selenium, total	ug/L	MW-98 MW-98	10/08/2021	ND ND	4.0000		
Selenium, total	ug/L ug/L	MW-98	04/06/2022 10/25/2022	ND ND	4.0000 4.0000		
Selenium, total	ug/L ug/L	MW-98	04/11/2023	ND	4.0000		
Selenium, total	ug/L	MW-98	10/13/2023	ND	4.0000		
Selenium, total	ug/L	MW-98	04/17/2024	ND	4.0000		
Selenium, total	ug/L	MW-98	10/15/2024	ND	4.0000		
Silver, total	ug/L	MW-98	10/13/2016	ND	4.0000		
Silver, total	ug/L	MW-98	04/10/2017	ND	4.0000		
Silver, total	ug/L	MW-98	10/09/2017	ND	4.0000		
Silver, total	ug/L	MW-98	04/17/2018	ND	4.0000		
Silver, total Silver, total	ug/L ug/L	MW-98 MW-98	10/22/2018 04/22/2019	ND ND	4.0000 4.0000		
Silver, total	ug/L ug/L	MW-98	10/23/2019	ND	4.0000		
Silver, total	ug/L	MW-98	04/10/2020	ND	4.0000		
Silver, total	ug/L	MW-98	10/19/2020	ND	4.0000		
Silver, total	ug/L	MW-98	04/05/2021	ND	4.0000		
Silver, total	ug/L	MW-98	10/08/2021	ND	4.0000		
			0.4/0.0/0.00		4 0000		
Silver, total	ug/L	MW-98	04/06/2022	ND	4.0000		
	ug/L ug/L ug/L	MW-98 MW-98 MW-98	04/06/2022 10/25/2022 04/11/2023	ND ND ND	4.0000 4.0000 4.0000		

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Silver, total	ug/L	MW-98	10/13/2023	ND	4.0000		
Silver, total	ug/L	MW-98	04/17/2024	ND	4.0000		
Silver, total	ug/L	MW-98	10/15/2024	ND	4.0000		
Thallium, total	ug/L	MW-98	10/13/2016	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-98	04/10/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-98	10/09/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-98	04/17/2018	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-98	10/22/2018	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-98	04/22/2019	ND	2.0000		
Thallium, total	ug/L	MW-98	10/23/2019	ND	2.0000		
Thallium, total	ug/L	MW-98	04/10/2020	ND	2.0000		
Thallium, total	ug/L	MW-98	10/19/2020	ND	2.0000		
Thallium, total	ug/L	MW-98	04/05/2021	ND	2.0000		
Thallium, total	ug/L	MW-98	10/08/2021	ND	2.0000		
Thallium, total	ug/L	MW-98	04/06/2022	ND	2.0000		
Thallium, total	ug/L	MW-98	10/25/2022	ND	2.0000		
Thallium, total	ug/L	MW-98	04/11/2023	ND	2.0000		
Thallium, total	ug/L	MW-98	10/13/2023	ND	2.0000		
Thallium, total	ug/L	MW-98	04/17/2024	ND	2.0000		
Thallium, total	ug/L	MW-98	10/15/2024	ND	2.0000		L
Vanadium, total	ug/L	MW-98	10/13/2016	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/10/2017	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/09/2017	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/17/2018	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/22/2018	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/22/2019	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/23/2019	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/10/2020	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/19/2020	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/05/2021	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/08/2021	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/06/2022	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/25/2022	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/11/2023	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/13/2023	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/17/2024	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/15/2024	ND	20.0000		
Zinc, total	ug/L	MW-98	10/13/2016	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-98	04/10/2017	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-98	10/09/2017	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-98	04/17/2018	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-98	10/22/2018	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-98	04/22/2019	ND	20.0000	20.0000	
Zinc, total	ug/L	MW-98	10/23/2019	ND	20.0000		
Zinc, total	ug/L	MW-98	04/10/2020	ND	20.0000		
Zinc, total	ug/L	MW-98	10/19/2020	ND	20.0000		
Zinc, total		MW-98	04/05/2021	ND	20.0000		
	ug/L						
Zinc, total	ug/L	MW-98	10/08/2021	ND	20.0000		
Zinc, total	ug/L	MW-98	04/06/2022	ND	20.0000		
Zinc, total	ug/L	MW-98	10/25/2022	ND	20.0000		
Zinc, total	ug/L	MW-98	04/11/2023	ND	20.0000		
Zinc, total	ug/L	MW-98	10/13/2023	ND ND	20.0000		
Zinc, total Zinc, total	ug/L	MW-98	04/17/2024	ND	20.0000		
	ug/L	MW-98 MW-99	10/15/2024	ND	20.0000		-
Antimony, total	ug/L	MW-99	10/13/2016 04/10/2017	ND			
Antimony, total	ug/L			ND	2.0000		
Antimony, total Antimony, total	ug/L	MW-99	10/09/2017		2.0000		
	ug/L	MW-99 MW-99	04/17/2018	ND	2.0000		
Antimony, total	ug/L		10/22/2018	ND	2.0000		
Antimony, total	ug/L	MW-99	04/22/2019	ND	2.0000		
Antimony, total	ug/L	MW-99	10/23/2019	ND	2.0000		
Antimony, total	ug/L	MW-99	04/10/2020	ND	2.0000		
Antimony, total	ug/L	MW-99	10/19/2020	ND	2.0000		
Antimony, total	ug/L	MW-99	04/05/2021	ND	2.0000		
Antimony, total	ug/L	MW-99	10/08/2021	ND	2.0000		
Antimony, total	ug/L	MW-99	04/06/2022	ND	2.0000		
Antimony, total	ug/L	MW-99	10/25/2022	ND	2.0000		
Antimony, total	ug/L	MW-99	04/11/2023	ND	2.0000		
Antimony, total	ug/L	MW-99	10/13/2023	ND	2.0000		
Antimony, total	ug/L	MW-99	04/18/2024	ND	2.0000		
Antimony, total	ug/L	MW-99	10/15/2024	ND	2.0000		
Arsenic, total	ug/L	MW-99	10/13/2016	ND	4.0000		
Arsenic, total	ug/L	MW-99	04/10/2017	ND	4.0000		
Arsenic, total	ug/L	MW-99		ND	4.0000		

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Arsenic, total	ug/L	MW-99	04/17/2018	ND	4.0000		
Arsenic, total	ug/L	MW-99	10/22/2018	ND	4.0000		
Arsenic, total	ug/L	MW-99	04/22/2019	ND	4.0000		
Arsenic, total	ug/L	MW-99	10/23/2019	ND	4.0000		
Arsenic, total	ug/L	MW-99	04/10/2020	ND	4.0000		
Arsenic, total	ug/L	MW-99	10/19/2020	ND	4.0000		
Arsenic, total	ug/L	MW-99	04/05/2021	ND	4.0000		
Arsenic, total	ug/L	MW-99	10/08/2021	ND	4.0000		
Arsenic, total	ug/L	MW-99	04/06/2022	ND	4.0000		
Arsenic, total	ug/L	MW-99	10/25/2022	ND	4.0000		
Arsenic, total	ug/L	MW-99	04/11/2023	ND	4.0000		
Arsenic, total	ug/L	MW-99	10/13/2023	ND	4.0000		
Arsenic, total	ug/L	MW-99	04/18/2024	ND	4.0000		
Arsenic, total	ug/L	MW-99	10/15/2024	ND	4.0000		
Barium, total	ug/L	MW-99	10/13/2016		131.0000		
Barium, total	ug/L	MW-99	04/10/2017		109.0000		
Barium, total	ug/L	MW-99 MW-99	10/09/2017 04/17/2018		140.0000 93.9000		
Barium, total	ug/L	MW-99	10/22/2018				
Barium, total	ug/L	MW-99	04/22/2019		81.0000 110.0000		
Barium, total	ug/L	MW-99	10/23/2019		123.0000		
Barium, total Barium, total	ug/L ug/L	MW-99	04/10/2020		123.0000		
Barium, total	ug/L ug/L	MW-99	10/19/2020		118.0000		
Barium, total	ug/L ug/L	MW-99	04/05/2021		117.0000		
Barium, total	ug/L ug/L	MW-99	10/08/2021		130.0000		
Barium, total	ug/L	MW-99	04/06/2022		110.0000		
Barium, total	ug/L	MW-99	10/25/2022		134.0000		
Barium, total	ug/L	MW-99	04/11/2023		89.4000		
Barium, total	ug/L	MW-99	10/13/2023		134.0000		
Barium, total	ug/L	MW-99	04/18/2024		164.0000		
Barium, total	ug/L	MW-99	10/15/2024		88.8000		
Beryllium, total	ug/L	MW-99	10/13/2016	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/10/2017	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/09/2017	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/17/2018	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/22/2018	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/22/2019	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/23/2019	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/10/2020	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/19/2020	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/05/2021	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/08/2021	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/06/2022	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/25/2022	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/11/2023	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/13/2023	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/18/2024	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/15/2024	ND	4.0000		
Cadmium, total	ug/L	MW-99	10/13/2016	ND	0.8000		
Cadmium, total	ug/L	MW-99	04/10/2017	ND	0.8000		
Cadmium, total	ug/L	MW-99	10/09/2017	ND	0.8000		
Cadmium, total	ug/L	MW-99	04/17/2018	ND	0.8000		
Cadmium, total	ug/L	MW-99	10/22/2018	ND	0.8000		
Cadmium, total	ug/L	MW-99	04/22/2019	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-99	10/23/2019	ND ND	0.8000		
Cadmium, total		MW-99	04/10/2020	ND	0.8000		
Cadmium, total	ug/L	MW-99	10/19/2020	ND	0.8000		
Cadmium, total Cadmium, total	ug/L ug/L	MW-99 MW-99	04/05/2021 10/08/2021	ND	0.8000 0.8000		
Cadmium, total		MW-99	04/06/2022	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-99	10/25/2022	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-99	04/11/2023	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-99	10/13/2023	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-99	04/18/2024	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-99	10/15/2024	ND	0.8000		
Chromium, total	ug/L	MW-99	10/13/2016	ND	8.0000		
Chromium, total	ug/L	MW-99	04/10/2017	. 10	23.4000		
Chromium, total	ug/L	MW-99	10/09/2017	ND	8.0000		
	ug/L	MW-99	04/17/2018	ND	8.0000		
Chromium, total				ND			I
Chromium, total Chromium, total		MW-99	10/22/2018	יטאן	0.00001		
Chromium, total	ug/L	MW-99 MW-99	10/22/2018 04/22/2019		8.0000 8.0000		
	ug/L ug/L	MW-99 MW-99 MW-99	10/22/2018 04/22/2019 10/23/2019	ND	8.0000 8.0000		
Chromium, total Chromium, total	ug/L	MW-99	04/22/2019		8.0000		

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Chromium, total	ug/L	MW-99	04/05/2021	ND	8.0000		
Chromium, total	ug/L	MW-99	10/08/2021	ND	8.0000		
Chromium, total	ug/L	MW-99	04/06/2022	ND	8.0000		
Chromium, total	ug/L	MW-99	10/25/2022	ND	8.0000		
Chromium, total	ug/L	MW-99	04/11/2023	ND	8.0000		
Chromium, total	ug/L	MW-99	10/13/2023	ND	8.0000		
Chromium, total	ug/L	MW-99	04/18/2024	ND	8.0000		
Chromium, total	ug/L	MW-99	10/15/2024	ND	8.0000		
Cobalt, total	ug/L	MW-99	10/13/2016		5.2000		
Cobalt, total	ug/L	MW-99	04/10/2017		3.4000		
Cobalt, total	ug/L	MW-99	10/09/2017		6.0000		
Cobalt, total	ug/L	MW-99	04/17/2018		2.5000		
Cobalt, total	ug/L	MW-99	10/22/2018		0.8000		*
Cobalt, total	ug/L	MW-99	04/22/2019		3.1000		
Cobalt, total	ug/L	MW-99	10/23/2019		2.7000		
Cobalt, total	ug/L	MW-99	04/10/2020		4.1000		
Cobalt, total	ug/L	MW-99	10/19/2020		3.8000		
Cobalt, total	ug/L	MW-99	04/05/2021		3.2000		
Cobalt, total	ug/L	MW-99	10/08/2021		4.0000		
Cobalt, total	ug/L	MW-99	04/06/2022		3.5000		
Cobalt, total	ug/L	MW-99	10/25/2022		3.6000		
Cobalt, total	ug/L	MW-99	04/11/2023		2.2000		
Cobalt, total	ug/L	MW-99	10/13/2023		3.3000		
Cobalt, total	ug/L	MW-99	04/18/2024		4.1000		
Cobalt, total	ug/L	MW-99	10/15/2024		0.9000		*
Copper, total	ug/L	MW-99	10/13/2016	ND	4.0000		
Copper, total	ug/L	MW-99	04/10/2017	ND	4.0000		
Copper, total	ug/L	MW-99	10/09/2017	ND	4.0000		
Copper, total	ug/L	MW-99	04/17/2018	ND	4.0000		
Copper, total	ug/L	MW-99	10/22/2018	ND	4.0000		
Copper, total	ug/L	MW-99	04/22/2019	ND	4.0000		
Copper, total	ug/L	MW-99	10/23/2019	ND	4.0000		
Copper, total	ug/L	MW-99	04/10/2020	ND	4.0000		
Copper, total	ug/L	MW-99	10/19/2020	ND	4.0000		
Copper, total	ug/L	MW-99	04/05/2021		5.3000		
Copper, total	ug/L	MW-99	10/08/2021	ND	4.0000		
Copper, total	ug/L	MW-99	04/06/2022	ND	4.0000		
Copper, total	ug/L	MW-99	10/25/2022	ND	4.0000		
Copper, total	ug/L	MW-99	04/11/2023	ND	4.0000		
Copper, total	ug/L	MW-99	10/13/2023	ND	4.0000		
Copper, total	ug/L	MW-99	04/18/2024	ND	4.0000		
Copper, total	ug/L	MW-99	10/15/2024	ND	4.0000		
Lead, total	ug/L	MW-99	10/13/2016	ND	4.0000		
Lead, total	ug/L	MW-99	04/10/2017	ND	4.0000		
Lead, total	ug/L	MW-99	10/09/2017	ND	4.0000		
Lead, total	ug/L	MW-99	04/17/2018	ND	4.0000		
Lead, total	ug/L	MW-99	10/22/2018	ND	4.0000		
Lead, total	ug/L	MW-99	04/22/2019	ND	4.0000		
Lead, total	ug/L	MW-99	10/23/2019	ND	4.0000		
Lead, total	ug/L	MW-99	04/10/2020	ND	4.0000		
Lead, total	ug/L	MW-99	10/19/2020	ND	4.0000		
Lead, total	ug/L	MW-99	04/05/2021	ND	4.0000		
Lead, total	ug/L	MW-99	10/08/2021	ND	4.0000		
Lead, total	ug/L	MW-99	04/06/2022	ND	4.0000		
Lead, total	ug/L	MW-99	10/25/2022	ND	4.0000		
Lead, total	ug/L	MW-99	04/11/2023	ND	4.0000		
Lead, total	ug/L	MW-99	10/13/2023	ND	4.0000		
Lead, total	ug/L	MW-99	04/18/2024	ND	4.0000		
Lead, total	ug/L	MW-99	10/15/2024	ND	4.0000		-
Nickel, total	ug/L	MW-99	10/13/2016		5.6000		
Nickel, total	ug/L	MW-99	04/10/2017		5.1000		
Nickel, total	ug/L	MW-99	10/09/2017		8.8000		
Nickel, total	ug/L	MW-99	04/17/2018	NID	4.3000		
Nickel, total	ug/L	MW-99	10/22/2018	ND	4.0000		
Nickel, total	ug/L	MW-99	04/22/2019		5.1000		
Nickel, total	ug/L	MW-99	10/23/2019		7.1000		
Nickel, total	ug/L	MW-99	04/10/2020		6.5000		
Nickel, total	ug/L	MW-99	10/19/2020		6.9000		
Nickel, total	ug/L	MW-99	04/05/2021		5.1000		
Nickel, total	ug/L	MW-99	10/08/2021		5.5000		
Nickel, total	ug/L	MW-99	04/06/2022		5.3000		
Nickel, total	ug/L	MW-99	10/25/2022		6.2000		
Nickel, total	ug/L ug/L	MW-99 MW-99	04/11/2023 10/13/2023	ND	4.0000 5.3000		
Nickel, total							

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Nickel, total	ug/L	MW-99	04/18/2024		6.3000		
Nickel, total	ug/L	MW-99	10/15/2024	ND	4.0000		
Selenium, total	ug/L	MW-99	10/13/2016	ND	4.0000		
Selenium, total	ug/L	MW-99	04/10/2017	ND	4.0000		
Selenium, total Selenium, total	ug/L ug/L	MW-99 MW-99	10/09/2017 04/17/2018	ND ND	4.0000 4.0000		
Selenium, total	ug/L	MW-99	10/22/2018	ND	4.0000		
Selenium, total	ug/L	MW-99	04/22/2019	ND	4.0000		
Selenium, total	ug/L	MW-99	10/23/2019	ND	4.0000		
Selenium, total	ug/L	MW-99	04/10/2020	ND	4.0000		
Selenium, total	ug/L	MW-99	10/19/2020	ND	4.0000		
Selenium, total	ug/L	MW-99	04/05/2021	ND	4.0000		
Selenium, total	ug/L	MW-99	10/08/2021	ND	4.0000		
Selenium, total Selenium, total	ug/L ug/L	MW-99 MW-99	04/06/2022 10/25/2022	ND ND	4.0000 4.0000		
Selenium, total	ug/L	MW-99	04/11/2023	ND	4.0000		
Selenium, total	ug/L	MW-99	10/13/2023	ND	4.0000		
Selenium, total	ug/L	MW-99	04/18/2024	ND	4.0000		
Selenium, total	ug/L	MW-99	10/15/2024	ND	4.0000		
Silver, total	ug/L	MW-99	10/13/2016	ND	4.0000		
Silver, total	ug/L	MW-99	04/10/2017	ND	4.0000		
Silver, total	ug/L	MW-99	10/09/2017	ND	4.0000		
Silver, total	ug/L	MW-99 MW-99	04/17/2018 10/22/2018	ND ND	4.0000		
Silver, total Silver, total	ug/L ug/L	MW-99	04/22/2019	ND	4.0000 4.0000		
Silver, total	ug/L	MW-99	10/23/2019	ND	4.0000		
Silver, total	ug/L	MW-99	04/10/2020	ND	4.0000		
Silver, total	ug/L	MW-99	10/19/2020	ND	4.0000		
Silver, total	ug/L	MW-99	04/05/2021	ND	4.0000		
Silver, total	ug/L	MW-99	10/08/2021	ND	4.0000		
Silver, total	ug/L	MW-99	04/06/2022	ND	4.0000		
Silver, total	ug/L	MW-99	10/25/2022	ND	4.0000		
Silver, total Silver, total	ug/L ug/L	MW-99 MW-99	04/11/2023 10/13/2023	ND ND	4.0000 4.0000		
Silver, total	ug/L ug/L	MW-99	04/18/2024	ND	4.0000		
Silver, total	ug/L	MW-99	10/15/2024	ND	4.0000		
Thallium, total	ug/L	MW-99	10/13/2016	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-99	04/10/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-99	10/09/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-99	04/17/2018	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-99 MW-99	10/22/2018	ND ND	4.0000	2.0000	**
Thallium, total Thallium, total	ug/L ug/L	MW-99	04/22/2019 10/23/2019	ND	2.0000 2.0000		
Thallium, total	ug/L	MW-99	04/10/2020	ND	2.0000		
Thallium, total	ug/L	MW-99	10/19/2020	ND	2.0000		
Thallium, total	ug/L	MW-99	04/05/2021	ND	2.0000		
Thallium, total	ug/L	MW-99	10/08/2021	ND	2.0000		
Thallium, total	ug/L	MW-99	04/06/2022	ND	2.0000		
Thallium, total	ug/L	MW-99	10/25/2022	ND	2.0000		
Thallium, total Thallium, total	ug/L ug/L	MW-99 MW-99	04/11/2023 10/13/2023	ND ND	2.0000 2.0000		
Thallium, total	ug/L ug/L	MW-99	04/18/2024	ND	2.0000		
Thallium, total	ug/L	MW-99	10/15/2024	ND	2.0000		
Vanadium, total	ug/L	MW-99	10/13/2016	ND	20.0000		
Vanadium, total	ug/L	MW-99	04/10/2017	ND	20.0000		
Vanadium, total	ug/L	MW-99	10/09/2017	ND	20.0000		
Vanadium, total	ug/L	MW-99	04/17/2018	ND	20.0000		
Vanadium, total Vanadium, total	ug/L ug/L	MW-99 MW-99	10/22/2018 04/22/2019	ND ND	20.0000 20.0000		
Vanadium, total	ug/L ug/L	MW-99	10/23/2019	ND	20.0000		
Vanadium, total	ug/L	MW-99	04/10/2020	ND	20.0000		
Vanadium, total	ug/L	MW-99	10/19/2020	ND	20.0000		
Vanadium, total	ug/L	MW-99	04/05/2021	ND	20.0000		
Vanadium, total	ug/L	MW-99	10/08/2021	ND	20.0000		
Vanadium, total	ug/L	MW-99	04/06/2022	ND	20.0000		
Vanadium, total	ug/L	MW-99	10/25/2022	ND	20.0000		
Vanadium, total Vanadium, total	ug/L ug/L	MW-99 MW-99	04/11/2023 10/13/2023	ND ND	20.0000 20.0000		
Vanadium, total	ug/L ug/L	MW-99	04/18/2024	ND	20.0000		
Vanadium, total	ug/L	MW-99	10/15/2024	ND	20.0000		
Zinc, total	ug/L	MW-99	10/13/2016	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-99	04/10/2017	ND	8.0000	20.0000	**
Zinc, total Zinc, total	ug/L	MW-99	10/09/2017		11.2000	00.000	**
	ug/L	MW-99	04/17/2018	ND	8.0000	20.0000	^ ^

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Zinc, total	ug/L	MW-99	10/22/2018		23.6000		
Zinc, total	ug/L	MW-99	04/22/2019		27.8000		
Zinc, total	ug/L	MW-99	10/23/2019		20.8000		
Zinc, total	ug/L	MW-99	04/10/2020	ND	20.0000		
Zinc, total	ug/L	MW-99	10/19/2020	ND	20.0000		
Zinc, total	ug/L	MW-99	04/05/2021	ND	20.0000		
Zinc, total	ug/L	MW-99	10/08/2021	ND	20.0000		
Zinc, total	ug/L	MW-99	04/06/2022	ND	20.0000		
Zinc, total	ug/L	MW-99	10/25/2022	ND	20.0000		
Zinc, total	ug/L	MW-99	04/11/2023	ND	20.0000		
Zinc, total	ug/L	MW-99	10/13/2023	ND	20.0000		
Zinc, total	ug/L	MW-99	04/18/2024	ND	20.0000		
Zinc, total	ug/L	MW-99	10/15/2024	ND	20.0000		

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Most Current Downgradient Monitoring Data**

Constituent	Units	Well	Date		Result		Pred. Limit
Antimony, total	ug/L	MW-87	10/15/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-87	10/15/2024	ND	4.0000		7.8000
Barium, total	ug/L	MW-87	10/15/2024		100.0000		452.8909
Beryllium, total	ug/L	MW-87	10/15/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-87	10/15/2024 10/15/2024	ND	0.8000		0.8000
Chromium, total Cobalt, total	ug/L ug/L	MW-87 MW-87	10/15/2024	ND ND	8.0000 0.4000		23.4000 5.9879
Copper, total	ug/L ug/L	MW-87	10/15/2024	ND	4.0000		5.3000
Lead, total	ug/L	MW-87	10/15/2024	ND	4.0000		4.0000
Nickel, total	ug/L	MW-87	10/15/2024	ND	4.0000		8.8000
Selenium, total	ug/L	MW-87	10/15/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-87	10/15/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-87	10/15/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-87	10/15/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-87	10/15/2024	ND	20.0000		54.6000
Antimony, total	ug/L	MW-89 MW-89	10/15/2024 10/15/2024	ND ND	2.0000		2.0000 7.8000
Arsenic, total Barium, total	ug/L ug/L	MW-89	10/15/2024	ND	4.0000 215.0000		452.8909
Beryllium, total	ug/L ug/L	MW-89	10/15/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-89	10/15/2024	ND	0.8000		0.8000
Chromium, total	ug/L	MW-89	10/15/2024	ND	8.0000		23.4000
Cobalt, total	ug/L	MW-89	10/15/2024	ND	0.4000		5.9879
Copper, total	ug/L	MW-89	10/15/2024	ND	4.0000		5.3000
Lead, total	ug/L	MW-89	10/15/2024	ND	4.0000		4.0000
Nickel, total	ug/L	MW-89	10/15/2024	ND	4.0000		8.8000
Selenium, total	ug/L	MW-89	10/15/2024	ND	4.0000		4.0000
Silver, total	ug/L ug/L	MW-89 MW-89	10/15/2024 10/15/2024	ND ND	4.0000 2.0000		4.0000 2.0000
Thallium, total Vanadium, total	ug/L ug/L	MW-89	10/15/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-89	10/15/2024	ND	20.0000		54.6000
Antimony, total	ug/L	MW-91	10/15/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-91	10/15/2024	ND	4.0000		7.8000
Barium, total	ug/L	MW-91	10/15/2024		242.0000		452.8909
Beryllium, total	ug/L	MW-91	10/15/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-91 MW-91	10/15/2024 10/15/2024	ND ND	0.8000		0.8000
Chromium, total Cobalt, total	ug/L ug/L	MW-91	10/15/2024	ND	0.4000		23.4000 5.9879
Copper, total	ug/L ug/L	MW-91	10/15/2024	ND	4.0000		5.3000
Lead, total	ug/L	MW-91	10/15/2024	ND	4.0000		4.0000
Nickel, total	ug/L	MW-91	10/15/2024	ND	4.0000		8.8000
Selenium, total	ug/L	MW-91	10/15/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-91	10/15/2024	ND	4.0000		4.0000
Thallium, total Vanadium, total	ug/L	MW-91 MW-91	10/15/2024	ND ND	2.0000		2.0000
Zinc, total	ug/L ug/L	MW-91	10/15/2024 10/15/2024	ND	20.0000		20.0000 54.6000
Antimony, total	ug/L	MW-93	10/15/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-93	10/15/2024		15.2000	***	7.8000
Barium, total	ug/L	MW-93	10/15/2024		242.0000		452.8909
Beryllium, total	ug/L	MW-93	10/15/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-93	10/15/2024	ND	0.8000		0.8000
Chromium, total Cobalt, total	ug/L ug/L	MW-93 MW-93	10/15/2024 10/15/2024	ND	8.0000 9.9000	***	23.4000 5.9879
Copper, total	ug/L ug/L	MW-93	10/15/2024	ND	4.0000		5.3000
Lead, total	ug/L	MW-93	10/15/2024	ND	4.0000		4.0000
Nickel, total	ug/L	MW-93	10/15/2024		27.1000	***	8.8000
Selenium, total	ug/L	MW-93	10/15/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-93	10/15/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-93	10/15/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-93	10/15/2024	ND	20.0000		20.0000
Zinc, total Antimony, total	ug/L ug/L	MW-93 MW-95	10/15/2024 10/15/2024	ND ND	20.0000		54.6000 2.0000
Arsenic, total	ug/L ug/L	MW-95	10/15/2024	ND	4.0000		7.8000
Barium, total	ug/L	MW-95	10/15/2024		32.3000		452.8909
Beryllium, total	ug/L	MW-95	10/15/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-95	10/15/2024	ND	0.8000		0.8000
Chromium, total	ug/L	MW-95	10/15/2024	ND	8.0000		23.4000
Cobalt, total	ug/L	MW-95	10/15/2024	ND	0.4000		5.9879
Copper, total Lead, total	ug/L ug/L	MW-95 MW-95	10/15/2024 10/15/2024	ND ND	4.0000 4.0000		5.3000 4.0000
	ug/L ug/L	MW-95	10/15/2024	ND	4.0000		8.8000
Nickel, total							
Nickel, total Selenium, total	ug/L ug/L	MW-95	10/15/2024	ND	4.0000		4.0000

 ⁻ Current value failed - awaiting verification.

 - Current value passed - previous exceedance not verified.

 - Current value failed - exceedance verified.

 - Current value passed - awaiting one more verification.

 - Insufficient background data to compute prediction limit.

 ND = Not Detected, Result = detection limit.

Table 2 **Most Current Downgradient Monitoring Data**

Constituent	Units	Well	Date		Result	Pred. Limit
Thallium, total	ug/L	MW-95	10/15/2024	ND	2.0000	2.0000
Vanadium, total	ug/L	MW-95	10/15/2024	ND	20.0000	20.0000
Zinc, total	ug/L	MW-95	10/15/2024	ND	20.0000	54.6000
Antimony, total	ug/L	MW-97	10/15/2024	ND	2.0000	2.0000
Arsenic, total	ug/L	MW-97	10/15/2024	ND	4.0000	7.8000
Barium, total	ug/L	MW-97	10/15/2024		274.0000	452.8909
Beryllium, total	ug/L	MW-97	10/15/2024	ND	4.0000	4.0000
Cadmium, total	ug/L	MW-97	10/15/2024	ND	0.8000	0.8000
Chromium, total	ug/L	MW-97	10/15/2024	ND	8.0000	23.4000
Cobalt, total	ug/L	MW-97	10/15/2024	ND	0.4000	5.9879
Copper, total	ug/L	MW-97	10/15/2024	ND	4.0000	5.3000
Lead, total	ug/L	MW-97	10/15/2024	ND	4.0000	4.0000
Nickel, total	ug/L	MW-97	10/15/2024	ND	4.0000	8.8000
Selenium, total	ug/L	MW-97	10/15/2024	ND	4.0000	4.0000
Silver, total	ug/L	MW-97	10/15/2024	ND	4.0000	4.0000
Thallium, total	ug/L	MW-97	10/15/2024	ND	2.0000	2.0000
Vanadium, total	ug/L	MW-97	10/15/2024	ND	20.0000	20.0000
Zinc, total	ug/L	MW-97	10/15/2024	ND	20.0000	54.6000

 ⁻ Current value failed - awaiting verification.
 - Current value passed - previous exceedance not verified.
 - Current value failed - exceedance verified.
 - Current value passed - awaiting one more verification.
 - Insufficient background data to compute prediction limit.
 ND = Not Detected, Result = detection limit.

Table 3

Detection Frequencies in Upgradient and Downgradient Wells

Constituent	Detect	Upgradient N	Proportion	Detect	Downgradient N	Proportion
Antimony, total	0	65	0.000	0	196	0.000
Arsenic, total	5	63	0.079	42	202	0.208
Barium, total	65	65	1.000	198	198	1.000
Beryllium, total	0	65	0.000	0	196	0.000
Cadmium, total	0	65	0.000	5	196	0.026
Chromium, total	2	65	0.031	7	196	0.036
Cobalt, total	35	63	0.556	37	201	0.184
Copper, total	4	65	0.062	31	201	0.154
Lead, total	0	65	0.000	12	196	0.061
Nickel, total	14	64	0.219	76	198	0.384
Selenium, total	0	65	0.000	5	200	0.025
Silver, total	0	65	0.000	0	196	0.000
Thallium, total	0	65	0.000	0	196	0.000
Vanadium, total	0	65	0.000	11	197	0.056
Zinc, total	7	64	0.109	53	197	0.269

N = Total number of measurements in all wells. Detect = Total number of detections in all wells. Proportion = Detect/N.

Table 4 **Shapiro-Wilk Multiple Group Test of Normality**

Constituent	Detect	N	Detect Freq	G raw	G log	G cbrt	G sqrt	G sqr	G cub	Crit Value	Dist Form	Model Type
Antimony, total	0	65	0.000									nonpar
Arsenic, total	5	63	0.079	0.427	0.013					2.326	normal	nonpar
Barium, total	65	65	1.000	0.569	1.099					2.326	normal	normal
Beryllium, total	0	65	0.000									nonpar
Cadmium, total	0	65	0.000									nonpar
Chromium, total	2	65	0.031									nonpar
Cobalt, total	35	63	0.556	1.125	0.053					2.326	normal	normal
Copper, total	4	65	0.062									nonpar
Lead, total	0	65	0.000									nonpar
Nickel, total	14	64	0.219	1.049	0.057					2.326	normal	nonpar
Selenium, total	0	65	0.000									nonpar
Silver, total	0	65	0.000									nonpar
Thallium, total	0	65	0.000									nonpar
Vanadium, total	0	65	0.000									nonpar
Zinc, total	7	64	0.109	0.439	0.418					2.326	normal	nonpar

 * - Distribution override for that constituent. Fit to distribution is confirmed if G <= critical value. Model type may not match distributional form when detection frequency < 50%.

Table 5 **Summary Statistics and Prediction Limits**

Constituent	Units	Detect	N	Mean	SD	alpha	Factor	Pred Limit	Туре		Conf
Antimony, total	ug/L	0	65					2.0000	nonpar	***	0.99
Arsenic, total	ug/L	5	63					7.8000	nonpar		0.99
Barium, total	ug/L	65	65	179.9308	113.5302	0.0100	2.4043	452.8909	normal		
Beryllium, total	ug/L	0	65					4.0000	nonpar	***	0.99
Cadmium, total	ug/L	0	65					0.8000	nonpar	***	0.99
Chromium, total	ug/L	2	65					23.4000	nonpar		0.99
Cobalt, total	ug/L	35	63	1.5746	1.8336	0.0100	2.4069	5.9879	normal		
Copper, total	ug/L	4	65					5.3000	nonpar		0.99
Lead, total	ug/L	0	65					4.0000	nonpar	***	0.99
Nickel, total	ug/L	14	64					8.8000	nonpar		0.99
Selenium, total	ug/L	0	65					4.0000	nonpar	***	0.99
Silver, total	ug/L	0	65					4.0000	nonpar	***	0.99
Thallium, total	ug/L	0	65						nonpar	***	0.99
Vanadium, total	ug/L	0	65					20.0000	nonpar	***	0.99
Zinc, total	ug/L	7	64					54.6000	nonpar		0.99

Conf = confidence level for passing initial test or one verification resample at all downgradient wells for a single constituent Conf = confidence level for passing initial test or one verification resample at all downgradient webs (nonparametric test only).

* - Insufficient Data.

** - Calculated limit raised to Manual Reporting Limit.

*** - Nonparametric limit based on ND value.

For transformed data, mean and SD in transformed units and prediction limit in original units.

All sample sizes and statistics are based on outlier free data.

For nonparametric limits, median reporting limits are substituted for extreme reporting limit values.

Table 6

Dixon's Test Outliers 1% Significance Level

Constituent	Units	Well	Date	Result	ND Qualifier	Date Range	N	Critical Value
Arsenic, total	ug/L	MW-98	04/17/2024	48.0000		10/13/2016-10/15/2024	16	0.5973
Cobalt, total	ug/L	MW-99	10/22/2018	0.8000		10/13/2016-10/15/2024	17	0.5973
Cobalt, total	ug/L	MW-99	10/15/2024	0.9000		10/13/2016-10/15/2024	17	0.5973

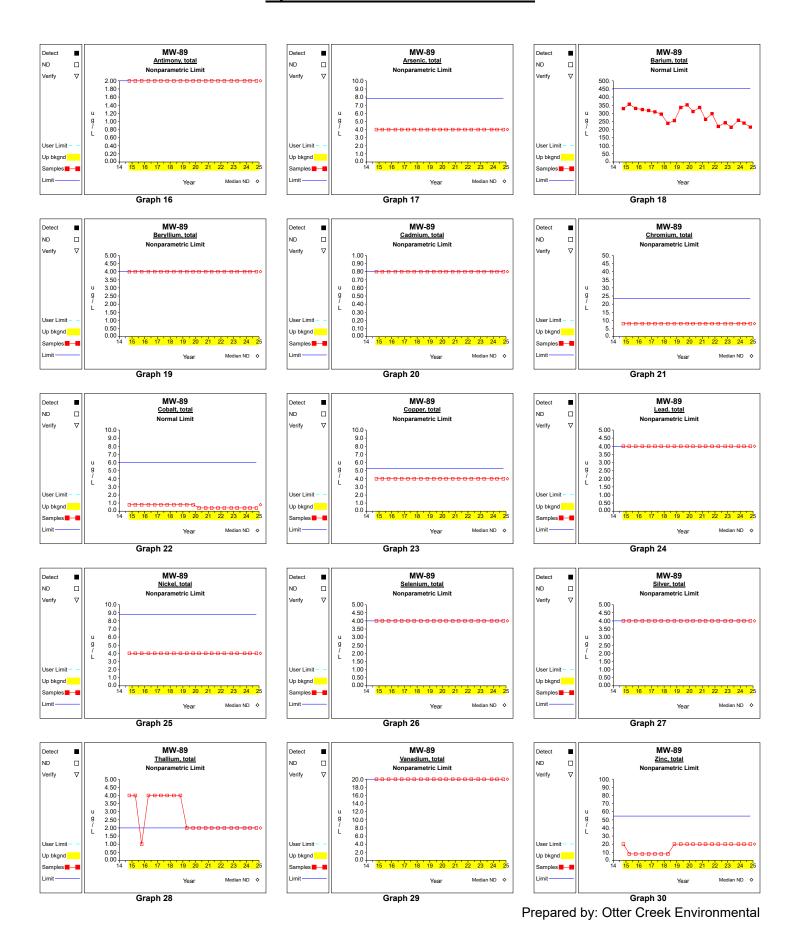
N = Total number of independent measurements in background at each well.

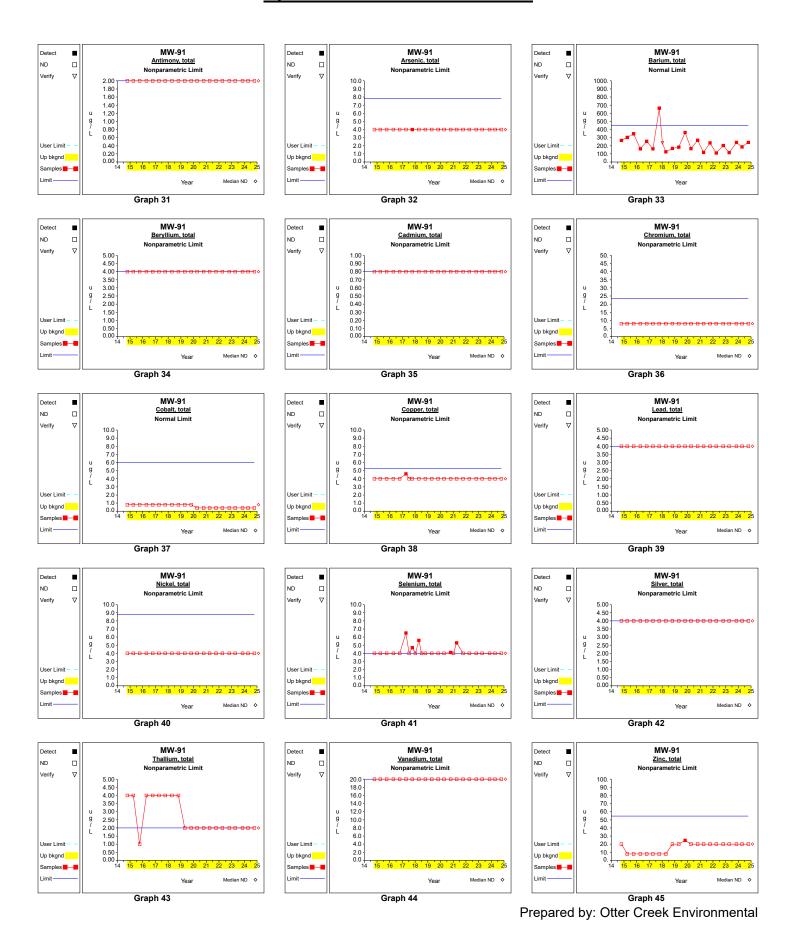
Date Range = Dates of the first and last measurements included in background at each well.

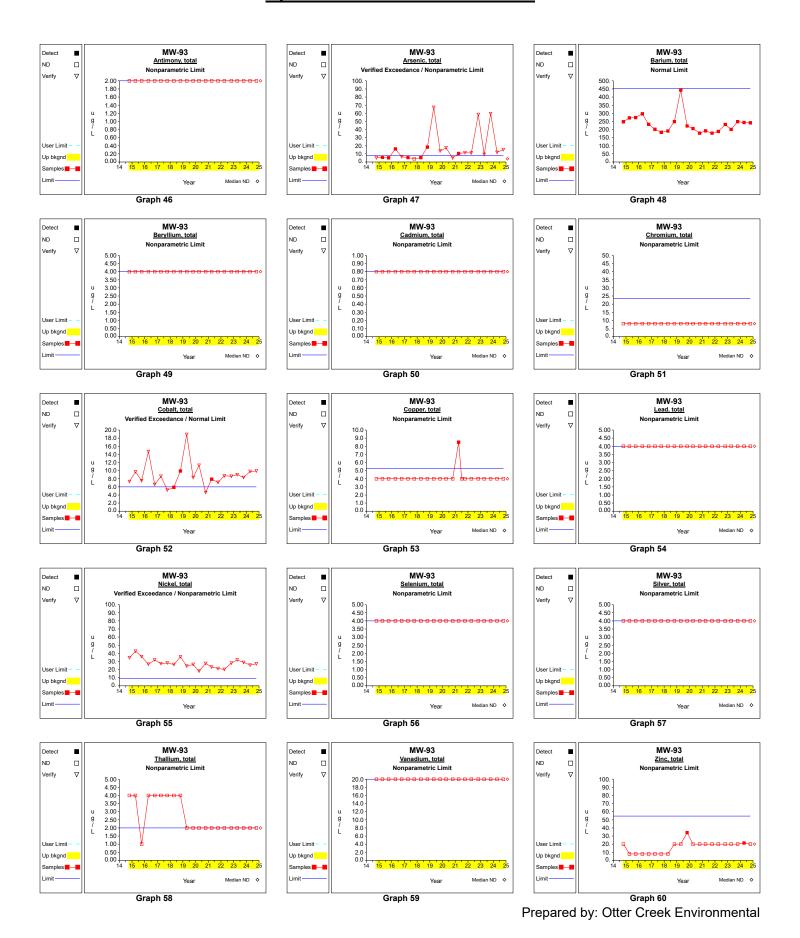
Critical Value depends on the significance level and on N-1 when the two most extreme values are tested or N for the most extreme

Table 8 Historical Downgradient Data for Constituent-Well Combinations that Failed the Current Statistical Evaluation or are in Verification Resampling Mode

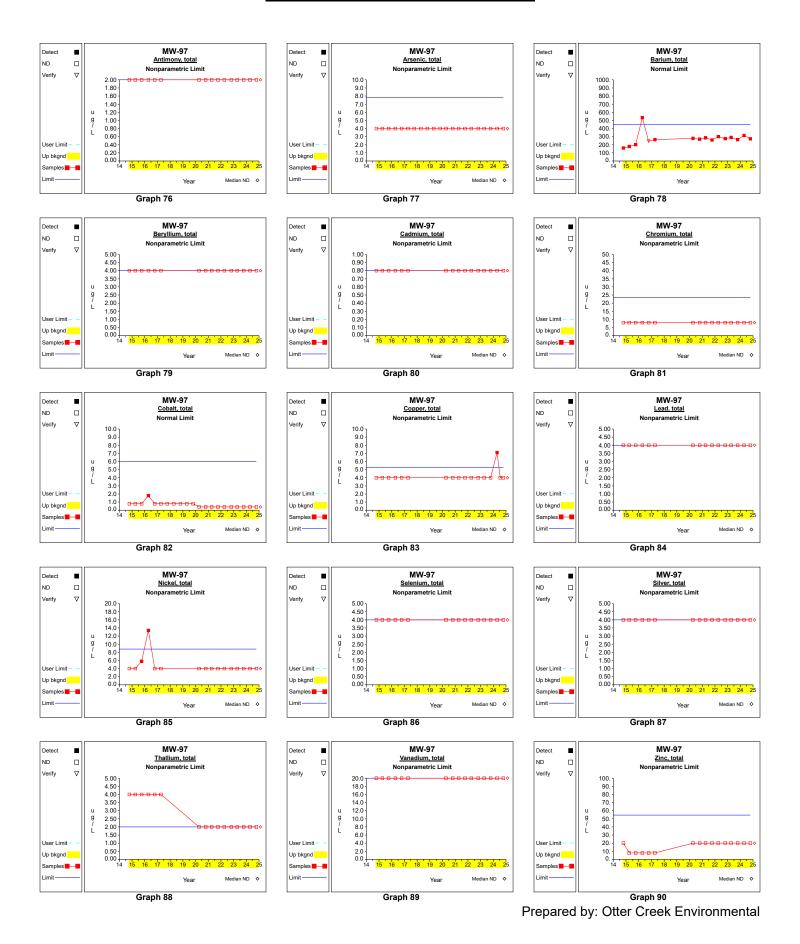
Constituent	Units	Well	Date		Result		Pred. Limit
Arsenic, total	ug/L	MW-93	08/21/2008	ND	20.0000		7.8000
Arsenic, total	ug/L	MW-93	10/03/2008	ND	4.0000		7.8000
Arsenic, total	ug/L	MW-93	12/08/2008	ND	4.0000		7.8000
Arsenic, total	ug/L	MW-93	02/11/2009	ND	4.0000		7.8000
Arsenic, total	ug/L	MW-93	04/02/2009	ND	4.0000		7.8000
Arsenic, total	ug/L ug/L	MW-93 MW-93	10/16/2009	ND	4.0000 10.9000	*	7.8000 7.8000
Arsenic, total Arsenic, total	ug/L ug/L	MW-93	04/20/2010 10/08/2010		11.1000	*	7.8000
Arsenic, total	ug/L ug/L	MW-93	04/05/2011	ND	4.0000		7.8000
Arsenic, total	ug/L ug/L	MW-93	10/06/2011	ND	4.0000		7.8000
Arsenic, total	ug/L	MW-93	04/10/2012	.,,,	4.2000		7.8000
Arsenic, total	ug/L	MW-93	10/09/2012		4.4000		7.8000
Arsenic, total	ug/L	MW-93	04/04/2013	ND	4.0000		7.8000
Arsenic, total	ug/L	MW-93	10/16/2013	ND	4.0000		7.8000
Arsenic, total	ug/L	MW-93	04/10/2014		9.2000	*	7.8000
Arsenic, total	ug/L	MW-93	10/16/2014		5.1000		7.8000
Arsenic, total	ug/L	MW-93	04/06/2015		5.9000		7.8000
Arsenic, total	ug/L	MW-93	10/01/2015		5.2000		7.8000
Arsenic, total	ug/L	MW-93	04/14/2016		16.1000	*	7.8000
Arsenic, total	ug/L	MW-93	10/13/2016		6.5000		7.8000
Arsenic, total	ug/L	MW-93	04/10/2017		5.5000		7.8000
Arsenic, total	ug/L	MW-93	10/09/2017	ND	4.0000		7.8000
Arsenic, total	ug/L	MW-93	04/17/2018		5.4000	*	7.8000
Arsenic, total	ug/L	MW-93	10/22/2018		18.4000	*	7.8000
Arsenic, total	ug/L	MW-93 MW-93	04/22/2019 10/23/2019		67.3000	*	7.8000
Arsenic, total	ug/L ug/L	MW-93	04/10/2020		13.6000 17.5000	*	7.8000 7.8000
Arsenic, total Arsenic, total	ug/L ug/L	MW-93	10/19/2020		4.8000		7.8000
Arsenic, total	ug/L ug/L	MW-93	04/05/2021		10.5000	*	7.8000
Arsenic, total	ug/L ug/L	MW-93	10/08/2021		11.4000	*	7.8000
Arsenic, total	ug/L	MW-93	04/06/2022		11.1000	*	7.8000
Arsenic, total	ug/L	MW-93	10/25/2022		58.5000	*	7.8000
Arsenic, total	ug/L	MW-93	04/11/2023		9.3000	*	7.8000
Arsenic, total	ug/L	MW-93	10/13/2023		59.6000	*	7.8000
Arsenic, total	ug/L	MW-93	04/16/2024		11.9000	*	7.8000
Arsenic, total	ug/L	MW-93	10/15/2024		15.2000	*	7.8000
Cobalt, total	ug/L	MW-93	08/21/2008	ND	10.0000		5.9879
Cobalt, total	ug/L	MW-93	10/03/2008	ND	4.0000		5.9879
Cobalt, total	ug/L	MW-93	12/08/2008	ND	4.0000		5.9879
Cobalt, total	ug/L	MW-93	02/11/2009	ND	4.0000		5.9879
Cobalt, total	ug/L	MW-93	04/02/2009	ND	4.0000		5.9879
Cobalt, total	ug/L	MW-93 MW-93	10/16/2009	ND	4.0000	*	5.9879
Cobalt, total Cobalt, total	ug/L ug/L	MW-93	04/20/2010 10/08/2010		11.6000 16.2000	*	5.9879 5.9879
Cobalt, total	ug/L	MW-93	04/05/2011		9.2000	*	5.9879
Cobalt, total	ug/L	MW-93	10/06/2011		8.6000	*	5.9879
Cobalt, total	ug/L	MW-93	04/10/2012		4.8000		5.9879
Cobalt, total	ug/L	MW-93	10/09/2012		4.5000		5.9879
Cobalt, total	ug/L	MW-93	04/04/2013		4.5000		5.9879
Cobalt, total	ug/L	MW-93	10/16/2013		4.6000		5.9879
Cobalt, total	ug/L	MW-93	04/10/2014		11.2000	*	5.9879
Cobalt, total	ug/L	MW-93	10/16/2014		7.3000	*	5.9879
Cobalt, total	ug/L	MW-93	04/06/2015		9.7000	*	5.9879
Cobalt, total	ug/L	MW-93	10/01/2015		7.5000	*	5.9879
Cobalt, total	ug/L	MW-93	04/14/2016		14.7000	*	5.9879
Cobalt, total	ug/L	MW-93	10/13/2016		6.6000	*	5.9879
Cobalt, total	ug/L	MW-93	04/10/2017		8.6000	*	5.9879
Cobalt, total	ug/L	MW-93	10/09/2017		5.2000		5.9879
Cobalt, total	ug/L	MW-93 MW-93	04/17/2018		5.9000	*	5.9879
Cobalt, total Cobalt, total	ug/L ug/L	MW-93	10/22/2018 04/22/2019		9.9000 18.9000	*	5.9879 5.9879
Cobalt, total	ug/L ug/L	MW-93	10/23/2019		8.3000	*	5.9879
Cobalt, total	ug/L ug/L	MW-93	04/10/2020		11.3000	*	5.9879
Cobalt, total	ug/L ug/L	MW-93	10/19/2020		4.6000		5.9879
Cobalt, total	ug/L	MW-93	04/05/2021		7.9000	*	5.9879
Cobalt, total	ug/L	MW-93	10/08/2021		7.1000	*	5.9879
Cobalt, total	ug/L	MW-93	04/06/2022		8.7000	*	5.9879
Cobalt, total	ug/L	MW-93	10/25/2022		8.6000	*	5.9879
Cobalt, total	ug/L	MW-93	04/11/2023		9.0000	*	5.9879
					8.3000	*	
Cobalt, total	ug/L	MW-93	10/13/2023		0.3000		5.9879

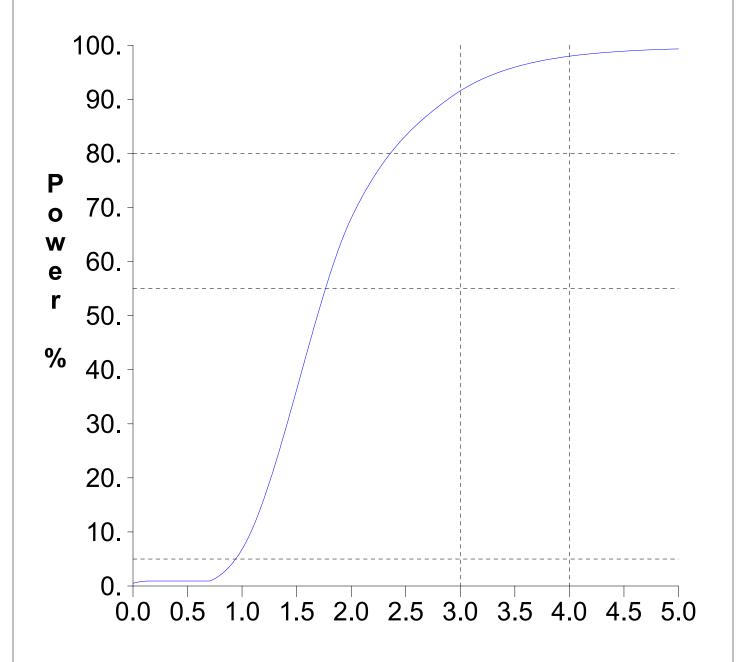

 ^{* -} Significantly increased over background.
 ** - Detect at limit for 100% NDs in background (NPPL only).
 *** - Manual exclusion.
 ND = Not Detected, Result = detection limit.


Table 8 Historical Downgradient Data for Constituent-Well Combinations that Failed the Current Statistical Evaluation or are in Verification Resampling Mode


Constituent	Units	Well	Date	Result		Pred. Limit
Cobalt, total	ug/L	MW-93	10/15/2024	9.9000	*	5.9879
Nickel, total	ug/L	MW-93	08/21/2008	29.0000	*	8.8000
Nickel, total	ug/L	MW-93	10/03/2008	28.9000	*	8.8000
Nickel, total	ug/L	MW-93	12/08/2008	23.8000	*	8.8000
Nickel, total	ug/L	MW-93	02/11/2009	30.4000	*	8.8000
Nickel, total	ug/L	MW-93	04/02/2009	32.1000	*	8.8000
Nickel, total	ug/L	MW-93	10/16/2009	30.2000	*	8.8000
Nickel, total	ug/L	MW-93	01/29/2010	35.3000	*	8.8000
Nickel, total	ug/L	MW-93	04/20/2010	45.5000	*	8.8000
Nickel, total	ug/L	MW-93	10/08/2010	69.8000	*	8.8000
Nickel, total	ug/L	MW-93	04/05/2011	37.5000	*	8.8000
Nickel, total	ug/L	MW-93	10/06/2011	31.9000	*	8.8000
Nickel, total	ug/L	MW-93	04/10/2012	29.6000	*	8.8000
Nickel, total	ug/L	MW-93	10/09/2012	23.5000	*	8.8000
Nickel, total	ug/L	MW-93	04/04/2013	13.8000	*	8.8000
Nickel, total	ug/L	MW-93	10/16/2013	21.5000	*	8.8000
Nickel, total	ug/L	MW-93	04/10/2014	43.1000	*	8.8000
Nickel, total	ug/L	MW-93	10/16/2014	34.6000	*	8.8000
Nickel, total	ug/L	MW-93	04/06/2015	42.6000	*	8.8000
Nickel, total	ug/L	MW-93	10/01/2015	36.0000	*	8.8000
Nickel, total	ug/L	MW-93	04/14/2016	26.5000	*	8.8000
Nickel, total	ug/L	MW-93	10/13/2016	31.8000	*	8.8000
Nickel, total	ug/L	MW-93	04/10/2017	27.3000	*	8.8000
Nickel, total	ug/L	MW-93	10/09/2017	28.2000	*	8.8000
Nickel, total	ug/L	MW-93	04/17/2018	26.2000	*	8.8000
Nickel, total	ug/L	MW-93	10/22/2018	35.7000	*	8.8000
Nickel, total	ug/L	MW-93	04/22/2019	24.2000	*	8.8000
Nickel, total	ug/L	MW-93	10/23/2019	26.3000	*	8.8000
Nickel, total	ug/L	MW-93	04/10/2020	18.1000	*	8.8000
Nickel, total	ug/L	MW-93	10/19/2020	27.6000	*	8.8000
Nickel, total	ug/L	MW-93	04/05/2021	23.1000	*	8.8000
Nickel, total	ug/L	MW-93	10/08/2021	21.3000	*	8.8000
Nickel, total	ug/L	MW-93	04/06/2022	20.2000	*	8.8000
Nickel, total	ug/L	MW-93	10/25/2022	27.9000	*	8.8000
Nickel, total	ug/L	MW-93	04/11/2023	31.8000	*	8.8000
Nickel, total	ug/L	MW-93	10/13/2023	28.8000	*	8.8000
Nickel, total	ug/L	MW-93	04/16/2024	25.5000	*	8.8000
Nickel, total	ug/L	MW-93	10/15/2024	27.1000	*	8.8000

^{* -} Significantly increased over background.
** - Detect at limit for 100% NDs in background (NPPL only).
*** - Manual exclusion.
ND = Not Detected, Result = detection limit.





False Positive and False Negative Rates for Current Upgradient vs. Downgradient Monitoring Program

S. D. Units

Worksheet 1 - Upgradient vs. Downgradient Comparisons Antimony, total (ug/L) Nonparametric Prediction Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	PL = median(X) = 2.0	Compute nonparametric prediction limit as median reporting limit in background.
2	- 2.0 Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).
		Worksheet 1 - Upgradient vs. Downgradient Comparisons

Worksheet 1 - Upgradient vs. Downgradient Comparisons Arsenic, total (ug/L) Nonparametric Prediction Limit

 Step
 Equation
 Description

 1
 PL = max(X)
 Compute nonparametric prediction limit as largest background measurement.

 = 7.8
 2
 Conf = 0.99
 Confidence level is based on N, K and resampling strategy (see Gibbons 1994).

Worksheet 1 - Upgradient vs. Downgradient Comparisons Barium, total (ug/L) Normal Prediction Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>	
1	$\overline{X} = sum[X] / N$	Compute upgradient mean.	
	= 11695.5 / 65		
	= 179.931		
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute upgradient sd.	
	= $((2.93 \times 10^6 - 1.37 \times 10^8 / 65) / (65-1))^{1/2}$		
	= 113.53		
3	alpha = min[$(195^{1/\mathbf{K}})^{1/2}$, .01]	Adjusted per comparison false positive rate. Pass	
	$= \min[(195^{1/90})^{\frac{1}{2}}, .01]$	initial or 1 resample.	
	= 0.01		
4	$PL = \overline{X} + tS(1+1/N)^{1/2}$	One-sided normal prediction limit (t is Student's t on	
	= 179.931	N-1 degrees of freedom and 1-alpha confidence level).	
	+ (2.386*113.53)(1+1/65) ^{1/2}		
	= 452.891		

Worksheet 1 - Upgradient vs. Downgradient Comparisons Beryllium, total (ug/L) Nonparametric Prediction Limit

<u>Step</u>	Equation	<u>Description</u>		
1	PL = median(X) = 4.0	Compute nonparametric prediction limit as median reporting limit in background.		
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).		
	Worksheet 1 - Upgradient vs. Downgradient Comparisons Cadmium, total (ug/L) Nonparametric Prediction Limit			
<u>Step</u>	Equation	<u>Description</u>		
1	PL = median(X) = 0.8	Compute nonparametric prediction limit as median reporting limit in background.		
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).		
		Worksheet 1 - Upgradient vs. Downgradient Comparisons Chromium, total (ug/L) Nonparametric Prediction Limit		
<u>Step</u>	Equation	<u>Description</u>		
1	PL = max(X) = 23.4	Compute nonparametric prediction limit as largest background measurement.		
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).		

Worksheet 1 - Upgradient vs. Downgradient Comparisons Cobalt, total (ug/L) Normal Prediction Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>	
1	$\overline{X}_1 = \text{sum}[X_1] / N_1$ = 99.2 / 35	Compute mean of N ₁ detected measurements.	
2	= 2.834 $S_{1} = ((sum[X_{1}^{2}]-sum[X_{1}]^{2}/N_{1})/(N_{1}-1))^{\frac{1}{2}}$ $= ((363.58-9840.64/35)/(35-1))^{\frac{1}{2}}$ $= 1.557$	Compute sd of N ₁ detected measurements.	
3	$\overline{X} = (1 - N_0/N) \overline{X}_1$ = (1 - 28/63) 2.834	Use Aitchison's method to adjust mean for presence of nondetects.	
4	= 1.575 $S = [(1 - N_0/N) * S_1^2 + (N_0/N) (1 - (N_0^{-1})/(N^{-1})) \overline{X}_1^2]^{\frac{1}{2}}$ $= [(1 - 28/63) * 1.557^2 + (28/63) (1 - (28-1)/(63-1)) 2.834^2]^{\frac{1}{2}}$	Use Aitchison's method to adjust sd for presence of nondetects.	
5	= 1.834 alpha = min[$(195^{1/K})^{1/2}$, .01] = min[$(195^{1/90})^{1/2}$, .01] = 0.01	Adjusted per comparison false positive rate. Pass initial or 1 resample.	
6	PL = \overline{X} + tS(1+1/N) ^{1/2} = 1.575 + (2.388*1.834)(1+1/63) ^{1/2} = 5.988	One-sided normal prediction limit (t is Student's t on N-1 degrees of freedom and 1-alpha confidence level).	

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	PL = max(X) = 5.3	Compute nonparametric prediction limit as largest background measurement.
2	Conf = 0.99	Confidence level is based on N. K and resampling strategy (see Gibbons 1994).

Worksheet 1 - Upgradient vs. Downgradient Comparisons Lead, total (ug/L) Nonparametric Prediction Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>			
1	PL = median(X) = 4.0	Compute nonparametric prediction limit as median reporting limit in background.			
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).			
		Worksheet 1 - Upgradient vs. Downgradient Comparisons			
	<u>Nickel, total (ug/L)</u> <u>Nonparametric Prediction Limit</u>				
Step	Equation	<u>Description</u>			
1	PL = max(X) = 8.8	Compute nonparametric prediction limit as largest background measurement.			
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).			
Worksheet 1 - Upgradient vs. Downgradient Comparisons Selenium, total (ug/L) Nonparametric Prediction Limit					
<u>Step</u>	Equation	<u>Description</u>			
1	PL = median(X) = 4.0	Compute nonparametric prediction limit as median reporting limit in background.			
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).			
Worksheet 1 - Upgradient vs. Downgradient Comparisons Silver, total (ug/L) Nonparametric Prediction Limit					
<u>Step</u>	Equation	<u>Description</u>			
1	PL = median(X) = 4.0	Compute nonparametric prediction limit as median reporting limit in background.			
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).			

Worksheet 1 - Upgradient vs. Downgradient Comparisons Thallium, total (ug/L) Nonparametric Prediction Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	PL = median(X) = 2.0	Compute nonparametric prediction limit as median reporting limit in background.
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).
		Worksheet 1 - Upgradient vs. Downgradient Comparisons Vanadium, total (ug/L) Nonparametric Prediction Limit
<u>Step</u>	Equation	<u>Description</u>
1	PL = median(X) = 20.0	Compute nonparametric prediction limit as median reporting limit in background.
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).
		Worksheet 1 - Upgradient vs. Downgradient Comparisons Zinc, total (ug/L) Nonparametric Prediction Limit
<u>Step</u>	Equation	<u>Description</u>
1	PL = max(X) = 54.6	Compute nonparametric prediction limit as largest background measurement.
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Antimony, total	ug/L	MW-66	10/16/2014	ND	2.0000		
Antimony, total	ug/L	MW-66	01/14/2015	ND	2.0000		
Antimony, total	ug/L	MW-66	04/03/2015	ND	2.0000		
Antimony, total	ug/L	MW-66	07/06/2015	ND	2.0000		
Antimony, total	ug/L	MW-66	10/01/2015	ND	2.0000		
Antimony, total	ug/L	MW-66	04/14/2016	ND	2.0000		
Antimony, total	ug/L	MW-66	10/13/2016	ND	2.0000		
Antimony, total	ug/L	MW-66	04/10/2017	ND	2.0000		
Arsenic, total	ug/L	MW-66	10/16/2014	ND	4.0000		
Arsenic, total	ug/L	MW-66	01/14/2015	ND	4.0000		
Arsenic, total	ug/L	MW-66	04/03/2015	ND	4.0000		
Arsenic, total	ug/L	MW-66	07/06/2015	ND	4.0000		
Arsenic, total	ug/L	MW-66	10/01/2015	ND	4.0000		
Arsenic, total	ug/L	MW-66	04/14/2016	ND	4.0000		
Arsenic, total	ug/L	MW-66	10/13/2016	ND	4.0000		
Arsenic, total	ug/L	MW-66	04/10/2017	ND	4.0000		
Barium, total	ug/L	MW-66	10/16/2014		325.0000		
Barium, total	ug/L	MW-66	01/14/2015		412.0000		
Barium, total	ug/L	MW-66	04/03/2015		524.0000		
Barium, total	ug/L	MW-66	07/06/2015		560.0000		
Barium, total	ug/L	MW-66	10/01/2015		612.0000		
Barium, total	ug/L	MW-66	04/14/2016		395.0000		
Barium, total	ug/L	MW-66	10/13/2016		413.0000		
Barium, total	ug/L	MW-66	04/10/2017		371.0000		
Beryllium, total	ug/L	MW-66	10/16/2014	ND	4.0000		
Beryllium, total	ug/L	MW-66	01/14/2015	ND	4.0000		
Beryllium, total	ug/L	MW-66	04/03/2015	ND	4.0000		
Beryllium, total	ug/L	MW-66	07/06/2015	ND	4.0000		
Beryllium, total	ug/L	MW-66	10/01/2015	ND	4.0000		
Beryllium, total	ug/L	MW-66	04/14/2016	ND	4.0000		
Beryllium, total	ug/L	MW-66	10/13/2016	ND	4.0000		
Beryllium, total	ug/L	MW-66	04/10/2017	ND	4.0000		
Cadmium, total	ug/L	MW-66	10/16/2014	ND	0.8000		
Cadmium, total	ug/L	MW-66	01/14/2015	ND	0.8000		
Cadmium, total	ug/L	MW-66	04/03/2015	ND	0.8000		
Cadmium, total	ug/L	MW-66	07/06/2015	ND	0.8000		
Cadmium, total	ug/L	MW-66	10/01/2015	ND	0.8000		
Cadmium, total	ug/L	MW-66	04/14/2016	ND	0.8000		
Cadmium, total	ug/L	MW-66	10/13/2016	ND	0.8000		
Cadmium, total	ug/L	MW-66	04/10/2017	ND	0.8000		
Chromium, total	ug/L	MW-66	10/16/2014	ND	8.0000		
Chromium, total	ug/L	MW-66	01/14/2015	ND	8.0000		
Chromium, total	ug/L	MW-66	04/03/2015	ND	8.0000		
Chromium, total	ug/L	MW-66	07/06/2015	ND	8.0000		
Chromium, total	ug/L	MW-66	10/01/2015	ND	8.0000		
Chromium, total	ug/L	MW-66	04/14/2016	ND	8.0000		
Chromium, total	ug/L	MW-66	10/13/2016	ND	8.0000		
Chromium, total	ug/L	MW-66	04/10/2017	ND	8.0000		
Cobalt, total	ug/L	MW-66	10/16/2014	ND	0.8000		
Cobalt, total	ug/L	MW-66	01/14/2015	ND	0.8000		
Cobalt, total	ug/L	MW-66	04/03/2015	ND	0.8000		
Cobalt, total	ug/L	MW-66	07/06/2015	ND	0.8000		
Cobalt, total	ug/L	MW-66	10/01/2015	ND	0.8000		
Cobalt, total	ug/L	MW-66	04/14/2016	ND	0.8000		
Cobalt, total	ug/L	MW-66	10/13/2016		0.9000		
Cobalt, total	ug/L	MW-66	04/10/2017	ND	0.8000		
Copper, total	ug/L	MW-66	10/16/2014	ND	4.0000		
Copper, total	ug/L	MW-66	01/14/2015	ND	4.0000		
Copper, total	ug/L	MW-66	04/03/2015	ND	4.0000		
Copper, total	ug/L	MW-66	07/06/2015	ND	4.0000		
Copper, total	ug/L	MW-66	10/01/2015	ND	4.0000		
Copper, total	ug/L	MW-66	04/14/2016	ND	4.0000		
Copper, total	ug/L	MW-66	10/13/2016	ND	4.0000		
Copper, total	ug/L	MW-66	04/10/2017	ND	4.0000		
Lead, total	ug/L	MW-66	10/16/2014	ND	4.0000		
Lead, total	ug/L	MW-66	01/14/2015	ND	4.0000		
Lead, total	ug/L	MW-66	04/03/2015	ND	4.0000		
Lead, total	ug/L	MW-66	07/06/2015	ND	4.0000		
Lead, total	ug/L	MW-66	10/01/2015	ND	4.0000		
Lead, total	ug/L	MW-66	04/14/2016	ND	4.0000		
Lead, total	ug/L	MW-66	10/13/2016	ND	4.0000		
Lead, total	ug/L	MW-66	04/10/2017	ND	4.0000		
Nickel, total	ug/L	MW-66	10/16/2014	ND	4.0000		
Mickel, Iolai							

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Nickel, total	ug/L	MW-66	04/03/2015	ND	4.0000		
Nickel, total	ug/L	MW-66	07/06/2015	ND	4.0000		
Nickel, total	ug/L	MW-66	10/01/2015	ND	4.0000		
Nickel, total	ug/L	MW-66	04/14/2016	ND	4.0000		
Nickel, total	ug/L	MW-66	10/13/2016	ND	4.0000		
Nickel, total	ug/L	MW-66	04/10/2017	ND	4.0000		
Selenium, total	ug/L	MW-66	10/16/2014	ND	4.0000		
Selenium, total	ug/L	MW-66	01/14/2015	ND	4.0000		
Selenium, total	ug/L	MW-66	04/03/2015	ND	4.0000		
Selenium, total	ug/L	MW-66	07/06/2015	ND	4.0000		
Selenium, total	ug/L	MW-66	10/01/2015	ND	4.0000		
Selenium, total	ug/L	MW-66	04/14/2016	ND	4.0000		
Selenium, total	ug/L	MW-66	10/13/2016	ND	4.0000		
Selenium, total	ug/L	MW-66	04/10/2017	ND	4.0000		
Silver, total	ug/L	MW-66	10/16/2014	ND	4.0000		
Silver, total	ug/L	MW-66	01/14/2015	ND	4.0000		
Silver, total	ug/L	MW-66	04/03/2015	ND	4.0000		
Silver, total	ug/L	MW-66	07/06/2015	ND	4.0000		
Silver, total	ug/L	MW-66	10/01/2015	ND	4.0000		
Silver, total	ug/L	MW-66	04/14/2016	ND	4.0000		
Silver, total	ug/L	MW-66	10/13/2016	ND	4.0000		
Silver, total	ug/L	MW-66	04/10/2017	ND	4.0000	2 0000	**
Thallium, total	ug/L	MW-66	10/16/2014	ND ND	4.0000	2.0000 2.0000	**
Thallium, total	ug/L	MW-66 MW-66	01/14/2015 04/03/2015	ND ND	4.0000 4.0000		**
Thallium, total Thallium, total	ug/L	MW-66		ND ND	I	2.0000	**
Thallium, total	ug/L	MW-66	07/06/2015 10/01/2015	ND	4.0000 1.0000	2.0000 2.0000	**
Thallium, total	ug/L ug/L	MW-66	04/14/2016	ND	4.0000	2.0000	**
Thallium, total	ug/L ug/L	MW-66	10/13/2016	ND	4.0000	2.0000	**
Thallium, total	ug/L ug/L	MW-66	04/10/2017	ND	4.0000	2.0000	**
Vanadium, total	ug/L ug/L	MW-66	10/16/2014	ND	20.0000	2.0000	
Vanadium, total	ug/L	MW-66	01/14/2015	ND	20.0000		
Vanadium, total	ug/L	MW-66	04/03/2015	ND	20.0000		
Vanadium, total	ug/L	MW-66	07/06/2015	ND	20.0000		
Vanadium, total	ug/L	MW-66	10/01/2015	ND	20.0000		
Vanadium, total	ug/L	MW-66	04/14/2016	ND	20.0000		
Vanadium, total	ug/L	MW-66	10/13/2016	ND	20.0000		
Vanadium, total	ug/L	MW-66	04/10/2017	ND	20.0000		
Zinc, total	ug/L	MW-66	10/16/2014	ND	20.0000		
Zinc, total	ug/L	MW-66	01/14/2015	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-66	04/03/2015		54.6000		
Zinc, total	ug/L	MW-66	07/06/2015	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-66	10/01/2015	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-66	04/14/2016	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-66	10/13/2016	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-66	04/10/2017	ND	8.0000	20.0000	**
Antimony, total	ug/L	MW-85	10/16/2014	ND	2.0000		
Antimony, total	ug/L	MW-85	01/14/2015	ND	2.0000		
Antimony, total	ug/L	MW-85	04/03/2015	ND	2.0000		
Antimony, total	ug/L	MW-85	07/06/2015	ND	2.0000		
Antimony, total	ug/L	MW-85	10/01/2015	ND	2.0000		
Antimony, total	ug/L	MW-85	04/14/2016	ND	2.0000		
Antimony, total	ug/L	MW-85	10/13/2016	ND	2.0000		
Antimony, total	ug/L	MW-85	04/10/2017	ND	2.0000		
Antimony, total	ug/L	MW-85	10/09/2017	ND	2.0000		
Antimony, total	ug/L	MW-85	04/17/2018	ND	2.0000		
Antimony, total	ug/L	MW-85	10/22/2018	ND	2.0000		
Antimony, total	ug/L	MW-85	04/22/2019	ND	2.0000		
Antimony, total	ug/L	MW-85	10/23/2019	ND	2.0000		
Antimony, total	ug/L	MW-85	04/10/2020	ND	2.0000		
Antimony, total	ug/L	MW-85	10/19/2020	ND	2.0000		
Antimony, total	ug/L	MW-85	04/05/2021	ND	2.0000		
Antimony, total	ug/L	MW-85	10/08/2021	ND	2.0000		
Antimony, total	ug/L	MW-85	04/06/2022	ND	2.0000 2.0000		
Antimony, total	ug/L	MW-85	10/25/2022	ND			
Antimony, total	ug/L	MW-85	04/11/2023	ND	2.0000		
Antimony, total	ug/L	MW-85	10/13/2023	ND	2.0000		
Antimony, total	ug/L	MW-85	04/17/2024	ND	2.0000		
Antimony, total Arsenic, total	ug/L	MW-85	10/15/2024	ND	2.0000		-
	ug/L	MW-85 MW-85	10/16/2014	ND	4.0000		
Arsenic, total Arsenic, total	ug/L	MW-85	01/14/2015 04/03/2015	ND ND	4.0000 4.0000		
Arsenic, total	ug/L ug/L	MW-85	07/06/2015	ND	4.0000		
	ug/L ug/L	MW-85	10/01/2015	ND	4.0000		
Arsenic, total							

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Arsenic, total	ug/L	MW-85	04/14/2016	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/13/2016	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/10/2017	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/09/2017	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/17/2018	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/22/2018	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/22/2019	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/23/2019	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/10/2020	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/19/2020	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/05/2021	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/08/2021	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/06/2022	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/25/2022	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/11/2023	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/13/2023	ND	4.0000		
Arsenic, total	ug/L	MW-85	04/17/2024	ND	4.0000		
Arsenic, total	ug/L	MW-85	10/15/2024	ND	4.0000		
Barium, total	ug/L	MW-85	10/16/2014		138.0000		
Barium, total	ug/L	MW-85	01/14/2015		157.0000		
Barium, total	ug/L	MW-85	04/03/2015		167.0000		
Barium, total	ug/L	MW-85	07/06/2015		143.0000		
Barium, total	ug/L	MW-85	10/01/2015		135.0000		
Barium, total	ug/L	MW-85	04/14/2016		155.0000		
Barium, total	ug/L	MW-85	10/13/2016		149.0000		
Barium, total	ug/L	MW-85	04/10/2017		175.0000		
Barium, total	ug/L	MW-85	10/09/2017		143.0000		
Barium, total	ug/L	MW-85	04/17/2018		142.0000		
Barium, total	ug/L	MW-85	10/22/2018		146.0000		
Barium, total	ug/L	MW-85	04/22/2019		152.0000		
Barium, total	ug/L	MW-85	10/23/2019		126.0000		
Barium, total	ug/L	MW-85	04/10/2020		160.0000		
Barium, total	ug/L	MW-85	10/19/2020		151.0000		
Barium, total	ug/L	MW-85	04/05/2021		135.0000		
Barium, total	ug/L ug/L	MW-85	10/08/2021		121.0000		
Barium, total	ug/L ug/L	MW-85	04/06/2022		133.0000		
l =	ug/L ug/L	MW-85	10/25/2022		138.0000		
Barium, total		MW-85	04/11/2023		141.0000		
Barium, total	ug/L						
Barium, total	ug/L	MW-85 MW-85	10/13/2023 04/17/2024		143.0000 144.0000		
Barium, total Barium, total	ug/L ug/L	MW-85	10/15/2024		136.0000		
Beryllium, total	ug/L	MW-85	10/16/2014	ND	4.0000		
Beryllium, total	ug/L	MW-85	01/14/2015	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-85	04/03/2015	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-85	07/06/2015	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-85	10/01/2015	ND	4.0000		
		MW-85		ND	4.0000		
Beryllium, total	ug/L		04/14/2016				
Beryllium, total	ug/L	MW-85	10/13/2016	ND ND	4.0000		
Beryllium, total Beryllium, total	ug/L	MW-85	04/10/2017	ND	4.0000		
	ug/L	MW-85	10/09/2017		4.0000		
Beryllium, total	ug/L	MW-85	04/17/2018	ND	4.0000		
Beryllium, total	ug/L	MW-85	10/22/2018	ND	4.0000		
Beryllium, total	ug/L	MW-85 MW-85	04/22/2019 10/23/2019	ND	4.0000 4.0000		
Beryllium, total	ug/L			ND ND			
Beryllium, total	ug/L	MW-85	04/10/2020		4.0000		
Beryllium, total	ug/L	MW-85	10/19/2020	ND	4.0000		
Beryllium, total	ug/L	MW-85	04/05/2021	ND	4.0000		
Beryllium, total	ug/L	MW-85	10/08/2021	ND	4.0000		
Beryllium, total	ug/L	MW-85	04/06/2022	ND	4.0000		
Beryllium, total	ug/L	MW-85	10/25/2022	ND	4.0000		
Beryllium, total	ug/L	MW-85	04/11/2023	ND	4.0000		
Beryllium, total	ug/L	MW-85	10/13/2023	ND	4.0000		
Beryllium, total	ug/L	MW-85	04/17/2024	ND	4.0000		
Beryllium, total	ug/L	MW-85	10/15/2024	ND	4.0000		_
Cadmium, total	ug/L	MW-85	10/16/2014	ND	0.8000		
Cadmium, total	ug/L	MW-85	01/14/2015	ND	0.8000		
Cadmium, total	ug/L	MW-85	04/03/2015	ND	0.8000		
Cadmium, total	ug/L	MW-85	07/06/2015	ND	0.8000		
Cadmium, total	ug/L	MW-85	10/01/2015	ND	0.8000		
Cadmium, total	ug/L	MW-85	04/14/2016	ND	0.8000		
Cadmium, total	ug/L	MW-85	10/13/2016	ND	0.8000		
Cadmium, total	ug/L	MW-85	04/10/2017	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-85 MW-85	10/09/2017 04/17/2018	ND ND	0.8000 0.8000		
Cadmium, total							

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Cadmium, total	ug/L	MW-85	10/22/2018	ND	0.8000		
Cadmium, total	ug/L	MW-85	04/22/2019	ND	0.8000		
Cadmium, total	ug/L	MW-85	10/23/2019	ND	0.8000		
Cadmium, total	ug/L	MW-85	04/10/2020	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-85 MW-85	10/19/2020 04/05/2021	ND ND	0.8000 0.8000		
Cadmium, total	ug/L ug/L	MW-85	10/08/2021	ND	0.8000		
Cadmium, total	ug/L	MW-85	04/06/2022	ND	0.8000		
Cadmium, total	ug/L	MW-85	10/25/2022	ND	0.8000		
Cadmium, total	ug/L	MW-85	04/11/2023	ND	0.8000		
Cadmium, total	ug/L	MW-85	10/13/2023	ND	0.8000		
Cadmium, total	ug/L	MW-85	04/17/2024	ND	0.8000		
Cadmium, total	ug/L	MW-85	10/15/2024	ND	0.8000		
Chromium, total	ug/L	MW-85	10/16/2014	ND	8.0000		
Chromium, total Chromium, total	ug/L ug/L	MW-85 MW-85	01/14/2015 04/03/2015	ND ND	8.0000 8.0000		
Chromium, total	ug/L ug/L	MW-85	07/06/2015	ND	8.0000		
Chromium, total	ug/L	MW-85	10/01/2015	ND	8.0000		
Chromium, total	ug/L	MW-85	04/14/2016	ND	8.0000		
Chromium, total	ug/L	MW-85	10/13/2016	ND	8.0000		
Chromium, total	ug/L	MW-85	04/10/2017	ND	8.0000		
Chromium, total	ug/L	MW-85	10/09/2017	ND	8.0000		
Chromium, total	ug/L	MW-85	04/17/2018	ND	8.0000		
Chromium, total	ug/L	MW-85	10/22/2018	ND	8.0000		
Chromium, total	ug/L	MW-85	04/22/2019	ND	8.0000		
Chromium, total	ug/L	MW-85	10/23/2019	ND	8.0000		
Chromium, total	ug/L ug/L	MW-85 MW-85	04/10/2020 10/19/2020	ND ND	8.0000 8.0000		
Chromium, total	ug/L	MW-85	04/05/2021	ND	8.0000		
Chromium, total	ug/L	MW-85	10/08/2021	ND	8.0000		
Chromium, total	ug/L	MW-85	04/06/2022	ND	8.0000		
Chromium, total	ug/L	MW-85	10/25/2022	ND	8.0000		
Chromium, total	ug/L	MW-85	04/11/2023	ND	8.0000		
Chromium, total	ug/L	MW-85	10/13/2023	ND	8.0000		
Chromium, total	ug/L	MW-85	04/17/2024	ND	8.0000		
Chromium, total	ug/L	MW-85 MW-85	10/15/2024 10/16/2014	ND ND	8.0000 0.8000		
Cobalt, total	ug/L ug/L	MW-85	01/14/2015	ND	0.8000		
Cobalt, total	ug/L	MW-85	04/03/2015	ND	0.8000		
Cobalt, total	ug/L	MW-85	07/06/2015	ND	0.8000		
Cobalt, total	ug/L	MW-85	10/01/2015	ND	0.8000		
Cobalt, total	ug/L	MW-85	04/14/2016	ND	0.8000		
Cobalt, total	ug/L	MW-85	10/13/2016	ND	0.8000		
Cobalt, total	ug/L	MW-85	04/10/2017	ND	0.8000		
Cobalt, total	ug/L	MW-85	10/09/2017	ND	0.8000		
Cobalt, total	ug/L ug/L	MW-85 MW-85	04/17/2018 10/22/2018	ND ND	0.8000 0.8000		
Cobalt, total	ug/L ug/L	MW-85	04/22/2019	ND	0.8000		
Cobalt, total	ug/L	MW-85	10/23/2019	ND	0.8000		
Cobalt, total	ug/L	MW-85	04/10/2020		0.4000		
Cobalt, total	ug/L	MW-85	10/19/2020	.	0.4000		
Cobalt, total	ug/L	MW-85	04/05/2021	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-85	10/08/2021	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-85	04/06/2022	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-85	10/25/2022	ND	0.4000	0.8000	**
Cobalt, total	ug/L ug/L	MW-85 MW-85	04/11/2023 10/13/2023	ND ND	0.4000 0.4000	0.8000	**
Cobalt, total	ug/L ug/L	MW-85	04/17/2024	טאו	0.4000	0.0000	
Cobalt, total	ug/L	MW-85	10/15/2024	ND	0.4000	0.8000	**
Copper, total	ug/L	MW-85	10/16/2014	ND	4.0000	3.0000	
Copper, total	ug/L	MW-85	01/14/2015	ND	4.0000		
Copper, total	ug/L	MW-85	04/03/2015	ND	4.0000		
Copper, total	ug/L	MW-85	07/06/2015	ND	4.0000		
Copper, total	ug/L	MW-85	10/01/2015	ND	4.0000		
Copper, total	ug/L	MW-85 MW-85	04/14/2016	ND ND	4.0000		
Copper, total Copper, total	ug/L ug/L	MW-85	10/13/2016 04/10/2017	ND	4.0000 4.0000		
Copper, total	ug/L ug/L	MW-85	10/09/2017	ND	4.0000		
Copper, total	ug/L	MW-85	04/17/2018	ND	4.0000		
Copper, total	ug/L	MW-85	10/22/2018		4.8000		
Copper, total	ug/L	MW-85	04/22/2019	ND	4.0000		
Copper, total	ug/L	MW-85	10/23/2019		4.0000		
Copper, total Copper, total	ug/L ug/L	MW-85 MW-85	04/10/2020 10/19/2020	ND ND	4.0000 4.0000		

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Copper, total Lead, total	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85	04/05/2021 10/08/2021 04/06/2022 10/25/2022 04/11/2023 10/13/2023 04/17/2024 10/15/2024 10/16/2014 01/14/2015 04/03/2015	ND ND ND ND ND ND ND	4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000	
Copper, total Lead, total	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85	04/06/2022 10/25/2022 04/11/2023 10/13/2023 04/17/2024 10/15//2024 10/16/2014 01/14/2015	ND ND ND ND ND ND	4.0000 4.0000 4.0000 4.0000 4.0000	
Copper, total Copper, total Copper, total Copper, total Copper, total Copper, total Lead, total	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85	10/25/2022 04/11/2023 10/13/2023 04/17/2024 10/15/2024 10/16/2014 01/14/2015	ND ND ND ND ND	4.0000 4.0000 4.0000 4.0000	
Copper, total Copper, total Ucopper, total Ucopper, total Ucopper, total Ucad, total	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85	04/11/2023 10/13/2023 04/17/2024 10/15/2024 10/16/2014 01/14/2015	ND ND ND ND	4.0000 4.0000 4.0000	
Copper, total Copper, total Understand Copper, total Lead, total	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85 MW-85 MW-85 MW-85 MW-85	10/13/2023 04/17/2024 10/15/2024 10/16/2014 01/14/2015	ND ND ND	4.0000 4.0000	
Copper, total Copper, total Lead, total	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85 MW-85 MW-85 MW-85	04/17/2024 10/15/2024 10/16/2014 01/14/2015	ND ND ND	4.0000	
Copper, total u Lead, total u	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85 MW-85 MW-85	10/15/2024 10/16/2014 01/14/2015	ND ND		
Lead, total u	ug/L ug/L ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85 MW-85	10/16/2014 01/14/2015	ND	4.0000	
Lead, total u	ug/L ug/L ug/L ug/L ug/L	MW-85 MW-85 MW-85	01/14/2015			
Lead, total	ug/L ug/L ug/L ug/L	MW-85 MW-85			4.0000	
Lead, total u Lead, total u Lead, total u Lead, total u Lead, total u	ug/L ug/L ug/L	MW-85	04/03/2015	ND	4.0000	
Lead, total u Lead, total u Lead, total u Lead, total u	ug/L ug/L			ND	4.0000	
Lead, total u Lead, total u Lead, total u	ug/L		07/06/2015	ND	4.0000	
Lead, total u		MW-85	10/01/2015	ND	4.0000	
Lead, total	uu/L I	MW-85	04/14/2016	ND	4.0000	
		MW-85 MW-85	10/13/2016 04/10/2017	ND ND	4.0000	
	ug/L				4.0000	
	ug/L	MW-85	10/09/2017	ND	4.0000	
	ug/L	MW-85 MW-85	04/17/2018	ND ND	4.0000	
	ug/L	MW-85	10/22/2018 04/22/2019	ND	4.0000	
	ug/L	MW-85	10/23/2019	ND	4.0000 4.0000	
	ug/L ug/L	MW-85	04/10/2020	ND	4.0000	
	ug/L ug/L	MW-85	10/19/2020	ND	4.0000	
	ug/L	MW-85	04/05/2021	ND	4.0000	
	ug/L	MW-85	10/08/2021	ND	4.0000	
	ug/L	MW-85	04/06/2022	ND	4.0000	
	ug/L	MW-85	10/25/2022	ND	4.0000	
	ug/L	MW-85	04/11/2023	ND	4.0000	
	ug/L	MW-85	10/13/2023	ND	4.0000	
	ug/L	MW-85	04/17/2024	ND	4.0000	
	ug/L	MW-85	10/15/2024	ND	4.0000	
	ug/L	MW-85	10/16/2014	ND	4.0000	
	ug/L	MW-85	01/14/2015	ND	4.0000	
	ug/L	MW-85	04/03/2015	ND	4.0000	
	ug/L	MW-85	07/06/2015	ND	4.0000	
	ug/L	MW-85	10/01/2015	ND	4.0000	
	ug/L	MW-85	04/14/2016	ND	4.0000	
	ug/L	MW-85	10/13/2016	ND	4.0000	
	ug/L	MW-85	04/10/2017	ND	4.0000	
Nickel, total u	ug/L	MW-85	10/09/2017	ND	4.0000	
Nickel, total u	ug/L	MW-85	04/17/2018	ND	4.0000	
Nickel, total u	ug/L	MW-85	10/22/2018		20.6000	*
Nickel, total u	ug/L	MW-85	04/22/2019	ND	4.0000	
	ug/L	MW-85	10/23/2019	ND	4.0000	
	ug/L	MW-85	04/10/2020	ND	4.0000	
	ug/L	MW-85	10/19/2020	ND	4.0000	
	ug/L	MW-85	04/05/2021	ND	4.0000	
	ug/L	MW-85	10/08/2021	ND	4.0000	
	ug/L	MW-85	04/06/2022	ND	4.0000	
	ug/L	MW-85	10/25/2022	ND	4.0000	
	ug/L	MW-85	04/11/2023	ND	4.0000	
	ug/L	MW-85	10/13/2023	ND	4.0000	
	ug/L	MW-85 MW-85	04/17/2024 10/15/2024	ND ND	4.0000 4.0000	
	ug/L ug/L	MW-85	10/16/2014	ND	4.0000	\vdash
	ug/L	MW-85	01/14/2015	ND	4.0000	
	ug/L	MW-85	04/03/2015	ND	4.0000	
	ug/L	MW-85	07/06/2015	ND	4.0000	
	ug/L	MW-85	10/01/2015	ND	4.0000	
	ug/L	MW-85	04/14/2016	ND	4.0000	
	ug/L	MW-85	10/13/2016	ND	4.0000	
	ug/L	MW-85	04/10/2017	ND	4.0000	
	ug/L	MW-85	10/09/2017	ND	4.0000	
	ug/L	MW-85	04/17/2018	ND	4.0000	
	ug/L	MW-85	10/22/2018	ND	4.0000	
	ug/L	MW-85	04/22/2019	ND	4.0000	
	ug/L	MW-85	10/23/2019	ND	4.0000	
	ug/L	MW-85	04/10/2020	ND	4.0000	
	ug/L	MW-85	10/19/2020	ND	4.0000	
	ug/L	MW-85	04/05/2021	ND	4.0000	
	ug/L	MW-85	10/08/2021	ND	4.0000	
	ug/L	MW-85	04/06/2022	ND	4.0000	
	ug/L	MW-85	10/25/2022	ND	4.0000	
	ug/L	MW-85	04/11/2023	ND	4.0000	

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Selenium, total	ug/L	MW-85	10/13/2023	ND	4.0000		
Selenium, total	ug/L	MW-85	04/17/2024	ND	4.0000		
Selenium, total	ug/L	MW-85	10/15/2024	ND	4.0000		
Silver, total	ug/L	MW-85	10/16/2014	ND	4.0000		
Silver, total	ug/L	MW-85	01/14/2015	ND	4.0000		
Silver, total	ug/L	MW-85	04/03/2015	ND	4.0000		
Silver, total	ug/L	MW-85	07/06/2015	ND	4.0000		
Silver, total	ug/L	MW-85	10/01/2015	ND	4.0000		
Silver, total	ug/L	MW-85	04/14/2016	ND	4.0000		
Silver, total	ug/L	MW-85	10/13/2016	ND	4.0000		
Silver, total	ug/L	MW-85	04/10/2017	ND	4.0000		
Silver, total	ug/L	MW-85	10/09/2017	ND	4.0000		
Silver, total	ug/L	MW-85	04/17/2018	ND	4.0000		
Silver, total	ug/L	MW-85	10/22/2018	ND	4.0000		
Silver, total	ug/L	MW-85	04/22/2019	ND	4.0000		
Silver, total	ug/L	MW-85	10/23/2019	ND	4.0000		
Silver, total	ug/L	MW-85	04/10/2020	ND	4.0000		
Silver, total	ug/L	MW-85	10/19/2020	ND	4.0000		
Silver, total	ug/L	MW-85	04/05/2021	ND	4.0000		
Silver, total	ug/L	MW-85	10/08/2021	ND	4.0000		
Silver, total	ug/L	MW-85	04/06/2022	ND	4.0000		
Silver, total	ug/L	MW-85	10/25/2022	ND	4.0000		
Silver, total	ug/L	MW-85	04/11/2023	ND	4.0000		
Silver, total	ug/L	MW-85	10/13/2023	ND	4.0000		
Silver, total	ug/L	MW-85	04/17/2024	ND	4.0000		
Silver, total	ug/L	MW-85	10/15/2024	ND	4.0000	0.0000	**
Thallium, total	ug/L	MW-85	10/16/2014	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-85	01/14/2015	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-85	04/03/2015	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-85	07/06/2015	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-85	10/01/2015	ND	1.0000	2.0000	**
Thallium, total	ug/L	MW-85	04/14/2016	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-85	10/13/2016	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-85	04/10/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-85	10/09/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-85	04/17/2018	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-85	10/22/2018	ND	4.0000	2.0000	^ ^
Thallium, total	ug/L	MW-85	04/22/2019	ND	2.0000		
Thallium, total	ug/L	MW-85	10/23/2019	ND	2.0000		
Thallium, total	ug/L	MW-85	04/10/2020	ND	2.0000		
Thallium, total	ug/L	MW-85	10/19/2020	ND	2.0000		
Thallium, total	ug/L	MW-85	04/05/2021	ND	2.0000		
Thallium, total	ug/L	MW-85	10/08/2021	ND	2.0000		
Thallium, total	ug/L	MW-85	04/06/2022	ND	2.0000		
Thallium, total	ug/L	MW-85	10/25/2022	ND	2.0000		
Thallium, total	ug/L	MW-85	04/11/2023	ND	2.0000		
Thallium, total	ug/L	MW-85	10/13/2023	ND	2.0000		
Thallium, total Thallium, total	ug/L	MW-85 MW-85	04/17/2024 10/15/2024	ND ND	2.0000		
	ug/L	MW-85	10/15/2024	ND	2.0000		_
Vanadium, total Vanadium, total	ug/L ug/L	MW-85	01/14/2015	ND	20.0000 20.0000		
Vanadium, total	ug/L ug/L	MW-85	04/03/2015	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	07/06/2015	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	10/01/2015	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	04/14/2016	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	10/13/2016	ND	20.0000		
Vanadium, total	ug/L	MW-85	04/10/2017	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	10/09/2017	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	04/17/2018	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	10/22/2018	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	04/22/2019	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	10/23/2019	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	04/10/2020	ND	20.0000		
Vanadium, total	ug/L	MW-85	10/19/2020	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	04/05/2021	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	10/08/2021	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	04/06/2022	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	10/25/2022	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	04/11/2023	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	10/13/2023	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	04/17/2024	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-85	10/15/2024	ND	20.0000		
Zinc, total	ug/L ug/L	MW-85	10/16/2014	ND	20.0000		
	ug/L ug/L	MW-85	01/14/2015	ND	8.0000	20.0000	**
Zinc, total							

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Zinc, total	ug/L	MW-85	04/03/2015		27.0000		
Zinc, total	ug/L	MW-85	07/06/2015		9.1000		
Zinc, total	ug/L	MW-85	10/01/2015	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-85	04/14/2016	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-85	10/13/2016	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-85	04/10/2017	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-85	10/09/2017	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-85	04/17/2018	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-85	10/22/2018		125.0000		*
Zinc, total	ug/L	MW-85	04/22/2019	ND	20.0000		
Zinc, total	ug/L	MW-85	10/23/2019	ND	20.0000		
Zinc, total	ug/L	MW-85	04/10/2020	ND	20.0000		
Zinc, total	ug/L	MW-85	10/19/2020	ND	20.0000		
Zinc, total	ug/L	MW-85	04/05/2021	ND	20.0000		
Zinc, total	ug/L	MW-85	10/08/2021	ND	20.0000		
Zinc, total	ug/L	MW-85	04/06/2022	ND ND	20.0000		
Zinc, total	ug/L	MW-85	10/25/2022		20.0000		
Zinc, total	ug/L	MW-85	04/11/2023	ND ND	20.0000		
Zinc, total	ug/L	MW-85 MW-85	10/13/2023 04/17/2024	ND	20.0000 20.0000		
Zinc, total Zinc, total	ug/L ug/L	MW-85	10/15/2024	ND	20.0000		
	ug/L			ND	2.0000		
Antimony, total Antimony, total	ug/L ug/L	MW-98 MW-98	10/13/2016 04/10/2017	ND	2.0000		
Antimony, total	ug/L ug/L	MW-98	10/09/2017	ND	2.0000		
Antimony, total	ug/L ug/L	MW-98	04/17/2018	ND	2.0000		
Antimony, total	ug/L	MW-98	10/22/2018	ND	2.0000		
Antimony, total	ug/L	MW-98	04/22/2019	ND	2.0000		
Antimony, total	ug/L	MW-98	10/23/2019	ND	2.0000		
Antimony, total	ug/L	MW-98	04/10/2020	ND	2.0000		
Antimony, total	ug/L	MW-98	10/19/2020	ND	2.0000		
Antimony, total	ug/L	MW-98	04/05/2021	ND	2.0000		
Antimony, total	ug/L	MW-98	10/08/2021	ND	2.0000		
Antimony, total	ug/L	MW-98	04/06/2022	ND	2.0000		
Antimony, total	ug/L	MW-98	10/25/2022	ND	2.0000		
Antimony, total	ug/L	MW-98	04/11/2023	ND	2.0000		
Antimony, total	ug/L	MW-98	10/13/2023	ND	2.0000		
Antimony, total	ug/L	MW-98	04/17/2024	ND	2.0000		
Antimony, total	ug/L	MW-98	10/15/2024	ND	2.0000		
Arsenic, total	ug/L	MW-98	10/13/2016		7.4000		
Arsenic, total	ug/L	MW-98	04/10/2017		25.3000		*
Arsenic, total	ug/L	MW-98	10/09/2017	ND	4.0000		
Arsenic, total	ug/L	MW-98	04/17/2018		7.8000		
Arsenic, total	ug/L	MW-98	10/22/2018	ND	4.0000		
Arsenic, total	ug/L	MW-98	04/22/2019	ND	4.0000		
Arsenic, total	ug/L	MW-98	10/23/2019		4.8000		
Arsenic, total	ug/L	MW-98	04/10/2020	ND	4.0000		
Arsenic, total	ug/L	MW-98	10/19/2020	ND	4.0000		
Arsenic, total	ug/L	MW-98	04/05/2021	ND	4.0000		
Arsenic, total	ug/L	MW-98	10/08/2021	ND	4.0000		
Arsenic, total	ug/L	MW-98	04/06/2022	ND	4.0000		
Arsenic, total Arsenic, total	ug/L ug/L	MW-98	10/25/2022	ND	4.0000		
Arsenic, total	ug/L ug/L	MW-98 MW-98	04/11/2023 10/13/2023		6.4000 6.3000		
Arsenic, total	ug/L ug/L	MW-98	04/17/2024		48.0000		*
Arsenic, total	ug/L ug/L	MW-98	10/15/2024	ND	4.0000		
Barium, total	ug/L	MW-98	10/13/2016	.40	171.0000		
Barium, total	ug/L ug/L	MW-98	04/10/2017		241.0000		
Barium, total	ug/L	MW-98	10/09/2017		129.0000		
Barium, total	ug/L	MW-98	04/17/2018		193.0000		
Barium, total	ug/L	MW-98	10/22/2018		102.0000		
Barium, total	ug/L	MW-98	04/22/2019		133.0000		
Barium, total	ug/L	MW-98	10/23/2019		94.4000		
Barium, total	ug/L	MW-98	04/10/2020		157.0000		
Barium, total	ug/L	MW-98	10/19/2020		147.0000		
Barium, total	ug/L	MW-98	04/05/2021		125.0000		
Barium, total	ug/L	MW-98	10/08/2021		149.0000		
Barium, total	ug/L	MW-98	04/06/2022		117.0000		
Barium, total	ug/L	MW-98	10/25/2022		183.0000		
Barium, total	ug/L	MW-98	04/11/2023		136.0000		
Barium, total	ug/L	MW-98	10/13/2023		217.0000		
Barium, total	ug/L	MW-98	04/17/2024		325.0000		
Barium, total	ug/L	MW-98	10/15/2024		137.0000		
Beryllium, total	ug/L	MW-98	10/13/2016	ND	4.0000		
Beryllium, total	ug/L	MW-98	04/10/2017	ND	4.0000		

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Beryllium, total	ug/L	MW-98	10/09/2017	ND	4.0000		
Beryllium, total	ug/L	MW-98	04/17/2018	ND	4.0000		
Beryllium, total	ug/L	MW-98	10/22/2018	ND	4.0000		
Beryllium, total	ug/L	MW-98	04/22/2019	ND	4.0000		
Beryllium, total	ug/L	MW-98	10/23/2019	ND	4.0000		
Beryllium, total	ug/L	MW-98	04/10/2020	ND	4.0000		
Beryllium, total	ug/L	MW-98	10/19/2020	ND	4.0000		
Beryllium, total	ug/L	MW-98	04/05/2021	ND	4.0000		
Beryllium, total	ug/L	MW-98	10/08/2021	ND	4.0000		
Beryllium, total	ug/L	MW-98	04/06/2022	ND	4.0000		
Beryllium, total	ug/L	MW-98	10/25/2022	ND	4.0000		
Beryllium, total	ug/L	MW-98	04/11/2023	ND	4.0000		
Beryllium, total	ug/L	MW-98	10/13/2023	ND	4.0000		
Beryllium, total	ug/L	MW-98	04/17/2024	ND	4.0000		
Beryllium, total	ug/L	MW-98	10/15/2024	ND	4.0000		
Cadmium, total	ug/L	MW-98	10/13/2016	ND	0.8000		
Cadmium, total	ug/L	MW-98	04/10/2017	ND	0.8000		
Cadmium, total	ug/L	MW-98	10/09/2017	ND	0.8000		
Cadmium, total	ug/L	MW-98	04/17/2018	ND	0.8000		
Cadmium, total	ug/L	MW-98	10/22/2018	ND	0.8000		
Cadmium, total	ug/L	MW-98	04/22/2019	ND	0.8000		
Cadmium, total	ug/L	MW-98	10/23/2019	ND	0.8000		
Cadmium, total	ug/L	MW-98	04/10/2020	ND	0.8000		
Cadmium, total	ug/L	MW-98	10/19/2020	ND	0.8000		
Cadmium, total	ug/L	MW-98	04/05/2021	ND	0.8000		
Cadmium, total	ug/L	MW-98	10/08/2021	ND	0.8000		
Cadmium, total	ug/L	MW-98	04/06/2022	ND	0.8000		
Cadmium, total	ug/L	MW-98	10/25/2022	ND	0.8000		
Cadmium, total	ug/L	MW-98	04/11/2023	ND	0.8000		
Cadmium, total	ug/L	MW-98	10/13/2023	ND	0.8000		
Cadmium, total	ug/L	MW-98	04/17/2024	ND	0.8000		
Cadmium, total	ug/L	MW-98	10/15/2024	ND	0.8000		
Chromium, total	ug/L	MW-98	10/13/2016	ND	8.0000		
Chromium, total	ug/L	MW-98	04/10/2017		9.8000		
Chromium, total	ug/L	MW-98	10/09/2017	ND	8.0000		
Chromium, total	ug/L	MW-98	04/17/2018	ND	8.0000		
Chromium, total	ug/L	MW-98	10/22/2018	ND	8.0000		
Chromium, total	ug/L	MW-98	04/22/2019	ND	8.0000		
Chromium, total	ug/L	MW-98	10/23/2019	ND	8.0000		
Chromium, total	ug/L	MW-98	04/10/2020	ND	8.0000		
Chromium, total	ug/L	MW-98	10/19/2020	ND	8.0000		
Chromium, total	ug/L	MW-98	04/05/2021	ND	8.0000		
Chromium, total	ug/L	MW-98	10/08/2021	ND	8.0000		
Chromium, total	ug/L	MW-98	04/06/2022	ND	8.0000		
Chromium, total	ug/L	MW-98	10/25/2022	ND	8.0000		
Chromium, total	ug/L	MW-98	04/11/2023	ND	8.0000		
Chromium, total	ug/L	MW-98	10/13/2023	ND	8.0000		
Chromium, total	ug/L	MW-98	04/17/2024	ND	8.0000		
Chromium, total	ug/L ug/L	MW-98	10/15/2024	ND	8.0000		
Cobalt, total	ug/L	MW-98	10/13/2024	.40	3.0000		
Cobalt, total	ug/L ug/L	MW-98	04/10/2017		4.4000		
Cobalt, total	ug/L ug/L	MW-98	10/09/2017		0.8000		
Cobalt, total	ug/L ug/L	MW-98	04/17/2018		5.0000		
Cobalt, total	ug/L ug/L	MW-98	10/22/2018	ND	0.8000		
Cobalt, total	ug/L	MW-98	04/22/2019	,,,5	1.3000		
Cobalt, total	ug/L	MW-98	10/23/2019		2.4000		
Cobalt, total	ug/L	MW-98	04/10/2020		2.0000		
Cobalt, total	ug/L ug/L	MW-98	10/19/2020		2.2000		
Cobalt, total	ug/L ug/L	MW-98	04/05/2021		0.6000		
Cobalt, total	ug/L ug/L	MW-98	10/08/2021		2.2000		
Cobalt, total	ug/L ug/L	MW-98	04/06/2022		0.7000		
Cobalt, total	ug/L ug/L	MW-98	10/25/2022		3.6000		
Cobalt, total	ug/L ug/L	MW-98	04/11/2023		2.1000		
Cobalt, total		MW-98					
	ug/L		10/13/2023 04/17/2024		5.5000		
Cobalt, total	ug/L	MW-98			4.7000		
Cobalt, total	ug/L	MW-98	10/15/2024	NID	1.9000		
Copper, total	ug/L	MW-98	10/13/2016	ND	4.0000		
Copper, total	ug/L	MW-98	04/10/2017	ND	4.0000		
Copper, total	ug/L	MW-98	10/09/2017	ND	4.0000		
Copper, total	ug/L	MW-98	04/17/2018	ND	4.0000		
Copper, total	ug/L	MW-98	10/22/2018	ND	4.0000		
Copper, total Copper, total	ug/L	MW-98 MW-98	04/22/2019 10/23/2019	ND ND	4.0000		
		L N/IV/V_UX	111/23/2014	INII I	4.0000		
Copper, total	ug/L ug/L	MW-98	04/10/2020	ND	4.0000		

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Copper, total	ug/L	MW-98	10/19/2020	ND	4.0000		
Copper, total	ug/L	MW-98	04/05/2021		4.1000		
Copper, total	ug/L	MW-98	10/08/2021	ND	4.0000		
Copper, total	ug/L	MW-98	04/06/2022	ND	4.0000		
Copper, total	ug/L ug/L	MW-98 MW-98	10/25/2022 04/11/2023	ND ND	4.0000 4.0000		
Copper, total	ug/L	MW-98	10/13/2023	ND	4.0000		
Copper, total	ug/L	MW-98	04/17/2024	ND	4.0000		
Copper, total	ug/L	MW-98	10/15/2024	ND	4.0000		
Lead, total	ug/L	MW-98	10/13/2016	ND	4.0000		
Lead, total	ug/L	MW-98	04/10/2017	ND	4.0000		
Lead, total	ug/L	MW-98	10/09/2017	ND	4.0000		
Lead, total	ug/L	MW-98	04/17/2018	ND	4.0000		
Lead, total Lead, total	ug/L ug/L	MW-98 MW-98	10/22/2018 04/22/2019	ND ND	4.0000 4.0000		
Lead, total	ug/L ug/L	MW-98	10/23/2019	ND	4.0000		
Lead, total	ug/L	MW-98	04/10/2020	ND	4.0000		
Lead, total	ug/L	MW-98	10/19/2020	ND	4.0000		
Lead, total	ug/L	MW-98	04/05/2021	ND	4.0000		
Lead, total	ug/L	MW-98	10/08/2021	ND	4.0000		
Lead, total	ug/L	MW-98	04/06/2022	ND	4.0000		
Lead, total	ug/L	MW-98	10/25/2022	ND	4.0000		
Lead, total	ug/L	MW-98	04/11/2023	ND	4.0000		
Lead, total	ug/L	MW-98	10/13/2023	ND	4.0000		
Lead, total Lead, total	ug/L ug/L	MW-98 MW-98	04/17/2024 10/15/2024	ND ND	4.0000 4.0000		
Nickel, total	ug/L ug/L	MW-98	10/13/2024	ND	4.0000		
Nickel, total	ug/L	MW-98	04/10/2017	ND	4.0000		
Nickel, total	ug/L	MW-98	10/09/2017	ND	4.0000		
Nickel, total	ug/L	MW-98	04/17/2018	ND	4.0000		
Nickel, total	ug/L	MW-98	10/22/2018	ND	4.0000		
Nickel, total	ug/L	MW-98	04/22/2019	ND	4.0000		
Nickel, total	ug/L	MW-98	10/23/2019	ND	4.0000		
Nickel, total	ug/L	MW-98	04/10/2020	ND	4.0000		
Nickel, total	ug/L	MW-98	10/19/2020	ND ND	4.0000		
Nickel, total Nickel, total	ug/L ug/L	MW-98 MW-98	04/05/2021 10/08/2021	ND	4.0000 4.0000		
Nickel, total	ug/L ug/L	MW-98	04/06/2022	ND	4.0000		
Nickel, total	ug/L	MW-98	10/25/2022	ND	4.0000		
Nickel, total	ug/L	MW-98	04/11/2023	ND	4.0000		
Nickel, total	ug/L	MW-98	10/13/2023	ND	4.0000		
Nickel, total	ug/L	MW-98	04/17/2024	ND	4.0000		
Nickel, total	ug/L	MW-98	10/15/2024	ND	4.0000		
Selenium, total	ug/L	MW-98	10/13/2016	ND	4.0000		
Selenium, total Selenium, total	ug/L ug/L	MW-98 MW-98	04/10/2017 10/09/2017	ND ND	4.0000 4.0000		
Selenium, total	ug/L ug/L	MW-98	04/17/2018	ND	4.0000		
Selenium, total	ug/L	MW-98	10/22/2018	ND	4.0000		
Selenium, total	ug/L	MW-98	04/22/2019	ND	4.0000		
Selenium, total	ug/L	MW-98	10/23/2019	ND	4.0000		
Selenium, total	ug/L	MW-98	04/10/2020	ND	4.0000		
Selenium, total	ug/L	MW-98	10/19/2020	ND	4.0000		
Selenium, total	ug/L	MW-98	04/05/2021	ND	4.0000		
Selenium, total Selenium, total	ug/L	MW-98 MW-98	10/08/2021	ND ND	4.0000		
Selenium, total	ug/L ug/L	MW-98	04/06/2022 10/25/2022	ND ND	4.0000 4.0000		
Selenium, total	ug/L ug/L	MW-98	04/11/2023	ND	4.0000		
Selenium, total	ug/L	MW-98	10/13/2023	ND	4.0000		
Selenium, total	ug/L	MW-98	04/17/2024	ND	4.0000		
Selenium, total	ug/L	MW-98	10/15/2024	ND	4.0000		
Silver, total	ug/L	MW-98	10/13/2016	ND	4.0000		
Silver, total	ug/L	MW-98	04/10/2017	ND	4.0000		
Silver, total	ug/L	MW-98	10/09/2017	ND	4.0000		
Silver, total	ug/L	MW-98	04/17/2018	ND	4.0000		
Silver, total Silver, total	ug/L ug/L	MW-98 MW-98	10/22/2018 04/22/2019	ND ND	4.0000 4.0000		
Silver, total	ug/L ug/L	MW-98	10/23/2019	ND	4.0000		
Silver, total	ug/L	MW-98	04/10/2020	ND	4.0000		
Silver, total	ug/L	MW-98	10/19/2020	ND	4.0000		
Silver, total	ug/L	MW-98	04/05/2021	ND	4.0000		
Silver, total	ug/L	MW-98	10/08/2021	ND	4.0000		
			0.4/0.0/0.00		4 0000		
Silver, total	ug/L	MW-98	04/06/2022	ND	4.0000		
	ug/L ug/L ug/L	MW-98 MW-98 MW-98	04/06/2022 10/25/2022 04/11/2023	ND ND ND	4.0000 4.0000 4.0000		

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Silver, total	ug/L	MW-98	10/13/2023	ND	4.0000		
Silver, total	ug/L	MW-98	04/17/2024	ND	4.0000		
Silver, total	ug/L	MW-98	10/15/2024	ND	4.0000		
Thallium, total	ug/L	MW-98	10/13/2016	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-98	04/10/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-98	10/09/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-98	04/17/2018	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-98	10/22/2018	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-98	04/22/2019	ND	2.0000		
Thallium, total	ug/L	MW-98	10/23/2019	ND	2.0000		
Thallium, total	ug/L	MW-98	04/10/2020	ND	2.0000		
Thallium, total	ug/L	MW-98	10/19/2020	ND	2.0000		
Thallium, total	ug/L	MW-98	04/05/2021	ND	2.0000		
Thallium, total	ug/L	MW-98	10/08/2021	ND	2.0000		
Thallium, total	ug/L	MW-98	04/06/2022	ND	2.0000		
Thallium, total	ug/L	MW-98	10/25/2022	ND	2.0000		
Thallium, total	ug/L	MW-98	04/11/2023	ND	2.0000		
Thallium, total	ug/L	MW-98	10/13/2023	ND	2.0000		
Thallium, total	ug/L	MW-98	04/17/2024	ND	2.0000		
Thallium, total	ug/L	MW-98	10/15/2024	ND	2.0000		L
Vanadium, total	ug/L	MW-98	10/13/2016	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/10/2017	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/09/2017	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/17/2018	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/22/2018	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/22/2019	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/23/2019	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/10/2020	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/19/2020	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/05/2021	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/08/2021	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/06/2022	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/25/2022	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/11/2023	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/13/2023	ND	20.0000		
Vanadium, total	ug/L	MW-98	04/17/2024	ND	20.0000		
Vanadium, total	ug/L	MW-98	10/15/2024	ND	20.0000		
Zinc, total	ug/L	MW-98	10/13/2016	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-98	04/10/2017	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-98	10/09/2017	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-98	04/17/2018	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-98	10/22/2018	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-98	04/22/2019	ND	20.0000	20.0000	
Zinc, total	ug/L	MW-98	10/23/2019	ND	20.0000		
Zinc, total	ug/L	MW-98	04/10/2020	ND	20.0000		
Zinc, total	ug/L	MW-98	10/19/2020	ND	20.0000		
Zinc, total		MW-98	04/05/2021	ND	20.0000		
	ug/L						
Zinc, total	ug/L	MW-98	10/08/2021	ND	20.0000		
Zinc, total	ug/L	MW-98	04/06/2022	ND	20.0000		
Zinc, total	ug/L	MW-98	10/25/2022	ND	20.0000		
Zinc, total	ug/L	MW-98	04/11/2023	ND	20.0000		
Zinc, total	ug/L	MW-98	10/13/2023	ND ND	20.0000		
Zinc, total Zinc, total	ug/L	MW-98	04/17/2024	ND	20.0000		
	ug/L	MW-98 MW-99	10/15/2024	ND	20.0000		-
Antimony, total	ug/L	MW-99	10/13/2016 04/10/2017	ND			
Antimony, total	ug/L			ND	2.0000		
Antimony, total Antimony, total	ug/L	MW-99	10/09/2017		2.0000		
	ug/L	MW-99 MW-99	04/17/2018	ND	2.0000		
Antimony, total	ug/L		10/22/2018	ND	2.0000		
Antimony, total	ug/L	MW-99	04/22/2019	ND	2.0000		
Antimony, total	ug/L	MW-99	10/23/2019	ND	2.0000		
Antimony, total	ug/L	MW-99	04/10/2020	ND	2.0000		
Antimony, total	ug/L	MW-99	10/19/2020	ND	2.0000		
Antimony, total	ug/L	MW-99	04/05/2021	ND	2.0000		
Antimony, total	ug/L	MW-99	10/08/2021	ND	2.0000		
Antimony, total	ug/L	MW-99	04/06/2022	ND	2.0000		
Antimony, total	ug/L	MW-99	10/25/2022	ND	2.0000		
Antimony, total	ug/L	MW-99	04/11/2023	ND	2.0000		
Antimony, total	ug/L	MW-99	10/13/2023	ND	2.0000		
Antimony, total	ug/L	MW-99	04/18/2024	ND	2.0000		
Antimony, total	ug/L	MW-99	10/15/2024	ND	2.0000		
Arsenic, total	ug/L	MW-99	10/13/2016	ND	4.0000		
Arsenic, total	ug/L	MW-99	04/10/2017	ND	4.0000		
Arsenic, total	ug/L	MW-99		ND	4.0000		

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Arsenic, total	ug/L	MW-99	04/17/2018	ND	4.0000		
Arsenic, total	ug/L	MW-99	10/22/2018	ND	4.0000		
Arsenic, total	ug/L	MW-99	04/22/2019	ND	4.0000		
Arsenic, total	ug/L	MW-99	10/23/2019	ND	4.0000		
Arsenic, total	ug/L	MW-99	04/10/2020	ND	4.0000		
Arsenic, total	ug/L	MW-99	10/19/2020	ND	4.0000		
Arsenic, total	ug/L	MW-99	04/05/2021	ND	4.0000		
Arsenic, total	ug/L	MW-99	10/08/2021	ND	4.0000		
Arsenic, total	ug/L	MW-99	04/06/2022	ND	4.0000		
Arsenic, total	ug/L	MW-99	10/25/2022	ND	4.0000		
Arsenic, total	ug/L	MW-99	04/11/2023	ND	4.0000		
Arsenic, total	ug/L	MW-99	10/13/2023	ND	4.0000		
Arsenic, total	ug/L	MW-99	04/18/2024	ND	4.0000		
Arsenic, total	ug/L	MW-99	10/15/2024	ND	4.0000		
Barium, total	ug/L	MW-99	10/13/2016		131.0000		
Barium, total	ug/L	MW-99	04/10/2017		109.0000		
Barium, total	ug/L	MW-99 MW-99	10/09/2017 04/17/2018		140.0000 93.9000		
Barium, total	ug/L	MW-99	10/22/2018				
Barium, total	ug/L	MW-99	04/22/2019		81.0000 110.0000		
Barium, total	ug/L	MW-99	10/23/2019		123.0000		
Barium, total Barium, total	ug/L ug/L	MW-99	04/10/2020		123.0000		
Barium, total	ug/L ug/L	MW-99	10/19/2020		118.0000		
Barium, total	ug/L ug/L	MW-99	04/05/2021		117.0000		
Barium, total	ug/L ug/L	MW-99	10/08/2021		130.0000		
Barium, total	ug/L	MW-99	04/06/2022		110.0000		
Barium, total	ug/L	MW-99	10/25/2022		134.0000		
Barium, total	ug/L	MW-99	04/11/2023		89.4000		
Barium, total	ug/L	MW-99	10/13/2023		134.0000		
Barium, total	ug/L	MW-99	04/18/2024		164.0000		
Barium, total	ug/L	MW-99	10/15/2024		88.8000		
Beryllium, total	ug/L	MW-99	10/13/2016	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/10/2017	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/09/2017	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/17/2018	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/22/2018	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/22/2019	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/23/2019	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/10/2020	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/19/2020	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/05/2021	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/08/2021	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/06/2022	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/25/2022	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/11/2023	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/13/2023	ND	4.0000		
Beryllium, total	ug/L	MW-99	04/18/2024	ND	4.0000		
Beryllium, total	ug/L	MW-99	10/15/2024	ND	4.0000		
Cadmium, total	ug/L	MW-99	10/13/2016	ND	0.8000		
Cadmium, total	ug/L	MW-99	04/10/2017	ND	0.8000		
Cadmium, total	ug/L	MW-99	10/09/2017	ND	0.8000		
Cadmium, total	ug/L	MW-99	04/17/2018	ND	0.8000		
Cadmium, total	ug/L	MW-99	10/22/2018	ND	0.8000		
Cadmium, total	ug/L	MW-99	04/22/2019	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-99	10/23/2019	ND ND	0.8000		
Cadmium, total		MW-99	04/10/2020	ND	0.8000		
Cadmium, total	ug/L	MW-99	10/19/2020	ND	0.8000		
Cadmium, total Cadmium, total	ug/L ug/L	MW-99 MW-99	04/05/2021 10/08/2021	ND	0.8000 0.8000		
Cadmium, total		MW-99	04/06/2022	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-99	10/25/2022	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-99	04/11/2023	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-99	10/13/2023	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-99	04/18/2024	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-99	10/15/2024	ND	0.8000		
Chromium, total	ug/L	MW-99	10/13/2016	ND	8.0000		
Chromium, total	ug/L	MW-99	04/10/2017	. 10	23.4000		
Chromium, total	ug/L	MW-99	10/09/2017	ND	8.0000		
	ug/L	MW-99	04/17/2018	ND	8.0000		
Chromium, total				ND			I
Chromium, total Chromium, total		MW-99	10/22/2018	יטאן	0.00001		
Chromium, total	ug/L	MW-99 MW-99	10/22/2018 04/22/2019		8.0000 8.0000		
	ug/L ug/L	MW-99 MW-99 MW-99	10/22/2018 04/22/2019 10/23/2019	ND	8.0000 8.0000		
Chromium, total Chromium, total	ug/L	MW-99	04/22/2019		8.0000		

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Chromium, total	ug/L	MW-99	04/05/2021	ND	8.0000		
Chromium, total	ug/L	MW-99	10/08/2021	ND	8.0000		
Chromium, total	ug/L	MW-99	04/06/2022	ND	8.0000		
Chromium, total	ug/L	MW-99	10/25/2022	ND	8.0000		
Chromium, total	ug/L	MW-99	04/11/2023	ND	8.0000		
Chromium, total	ug/L	MW-99	10/13/2023	ND	8.0000		
Chromium, total	ug/L	MW-99	04/18/2024	ND	8.0000		
Chromium, total	ug/L	MW-99	10/15/2024	ND	8.0000		
Cobalt, total	ug/L	MW-99	10/13/2016		5.2000		
Cobalt, total	ug/L	MW-99	04/10/2017		3.4000		
Cobalt, total	ug/L	MW-99	10/09/2017		6.0000		
Cobalt, total	ug/L	MW-99	04/17/2018		2.5000		
Cobalt, total	ug/L	MW-99	10/22/2018		0.8000		*
Cobalt, total	ug/L	MW-99	04/22/2019		3.1000		
Cobalt, total	ug/L	MW-99	10/23/2019		2.7000		
Cobalt, total	ug/L	MW-99	04/10/2020		4.1000		
Cobalt, total	ug/L	MW-99	10/19/2020		3.8000		
Cobalt, total	ug/L	MW-99	04/05/2021		3.2000		
Cobalt, total	ug/L	MW-99	10/08/2021		4.0000		
Cobalt, total	ug/L	MW-99	04/06/2022		3.5000		
Cobalt, total	ug/L	MW-99	10/25/2022		3.6000		
Cobalt, total	ug/L	MW-99	04/11/2023		2.2000		
Cobalt, total	ug/L	MW-99	10/13/2023		3.3000		
Cobalt, total	ug/L	MW-99	04/18/2024		4.1000		
Cobalt, total	ug/L	MW-99	10/15/2024		0.9000		*
Copper, total	ug/L	MW-99	10/13/2016	ND	4.0000		
Copper, total	ug/L	MW-99	04/10/2017	ND	4.0000		
Copper, total	ug/L	MW-99	10/09/2017	ND	4.0000		
Copper, total	ug/L	MW-99	04/17/2018	ND	4.0000		
Copper, total	ug/L	MW-99	10/22/2018	ND	4.0000		
Copper, total	ug/L	MW-99	04/22/2019	ND	4.0000		
Copper, total	ug/L	MW-99	10/23/2019	ND	4.0000		
Copper, total	ug/L	MW-99	04/10/2020	ND	4.0000		
Copper, total	ug/L	MW-99	10/19/2020	ND	4.0000		
Copper, total	ug/L	MW-99	04/05/2021	110	5.3000		
Copper, total	ug/L	MW-99	10/08/2021	ND	4.0000		
Copper, total	ug/L	MW-99	04/06/2022	ND	4.0000		
Copper, total	ug/L	MW-99	10/25/2022	ND	4.0000		
Copper, total	ug/L	MW-99	04/11/2023	ND	4.0000		
Copper, total	ug/L	MW-99	10/13/2023	ND	4.0000		
Copper, total	ug/L	MW-99	04/18/2024	ND	4.0000		
Copper, total	ug/L	MW-99	10/15/2024	ND	4.0000		
Lead, total	ug/L	MW-99	10/13/2016	ND	4.0000		
Lead, total	ug/L	MW-99	04/10/2017	ND	4.0000		
Lead, total	ug/L	MW-99	10/09/2017	ND	4.0000		
Lead, total	ug/L	MW-99	04/17/2018	ND	4.0000		
Lead, total	ug/L	MW-99	10/22/2018	ND	4.0000		
Lead, total	ug/L	MW-99	04/22/2019	ND	4.0000		
Lead, total	ug/L ug/L	MW-99	10/23/2019	ND	4.0000		
Lead, total	ug/L ug/L	MW-99	04/10/2020	ND	4.0000		
Lead, total	ug/L ug/L	MW-99	10/19/2020	ND	4.0000		
Lead, total	ug/L ug/L	MW-99	04/05/2021	ND	4.0000		
Lead, total	ug/L ug/L	MW-99	10/08/2021	ND	4.0000		
Lead, total	ug/L ug/L	MW-99	04/06/2022	ND	4.0000		
Lead, total	ug/L	MW-99	10/25/2022	ND	4.0000		
Lead, total	ug/L	MW-99	04/11/2023	ND	4.0000		
Lead, total	ug/L	MW-99	10/13/2023	ND	4.0000		
Lead, total	ug/L ug/L	MW-99	04/18/2024	ND	4.0000		
Lead, total	ug/L ug/L	MW-99	10/15/2024	ND	4.0000		
Nickel, total	ug/L	MW-99	10/13/2016	.40	5.6000		
Nickel, total	ug/L ug/L	MW-99	04/10/2017		5.1000		
Nickel, total	ug/L ug/L	MW-99	10/09/2017		8.8000		
Nickel, total	ug/L	MW-99	04/17/2018		4.3000		
Nickel, total	ug/L	MW-99	10/22/2018	ND	4.0000		
Nickel, total	ug/L ug/L	MW-99	04/22/2019	.40	5.1000		
Nickel, total	ug/L ug/L	MW-99	10/23/2019		7.1000		
Nickel, total	ug/L ug/L	MW-99	04/10/2020		6.5000		
Nickel, total	ug/L ug/L	MW-99	10/19/2020		6.9000		
Nickel, total	ug/L ug/L	MW-99	04/05/2021		5.1000		
Nickel, total	ug/L ug/L	MW-99	10/08/2021		5.5000		
Nickel, total	ug/L ug/L	MW-99	04/06/2022		5.3000		
Nickel, total	ug/L ug/L	MW-99	10/25/2022		6.2000		
Nickel, total	ug/L ug/L	MW-99	04/11/2023	ND	4.0000		
Nickel, total	ug/L ug/L	MW-99	10/13/2023	טאו	5.3000		
LINIUNCI, IUIAI	uy/L	14144-23	10/10/2020		5.5000		

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Nickel, total	ug/L	MW-99	04/18/2024		6.3000		
Nickel, total	ug/L	MW-99	10/15/2024	ND	4.0000		
Selenium, total	ug/L	MW-99	10/13/2016	ND	4.0000		
Selenium, total	ug/L	MW-99	04/10/2017	ND	4.0000		
Selenium, total Selenium, total	ug/L ug/L	MW-99 MW-99	10/09/2017 04/17/2018	ND ND	4.0000 4.0000		
Selenium, total	ug/L	MW-99	10/22/2018	ND	4.0000		
Selenium, total	ug/L	MW-99	04/22/2019	ND	4.0000		
Selenium, total	ug/L	MW-99	10/23/2019	ND	4.0000		
Selenium, total	ug/L	MW-99	04/10/2020	ND	4.0000		
Selenium, total	ug/L	MW-99	10/19/2020	ND	4.0000		
Selenium, total	ug/L	MW-99	04/05/2021	ND	4.0000		
Selenium, total	ug/L	MW-99	10/08/2021	ND	4.0000		
Selenium, total Selenium, total	ug/L ug/L	MW-99 MW-99	04/06/2022 10/25/2022	ND ND	4.0000 4.0000		
Selenium, total	ug/L	MW-99	04/11/2023	ND	4.0000		
Selenium, total	ug/L	MW-99	10/13/2023	ND	4.0000		
Selenium, total	ug/L	MW-99	04/18/2024	ND	4.0000		
Selenium, total	ug/L	MW-99	10/15/2024	ND	4.0000		
Silver, total	ug/L	MW-99	10/13/2016	ND	4.0000		
Silver, total	ug/L	MW-99	04/10/2017	ND	4.0000		
Silver, total	ug/L	MW-99	10/09/2017	ND	4.0000		
Silver, total	ug/L	MW-99 MW-99	04/17/2018 10/22/2018	ND ND	4.0000		
Silver, total Silver, total	ug/L ug/L	MW-99	04/22/2019	ND	4.0000 4.0000		
Silver, total	ug/L	MW-99	10/23/2019	ND	4.0000		
Silver, total	ug/L	MW-99	04/10/2020	ND	4.0000		
Silver, total	ug/L	MW-99	10/19/2020	ND	4.0000		
Silver, total	ug/L	MW-99	04/05/2021	ND	4.0000		
Silver, total	ug/L	MW-99	10/08/2021	ND	4.0000		
Silver, total	ug/L	MW-99	04/06/2022	ND	4.0000		
Silver, total	ug/L	MW-99	10/25/2022	ND	4.0000		
Silver, total Silver, total	ug/L ug/L	MW-99 MW-99	04/11/2023 10/13/2023	ND ND	4.0000 4.0000		
Silver, total	ug/L ug/L	MW-99	04/18/2024	ND	4.0000		
Silver, total	ug/L	MW-99	10/15/2024	ND	4.0000		
Thallium, total	ug/L	MW-99	10/13/2016	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-99	04/10/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-99	10/09/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-99	04/17/2018	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-99 MW-99	10/22/2018	ND ND	4.0000	2.0000	**
Thallium, total Thallium, total	ug/L ug/L	MW-99	04/22/2019 10/23/2019	ND	2.0000 2.0000		
Thallium, total	ug/L	MW-99	04/10/2020	ND	2.0000		
Thallium, total	ug/L	MW-99	10/19/2020	ND	2.0000		
Thallium, total	ug/L	MW-99	04/05/2021	ND	2.0000		
Thallium, total	ug/L	MW-99	10/08/2021	ND	2.0000		
Thallium, total	ug/L	MW-99	04/06/2022	ND	2.0000		
Thallium, total	ug/L	MW-99	10/25/2022	ND	2.0000		
Thallium, total Thallium, total	ug/L ug/L	MW-99 MW-99	04/11/2023 10/13/2023	ND ND	2.0000 2.0000		
Thallium, total	ug/L ug/L	MW-99	04/18/2024	ND	2.0000		
Thallium, total	ug/L	MW-99	10/15/2024	ND	2.0000		
Vanadium, total	ug/L	MW-99	10/13/2016	ND	20.0000		
Vanadium, total	ug/L	MW-99	04/10/2017	ND	20.0000		
Vanadium, total	ug/L	MW-99	10/09/2017	ND	20.0000		
Vanadium, total	ug/L	MW-99	04/17/2018	ND	20.0000		
Vanadium, total Vanadium, total	ug/L ug/L	MW-99 MW-99	10/22/2018 04/22/2019	ND ND	20.0000 20.0000		
Vanadium, total	ug/L ug/L	MW-99	10/23/2019	ND	20.0000		
Vanadium, total	ug/L	MW-99	04/10/2020	ND	20.0000		
Vanadium, total	ug/L	MW-99	10/19/2020	ND	20.0000		
Vanadium, total	ug/L	MW-99	04/05/2021	ND	20.0000		
Vanadium, total	ug/L	MW-99	10/08/2021	ND	20.0000		
Vanadium, total	ug/L	MW-99	04/06/2022	ND	20.0000		
Vanadium, total	ug/L	MW-99	10/25/2022	ND	20.0000		
Vanadium, total Vanadium, total	ug/L ug/L	MW-99 MW-99	04/11/2023 10/13/2023	ND ND	20.0000 20.0000		
Vanadium, total	ug/L ug/L	MW-99	04/18/2024	ND	20.0000		
Vanadium, total	ug/L	MW-99	10/15/2024	ND	20.0000		
Zinc, total	ug/L	MW-99	10/13/2016	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-99	04/10/2017	ND	8.0000	20.0000	**
Zinc, total Zinc, total	ug/L	MW-99	10/09/2017		11.2000	00.000	**
	ug/L	MW-99	04/17/2018	ND	8.0000	20.0000	^ ^

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Zinc, total	ug/L	MW-99	10/22/2018		23.6000		
Zinc, total	ug/L	MW-99	04/22/2019		27.8000		
Zinc, total	ug/L	MW-99	10/23/2019		20.8000		
Zinc, total	ug/L	MW-99	04/10/2020	ND	20.0000		
Zinc, total	ug/L	MW-99	10/19/2020	ND	20.0000		
Zinc, total	ug/L	MW-99	04/05/2021	ND	20.0000		
Zinc, total	ug/L	MW-99	10/08/2021	ND	20.0000		
Zinc, total	ug/L	MW-99	04/06/2022	ND	20.0000		
Zinc, total	ug/L	MW-99	10/25/2022	ND	20.0000		
Zinc, total	ug/L	MW-99	04/11/2023	ND	20.0000		
Zinc, total	ug/L	MW-99	10/13/2023	ND	20.0000		
Zinc, total	ug/L	MW-99	04/18/2024	ND	20.0000		
Zinc, total	ug/L	MW-99	10/15/2024	ND	20.0000		

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Most Current Downgradient Monitoring Data**

Constituent	Units	Well	Date		Result		Pred. Limit
Antimony, total	ug/L	MW-96R	10/15/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-96R	10/15/2024		6.6000		7.8000
Barium, total	ug/L	MW-96R	10/15/2024		338.0000		452.8909
Beryllium, total	ug/L	MW-96R	10/15/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-96R	10/15/2024	ND	0.8000		0.8000
Chromium, total	ug/L	MW-96R	10/15/2024	ND	8.0000		23.4000
Cobalt, total	ug/L	MW-96R	10/15/2024		10.5000	*	5.9879
Copper, total	ug/L	MW-96R	10/15/2024	ND	4.0000		5.3000
Lead, total	ug/L	MW-96R	10/15/2024	ND	4.0000		4.0000
Nickel, total	ug/L	MW-96R	10/15/2024		4.6000		8.8000
Selenium, total	ug/L	MW-96R	10/15/2024	ND	4.0000	**	4.0000
Silver, total	ug/L	MW-96R	10/15/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-96R	10/15/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-96R	10/15/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-96R	10/15/2024	ND	20.0000		54.6000

 ⁻ Current value failed - awaiting verification.
 - Current value passed - previous exceedance not verified.
 - Current value failed - exceedance verified.
 - Current value passed - awaiting one more verification.
 - Insufficient background data to compute prediction limit.
 ND = Not Detected, Result = detection limit.

Table 3

Detection Frequencies in Upgradient and Downgradient Wells

Constituent	Detect	Upgradient N	Proportion	Detect	Downgradient N	Proportion
Antimony, total	0	65	0.000	0	8	0.000
Arsenic, total	5	63	0.079	8	11	0.727
Barium, total	65	65	1.000	9	9	1.000
Beryllium, total	0	65	0.000	0	8	0.000
Cadmium, total	0	65	0.000	0	8	0.000
Chromium, total	2	65	0.031	0	8	0.000
Cobalt, total	35	63	0.556	11	11	1.000
Copper, total	4	65	0.062	0	8	0.000
Lead, total	0	65	0.000	0	8	0.000
Nickel, total	14	64	0.219	8	8	1.000
Selenium, total	0	65	0.000	3	9	0.333
Silver, total	0	65	0.000	0	8	0.000
Thallium, total	0	65	0.000	0	8	0.000
Vanadium, total	0	65	0.000	0	8	0.000
Zinc, total	7	64	0.109	0	8	0.000

N = Total number of measurements in all wells. Detect = Total number of detections in all wells. Proportion = Detect/N.

Table 4 **Shapiro-Wilk Multiple Group Test of Normality**

Constituent	Detect	N	Detect Freq	G raw	G log	G cbrt	G sqrt	G sqr	G cub	Crit Value	Dist Form	Model Type
Antimony, total	0	65	0.000									nonpar
Arsenic, total	5	63	0.079	0.427	0.013					2.326	normal	nonpar
Barium, total	65	65	1.000	0.569	1.099					2.326	normal	normal
Beryllium, total	0	65	0.000									nonpar
Cadmium, total	0	65	0.000									nonpar
Chromium, total	2	65	0.031									nonpar
Cobalt, total	35	63	0.556	1.125	0.053					2.326	normal	normal
Copper, total	4	65	0.062									nonpar
Lead, total	0	65	0.000									nonpar
Nickel, total	14	64	0.219	1.049	0.057					2.326	normal	nonpar
Selenium, total	0	65	0.000									nonpar
Silver, total	0	65	0.000									nonpar
Thallium, total	0	65	0.000									nonpar
Vanadium, total	0	65	0.000									nonpar
Zinc, total	7	64	0.109	0.439	0.418					2.326	normal	nonpar

 * - Distribution override for that constituent. Fit to distribution is confirmed if G <= critical value. Model type may not match distributional form when detection frequency < 50%.

Table 5 **Summary Statistics and Prediction Limits**

Constituent	Units	Detect	N	Mean	SD	alpha	Factor	Pred Limit	Туре		Conf
Antimony, total	ug/L	0	65					2.0000	nonpar	***	0.99
Arsenic, total	ug/L	5	63					7.8000	nonpar		0.99
Barium, total	ug/L	65	65	179.9308	113.5302	0.0100	2.4043	452.8909	normal		
Beryllium, total	ug/L	0	65					4.0000	nonpar	***	0.99
Cadmium, total	ug/L	0	65					0.8000	nonpar	***	0.99
Chromium, total	ug/L	2	65					23.4000	nonpar		0.99
Cobalt, total	ug/L	35	63	1.5746	1.8336	0.0100	2.4069	5.9879	normal		
Copper, total	ug/L	4	65					5.3000	nonpar		0.99
Lead, total	ug/L	0	65					4.0000	nonpar	***	0.99
Nickel, total	ug/L	14	64					8.8000	nonpar		0.99
Selenium, total	ug/L	0	65					4.0000	nonpar	***	0.99
Silver, total	ug/L	0	65					4.0000	nonpar	***	0.99
Thallium, total	ug/L	0	65						nonpar	***	0.99
Vanadium, total	ug/L	0	65					20.0000	nonpar	***	0.99
Zinc, total	ug/L	7	64					54.6000	nonpar		0.99

Conf = confidence level for passing initial test or one verification resample at all downgradient wells for a single constituent Conf = confidence level for passing initial test or one verification resample at all downgradient webs (nonparametric test only).

* - Insufficient Data.

** - Calculated limit raised to Manual Reporting Limit.

*** - Nonparametric limit based on ND value.

For transformed data, mean and SD in transformed units and prediction limit in original units.

All sample sizes and statistics are based on outlier free data.

For nonparametric limits, median reporting limits are substituted for extreme reporting limit values.

Table 6

Dixon's Test Outliers 1% Significance Level

Constituent	Units	Well	Date	Result	ND Qualifier	Date Range	N	Critical Value
Arsenic, total	ug/L	MW-98	04/17/2024	48.0000		10/13/2016-10/15/2024	16	0.5973
Cobalt, total	ug/L	MW-99	10/22/2018	0.8000		10/13/2016-10/15/2024	17	0.5973
Cobalt, total	ug/L	MW-99	10/15/2024	0.9000		10/13/2016-10/15/2024	17	0.5973

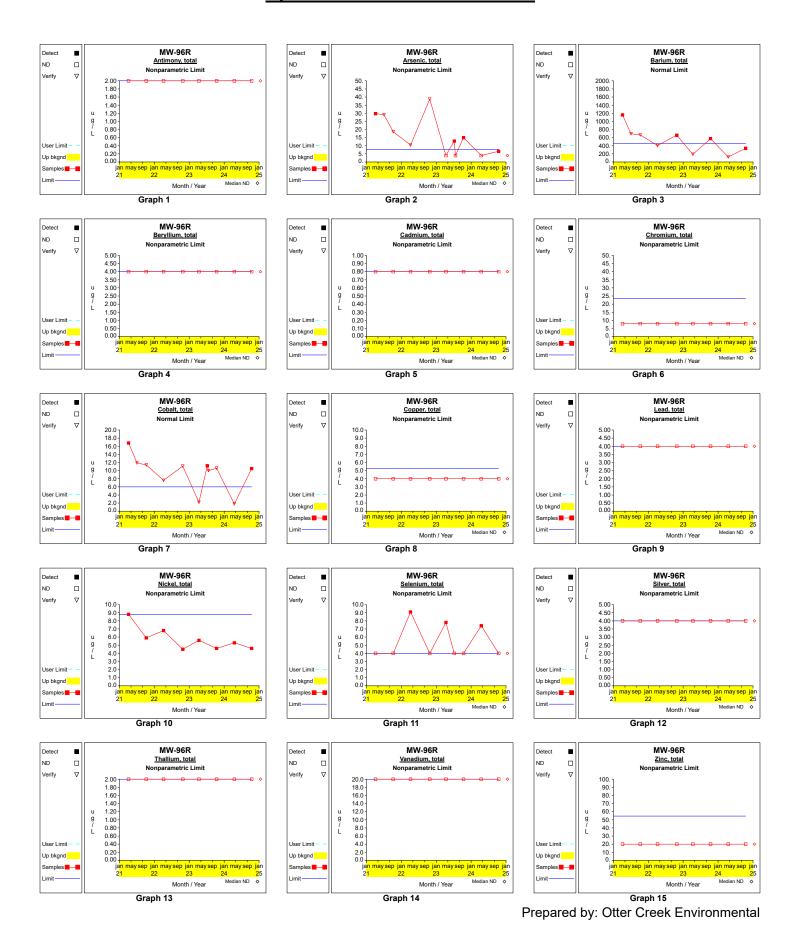
N = Total number of independent measurements in background at each well.

Date Range = Dates of the first and last measurements included in background at each well.

Critical Value depends on the significance level and on N-1 when the two most extreme values are tested or N for the most extreme

Table 8 Historical Downgradient Data for Constituent-Well Combinations that Failed the Current Statistical Evaluation or are in Verification Resampling Mode

Constituent	Units	Well	Date		Result		Pred. Limit
Cobalt, total	ug/L	MW-96R	04/05/2021		16.8000	*	5.9879
Cobalt, total	ug/L	MW-96R	07/02/2021		11.9000	*	5.9879
Cobalt, total	ug/L	MW-96R	10/08/2021		11.4000	*	5.9879
Cobalt, total	ug/L	MW-96R	04/06/2022		7.6000	*	5.9879
Cobalt, total	ug/L	MW-96R	10/25/2022		11.1000	*	5.9879
Cobalt, total	ug/L	MW-96R	04/11/2023		2.2000		5.9879
Cobalt, total	ug/L	MW-96R	07/07/2023		11.2000	*	5.9879
Cobalt, total	ug/L	MW-96R	07/20/2023		10.0000	*	5.9879
Cobalt, total	ug/L	MW-96R	10/13/2023		10.6000	*	5.9879
Cobalt, total	ug/L	MW-96R	04/16/2024		1.8000		5.9879
Cobalt, total	ug/L	MW-96R	10/15/2024		10.5000	*	5.9879
Selenium, total	ug/L	MW-96R	04/05/2021	ND	4.0000		4.0000
Selenium, total	ug/L	MW-96R	10/08/2021	ND	4.0000		4.0000
Selenium, total	ug/L	MW-96R	04/06/2022		9.1000	*	4.0000
Selenium, total	ug/L	MW-96R	10/25/2022	ND	4.0000		4.0000
Selenium, total	ug/L	MW-96R	04/11/2023		7.8000	*	4.0000
Selenium, total	ug/L	MW-96R	07/07/2023	ND	4.0000		4.0000
Selenium, total	ug/L	MW-96R	10/13/2023	ND	4.0000		4.0000
Selenium, total	ug/L	MW-96R	04/16/2024		7.4000	*	4.0000
Selenium, total	ug/L	MW-96R	10/15/2024	ND	4.0000		4.0000


^{* -} Significantly increased over background.

** - Detect at limit for 100% NDs in background (NPPL only).

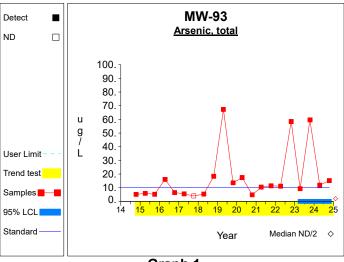
*** - Manual exclusion.

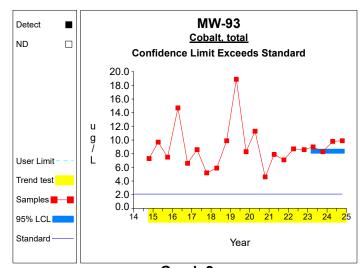
ND = Not Detected, Result = detection limit.

Up vs. Down Prediction Limits

Attachment C

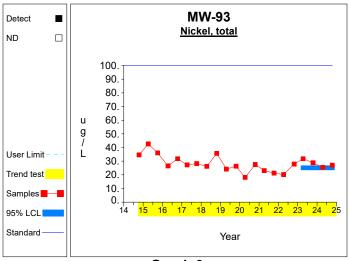
Assessment Statistics for Trace Metals


marshall2024s2 November 2024


Table 1 Confidence Intervals for Comparing the Mean of the Last 4 Measurements to an Assessment Monitoring Standard

Constituent	Units	Well	N	Mean	SD	Factor	95% LCL	95% UCL	Standard	Trend	
Arsenic, total	ug/L	MW-93	4	24.000	23.856	1.176	0.000	52.061	10.000		
Cobalt, total	ug/L	MW-93	4	9.250	0.751	1.176	8.367	10.133	2.100		**
Nickel, total	ug/L	MW-93	4	28.300	2.694	1.176	25.131	31.469	100.000		

^{* -} Insufficient Data ** - Significant Exceedance LCL = Lower Confidence Limit UCL = Upper Confidence Limit


Confidence Limits (Assessment)

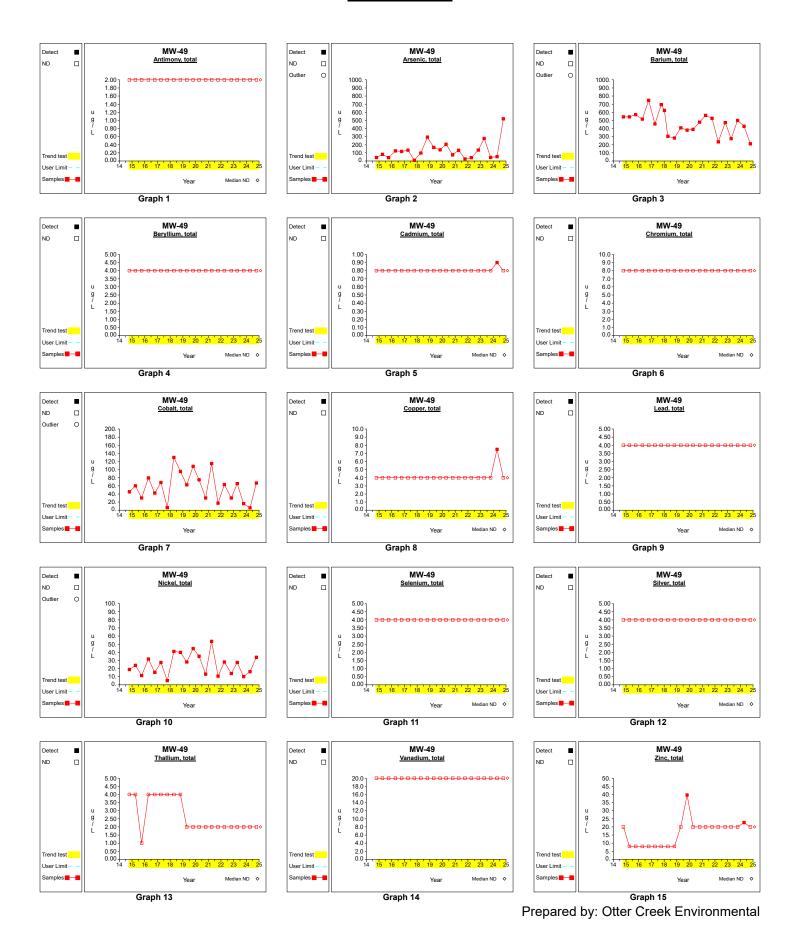
Graph 3

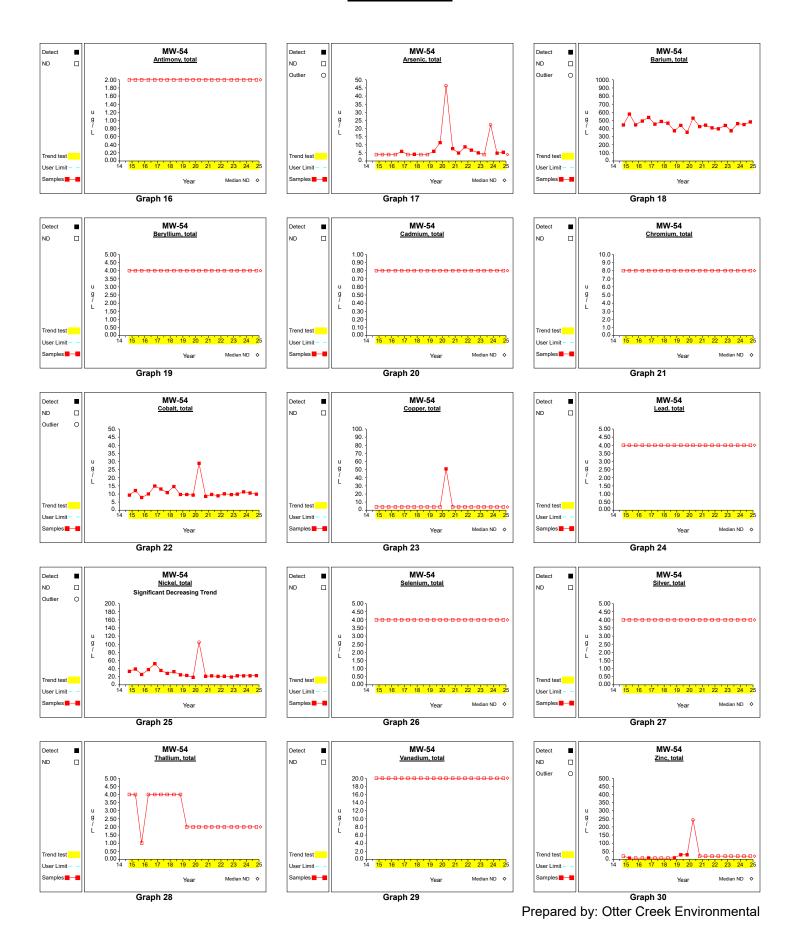
Worksheet 6 - Assessment Monitoring Arsenic, total (ug/L) at MW-93

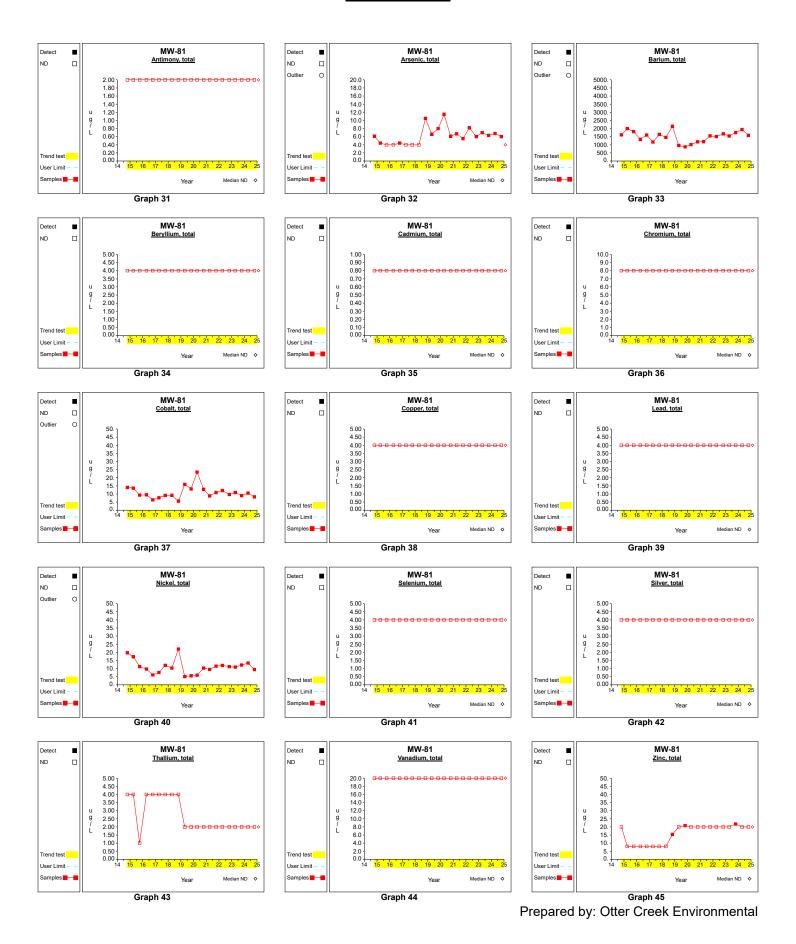
<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 96.0 / 4	
	= 24.0	
2	S = $((sum[x^2] - sum[x]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((4011.3 - 9216.0/4) / (4-1)) ^{1/2}	
	= 23.856	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 24.0 - 2.353 * 23.856/4 ^{1/2}	measurements.
	= 0.0	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	= 24.0 + 2.353 * 23.856/4 ^{1/2}	measurements.
	= 52.061	
5	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 21 * (21 -1) / 2	
	= 210	
6	S = 0.918	Sen's estimator of trend.
7	var(S) = 1096.667	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(210 \pm 2.576 * 1096.667^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [62.347, 147.653]	integers, interpolation is used.
9	CL(S) = [-0.331, 3.178]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

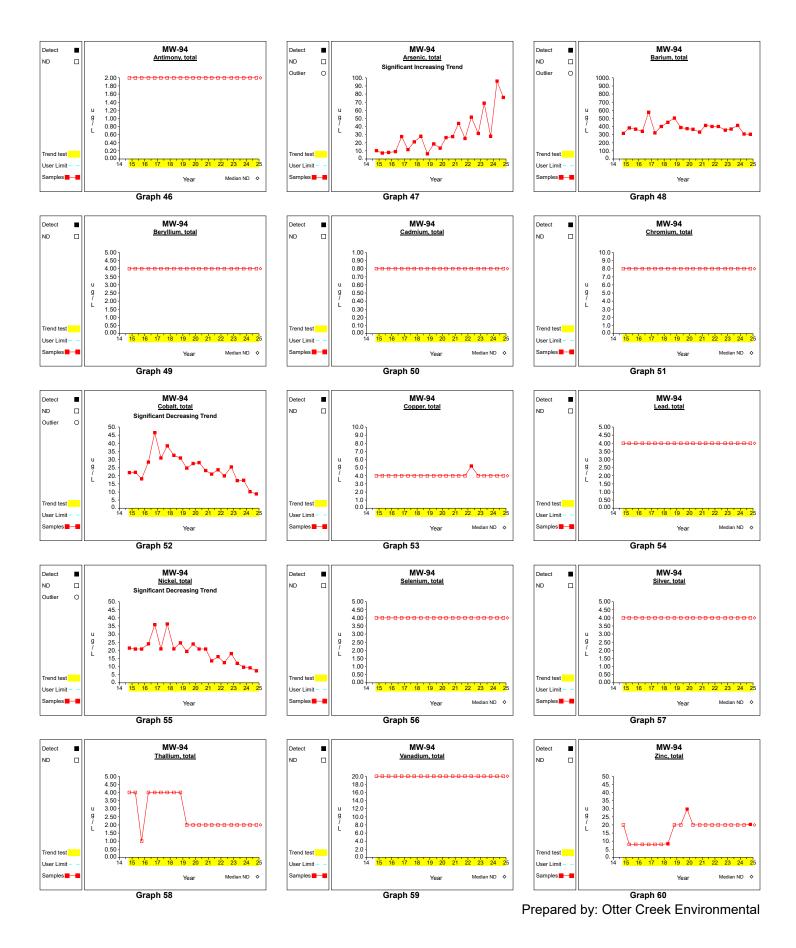
Worksheet 6 - Assessment Monitoring Cobalt, total (ug/L) at MW-93

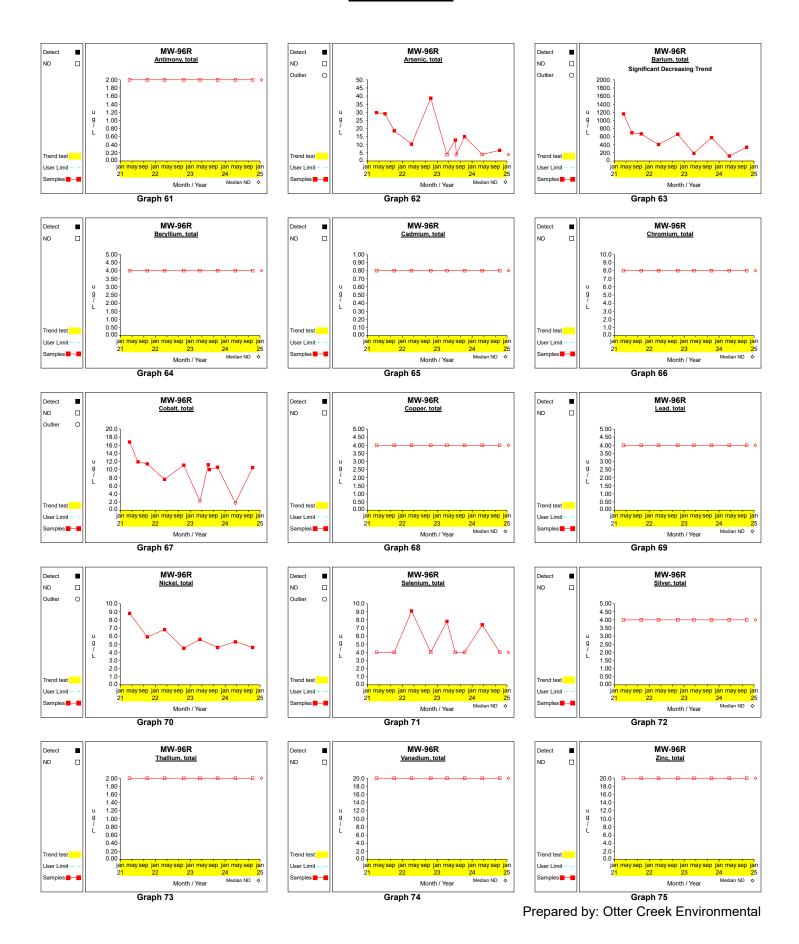
<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 37.0 / 4	
	= 9.25	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((343.94 - 1369.0/4) / (4-1)) ^{1/2}	
	= 0.751	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 9.25 - 2.353 * 0.751/4 ^{1/2}	measurements.
	= 8.367	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	= 9.25 + 2.353 * 0.751/4 ^{1/2}	measurements.
	= 10.133	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 21 * (21-1) / 2	
	= 210	
6	S = 0.163	Sen's estimator of trend.
7	var(S) = 1093.667	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (210 ± 2.576 * 1093.667 ^{1/2}) / 2	estimates for the values shown. When the values are not
	= [62.405, 147.595]	integers, interpolation is used.
9	CL(S) = [-0.4, 0.619]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.


Worksheet 6 - Assessment Monitoring Nickel, total (ug/L) at MW-93


<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 113.2 / 4 = 28.3	Compute the mean of the last 4 measurements.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((3225.34 - 12814.24/4) / (4-1))^{1/2}$ = 2.694	Compute sd of the last 4 measurements.
3	LCL = \overline{X} - tS/N ^{1/2} = 28.3 - 2.353 * 2.694/4 ^{1/2} = 25.131	Compute lower confidence limit for the mean of the last 4 measurements.
4	UCL = \overline{X} + tS/N ^{1/2} = 28.3 + 2.353 * 2.694/4 ^{1/2} = 31.469	Compute upper confidence limit for the mean of the last 4 measurements.
5	N' = N * (N-1) / 2 = 21 * (21-1) / 2 = 210	Number of sample pairs during trend detection period.
6	S = -0.971	Sen's estimator of trend.
7	var(S) = 1095.667	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$ $= (210 \pm 2.576 * 1095.667^{1/2}) / 2$ $= [62.366, 147.634]$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope estimates for the values shown. When the values are not integers, interpolation is used.
9	CL(S) = [-2.136, 0.195]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.


Attachment D


Supplemental Wells Time Series of Trace Metals


marshall2024s2 November 2024

Attachment E

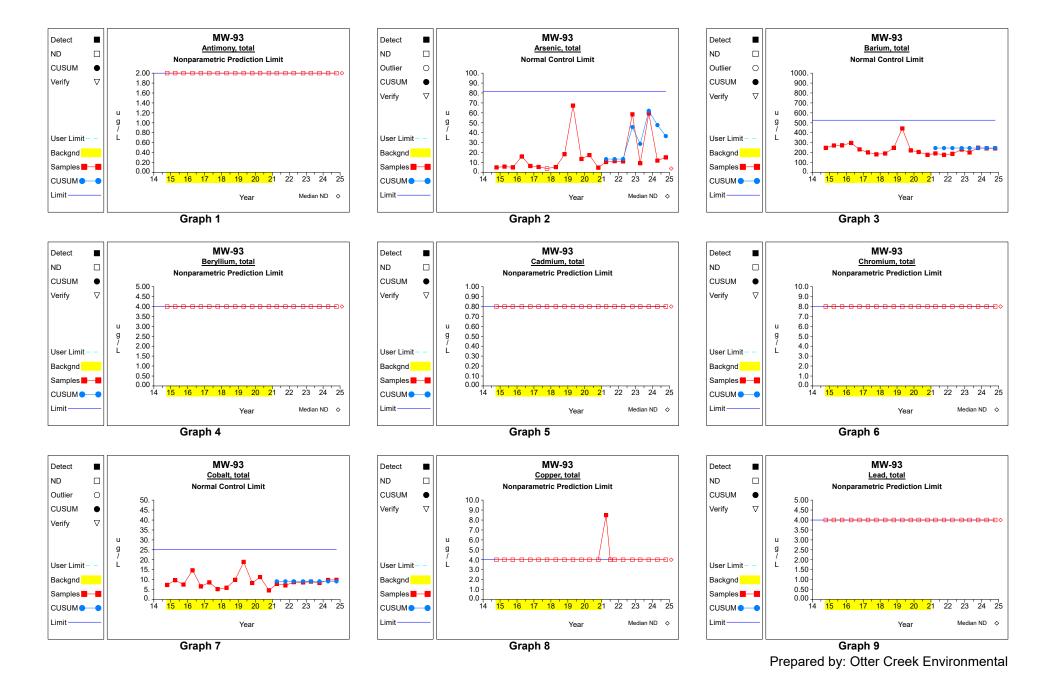
Summary Table and Graphs – Intrawell Statistics

marshall2024s2 November 2024

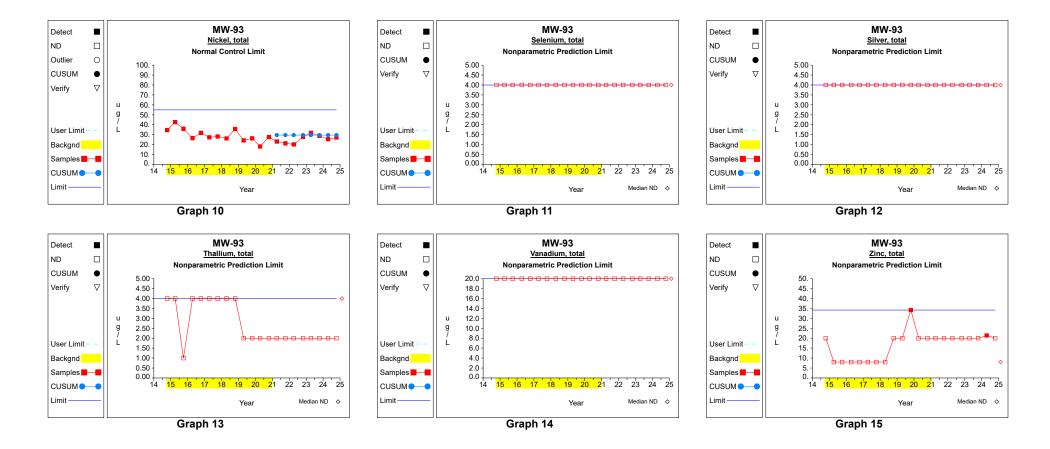
Table 1 Summary Statistics and Intermediate Computations for Combined Shewhart-CUSUM Control Charts

Constituent	Units	Well	N(back)	N(mon)	N(tot)	Mean	SD	R(i-1)	R(i)	S(i-1)	S(i)	Limit	Туре	Conf	
Antimony, total	ug/L	MW-93	13	8	36			2.0000	2.0000			2.0000	nonpar	.99	**
Arsenic, total	ug/L	MW-93	13	8	36	13.4846	17.0367	11.9000	15.2000	47.7361	36.6740	81.6313	normal		
Barium, total	ug/L	MW-93	13	8	36	245.9231	70.0053	243.0000	242.0000	245.9231	245.9231	525.9443	normal		
Beryllium, total	ug/L	MW-93	13	8	36			4.0000	4.0000			4.0000	nonpar	.99	**
Cadmium, total	ug/L	MW-93	13	8	36			0.8000	0.8000			0.8000	nonpar	.99	**
Chromium, total	ug/L	MW-93	13	8	36			8.0000	8.0000			8.0000	nonpar	.99	**
Cobalt, total	ug/L	MW-93	13	8	36	9.1154	3.9987	9.8000	9.9000	9.1154	9.1154	25.1103	normal		
Copper, total	ug/L	MW-93	13	9	37			4.0000	4.0000			4.0000	nonpar	.99	**
Lead, total	ug/L	MW-93	13	8	36			4.0000	4.0000			4.0000	nonpar	.99	**
Nickel, total	ug/L	MW-93	13	8	37	29.6231	6.3359	25.5000	27.1000	29.6231	29.6231	54.9667	normal		
Selenium, total	ug/L	MW-93	13	8	36			4.0000	4.0000			4.0000	nonpar	.99	**
Silver, total	ug/L	MW-93	13	8	36			4.0000	4.0000			4.0000	nonpar	.99	**
Thallium, total	ug/L	MW-93	13	8	36			2.0000	2.0000			4.0000	nonpar	.99	**
Vanadium, total	ug/L	MW-93	13	8	36			20.0000	20.0000			20.0000	nonpar	.99	**
Zinc, total	ug/L	MW-93	13	8	36			21.4000	20.0000			34.2000	nonpar	.99	**

N(back) and N(mon) = Non-outlier measurements in the background and monitoring periods. N(tot) = All independent measurements for that constituent and well.


For transformed data, mean and SD in transformed units and control limit in original units.

Conf = confidence level for passing initial test or one verification resample (nonparametric test only).


^{* -} Insufficient Data.

^{*** -} Detection Frequency < 25%.
*** - Zero Variance.

Intra-Well Control Charts / Prediction Limits

Intra-Well Control Charts / Prediction Limits

False Positive and False Negative Rates for Current Intra-Well Control Charts Monitoring Program

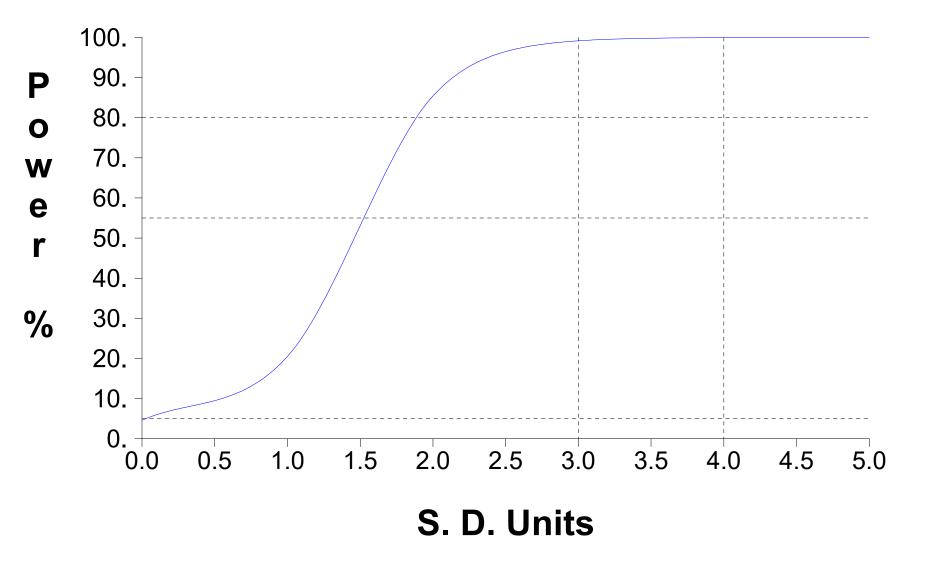


Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Antimony, total	ug/L	MW-93	10/16/2014	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	04/06/2015	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	10/01/2015	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	04/14/2016	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	10/13/2016	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	04/10/2017	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	10/09/2017	ves	2.0000	ND				
Antimony, total	ug/L	MW-93	04/17/2018	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	10/22/2018	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	04/22/2019	ves	2.0000	ND				
Antimony, total	ug/L	MW-93	10/23/2019	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	04/10/2020	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	10/19/2020	yes	2.0000	ND				
Antimony, total	ug/L	MW-93	04/05/2021	,	2.0000	ND				
Antimony, total	ug/L	MW-93	10/08/2021		2.0000	ND				
Antimony, total	ug/L	MW-93	04/06/2022		2.0000	ND				
Antimony, total	ug/L	MW-93	10/25/2022		2.0000	ND				
Antimony, total	ug/L	MW-93	04/11/2023		2.0000	ND				
Antimony, total	ug/L	MW-93	10/13/2023		2.0000	ND				
Antimony, total	ug/L	MW-93	04/16/2024		2.0000	ND				
Antimony, total	ug/L	MW-93	10/15/2024		2.0000	ND				
Arsenic, total	ug/L	MW-93	10/16/2014	yes	5.1000					
Arsenic, total	ug/L	MW-93	04/06/2015	yes	5.9000					
Arsenic, total	ug/L	MW-93	10/01/2015	yes	5.2000					
Arsenic, total	ug/L	MW-93	04/14/2016	yes	16.1000					
Arsenic, total	ug/L	MW-93	10/13/2016	yes	6.5000					
Arsenic, total	ug/L	MW-93	04/10/2017	ves	5.5000					
Arsenic, total	ug/L	MW-93	10/09/2017	yes	4.0000	ND				
Arsenic, total	ug/L	MW-93	04/17/2018	yes	5.4000					
Arsenic, total	ug/L	MW-93	10/22/2018	yes	18.4000					
Arsenic, total	ug/L	MW-93	04/22/2019	ves	67.3000					
Arsenic, total	ug/L	MW-93	10/23/2019	ves	13.6000					
Arsenic, total	ug/L	MW-93	04/10/2020	yes	17.5000					
Arsenic, total	ug/L	MW-93	10/19/2020	yes	4.8000					
Arsenic, total	ug/L	MW-93	04/05/2021	,	10.5000			13.4846		
Arsenic, total	ug/L	MW-93	10/08/2021		11.4000			13.4846		
Arsenic, total	ug/L	MW-93	04/06/2022		11.1000			13.4846		
Arsenic, total	ug/L	MW-93	10/25/2022		58.5000			45.7225		
Arsenic, total	ug/L	MW-93	04/11/2023		9.3000			28.7604		
Arsenic, total	ug/L	MW-93	10/13/2023		59.6000			62.0983		
Arsenic, total	ug/L	MW-93	04/16/2024		11.9000			47.7361		
Arsenic, total	ug/L	MW-93	10/15/2024		15.2000			36.6740		
Barium, total	ug/L	MW-93	10/16/2014	yes	248.0000			55.5.10		
Barium, total	ug/L	MW-93	04/06/2015	yes	272.0000					
Barium, total	ug/L	MW-93	10/01/2015	ves	274.0000					
Barium, total	ug/L	MW-93	04/14/2016	yes	297.0000					
Barium, total	ug/L	MW-93	10/13/2016	yes	232.0000					
Barium, total	ug/L	MW-93	04/10/2017	yes	202.0000					
Barium, total	ug/L	MW-93	10/09/2017	yes	183.0000					
Barium, total	ug/L	MW-93	04/17/2018	ves	191.0000					
zanam, total	_ 49/L	1	1 01/11/2010	, , , , ,	101.0000		1			

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Barium, total	ug/L	MW-93	10/22/2018	yes	249.0000					
Barium, total	ug/L	MW-93	04/22/2019	yes	443.0000					
Barium, total	ug/L	MW-93	10/23/2019	yes	222.0000					
Barium, total	ug/L	MW-93	04/10/2020	yes	206.0000					
Barium, total	ug/L	MW-93	10/19/2020	yes	178.0000					
Barium, total	ug/L	MW-93	04/05/2021		192.0000			245.9231		
Barium, total	ug/L	MW-93	10/08/2021		178.0000			245.9231		
Barium, total	ug/L	MW-93	04/06/2022		188.0000			245.9231		
Barium, total	ug/L	MW-93	10/25/2022		231.0000			245.9231		
Barium, total	ug/L	MW-93	04/11/2023		201.0000			245.9231		
Barium, total	ug/L	MW-93	10/13/2023		249.0000			245.9231		
Barium, total	ug/L	MW-93	04/16/2024		243.0000			245.9231		
Barium, total	ug/L	MW-93	10/15/2024		242.0000			245.9231		
Beryllium, total	ug/L	MW-93	10/16/2014	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	04/06/2015	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	10/01/2015	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	04/14/2016	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	10/13/2016	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	04/10/2017	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	10/09/2017	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	04/17/2018	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	10/22/2018	ves	4.0000	ND				
Beryllium, total	ug/L	MW-93	04/22/2019	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	10/23/2019	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	04/10/2020	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	10/19/2020	yes	4.0000	ND				
Beryllium, total	ug/L	MW-93	04/05/2021	,	4.0000	ND				
Beryllium, total	ug/L	MW-93	10/08/2021		4.0000	ND				
Beryllium, total	ug/L	MW-93	04/06/2022		4.0000	ND				
Beryllium, total	ug/L	MW-93	10/25/2022		4.0000	ND				
Beryllium, total	ug/L	MW-93	04/11/2023		4.0000	ND				
Beryllium, total	ug/L	MW-93	10/13/2023		4.0000	ND				
Beryllium, total	ug/L	MW-93	04/16/2024		4.0000	ND				
Beryllium, total	ug/L	MW-93	10/15/2024		4.0000	ND				
Cadmium, total	ug/L	MW-93	10/16/2014	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	04/06/2015	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	10/01/2015	ves	0.8000	ND				
Cadmium, total	ug/L	MW-93	04/14/2016	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	10/13/2016	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	04/10/2017	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	10/09/2017	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	04/17/2018	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	10/22/2018	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	04/22/2019	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	10/23/2019	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	04/10/2020	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	10/19/2020	yes	0.8000	ND				
Cadmium, total	ug/L	MW-93	04/05/2021		0.8000	ND				
Cadmium, total	ug/L	MW-93	10/08/2021		0.8000	ND				
Cadmium, total	ug/L	MW-93	04/06/2022		0.8000	ND				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Cadmium, total	ug/L	MW-93	10/25/2022		0.8000	ND				
Cadmium, total	ug/L	MW-93	04/11/2023		0.8000	ND				
Cadmium, total	ug/L	MW-93	10/13/2023		0.8000	ND				
Cadmium, total	ug/L	MW-93	04/16/2024		0.8000	ND				
Cadmium, total	ug/L	MW-93	10/15/2024		0.8000	ND				
Chromium, total	ug/L	MW-93	10/16/2014	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	04/06/2015	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	10/01/2015	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	04/14/2016	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	10/13/2016	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	04/10/2017	ves	8.0000	ND				
Chromium, total	ug/L	MW-93	10/09/2017	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	04/17/2018	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	10/22/2018	ves	8.0000	ND				
Chromium, total	ug/L	MW-93	04/22/2019	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	10/23/2019	ves	8.0000	ND				
Chromium, total	ug/L ug/L	MW-93	04/10/2020	yes	8.0000	ND				
Chromium, total	ug/L	MW-93	10/19/2020	yes	8.0000	ND				
Chromium, total	ug/L ug/L	MW-93	04/05/2021	yes	8.0000	ND				
Chromium, total	ug/L ug/L	MW-93	10/08/2021		8.0000	ND				
Chromium, total	ug/L ug/L	MW-93	04/06/2022		8.0000	ND				
Chromium, total		MW-93			8.0000	ND				
	ug/L	MW-93	10/25/2022			ND				
Chromium, total	ug/L		04/11/2023		8.0000	ND				
Chromium, total	ug/L	MW-93 MW-93	10/13/2023		8.0000	ND				
Chromium, total	ug/L		04/16/2024		8.0000	ND				
Chromium, total	ug/L	MW-93	10/15/2024	1/00	8.0000	טא				
Cobalt, total	ug/L	MW-93 MW-93	10/16/2014	yes	7.3000					
Cobalt, total	ug/L		04/06/2015	yes	9.7000					
Cobalt, total	ug/L	MW-93	10/01/2015	yes	7.5000					
Cobalt, total	ug/L	MW-93	04/14/2016	yes	14.7000					
Cobalt, total	ug/L	MW-93	10/13/2016	yes	6.6000					
Cobalt, total	ug/L	MW-93	04/10/2017	yes	8.6000					
Cobalt, total	ug/L	MW-93	10/09/2017	yes	5.2000					
Cobalt, total	ug/L	MW-93	04/17/2018	yes	5.9000					
Cobalt, total	ug/L	MW-93	10/22/2018	yes	9.9000					
Cobalt, total	ug/L	MW-93	04/22/2019	yes	18.9000					
Cobalt, total	ug/L	MW-93	10/23/2019	yes	8.3000					
Cobalt, total	ug/L	MW-93	04/10/2020	yes	11.3000					
Cobalt, total	ug/L	MW-93	10/19/2020	yes	4.6000			0.44=:		
Cobalt, total	ug/L	MW-93	04/05/2021		7.9000			9.1154		
Cobalt, total	ug/L	MW-93	10/08/2021		7.1000			9.1154		
Cobalt, total	ug/L	MW-93	04/06/2022		8.7000			9.1154		
Cobalt, total	ug/L	MW-93	10/25/2022		8.6000			9.1154		
Cobalt, total	ug/L	MW-93	04/11/2023		9.0000			9.1154		
Cobalt, total	ug/L	MW-93	10/13/2023		8.3000			9.1154		
Cobalt, total	ug/L	MW-93	04/16/2024		9.8000			9.1154		
Cobalt, total	ug/L	MW-93	10/15/2024		9.9000			9.1154		
Copper, total	ug/L	MW-93	10/16/2014	yes	4.0000	ND				
Copper, total	ug/L	MW-93	04/06/2015	yes	4.0000	ND				
Copper, total	ug/L	MW-93	10/01/2015	yes	4.0000	ND				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Copper, total	ug/L	MW-93	04/14/2016	yes	4.0000	ND				
Copper, total	ug/L	MW-93	10/13/2016	yes	4.0000	ND				
Copper, total	ug/L	MW-93	04/10/2017	yes	4.0000	ND				
Copper, total	ug/L	MW-93	10/09/2017	yes	4.0000	ND				
Copper, total	ug/L	MW-93	04/17/2018	yes	4.0000	ND				
Copper, total	ug/L	MW-93	10/22/2018	yes	4.0000	ND				
Copper, total	ug/L	MW-93	04/22/2019	yes	4.0000	ND				
Copper, total	ug/L	MW-93	10/23/2019	yes	4.0000	ND				
Copper, total	ug/L	MW-93	04/10/2020	yes	4.0000	ND				
Copper, total	ug/L	MW-93	10/19/2020	yes	4.0000	ND				
Copper, total	ug/L	MW-93	04/05/2021	,	8.5000					**
Copper, total	ug/L	MW-93	07/02/2021		4.0000	ND				
Copper, total	ug/L	MW-93	10/08/2021		4.0000	ND				
Copper, total	ug/L	MW-93	04/06/2022		4.0000	ND				
Copper, total	ug/L	MW-93	10/25/2022		4.0000	ND				
Copper, total	ug/L	MW-93	04/11/2023		4.0000	ND				
Copper, total	ug/L	MW-93	10/13/2023		4.0000	ND				
Copper, total	ug/L	MW-93	04/16/2024		4.0000	ND				
Copper, total	ug/L	MW-93	10/15/2024		4.0000	ND				
Lead, total	ug/L	MW-93	10/16/2014	yes	4.0000	ND				
Lead, total	ug/L	MW-93	04/06/2015	yes	4.0000	ND				
Lead, total	ug/L	MW-93	10/01/2015	ves	4.0000	ND				
Lead, total	ug/L	MW-93	04/14/2016	yes	4.0000	ND				
Lead, total	ug/L	MW-93	10/13/2016	yes	4.0000	ND				
Lead, total	ug/L	MW-93	04/10/2017	yes	4.0000	ND				
Lead, total	ug/L	MW-93	10/09/2017	yes	4.0000	ND				
Lead, total	ug/L	MW-93	04/17/2018	yes	4.0000	ND				
Lead, total	ug/L	MW-93	10/22/2018	yes	4.0000	ND				
Lead, total	ug/L	MW-93	04/22/2019	ves	4.0000	ND				
Lead, total	ug/L	MW-93	10/23/2019	yes	4.0000	ND				
Lead, total	ug/L	MW-93	04/10/2020	ves	4.0000	ND				
Lead, total	ug/L	MW-93	10/19/2020	yes	4.0000	ND				
Lead, total	ug/L	MW-93	04/05/2021	,	4.0000	ND				
Lead, total	ug/L	MW-93	10/08/2021		4.0000	ND				
Lead, total	ug/L	MW-93	04/06/2022		4.0000	ND				
Lead, total	ug/L	MW-93	10/25/2022		4.0000	ND				
Lead, total	ug/L	MW-93	04/11/2023		4.0000	ND				
Lead, total	ug/L	MW-93	10/13/2023		4.0000	ND				
Lead, total	ug/L	MW-93	04/16/2024		4.0000	ND				
Lead, total	ug/L	MW-93	10/15/2024		4.0000	ND				
Nickel, total	ug/L	MW-93	10/16/2014	yes	34.6000	110				
Nickel, total	ug/L	MW-93	04/06/2015	yes	42.6000					
Nickel, total	ug/L	MW-93	10/01/2015	yes	36.0000					
Nickel, total	ug/L	MW-93	04/14/2016	yes	26.5000					
Nickel, total	ug/L	MW-93	10/13/2016	yes	31.8000					
Nickel, total	ug/L	MW-93	04/10/2017	yes	27.3000					
Nickel, total	ug/L	MW-93	10/09/2017	yes	28.2000					
Nickel, total	ug/L	MW-93	04/17/2018	ves	26.2000					
Nickel, total	ug/L ug/L	MW-93	10/22/2018	,	35.7000					
Nickel, total	ug/L ug/L	MW-93	04/22/2019	yes ves	24.2000					
ויווטולכו, וטומו	ug/L	14144-90	1 04/22/2019	l yes	24.2000					<u> </u>

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Nickel, total	ug/L	MW-93	10/23/2019	yes	26.3000					
Nickel, total	ug/L	MW-93	04/10/2020	yes	18.1000					
Nickel, total	ug/L	MW-93	10/19/2020	yes	27.6000					
Nickel, total	ug/L	MW-93	04/05/2021	,	23.1000			29.6231		
Nickel, total	ug/L	MW-93	10/08/2021		21.3000			29.6231		
Nickel, total	ug/L	MW-93	04/06/2022		20.2000			29.6231		
Nickel, total	ug/L	MW-93	10/25/2022		27.9000			29.6231		
Nickel, total	ug/L	MW-93	04/11/2023		31.8000			29.6231		
Nickel, total	ug/L	MW-93	10/13/2023		28.8000			29.6231		
Nickel, total	ug/L	MW-93	04/16/2024		25.5000			29.6231		
Nickel, total	ug/L	MW-93	10/15/2024		27.1000			29.6231		
Selenium, total	ug/L	MW-93	10/16/2014	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	04/06/2015	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	10/01/2015	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	04/14/2016	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	10/13/2016	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	04/10/2017	ves	4.0000	ND				
Selenium, total	ug/L	MW-93	10/09/2017	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	04/17/2018	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	10/22/2018	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	04/22/2019	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	10/23/2019	ves	4.0000	ND				
Selenium, total	ug/L	MW-93	04/10/2020	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	10/19/2020	yes	4.0000	ND				
Selenium, total	ug/L	MW-93	04/05/2021	,	4.0000	ND				
Selenium, total	ug/L	MW-93	10/08/2021		4.0000	ND				
Selenium, total	ug/L	MW-93	04/06/2022		4.0000	ND				
Selenium, total	ug/L	MW-93	10/25/2022		4.0000	ND				
Selenium, total	ug/L	MW-93	04/11/2023		4.0000	ND				
Selenium, total	ug/L	MW-93	10/13/2023		4.0000	ND				
Selenium, total	ug/L	MW-93	04/16/2024		4.0000	ND				
Selenium, total	ug/L	MW-93	10/15/2024		4.0000	ND				
Silver, total	ug/L	MW-93	10/16/2014	yes	4.0000	ND				
Silver, total	ug/L	MW-93	04/06/2015	yes	4.0000	ND				
Silver, total	ug/L	MW-93	10/01/2015	yes	4.0000	ND				
Silver, total	ug/L	MW-93	04/14/2016	yes	4.0000	ND				
Silver, total	ug/L	MW-93	10/13/2016	ves	4.0000	ND				
Silver, total	ug/L	MW-93	04/10/2017	yes	4.0000	ND				
Silver, total	ug/L	MW-93	10/09/2017	yes	4.0000	ND				
Silver, total	ug/L	MW-93	04/17/2018	yes	4.0000	ND				
Silver, total	ug/L	MW-93	10/22/2018	yes	4.0000	ND				
Silver, total	ug/L	MW-93	04/22/2019	yes	4.0000	ND				
Silver, total	ug/L	MW-93	10/23/2019	yes	4.0000	ND				
Silver, total	ug/L	MW-93	04/10/2020	yes	4.0000	ND				
Silver, total	ug/L	MW-93	10/19/2020	yes	4.0000	ND				
Silver, total	ug/L	MW-93	04/05/2021	,	4.0000	ND				
Silver, total	ug/L	MW-93	10/08/2021		4.0000	ND				
Silver, total	ug/L	MW-93	04/06/2022		4.0000	ND				
Silver, total	ug/L	MW-93	10/25/2022		4.0000	ND				
					4.0000	ND				
Silver, total	ug/L ug/L	MW-93	04/11/2023							

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Silver, total	ug/L	MW-93	10/13/2023		4.0000	ND				
Silver, total	ug/L	MW-93	04/16/2024		4.0000	ND				
Silver, total	ug/L	MW-93	10/15/2024		4.0000	ND				
Thallium, total	ug/L	MW-93	10/16/2014	yes	4.0000	ND				
Thallium, total	ug/L	MW-93	04/06/2015	yes	4.0000	ND				
Thallium, total	ug/L	MW-93	10/01/2015	yes	1.0000	ND			4.0000	***
Thallium, total	ug/L	MW-93	04/14/2016	yes	4.0000	ND				
Thallium, total	ug/L	MW-93	10/13/2016	yes	4.0000	ND				
Thallium, total	ug/L	MW-93	04/10/2017	yes	4.0000	ND				
Thallium, total	ug/L	MW-93	10/09/2017	yes	4.0000	ND				
Thallium, total	ug/L	MW-93	04/17/2018	yes	4.0000	ND				
Thallium, total	ug/L	MW-93	10/22/2018	yes	4.0000	ND				
Thallium, total	ug/L	MW-93	04/22/2019	yes	2.0000	ND			4.0000	***
Thallium, total	ug/L	MW-93	10/23/2019	ves	2.0000	ND			4.0000	***
Thallium, total	ug/L	MW-93	04/10/2020	yes	2.0000	ND			4.0000	***
Thallium, total	ug/L	MW-93	10/19/2020	yes	2.0000	ND			4.0000	***
Thallium, total	ug/L	MW-93	04/05/2021	,	2.0000	ND				
Thallium, total	ug/L	MW-93	10/08/2021		2.0000	ND				
Thallium, total	ug/L	MW-93	04/06/2022		2.0000	ND				
Thallium, total	ug/L	MW-93	10/25/2022		2.0000	ND				
Thallium, total	ug/L	MW-93	04/11/2023		2.0000	ND				
Thallium, total	ug/L	MW-93	10/13/2023		2.0000	ND				
Thallium, total	ug/L	MW-93	04/16/2024		2.0000	ND				
Thallium, total	ug/L ug/L	MW-93	10/15/2024		2.0000	ND				
Vanadium, total	ug/L	MW-93	10/16/2014	yes	20.0000	ND				
Vanadium, total	ug/L	MW-93	04/06/2015	yes	20.0000	ND				
Vanadium, total	ug/L	MW-93	10/01/2015	yes	20.0000	ND				
Vanadium, total	ug/L	MW-93	04/14/2016	yes	20.0000	ND				
Vanadium, total	ug/L	MW-93	10/13/2016	yes	20.0000	ND				
Vanadium, total	ug/L	MW-93	04/10/2017		20.0000	ND				
Vanadium, total	ug/L ug/L	MW-93	10/09/2017	yes	20.0000	ND				
Vanadium, total		MW-93	04/17/2018	yes	20.0000	ND				
Vanadium, total	ug/L	MW-93	10/22/2018	yes	20.0000	ND				
	ug/L	MW-93		yes	20.0000	ND ND				
Vanadium, total	ug/L	MW-93	04/22/2019	yes		ND				
Vanadium, total	ug/L		10/23/2019	yes	20.0000					
Vanadium, total	ug/L	MW-93	04/10/2020	yes	20.0000	ND				
Vanadium, total	ug/L	MW-93	10/19/2020	yes	20.0000	ND				
Vanadium, total	ug/L	MW-93	04/05/2021		20.0000	ND				
Vanadium, total	ug/L	MW-93	10/08/2021		20.0000	ND				
Vanadium, total	ug/L	MW-93	04/06/2022		20.0000	ND				
Vanadium, total	ug/L	MW-93	10/25/2022		20.0000	ND				
Vanadium, total	ug/L	MW-93	04/11/2023		20.0000	ND				
Vanadium, total	ug/L	MW-93	10/13/2023		20.0000	ND				
Vanadium, total	ug/L	MW-93	04/16/2024		20.0000	ND				
Vanadium, total	ug/L	MW-93	10/15/2024		20.0000	ND				
Zinc, total	ug/L	MW-93	10/16/2014	yes	20.0000	ND			8.0000	***
Zinc, total	ug/L	MW-93	04/06/2015	yes	8.0000	ND				
Zinc, total	ug/L	MW-93	10/01/2015	yes	8.0000	ND				
Zinc, total	ug/L	MW-93	04/14/2016	yes	8.0000	ND				
Zinc, total	ug/L	MW-93	10/13/2016	yes	8.0000	ND				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Zinc, total	ug/L	MW-93	04/10/2017	yes	8.0000	ND				
Zinc, total	ug/L	MW-93	10/09/2017	yes	8.0000	ND				
Zinc, total	ug/L	MW-93	04/17/2018	yes	8.0000	ND				
Zinc, total	ug/L	MW-93	10/22/2018	yes	20.0000	ND			8.0000	***
Zinc, total	ug/L	MW-93	04/22/2019	yes	20.0000	ND			8.0000	***
Zinc, total	ug/L	MW-93	10/23/2019	yes	34.2000					
Zinc, total	ug/L	MW-93	04/10/2020	yes	20.0000	ND			8.0000	***
Zinc, total	ug/L	MW-93	10/19/2020	yes	20.0000	ND			8.0000	***
Zinc, total	ug/L	MW-93	04/05/2021		20.0000	ND				
Zinc, total	ug/L	MW-93	10/08/2021		20.0000	ND				
Zinc, total	ug/L	MW-93	04/06/2022		20.0000	ND				
Zinc, total	ug/L	MW-93	10/25/2022		20.0000	ND				
Zinc, total	ug/L	MW-93	04/11/2023		20.0000	ND				
Zinc, total	ug/L	MW-93	10/13/2023		20.0000	ND				
Zinc, total	ug/L	MW-93	04/16/2024		21.4000					
Zinc, total	ug/L	MW-93	10/15/2024		20.0000	ND				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Antimony, total (ug/L) at MW-93 Nonparametric Prediction Limit

1	PL = median(X) = 2.0	Compute nonparametric prediction limit as median reporting limit in background.
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).

Description

Equation

Step

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Arsenic, total (ug/L) at MW-93 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 175.3 / 13	
	= 13.485	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	= ((5846.83 - 30730.09/13) / (13-1)) ¹ / ₂	
	= 17.037	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 13.485 + 4.0 * 17.037	
	= 81.631	
4	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 13 * (13-1) / 2	
	= 78	
5	S = 0.549	Sen's estimator of trend.
6	var(S) = 268.667	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is the M ₁ th largest
	= (78 - 2.326 * 268.667 ¹ / ₂) / 2	slope estimate. When M ₁ is not an integer,
	= 19.937	interpolation is used.
8	LCL(S) = -0.619	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Barium, total (ug/L) at MW-93 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 3197.0 / 13 = 245.923	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((845025.0 - 1.02 \times 10^7/13) / (13-1))^{1/2}$ = 70.005	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 245.923 + 4.0 * 70.005 = 525.944	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 13 * (13-1) / 2 = 78	Number of sample pairs during trend detection period.
5	S = -11.322	Sen's estimator of trend.
6	var(S) = 268.667	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (78 - 2.326 * 268.667 ^{1/2}) / 2 = 19.937	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1^{th}$ is not an integer, interpolation is used.
8	LCL(S) = -32.756	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Beryllium, total (ug/L) at MW-93 Nonparametric Prediction Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	PL = median(X)	Compute nonparametric prediction limit as median reporting limit in background.
	= 4.0	
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Cadmium, total (ug/L) at MW-93 Nonparametric Prediction Limit

<u>Step</u>	Equation	<u>Description</u>
1	PL = median(X) = 0.8	Compute nonparametric prediction limit as median reporting limit in background.
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).
		Worksheet 2 - Intra-Well Control Charts / Prediction Limits Chromium, total (ug/L) at MW-93 Nonparametric Prediction Limit
<u>Step</u>	Equation	<u>Description</u>
1	PL = median(X) = 8.0	Compute nonparametric prediction limit as median reporting limit in background.
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Cobalt, total (ug/L) at MW-93 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 118.5 / 13	
	= 9.115	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	= ((1272.05 - 14042.25/13) / (13-1)) ^{1/2}	
	= 3.999	
3	SCL = X + F * S	Compute combined Shewhart-CUSUM normal control limit.
	= 9.115 + 4.0 * 3.999	
	= 25.11	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 13 * (13- 1) / 2	
	= 78	
5	S = -0.031	Sen's estimator of trend.
6	var(S) = 268.667	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var}(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is the M ₁ th largest
	= (78 - 2.326 * 268.667 ^{1/2}) / 2	slope estimate. When M ₁ is not an integer,
	= 19.937	interpolation is used.
8	LCL(S) = -1.428	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Copper, total (ug/L) at MW-93 Nonparametric Prediction Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	PL = median(X)	Compute nonparametric prediction limit as median reporting limit in background.
	= 4.0	
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Lead, total (ug/L) at MW-93 Nonparametric Prediction Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	PL = median(X)	Compute nonparametric prediction limit as median reporting limit in background.
	= 4.0	
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Nickel, total (ug/L) at MW-93 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 385.1 / 13	
	= 29.623	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	= ((11889.57 - 148302.01/13) / (13-1)) ¹ / ₂	
	= 6.336	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 29.623 + 4.0 * 6.336	
	= 54.967	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 13 * (13-1) / 2	
	= 78	
5	S = -2.225	Sen's estimator of trend.
6	var(S) = 268.667	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var(S)}^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is the M ₁ th largest
	= (78 - 2.326 * 268.667 ^{1/2}) / 2	slope estimate. When M ₁ is not an integer,
	= 19.937	interpolation is used.
8	LCL(S) = -4.064	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Selenium, total (ug/L) at MW-93 Nonparametric Prediction Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>							
1	PL = median(X) = 4.0	Compute nonparametric prediction limit as median reporting limit in background.							
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).							
	Worksheet 2 - Intra-Well Control Charts / Prediction Limits Silver, total (ug/L) at MW-93 Nonparametric Prediction Limit								
<u>Step</u>	Equation	<u>Description</u>							
1	PL = median(X) = 4.0	Compute nonparametric prediction limit as median reporting limit in background.							
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).							
		Worksheet 2 - Intra-Well Control Charts / Prediction Limits Thallium, total (ug/L) at MW-93 Nonparametric Prediction Limit							
<u>Step</u>	<u>Equation</u>	<u>Description</u>							
1	PL = median(X) = 4.0	Compute nonparametric prediction limit as median reporting limit in background.							
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).							
	Worksheet 2 - Intra-Well Control Charts / Prediction Limits Vanadium, total (ug/L) at MW-93 Nonparametric Prediction Limit								
<u>Step</u>	Equation	<u>Description</u>							
1	PL = median(X) = 20.0	Compute nonparametric prediction limit as median reporting limit in background.							
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).							

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Zinc, total (ug/L) at MW-93 Nonparametric Prediction Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	PL = max(X)	Compute nonparametric prediction limit as largest background measurement.
	= 34.2	
2	Conf = 0.99	Confidence level is based on N. K and resampling strategy (see Gibbons 1994).

Table 1 Summary Statistics and Intermediate Computations for Combined Shewhart-CUSUM Control Charts

Constituent	Units	Well	N(back)	N(mon)	N(tot)	Mean	SD	R(i-1)	R(i)	S(i-1)	S(i)	Limit	Туре	Conf	
Antimony, total	ug/L	MW-96R	7	1	8								nonpar *		**
Arsenic, total	ug/L	MW-96R	10	1	11	16.6500	12.2649	4.0000	6.6000		16.6500	71.8419	normal		
Barium, total	ug/L	MW-96R	8	1	9	560.0000	327.5698	124.0000	338.0000		560.0000	2034.0643	normal		'
Beryllium, total	ug/L	MW-96R	7	1	8								nonpar *		**
Cadmium, total	ug/L	MW-96R	7	1	8								nonpar *		**
Chromium, total	ug/L	MW-96R	7	1	8								nonpar *		**
Cobalt, total	ug/L	MW-96R	8	1	11	11.3250	2.5783	1.8000	10.5000		11.3250	22.9275	normal		
Copper, total	ug/L	MW-96R	7	1	8								nonpar *		**
Lead, total	ug/L	MW-96R	7	1	8								nonpar *		**
Nickel, total	ug/L	MW-96R	7	1	8	5.9286	1.4896	5.3000	4.6000		5.9286	12.6320	normal		
Selenium, total	ug/L	MW-96R	8	1	9	5.5375	2.1745	7.4000	4.0000		5.5375	15.3227	normal		
Silver, total	ug/L	MW-96R	7	1	8								nonpar *		**
Thallium, total	ug/L	MW-96R	7	1	8								nonpar *		**
Vanadium, total	ug/L	MW-96R	7	1	8								nonpar *		**
Zinc, total	ug/L	MW-96R	7	1	8								nonpar *		**

 $N(\text{back}) \text{ and } N(\text{mon}) = \text{Non-outlier measurements in the background and monitoring periods.} \\ N(\text{tot}) = \text{All independent measurements for that constituent and well.}$

For transformed data, mean and SD in transformed units and control limit in original units.

Conf = confidence level for passing initial test or one verification resample (nonparametric test only).

^{* -} Insufficient Data.

^{** -} Detection Frequency < 25%.

^{*** -} Zero Variance.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Antimony, total	ug/L	MW-96R	04/05/2021	yes	2.0000	ND				
Antimony, total	ug/L	MW-96R	10/08/2021	yes	2.0000	ND				
Antimony, total	ug/L	MW-96R	04/06/2022	yes	2.0000	ND				
Antimony, total	ug/L	MW-96R	10/25/2022	yes	2.0000	ND				
Antimony, total	ug/L	MW-96R	04/11/2023	yes	2.0000	ND				
Antimony, total	ug/L	MW-96R	10/13/2023	yes	2.0000	ND				
Antimony, total	ug/L	MW-96R	04/16/2024	yes	2.0000	ND				
Antimony, total	ug/L	MW-96R	10/15/2024		2.0000	ND				
Arsenic, total	ug/L	MW-96R	04/05/2021	yes	29.8000					
Arsenic, total	ug/L	MW-96R	07/02/2021	yes	29.1000					
Arsenic, total	ug/L	MW-96R	10/08/2021	yes	18.6000					
Arsenic, total	ug/L	MW-96R	04/06/2022	yes	10.4000					
Arsenic, total	ug/L	MW-96R	10/25/2022	yes	38.7000					
Arsenic, total	ug/L	MW-96R	04/11/2023	yes	4.0000	ND				
Arsenic, total	ug/L	MW-96R	07/07/2023	yes	12.9000					
Arsenic, total	ug/L	MW-96R	07/20/2023	yes	4.0000	ND				
Arsenic, total	ug/L	MW-96R	10/13/2023	yes	15.0000					
Arsenic, total	ug/L	MW-96R	04/16/2024	yes	4.0000	ND				
Arsenic, total	ug/L	MW-96R	10/15/2024	-	6.6000			16.6500		
Barium, total	ug/L	MW-96R	04/05/2021	yes	1160.0000					
Barium, total	ug/L	MW-96R	07/02/2021	yes	696.0000					
Barium, total	ug/L	MW-96R	10/08/2021	yes	667.0000					
Barium, total	ug/L	MW-96R	04/06/2022	yes	406.0000					
Barium, total	ug/L	MW-96R	10/25/2022	yes	661.0000					
Barium, total	ug/L	MW-96R	04/11/2023	yes	190.0000					
Barium, total	ug/L	MW-96R	10/13/2023	yes	576.0000					
Barium, total	ug/L	MW-96R	04/16/2024	yes	124.0000					
Barium, total	ug/L	MW-96R	10/15/2024		338.0000			560.0000		
Beryllium, total	ug/L	MW-96R	04/05/2021	yes	4.0000	ND				
Beryllium, total	ug/L	MW-96R	10/08/2021	yes	4.0000	ND				
Beryllium, total	ug/L	MW-96R	04/06/2022	yes	4.0000	ND				
Beryllium, total	ug/L	MW-96R	10/25/2022	yes	4.0000	ND				
Beryllium, total	ug/L	MW-96R	04/11/2023	yes	4.0000	ND				
Beryllium, total	ug/L	MW-96R	10/13/2023	yes	4.0000	ND				
Beryllium, total	ug/L	MW-96R	04/16/2024	yes	4.0000	ND				
Beryllium, total	ug/L	MW-96R	10/15/2024		4.0000	ND				
Cadmium, total	ug/L	MW-96R	04/05/2021	yes	0.8000	ND				
Cadmium, total	ug/L	MW-96R	10/08/2021	yes	0.8000	ND				
Cadmium, total	ug/L	MW-96R	04/06/2022	yes	0.8000	ND				
Cadmium, total	ug/L	MW-96R	10/25/2022	yes	0.8000	ND				
Cadmium, total	ug/L	MW-96R	04/11/2023	yes	0.8000	ND				
Cadmium, total	ug/L	MW-96R	10/13/2023	yes	0.8000	ND				
Cadmium, total	ug/L	MW-96R	04/16/2024	yes	0.8000	ND				
Cadmium, total	ug/L	MW-96R	10/15/2024		0.8000	ND				<u> </u>
Chromium, total	ug/L	MW-96R	04/05/2021	yes	8.0000	ND				
Chromium, total	ug/L	MW-96R	10/08/2021	yes	8.0000	ND				
Chromium, total	ug/L	MW-96R	04/06/2022	yes	8.0000	ND				
Chromium, total	ug/L	MW-96R	10/25/2022	yes	8.0000	ND				
Chromium, total	ug/L	MW-96R	04/11/2023	yes	8.0000	ND				
Chromium, total	ug/L	MW-96R	10/13/2023	yes	8.0000	ND				L

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Chromium, total	ug/L	MW-96R	04/16/2024	yes	8.0000	ND				
Chromium, total	ug/L	MW-96R	10/15/2024	-	8.0000	ND				
Cobalt, total	ug/L	MW-96R	04/05/2021	yes	16.8000					
Cobalt, total	ug/L	MW-96R	07/02/2021	yes	11.9000					
Cobalt, total	ug/L	MW-96R	10/08/2021	yes	11.4000					
Cobalt, total	ug/L	MW-96R	04/06/2022	yes	7.6000					
Cobalt, total	ug/L	MW-96R	10/25/2022	yes	11.1000					
Cobalt, total	ug/L	MW-96R	04/11/2023	yes	2.2000		yes			*
Cobalt, total	ug/L	MW-96R	07/07/2023	yes	11.2000		-			
Cobalt, total	ug/L	MW-96R	07/20/2023	yes	10.0000					
Cobalt, total	ug/L	MW-96R	10/13/2023	yes	10.6000					
Cobalt, total	ug/L	MW-96R	04/16/2024	yes	1.8000		yes			*
Cobalt, total	ug/L	MW-96R	10/15/2024		10.5000			11.3250		
Copper, total	ug/L	MW-96R	04/05/2021	yes	4.0000	ND				
Copper, total	ug/L	MW-96R	10/08/2021	yes	4.0000	ND				
Copper, total	ug/L	MW-96R	04/06/2022	yes	4.0000	ND				
Copper, total	ug/L	MW-96R	10/25/2022	yes	4.0000	ND				
Copper, total	ug/L	MW-96R	04/11/2023	yes	4.0000	ND				
Copper, total	ug/L	MW-96R	10/13/2023	yes	4.0000	ND				
Copper, total	ug/L	MW-96R	04/16/2024	yes	4.0000	ND				
Copper, total	ug/L	MW-96R	10/15/2024	-	4.0000	ND				
Lead, total	ug/L	MW-96R	04/05/2021	yes	4.0000	ND				
Lead, total	ug/L	MW-96R	10/08/2021	yes	4.0000	ND				
Lead, total	ug/L	MW-96R	04/06/2022	yes	4.0000	ND				
Lead, total	ug/L	MW-96R	10/25/2022	yes	4.0000	ND				
Lead, total	ug/L	MW-96R	04/11/2023	yes	4.0000	ND				
Lead, total	ug/L	MW-96R	10/13/2023	yes	4.0000	ND				
Lead, total	ug/L	MW-96R	04/16/2024	yes	4.0000	ND				
Lead, total	ug/L	MW-96R	10/15/2024	•	4.0000	ND				
Nickel, total	ug/L	MW-96R	04/05/2021	yes	8.8000					
Nickel, total	ug/L	MW-96R	10/08/2021	yes	5.9000					
Nickel, total	ug/L	MW-96R	04/06/2022	yes	6.8000					
Nickel, total	ug/L	MW-96R	10/25/2022	yes	4.5000					
Nickel, total	ug/L	MW-96R	04/11/2023	yes	5.6000					
Nickel, total	ug/L	MW-96R	10/13/2023	yes	4.6000					
Nickel, total	ug/L	MW-96R	04/16/2024	yes	5.3000					
Nickel, total	ug/L	MW-96R	10/15/2024	•	4.6000			5.9286		
Selenium, total	ug/L	MW-96R	04/05/2021	yes	4.0000	ND				
Selenium, total	ug/L	MW-96R	10/08/2021	yes	4.0000	ND				
Selenium, total	ug/L	MW-96R	04/06/2022	yes	9.1000					
Selenium, total	ug/L	MW-96R	10/25/2022	yes	4.0000	ND				
Selenium, total	ug/L	MW-96R	04/11/2023	yes	7.8000					
Selenium, total	ug/L	MW-96R	07/07/2023	yes	4.0000	ND				
Selenium, total	ug/L	MW-96R	10/13/2023	yes	4.0000	ND				
Selenium, total	ug/L	MW-96R	04/16/2024	yes	7.4000					
Selenium, total	ug/L	MW-96R	10/15/2024	,	4.0000	ND		5.5375		
Silver, total	ug/L	MW-96R	04/05/2021	yes	4.0000	ND				
Silver, total	ug/L	MW-96R	10/08/2021	ves	4.0000	ND				
Silver, total	ug/L	MW-96R	04/06/2022	yes	4.0000	ND				
Silver, total	ug/L	MW-96R	10/25/2022	ves	4.0000	ND				
	3. =			, ,						

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

		I							I	T
Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Silver, total	ug/L	MW-96R	04/11/2023	yes	4.0000	ND				
Silver, total	ug/L	MW-96R	10/13/2023	yes	4.0000	ND				
Silver, total	ug/L	MW-96R	04/16/2024	yes	4.0000	ND				
Silver, total	ug/L	MW-96R	10/15/2024	-	4.0000	ND				
Thallium, total	ug/L	MW-96R	04/05/2021	yes	2.0000	ND				
Thallium, total	ug/L	MW-96R	10/08/2021	yes	2.0000	ND				
Thallium, total	ug/L	MW-96R	04/06/2022	yes	2.0000	ND				
Thallium, total	ug/L	MW-96R	10/25/2022	yes	2.0000	ND				
Thallium, total	ug/L	MW-96R	04/11/2023	yes	2.0000	ND				
Thallium, total	ug/L	MW-96R	10/13/2023	yes	2.0000	ND				
Thallium, total	ug/L	MW-96R	04/16/2024	yes	2.0000	ND				
Thallium, total	ug/L	MW-96R	10/15/2024		2.0000	ND				
Vanadium, total	ug/L	MW-96R	04/05/2021	yes	20.0000	ND				
Vanadium, total	ug/L	MW-96R	10/08/2021	yes	20.0000	ND				
Vanadium, total	ug/L	MW-96R	04/06/2022	yes	20.0000	ND				
Vanadium, total	ug/L	MW-96R	10/25/2022	yes	20.0000	ND				
Vanadium, total	ug/L	MW-96R	04/11/2023	yes	20.0000	ND				
Vanadium, total	ug/L	MW-96R	10/13/2023	yes	20.0000	ND				
Vanadium, total	ug/L	MW-96R	04/16/2024	yes	20.0000	ND				
Vanadium, total	ug/L	MW-96R	10/15/2024		20.0000	ND				
Zinc, total	ug/L	MW-96R	04/05/2021	yes	20.0000	ND				
Zinc, total	ug/L	MW-96R	10/08/2021	yes	20.0000	ND				
Zinc, total	ug/L	MW-96R	04/06/2022	yes	20.0000	ND				
Zinc, total	ug/L	MW-96R	10/25/2022	yes	20.0000	ND				
Zinc, total	ug/L	MW-96R	04/11/2023	yes	20.0000	ND			1	
Zinc, total	ug/L	MW-96R	10/13/2023	yes	20.0000	ND			1	
Zinc, total	ug/L	MW-96R	04/16/2024	yes	20.0000	ND				
Zinc, total	ug/L	MW-96R	10/15/2024	-	20.0000	ND				

^{* -} Outlier for that well and constituent.

^{*** -} Non-outlier detected sample Result and / or CUSUM value exceeds limit.

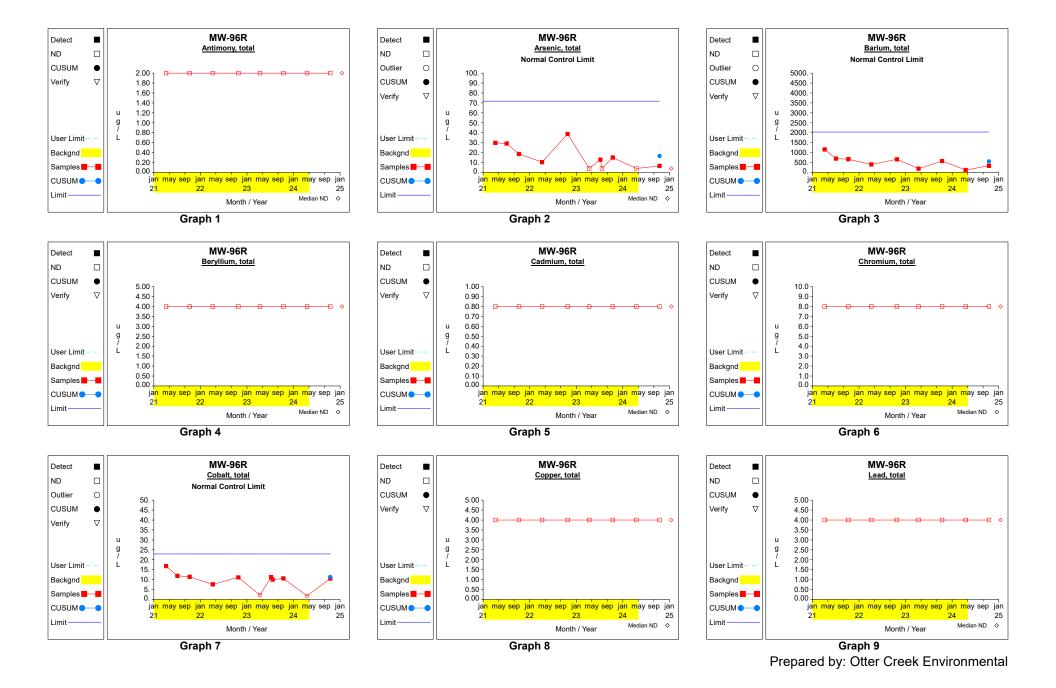
*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

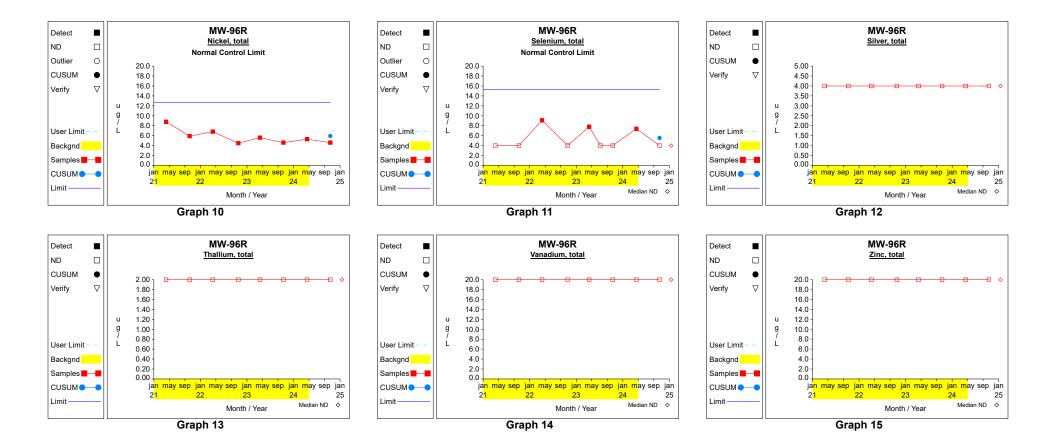
ND = Not detected, Result = detection limit.

Table 4

Dixon's Test Outliers 1% Significance Level


Constituent	Units	Well	Date	Result	ND Qualifier	Date Range	N	Critical Value
Cobalt, total	ug/L	MW-96R	04/11/2023	2.2000		04/05/2021-04/16/2024	10	0.6346
Cobalt, total	ug/L	MW-96R	04/16/2024	1.8000		04/05/2021-04/16/2024	10	0.6346

N = Total number of independent measurements in background at each well.


Date Range = Dates of the first and last measurements included in background at each well.

Critical Value depends on the significance level and on N-1 when the two most extreme values are tested or N for the most extreme value.

Intra-Well Control Charts / Prediction Limits

Intra-Well Control Charts / Prediction Limits

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Antimony, total (ug/L) at MW-96R</u>

Insufficient data to perform analysis

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Arsenic, total (ug/L) at MW-96R Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 166.5 / 10	
	= 16.65	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	= ((4126.07 - 27722.25/10) / (10-1)) ^{1/2}	
	= 12.265	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 16.65 + 4.5 * 12.265	
	= 71.842	
4	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 10 * (10-1) / 2	
	= 45	
5	S = -7.495	Sen's estimator of trend.
6	var(S) = 121.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is the M ₁ th largest
	= (45 - 2.326 * 121.333 ½) / 2	slope estimate. When M ₁ is not an integer,
	= 9.689	interpolation is used.
8	LCL(S) = -21.731	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Barium, total (ug/L) at MW-96R Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 4480.0 / 8	
	= 560.0	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	= $((3.26 \times 10^6 - 2.01 \times 10^7 / 8) / (8-1))^{1/2}$	
	= 327.57	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 560.0 + 4.5 * 327.57	
	= 2034.064	
4	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 8 * (8-1) / 2	
	= 28	
5	S = -223.354	Sen's estimator of trend.
6	var(S) = 65.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var(S)}^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for
	= (28 - 2.326 * 65.333 ¹ / ₂) / 2	slope. The LCL is the M ₁ th largest slope estimate. When M ₁ is not an integer,
	= 4.6	interpolation is used.
8	LCL(S) = -806.57	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Beryllium, total (ug/L) at MW-96R

Insufficient data to perform analysis

Worksheet 2 - Intra-Well Control Charts / Prediction Limits <u>Cadmium, total (ug/L) at MW-96R</u>

Insufficient data to perform analysis

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Chromium, total (ug/L) at MW-96R

Insufficient data to perform analysis

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Cobalt, total (ug/L) at MW-96R Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 90.6 / 8 = 11.325	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((1072.58 - 8208.36/8) / (8-1))^{1/2}$ = 2.578	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 11.325 + 4.5 * 2.578 = 22.928	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 8 * (8-1) / 2 = 28	Number of sample pairs during trend detection period.
5	S = -0.857	Sen's estimator of trend.
6	var(S) = 65.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* var(S)^{1/2}) / 2$ = $(28 - 2.326 * 65.333^{1/2}) / 2$ = 4.6	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\mathrm{M_1}^{\mathrm{th}}$ largest slope estimate. When $\mathrm{M_1}$ is not an integer, interpolation is used.
8	LCL(S) = -8.294	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Copper, total (ug/L) at MW-96R

Insufficient data to perform analysis

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Lead, total (ug/L) at MW-96R

Insufficient data to perform analysis

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Nickel, total (ug/L) at MW-96R Normal Control Limit

Step	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 41.5 / 7	
	= 5.929	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	= ((259.35 - 1722.25/7) / (7-1)) ^{1/2}	
	= 1.49	
3	SCL = X + F * S	Compute combined Shewhart-CUSUM normal control limit.
	= 5.929 + 4.5 * 1.49	
	= 12.632	
4	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 7 * (7-1) / 2	
	= 21	
5	S = -1.154	Sen's estimator of trend.
6	var(S) = 44.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is the M ₁ th largest
	= (21 - 2.326 * 44.333 ^{1/2}) / 2	slope estimate. When M₁ is not an integer,
	= 2.756	interpolation is used.
8	LCL(S) = -3.103	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Selenium, total (ug/L) at MW-96R Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 44.3 / 8	
	= 5.538	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	= ((278.41 - 1962.49/8) / (8-1)) ^{1/2}	
	= 2.174	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 5.538 + 4.5 * 2.174	
	= 15.323	
4	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 8 * (8 -1) / 2	
	= 28	
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 48.667	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is the M ₁ th largest
	= (28 - 2.326 * 48.667 ^{1/2}) / 2	slope estimate. When M ₁ is not an integer,
	= 5.887	interpolation is used.
8	LCL(S) = -1.517	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Silver, total (ug/L) at MW-96R

Insufficient data to perform analysis

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Thallium, total (ug/L) at MW-96R

Insufficient data to perform analysis

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Vanadium, total (ug/L) at MW-96R

Insufficient data to perform analysis

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Zinc, total (ug/L) at MW-96R

Attachment F

Summary Table of Historical VOC Detections

marshall2024s2 November 2024

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
1,1-dichloroethane	GU-2	10/08/2010		2.8	1.0	ug/L
1,1-dichloroethane	GU-2	4/04/2011		4.6	1.0	ug/L
Benzene	GU-2	10/08/2010		1.6	1.0	ug/L
Benzene	GU-2	4/04/2011		2.3	1.0	ug/L
Chloroethane	GU-2	10/08/2010		4.9	1.0	ug/L
Chloroethane	GU-2 GU-2	4/04/2011		6.8	1.0	ug/L
Cis-1,2-dichloroethylene		10/08/2010		2.9	1.0	ug/L
Cis-1,2-dichloroethylene	GU-2	4/04/2011		2.8	1.0	ug/L
Vinyl chloride	GU-2	10/08/2010		4.3	1.0	ug/L
Vinyl chloride	GU-2	4/04/2011		3.4	1.0	ug/L
1,1-dichloroethane Benzene	GU-3 GU-3	8/11/2011		2.8 3.5	1.0	ug/L
		8/11/2011		7.4	1.0	ug/L
Chloroethane	GU-3 GU-3	8/11/2011			1.0	ug/L
Cis-1,2-dichloroethylene Vinvl chloride	GU-3	8/11/2011 8/11/2011		3.6 4.6	1.0 1.0	ug/L
	LW-75	4/11/2023		3.8	1.0	ug/L
1,1-dichloroethane 1,1-dichloroethane	LW-75	4/11/2023		7.6	1.0	ug/L
1,2-dichloroethane	LW-75	4/16/2024		1.9	1.0	ug/L
						ug/L
1,4-dichlorobenzene	LW-75	1/15/2019		18.2 11.2	5.0	ug/L
1,4-dichlorobenzene	LW-75	1/07/2020			5.0	ug/L
1,4-dichlorobenzene	LW-75	10/19/2020		9.4	1.0	ug/L
1,4-dichlorobenzene	LW-75	4/05/2021		9.6	1.0	ug/L
1,4-dichlorobenzene	LW-75	4/06/2022		10.0	1.0	ug/L
1,4-dichlorobenzene	LW-75	4/11/2023		67.5	1.0	ug/L
1,4-dichlorobenzene	LW-75	4/16/2024		163.0	1.0	ug/L
4-methyl-2-pentanone (mibk)	LW-75	4/11/2023		11.6	5.0	ug/L
4-methyl-2-pentanone (mibk)	LW-75	4/16/2024		6.1	5.0	ug/L
Acetone	LW-75	10/19/2020		17.0	10.0	ug/L
Acetone	LW-75	4/05/2021		15.5	10.0	ug/L
Acetone	LW-75	4/16/2024		28.8	10.0	ug/L
Benzene	LW-75	1/15/2019		7.8	5.0	ug/L
Benzene	LW-75	10/19/2020		3.4	1.0	ug/L
Benzene	LW-75	4/05/2021		4.8	1.0	ug/L
Benzene	LW-75	4/06/2022		5.2	1.0	ug/L
Benzene	LW-75	4/11/2023		9.4	1.0	ug/L
Benzene	LW-75	4/16/2024		8.9	1.0	ug/L
Carbon disulfide	LW-75	4/11/2023		2.1	1.0	ug/L
Chloroethane	LW-75	10/19/2020		1.6	1.0	ug/L
Chloroethane	LW-75	4/05/2021		4.2	1.0	ug/L
Chloroethane	LW-75	4/06/2022		3.8	1.0	ug/L
Chloroethane	LW-75	4/11/2023		1.9	1.0	ug/L
Chloroethane	LW-75	4/16/2024		3.9	1.0	ug/L
Chloromethane	LW-75	4/16/2024		1	1	ug/L
Cis-1,2-dichloroethylene	LW-75	4/05/2021		1.0	1.0	ug/L
Cis-1,2-dichloroethylene	LW-75	4/11/2023		5.4	1.0	ug/L
Cis-1,2-dichloroethylene	LW-75	4/16/2024		6.8	1.0	ug/L
Ethylbenzene	LW-75	1/15/2019		77.8	5.0	ug/L
Ethylbenzene	LW-75	1/07/2020		48.4	5.0	ug/L
Ethylbenzene	LW-75	10/19/2020		38.6	1.0	ug/L
Ethylbenzene	LW-75	4/05/2021		39.9	1.0	ug/L
Ethylbenzene	LW-75	4/06/2022		35.3	1.0	ug/L
Ethylbenzene	LW-75	4/11/2023		275.0	5.0	ug/L
Ethylbenzene	LW-75	4/16/2024		297.0	5.0	ug/L
Methylene chloride	LW-75	4/11/2023		33.1	5.0	ug/L
Methylene chloride	LW-75	4/16/2024		75.3	5.0	ug/L
Styrene	LW-75	4/11/2023		1.6		ug/L
Styrene	LW-75	4/16/2024		2.5	1.0	
Toluene	LW-75	4/06/2022		2.5	1.0	ug/L
Toluene	LW-75	4/11/2023		73.8	1.0	ug/L
Toluene	LW-75	4/16/2024		108.0	1.0	ug/L
Trichloroethylene	LW-75	4/16/2024		1.7	1.0	ug/L
Vinyl chloride	LW-75	4/11/2023		3.4	1.0	ug/L
Vinyl chloride	LW-75	4/16/2024		3.4	1.0	ug/L
Xylenes, total	LW-75	1/15/2019		86.0	10.0	
Xylenes, total	LW-75	1/07/2020		65.2	10.0	ug/L
Xylenes, total	LW-75	10/19/2020		49.2	2.0	ug/L
Xylenes, total	LW-75	4/05/2021		71.4	2.0	ug/L
Xylenes, total	LW-75	4/06/2022		62.1	2.0	ug/L
Xylenes, total	LW-75	4/11/2023		161.0	2.0	
Xylenes, total	LW-75	4/16/2024		231.0		ug/L
1,1-dichloroethane	MW-205	10/14/2016		10.2	1.0	ug/L
1,1-dichloroethane	MW-205	4/10/2017		7.1	1.0	
1,1-dichloroethane	MW-205	10/09/2017		7.7	1.0	
	MW-205	4/17/2018		7.8	1.0	ug/L
1,1-dichloroethane						
1,1-dichloroethane	MW-205	10/22/2018		3.3		ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
1,1-dichloroethane	MW-205	10/23/2020		4.8	1.0	ug/L
1,1-dichloroethane	MW-205	4/05/2021		2.8	1.0	ug/L
1,2-dichlorobenzene	MW-205	4/17/2018		1.1	1.0	ug/L
1,2-dichloropropane	MW-205	4/10/2017		2.0	1.0	ug/L
1,2-dichloropropane	MW-205	4/17/2018		3.3	1.0	ug/L
1,2-dichloropropane	MW-205	4/22/2019		1.3	1.0	ug/L
1,2-dichloropropane	MW-205	4/05/2021		1.4	1.0	ug/L
1,4-dichlorobenzene	MW-205	10/14/2016		7.2	1.0	ug/L
1,4-dichlorobenzene	MW-205	4/10/2017		8.5	1.0	ug/L
1,4-dichlorobenzene	MW-205	10/09/2017		8.0	1.0	ug/L
1,4-dichlorobenzene	MW-205	4/17/2018		11.9	1.0	ug/L
1,4-dichlorobenzene	MW-205	10/22/2018		9.4	1.0	ug/L
1,4-dichlorobenzene	MW-205	10/23/2020		8.7	1.0	ug/L
1,4-dichlorobenzene	MW-205	4/05/2021		10.2	1.0	ug/L
Acetone	MW-205	10/09/2017		22.2	10.0	ug/L
Benzene	MW-205	4/02/2008		4.6	1.0	ug/L
Benzene	MW-205	10/03/2008		5.9	1.0	ug/L
Benzene	MW-205	4/01/2009		5.8	1.0	ug/L
Benzene	MW-205	10/08/2012		4.3	1.0	ug/L
Benzene	MW-205	10/16/2013		5.6	1.0	•
Benzene	MW-205	4/09/2014		3.0	1.0	ug/L
Benzene	MW-205	10/17/2014		7.2	1.0	ug/L
Benzene	MW-205	4/06/2015		10.8	1.0	ug/L
Benzene	MW-205	4/14/2016		12.1	1.0	ug/L
Benzene	MW-205	10/14/2016		12.3	1.0	ug/L
Benzene	MW-205	4/10/2017		10.8	1.0	ug/L
Benzene	MW-205	10/09/2017		8.7	1.0	ug/L
Benzene	MW-205	4/17/2018		5.6	1.0	ug/L
Benzene	MW-205	10/22/2018		10.8	1.0	ug/L
Benzene	MW-205	4/22/2019		11.9	1.0	ug/L
Benzene	MW-205	10/23/2020		13.6	1.0	ug/L
Benzene	MW-205	4/05/2021		7.2	1.0	ug/L
Chlorobenzene	MW-205	10/14/2016		2.9	1.0	ug/L
Chlorobenzene	MW-205	4/10/2017		2.6	1.0	ug/L
Chlorobenzene	MW-205	10/09/2017		1.9	1.0	ug/L
Chlorobenzene	MW-205	4/17/2018		2.4	1.0	ug/L
Chlorobenzene	MW-205	4/22/2019		4.9	1.0	ug/L
Chlorobenzene	MW-205	10/23/2020		3.4	1.0	ug/L
Chlorobenzene	MW-205	4/05/2021		3.2	1.0	ug/L
Chloroethane	MW-205	10/14/2016		7.1	1.0	ug/L
Chloroethane	MW-205	4/10/2017		5.0	1.0	ug/L
Chloroethane	MW-205	10/09/2017		3.8	1.0	ug/L
Chloroethane	MW-205	4/17/2018		3.4	1.0	ug/L
Chloroethane	MW-205	10/22/2018		3.3	1.0	ug/L
Chloroethane	MW-205	4/22/2019		4.3	1.0	ug/L
Chloroethane	MW-205	10/23/2020		3.9	1.0	
Chloroethane	MW-205	4/05/2021		1.9	1.0	ug/L
Cis-1,2-dichloroethylene	MW-205	10/14/2016		6.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-205	4/10/2017		1.7	1.0	ug/L
Cis-1,2-dichloroethylene	MW-205	10/09/2017		5.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-205	4/17/2018		5.9	1.0	ug/L
Cis-1,2-dichloroethylene	MW-205	4/22/2019		1.2		ug/L
Cis-1,2-dichloroethylene	MW-205	10/23/2020		2.3	1.0	
Cis-1,2-dichloroethylene	MW-205	4/05/2021		1.3	1.0	
Ethylbenzene	MW-205	10/09/2017		1.1		ug/L
Ethylbenzene	MW-205	10/22/2018		14.0		ug/L
Ethylbenzene	MW-205	4/22/2019		4.8		ug/L
Toluene	MW-205	10/14/2016		1.0	1.0	
Toluene	MW-205	4/10/2017		1.0		ug/L ug/L
Toluene	MW-205	4/22/2019		1.9		ug/L ug/L
Trans-1,2-dichloroethylene	MW-205	4/17/2018		1.9	1.0	ug/L ug/L
Trichloroethylene	MW-205	4/02/2008		4.1		ug/L ug/L
Trichloroethylene	MW-205	10/03/2008		8.0		ug/L ug/L
Trichloroethylene	MW-205	4/01/2009		2.3	1.0	
Trichloroethylene	MW-205	10/08/2012		5.2		ug/L ug/L
Trichloroethylene	MW-205			5.6		
		10/16/2013				ug/L
Trichloroethylene	MW-205	4/09/2014		6.1		ug/L
Trichloroethylene	MW-205	10/17/2014		19.3		ug/L
Trichloroethylene	MW-205	4/06/2015		8.8		ug/L
Trichloroethylene	MW-205	4/14/2016		1.2		ug/L
Trichloroethylene	MW-205	10/14/2016		1.2	1.0	
Trichloroethylene	MW-205	4/17/2018		1.7		ug/L
Vinyl chloride	MW-205	10/14/2016		1.8		ug/L
Vinyl chloride	MW-205	4/10/2017		1.9	1.0	
	MW-205	10/09/2017		1.2	1 0	ug/L
Vinyl chloride Vinyl chloride	MW-205	4/17/2018		1.0		ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Xylenes, total	MW-205	4/22/2019		4	2	ug/L
1,1-dichloroethane	MW-213	4/05/2021		2.2	1.0	ug/L
1,1-dichloroethane	MW-213	4/06/2022		3.3	1.0	ug/L
1,1-dichloroethane	MW-213	10/25/2022		2.7	1.0	ug/L
1,1-dichloroethane	MW-213	4/10/2023		2.5	1.0	ug/L
1,1-dichloroethane	MW-213	10/13/2023		3.2	1.0	ug/L
1,1-dichloroethane	MW-213	10/15/2024		1.9	1.0	
1,2-dichloropropane	MW-213	4/10/2017		1.6	1.0	ug/L
1,2-dichloropropane	MW-213	4/22/2019		3.8	1.0	ug/L
1,2-dichloropropane	MW-213	10/23/2020		6.1	1.0	ug/L
1,2-dichloropropane	MW-213	4/05/2021		7.6	1.0	ug/L
1,2-dichloropropane	MW-213	4/06/2022		7.7	1.0	ug/L
1,2-dichloropropane	MW-213	10/25/2022		6.5	1.0	ug/L
1,2-dichloropropane	MW-213	4/10/2023		5.6	1.0	ug/L
1,2-dichloropropane	MW-213	10/13/2023		4.1	1.0	ug/L
1,2-dichloropropane	MW-213	10/15/2024		3.8	1.0	ug/L
Benzene	MW-213	10/25/2022		1.1	1.0	
Benzene	MW-213	4/10/2023		1.0	1.0	ug/L
Benzene	MW-213	10/13/2023		1.4	1.0	ug/L
Chloroethane	MW-213	10/23/2020		1.5	1.0	
Chloroethane	MW-213	4/05/2021		2.6	1.0	ug/L
Chloroethane	MW-213	4/06/2022		2.6	1.0	ug/L
Chloroethane	MW-213	10/25/2022		3.0	1.0	ug/L
Chloroethane	MW-213	4/10/2023		2.5	1.0	ug/L
Chloroethane	MW-213	10/13/2023		4.2	1.0	ug/L
Chloroethane	MW-213	10/15/2024		1.4	1.0	
Cis-1,2-dichloroethylene	MW-213	10/14/2016		8.8	1.0	ug/L
Cis-1,2-dichloroethylene	MW-213	4/10/2017		4.7	1.0	ug/L
Cis-1,2-dichloroethylene	MW-213	4/17/2018		1.6	1.0	ug/L
Cis-1,2-dichloroethylene	MW-213	10/22/2018		1.5	1.0	ug/L
Cis-1,2-dichloroethylene	MW-213	4/22/2019		19.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-213	10/23/2020		44.9	1.0	ug/L
Cis-1,2-dichloroethylene	MW-213	4/05/2021		37.8	1.0	ug/L
Cis-1,2-dichloroethylene	MW-213	4/06/2022		43.5	1.0	ug/L
Cis-1,2-dichloroethylene	MW-213	10/25/2022		31.9	1.0	ug/L
Cis-1,2-dichloroethylene	MW-213	4/10/2023		21.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-213	10/13/2023		32.6	1.0	ug/L
Cis-1,2-dichloroethylene	MW-213	10/15/2024		19.0	1.0	ug/L
Vinyl chloride	MW-213	10/23/2020		1.4	1.0	
Vinyl chloride	MW-213	4/05/2021		3.0	1.0	ug/L
Vinyl chloride	MW-213	4/06/2022		2.4	1.0	ug/L
Vinyl chloride	MW-213	10/25/2022		3.1	1.0	ug/L
Vinyl chloride	MW-213	4/10/2023		2.5	1.0	ug/L
Vinyl chloride	MW-213	10/13/2023		4.3	1.0	ug/L
Vinyl chloride	MW-213	10/15/2024		1.4	1.0	ug/L
1,1-dichloroethane	MW-214	10/14/2016		1.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-214	10/14/2016		3.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-214	4/10/2017		2.7	1.0	ug/L
Cis-1,2-dichloroethylene	MW-214	10/09/2017		2.8	1.0	
Cis-1,2-dichloroethylene	MW-214	4/17/2018		3.4	1.0	ug/L
Cis-1,2-dichloroethylene	MW-214	10/22/2018		1.4	1.0	ug/L
Cis-1,2-dichloroethylene	MW-214	4/22/2019		4.1		ug/L
Cis-1,2-dichloroethylene	MW-214	10/23/2020		6.5	1.0	
Cis-1,2-dichloroethylene	MW-214	4/05/2021		3.3		ug/L
Tetrachloroethylene	MW-214	10/14/2016		12.2		ug/L
Tetrachloroethylene	MW-214	4/10/2017		9.9	1.0	ug/L
Tetrachloroethylene	MW-214	10/09/2017		8.8		ug/L
Tetrachloroethylene	MW-214	4/17/2018		8.6	1.0	
Tetrachloroethylene	MW-214	10/22/2018		4.1		ug/L ug/L
Tetrachloroethylene	MW-214	4/22/2019		8.5		ug/L ug/L
Tetrachloroethylene	MW-214	10/23/2020		7.8	1.0	
Tetrachloroethylene	MW-214	4/05/2021		5.4		ug/L ug/L
Frichloroethylene	MW-214	4/02/2008		5.2		ug/L ug/L
Trichloroethylene	MW-214	10/03/2008		5.9	1.0	
Trichloroethylene	MW-214	4/01/2009		4.1		ug/L ug/L
Trichloroethylene	MW-214	10/08/2012		3.6	1.0	
	MW-214	10/16/2013		2.9	1.0	
Trichloroethylene						
Trichloroethylene	MW-214	4/09/2014		2.0		ug/L
Trichloroethylene	MW-214	10/17/2014		2.0	1.0	
Trichloroethylene	MW-214	4/06/2015		1.8		ug/L
Trichloroethylene	MW-214	4/14/2016		2.1	1.0	
Trichloroethylene	MW-214	10/14/2016		3.0		ug/L
Trichloroethylene	MW-214	4/10/2017		2.4		ug/L
Trichloroethylene	MW-214	10/09/2017		2.8	1.0	
	MW-214	4/17/2018		2.6	1.0	ug/L
Trichloroethylene Trichloroethylene	MW-214	4/22/2019		3.3		ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Trichloroethylene	MW-214	10/23/2020		5.8	1.0	
Trichloroethylene 1,1,1-trichloroethane	MW-214 MW-49	4/05/2021 10/23/1992		2.9 10.5	1.0	ug/L
1,1,1-trichloroethane	MW-49	1/21/1993		17.7	1.0	ug/L ug/L
1,1,1-trichloroethane	MW-49	4/22/1993		14.7	1.0	ug/L ug/L
1,1,1-trichloroethane	MW-49	7/13/1993		11.4	1.0	ug/L
1,1,1-trichloroethane	MW-49	1/25/1994		18.1	1.0	ug/L
1,1,1-trichloroethane	MW-49	4/14/1994		12.8	1.0	ug/L
1,1,1-trichloroethane	MW-49	7/08/1994		10.1	1.0	ug/L
1,1,1-trichloroethane	MW-49	10/20/1994		7.5	1.0	ug/L
1,1,1-trichloroethane	MW-49	1/04/1995		8.0	1.0	ug/L
1,1,1-trichloroethane	MW-49	4/21/1995		9.0	1.0	ug/L
1,1,1-trichloroethane 1.1.1-trichloroethane	MW-49	7/07/1995		9.8 9.5	1.0	ug/L
1,1,1-trichloroethane	MW-49 MW-49	10/12/1995 1/10/1996		9.5 8.1	1.0 1.0	ug/L ug/L
1,1,1-trichloroethane	MW-49	7/17/1996		4.5	1.0	ug/L ug/L
1,1,1-trichloroethane	MW-49	10/08/1996		5.2	1.0	ug/L
1,1,1-trichloroethane	MW-49	1/21/1997		2.7	1.0	ug/L
1,1,1-trichloroethane	MW-49	4/11/1997		2.3	1.0	ug/L
1,1,1-trichloroethane	MW-49	1/27/1998		2.8	1.0	ug/L
1,1,1-trichloroethane	MW-49	1/06/2000		1.0	1.0	ug/L
1,1-dichloroethane	MW-49	3/28/2008		2.9	1.0	ug/L
1,1-dichloroethane	MW-49	6/27/2008		2.7	1.0	ug/L
1,1-dichloroethane	MW-49	8/04/2008		2.7	1.0	ug/L
1,1-dichloroethane	MW-49	12/08/2008		3.1	1.0	ug/L
1,1-dichloroethane	MW-49	4/02/2009		2.7	1.0	ug/L
1,1-dichloroethane	MW-49	10/21/2009		2.6	1.0	ug/L
1,1-dichloroethane 1,1-dichloroethane	MW-49 MW-49	4/20/2010		3.0 3.0	1.0 1.0	ug/L
1,1-dichloroethane	MW-49	10/08/2010 4/05/2011		2.3	1.0	ug/L ug/L
1,1-dichloroethane	MW-49	10/06/2011		2.8	1.0	ug/L ug/L
1,1-dichloroethane	MW-49	4/10/2012		2.1	1.0	ug/L
1,1-dichloroethane	MW-49	10/09/2012		2.8	1.0	ug/L
1,1-dichloroethane	MW-49	4/04/2013		2.0	1.0	ug/L
1,1-dichloroethane	MW-49	10/16/2013		2.6	1.0	ug/L
1,1-dichloroethane	MW-49	4/10/2014		2.2	1.0	ug/L
1,1-dichloroethane	MW-49	4/06/2015		1.5	1.0	ug/L
1,1-dichloroethane	MW-49	10/01/2015		1.1	1.0	ug/L
1,1-dichloroethane	MW-49	4/14/2016		1.3	1.0	
1,1-dichloroethane	MW-49	10/13/2016		1.9	1.0	ug/L
1,1-dichloroethane	MW-49	4/10/2017		1.7	1.0	ug/L
1,1-dichloroethane 1,1-dichloroethane	MW-49 MW-49	10/09/2017 4/17/2018		2.1 1.4	1.0 1.0	ug/L
1,1-dichloroethane	MW-49	10/22/2018		1.4	1.0	ug/L ug/L
1,1-dichloroethane	MW-49	4/22/2019		3.4	1.0	ug/L
1,1-dichloroethane	MW-49	10/23/2019		2.6	1.0	ug/L
1,1-dichloroethane	MW-49	4/10/2020		2.6	1.0	ug/L
1,1-dichloroethane	MW-49	10/19/2020		2.5	1.0	ug/L
1,1-dichloroethane	MW-49	4/05/2021		1.4	1.0	ug/L
1,1-dichloroethane	MW-49	10/08/2021		1.9	1.0	ug/L
1,1-dichloroethane	MW-49	4/06/2022		1.0	1.0	ug/L
1,1-dichloroethane	MW-49	10/25/2022		1.7		ug/L
1,1-dichloroethane	MW-49	4/11/2023		1.4	1.0	ug/L
1,1-dichloroethane	MW-49	10/13/2023		1.6		ug/L
1,1-dichloroethane 1,1-dichloroethane	MW-49 MW-49	4/17/2024		1.1 1.2	1.0	ug/L ug/L
1,1-dichloroethylene	MW-49	10/15/2024 1/25/1994		3.9	1.0	
1,1-dichloroethylene	MW-49	7/07/1995		1.2	1.0	ug/L ug/L
1,1-dichloroethylene	MW-49	10/18/2001		9.1	1.0	
1,2-dichloroethane	MW-49	10/04/1999		1.4	1.0	ug/L
1,2-dichloroethane	MW-49	7/05/2000		1.7	1.0	ug/L
1,2-dichloroethane	MW-49	9/11/2000		1.3	1.0	
1,2-dichloroethane	MW-49	10/08/2000		1.4	1.0	ug/L
1,2-dichloroethane	MW-49	4/27/2001		1.1	1.0	ug/L
1,2-dichloroethane	MW-49	7/23/2001		1.4	1.0	
1,2-dichloroethane	MW-49	1/25/2002		1.0	1.0	ug/L
1,2-dichloroethane	MW-49	10/14/2002		1.2	1.0	
1,2-dichloroethane	MW-49	10/10/2007		.6	.5	
1,4-dichlorobenzene	MW-49	3/28/2008		6.3	1.0	
1,4-dichlorobenzene	MW-49	6/27/2008		7.8	1.0	ug/L
1,4-dichlorobenzene	MW-49	8/04/2008		9.0	1.0	ug/L
1,4-dichlorobenzene 1,4-dichlorobenzene	MW-49 MW-49	10/03/2008		8.3	1.0	0
1,4-dichlorobenzene	MW-49	12/08/2008 4/02/2009		7.8 8.8	1.0 1.0	
1,7-4101110100061126116						
1,4-dichlorobenzene	MW-49	10/21/2009		8.9	1 ()	ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
1,4-dichlorobenzene	MW-49	10/08/2010		5.6	1.0	ug/L
1,4-dichlorobenzene	MW-49	4/05/2011		8.1	1.0	ug/L
1,4-dichlorobenzene	MW-49	10/06/2011		4.9	1.0	ug/L
1,4-dichlorobenzene	MW-49	4/10/2012		8.4	1.0	
1,4-dichlorobenzene	MW-49	10/09/2012		1.8	1.0	ug/L
1,4-dichlorobenzene	MW-49	4/04/2013		10.9	1.0	ug/L
1,4-dichlorobenzene	MW-49	10/16/2013		7.2	1.0	
1,4-dichlorobenzene	MW-49	4/10/2014		4.9	1.0	ug/L
1,4-dichlorobenzene	MW-49	10/16/2014		8.7	1.0	ug/L
1,4-dichlorobenzene	MW-49	4/06/2015		8.7	1.0	ug/L
1,4-dichlorobenzene	MW-49	10/01/2015		8.6	1.0	ug/L
1,4-dichlorobenzene	MW-49	4/14/2016		8.9	1.0	ug/L
1,4-dichlorobenzene	MW-49	10/13/2016		9.2	1.0	ug/L
1,4-dichlorobenzene	MW-49	4/10/2017		7.8	1.0	ug/L
1,4-dichlorobenzene	MW-49	10/09/2017		5.8	1.0	ug/L
1,4-dichlorobenzene	MW-49	4/17/2018		1.8	1.0	ug/L
1,4-dichlorobenzene	MW-49	10/22/2018		2.5	1.0	
1,4-dichlorobenzene	MW-49	4/22/2019		11.4	1.0	ug/L
1,4-dichlorobenzene	MW-49	10/23/2019		7.4	1.0	ug/L
1,4-dichlorobenzene	MW-49	10/19/2020		6.6	1.0	
1,4-dichlorobenzene	MW-49	4/05/2021		6.4	1.0	ug/L
1,4-dichlorobenzene	MW-49	10/08/2021		6.0	1.0	ug/L
1,4-dichlorobenzene	MW-49	4/06/2022		3.6	1.0	ug/L
1,4-dichlorobenzene	MW-49	10/25/2022		6.3	1.0	ug/L
1,4-dichlorobenzene	MW-49	4/11/2023		7.4	1.0	ug/L
1,4-dichlorobenzene	MW-49	10/13/2023		6.1	1.0	ug/L
1,4-dichlorobenzene	MW-49	4/17/2024		3.3	1.0	ug/L
1,4-dichlorobenzene	MW-49	10/15/2024		7.9	1.0	ug/L
Acetone	MW-49	10/21/2009		48.4	10.0	ug/L
Acetone	MW-49	4/05/2011		69.3	10.0	ug/L
Acetone	MW-49	10/09/2017		20.0	10.0	ug/L
Acetone	MW-49	4/17/2018		76.0	10.0	ug/L
Acetone	MW-49	10/22/2018		36.8	10.0	ug/L
Acetone	MW-49	4/06/2022		24.1	10.0	ug/L
Benzene	MW-49	7/07/1995		1.0	1.0	ug/L
Benzene	MW-49	7/17/1996		1.9	1.0	ug/L
Benzene	MW-49	10/08/1996		1.1	1.0	ug/L
Benzene	MW-49	1/21/1997		2.5	1.0	ug/L
Benzene	MW-49	4/11/1997		3.1	1.0	ug/L
Benzene	MW-49	7/17/1997		2.5	1.0	ug/L
Benzene	MW-49	10/15/1997		2.2	1.0	ug/L
Benzene	MW-49	1/27/1998		1.6	1.0	ug/L
Benzene	MW-49	7/21/1998		1.7	1.0	
Benzene	MW-49	1/26/1999		1.8	1.0	ug/L
Benzene	MW-49	4/19/1999		2.4	1.0	ug/L
Benzene	MW-49	10/04/1999		1.9	1.0	
Benzene	MW-49	1/06/2000		1.3	1.0	ug/L
Benzene	MW-49	7/05/2000		1.3	1.0	ug/L
Benzene	MW-49	9/11/2000		1.4		ug/L
Benzene	MW-49	10/08/2000		1.4	1.0	•
Benzene	MW-49	1/18/2001		1.7	1.0	ug/L
Benzene	MW-49	4/27/2001		1.7		ug/L
Benzene	MW-49	7/23/2001		2.8		ug/L
Benzene	MW-49	10/18/2001		1.7	1.0	ug/L
Benzene	MW-49	1/25/2002		1.6		ug/L
Benzene	MW-49	4/24/2002		2.4		ug/L
Benzene	MW-49	7/22/2002		2.4		ug/L
Benzene	MW-49	1/29/2003		1.3	1.0	
Benzene	MW-49	7/11/2003		2.1		ug/L
Benzene	MW-49	10/06/2003		2.0		ug/L
Benzene	MW-49	1/12/2004		2.0	1.0	
Benzene	MW-49	4/26/2004		2.6		ug/L
Benzene	MW-49	4/11/2005		2.4		ug/L
Benzene	MW-49	10/05/2005		2.1	1.0	
Benzene	MW-49	4/05/2006		2.3	1.0	ug/L
Benzene	MW-49	10/04/2006		2.0		ug/L
Benzene	MW-49	4/12/2007		2.3	1.0	ug/L
Benzene	MW-49	10/10/2007		2.0		ug/L
Benzene	MW-49	3/28/2008		2.5		ug/L
Benzene	MW-49	6/27/2008		2.6		ug/L
Benzene	MW-49	8/04/2008		2.6		ug/L
Benzene	MW-49	12/08/2008		2.2		ug/L
Benzene	MW-49	4/02/2009		2.7		ug/L
Benzene	MW-49	10/21/2009		2.6		ug/L
Benzene	MW-49	4/20/2010		2.0	1.0	ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Benzene	MW-49	10/06/2011		1.0	1.0	ug/L
Benzene	MW-49	4/10/2012		2.2	1.0	ug/L
Benzene	MW-49	4/04/2013		2.2	1.0	ug/L
Benzene	MW-49	10/16/2014		2.9		ug/L
Benzene Benzene	MW-49 MW-49	4/06/2015		2.3 1.9	1.0 1.0	
Benzene	MW-49	10/01/2015 4/14/2016		2.6		ug/L ug/L
Benzene	MW-49	10/13/2016		3.5	1.0	
Benzene	MW-49	4/10/2017		3.0	1.0	ug/L
Benzene	MW-49	10/09/2017		1.2		ug/L
Benzene	MW-49	4/17/2018		1.9	1.0	ug/L
Benzene	MW-49	10/22/2018		2.5	1.0	ug/L
Benzene	MW-49	4/22/2019		4.3		ug/L
Benzene	MW-49	10/23/2019		3.5		ug/L
Benzene Benzene	MW-49 MW-49	4/10/2020 10/19/2020		3.7 2.0	1.0 1.0	ug/L ug/L
Benzene	MW-49	4/05/2021		2.8		ug/L ug/L
Benzene	MW-49	10/08/2021		1.9	1.0	ug/L
Benzene	MW-49	4/06/2022		2.4	1.0	
Benzene	MW-49	10/25/2022		2.4		ug/L
Benzene	MW-49	4/11/2023		2.9	1.0	ug/L
Benzene	MW-49	10/13/2023		1.1	1.0	
Benzene	MW-49	10/15/2024		3.7		ug/L
Bis(2-ethylhexyl) phthalate	MW-49	12/08/2008		13	8	ug/L
Bis(2-ethylhexyl) phthalate	MW-49	4/06/2015		65	10	ug/L
Chlorobenzene Chlorobenzene	MW-49 MW-49	4/22/2019 4/10/2020		1.1 1.1		ug/L ug/L
Chlorobenzene	MW-49	10/19/2020		1.0	1.0	
Chlorobenzene	MW-49	4/05/2021		1.0	1.0	
Chlorobenzene	MW-49	10/08/2021		1.0		ug/L
Chlorobenzene	MW-49	10/25/2022		1.1	1.0	
Chlorobenzene	MW-49	10/13/2023		1.0	1.0	ug/L
Chlorobenzene	MW-49	10/15/2024		1.1		ug/L
Chloroethane	MW-49	3/28/2008		17.8	1.0	ug/L
Chloroethane	MW-49	6/27/2008		15.5	1.0	ug/L
Chloroethane Chloroethane	MW-49 MW-49	8/04/2008		16.5 18.1		ug/L
Chloroethane	MW-49	10/03/2008 12/08/2008		18.1	1.0 1.0	ug/L ug/L
Chloroethane	MW-49	4/02/2009		18.1		ug/L
Chloroethane	MW-49	10/21/2009		18.6		ug/L
Chloroethane	MW-49	4/20/2010		15.8	1.0	ug/L
Chloroethane	MW-49	10/08/2010		13.6	1.0	ug/L
Chloroethane	MW-49	4/05/2011		17.2		ug/L
Chloroethane	MW-49	10/06/2011		11.6	1.0	ug/L
Chloroethane	MW-49	4/10/2012		11.8	1.0	
Chloroethane Chloroethane	MW-49 MW-49	10/09/2012 4/04/2013		10.0 11.3	1.0	ug/L ug/L
Chloroethane	MW-49	10/16/2013		5.7	1.0	
Chloroethane	MW-49	4/10/2014		11.2		ug/L
Chloroethane	MW-49	10/16/2014		12.9	1.0	ug/L
Chloroethane	MW-49	4/06/2015		8.9	1.0	
Chloroethane	MW-49	10/01/2015		8.7		ug/L
Chloroethane	MW-49	4/14/2016		9.0		ug/L
Chloroethane	MW-49	10/13/2016		11.9	1.0	ug/L
Chloroethane Chloroethane	MW-49 MW-49	4/10/2017 10/09/2017		10.1 8.7	1.0	ug/L ug/L
Chloroethane	MW-49	4/17/2018		5.5		ug/L ug/L
Chloroethane	MW-49	10/22/2018		11.0		ug/L ug/L
Chloroethane	MW-49	4/22/2019		8.2		ug/L
Chloroethane	MW-49	10/23/2019		10.2		ug/L
Chloroethane	MW-49	4/10/2020		9.4	1.0	ug/L
Chloroethane	MW-49	10/19/2020		9.8		ug/L
Chloroethane	MW-49	4/05/2021		6.8		ug/L
Chloroethane	MW-49	10/08/2021		7.3		ug/L
Chloroethane Chloroethane	MW-49 MW-49	4/06/2022		5.6 7.4		ug/L
Chloroethane	MW-49	10/25/2022 4/11/2023		6.6		ug/L ug/L
Chloroethane	MW-49	10/13/2023		6.6		ug/L ug/L
Chloroethane	MW-49	4/17/2024		4.6		ug/L ug/L
Chloroethane	MW-49	10/15/2024		5.5		ug/L
Cis-1,2-dichloroethylene	MW-49	3/28/2008		42.6		ug/L
Cis-1,2-dichloroethylene	MW-49	6/27/2008		41.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49	8/04/2008		41.3		ug/L
Cis-1,2-dichloroethylene	MW-49	10/03/2008		45.3		ug/L
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-49 MW-49	12/08/2008 4/02/2009		42.2 42.8		ug/L
Cis-1,2-dichioroethylene	10100-49	4/02/2009		42.6	1.0	ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Cis-1,2-dichloroethylene	MW-49	10/21/2009		41.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49	4/20/2010		38.2	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49	10/08/2010		33.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49	4/05/2011		41.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49	10/06/2011		28.8	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49	4/10/2012		32.6	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49	10/09/2012		25.8	1.0	ug/L
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-49 MW-49	4/04/2013 10/16/2013		28.1 24.0	1.0 1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-49	4/10/2014		23.3	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-49	10/16/2014		23.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49	4/06/2015		13.6	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49	10/01/2015		11.2	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49	4/14/2016		13.8	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49	10/13/2016		13.8	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49	4/10/2017		10.3	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49	10/09/2017		16.9	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49	4/17/2018		2.7	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49	4/22/2019		2.6	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49 MW-49	4/10/2020		1.1 6.2	1.0 1.0	ug/L
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-49	10/19/2020 10/08/2021		2.0	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-49	10/05/2021		1.6	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-49	10/13/2023		2.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-49	4/17/2024		2.4	1.0	ug/L
Trichloroethylene	MW-49	1/21/1993		1.2	1.0	ug/L
Trichloroethylene	MW-49	4/22/1993		3.3	1.0	ug/L
Trichloroethylene	MW-49	7/13/1993		5.5	1.0	ug/L
Trichloroethylene	MW-49	1/25/1994		3.2	1.0	ug/L
Trichloroethylene	MW-49	4/14/1994		1.8	1.0	ug/L
Trichloroethylene	MW-49 MW-49	7/08/1994 10/20/1994		2.5 4.7	1.0 1.0	ug/L
Trichloroethylene Trichloroethylene	MW-49	1/04/1995		4.1	1.0	ug/L ug/L
Trichloroethylene	MW-49	4/21/1995		4.7	1.0	ug/L ug/L
Trichloroethylene	MW-49	7/07/1995		4.4	1.0	ug/L
Trichloroethylene	MW-49	10/12/1995		3.4	1.0	ug/L
Trichloroethylene	MW-49	1/10/1996		2.7	1.0	ug/L
Trichloroethylene	MW-49	7/17/1996		5.7	1.0	ug/L
Trichloroethylene	MW-49	10/08/1996		5.8	1.0	ug/L
Trichloroethylene	MW-49	1/21/1997		9.5	1.0	ug/L
Trichloroethylene	MW-49	4/11/1997		10.4	1.0	ug/L
Trichloroethylene	MW-49	7/17/1997		10.8	1.0	ug/L
Trichloroethylene	MW-49	10/15/1997		9.6	1.0	ug/L
Trichloroethylene Trichloroethylene	MW-49 MW-49	1/27/1998 4/21/1998		7.6 12.2	1.0 1.0	ug/L ug/L
Trichloroethylene	MW-49	7/21/1998		12.2	1.0	ug/L ug/L
Trichloroethylene	MW-49	10/09/1998		9.5	1.0	ug/L
Trichloroethylene	MW-49	1/26/1999		11.1	1.0	ug/L
Trichloroethylene	MW-49	4/19/1999		13.1	1.0	ug/L
Trichloroethylene	MW-49	7/29/1999		10.4	1.0	ug/L
Trichloroethylene	MW-49	10/04/1999		9.8	1.0	ug/L
Trichloroethylene	MW-49	1/06/2000		7.9	1.0	ug/L
Trichloroethylene	MW-49	4/13/2000		5.0	1.0	ug/L
Trichloroethylene	MW-49 MW-49	7/05/2000		12.0	1.0	ug/L
Trichloroethylene Trichloroethylene	MW-49	9/11/2000		6.4 4.0	1.0	ug/L ug/L
Trichloroethylene	MW-49	1/18/2001		1.2	1.0	ug/L ug/L
Trichloroethylene	MW-49	4/27/2001		1.2	1.0	ug/L
Trichloroethylene	MW-49	7/23/2001		2.4	1.0	ug/L
Trichloroethylene	MW-49	10/18/2001		1.5	1.0	ug/L
Trichloroethylene	MW-49	1/25/2002		2.0	1.0	ug/L
Trichloroethylene	MW-49	4/26/2004		.4	.3	ug/L
Trichloroethylene	MW-49	6/27/2008		1.0	1.0	ug/L
Trichloroethylene	MW-49	8/04/2008		1.5	1.0	ug/L
Trichloroethylene	MW-49	4/02/2009		1.0	1.0	ug/L
Trichloroethylene	MW-49	10/21/2009		1.9	1.0	ug/L
Vinyl chloride Vinyl chloride	MW-49 MW-49	3/28/2008		6.6 6.6	1.0 1.0	ug/L ug/L
Vinyl chloride	MW-49	6/27/2008 8/04/2008		7.2	1.0	ug/L ug/L
Vinyl chloride	MW-49	10/03/2008		6.0	1.0	ug/L ug/L
Vinyl chloride	MW-49	12/08/2008		6.8	1.0	ug/L
Vinyl chloride	MW-49	4/02/2009		7.2	1.0	ug/L
Vinyl chloride	MW-49	10/21/2009		6.8	1.0	ug/L
Vinyl chloride	MW-49	4/20/2010		5.6	1.0	ug/L
Vinyl chloride	MW-49	10/08/2010		5.1	1.0	ug/L
Vinyl chloride	MW-49	4/05/2011		7.0	1.0	ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Vinyl chloride	MW-49	10/06/2011		3.2	1.0	ug/L
Vinyl chloride	MW-49	4/10/2012		5.7	1.0	ug/L
Vinyl chloride	MW-49	10/09/2012		3.3	1.0	ug/L
Vinyl chloride	MW-49	4/04/2013		4.5	1.0	ug/L
Vinyl chloride	MW-49	10/16/2013		3.4	1.0	ug/L
Vinyl chloride	MW-49	4/10/2014		3.8	1.0	ug/L
Vinyl chloride	MW-49	10/16/2014		4.6	1.0	ug/L
Vinyl chloride	MW-49	4/06/2015		3.1	1.0	ug/L
Vinyl chloride	MW-49	10/01/2015		3.1	1.0	ug/L
Vinyl chloride Vinyl chloride	MW-49 MW-49	4/14/2016 10/13/2016		4.0 5.1	1.0 1.0	ug/L
Vinyl chloride	MW-49	4/10/2017		5.5	1.0	ug/L ug/L
Vinyl chloride	MW-49	10/09/2017		3.2	1.0	ug/L ug/L
Vinyl chloride	MW-49	4/17/2018		1.1	1.0	ug/L
Vinyl chloride	MW-49	10/22/2018		2.6	1.0	ug/L
Vinyl chloride	MW-49	4/22/2019		2.8	1.0	ug/L
Vinyl chloride	MW-49	10/23/2019		1.4	1.0	ug/L
Vinyl chloride	MW-49	4/10/2020		1.1	1.0	ug/L
Vinyl chloride	MW-49	10/19/2020		2.4	1.0	ug/L
1,1,1-trichloroethane	MW-54	10/23/1992		16.8	1.0	ug/L
1,1,1-trichloroethane	MW-54	1/21/1993		20.8	1.0	ug/L
1,1,1-trichloroethane	MW-54	4/22/1993		29.4	1.0	ug/L
1,1,1-trichloroethane	MW-54	7/13/1993		49.9	1.0	ug/L
1,1,1-trichloroethane	MW-54	7/26/1999		1.1	1.0	ug/L
1,1,1-trichloroethane	MW-54	10/04/1999		1.4	1.0	ug/L
1,1,1-trichloroethane	MW-54	1/06/2000		1.5	1.0	ug/L
1,1,1-trichloroethane	MW-54	4/13/2000		1.0	1.0	ug/L
1,1,1-trichloroethane	MW-54	7/05/2000		.9	.5	ug/L
1,1,1-trichloroethane	MW-54	9/11/2000		.8	.5	ug/L
1,1-dichloroethane	MW-54	3/28/2008		1.8	1.0	ug/L
1,1-dichloroethane	MW-54	6/25/2008		1.4	1.0	ug/L
1,1-dichloroethane	MW-54	8/04/2008		1.2	1.0	ug/L
1,1-dichloroethane	MW-54	12/08/2008		1.7	1.0	ug/L
1,1-dichloroethane	MW-54	4/02/2009		1.2	1.0	ug/L
1,1-dichloroethane	MW-54	10/21/2009		1.4	1.0	ug/L
1,1-dichloroethane	MW-54	4/20/2010		2.2	1.0	ug/L
1,1-dichloroethane	MW-54	10/08/2010		5.0	1.0	ug/L
1,1-dichloroethane 1,1-dichloroethane	MW-54 MW-54	4/05/2011 10/06/2011		8.8 8.7	1.0 1.0	ug/L
1,1-dichloroethane	MW-54	4/10/2012		14.6	1.0	ug/L ug/L
1,1-dichloroethane	MW-54	10/09/2012		16.0	1.0	ug/L ug/L
1,1-dichloroethane	MW-54	4/04/2013		17.0	1.0	ug/L
1,1-dichloroethane	MW-54	10/16/2013		19.7	1.0	ug/L
1,1-dichloroethane	MW-54	4/10/2014		18.9	1.0	ug/L
1,1-dichloroethane	MW-54	10/16/2014		17.5	1.0	ug/L
1,1-dichloroethane	MW-54	4/06/2015		13.4	1.0	ug/L
1,1-dichloroethane	MW-54	10/01/2015		12.2	1.0	ug/L
1,1-dichloroethane	MW-54	4/14/2016		11.0	1.0	ug/L
1,1-dichloroethane	MW-54	10/13/2016		13.0	1.0	ug/L
1,1-dichloroethane	MW-54	4/10/2017		10.4	1.0	ug/L
1,1-dichloroethane	MW-54	10/09/2017		11.2	1.0	ug/L
1,1-dichloroethane	MW-54	4/17/2018		7.8	1.0	ug/L
1,1-dichloroethane	MW-54	10/22/2018		3.8	1.0	ug/L
1,1-dichloroethane	MW-54	4/22/2019		4.7	1.0	ug/L
1,1-dichloroethane	MW-54	10/23/2019		2.9	1.0	ug/L
1,1-dichloroethane	MW-54	10/19/2020		1.9		ug/L
1,1-dichloroethane	MW-54	10/08/2021		1.2	1.0	ug/L
1,1-dichloroethane	MW-54	10/25/2022		1.1	1.0	ug/L
1,1-dichloroethylene	MW-54	10/18/2001		18.9	1.0	ug/L
1,4-dichlorobenzene	MW-54	3/28/2008		1.7	1.0	ug/L
1,4-dichlorobenzene	MW-54	6/25/2008		2.9	1.0	ug/L
1,4-dichlorobenzene	MW-54	8/04/2008		2.4	1.0	ug/L
1,4-dichlorobenzene 1,4-dichlorobenzene	MW-54 MW-54	12/08/2008 4/02/2009		1.3 2.2	1.0 1.0	ug/L ug/L
1,4-dichlorobenzene	MW-54	10/21/2009		2.2	1.0	ug/L ug/L
1,4-dichlorobenzene	MW-54	4/20/2010		1.6	1.0	ug/L ug/L
1,4-dichlorobenzene	MW-54	4/05/2011		1.0	1.0	ug/L ug/L
1,4-dichlorobenzene	MW-54	10/06/2011		1.0	1.0	ug/L ug/L
1,4-dichlorobenzene	MW-54	10/16/2013		1.5	1.0	ug/L ug/L
1,4-dichlorobenzene	MW-54	4/10/2014		1.7	1.0	ug/L ug/L
1,4-dichlorobenzene	MW-54	10/16/2014		2.3	1.0	ug/L
1,4-dichlorobenzene	MW-54	4/06/2015		2.1	1.0	ug/L
1,4-dichlorobenzene	MW-54	10/01/2015		2.3	1.0	ug/L
1,4-dichlorobenzene	MW-54	4/14/2016		2.1	1.0	ug/L
1,4-dichlorobenzene	MW-54	10/13/2016		2.3	1.0	ug/L
1,4-410110100001120110						

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
1,4-dichlorobenzene	MW-54	10/09/2017		3.5	1.0	ug/L
1,4-dichlorobenzene	MW-54	4/17/2018		4.3	1.0	ug/L
1,4-dichlorobenzene	MW-54	4/22/2019		2.5	1.0	ug/L
1,4-dichlorobenzene	MW-54	10/23/2019		3.5	1.0	
1,4-dichlorobenzene	MW-54	10/19/2020		3.8	1.0	ug/L
1,4-dichlorobenzene	MW-54	4/05/2021		2.9	1.0	ug/L
1,4-dichlorobenzene	MW-54	10/08/2021		2.8	1.0	
1,4-dichlorobenzene	MW-54	4/06/2022		2.4	1.0	ug/L
1,4-dichlorobenzene	MW-54	10/25/2022		3.1	1.0	ug/L
1,4-dichlorobenzene	MW-54	4/11/2023		1.6	1.0	ug/L
1,4-dichlorobenzene	MW-54	10/13/2023		4.1	1.0	ug/L
1,4-dichlorobenzene 1.4-dichlorobenzene	MW-54	4/17/2024		2.3	1.0	ug/L
Acetone	MW-54 MW-54	10/15/2024 10/09/2017		2.9 18.1	1.0 10.0	ug/L
Benzene	MW-54	7/26/1999		2.1	1.0	ug/L ug/L
Benzene	MW-54	10/04/1999		1.4	1.0	ug/L ug/L
Benzene	MW-54	1/06/2000		1.4	1.0	
Benzene	MW-54	4/13/2000		1.3	1.0	ug/L ug/L
Benzene	MW-54	7/05/2000		1.7	1.0	ug/L ug/L
Benzene	MW-54	9/11/2000		1.8	1.0	
Benzene	MW-54	4/27/2001		2.1	1.0	ug/L
Benzene	MW-54	7/23/2001		1.7	1.0	ug/L ug/L
Benzene	MW-54	10/05/2005		1.0	1.0	
Benzene	MW-54	4/05/2006		.6	.5	
Benzene	MW-54	10/16/2013		1.0	1.0	ug/L
Benzene	MW-54	10/16/2014		1.0	1.0	
Benzene	MW-54	10/13/2016		1.0	1.0	
Benzene	MW-54	10/09/2017		1.0	1.0	ug/L
Bis(2-ethylhexyl) phthalate	MW-54	12/08/2008		16	8	ug/L
Chloroethane	MW-54	3/28/2008		9.7	1.0	
Chloroethane	MW-54	6/25/2008		7.4	1.0	ug/L
Chloroethane	MW-54	8/04/2008		6.0	1.0	ug/L
Chloroethane	MW-54	10/03/2008		5.0	1.0	
Chloroethane	MW-54	12/08/2008		5.1	1.0	ug/L
Chloroethane	MW-54	4/02/2009		5.1	1.0	ug/L
Chloroethane	MW-54	10/21/2009		8.2		ug/L
Chloroethane	MW-54	4/20/2010		5.6	1.0	ug/L
Chloroethane	MW-54	10/08/2010		7.8	1.0	ug/L
Chloroethane	MW-54	4/05/2011		13.0	1.0	
Chloroethane	MW-54	10/06/2011		11.5	1.0	ug/L
Chloroethane	MW-54	4/10/2012		14.3	1.0	ug/L
Chloroethane	MW-54	10/09/2012		15.6	1.0	ug/L
Chloroethane	MW-54	4/04/2013		15.9	1.0	
Chloroethane	MW-54	10/16/2013		12.0	1.0	ug/L
Chloroethane	MW-54	4/10/2014		17.3	1.0	ug/L
Chloroethane	MW-54	10/16/2014		20.6	1.0	
Chloroethane	MW-54	4/06/2015		14.1	1.0	ug/L
Chloroethane	MW-54	10/01/2015		13.6	1.0	ug/L
Chloroethane	MW-54	4/14/2016		5.8		ug/L
Chloroethane	MW-54	10/13/2016		13.7	1.0	
Chloroethane	MW-54	4/10/2017		10.5	1.0	ug/L
Chloroethane	MW-54	10/09/2017		11.4		ug/L
Chloroethane	MW-54	4/17/2018		8.5		ug/L
Chloroethane	MW-54	10/22/2018		2.0	1.0	ug/L
Chloroethane	MW-54	4/22/2019		4.0		ug/L
Chloroethane	MW-54	10/23/2019		4.3	1.0	ug/L
Chloroethane	MW-54	4/10/2020		1.9	1.0	
Chloroethane	MW-54	10/19/2020		2.7	1.0	ug/L
Chloroethane	MW-54	10/25/2022		1.6	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	3/28/2008		4.5	1.0	
Cis-1,2-dichloroethylene	MW-54	6/25/2008		3.4	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	8/04/2008		2.9		ug/L
Cis-1,2-dichloroethylene	MW-54	12/08/2008		3.6	1.0	
Cis-1,2-dichloroethylene	MW-54	4/02/2009		2.9	1.0	
Cis-1,2-dichloroethylene	MW-54	10/21/2009		2.5	1.0	
Cis-1,2-dichloroethylene	MW-54	4/20/2010		2.2	1.0	
Cis-1,2-dichloroethylene	MW-54	10/08/2010		2.5	1.0	
Cis-1,2-dichloroethylene	MW-54	4/05/2011		3.1	1.0	
Cis-1,2-dichloroethylene	MW-54	10/06/2011		2.7	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	4/10/2012		3.2	1.0	
Cis-1,2-dichloroethylene	MW-54	10/09/2012		2.9	1.0	
Cis-1,2-dichloroethylene	MW-54	4/04/2013		3.2	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	10/16/2013		3.9		ug/L
Cis-1,2-dichloroethylene	MW-54	4/10/2014		3.2	1.0	
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-54	10/16/2014		2.9		ug/L
	MW-54	4/06/2015		2.4	4.0	ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Cis-1,2-dichloroethylene	MW-54	10/01/2015		2.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	4/14/2016		1.9	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	10/13/2016		2.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	4/10/2017		1.5	1.0	
Cis-1,2-dichloroethylene	MW-54	10/09/2017		1.9	1.0	ug/L
Cis-1,2-dichloroethylene	MW-54	4/17/2018		1.2	1.0	ug/L
Toluene	MW-54	4/22/2019		1.3	1.0	
Trichloroethylene	MW-54	1/21/1993		1.0	1.0	ug/L
Trichloroethylene	MW-54	4/22/1993		2.2	1.0	ug/L
Trichloroethylene	MW-54	7/13/1993		4.9	1.0	ug/L
Trichloroethylene	MW-54	7/29/1999		7.0	1.0	ug/L
Trichloroethylene	MW-54	10/04/1999		6.0	1.0	ug/L
Trichloroethylene	MW-54	1/06/2000		6.3	1.0	ug/L
Trichloroethylene	MW-54	4/13/2000		5.1	1.0	ug/L
Trichloroethylene	MW-54	7/05/2000		5.7	1.0	ug/L
Trichloroethylene	MW-54	9/11/2000		6.5	1.0	ug/L
Trichloroethylene	MW-54	10/08/2000		5.0	1.0	ug/L
Trichloroethylene	MW-54	4/27/2001		5.9	1.0	ug/L
Trichloroethylene	MW-54	7/23/2001		6.3	1.0	ug/L
Trichloroethylene	MW-54	10/18/2001		4.8	1.0	
Trichloroethylene	MW-54	1/25/2002		5.6	1.0	ug/L
Trichloroethylene	MW-54	4/24/2002		5.7	1.0	ug/L
Trichloroethylene	MW-54	7/22/2002		5.3	1.0	
Trichloroethylene	MW-54	10/14/2002		5.0	1.0	ug/L
Trichloroethylene	MW-54	1/29/2003		5.2	1.0	
Trichloroethylene	MW-54	7/11/2003		4.3	1.0	
Trichloroethylene	MW-54	10/06/2003		4.3	1.0	ug/L ug/L
Trichloroethylene	MW-54	4/26/2004		4.4	1.0	ug/L ug/L
Trichloroethylene	MW-54	10/05/2004		5.5	1.0	ug/L ug/L
Trichloroethylene	MW-54	4/11/2005		3.9	1.0	
Trichloroethylene	MW-54	10/05/2005		4.0	1.0	ug/L ug/L
	MW-54	4/05/2006		3.4	1.0	
Trichloroethylene				2.7		ug/L
Trichloroethylene	MW-54	10/04/2006			1.0	
Trichloroethylene	MW-54	4/12/2007		2.3	1.0	ug/L
Trichloroethylene	MW-54	10/10/2007		2.1	1.0	ug/L
Trichloroethylene	MW-54	3/28/2008		1.2	1.0	
Trichloroethylene	MW-54	12/08/2008		1.4	1.0	ug/L
Vinyl chloride	MW-54	4/10/2012		1.1	1.0	ug/L
Vinyl chloride	MW-54	10/09/2012		1.0	1.0	
Vinyl chloride	MW-54	10/16/2014		1.0	1.0	ug/L
Vinyl chloride	MW-54	10/01/2015		1.0	1.0	ug/L
Vinyl chloride	MW-54	10/13/2016		2.0	1.0	
Vinyl chloride	MW-54	4/10/2017		1.8	1.0	
Vinyl chloride	MW-54	10/09/2017		1.6	1.0	
1,1-dichloroethane	MW-66	8/05/2008		1.8	1.0	ug/L
Cis-1,2-dichloroethylene	MW-66	8/05/2008		1.1	1.0	
1,1,1-trichloroethane	MW-81	7/13/1993		1.1	1.0	
1,1,1-trichloroethane	MW-81	1/25/1994		2.2	1.0	ug/L
1,1,1-trichloroethane	MW-81	4/14/1994		1.4	1.0	ug/L
1,1,1-trichloroethane	MW-81	7/08/1994		1.2	1.0	ug/L
1,1,1-trichloroethane	MW-81	10/20/1994		1.2	1.0	ug/L
1,1,1-trichloroethane	MW-81	4/21/1995		1.1	1.0	ug/L
1,1,1-trichloroethane	MW-81	7/07/1995		1.3		ug/L
1,1,1-trichloroethane	MW-81	7/17/1996		1.6	1.0	ug/L
1,1,1-trichloroethane	MW-81	10/08/1996		1.5		ug/L
1,1,1-trichloroethane	MW-81	1/21/1997		1.4		ug/L
1,1,1-trichloroethane	MW-81	4/11/1997		2.2		ug/L
1,1,1-trichloroethane	MW-81	10/09/1998		1.1	1.0	
1,1-dichloroethane	MW-81	3/28/2008		59.5		ug/L
1,1-dichloroethane	MW-81	6/20/2008		50.6		ug/L
1,1-dichloroethane	MW-81	8/04/2008		56.8	1.0	
1,1-dichloroethane	MW-81	10/03/2008		70.7		ug/L
1,1-dichloroethane	MW-81	12/08/2008		53.4		ug/L
1,1-dichloroethane	MW-81	4/01/2009		54.3	1.0	
1,1-dichloroethane	MW-81	10/21/2009		58.2		ug/L
1,1-dichloroethane	MW-81	4/20/2010		47.6		ug/L
1,1-dichloroethane	MW-81	10/08/2010		34.8	1.0	
1,1-dichloroethane	MW-81	4/05/2011		44.1		ug/L ug/L
1,1-dichloroethane	MW-81	10/06/2011		41.3		ug/L
1,1-dichloroethane	MW-81	4/10/2012		38.1		ug/L
1,1-dichloroethane	MW-81	10/09/2012		42.8	1.0	
1,1-dichloroethane	MW-81	4/04/2013		39.0		ug/L
1,1-dichloroethane	MW-81	10/16/2013		49.2		ug/L
1,1-dichloroethane	MW-81	4/10/2014		46.6		ug/L
	1 8 41 4 / 0 4	1 40/40/0044		44.6	1 0	ug/L
1,1-dichloroethane 1,1-dichloroethane	MW-81 MW-81	10/16/2014 4/03/2015		39.2		ug/L ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
1,1-dichloroethane	MW-81	10/01/2015		38.6	1.0	ug/L
1,1-dichloroethane	MW-81	4/14/2016		27.5	1.0	ug/L
1,1-dichloroethane	MW-81	10/13/2016		29.7	1.0	ug/L
1,1-dichloroethane	MW-81	4/10/2017		25.9	1.0	ug/L
1,1-dichloroethane	MW-81	10/09/2017		33.9	1.0	ug/L
1,1-dichloroethane	MW-81	4/17/2018		24.5	1.0	ug/L
1,1-dichloroethane	MW-81	10/22/2018		19.0	1.0	ug/L
1,1-dichloroethane	MW-81	4/22/2019		13.8	1.0	ug/L
1,1-dichloroethane	MW-81	10/23/2019		11.0	1.0	ug/L
1,1-dichloroethane	MW-81	4/10/2020		10.8	1.0	ug/L
1,1-dichloroethane	MW-81	10/19/2020		27.9	1.0	ug/L
1,1-dichloroethane	MW-81	4/05/2021		15.8	1.0	ug/L
1,1-dichloroethane	MW-81	10/08/2021		29.3	1.0	ug/L
1,1-dichloroethane	MW-81	4/06/2022		21.5	1.0	ug/L
1,1-dichloroethane	MW-81	10/25/2022		27.7	1.0	ug/L
1,1-dichloroethane	MW-81	4/11/2023		23.9	1.0	ug/L
1,1-dichloroethane	MW-81	10/13/2023		30.0	1.0	ug/L
1,1-dichloroethane	MW-81	4/16/2024		28.2	1.0	ug/L
1,1-dichloroethane	MW-81	10/15/2024		24.8	1.0	ug/L
1,1-dichloroethylene	MW-81	1/25/1994		3.6	1.0	ug/L
1,1-dichloroethylene	MW-81	7/07/1995		1.2	1.0	ug/L
1,2-dichlorobenzene	MW-81	4/22/2019		1.9	1.0	ug/L
1,2-dichlorobenzene	MW-81	10/23/2019		1.3	1.0	ug/L
1,2-dichlorobenzene	MW-81	4/10/2020		2.0	1.0	ug/L
1,2-dichlorobenzene	MW-81	10/19/2020		1.1	1.0	ug/L
1,2-dichloroethane	MW-81	7/08/1994		2.2	1.0	ug/L
1,2-dichloroethane	MW-81	10/20/1994		2.1	1.0	ug/L
1,2-dichloroethane	MW-81	1/04/1995		2.6	1.0	ug/L
1,2-dichloroethane	MW-81	4/21/1995		1.6	1.0	ug/L
1,2-dichloroethane	MW-81	7/07/1995		1.7	1.0	ug/L
1,2-dichloroethane	MW-81	10/12/1995		3.1	1.0	ug/L
1,2-dichloroethane	MW-81	7/17/1996		1.6	1.0	ug/L
1,2-dichloroethane	MW-81	10/08/1996		3.0	1.0	ug/L
1,2-dichloroethane	MW-81	1/21/1997		2.2	1.0	ug/L
1,2-dichloroethane	MW-81	10/04/1999		3.5	1.0	ug/L
1,2-dichloroethane	MW-81	1/06/2000		3.4	1.0	ug/L
1,2-dichloroethane	MW-81	4/13/2000		2.9	1.0	ug/L
1,2-dichloroethane	MW-81	7/05/2000		6.6	1.0	ug/L
1,2-dichloroethane	MW-81	10/08/2000		3.7	1.0	ug/L
1,2-dichloroethane	MW-81	4/27/2001		2.6	1.0	ug/L
1,2-dichloroethane	MW-81	10/18/2001		3.3	1.0	ug/L
1,2-dichloroethane	MW-81	4/24/2002		4.2	1.0	ug/L
1,2-dichloroethane	MW-81	10/14/2002		3.5	1.0	ug/L
1,2-dichloroethane	MW-81	10/06/2003		3.7	1.0	ug/L
1,2-dichloroethane	MW-81	4/26/2004		2.8	1.0	ug/L
1,2-dichloroethane	MW-81	4/05/2006		3.0	1.0	ug/L
1,2-dichloroethane	MW-81	10/04/2006		2.0	1.0	ug/L
1,2-dichloroethane	MW-81	4/12/2007		2.4 2.4	1.0	ug/L
1,2-dichloroethane	MW-81	10/10/2007			1.0	ug/L
1,2-dichloroethane	MW-81	3/28/2008		2.1 2.9	1.0	ug/L
1,2-dichloroethane	MW-81	6/20/2008			1.0	ug/L
1,2-dichloroethane	MW-81	8/04/2008		2.7	1.0	ug/L
1,2-dichloroethane	MW-81 MW-81	12/08/2008 4/01/2009		2.7 2.7	1.0 1.0	ug/L ug/L
1,2-dichloroethane	MW-81	10/21/2009		3.4		ug/L ug/L
1,2-dichloroethane	MW-81	4/20/2010		3.4	1.0	ug/L ug/L
1,2-dichloroethane	MW-81	4/05/2011		3.0	1.0	ug/L ug/L
1,2-dichloroethane	MW-81	10/06/2011		4.5	1.0	ug/L ug/L
1,2-dichloroethane	MW-81	4/10/2012		3.7	1.0	ug/L ug/L
1,2-dichloroethane	MW-81	10/09/2012		6.5	1.0	ug/L ug/L
1,2-dichloroethane	MW-81	4/04/2013		5.4	1.0	ug/L ug/L
1,2-dichloroethane	MW-81	10/16/2013		10.8	1.0	ug/L ug/L
1,2-dichloroethane	MW-81	4/10/2014		11.3	1.0	ug/L ug/L
1,2-dichloroethane	MW-81	10/16/2014		7.7	1.0	ug/L ug/L
1,2-dichloroethane	MW-81	4/03/2015		6.5	1.0	ug/L ug/L
1,2-dichloroethane	MW-81	10/01/2015		8.7	1.0	ug/L ug/L
1,2-dichloroethane	MW-81	4/14/2016		4.7	1.0	ug/L ug/L
1,2-dichloroethane	MW-81	10/13/2016		6.4	1.0	ug/L ug/L
1,2-dichloroethane	MW-81	4/10/2017		4.2	1.0	ug/L ug/L
1,2-dichloroethane	MW-81	10/09/2017		9.9	1.0	ug/L ug/L
1,2-dichloroethane	MW-81	4/17/2018		9.9 5.8	1.0	ug/L ug/L
1,2-dichloroethane	MW-81	10/22/2018		2.9	1.0	ug/L ug/L
1,2-dichloroethane	MW-81	4/22/2019		2.9	1.0	ug/L ug/L
1,2-dichloroethane	MW-81	4/10/2020		2.1	1.0	ug/L ug/L
1,2-dichloroethane	MW-81	10/19/2020		7.7		ug/L ug/L
1,2-dichloroethane	MW-81	4/05/2021		3.9		ug/L ug/L
1,2-diofiloroculatio	14144-01	7/03/2021		5.9	1.0	uy/L

Table 1
Historical Volatile Organic Compound Detections

12-dichloroethane MW-8-1 1008/2021 9.8 1.0 ug/L -12-dichloroethane MW-8-1 1025/2022 12.8 1.0 ug/L -12-dichloroethane MW-8-1 1025/2022 12.8 1.0 ug/L -12-dichloroethane MW-8-1 1013/2023 15.6 1.0 ug/L -12-dichloroethane MW-8-1 1013/2023 15.6 1.0 ug/L -12-dichloroethane MW-8-1 1013/2023 15.6 1.0 ug/L -12-dichloroethane MW-8-1 1015/2024 11.2 1.0 ug/L -12-dichloropropane MW-8-1 1015/2024 11.2 1.0 ug/L -12-dichloropropane MW-8-1 8/20/2008 5.1 1.0 ug/L -12-dichloropropane MW-8-1 8/20/2008 5.1 1.0 ug/L -12-dichloropropane MW-8-1 12/08/2008 5.1 1.0 ug/L -12-dichloropropane MW-8-1 10/08/2018 1.0 ug/L -12-dichloropropane MW-8-1 10/21/2009 17.3 1.0 ug/L -12-dichloropropane MW-8-1 10/21/2009 17.3 1.0 ug/L -12-dichloropropane MW-8-1 40/20010 7.0 1.0 ug/L -12-dichloropropane MW-8-1 40/20010 7.0 1.0 ug/L -12-dichloropropane MW-8-1 40/20010 7.0 1.0 ug/L -12-dichloropropane MW-8-1 40/20010 14.7 1.0 ug/L -12-dichloropropane MW-8-1 40/20010 14.7 1.0 ug/L -12-dichloropropane MW-8-1 40/20011 14.7 1.0 ug/L -12-dichloropropane MW-8-1 40/20013 16.7 1.0 ug/L -12-dichloropropane MW-8-1 40/20013 15.8 1.0 ug/L -12-dichloropropane MW-8-1 4	Constituent	Well	Date	Identifier	Result	Limit	Units
1,2-dichloroethane MW-81 406/2022 5.7 1,0 ug/L 1,2-dichloroethane MW-81 4/11/2023 6.9 1.0 ug/L 1,2-dichloroethane MW-81 4/11/2023 6.9 1.0 ug/L 1,2-dichloroethane MW-81 4/11/2023 6.9 1.0 ug/L 1,2-dichloroethane MW-81 4/11/2024 12.3 1.0 ug/L 1,2-dichloroethane MW-81 10/15/2024 11.2 1.0 ug/L 1,2-dichloropropane MW-81 3/28/2008 12.2 1.0 ug/L 1,2-dichloropropane MW-81 3/28/2008 12.2 1.0 ug/L 1,2-dichloropropane MW-81 3/28/2008 1.1 ug/L 1,2-dichloropropane MW-81 12/08/2008 1.1 ug/L 1,2-dichloropropane MW-81 14/08/2008 1.1 ug/L 1,2-dichloropropane MW-81 14/08/2009 1.0 ug/L 1,2-dichloropropane MW-81 10/21/2009 1.0 ug/L 1,2-dichloropropane MW-81 10/21/2009 1.0 ug/L 1,2-dichloropropane MW-81 10/08/2010 7.0 ug/L 1,2-dichloropropane MW-81 10/08/2010 1.5 ug/L 1,2-dichloropropane MW-81 10/08/2011 14.7 1.0 ug/L 1,2-dichloropropane MW-81 10/08/2011 16.7 1.0 ug/L 1,2-dichloropropane MW-81 10/08/2012 17.5 1.0 ug/L 1,2-dichloropropane MW-81 10/08/2013 16.7 1.0 ug/L 1,2-dichloropropane MW-81 10/08/2014 19.6 1.0 ug/L 1,2-dichloropropane MW-81 10/08/2014 19.1 ug/L 1,2-dichloropropane MW-81 10/08/2014 19.1 ug/L 1,2-dichloropropane MW-81 10/08/2014 19.1 ug	1,2-dichloroethane	MW-81	10/08/2021		9.8	1.0	ug/L
1,2-dichloroethane MW-8-1 MV-81 MV-81	1,2-dichloroethane	MW-81	4/06/2022		5.7	1.0	ug/L
1,2-dichloroethane	1,2-dichloroethane	MW-81	10/25/2022		12.8	1.0	ug/L
1,2-dichloroptemane MW-81 4/16/2024 12.3 1.0 ug/L 1,2-dichloropropane MW-81 10/15/2024 11.2 1.0 ug/L 1,2-dichloropropane MW-81 3/28/2008 12.2 1.0 ug/L 1,2-dichloropropane MW-81 8/02/2008 9.1 1.0 ug/L 1,2-dichloropropane MW-81 8/04/2008 9.1 1.0 ug/L 1,2-dichloropropane MW-81 12/08/2008 9.1 1.0 ug/L 1,2-dichloropropane MW-81 12/08/2008 12.0 10 ug/L 1,2-dichloropropane MW-81 10/21/2009 17.3 1.0 ug/L 1,2-dichloropropane MW-81 10/21/2009 17.3 1.0 ug/L 1,2-dichloropropane MW-81 10/21/2009 10.0 1.0 ug/L 1,2-dichloropropane MW-81 10/21/2009 1.0 1.0 ug/L 1,2-dichloropropane MW-81 10/08/2011 16.7 1.0 ug/L 1,2-dichloropropane MW-81 10/08/2012 17.5 1.0 ug/L 1,2-dichloropropane MW-81 10/16/2013 22.7 1.0 ug/L 1,2-dichloropropane MW-81 10/16/2013 22.7 1.0 ug/L 1,2-dichloropropane MW-81 10/16/2013 22.7 1.0 ug/L 1,2-dichloropropane MW-81 10/16/2013 18.1 10 ug/L 1,2-dichloropropane MW-81 10/16/2013 19.1 ug/L 1,2-dichlorop		MW-81			6.9	1.0	ug/L
1,2-dichloropropane MW-81 10/16/2024 11.2 1.0 ug/L 1,2-dichloropropane MW-81 6/20/2008 5.1 1.0 ug/L 1,2-dichloropropane MW-81 6/20/2008 5.1 1.0 ug/L 1,2-dichloropropane MW-81 18/04/2008 12.0 1.0 ug/L 1,2-dichloropropane MW-81 12/08/2008 12.0 1.0 ug/L 1,2-dichloropropane MW-81 14/01/2009 17.3 10 ug/L 1,2-dichloropropane MW-81 10/21/2009 17.3 10 ug/L 1,2-dichloropropane MW-81 10/08/2010 5.9 1.0 ug/L 1,2-dichloropropane MW-81 10/08/2010 5.9 1.0 ug/L 1,2-dichloropropane MW-81 10/08/2011 16.7 1.0 ug/L 1,2-dichloropropane MW-81 44/02/2011 16.7 1.0 ug/L 1,2-dichloropropane MW-81 44/02/2012 17.6 1.0 ug/L 1,2-dichloropropane MW-81 44/02/2013 12.7 1.0 ug/L 1,2-dichloropropane MW-81 44/02/2013 12.7 1.0 ug/L 1,2-dichloropropane MW-81 44/02/2013 12.7 1.0 ug/L 1,2-dichloropropane MW-81 44/03/2015 16.1 1.0 ug/L 1,2-dichloropropane MW-81 44/14/2016 11.1 1.0 ug/L 1,2-dichloropropane MW-81 44/14/	1,2-dichloroethane	MW-81	10/13/2023		15.6	1.0	ug/L
1,2-dichloropropane MW-81 3/28/2008 1,2 dichloropropane MW-81 8/04/2008 9,1 1,0 ug/L 1,2-dichloropropane MW-81 8/04/2008 9,1 1,0 ug/L 1,2-dichloropropane MW-81 1/208/2008 9,1 1,0 ug/L 1,2-dichloropropane MW-81 1/208/2008 1,2 1,0 ug/L 1,2-dichloropropane MW-81 1/208/2009 17,3 1,0 ug/L 1,2-dichloropropane MW-81 1/20/2010 7,0 1,0 ug/L 1,2-dichloropropane MW-81 1/20/2010 7,0 1,0 ug/L 1,2-dichloropropane MW-81 1/20/2010 1,7 1,0 ug/L 1,2-dichloropropane MW-81 1/20/2011 14,7 1,0 ug/L 1,2-dichloropropane MW-81 1/20/2012 12,6 1,0 ug/L 1,2-dichloropropane MW-81 1/20/2012 1,5 1,0 ug/L 1,2-dichloropropane MW-81 1/20/2012 1,5 1,0 ug/L 1,2-dichloropropane MW-81 1/20/2012 1,5 1,0 ug/L 1,2-dichloropropane MW-81 1/20/2013 16,7 1,0 ug/L 1,2-dichloropropane MW-81 1/20/2013 1,2 1,0 ug/L 1,2-dichloropropane MW-81 1/20/2013 1,2 1,0 ug/L 1,2-dichloropropane MW-81 1/20/2013 1,2 ug/L 1,2-dichloropropane MW-81 1/20/2013 1,2 ug/L 1,2-dichloropropane MW-81 1/20/2014 1,0 ug/L 1,2-dichloropropane MW-81 1/20/2014 1,0 ug/L 1,2-dichloropropane MW-81 1/20/2015 1,0 ug/L 1,2-dichloropropane MW-81	1,2-dichloroethane	MW-81	4/16/2024			1.0	ug/L
1,2-dichloropropane MW-81 8/20/2008 5,1 1,0 ug/L 1,2-dichloropropane MW-81 12/08/2008 12,0 1,0 ug/L 1,2-dichloropropane MW-81 12/08/2008 12,0 1,0 ug/L 1,2-dichloropropane MW-81 14/02/2010 1,0 ug/L 1,2-dichloropropane MW-81 14/02/2010 5,9 1,0 ug/L 1,2-dichloropropane MW-81 14/02/2010 5,9 1,0 ug/L 1,2-dichloropropane MW-81 14/08/2011 14,7 1,0 ug/L 1,2-dichloropropane MW-81 14/08/2011 16,7 1,0 ug/L 1,2-dichloropropane MW-81 14/08/2011 16,7 1,0 ug/L 1,2-dichloropropane MW-81 14/08/2011 16,7 1,0 ug/L 1,2-dichloropropane MW-81 14/08/2012 17,5 1,0 ug/L 1,2-dichloropropane MW-81 14/08/2013 16,7 1,0 ug/L 1,2-dichloropropane MW-81 14/08/2013 22,7 1,0 ug/L 1,2-dichloropropane MW-81 14/08/2013 22,7 1,0 ug/L 1,2-dichloropropane MW-81 14/08/2014 19,6 1,0 ug/L 1,2-dichloropropane MW-81 14/08/2014 19,6 1,0 ug/L 1,2-dichloropropane MW-81 14/08/2015 16,1 10 ug/L 1,2-dichloropropane MW-81 14/18/2016 11,1 10 ug/L 1,2-dichloropropane MW-81 14/18/2016 11,1 10 ug/L 1,2-dichloropropane MW-81 14/18/2016 10,6 10 ug/L 1,2-dichloropropane MW-81 14/18/2016 10,1 ug/L 1,2-dichloropropane MW-81 14/18/2016 10,0 ug/L 1,2-dichloropropane MW-81		MW-81	10/15/2024				
12-dichloropropane MW-81 1208/2008 9,1 1,0 ug/L -2-dichloropropane MW-81 1208/2008 12,0 10,0 ug/L -2-dichloropropane MW-81 1208/2009 17,3 1,0 ug/L -2-dichloropropane MW-81 10/21/2009 17,3 1,0 ug/L -2-dichloropropane MW-81 10/21/2009 17,0 1,0 ug/L -2-dichloropropane MW-81 10/08/2010 7,0 1,0 ug/L -2-dichloropropane MW-81 10/08/2011 14,7 1,0 ug/L -2-dichloropropane MW-81 10/08/2011 14,7 1,0 ug/L -2-dichloropropane MW-81 10/08/2011 16,7 1,0 ug/L -2-dichloropropane MW-81 10/08/2012 17,5 1,0 ug/L -2-dichloropropane MW-81 10/08/2012 17,5 1,0 ug/L -2-dichloropropane MW-81 10/08/2013 16,7 1,0 ug/L -2-dichloropropane MW-81 10/08/2013 16,7 1,0 ug/L -2-dichloropropane MW-81 10/16/2013 12,2 1,0 ug/L -2-dichloropropane MW-81 10/16/2013 16,7 1,0 ug/L -2-dichloropropane MW-81 10/16/2013 16,7 1,0 ug/L -2-dichloropropane MW-81 10/16/2014 18,6 1,0 ug/L -2-dichloropropane MW-81 10/16/2014 18,6 1,0 ug/L -2-dichloropropane MW-81 10/16/2014 18,6 1,0 ug/L -2-dichloropropane MW-81 10/16/2015 15,8 10 ug/L -2-dichloropropane MW-81 10/16/2016 11,6 1,0 ug/L -2-dichloropropane MW-81 10/16/2016 11,6 1,0 ug/L -2-dichloropropane MW-81 10/16/2016 11,6 1,0 ug/L -2-dichloropropane MW-81 10/16/2016 1,6 1,0 ug/L -2-dichloropropane MW-81 10/16/2016 1,6 1,0 ug/L -2-dichloropropane MW-81 10/16/2016 1,6 1,0 ug/L -2-dichloropropane MW-81 10/16/2016 1,9 1,0 ug/L -2-dichloropropane MW-81 10/16/2016 1,9 1,0 ug/L -2-dichloropropane MW-81 10/16/2020 1,1 1,0 ug/L -2-dichloropropane MW-81 10/16/2020							
1.2-dichloropropane MW-81 4/10/2009 17.3 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2009 17.3 1.0 ug/L 1.2-dichloropropane MW-81 4/20/2010 7.0 10.0 ug/L 1.2-dichloropropane MW-81 4/20/2010 7.0 ug/L 1.2-dichloropropane MW-81 4/20/2010 5.9 1.0 ug/L 1.2-dichloropropane MW-81 4/20/2011 14.7 1.0 ug/L 1.2-dichloropropane MW-81 4/20/2011 14.7 1.0 ug/L 1.2-dichloropropane MW-81 4/20/2011 16.7 1.0 ug/L 1.2-dichloropropane MW-81 4/20/2012 17.5 1.0 ug/L 1.2-dichloropropane MW-81 4/20/2013 16.7 1.0 ug/L 1.2-dichloropropane MW-81 4/20/2013 16.7 1.0 ug/L 1.2-dichloropropane MW-81 4/20/2013 16.7 1.0 ug/L 1.2-dichloropropane MW-81 4/20/2014 18.1 1.0 ug/L 1.2-dichloropropane MW-81 4/20/2014 18.1 1.0 ug/L 1.2-dichloropropane MW-81 4/20/2014 19.6 1.0 ug/L 1.2-dichloropropane MW-81 4/20/2015 15.8 1.0 ug/L 1.2-dichloropropane MW-81 4/20/2015 15.8 1.0 ug/L 1.2-dichloropropane MW-81 4/40/2016 10.6 1.0 ug/L 1.2-dichloropropane MW-81 4/40/2017 1.0 ug/L 1.2-dichloropropane MW-81 4/40/2017 9.1 1.0 ug/L 1.2-dichloropropane MW-81 4/40/2018 4.9 1.0 ug/L 1.2-dichloropropane MW-81 4/40/2018 4.9 1.0 ug/L 1.2-dichloropropane MW-81 4/40/2010 7.9 1.0 ug/L 1.2-dichloropropane MW-81 4/40/2010 7.9 1.0 ug/L 1.2-dichloropropane MW-81	1,2-dichloropropane	MW-81	6/20/2008		5.1	1.0	ug/L
1,2-dichloropropane MW-81 10/12/009 17.3 1.0 ug/L 1,2-dichloropropane MW-81 10/12/009 10.0 ug/L 1,2-dichloropropane MW-81 10/08/2010 5.9 1.0 ug/L 1,2-dichloropropane MW-81 10/08/2011 14.7 1.0 ug/L 1,2-dichloropropane MW-81 10/08/2011 14.7 1.0 ug/L 1,2-dichloropropane MW-81 10/08/2011 16.7 1.0 ug/L 1,2-dichloropropane MW-81 10/08/2011 16.7 1.0 ug/L 1,2-dichloropropane MW-81 10/08/2012 17.5 1.0 ug/L 1,2-dichloropropane MW-81 10/08/2012 17.5 1.0 ug/L 1,2-dichloropropane MW-81 10/16/2013 16.7 1.0 ug/L 1,2-dichloropropane MW-81 10/16/2013 16.7 1.0 ug/L 1,2-dichloropropane MW-81 10/16/2013 18.1 1.0 ug/L 1,2-dichloropropane MW-81 10/16/2014 19.6 11.1 1.0 ug/L 1,2-dichloropropane MW-81 10/13/2016 11.1 1.0 ug/L 1,2-dichloropropane MW-81 10/13/2016 10.6 10.6 10.6 10.1 1							
1,2-dichloropropane MW-81 4/02/2010 7.0 ugL 1,2-dichloropropane MW-81 4/02/2010 7.0 ugL 1,2-dichloropropane MW-81 4/05/2011 14,7 1.0 ugL 1,2-dichloropropane MW-81 4/05/2011 14,7 1.0 ugL 1,2-dichloropropane MW-81 4/05/2011 16,7 1.0 ugL 1,2-dichloropropane MW-81 4/05/2012 12,6 1.0 ugL 1,2-dichloropropane MW-81 4/05/2012 17,5 1.0 ugL 1,2-dichloropropane MW-81 4/04/2013 16,7 1.0 ugL 1,2-dichloropropane MW-81 4/04/2013 16,7 1.0 ugL 1,2-dichloropropane MW-81 4/04/2013 16,7 1.0 ugL 1,2-dichloropropane MW-81 4/04/2013 22,7 1.0 ugL 1,2-dichloropropane MW-81 4/06/2014 18,1 1.0 ugL 1,2-dichloropropane MW-81 4/06/2014 19,6 1.0 ugL 1,2-dichloropropane MW-81 4/03/2015 16,1 1.0 ugL 1,2-dichloropropane MW-81 4/03/2015 15,8 1.0 ugL 1,2-dichloropropane MW-81 4/03/2016 10,6 1.0 ugL 1,2-dichloropropane MW-81 4/04/2016 11,1 1.0 ugL 1,2-dichloropropane MW-81 4/04/2016 10,6 1.0 ugL 1,2-dichloropropane MW-81 4/09/2017 12,6 1.0 ugL 1,2-dichloropropane MW-81 4/09/2018 4,9 1.0 ugL 1,2-dichloropropane MW-81 4/09/2018 4,9 1.0 ugL 1,2-dichloropropane MW-81 4/09/2019 1,5 1.0 ug							
1,2-dichloropropane MW-81 10/08/2010 5.9 1.0 ugL 1,2-dichloropropane MW-81 10/08/2011 14.7 1.0 ugL 1,2-dichloropropane MW-81 10/08/2011 14.7 1.0 ugL 1,2-dichloropropane MW-81 10/08/2011 16.7 1.0 ugL 1,2-dichloropropane MW-81 10/08/2011 15.7 1.0 ugL 1,2-dichloropropane MW-81 10/08/2012 17.5 1.0 ugL 1,2-dichloropropane MW-81 10/08/2012 17.5 1.0 ugL 1,2-dichloropropane MW-81 10/16/2013 16.7 1.0 ugL 1,2-dichloropropane MW-81 10/16/2013 18.7 1.0 ugL 1,2-dichloropropane MW-81 10/16/2014 18.1 1.0 ugL 1,2-dichloropropane MW-81 10/16/2014 19.6 10.0 ugL 1,2-dichloropropane MW-81 10/16/2014 11.1 1.0 ugL 1,2-dichloropropane MW-81 10/16/2017 9.1 1.0 ugL 1,2-dichloropropane MW-81 10/16/2017 9.1 1.0 ugL 1,2-dichloropropane MW-81 10/16/2018 8.6 1.0 ugL 1,2-dichloropropane MW-81 10/22018 8.6 1.0 ugL 1,2-dichloropropane MW-81 10/22019 1.9 1.0 ugL 1,2-dichloropropane MW-81 10/22019 1.1 1.0 ugL 1,2-dichloropropane MW-81 10/16/2002 1.1 1.0 ugL 1,2-dichloropropane MW-81 10/16/2002 1.1 1.0 ugL 1,2-dichloropropane MW-81 10/16/2002 1.1 1.0 ugL 1,2-dichloropropane MW-81 10/16/2003 1.1 1.0 ugL 1,2-dichloropropane MW-8	'	1					
1,2-dichloropropane MW-81 405/2011 1.4,7 1.0 ugL 1,2-dichloropropane MW-81 405/2011 1.4,7 1.0 ugL 1,2-dichloropropane MW-81 405/2011 1.6,7 1.0 ugL 1,2-dichloropropane MW-81 406/2012 12,6 1.0 ugL 1,2-dichloropropane MW-81 409/2012 17,5 1.0 ugL 1,2-dichloropropane MW-81 409/2013 16,7 1.0 ugL 1,2-dichloropropane MW-81 409/2013 16,7 1.0 ugL 1,2-dichloropropane MW-81 409/2013 16,7 1.0 ugL 1,2-dichloropropane MW-81 401/2014 18,1 1.0 ugL 1,2-dichloropropane MW-81 401/2014 19,6 1.0 ugL 1,2-dichloropropane MW-81 403/2015 16,1 1.0 ugL 1,2-dichloropropane MW-81 403/2015 16,1 1.0 ugL 1,2-dichloropropane MW-81 403/2015 15,8 1.0 ugL 1,2-dichloropropane MW-81 401/2016 10,6 1.0 ugL 1,2-dichloropropane MW-81 401/2017 9,1 1.0 ugL 1,2-dichloropropane MW-81 401/2017 9,1 1.0 ugL 1,2-dichloropropane MW-81 409/2017 12,6 1.0 ugL 1,2-dichloropropane MW-81 409/2017 12,6 1.0 ugL 1,2-dichloropropane MW-81 409/2017 12,6 1.0 ugL 1,2-dichloropropane MW-81 409/2018 4,9 1.0 ugL 1,2-dichloropropane MW-81 409/2018 4,9 1.0 ugL 1,2-dichloropropane MW-81 409/2018 4,9 1.0 ugL 1,2-dichloropropane MW-81 409/2019 1,5 1.0 ugL 1,2-dichloropropane MW-81 409/2001 1,9 1.0 ugL 1,2-dichloropropane MW-81 409/2001 1,9 1.0 ugL 1,2-dichloropropane MW-81 409/2001 1,9 1.0 ugL 1,2-dichloropropane MW-81 409/2002 1,9 1.0 ugL 1,2-dichloropropane MW-81 409/2002 1,9 1.0 ugL 1,2-dichloropropane MW-81 409/2002 1,9 1.0 ugL 1,2-dichloropropane MW-81 409/2003 1,9 1.0 ugL 1,2-dichloropropan							
1,2-dichloropropane MW-81 1006/2011 14.7 1.0 ugL 1,2-dichloropropane MW-81 1006/2011 16.7 1.0 ugL 1,2-dichloropropane MW-81 1006/2011 15.7 1.0 ugL 1,2-dichloropropane MW-81 1006/2012 17.5 1.0 ugL 1,2-dichloropropane MW-81 1006/2013 16.7 1.0 ugL 1,2-dichloropropane MW-81 1016/2013 22.7 1.0 ugL 1,2-dichloropropane MW-81 1016/2013 22.7 1.0 ugL 1,2-dichloropropane MW-81 1016/2014 18.1 1.0 ugL 1,2-dichloropropane MW-81 1016/2014 19.6 1.0 ugL 1,2-dichloropropane MW-81 1016/2014 19.6 1.0 ugL 1,2-dichloropropane MW-81 1001/2015 15.8 1.0 ugL 1,2-dichloropropane MW-81 1001/2015 15.8 1.0 ugL 1,2-dichloropropane MW-81 1001/2015 15.8 1.0 ugL 1,2-dichloropropane MW-81 1013/2016 10.6 11.1 1.0 ugL 1,2-dichloropropane MW-81 1013/2016 10.6 10.6 10.0 ugL 1,2-dichloropropane MW-81 417/2016 10.6 10.0 ugL 1,2-dichloropropane MW-81 417/2017 12.6 10.0 ugL 1,2-dichloropropane MW-81 417/2018 8.6 10.0 ugL 1,2-dichloropropane MW-81 417/2018 8.6 10.0 ugL 1,2-dichloropropane MW-81 417/2018 8.6 10.0 ugL 1,2-dichloropropane MW-81 417/2019 1.9 10.0 ugL 1,2-dichloropropane MW-81 417/2019 1.5 1.0 ugL 1,2-dichloropropane MW-81 417/2020 1.5 1.0 ugL 1,2-dichloropropane MW-81 417/2020 7.9 1.0 ugL 1,2-dichloropropane MW-81 4106/2021 4.0 1.0 ugL 1,2-dichloropropane MW-81 4106/2021 4.0 1.0 ugL 1,2-dichloropropane MW-81 4106/2021 4.0 1.0 ugL 1,2-dichloropropane MW-81 4106/2020 4.0 1.0 ugL 1,2-dichloropropane MW-81 4106/							
1.2-dichloropropane MW-81							
1,2-dichloropropane MW-81 4/10/2012 12.6 1.0 ug/L 1,2-dichloropropane MW-81 10/09/2012 17.5 1.0 ug/L 1,2-dichloropropane MW-81 4/04/2013 16.7 1.0 ug/L 1,2-dichloropropane MW-81 10/16/2013 22.7 1.0 ug/L 1,2-dichloropropane MW-81 10/16/2014 18.1 1.0 ug/L 1,2-dichloropropane MW-81 10/16/2014 18.1 1.0 ug/L 1,2-dichloropropane MW-81 10/16/2015 16.1 1.0 ug/L 1,2-dichloropropane MW-81 10/16/2015 16.1 1.0 ug/L 1,2-dichloropropane MW-81 10/16/2015 15.8 1.0 ug/L 1,2-dichloropropane MW-81 10/16/2016 11.1 1.0 ug/L 1,2-dichloropropane MW-81 10/16/2016 11.1 1.0 ug/L 1,2-dichloropropane MW-81 10/16/2016 10.6 10.0 ug/L 1,2-dichloropropane MW-81 10/16/2017 9.1 1.0 ug/L 1,2-dichloropropane MW-81 4/10/2017 9.1 1.0 ug/L 1,2-dichloropropane MW-81 4/17/2018 8.6 1.0 ug/L 1,2-dichloropropane MW-81 4/17/2018 8.6 1.0 ug/L 1,2-dichloropropane MW-81 4/17/2018 8.6 1.0 ug/L 1,2-dichloropropane MW-81 4/12/2019 1.9 1.0 ug/L 1,2-dichloropropane MW-81 4/12/2019 1.9 1.0 ug/L 1,2-dichloropropane MW-81 4/12/2019 1.9 1.0 ug/L 1,2-dichloropropane MW-81 4/12/2020 7.9 1.0 ug/L 1,2-dichloropropane MW-81 4/16/2020 7.9 1.0 ug/L 1,2-dichloropropane MW-81 4/16/2020 7.9 1.0 ug/L 1,2-dichloropropane MW-81 4/16/2021 9.3 1.0 ug/L 1,2-dichloropropane MW-81 4/16/2022 8.1 1.0 ug/L 1,2-dichloropropane MW-81 4/16/2022 8.1 1.0 ug/L 1,2-dichloropropane MW-81 4/16/2022 8.1 1.0 ug/L 1,2-dichloropropane MW-81 4/16/2024 6.9 1.0 ug/L 1,2-dichloropr		1					
1,2-dichloropropane MW-81 40/09/2012 17.5 1.0 ug/L 1.2-dichloropropane MW-81 40/4/2013 16.7 1.0 ug/L 1.2-dichloropropane MW-81 40/10/2014 18.1 1.0 ug/L 1.2-dichloropropane MW-81 40/10/2014 18.1 1.0 ug/L 1.2-dichloropropane MW-81 40/16/2014 19.6 1.0 ug/L 1.2-dichloropropane MW-81 40/3/2015 16.8 1.0 ug/L 1.2-dichloropropane MW-81 40/3/2015 15.8 1.0 ug/L 1.2-dichloropropane MW-81 40/3/2015 15.8 1.0 ug/L 1.2-dichloropropane MW-81 40/13/2016 10.6 10. ug/L 1.2-dichloropropane MW-81 40/13/2016 10.6 10. ug/L 1.2-dichloropropane MW-81 40/13/2016 10.6 10.0 ug/L 1.2-dichloropropane MW-81 40/10/2017 9.1 1.0 ug/L 1.2-dichloropropane MW-81 10/9/2017 12.6 10. ug/L 1.2-dichloropropane MW-81 10/9/2017 12.6 10. ug/L 1.2-dichloropropane MW-81 10/22/2018 8.6 10. ug/L 1.2-dichloropropane MW-81 10/22/2018 4.9 10. ug/L 1.2-dichloropropane MW-81 10/23/2019 1.9 1.0 ug/L 1.2-dichloropropane MW-81 10/3/2019 1.5 10. ug/L 1.2-dichloropropane MW-81 10/3/2019 1.5 10. ug/L 1.2-dichloropropane MW-81 40/5/2021 4.0 10. ug/L 1.2-dichloropropane MW-81 10/5/2021 4.0 10. ug/L 1.2-dichloropropane MW-81 10/9/2020 7.9 10. ug/L 1.2-dichloropropane MW-81 10/5/2021 4.0 10. ug/L 1.2-dichloropropane MW-81 10/5/2002 2.6 10. ug/L 1.2-dichloropropane MW-81 10/5/2002 3.5 10. ug/L 1.2-dichloropropane MW-81 10/6/2000 1.4 10. ug/L 1.2-dichloropropane MW-81 10/6/2002 2.6 10. ug/L 1.2-dichloropropane MW-81 10/6/2002 3.5 10. ug/L 1.2-dichloropropane MW-81 10/6/2002 3.5 10. ug/L 1.2-dichloropropane MW-81 10/6/2002 3.5 10. ug/L 1.2-di							
1,2-dichloropropane MW-81 40/4/2013 16.7 1.0 ug/L 1.2-dichloropropane MW-81 10/16/2013 22.7 1.0 ug/L 1.2-dichloropropane MW-81 40/10/2014 18.1 1.0 ug/L 1.2-dichloropropane MW-81 10/16/2014 19.6 1.0 ug/L 1.2-dichloropropane MW-81 40/3/2015 16.1 1.0 ug/L 1.2-dichloropropane MW-81 40/3/2015 16.1 1.0 ug/L 1.2-dichloropropane MW-81 40/3/2016 16.1 1.0 ug/L 1.2-dichloropropane MW-81 40/3/2016 11.1 1.0 ug/L 1.2-dichloropropane MW-81 40/12/2016 10.6 10.0 ug/L 1.2-dichloropropane MW-81 40/12/2016 10.6 10.0 ug/L 1.2-dichloropropane MW-81 40/12/2017 12.6 1.0 ug/L 1.2-dichloropropane MW-81 40/12/2018 4.9 1.0 ug/L 1.2-dichloropropane MW-81 40/12/2018 4.9 1.0 ug/L 1.2-dichloropropane MW-81 40/22/2019 1.9 1.0 ug/L 1.2-dichloropropane MW-81 40/22/2019 1.5 1.0 ug/L 1.2-dichloropropane MW-81 40/22/2019 1.5 1.0 ug/L 1.2-dichloropropane MW-81 40/22/2019 1.5 1.0 ug/L 1.2-dichloropropane MW-81 40/2020 7.9 1.0 ug/L 1.2-dichloropropane MW-81 40/2020 7.9 1.0 ug/L 1.2-dichloropropane MW-81 40/2020 7.9 1.0 ug/L 1.2-dichloropropane MW-81 40/62/2021 9.3 1.0 ug/L 1.2-dichloropropane MW-81 40/62/202 2.6 1.0 ug/L 1.2-dichloropropane MW-81 40/62/202 2.6 1.0 ug/L 1.2-dichloropropane MW-81 40/62/202 2.6 1.0 ug/L 1.2-dichloropropane MW-81 40/62/202 3.5 1.0 ug/L 1.2-dichlor							
1,2-dichloropropane MW-81 41/10/2014 18.1 10. ug/L 1.2-dichloropropane MW-81 41/10/2014 19.6 1.0 ug/L 1.2-dichloropropane MW-81 41/10/2015 15.8 1.0 ug/L 1.2-dichloropropane MW-81 41/10/2015 15.8 1.0 ug/L 1.2-dichloropropane MW-81 41/10/2015 15.8 1.0 ug/L 1.2-dichloropropane MW-81 41/14/2016 11.1 1.0 ug/L 1.2-dichloropropane MW-81 41/14/2016 11.1 1.0 ug/L 1.2-dichloropropane MW-81 10/13/2016 10.6 10.0 ug/L 1.2-dichloropropane MW-81 10/13/2016 10.6 10.0 ug/L 1.2-dichloropropane MW-81 10/19/2017 9.1 1.0 ug/L 1.2-dichloropropane MW-81 10/19/2017 9.1 1.0 ug/L 1.2-dichloropropane MW-81 10/19/2018 8.6 1.0 ug/L 1.2-dichloropropane MW-81 10/22/2018 4.9 1.0 ug/L 1.2-dichloropropane MW-81 10/22/2019 1.9 1.0 ug/L 1.2-dichloropropane MW-81 10/22/2019 1.9 1.0 ug/L 1.2-dichloropropane MW-81 10/22/2019 1.9 1.0 ug/L 1.2-dichloropropane MW-81 10/19/2020 1.1 1.0 ug/L 1.2-dichloropropane MW-81 10/19/2020 1.1 1.0 ug/L 1.2-dichloropropane MW-81 10/19/2020 7.9 1.0 ug/L 1.2-dichloropropane MW-81 41/19/2020 7.9 1.0 ug/L 1.2-dichloropropane MW-81 41/19/2020 7.9 1.0 ug/L 1.2-dichloropropane MW-81 41/19/2022 4.0 1.0 ug/L 1.2-dichloropropane MW-81 41/19/2022 8.1 1.0 ug/L 1.2-dichloropropane MW-81 41/19/2022 8.2 1.0 ug/L 1.2-dichloropropane MW-81 41/19/2020 1.0 ug/L							
1,2-dichloropropane MW-81 4/10/2014 18.1 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2015 16.1 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2015 16.1 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2015 15.8 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2016 11.1 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2016 11.1 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2017 8.1 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2017 8.1 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2017 12.6 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2017 12.6 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2018 8.6 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2018 8.6 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2020 1.9 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2020 1.5 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2020 7.9 1.0 ug/L 1.2-dichloropropane MW-81 4/05/2021 9.3 1.0 ug/L 1.2-dichloropropane MW-81 4/05/2021 9.3 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2020 3.5 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2020 4.6 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2020 8.1 1.0 ug/L 1.2-dichloropropane MW-81 4/11/2023 8.5 1.0 ug/L 1.2-dichloropropane MW-81 4/11/2020 8.2 1.0 ug/L 1.2-dichloropropane MW-81 4/16/2020 8.2 1.0 ug/L 1.2-dichloropropane MW-81 4/16/2020 1.4 1.0 ug/L 1.2-dichlorobenzene MW-81		1					
1,2-dichloropropane MW-81 M(3)2015 16.1 1.0 ug/L 1.2-dichloropropane MW-81 10/01/2015 15.8 1.0 ug/L 1.2-dichloropropane MW-81 10/01/2015 15.8 1.0 ug/L 1.2-dichloropropane MW-81 4/14/2016 11.1 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2017 9.1 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2017 12.6 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2017 12.6 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2018 8.6 1.0 ug/L 1.2-dichloropropane MW-81 4/17/2018 8.6 1.0 ug/L 1.2-dichloropropane MW-81 4/17/2018 8.6 1.0 ug/L 1.2-dichloropropane MW-81 4/12/2019 1.9 1.0 ug/L 1.2-dichloropropane MW-81 4/12/2019 1.9 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2020 1.1 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2020 1.1 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2020 1.1 1.0 ug/L 1.2-dichloropropane MW-81 4/10/8/2021 4.0 1.0 ug/L 1.2-dichloropropane MW-81 4/10/8/2021 4.0 1.0 ug/L 1.2-dichloropropane MW-81 4/10/8/2021 4.0 1.0 ug/L 1.2-dichloropropane MW-81 4/10/8/2021 9.3 1.0 ug/L 1.2-dichloropropane MW-81 4/10/8/2022 8.1 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2020 8.1 1.0 ug/L 1.2-dichloropropane MW-81 4/18/2022 8.1 1.0 ug/L 1.2-dichloropropane MW-81 4/18/2022 8.1 1.0 ug/L 1.2-dichloropropane MW-81 4/18/2022 8.1 1.0 ug/L 1.2-dichloropropane MW-81 4/18/2023 8.4 1.0 ug/L 1.2-dichloropropane MW-81 4/18/2023 8.4 1.0 ug/L 1.2-dichloropropane MW-81 4/18/2020 1.0 ug/L 1							
1,2-dichloropropane MW-81 4/03/2015 16.1 1.0 ug/L 1,2-dichloropropane MW-81 1/01/2016 11.1 1.0 ug/L 1,2-dichloropropane MW-81 1/01/302016 10.6 10.1 ug/L 1,2-dichloropropane MW-81 1/01/302017 9.1 1.0 ug/L 1,2-dichloropropane MW-81 1/09/2017 12.6 1.0 ug/L 1,2-dichloropropane MW-81 4/17/2018 8.6 1.0 ug/L 1,2-dichloropropane MW-81 4/17/2018 8.6 1.0 ug/L 1,2-dichloropropane MW-81 4/17/2018 8.6 1.0 ug/L 1,2-dichloropropane MW-81 4/12/2019 1.5 1.0 ug/L 1,2-dichloropropane MW-81 4/10/2020 1.1 1.0 ug/L 1,2-dichloropropane MW-81 4/05/2021 4.0 1.0 ug/L 1,2-dichloropropane MW-81 4/06/2022 2.6 1.0 ug/L 1,2-dichloropropane MW-81 4/06/2022 2.6 1.0 ug/L 1,2-dichloropropane MW-81 4/10/2023 3.5 1.0 ug/L 1,2-dichloropropane MW-81 4/10/2023 3.5 1.0 ug/L 1,2-dichloropropane MW-81 4/11/2023 3.5 1.0 ug/L 1,2-dichloropropane MW-81 4/16/2024 6.5 1.0 ug/L 1,2-dichlorobenzene MW-81 4/16/2024 6.5 1.0 ug/L 1,3-dichlorobenzene MW-81 4/16/2024 6.5 1.0 ug/L 1,4-dichlorobenzene MW-81 4/16/2024 6.5 1.0 ug/L 1,4-dichlorobenzene MW-81 4/16/2024 6.5 1.0 ug/L 1,4-dichlorobenzene MW-81 4/16/2020 1.4 1.0 ug/L 1,4-dichlorobenzene MW-81 4/16/2009 2.4 1.0 ug/L 1,4-dichlorobenzene MW-81 4/16/2009 2.4 1.0 ug/L 1,4-dichlorobenzene MW-81 4/16/2009 2.4 1.0 ug/L 1,4-dichlorobenzene MW-81 4/16/2001 3.5 1.0 ug/L 1,4-dichlorobenzene MW-81 4/16/2001 3.5 1.0 ug/L 1,4-dichlorobenzene MW-81							
1.2-dichloropropane MW-81 4/14/2016 11.1 1.0 ug/L 1.2-dichloropropane MW-81 4/14/2016 11.1 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2017 9.1 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2017 9.1 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2017 12.6 1.0 ug/L 1.2-dichloropropane MW-81 4/17/2018 8.6 1.0 ug/L 1.2-dichloropropane MW-81 4/17/2018 8.6 1.0 ug/L 1.2-dichloropropane MW-81 4/12/2019 1.9 1.0 ug/L 1.2-dichloropropane MW-81 4/12/2019 1.9 1.5 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2020 1.1 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2020 1.1 1.0 ug/L 1.2-dichloropropane MW-81 4/10/2020 7.9 1.0 ug/L 1.2-dichloropropane MW-81 4/16/2021 9.3 1.0 ug/L 1.2-dichloropropane MW-81 4/16/2022 8.1 1.0 ug/L 1.2-dichloropropane MW-81 4/16/2023 8.4 1.0 ug/L 1.2-dichloropropane MW-81 4/16/2024 6.5 1.0 ug/L 1.2-dichloropropane MW-81 4/16/2024 6.5 1.0 ug/L 1.4-dichlorobenzene MW-81 4/16/2020 1.4 1.0 ug/L 1.4-dichlorobenzene MW-81 4/16/2020 1.4 1.0 ug/L 1.4-dichlorobenzene MW-81 4/16/2000 1.4 1.0 ug/L 1.4-dichlorobenzene MW-81 4/16/2000 1.4 1.0 ug/L 1.4-dichlorobenzene MW-81 4/06/2008 2.2 1.0 ug/L 1.4-dichlorobenzene MW-81 4/06/2001 1.8 1.0 ug/L 1.4-dichlorobenzene MW-81 4/06/2001 1.8 1.0 ug/L 1.4-dichlorobenzene							
1,2-dichloropropane							
1.2-dichloropropane	'	1					
1,2-dichloropropane							
1,2-dichloropropane							
1,2-dichloropropane MW-81 4/17/2018 8.6 1.0 ug/L 1,2-dichloropropane MW-81 10/22/2018 1.9 1.0 ug/L 1,2-dichloropropane MW-81 4/22/2019 1.9 1.0 ug/L 1,2-dichloropropane MW-81 10/23/2019 1.5 1.0 ug/L 1,2-dichloropropane MW-81 10/23/2019 1.5 1.0 ug/L 1,2-dichloropropane MW-81 10/18/2020 7.9 1.0 ug/L 1,2-dichloropropane MW-81 10/18/2021 4.0 1.0 ug/L 1,2-dichloropropane MW-81 10/18/2021 9.3 1.0 ug/L 1,2-dichloropropane MW-81 4/08/2021 9.3 1.0 ug/L 1,2-dichloropropane MW-81 4/08/2022 2.6 1.0 ug/L 1,2-dichloropropane MW-81 4/08/2022 2.6 1.0 ug/L 1,2-dichloropropane MW-81 4/11/2023 3.5 1.0 ug/L 1,2-dichloropropane MW-81 4/11/2023 3.5 1.0 ug/L 1,2-dichloropropane MW-81 4/11/2023 3.5 1.0 ug/L 1,2-dichloropropane MW-81 4/18/2024 6.5 1.0 ug/L 1,2-dichloropropane MW-81 4/18/2024 6.5 1.0 ug/L 1,2-dichloropropane MW-81 4/18/2024 6.5 1.0 ug/L 1,4-dichlorobenzene MW-81 4/18/2000 1.4 1.0 ug/L 1,4-dichlorobenzene MW-81 4/18/2000 1.0 1.0 ug/L 1,4-dichlorobenzene MW-81 4/18/2000 1.0 1.0 ug/L 1,4-dichlorobenzene MW-81 4/18/2000 1.0 1.0 ug/L 1,4-dichlorobenzene MW-81 4/20/2008 2.2 1.0 ug/L 1,4-dichlorobenzene MW-81 4/20/2010 3.5 1.0 ug/L 1,4-dichlorobenzene MW-81 4/20/2011 3.0 1.0 ug/L 1,4-dichlorobenzene							
12-dichloropropane							
12-dichloropropane							
12-dichloropropane							
1,2-dichloropropane							
1,2-dichloropropane		1					
1,2-dichloropropane							
1,2-dichloropropane							
1,2-dichloropropane							
1,2-dichloropropane							
1,2-dichloropropane					- 1		
1,2-dichloropropane							
1,2-dichloropropane							
1,2-dichloropropane							
1,4-dichlorobenzene		1					
1,4-dichlorobenzene MW-81 4/13/2000 1.0 1.0 ug/L 1,4-dichlorobenzene MW-81 7/05/2000 1.4 1.0 ug/L 1,4-dichlorobenzene MW-81 6/20/2008 2.9 1.0 ug/L 1,4-dichlorobenzene MW-81 8/04/2008 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 12/08/2008 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 4/01/2009 1.3 1.0 ug/L 1,4-dichlorobenzene MW-81 4/02/2010 3.5 1.0 ug/L 1,4-dichlorobenzene MW-81 4/05/2011 1.6 1.0 ug/L 1,4-dichlorobenzene MW-81 4/05/2011 1.6 1.0 ug/L 1,4-dichlorobenzene MW-81 4/06/2011 1.9 1.0 ug/L 1,4-dichlorobenzene MW-81 4/04/2013 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 10/09/2012 1.9 1.0 ug/L							
1,4-dichlorobenzene							
1,4-dichlorobenzene MW-81 6/20/2008 2.9 1.0 ug/L 1,4-dichlorobenzene MW-81 8/04/2008 2.2 1.0 ug/L 1,4-dichlorobenzene MW-81 12/08/2008 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 1/20/2009 1.3 1.0 ug/L 1,4-dichlorobenzene MW-81 10/21/2009 2.4 1.0 ug/L 1,4-dichlorobenzene MW-81 4/20/2010 3.5 1.0 ug/L 1,4-dichlorobenzene MW-81 10/08/2010 1.8 1.0 ug/L 1,4-dichlorobenzene MW-81 10/06/2011 1.6 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2012 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 10/09/2012 1.9 1.0 ug/L 1,4-dichlorobenzene MW-81 10/16/2013 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 10/16/2014 1.6 1.0 ug/L <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1,4-dichlorobenzene MW-81 8/04/2008 2.2 1.0 ug/L 1,4-dichlorobenzene MW-81 12/08/2008 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 4/01/2009 1.3 1.0 ug/L 1,4-dichlorobenzene MW-81 10/21/2009 2.4 1.0 ug/L 1,4-dichlorobenzene MW-81 4/20/2010 3.5 1.0 ug/L 1,4-dichlorobenzene MW-81 10/08/2010 1.8 1.0 ug/L 1,4-dichlorobenzene MW-81 4/05/2011 1.6 1.0 ug/L 1,4-dichlorobenzene MW-81 4/05/2011 1.6 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2012 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 4/06/2012 1.9 1.0 ug/L 1,4-dichlorobenzene MW-81 4/01/2013 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2014 1.7 1.0 ug/L		1					
1,4-dichlorobenzene MW-81 12/08/2008 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 4/01/2009 1.3 1.0 ug/L 1,4-dichlorobenzene MW-81 10/21/2009 2.4 1.0 ug/L 1,4-dichlorobenzene MW-81 10/21/2009 3.5 1.0 ug/L 1,4-dichlorobenzene MW-81 4/05/2010 1.8 1.0 ug/L 1,4-dichlorobenzene MW-81 10/08/2011 1.6 1.0 ug/L 1,4-dichlorobenzene MW-81 10/06/2011 1.9 1.0 ug/L 1,4-dichlorobenzene MW-81 10/06/2011 1.9 1.0 ug/L 1,4-dichlorobenzene MW-81 10/09/2012 1.9 1.0 ug/L 1,4-dichlorobenzene MW-81 4/09/2013 2.3 1.0 ug/L 1,4-dichlorobenzene MW-81 4/04/2013 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2014 1.6 1.0 ug/L <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1,4-dichlorobenzene MW-81 4/01/2009 1.3 1.0 ug/L 1,4-dichlorobenzene MW-81 10/21/2009 2.4 1.0 ug/L 1,4-dichlorobenzene MW-81 4/20/2010 3.5 1.0 ug/L 1,4-dichlorobenzene MW-81 4/20/2010 1.8 1.0 ug/L 1,4-dichlorobenzene MW-81 4/05/2011 1.6 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2012 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2012 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2012 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 4/04/2013 2.3 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2013 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2013 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2014 1.7 1.0 ug/L							
1,4-dichlorobenzene							
1,4-dichlorobenzene MW-81 4/20/2010 3.5 1.0 ug/L 1,4-dichlorobenzene MW-81 10/08/2010 1.8 1.0 ug/L 1,4-dichlorobenzene MW-81 4/05/2011 1.6 1.0 ug/L 1,4-dichlorobenzene MW-81 4/05/2011 1.9 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2012 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 10/09/2012 1.9 1.0 ug/L 1,4-dichlorobenzene MW-81 4/04/2013 2.3 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2013 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2013 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2014 1.7 1.0 ug/L 1,4-dichlorobenzene MW-81 4/03/2015 1.5 1.0 ug/L 1,4-dichlorobenzene MW-81 4/03/2015 1.5 1.0 ug/L							
1,4-dichlorobenzene MW-81 10/08/2010 1.8 1.0 ug/L 1,4-dichlorobenzene MW-81 4/05/2011 1.6 1.0 ug/L 1,4-dichlorobenzene MW-81 10/06/2011 1.9 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2012 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 10/09/2012 1.9 1.0 ug/L 1,4-dichlorobenzene MW-81 4/04/2013 2.3 1.0 ug/L 1,4-dichlorobenzene MW-81 10/16/2013 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2014 1.7 1.0 ug/L 1,4-dichlorobenzene MW-81 10/16/2014 1.6 1.0 ug/L 1,4-dichlorobenzene MW-81 4/03/2015 1.5 1.0 ug/L 1,4-dichlorobenzene MW-81 4/03/2015 1.5 1.0 ug/L 1,4-dichlorobenzene MW-81 10/01/2015 3.2 1.0 ug/L <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1,4-dichlorobenzene							
1,4-dichlorobenzene							
1,4-dichlorobenzene							
1,4-dichlorobenzene MW-81 10/09/2012 1.9 1.0 ug/L 1,4-dichlorobenzene MW-81 4/04/2013 2.3 1.0 ug/L 1,4-dichlorobenzene MW-81 10/16/2013 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 10/16/2014 1.7 1.0 ug/L 1,4-dichlorobenzene MW-81 10/16/2014 1.6 1.0 ug/L 1,4-dichlorobenzene MW-81 4/03/2015 1.5 1.0 ug/L 1,4-dichlorobenzene MW-81 10/01/2015 1.5 1.0 ug/L 1,4-dichlorobenzene MW-81 4/14/2016 2.2 1.0 ug/L 1,4-dichlorobenzene MW-81 10/13/2016 3.2 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2017 2.8 1.0 ug/L 1,4-dichlorobenzene MW-81 4/17/2018 4.2 1.0 ug/L 1,4-dichlorobenzene MW-81 10/23/2019 8.0 1.0 ug/L <td> 1,1 415111515251125115</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,1 415111515251125115						
1,4-dichlorobenzene MW-81 4/04/2013 2.3 1.0 ug/L 1,4-dichlorobenzene MW-81 10/16/2013 2.0 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2014 1.7 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2014 1.6 1.0 ug/L 1,4-dichlorobenzene MW-81 4/03/2015 1.5 1.0 ug/L 1,4-dichlorobenzene MW-81 10/01/2015 1.5 1.0 ug/L 1,4-dichlorobenzene MW-81 4/14/2016 2.2 1.0 ug/L 1,4-dichlorobenzene MW-81 10/13/2016 3.2 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2017 2.8 1.0 ug/L 1,4-dichlorobenzene MW-81 10/09/2017 3.4 1.0 ug/L 1,4-dichlorobenzene MW-81 4/17/2018 4.2 1.0 ug/L 1,4-dichlorobenzene MW-81 10/23/2019 7.6 1.0 ug/L							
1,4-dichlorobenzene							
1,4-dichlorobenzene							
1,4-dichlorobenzene							
1,4-dichlorobenzene							
1,4-dichlorobenzene							
1,4-dichlorobenzene	II '						
1,4-dichlorobenzene MW-81 10/13/2016 3.2 1.0 ug/L 1,4-dichlorobenzene MW-81 4/10/2017 2.8 1.0 ug/L 1,4-dichlorobenzene MW-81 10/09/2017 3.4 1.0 ug/L 1,4-dichlorobenzene MW-81 4/17/2018 4.2 1.0 ug/L 1,4-dichlorobenzene MW-81 4/22/2019 8.0 1.0 ug/L 1,4-dichlorobenzene MW-81 10/23/2019 7.6 1.0 ug/L 1,4-dichlorobenzene MW-81 10/19/2020 6.6 1.0 ug/L 1,4-dichlorobenzene MW-81 4/05/2021 5.2 1.0 ug/L 1,4-dichlorobenzene MW-81 10/08/2021 5.0 1.0 ug/L 1,4-dichlorobenzene MW-81 4/06/2022 4.6 1.0 ug/L 1,4-dichlorobenzene MW-81 10/25/2022 5.8 1.0 ug/L							
1,4-dichlorobenzene							
1,4-dichlorobenzene							
1,4-dichlorobenzene							
1,4-dichlorobenzene MW-81 4/22/2019 8.0 1.0 ug/L 1,4-dichlorobenzene MW-81 10/23/2019 7.6 1.0 ug/L 1,4-dichlorobenzene MW-81 10/19/2020 6.6 1.0 ug/L 1,4-dichlorobenzene MW-81 4/05/2021 5.2 1.0 ug/L 1,4-dichlorobenzene MW-81 10/08/2021 5.0 1.0 ug/L 1,4-dichlorobenzene MW-81 4/06/2022 4.6 1.0 ug/L 1,4-dichlorobenzene MW-81 10/25/2022 5.8 1.0 ug/L							
1,4-dichlorobenzene							
1,4-dichlorobenzene							
1,4-dichlorobenzene							
1,4-dichlorobenzene							
1,4-dichlorobenzene							
1,4-dichlorobenzene MW-81 10/25/2022 5.8 1.0 ug/L							
	1,4-dichlorobenzene	MW-81	4/11/2023		4.6		

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
1,4-dichlorobenzene	MW-81	10/13/2023		5.7	1.0	ug/L
1,4-dichlorobenzene	MW-81	4/16/2024		4.7	1.0	ug/L
1,4-dichlorobenzene	MW-81	10/15/2024		5.6	1.0	ug/L
Acetone	MW-81	3/28/2008		31.0	10.0	ug/L
Acetone	MW-81	10/21/2009		61.2	10.0	ug/L
Acetone	MW-81	10/22/2018		26.7	10.0	ug/L
Benzene	MW-81	7/13/1993		4.8	1.0	ug/L
Benzene	MW-81	1/25/1994		21.4	10.0	ug/L
Benzene	MW-81	4/14/1994		8.0	1.0	ug/L
Benzene	MW-81	7/08/1994		8.9	1.0	ug/L
Benzene	MW-81	10/20/1994		6.3	1.0	ug/L
Benzene	MW-81	1/04/1995		2.2	1.0	ug/L
Benzene	MW-81	10/08/1996		1.0	1.0	ug/L
Benzene	MW-81	4/19/1999		1.1	1.0	ug/L
Benzene	MW-81	10/04/1999		1.0	1.0	ug/L
Benzene	MW-81	1/06/2000		1.1	1.0	ug/L
Benzene	MW-81	7/05/2000		1.1	1.0	ug/L
Benzene	MW-81	4/24/2002		1.0	1.0	ug/L
Benzene	MW-81	4/22/2003		1.0	1.0	ug/L
Benzene	MW-81	3/28/2008		2.2	1.0	ug/L
Benzene	MW-81	6/20/2008		4.2	1.0	ug/L
Benzene	MW-81	8/04/2008		3.4	1.0	ug/L
Benzene	MW-81	12/08/2008		3.0	1.0	ug/L
Benzene	MW-81	4/01/2009		2.2	1.0	ug/L
Benzene	MW-81	10/21/2009		3.6	1.0	ug/L
Benzene	MW-81	4/20/2010		4.0	1.0	ug/L
Benzene Benzene	MW-81 MW-81	10/08/2010 4/05/2011		3.6 2.2	1.0 1.0	ug/L ug/L
	MW-81	10/06/2011		2.2	1.0	
Benzene	MW-81	4/10/2012		2.0		ug/L
Benzene	MW-81	10/09/2012		1.2	1.0 1.0	ug/L
Benzene Benzene	MW-81	4/04/2013		1.1	1.0	ug/L ug/L
Benzene	MW-81	10/16/2013		1.1	1.0	ug/L ug/L
Benzene	MW-81	1		1.2	1.0	
Benzene	MW-81	10/13/2016 4/10/2017		1.5	1.0	ug/L ug/L
Benzene	MW-81	10/09/2017		1.1	1.0	ug/L ug/L
Benzene	MW-81	4/17/2018		1.0	1.0	
Benzene	MW-81	4/22/2019		2.9	1.0	ug/L ug/L
Benzene	MW-81	10/23/2019		2.7	1.0	ug/L ug/L
Benzene	MW-81	4/10/2020		2.7	1.0	ug/L ug/L
Benzene	MW-81	10/19/2020		1.5	1.0	ug/L ug/L
Benzene	MW-81	4/05/2021		1.1	1.0	ug/L
Bis(2-ethylhexyl) phthalate	MW-81	4/03/2015		36	10	ug/L
Chlorobenzene	MW-81	10/13/2016		1.1	1.0	ug/L
Chlorobenzene	MW-81	4/10/2017		1.0	1.0	ug/L
Chlorobenzene	MW-81	10/09/2017		1.1	1.0	ug/L
Chlorobenzene	MW-81	4/17/2018		1.1	1.0	ug/L
Chlorobenzene	MW-81	4/22/2019		1.4	1.0	ug/L
Chlorobenzene	MW-81	10/23/2019		1.4	1.0	ug/L
Chlorobenzene	MW-81	4/10/2020		1.3	1.0	ug/L
Chlorobenzene	MW-81	10/19/2020		1.5	1.0	ug/L
Chlorobenzene	MW-81	4/05/2021		1.2	1.0	ug/L
Chlorobenzene	MW-81	10/08/2021		1.3	1.0	ug/L
Chlorobenzene	MW-81	4/06/2022		1.2		ug/L
Chlorobenzene	MW-81	10/25/2022		1.7		ug/L
Chlorobenzene	MW-81	4/11/2023		1.4		ug/L
Chlorobenzene	MW-81	10/13/2023		1.9		ug/L
Chlorobenzene	MW-81	4/16/2024		1.7	1.0	
Chlorobenzene	MW-81	10/15/2024		1.8		ug/L
Chloroethane	MW-81	3/28/2008		13.4	1.0	
Chloroethane	MW-81	6/20/2008		13.9	1.0	
Chloroethane	MW-81	8/04/2008		13.4		ug/L
Chloroethane	MW-81	10/03/2008		14.2	1.0	
Chloroethane	MW-81	12/08/2008		15.0	1.0	
Chloroethane	MW-81	4/01/2009		14.0		ug/L
Chloroethane	MW-81	10/21/2009		18.1	1.0	
Chloroethane	MW-81	4/20/2010		14.4	1.0	
Chloroethane	MW-81	10/08/2010		12.9		ug/L
Chloroethane	MW-81	4/05/2011		14.0		ug/L
Chloroethane	MW-81	10/06/2011		13.2		ug/L
Chloroethane	MW-81	4/10/2012		12.2	1.0	
Chloroethane	MW-81	10/09/2012		11.5		ug/L
Chloroethane	MW-81	4/04/2013		10.2		ug/L
Chloroethane	MW-81	10/16/2013		12.5		ug/L
Chloroethane	MW-81	4/10/2014		13.4		ug/L
Onloroctiano						

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Chloroethane	MW-81	4/03/2015		13.7	1.0	ug/L
Chloroethane	MW-81	10/01/2015		8.6	1.0	ug/L
Chloroethane	MW-81	4/14/2016		7.5	1.0	ug/L
Chloroethane Chloroethane	MW-81 MW-81	10/13/2016 4/10/2017		11.5 9.8	1.0 1.0	ug/L
Chloroethane	MW-81	10/09/2017		9.6 8.7	1.0	ug/L ug/L
Chloroethane	MW-81	4/17/2018		7.1	1.0	ug/L ug/L
Chloroethane	MW-81	10/22/2018		5.2	1.0	ug/L
Chloroethane	MW-81	4/22/2019		6.0	1.0	ug/L
Chloroethane	MW-81	10/23/2019		7.8	1.0	ug/L
Chloroethane	MW-81	4/10/2020		6.0	1.0	ug/L
Chloroethane	MW-81	10/19/2020		9.2	1.0	ug/L
Chloroethane	MW-81	4/05/2021		5.6	1.0	ug/L
Chloroethane	MW-81	10/08/2021		5.7	1.0	ug/L
Chloroethane	MW-81	4/06/2022		5.0	1.0	ug/L
Chloroethane Chloroethane	MW-81 MW-81	10/25/2022 4/11/2023		7.2 5.4	1.0 1.0	ug/L
Chloroethane	MW-81	10/13/2023		6.5	1.0	ug/L ug/L
Chloroethane	MW-81	4/16/2024		6.8	1.0	ug/L
Chloroethane	MW-81	10/15/2024		6.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-81	3/28/2008		133	1	ug/L
Cis-1,2-dichloroethylene	MW-81	6/20/2008		209	1	ug/L
Cis-1,2-dichloroethylene	MW-81	8/04/2008		190	1	ug/L
Cis-1,2-dichloroethylene	MW-81	10/03/2008		206	1	ug/L
Cis-1,2-dichloroethylene	MW-81	12/08/2008		218	1	ug/L
Cis-1,2-dichloroethylene	MW-81	12/08/2008		188	5	ug/L
Cis-1,2-dichloroethylene	MW-81	4/01/2009		223	1	ug/L
Cis-1,2-dichloroethylene	MW-81	4/01/2009		215	5	ug/L
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-81 MW-81	10/21/2009		220 228	5 1	ug/L
Cis-1,2-dichloroethylene	MW-81	10/21/2009 4/20/2010		245	5	ug/L ug/L
Cis-1,2-dichloroethylene	MW-81	10/08/2010		295	5	ug/L
Cis-1,2-dichloroethylene	MW-81	4/05/2011		305	5	ug/L
Cis-1,2-dichloroethylene	MW-81	10/06/2011		250	5	ug/L
Cis-1,2-dichloroethylene	MW-81	4/10/2012		267	5	ug/L
Cis-1,2-dichloroethylene	MW-81	10/09/2012		295	5	ug/L
Cis-1,2-dichloroethylene	MW-81	4/04/2013		238	5	ug/L
Cis-1,2-dichloroethylene	MW-81	10/16/2013		268	5	ug/L
Cis-1,2-dichloroethylene	MW-81	4/10/2014		226	10	ug/L
Cis-1,2-dichloroethylene	MW-81	10/16/2014		288	1	ug/L
Cis-1,2-dichloroethylene	MW-81 MW-81	4/03/2015		252 201	1 1	ug/L
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-81	10/01/2015 4/14/2016		247	1	ug/L ug/L
Cis-1,2-dichloroethylene	MW-81	10/13/2016		243	10	ug/L
Cis-1,2-dichloroethylene	MW-81	4/10/2017		205	1	ug/L
Cis-1,2-dichloroethylene	MW-81	10/09/2017		188	5	ug/L
Cis-1,2-dichloroethylene	MW-81	4/17/2018		195	1	ug/L
Cis-1,2-dichloroethylene	MW-81	10/22/2018		101	1	ug/L
Cis-1,2-dichloroethylene	MW-81	4/22/2019		84	1	ug/L
Cis-1,2-dichloroethylene	MW-81	10/23/2019		127	1	ug/L
Cis-1,2-dichloroethylene	MW-81	4/10/2020		83	1	ug/L
Cis-1,2-dichloroethylene	MW-81	10/19/2020		210	10	ug/L
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-81 MW-81	4/05/2021 10/08/2021		148 188	1 1	ug/L ug/L
Cis-1,2-dichloroethylene	MW-81	4/06/2022		192	1	ug/L
Cis-1,2-dichloroethylene	MW-81	10/25/2022		225	-	ug/L
Cis-1,2-dichloroethylene	MW-81	4/11/2023		140	1	ug/L
Cis-1,2-dichloroethylene	MW-81	10/13/2023		181	1	ug/L
Cis-1,2-dichloroethylene	MW-81	4/16/2024		164	1	ug/L
Cis-1,2-dichloroethylene	MW-81	10/15/2024		127	1	ug/L
Tetrachloroethylene	MW-81	3/28/2008		3.6	1.0	ug/L
Tetrachloroethylene	MW-81	8/04/2008		1.1	1.0	ug/L
Tetrachloroethylene	MW-81	12/08/2008		1.3	1.0	ug/L
Tetrachloroethylene	MW-81	4/01/2009		6.7	1.0	ug/L
Tetrachloroethylene Tetrachloroethylene	MW-81 MW-81	4/05/2011		1.7 2.0	1.0 1.0	ug/L ug/L
Tetrachloroethylene	MW-81	10/06/2011 10/09/2012		1.6	1.0	ug/L ug/L
Tetrachloroethylene	MW-81	4/04/2013		1.0	1.0	ug/L ug/L
Tetrachloroethylene	MW-81	10/16/2013		4.0	1.0	ug/L ug/L
Toluene	MW-81	6/20/2008		2.2	1.0	ug/L
Toluene	MW-81	8/04/2008		1.2	1.0	ug/L
Trans-1,2-dichloroethylene	MW-81	3/28/2008		2.3		ug/L
Trans-1,2-dichloroethylene	MW-81	6/20/2008		3.8	1.0	ug/L
Trans-1,2-dichloroethylene	MW-81	8/04/2008		3.3	1.0	
Trans-1,2-dichloroethylene	MW-81	10/03/2008		2.8		ug/L
Trans-1,2-dichloroethylene	MW-81	12/08/2008		3.0	1.0	ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Trans-1,2-dichloroethylene	MW-81	4/01/2009		2.9	1.0	ug/L
Trans-1,2-dichloroethylene	MW-81	10/21/2009		4.2	1.0	ug/L
Trans-1,2-dichloroethylene	MW-81	4/20/2010		4.2	1.0	ug/L
Trans-1,2-dichloroethylene	MW-81	10/08/2010		3.8	1.0	ug/L
Trans-1,2-dichloroethylene	MW-81	4/05/2011		3.4	1.0	ug/L
Trans-1,2-dichloroethylene Trans-1,2-dichloroethylene	MW-81 MW-81	10/06/2011 4/10/2012		3.2 3.2	1.0 1.0	ug/L ug/L
Trans-1,2-dichloroethylene	MW-81	10/09/2012		2.9	1.0	ug/L ug/L
Trans-1,2-dichloroethylene	MW-81	4/04/2013		3.1	1.0	ug/L
Trans-1,2-dichloroethylene	MW-81	10/16/2013		3.5	1.0	ug/L
Trans-1,2-dichloroethylene	MW-81	4/10/2014		2.6	1.0	ug/L
Trans-1,2-dichloroethylene	MW-81	10/16/2014		2.5	1.0	ug/L
Trans-1,2-dichloroethylene	MW-81	4/03/2015		3.2	1.0	ug/L
Trans-1,2-dichloroethylene Trans-1,2-dichloroethylene	MW-81 MW-81	10/01/2015 4/14/2016		2.2 2.6	1.0 1.0	ug/L
Trans-1,2-dichloroethylene	MW-81	10/13/2016		3.1	1.0	ug/L ug/L
Trans-1,2-dichloroethylene	MW-81	4/10/2017		3.0	1.0	ug/L
Trans-1,2-dichloroethylene	MW-81	10/09/2017		2.6	1.0	ug/L
Trans-1,2-dichloroethylene	MW-81	4/17/2018		2.4	1.0	ug/L
Trans-1,2-dichloroethylene	MW-81	4/22/2019		2.6	1.0	ug/L
Trans-1,2-dichloroethylene	MW-81	10/23/2019		2.2	1.0	ug/L
Trans-1,2-dichloroethylene	MW-81	4/10/2020		2.4	1.0	ug/L
Trans-1,2-dichloroethylene	MW-81	10/19/2020 4/05/2021		4.1 1.8	1.0 1.0	ug/L
Trans-1,2-dichloroethylene Trans-1,2-dichloroethylene	MW-81 MW-81	10/08/2021		1.8	1.0	ug/L ug/L
Trans-1,2-dichloroethylene	MW-81	10/06/2021		2.4	1.0	ug/L ug/L
Trans-1,2-dichloroethylene	MW-81	4/11/2023		2.2	1.0	ug/L
Trans-1,2-dichloroethylene	MW-81	10/13/2023		2.5	1.0	ug/L
Trans-1,2-dichloroethylene	MW-81	4/16/2024		2.2	1.0	ug/L
Trans-1,2-dichloroethylene	MW-81	10/15/2024		2.4	1.0	ug/L
Trichloroethylene	MW-81	4/22/1993		2.8	1.0	ug/L
Trichloroethylene	MW-81	7/13/1993		14.6 61.2	1.0	ug/L
Trichloroethylene Trichloroethylene	MW-81 MW-81	1/25/1994 4/14/1994		30.0	1.0 1.0	ug/L ug/L
Trichloroethylene	MW-81	7/08/1994		39.8	1.0	ug/L ug/L
Trichloroethylene	MW-81	10/20/1994		48.7	1.0	ug/L
Trichloroethylene	MW-81	1/04/1995		59.2	1.0	ug/L
Trichloroethylene	MW-81	4/21/1995		41.2	1.0	ug/L
Trichloroethylene	MW-81	7/07/1995		50.1	1.0	ug/L
Trichloroethylene	MW-81	10/12/1995		64.4	1.0	ug/L
Trichloroethylene	MW-81	1/10/1996		59.7 61.1	1.0 1.0	ug/L
Trichloroethylene Trichloroethylene	MW-81 MW-81	4/15/1996 7/17/1996		34.6	1.0	ug/L ug/L
Trichloroethylene	MW-81	10/08/1996		46.0	1.0	ug/L
Trichloroethylene	MW-81	1/21/1997		38.8	1.0	ug/L
Trichloroethylene	MW-81	4/11/1997		42.4	1.0	ug/L
Trichloroethylene	MW-81	7/17/1997		42.9	1.0	ug/L
Trichloroethylene	MW-81	10/15/1997		45.5	1.0	ug/L
Trichloroethylene	MW-81	1/27/1998		44.1	1.0	ug/L
Trichloroethylene Trichloroethylene	MW-81 MW-81	4/21/1998 7/21/1998		36.7 33.5	1.0 1.0	ug/L ug/L
Trichloroethylene	MW-81	10/09/1998		35.8	1.0	ug/L ug/L
Trichloroethylene	MW-81	1/26/1999		41.2	1.0	ug/L
Trichloroethylene	MW-81	4/19/1999		35.4	1.0	ug/L
Trichloroethylene	MW-81	7/29/1999		33.0		ug/L
Trichloroethylene	MW-81	10/04/1999		52.8	1.0	
Trichloroethylene	MW-81	1/06/2000		72.2	1.0	ug/L
Trichloroethylene Trichloroethylene	MW-81 MW-81	4/13/2000 7/05/2000		57.8 100.0	1.0 1.0	ug/L
Trichloroethylene	MW-81	10/08/2000		55.9	1.0	ug/L ug/L
Trichloroethylene	MW-81	4/27/2001		57.8	1.0	ug/L ug/L
Trichloroethylene	MW-81	10/18/2001		61.9	1.0	ug/L
Trichloroethylene	MW-81	4/24/2002		71.3	1.0	ug/L
Trichloroethylene	MW-81	10/14/2002		41.2	1.0	ug/L
Trichloroethylene	MW-81	4/22/2003		49.9	1.0	ug/L
Trichloroethylene	MW-81	10/06/2003		38.4	1.0	ug/L
Trichloroethylene Trichloroethylene	MW-81 MW-81	4/26/2004		39.4 44.5	1.0 1.0	ug/L ug/L
Trichloroethylene	MW-81	4/11/2005 10/05/2005		20.2	1.0	ug/L ug/L
Trichloroethylene	MW-81	4/05/2006		32.5	1.0	ug/L ug/L
Trichloroethylene	MW-81	10/04/2006		21.1	1.0	ug/L
Trichloroethylene	MW-81	4/12/2007		16.2	1.0	ug/L
Trichloroethylene	MW-81	10/10/2007		37.2	1.0	ug/L
Trichloroethylene	MW-81	3/28/2008		21.3	1.0	ug/L
Trichloroethylene	MW-81	6/20/2008		22.0	1.0	ug/L
Trichloroethylene	MW-81	8/04/2008		15.8	1.0	ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Trichloroethylene	MW-81	10/03/2008		17.8	1.0	ug/L
Trichloroethylene	MW-81	12/08/2008		12.0	1.0	ug/L
Trichloroethylene	MW-81	4/01/2009		36.2	1.0	ug/L
Trichloroethylene	MW-81	10/21/2009		10.2	1.0	ug/L
Trichloroethylene	MW-81	4/20/2010		6.4	1.0	ug/L
Trichloroethylene	MW-81	10/08/2010		5.2	1.0	ug/L
Trichloroethylene	MW-81	4/05/2011		21.2	1.0	ug/L
Trichloroethylene Trichloroethylene	MW-81 MW-81	10/06/2011 4/10/2012		12.5 10.1	1.0 1.0	ug/L ug/L
Trichloroethylene	MW-81	10/09/2012		12.2	1.0	ug/L ug/L
Trichloroethylene	MW-81	4/04/2013		11.9	1.0	ug/L ug/L
Trichloroethylene	MW-81	10/16/2013		18.3	1.0	ug/L
Trichloroethylene	MW-81	4/10/2014		7.1	1.0	ug/L
Trichloroethylene	MW-81	10/16/2014		10.0	1.0	ug/L
Trichloroethylene	MW-81	4/03/2015		6.7	1.0	ug/L
Trichloroethylene	MW-81	10/01/2015		12.2	1.0	ug/L
Trichloroethylene	MW-81	4/14/2016		4.7	1.0	ug/L
Trichloroethylene	MW-81	10/13/2016		2.1	1.0	ug/L
Trichloroethylene	MW-81	4/10/2017		5.4 9.4	1.0	ug/L
Trichloroethylene Trichloroethylene	MW-81 MW-81	10/09/2017 4/17/2018		4.3	1.0 1.0	ug/L
Trichloroethylene	MW-81	10/19/2020		3.0	1.0	ug/L ug/L
Trichloroethylene	MW-81	4/05/2021		2.0	1.0	ug/L ug/L
Trichloroethylene	MW-81	10/08/2021		2.3	1.0	ug/L
Trichloroethylene	MW-81	4/06/2022		1.0	1.0	ug/L
Trichloroethylene	MW-81	10/25/2022		2.9	1.0	ug/L
Trichloroethylene	MW-81	4/11/2023		2.6	1.0	ug/L
Trichloroethylene	MW-81	10/13/2023		3.3	1.0	ug/L
Trichloroethylene	MW-81	4/16/2024		1.4	1.0	ug/L
Trichloroethylene	MW-81	10/15/2024		2.2	1.0	ug/L
Vinyl chloride	MW-81 MW-81	3/28/2008 6/20/2008		7.6 15.7	1.0 1.0	ug/L
Vinyl chloride Vinyl chloride	MW-81	8/04/2008		12.4	1.0	ug/L ug/L
Viriyi chioride Vinyl chloride	MW-81	10/03/2008		7.5	1.0	ug/L ug/L
Vinyl chloride	MW-81	12/08/2008		13.2	1.0	ug/L
Vinyl chloride	MW-81	4/01/2009		8.3	1.0	ug/L
Vinyl chloride	MW-81	10/21/2009		26.8	1.0	ug/L
Vinyl chloride	MW-81	4/20/2010		22.9	1.0	ug/L
Vinyl chloride	MW-81	10/08/2010		21.1	1.0	ug/L
Vinyl chloride	MW-81	4/05/2011		13.8	1.0	ug/L
Vinyl chloride	MW-81	10/06/2011		9.3	1.0	ug/L
Vinyl chloride	MW-81	4/10/2012		12.4	1.0	ug/L
Vinyl chloride	MW-81	10/09/2012		8.4	1.0	ug/L
Vinyl chloride Vinyl chloride	MW-81 MW-81	4/04/2013 10/16/2013		7.8 9.4	1.0 1.0	ug/L ug/L
Viriyi chioride Vinyl chloride	MW-81	4/10/2014		11.0	1.0	ug/L ug/L
Vinyl chloride	MW-81	10/16/2014		9.7	1.0	ug/L ug/L
Vinyl chloride	MW-81	4/03/2015		12.9	1.0	ug/L
Vinyl chloride	MW-81	10/01/2015		8.8	1.0	ug/L
Vinyl chloride	MW-81	4/14/2016		15.8	1.0	ug/L
Vinyl chloride	MW-81	10/13/2016		20.1	1.0	ug/L
Vinyl chloride	MW-81	4/10/2017		16.5	1.0	ug/L
Vinyl chloride	MW-81	10/09/2017		13.2	1.0	ug/L
Vinyl chloride	MW-81	4/17/2018		13.6	1.0	ug/L
Vinyl chloride	MW-81	10/22/2018		26.6		ug/L
Vinyl chloride Vinyl chloride	MW-81 MW-81	4/22/2019 10/23/2019		15.5 24.2	1.0 1.0	ug/L ug/L
Viriyi chloride Vinyl chloride	MW-81	4/10/2020		13.9	1.0	ug/L ug/L
Vinyl chloride	MW-81	10/19/2020		15.4	1.0	ug/L ug/L
Vinyl chloride	MW-81	4/05/2021		11.3	1.0	ug/L
Vinyl chloride	MW-81	10/08/2021		7.2	1.0	ug/L
Vinyl chloride	MW-81	4/06/2022		7.0	1.0	ug/L
Vinyl chloride	MW-81	10/25/2022		8.4	1.0	ug/L
Vinyl chloride	MW-81	4/11/2023		7.7	1.0	ug/L
Vinyl chloride	MW-81	10/13/2023		6.7	1.0	ug/L
Vinyl chloride	MW-81	4/16/2024		6.8	1.0	ug/L
Vinyl chloride	MW-81	10/15/2024		6.5	1.0	
Acetone	MW-85	10/09/2017		15.4	10.0	ug/L
Acetone Benzene	MW-87 MW-87	10/09/2017 7/17/1997		18.4 1.3	10.0 1.0	ug/L ug/L
Bis(2-ethylhexyl) phthalate	MW-87	12/08/2008		28	8	ug/L ug/L
Bis(2-ethylhexyl) phthalate	MW-87	4/10/2014		13	10	ug/L ug/L
1,1-dichloroethane	MW-89	10/09/2012		4	1	ug/L
Acetone	MW-89	10/09/2017		18.2	10.0	ug/L
Bis(2-ethylhexyl) phthalate	MW-89	12/10/2008		60	11	ug/L
	MW-89	10/16/2013		9	_	ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Bis(2-ethylhexyl) phthalate	MW-89	4/10/2014		18	10	ug/L
Bis(2-ethylhexyl) phthalate 1,1,1-trichloroethane	MW-89 MW-91	4/14/2016 9/11/2000		19 1.1	13	ug/L ug/L
1,1,1-trichloroethane	MW-91	10/08/2000		1.0		ug/L ug/L
1,1-dichloroethane	MW-91	3/28/2008		5.5		ug/L
1,1-dichloroethane	MW-91	6/20/2008		4.4	1.0	
1,1-dichloroethane	MW-91	8/05/2008		6.5		ug/L
1,1-dichloroethane	MW-91	10/03/2008		9.3		ug/L
1,1-dichloroethane	MW-91	12/10/2008		6.8 5.3	1.0	ug/L ug/L
1,1-dichloroethane 1,1-dichloroethane	MW-91 MW-91	4/02/2009 10/21/2009		2.5		ug/L ug/L
1,1-dichloroethane	MW-91	4/20/2010		4.4	1.0	
1,1-dichloroethane	MW-91	10/08/2010		4.3		ug/L
1,1-dichloroethane	MW-91	4/05/2011		4.5		ug/L
1,1-dichloroethane	MW-91	10/06/2011		3.9	1.0	
1,1-dichloroethane 1,1-dichloroethane	MW-91 MW-91	4/10/2012 4/04/2013		3.9 1.0		ug/L ug/L
1,1-dichloroethane	MW-91	10/16/2013		3.4	1.0	
1,1-dichloroethane	MW-91	4/10/2014		1.8		ug/L
1,1-dichloroethane	MW-91	10/16/2014		2.4		ug/L
1,1-dichloroethane	MW-91	4/03/2015		6.1	1.0	
1,1-dichloroethane	MW-91	10/01/2015		3.6	1.0	
1,1-dichloroethane	MW-91	10/09/2017		2.5		ug/L
1,1-dichloroethane 1,1-dichloroethane	MW-91 MW-91	1/09/2018 4/22/2019		1.7 2.7	1.0 1.0	
1,1-dichloroethane	MW-91	10/19/2020		1.5		ug/L ug/L
Bis(2-ethylhexyl) phthalate	MW-91	8/05/2008		8	8	ug/L ug/L
Bis(2-ethylhexyl) phthalate	MW-91	12/10/2008		9	8	ug/L
Bis(2-ethylhexyl) phthalate	MW-91	10/08/2010		15	10	ug/L
Bis(2-ethylhexyl) phthalate	MW-91	10/16/2013		142	84	
Carbon disulfide	MW-91	4/06/2022		2.6	1.0	ug/L
Cis-1,2-dichloroethylene	MW-91	6/20/2008		1.0 3.8	1.0	ug/L
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-91 MW-91	8/05/2008 4/20/2010		1.0	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-91	10/06/2011		1.1	1.0	
Cis-1,2-dichloroethylene	MW-91	4/03/2015		1.5		ug/L
Tetrachloroethylene	MW-91	12/10/2008		1.1		ug/L
Trichloroethylene	MW-91	9/11/2000		1.0	1.0	
Trichloroethylene	MW-91	1/25/2002		1.1		ug/L
Trichloroethylene Trichloroethylene	MW-91 MW-91	4/24/2002 10/14/2002		1.0 1.2	1.0	ug/L ug/L
Trichloroethylene	MW-91	10/05/2004		1.2		ug/L ug/L
Trichloroethylene	MW-91	4/11/2005		.3	.3	ug/L
Trichloroethylene	MW-91	10/05/2005		1.9	1.0	ug/L
1,1-dichloroethane	MW-94	1/14/2011		40.0	1.0	ug/L
1,1-dichloroethane 1,1-dichloroethane	MW-94 MW-94	4/05/2011 6/18/2011		41.9 33.4	1.0 1.0	ug/L ug/L
1.1-dichloroethane	MW-94	8/11/2011		30.9	1.0	
1,1-dichloroethane	MW-94	10/06/2011		43.5		ug/L
1,1-dichloroethane	MW-94	4/10/2012		36.2		ug/L
1,1-dichloroethane	MW-94	10/09/2012		36.0		ug/L
1,1-dichloroethane	MW-94	4/04/2013		23.3		ug/L
1,1-dichloroethane 1,1-dichloroethane	MW-94 MW-94	10/16/2013 4/10/2014		24.3 21.1		ug/L ug/L
1,1-dichloroethane	MW-94	10/16/2014		16.1		ug/L ug/L
1,1-dichloroethane	MW-94	4/03/2015		11.3		ug/L
1,1-dichloroethane	MW-94	10/01/2015		8.2	1.0	ug/L
1,1-dichloroethane	MW-94	4/14/2016		8.6		ug/L
1,1-dichloroethane	MW-94	10/13/2016		9.8		ug/L
1,1-dichloroethane 1.1-dichloroethane	MW-94 MW-94	4/10/2017		7.7		ug/L
1,1-dichloroethane 1,1-dichloroethane	MW-94 MW-94	10/09/2017 4/17/2018		8.3 5.7	1.0	ug/L ug/L
1,1-dichloroethane	MW-94	10/22/2018		6.0		ug/L ug/L
1,1-dichloroethane	MW-94	4/22/2019		5.4		ug/L
1,1-dichloroethane	MW-94	10/23/2019		4.3	1.0	ug/L
1,1-dichloroethane	MW-94	4/10/2020		3.5		ug/L
1,1-dichloroethane	MW-94	10/19/2020		3.8		ug/L
1,1-dichloroethane	MW-94 MW-94	4/05/2021		1.8		ug/L
1,1-dichloroethane 1,1-dichloroethane	MW-94	10/08/2021 4/06/2022		2.6 1.9		ug/L ug/L
1,1-dichloroethane	MW-94	10/25/2022		2.4		ug/L ug/L
1,1-dichloroethane	MW-94	4/11/2023		1.6		ug/L
1,1-dichloroethane	MW-94	10/13/2023		2.4	1.0	ug/L
1,1-dichloroethane	MW-94	4/17/2024		1.3		ug/L
1,1-dichloroethane	MW-94	10/15/2024		1.0		ug/L
1,2-dichloroethane	MW-94	10/01/2015		1.1	1.0	ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
1,2-dichloroethane	MW-94	10/13/2016		1.9	1.0	ug/L
1,2-dichloroethane	MW-94	4/10/2017		1.4	1.0	ug/L
1,2-dichloroethane	MW-94	10/09/2017		1.5	1.0	ug/L
1,2-dichloroethane	MW-94	4/17/2018		1.3	1.0	ug/L
1,2-dichloropropane	MW-94	1/14/2011		3.7	1.0	ug/L
1,2-dichloropropane	MW-94	10/06/2011		3.0	1.0	ug/L
1,2-dichloropropane	MW-94	4/10/2012		4.0	1.0	ug/L
1,2-dichloropropane	MW-94	4/04/2013		4.4	1.0	ug/L
1,2-dichloropropane	MW-94	10/16/2013		3.8	1.0	ug/L
1,2-dichloropropane	MW-94	10/16/2014		3.8	1.0	ug/L
1,2-dichloropropane	MW-94	10/01/2015		2.4	1.0	ug/L
1,2-dichloropropane	MW-94	10/13/2016		2.8	1.0	ug/L
1,2-dichloropropane	MW-94	4/10/2017		2.7	1.0	ug/L
1,2-dichloropropane	MW-94	10/09/2017		3.2	1.0	ug/L
1,2-dichloropropane	MW-94	4/17/2018		2.9	1.0	ug/L
1,2-dichloropropane	MW-94	10/22/2018		4.5	1.0	ug/L
1,2-dichloropropane	MW-94	4/22/2019		3.0	1.0	ug/L
1,2-dichloropropane	MW-94	10/23/2019		2.4	1.0	ug/L
1,2-dichloropropane	MW-94	4/10/2020		2.2	1.0	ug/L
1,2-dichloropropane	MW-94	10/19/2020		2.7	1.0	ug/L
1,2-dichloropropane	MW-94	4/05/2021		1.6	1.0	ug/L
1,2-dichloropropane	MW-94	10/08/2021		2.2	1.0	ug/L
1,2-dichloropropane	MW-94	4/06/2022		1.7	1.0	ug/L
1,2-dichloropropane	MW-94	10/25/2022		2.1	1.0	ug/L
1,2-dichloropropane	MW-94	4/11/2023		1.4	1.0	ug/L
1,2-dichloropropane	MW-94	10/13/2023		2.2	1.0	ug/L
1,2-dichloropropane	MW-94	4/17/2024		1.1	1.0	ug/L
1,2-dichloropropane	MW-94	10/15/2024		1.0	1.0	ug/L
Acetone	MW-94	1/14/2011		43.5	10.0	ug/L
Acetone	MW-94	10/09/2012		32.1	10.0	ug/L
Acetone	MW-94	10/09/2017		38.8	10.0	ug/L
Acetone	MW-94	10/13/2023		15.6	10.0	ug/L
Benzene	MW-94	1/14/2011		1.1	1.0	ug/L
Benzene	MW-94	4/05/2011		1.2	1.0	ug/L
Benzene	MW-94	4/10/2012		1.3	1.0	ug/L
Benzene	MW-94	10/09/2012		1.2	1.0	ug/L
Benzene	MW-94	4/04/2013		2.0	1.0	ug/L
Benzene	MW-94	10/16/2013		1.6	1.0	ug/L
Benzene	MW-94	4/10/2014		1.4	1.0	ug/L
Benzene	MW-94	10/16/2014		4.2	1.0	ug/L
Benzene	MW-94	4/03/2015		2.6	1.0	ug/L
Benzene	MW-94	10/01/2015		3.2	1.0	ug/L
Benzene	MW-94	4/14/2016		3.5	1.0	ug/L
Benzene	MW-94	10/13/2016		4.5	1.0	ug/L
Benzene	MW-94	4/10/2017		2.8	1.0	ug/L
Benzene	MW-94	10/09/2017		3.6	1.0	ug/L
Benzene	MW-94	4/17/2018		2.4	1.0	ug/L
Benzene	MW-94	10/22/2018		3.5	1.0	ug/L
Benzene	MW-94	4/22/2019		2.5	1.0	ug/L
Benzene	MW-94	10/23/2019		2.3	1.0	ug/L
Benzene	MW-94	4/10/2020		2.2	1.0	ug/L
Benzene	MW-94	10/19/2020		2.4	1.0	ug/L
Benzene	MW-94	4/05/2021		1.6	1.0	ug/L
Benzene	MW-94	10/08/2021		1.6	1.0	ug/L
Benzene	MW-94	4/06/2022		2.1		ug/L
Benzene	MW-94	10/25/2022		2.1		ug/L
Benzene	MW-94	4/11/2023		1.9		ug/L
Benzene	MW-94	10/13/2023		1.7	1.0	
Benzene	MW-94	4/17/2024		2.0		ug/L
Benzene	MW-94	10/15/2024		1.8		ug/L
Bis(2-ethylhexyl) phthalate	MW-94	10/09/2012		8	8	
Chloroethane	MW-94	1/14/2011		16.5		ug/L
Chloroethane	MW-94	4/05/2011		19.0		ug/L
Chloroethane	MW-94	6/18/2011		6.4	1.0	
Chloroethane	MW-94	8/11/2011		12.7		ug/L
Chloroethane	MW-94	10/06/2011		19.8		ug/L
Chloroethane	MW-94	4/10/2012		16.7		ug/L
Chloroethane	MW-94	10/09/2012		18.2		ug/L
Chloroethane	MW-94	4/04/2013		14.3		ug/L
Chloroethane	MW-94	10/16/2013		17.2		ug/L
Chloroethane	MW-94	4/10/2014		18.5		ug/L
Chloroethane	MW-94	10/16/2014		16.4		ug/L ug/L
1	MW-94	4/03/2015		13.0		ug/L ug/L
Chloroethane		1,00,2010		10.0	1.0	- ~g/ -
Chloroethane Chloroethane				9.5	1 0	ua/l
Chloroethane Chloroethane Chloroethane	MW-94 MW-94	10/01/2015 4/14/2016		9.5 9.2		ug/L ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Chloroethane	MW-94	4/10/2017		8.9	1.0	ug/L
Chloroethane	MW-94	10/09/2017		8.6	1.0	ug/L
Chloroethane	MW-94	4/17/2018		5.6	1.0	ug/L
Chloroethane	MW-94	10/22/2018 4/22/2019		5.2	1.0	ug/L
Chloroethane Chloroethane	MW-94 MW-94	10/23/2019		5.4 6.0	1.0 1.0	ug/L ug/L
Chloroethane	MW-94	4/10/2020		4.4	1.0	ug/L ug/L
Chloroethane	MW-94	10/19/2020		5.2	1.0	ug/L
Chloroethane	MW-94	4/05/2021		3.7	1.0	ug/L
Chloroethane	MW-94	10/08/2021		4.0	1.0	ug/L
Chloroethane	MW-94	4/06/2022		4.6	1.0	ug/L
Chloroethane	MW-94	10/25/2022		4.7	1.0	ug/L
Chloroethane	MW-94	4/11/2023		4.0	1.0	ug/L
Chloroethane	MW-94	10/13/2023		4.5	1.0	ug/L
Chloroethane	MW-94	4/17/2024		4.3	1.0	ug/L
Chloroethane	MW-94	10/15/2024		3.0 112.0	1.0	ug/L
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-94 MW-94	1/14/2011 4/05/2011		204.0	1.0 5.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-94	6/18/2011		114.0	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-94	8/11/2011		153.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	10/06/2011		89.4	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	4/10/2012		131.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	10/09/2012		170.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	4/04/2013		150.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	10/16/2013		140.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	4/10/2014		118.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	10/16/2014		144.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	4/03/2015		102.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	10/01/2015		88.2	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	4/14/2016		89.5	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	10/13/2016		63.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	4/10/2017		43.3	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	10/09/2017		56.4	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	4/17/2018		28.6	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	10/22/2018		27.4	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94 MW-94	4/22/2019		30.2 23.0	1.0 1.0	ug/L
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-94	10/23/2019 4/10/2020		21.4	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-94	10/19/2020		27.4	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-94	4/05/2021		13.2	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-94	10/08/2021		25.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	4/06/2022		18.2	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	10/25/2022		29.4	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	4/11/2023		11.4	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	10/13/2023		29.4	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	4/17/2024		5.2	1.0	ug/L
Cis-1,2-dichloroethylene	MW-94	10/15/2024		6.0	1.0	ug/L
Trans-1,2-dichloroethylene	MW-94	1/14/2011		2.5	1.0	ug/L
Trans-1,2-dichloroethylene	MW-94	4/05/2011		4.6	1.0	ug/L
Trans-1,2-dichloroethylene	MW-94	6/18/2011		2.6	1.0	ug/L
Trans-1,2-dichloroethylene	MW-94	8/11/2011		3.8	1.0	ug/L
Trans-1,2-dichloroethylene	MW-94	10/06/2011		2.1		ug/L
Trans-1,2-dichloroethylene Trans-1,2-dichloroethylene	MW-94 MW-94	4/10/2012 10/09/2012		2.4 1.8	1.0	ug/L ug/L
Trans-1,2-dichloroethylene	MW-94	4/04/2013		1.8		ug/L ug/L
Trans-1,2-dichloroethylene	MW-94	10/16/2013		1.9		ug/L ug/L
Trans-1,2-dichloroethylene	MW-94	4/10/2014		1.6		ug/L
Trans-1,2-dichloroethylene	MW-94	10/16/2014		1.2	1.0	ug/L
Trans-1,2-dichloroethylene	MW-94	4/03/2015		1.2	1.0	
Trans-1,2-dichloroethylene	MW-94	10/13/2016		1.2	1.0	
Trans-1,2-dichloroethylene	MW-94	4/10/2020		1.0	1.0	ug/L
Trans-1,2-dichloroethylene	MW-94	10/19/2020		1.2	1.0	ug/L
Trans-1,2-dichloroethylene	MW-94	10/25/2022		1.2	1.0	
Trans-1,2-dichloroethylene	MW-94	10/13/2023		1.6	1.0	ug/L
Trichloroethylene	MW-94	1/14/2011		59.7		ug/L
Trichloroethylene	MW-94	4/05/2011		109.0	1.0	ug/L
Trichloroethylene	MW-94	6/18/2011		58.1	1.0	ug/L
Trichloroethylene	MW-94	8/11/2011		47.4		ug/L
Trichloroethylene Trichloroethylene	MW-94	10/06/2011		42.0	1.0	
Trichloroethylene Trichloroethylene	MW-94 MW-94	4/10/2012 10/09/2012		37.0 28.1	1.0 1.0	ug/L ug/L
Trichloroethylene	MW-94	4/04/2013		21.2		ug/L ug/L
Trichloroethylene	MW-94	10/16/2013		7.7	1.0	
Trichloroethylene	MW-94	4/10/2014		5.4	1.0	ug/L ug/L
				UT	1.0	~9/ -
Trichloroethylene	MW-94	10/16/2014		2.0	1.0	ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Vinyl chloride	MW-94	1/14/2011		5.0	1.0	ug/L
Vinyl chloride	MW-94	4/05/2011		5.5	1.0	ug/L
Vinyl chloride	MW-94	6/18/2011		4.0	1.0	ug/L
Vinyl chloride	MW-94	8/11/2011		4.1	1.0	ug/L
Vinyl chloride	MW-94	10/06/2011		3.6	1.0	ug/L
Vinyl chloride	MW-94	4/10/2012		4.6	1.0	ug/L
Vinyl chloride	MW-94	10/09/2012		4.6	1.0	ug/L
Vinyl chloride	MW-94	4/04/2013		5.3	1.0	ug/L
Vinyl chloride	MW-94	10/16/2013		4.8	1.0	ug/L
Vinyl chloride	MW-94	4/10/2014		4.4	1.0	ug/L
Vinyl chloride	MW-94	10/16/2014		6.2	1.0	ug/L
Vinyl chloride	MW-94	4/03/2015		4.5	1.0	ug/L
Vinyl chloride	MW-94	10/01/2015		3.6	1.0	ug/L
Vinyl chloride	MW-94	4/14/2016		2.9	1.0	ug/L
Vinyl chloride	MW-94	10/13/2016		2.6	1.0	ug/L
Vinyl chloride	MW-94	4/10/2017		3.2	1.0	ug/L
Vinyl chloride	MW-94	10/09/2017		2.0	1.0	ug/L
Vinyl chloride	MW-94	4/17/2018		2.0	1.0	ug/L
Vinyl chloride	MW-94	10/22/2018		2.2	1.0	ug/L
Vinyl chloride	MW-94	4/22/2019		1.7	1.0	ug/L
Vinyl chloride	MW-94	4/10/2020		1.1	1.0	ug/L
Vinyl chloride	MW-94	10/19/2020		1.1	1.0	ug/L
Vinyl chloride	MW-94	10/25/2022		1.2	1.0	ug/L
Vinyl chloride	MW-94	4/11/2023		2.1	1.0	ug/L
Vinyl chloride	MW-94	10/13/2023		2.0	1.0	ug/L
Vinyl chloride	MW-94	4/17/2024		2.2	1.0	ug/L
Vinyl chloride	MW-94	10/15/2024		2.0	1.0	ug/L
Acetone	MW-95	10/13/2023		10.7	10.0	ug/L
Bis(2-ethylhexyl) phthalate	MW-96	10/09/2012		8	8	ug/L
Cis-1,2-dichloroethylene	MW-96	1/14/2011		1.2	1.0	ug/L
Cis-1,2-dichloroethylene	MW-96	4/05/2011		1.2	1.0	ug/L
Cis-1,2-dichloroethylene	MW-96	6/18/2011		1.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-96	8/11/2011		1.2	1.0	ug/L
Cis-1,2-dichloroethylene	MW-96	10/09/2012		1.0	1.0	ug/L
Bis(2-ethylhexyl) phthalate	MW-96R	10/08/2021		6	6	ug/L
Acetone	MW-98	10/09/2017		18.4	10.0	ug/L
1,1-dichloroethane	SRAMP A	4/22/2019		1.4	1.0	ug/L
1,2-dichloropropane	SRAMPA	4/22/2019		1.7	1.0	ug/L
Cis-1,2-dichloroethylene	SRAMP A	4/10/2017		1.3	1.0	ug/L
Cis-1,2-dichloroethylene	SRAMPA	4/22/2019		2.8	1.0	ug/L

Attachment G

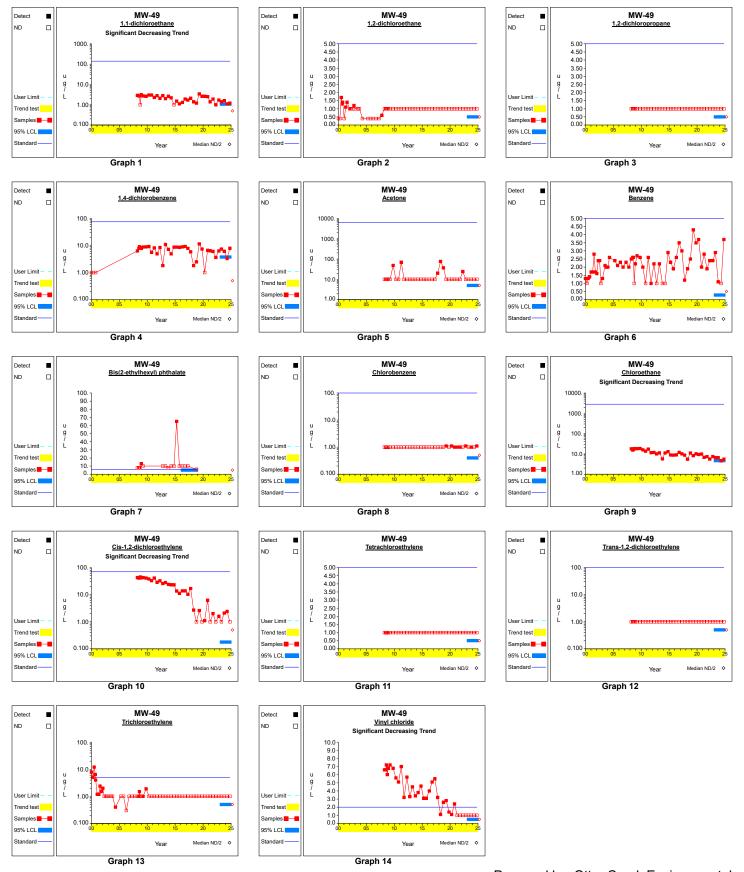
Assessment Statistics for VOCs

marshall2024s2 November 2024

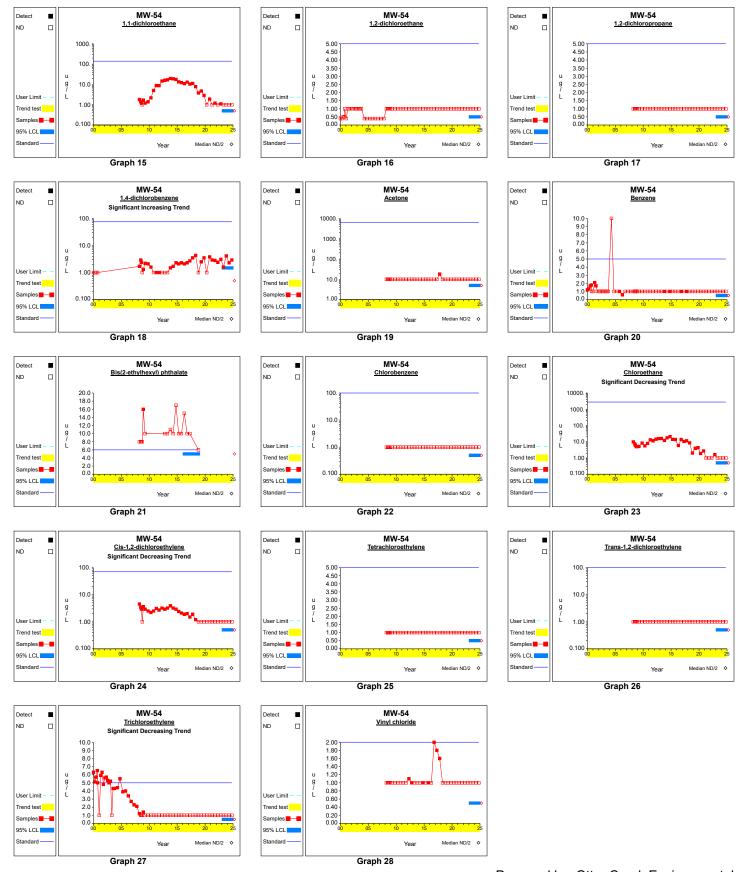
Marshall [VOC] November 2024

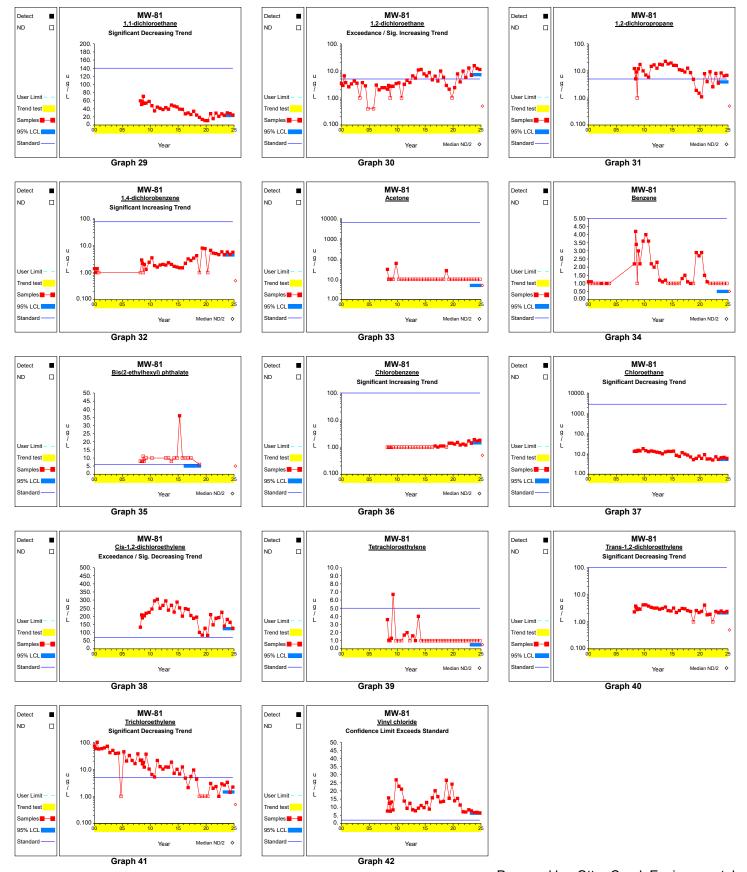
Table 1 Confidence Intervals for Comparing the Mean of the Last 4 Measurements to an Assessment Monitoring Standard

Constituent	Units	Well	N	Mean	SD	Factor	95% LCL	95% UCL	Standard	Trend	
1,1-dichloroethane	ug/L	MW-49	4	1.325	0.222	1.176	1.064	1.586	140.000	dec	
1,2-dichloroethane	ug/L	MW-49	4	0.500	0.000	1.176	0.500	0.500	5.000		
1,2-dichloropropane	ug/L	MW-49	4	0.500	0.000	1.176	0.500	0.500	5.000		
1,4-dichlorobenzene	ug/L	MW-49	4	6.175	2.061	1.176	3.750	8.600	75.000		
Acetone	ug/L	MW-49	4	5.000	0.000	1.176	5.000	5.000	6300.000		
Benzene	ug/L	MW-49	4	2.050	1.500	1.176	0.286	3.814	5.000		
Bis(2-ethylhexyl) phthalate		MW-49	4	5.000	0.000	1.176	5.000	5.000	6.000		
	ug/L										
Chlorobenzene	ug/L	MW-49	4	0.775	0.320	1.176	0.398	1.152	100.000		
Chloroethane	ug/L	MW-49	4	5.825	0.967	1.176	4.687	6.963	2800.000	dec	
Cis-1,2-dichloroethylene	ug/L	MW-49	4	1.375	1.018	1.176	0.178	2.572	70.000	dec	
Tetrachloroethylene	ug/L	MW-49	4	0.500	0.000	1.176	0.500	0.500	5.000		
Trans-1,2-dichloroethylene	ug/L	MW-49	4	0.500	0.000	1.176	0.500	0.500	100.000		
Trichloroethylene	ug/L	MW-49	4	0.500	0.000	1.176	0.500	0.500	5.000		
Vinyl chloride	ug/L	MW-49	4	0.500	0.000	1.176	0.500	0.500	2.000	dec	
1,1-dichloroethane	ug/L	MW-54	4	0.500	0.000	1.176	0.500	0.500	140.000		+
1,2-dichloroethane	ug/L	MW-54	4	0.500	0.000	1.176	0.500	0.500	5.000		
1,2-dichloropropane	ug/L	MW-54	4	0.500	0.000	1.176	0.500	0.500	5.000		
1,4-dichlorobenzene	ug/L	MW-54	4	2.725	1.059	1.176	1.479	3.971	75.000	inc	
Acetone	ug/L	MW-54	4	5.000	0.000	1.176	5.000	5.000	6300.000		
Benzene	ug/L	MW-54	4	0.500	0.000	1.176	0.500	0.500	5.000		
Bis(2-ethylhexyl) phthalate	ug/L	MW-54	4	5.000	0.000	1.176	5.000	5.000	6.000		
Chlorobenzene	ug/L	MW-54	4	0.500	0.000	1.176	0.500	0.500	100.000		
Chloroethane	ug/L	MW-54	4	0.500	0.000	1.176	0.500	0.500	2800.000	dec	
Cis-1,2-dichloroethylene	ug/L	MW-54	4	0.500	0.000	1.176	0.500	0.500	70.000	dec	
Tetrachloroethylene	ug/L	MW-54	4	0.500	0.000	1.176	0.500	0.500	5.000		
Trans-1,2-dichloroethylene	ug/L ug/L	MW-54	4	0.500	0.000	1.176	0.500	0.500	100.000		
			4			1.176	0.500	0.500		dec	
Trichloroethylene	ug/L	MW-54		0.500	0.000				5.000	uec	
Vinyl chloride	ug/L	MW-54	4	0.500	0.000	1.176	0.500	0.500	2.000		+
1,1-dichloroethane	ug/L	MW-81	4	26.725	2.863	1.176	23.357	30.093	140.000	dec	
1,2-dichloroethane	ug/L	MW-81	4	11.500	3.592	1.176	7.275	15.725	5.000	inc	**
I,2-dichloropropane	ug/L	MW-81	4	6.325	2.053	1.176	3.910	8.740	5.000		
1,4-dichlorobenzene	ug/L	MW-81	4	5.150	0.580	1.176	4.467	5.833	75.000	inc	
Acetone	ug/L	MW-81	4	5.000	0.000	1.176	5.000	5.000	6300.000		
Benzene	ug/L	MW-81	4	0.500	0.000	1.176	0.500	0.500	5.000		
Bis(2-ethylhexyl) phthalate	ug/L	MW-81	4	5.000	0.000	1.176	5.000	5.000	6.000		
Chlorobenzene		MW-81	4	1.700	0.216	1.176	1.446	1.954	100.000	inc	
	ug/L										
Chloroethane	ug/L	MW-81	4	6.175	0.613	1.176	5.454	6.896	2800.000	dec	**
Cis-1,2-dichloroethylene	ug/L	MW-81	4	153.000	24.152	1.176	124.590	181.410	70.000	dec	^ ^
Tetrachloroethylene	ug/L	MW-81	4	0.500	0.000	1.176	0.500	0.500	5.000		
Trans-1,2-dichloroethylene	ug/L	MW-81	4	2.325	0.150	1.176	2.149	2.501	100.000	dec	
Trichloroethylene	ug/L	MW-81	4	2.375	0.793	1.176	1.442	3.308	5.000	dec	
Vinyl chloride	ug/L	MW-81	4	6.925	0.532	1.176	6.300	7.550	2.000		**
1,1-dichloroethane	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	140.000		\top
1,2-dichloroethane	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	5.000		
1,2-dichloropropane	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	5.000		
1,4-dichlorobenzene	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	75.000		
Acetone		MW-89	4	5.000	0.000	1.176	5.000	5.000	6300.000		
	ug/L										
Benzene	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	5.000		
Bis(2-ethylhexyl) phthalate	ug/L	MW-89	4	8.500	7.000	1.176	0.266	16.734	6.000		
Chlorobenzene	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	100.000		
Chloroethane	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	2800.000		
Cis-1,2-dichloroethylene	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	70.000		
etrachloroethylene	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	5.000		
Frans-1,2-dichloroethylene	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	100.000		
Frichloroethylene	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	5.000		
/inyl chloride	ug/L	MW-89	4	0.500	0.000	1.176	0.500	0.500	2.000		
		MW-91	4		0.000	1.176	0.500	0.500	140.000	doo	+
I,1-dichloroethane	ug/L			0.500						dec	
,2-dichloroethane	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	5.000		
,2-dichloropropane	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	5.000		
1,4-dichlorobenzene	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	75.000		
Acetone	ug/L	MW-91	4	5.000	0.000	1.176	5.000	5.000	6300.000		
Benzene	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	5.000		
Bis(2-ethylhexyl) phthalate	ug/L	MW-91	4	5.000	0.000	1.176	5.000	5.000	6.000		
Chlorobenzene	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	100.000		
Chloroethane	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	2800.000		
		MW-91	4	0.500							
Cis-1,2-dichloroethylene	ug/L				0.000	1.176	0.500	0.500	70.000		
Tetrachloroethylene	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	5.000		
Trans-1,2-dichloroethylene	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	100.000		
Trichloroethylene	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	5.000		
Vinyl chloride	ug/L	MW-91	4	0.500	0.000	1.176	0.500	0.500	2.000		
		NAVA / O A	1		0.602	1.176	0.867	2.283	140.000	dec	\top
1,1-dichloroethane	ug/L	MW-94	4	1.575	0.002	1.1701	0.007	2.203	140.0001	uec	

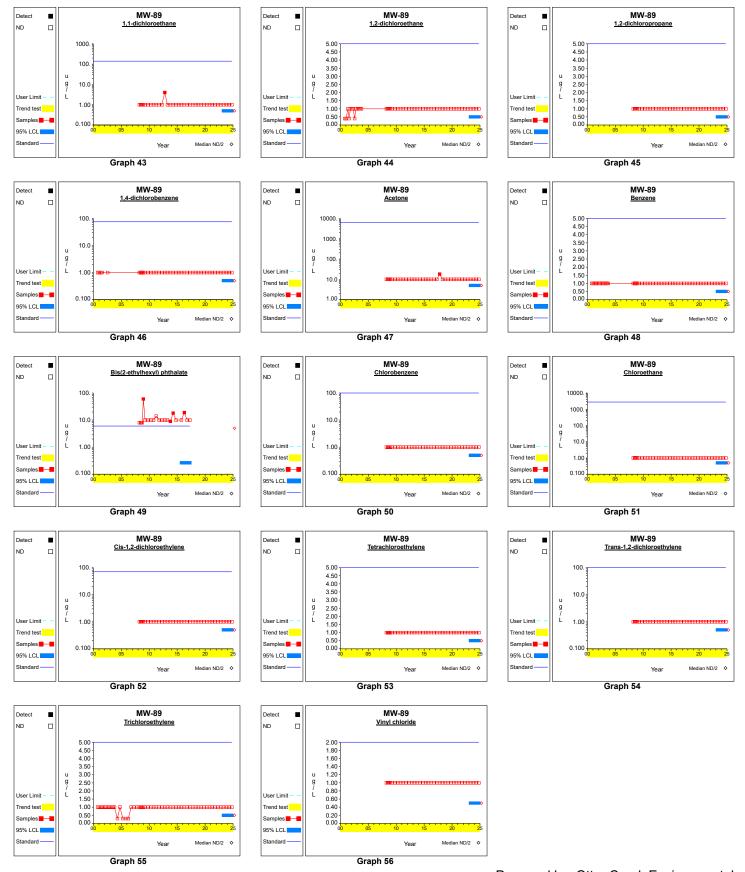

^{* -} Insufficient Data ** - Significant Exceedance LCL = Lower Confidence Limit UCL = Upper Confidence Limit

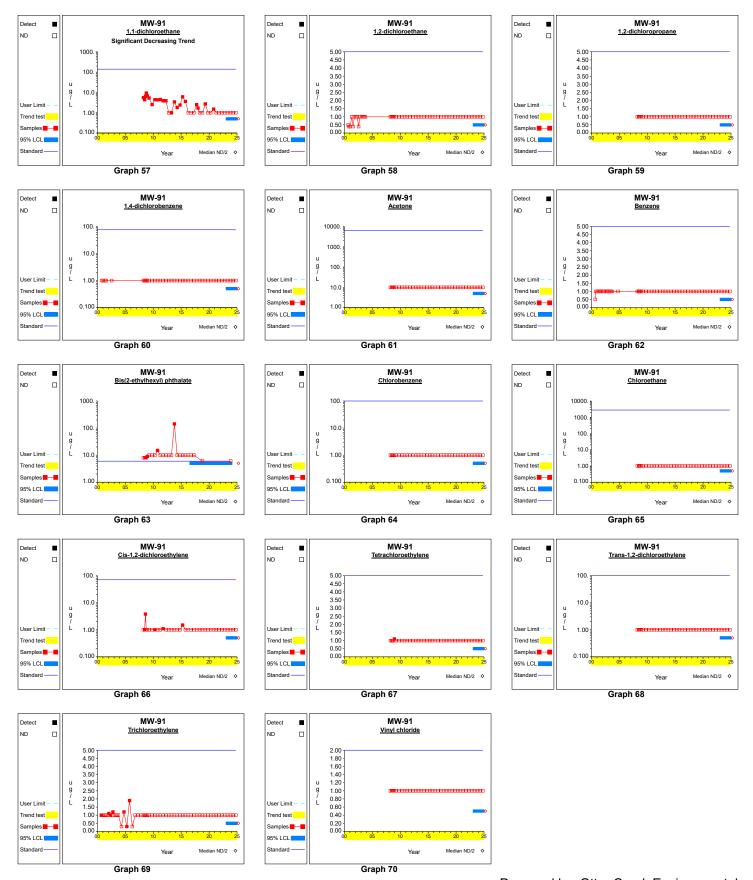
Marshall [VOC] November 2024

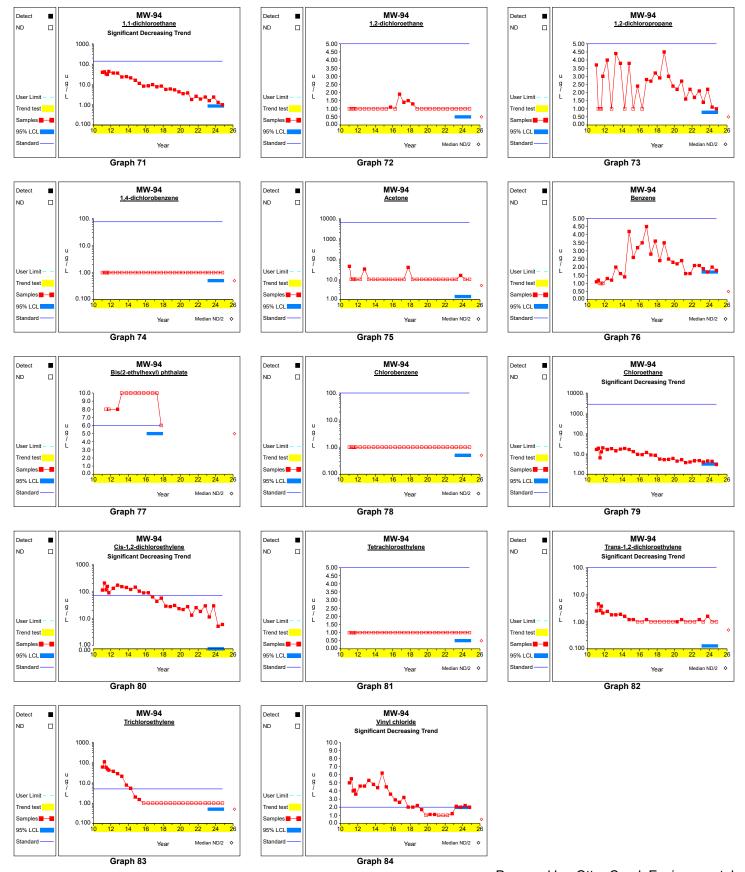

Table 1 Confidence Intervals for Comparing the Mean of the Last 4 Measurements to an Assessment Monitoring Standard

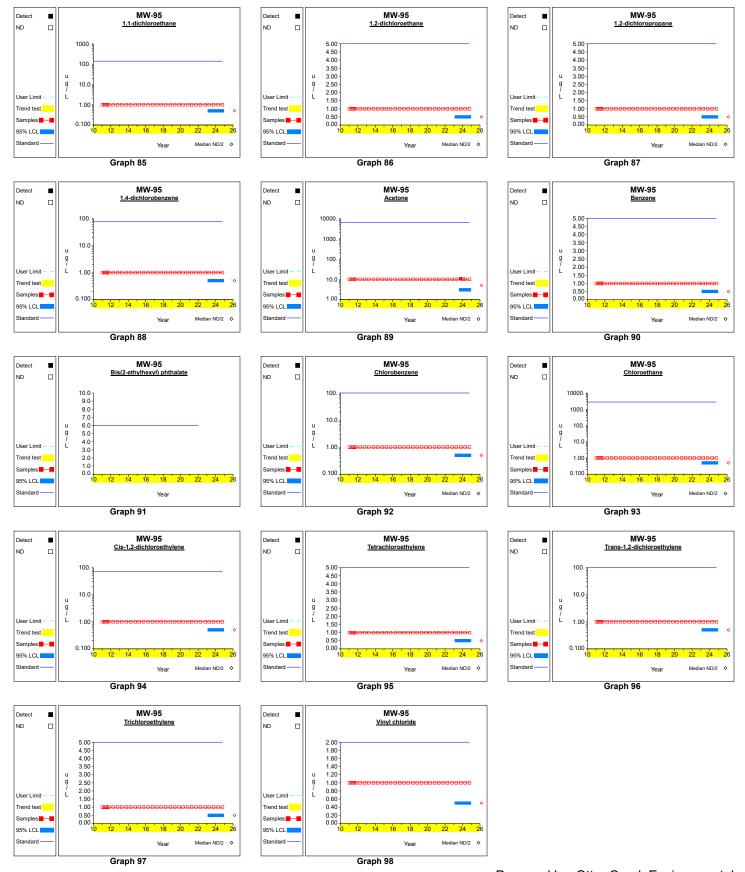

Constituent	Units	Well	N	Mean	SD	Factor	95% LCL	95% UCL	Standard	Trend	
1,2-dichloropropane	ug/L	MW-94	4	1.425	0.544	1.176	0.785	2.065	5.000		
1,4-dichlorobenzene	ug/L	MW-94	4	0.500	0.000	1.176	0.500	0.500	75.000		
Acetone	ug/L	MW-94	4	7.650	5.300	1.176	1.416	13.884	6300.000		
Benzene	ug/L	MW-94	4	1.850	0.129	1.176	1.698	2.002	5.000		
Bis(2-ethylhexyl) phthalate	ug/L	MW-94	4	5.000	0.000	1.176	5.000	5.000	6.000		
Chlorobenzene	ug/L	MW-94	4	0.500	0.000	1.176	0.500	0.500	100.000		
Chloroethane	ug/L	MW-94	4	3.950	0.666	1.176	3.167	4.733	2800.000	dec	
Cis-1,2-dichloroethylene	ug/L	MW-94	4	13.000	11.275	1.176	0.000	26.262	70.000	dec	
Tetrachloroethylene	ug/L	MW-94	4	0.500	0.000	1.176	0.500	0.500	5.000		
Trans-1,2-dichloroethylene	ug/L	MW-94	4	0.775	0.550	1.176	0.128	1.422	100.000	dec	
Trichloroethylene	ug/L	MW-94	4	0.500	0.000	1.176	0.500	0.500	5.000		
Vinyl chloride	ug/L	MW-94	4	2.075	0.096	1.176	1.962	2.188	2.000	dec	
1,1-dichloroethane	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	140.000		
1,2-dichloroethane	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	5.000		
1,2-dichloropropane	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	5.000		
1,4-dichlorobenzene	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	75.000		
Acetone	ug/L	MW-95	4	6.425	2.850	1.176	3.073	9.777	6300.000		
Benzene	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	5.000		
Bis(2-ethylhexyl) phthalate	ug/L	MW-95	0								*
Chlorobenzene	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	100.000		
Chloroethane	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	2800.000		
Cis-1,2-dichloroethylene	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	70.000		
Tetrachloroethylene	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	5.000		
Trans-1,2-dichloroethylene	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	100.000		
Trichloroethylene	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	5.000		
Vinyl chloride	ug/L	MW-95	4	0.500	0.000	1.176	0.500	0.500	2.000		
1.1-dichloroethane	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	140.000		
1.2-dichloroethane	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	5.000		
1,2-dichloropropane	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	5.000		
1.4-dichlorobenzene	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	75.000		
Acetone	ug/L	MW-96R	4	5.000	0.000	1.176	5.000	5.000	6300.000		
Benzene	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	5.000		
Bis(2-ethylhexyl) phthalate	ug/L	MW-96R	2	0.000	0.000		0.000	0.000	0.000		*
Chlorobenzene	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	100.000		
Chloroethane	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	2800.000		
Cis-1,2-dichloroethylene	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	70.000		
Tetrachloroethylene	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	5.000		
Trans-1,2-dichloroethylene	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	100.000		
Trichloroethylene	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	5.000		
Vinvl chloride	ug/L	MW-96R	4	0.500	0.000	1.176	0.500	0.500	2.000		
VIII y Cilionae	ug/L	111144-0014	7	0.000	0.000	1.170	0.000	0.000	2.000		ш

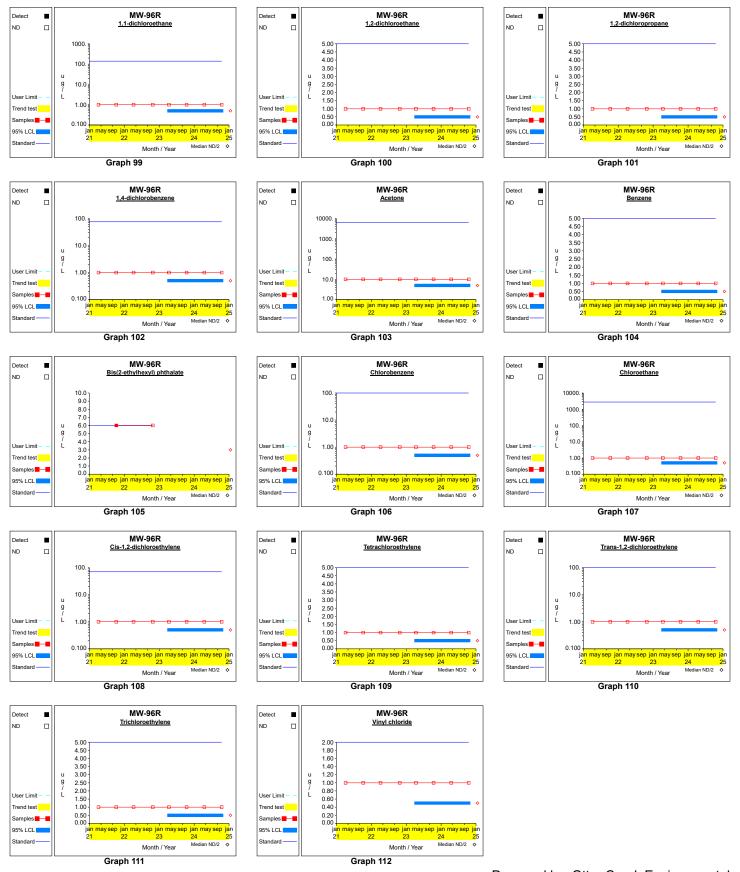
^{* -} Insufficient Data ** - Significant Exceedance LCL = Lower Confidence Limit UCL = Upper Confidence Limit

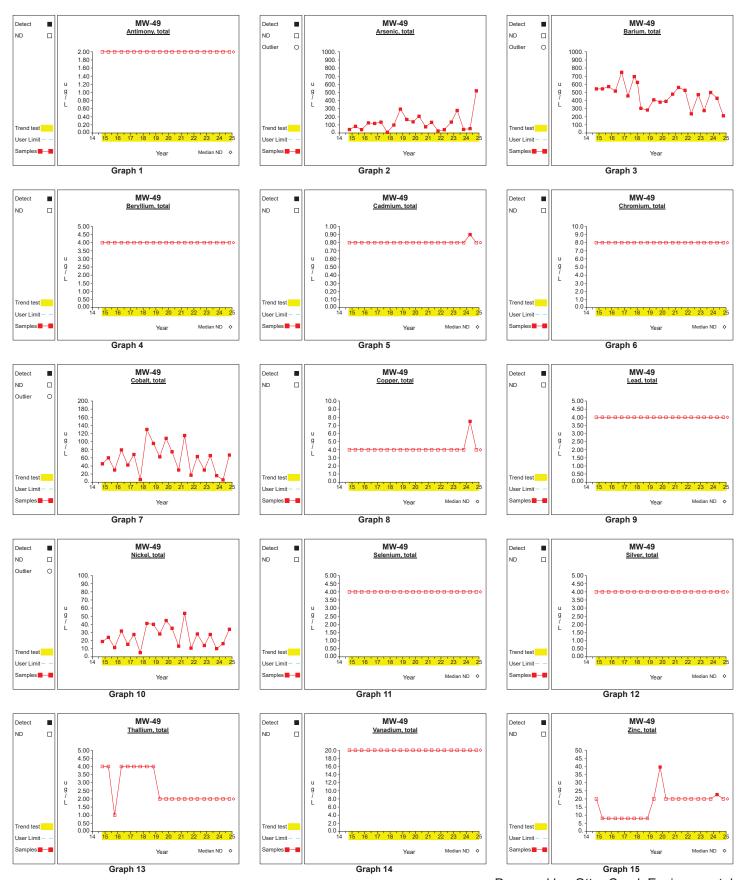



Prepared by: Otter Creek Environmental

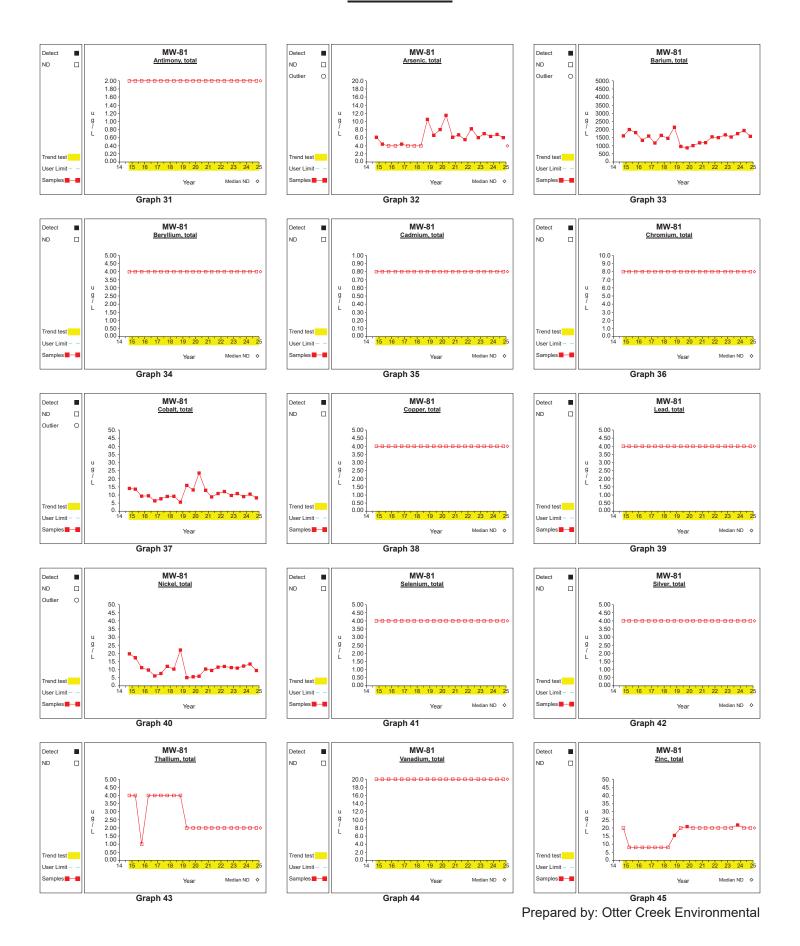



Prepared by: Otter Creek Environmental

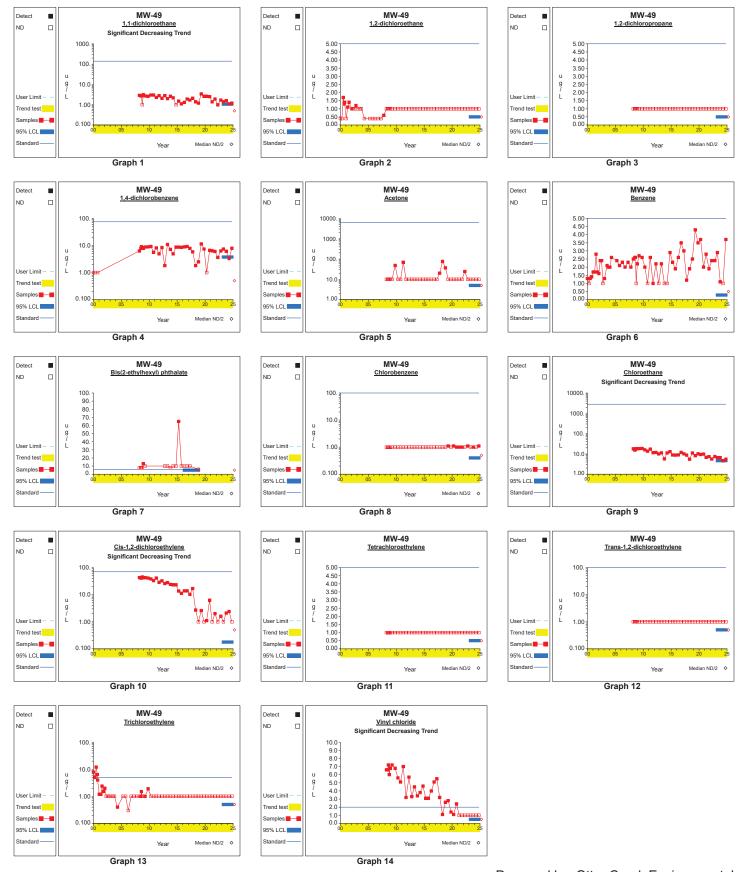


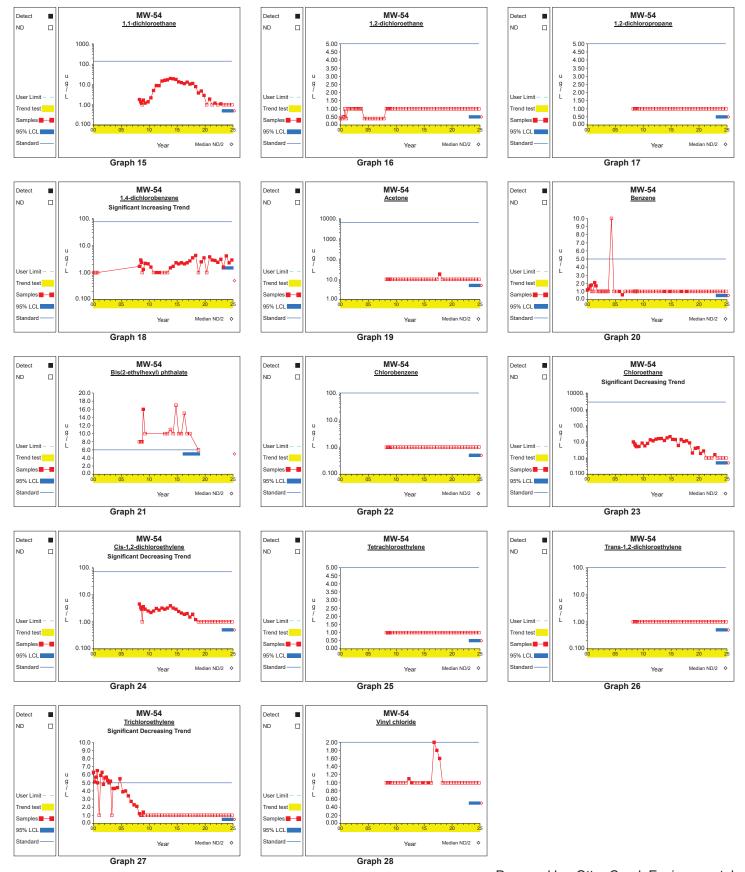


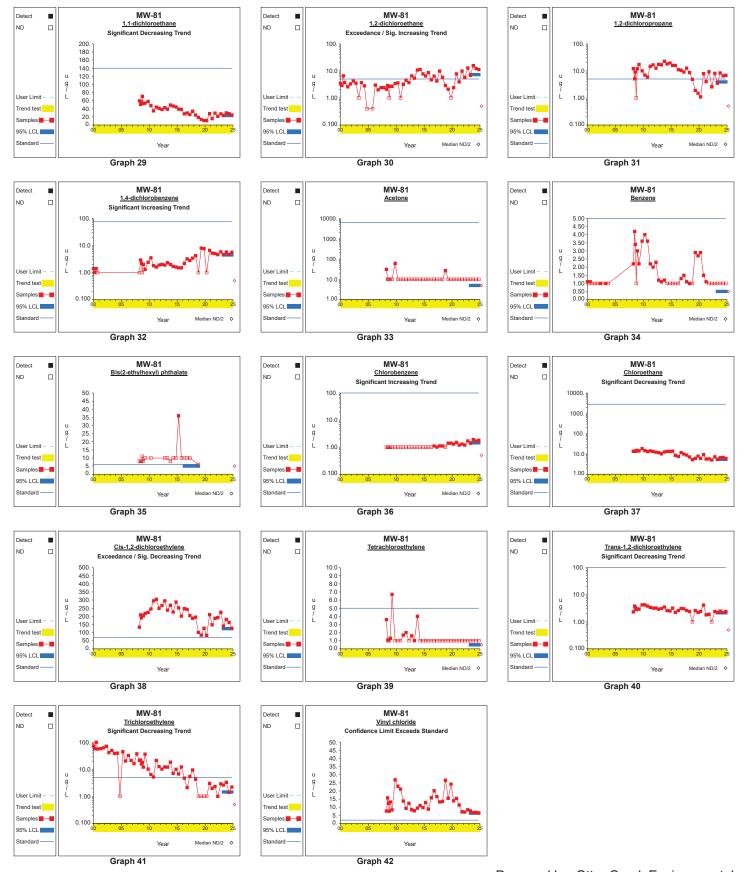
Prepared by: Otter Creek Environmental

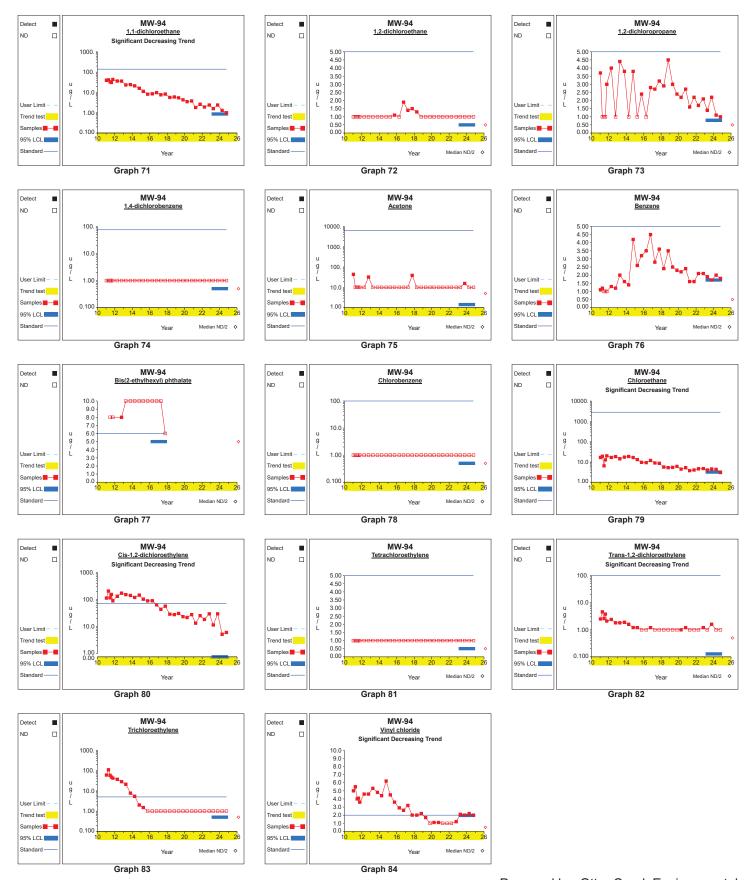


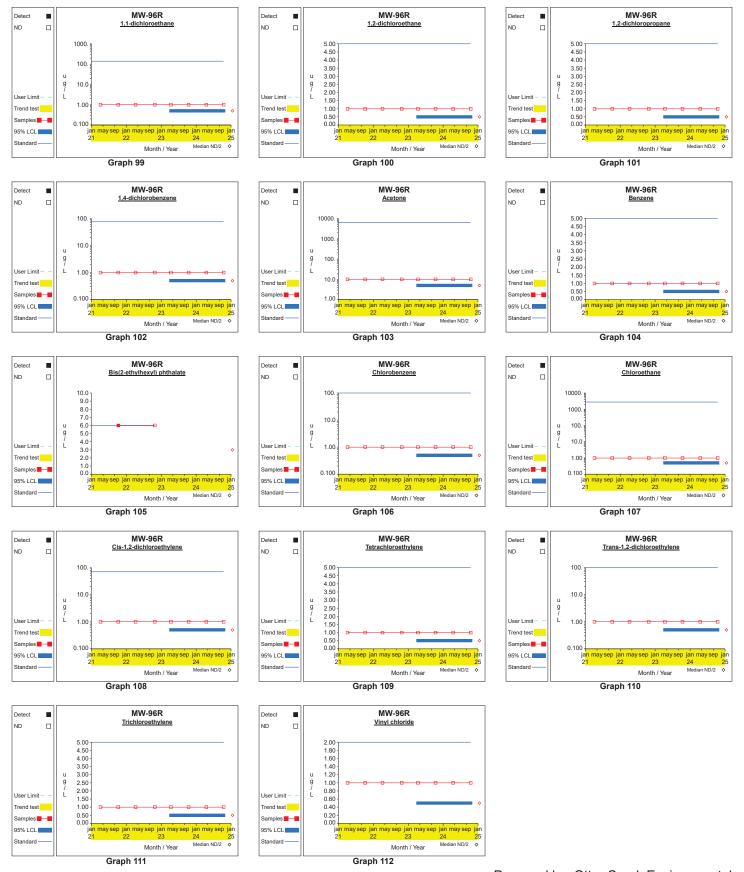

Appendix B.3 – Time Series Graphs/Trend Evaluation – Supplemental Wells


Prepared by: Otter Creek Environmental









Prepared by: Otter Creek Environmental

Appendix C

Laboratory Reports for Reporting Period
With Chain of Custody

Microbac Laboratories, Inc., Newton

CERTIFICATE OF ANALYSIS 1HD1532

Project Description

6003

For:

Todd Whipple

HLW Engineering

PO Box 314

Story City, IA 50248

Heather Murphy

Customer Relationship Specialist

Monday, May 20, 2024

Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories. Review and compilation of your report was completed by Microbac Laboratories, Inc., Newton. If you have any questions, comments, or require further assistance regarding this report, please contact your service representative listed above.

I certify that all test results meet all of the requirements of the accrediting authority listed within this report. Analytical results are reported on a 'as received' basis unless specified otherwise. Analytical results for solids with units ending in (dry) are reported on a dry weight basis. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories. The reported results are related only to the samples analyzed as received.

Microbac Laboratories, Inc.

HLW Engineering

Project Name: 6003

Todd Whipple PO Box 314 Story City, IA 50248 Project / PO Number: N/A Received: 04/18/2024 Reported: 05/20/2024

Sample Summary Report

Sample Name	Laboratory ID	Client Matrix	Sample Type	Sample Begin	Sample Taken	Lab Received
MW-66 (B)	1HD1532-01	Aqueous	GRAB		04/17/24 07:51	04/18/24 09:39
MW-85 (B)	1HD1532-02	Aqueous	GRAB		04/17/24 07:51	04/18/24 09:39
MW-98 (B)	1HD1532-03	Aqueous	GRAB		04/17/24 09:48	04/18/24 09:39
MW-99 (B)	1HD1532-04	Aqueous	GRAB		04/18/24 00:00	04/18/24 09:39
MW-49	1HD1532-05	Aqueous	GRAB		04/17/24 09:10	04/18/24 09:39
MW-54	1HD1532-06	Aqueous	GRAB		04/17/24 08:46	04/18/24 09:39
MW-81	1HD1532-07	Aqueous	GRAB		04/16/24 11:20	04/18/24 09:39
MW-87	1HD1532-08	Aqueous	GRAB		04/16/24 11:02	04/18/24 09:39
MW-91	1HD1532-09	Aqueous	GRAB		04/16/24 10:05	04/18/24 09:39
MW-93	1HD1532-10	Aqueous	GRAB		04/16/24 11:43	04/18/24 09:39
MW-94	1HD1532-11	Aqueous	GRAB		04/17/24 08:29	04/18/24 09:39
MW-95	1HD1532-12	Aqueous	GRAB		04/17/24 07:35	04/18/24 09:39
MW-96R	1HD1532-13	Aqueous	GRAB		04/16/24 07:55	04/18/24 09:39
MW-97	1HD1532-14	Aqueous	GRAB		04/17/24 08:09	04/18/24 09:39
SRAMP B Tile	1HD1532-15	Aqueous	GRAB		04/16/24 08:30	04/18/24 09:39
Duplicate	1HD1532-16	Aqueous	GRAB		04/16/24 00:00	04/18/24 09:39
MW-89	1HD1532-17	Aqueous	GRAB		04/16/24 10:44	04/18/24 09:39

Analytical Testing Parameters

 Client Sample ID:
 MW-85 (B)

 Sample Matrix:
 Aqueous
 Collected By:
 Whipple, Todd

 Lab Sample ID:
 1HD1532-02
 Collection Date:
 04/17/2024 7:51

Determination of Volatile Organic	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
Compounds								
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Bromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Chloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Acetone	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Methyl lodide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Chloroform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Benzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Dibromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Toluene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Xylenes, total	<2.0	2.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Styrene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS

Client Sample ID:MW-85 (B)Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-02Collection Date:04/17/2024 7:5

Lab Sample ID: 1HD1532-02					Collection	Date: 04/17/	2024 7:51	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Bromoform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1439	LJS
Surrogate: Dibromofluoromethane	99.1	Limit: 80-126	% Rec	1		04/22/24 0000	04/22/24 1439	LJS
Surrogate: Dibromofluoromethane	99.1	Limit: 75-136	% Rec	1		04/22/24 0000	04/22/24 1439	LJS
Surrogate: 1,2-Dichloroethane-d4	102	Limit: 61-142	% Rec	1		04/22/24 0000	04/22/24 1439	LJS
Surrogate: 1,2-Dichloroethane-d4	102	Limit: 63-138	% Rec	1		04/22/24 0000	04/22/24 1439	LJS
Surrogate: Toluene-d8	98.2	Limit: 87-116	% Rec	1		04/22/24 0000	04/22/24 1439	LJS
Surrogate: Toluene-d8	98.2	Limit: 82-121	% Rec	1		04/22/24 0000	04/22/24 1439	LJS
Surrogate: 4-Bromofluorobenzene	97.5	Limit: 80-116	% Rec	1		04/22/24 0000	04/22/24 1439	LJS
Surrogate: 4-Bromofluorobenzene	97.5	Limit: 85-111	% Rec	1		04/22/24 0000	04/22/24 1439	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/25/24 2320	JAR
Arsenic, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2320	JAR
Barium, total	0.144	0.0040	mg/L	4		04/24/24 0716	04/25/24 2320	JAR
Beryllium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2320	JAR
Cadmium, total	<0.0008	0.0008	mg/L	4		04/24/24 0716	04/25/24 2320	JAR
Chromium, total	<0.0080	0.0080	mg/L	4		04/24/24 0716	04/25/24 2320	JAR
Cobalt, total	0.0004	0.0004	mg/L	4		04/24/24 0716	04/25/24 2320	JAR
Copper, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2320	JAR
Lead, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2320	JAR
Nickel, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2320	JAR
Selenium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2320	JAR
Silver, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2320	JAR
Thallium, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/25/24 2320	JAR
Vanadium, total	<0.0200	0.0200	mg/L	4		04/24/24 0716	04/25/24 2320	JAR

1HD1532

 Client Sample ID:
 MW-98 (B)

 Sample Matrix:
 Aqueous
 Collected By:
 Whipple, Todd

 Lab Sample ID:
 1HD1532-03
 Collection Date:
 04/17/2024
 9:48

EPA 5030B/EPA 8260B Chloromethane <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS Vinyl Chloride <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS Bromomethane <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS Chloroethane <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS Trichlorofluoromethane <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS 1,1-Dichloroethylene <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS Acetone <10.0 10.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS Methyl lodide <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS Carbon Disulfide <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
Vinyl Chloride <1.0
Bromomethane <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS Chloroethane <1.0
Chloroethane <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS Trichlorofluoromethane <1.0
Trichlorofluoromethane <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS 1,1-Dichloroethylene <1.0
1,1-Dichloroethylene <1.0
Acetone <10.0 10.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS Methyl lodide <1.0
Methyl lodide <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS Carbon Disulfide <1.0
Carbon Disulfide <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
G
Methylene Chloride <5.0 5.0 µg/l 1 0//2/24 0000 04/22/24 4502 1.15
Worthfullo Chilorido -0.0 0.0 ug/L 1 04/22/24 0000 04/22/24 1302 L33
Acrylonitrile <5.0 5.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
trans-1,2-Dichloroethylene <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
1,1-Dichloroethane <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
Vinyl Acetate <5.0 5.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
cis-1,2-Dichloroethylene <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
2-Butanone (MEK) <10.0 10.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
Bromochloromethane <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
Chloroform <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
1,1,1-Trichloroethane <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
Carbon Tetrachloride <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
Benzene <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
1,2-Dichloroethane <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
Trichloroethylene <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
1,2-Dichloropropane <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
Dibromomethane <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
Bromodichloromethane <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
cis-1,3-Dichloropropene <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
4-Methyl-2-pentanone (MIBK) <5.0 5.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
Toluene <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
trans-1,3-Dichloropropene <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
1,1,2-Trichloroethane <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
Tetrachloroethylene <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
2-Hexanone (MBK) <5.0 5.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
Dibromochloromethane <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
1,2-Dibromoethane <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
Chlorobenzene <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
1,1,1,2-Tetrachloroethane <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
Ethylbenzene <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
Xylenes, total <2.0 2.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
Styrene <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
Bromoform <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS
1,2,3-Trichloropropane <1.0 1.0 ug/L 1 04/22/24 0000 04/22/24 1502 LJS

 Client Sample ID:
 MW-98 (B)

 Sample Matrix:
 Aqueous
 Collected By:
 Whipple, Todd

 Lab Sample ID:
 1HD1532-03
 Collection Date:
 04/17/2024
 9:48

Lab Sample ID: 1HD1532-03					Collection	•	/17/2024 9:48	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		04/22/24 00	00 04/22/24 1502	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 00	00 04/22/24 1502	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 00	00 04/22/24 1502	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 00	00 04/22/24 1502	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		04/22/24 00	00 04/22/24 1502	LJS
Surrogate: Dibromofluoromethane	100	Limit: 75-136	% Rec	1		04/22/24 00	00 04/22/24 1502	LJS
Surrogate: Dibromofluoromethane	100	Limit: 80-126	% Rec	1		04/22/24 00	00 04/22/24 1502	LJS
Surrogate: 1,2-Dichloroethane-d4	105	Limit: 61-142	% Rec	1		04/22/24 00	00 04/22/24 1502	LJS
Surrogate: 1,2-Dichloroethane-d4	105	Limit: 63-138	% Rec	1		04/22/24 00	00 04/22/24 1502	LJS
Surrogate: Toluene-d8	98.5	Limit: 82-121	% Rec	1		04/22/24 00	00 04/22/24 1502	LJS
Surrogate: Toluene-d8	98.5	Limit: 87-116	% Rec	1		04/22/24 00	00 04/22/24 1502	LJS
Surrogate: 4-Bromofluorobenzene	97.7	Limit: 80-116	% Rec	1		04/22/24 00	00 04/22/24 1502	LJS
Surrogate: 4-Bromofluorobenzene	97.7	Limit: 85-111	% Rec	1		04/22/24 00	00 04/22/24 1502	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		04/24/24 07	16 04/25/24 2326	JAR
Arsenic, total	0.0480	0.0040	mg/L	4		04/24/24 07	16 04/25/24 2326	JAR
Barium, total	0.325	0.0040	mg/L	4		04/24/24 07	16 04/25/24 2326	JAR
Beryllium, total	< 0.0040	0.0040	mg/L	4		04/24/24 07	16 04/25/24 2326	JAR
Cadmium, total	<0.0008	0.0008	mg/L	4		04/24/24 07	16 04/25/24 2326	JAR
Chromium, total	<0.0080	0.0080	mg/L	4		04/24/24 07	16 04/25/24 2326	JAR
Cobalt, total	0.0047	0.0004	mg/L	4		04/24/24 07	16 04/25/24 2326	JAR
Copper, total	<0.0040	0.0040	mg/L	4		04/24/24 07	16 04/25/24 2326	JAR
Lead, total	<0.0040	0.0040	mg/L	4		04/24/24 07	16 04/25/24 2326	JAR
Nickel, total	<0.0040	0.0040	mg/L	4		04/24/24 07	16 04/25/24 2326	JAR
Selenium, total	<0.0040	0.0040	mg/L	4		04/24/24 07	16 04/25/24 2326	JAR
Silver, total	<0.0040	0.0040	mg/L	4		04/24/24 07	16 04/25/24 2326	JAR
Thallium, total			_			0.4/0.4/0.4 0.7		IAD
	< 0.0020	0.0020	mg/L	4		04/24/24 07	16 04/25/24 2326	JAR
Vanadium, total	<0.0020 <0.0200	0.0020 0.0200	mg/L mg/L	4 4		04/24/24 07		JAR

 Client Sample ID:
 MW-99 (B)

 Sample Matrix:
 Aqueous
 Collected By:

 Lab Sample ID:
 1HD1532-04
 Collection Date:
 04/18/2024

Determination of Volatile Organic	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Compounds	Result		- Cinto		14016	i iepaieu	Allaly26u	Anaiyat
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Bromomethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Chloroethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Acetone	<10.0	10.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Methyl Iodide	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Chloroform	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Benzene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Dibromomethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Toluene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Xylenes, total	<2.0	2.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Styrene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Bromoform	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS

Client Sample ID: MW-99 (B)

Sample Matrix: Aqueous Collected By:

Lab Sample ID: 1HD1532-04					Collection	Date: 04/18	/2024	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		04/23/24 0000	04/23/24 1540	LJS
Surrogate: Dibromofluoromethane	92.6	Limit: 75-136	% Rec	1		04/23/24 0000	04/23/24 1540	LJS
Surrogate: Dibromofluoromethane	92.6	Limit: 80-126	% Rec	1		04/23/24 0000	04/23/24 1540	LJS
Surrogate: 1,2-Dichloroethane-d4	94.5	Limit: 63-138	% Rec	1		04/23/24 0000	04/23/24 1540	LJS
Surrogate: 1,2-Dichloroethane-d4	94.5	Limit: 61-142	% Rec	1		04/23/24 0000	04/23/24 1540	LJS
Surrogate: Toluene-d8	98.2	Limit: 82-121	% Rec	1		04/23/24 0000	04/23/24 1540	LJS
Surrogate: Toluene-d8	98.2	Limit: 87-116	% Rec	1		04/23/24 0000	04/23/24 1540	LJS
Surrogate: 4-Bromofluorobenzene	95.7	Limit: 85-111	% Rec	1		04/23/24 0000	04/23/24 1540	LJS
Surrogate: 4-Bromofluorobenzene	95.7	Limit: 80-116	% Rec	1		04/23/24 0000	04/23/24 1540	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		04/24/24 1610	04/26/24 0231	JAR
Arsenic, total	<0.0040	0.0040	mg/L	4		04/24/24 1610	04/26/24 0231	JAR
Barium, total	0.164	0.0040	mg/L	4		04/24/24 1610	04/26/24 0231	JAR
Beryllium, total	<0.0040	0.0040	mg/L	4		04/24/24 1610	04/26/24 0231	JAR
Cadmium, total	<0.0008	0.0008	mg/L	4		04/24/24 1610	04/26/24 0231	JAR
Chromium, total	<0.0080	0.0080	mg/L	4		04/24/24 1610	04/26/24 0231	JAR
Cobalt, total	0.0041	0.0004	mg/L	4		04/24/24 1610	04/26/24 0231	JAR
Copper, total	<0.0040	0.0040	mg/L	4		04/24/24 1610	04/26/24 0231	JAR
Lead, total	<0.0040	0.0040	mg/L	4		04/24/24 1610	04/26/24 0231	JAR
Nickel, total	0.0063	0.0040	mg/L	4		04/24/24 1610	04/26/24 0231	JAR
Selenium, total	<0.0040	0.0040	mg/L	4		04/24/24 1610	04/26/24 0231	JAR
Silver, total	<0.0040	0.0040	mg/L	4		04/24/24 1610	04/26/24 0231	JAR
Thallium, total	<0.0020	0.0020	mg/L	4		04/24/24 1610	04/26/24 0231	JAR
Vanadium, total	<0.0200	0.0200	mg/L	4		04/24/24 1610	04/26/24 0231	JAR
Zinc, total	<0.0200	0.0200	··· 3· =	•		= =		

Client Sample ID:MW-49Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-05Collection Date:04/17/2024 9:10

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Bromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Chloroethane	4.6	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Acetone	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Methyl lodide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
1,1-Dichloroethane	1.1	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
cis-1,2-Dichloroethylene	2.4	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Chloroform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Benzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Dibromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Toluene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Xylenes, total	<2.0	2.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Styrene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Bromoform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS

Client Sample ID:MW-49Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-05Collection Date:04/17/2024 9:10

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
1,4-Dichlorobenzene	3.3	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1525	LJS
Surrogate: Dibromofluoromethane	102	Limit: 80-126	% Rec	1		04/22/24 0000	04/22/24 1525	LJS
Surrogate: Dibromofluoromethane	102	Limit: 75-136	% Rec	1		04/22/24 0000	04/22/24 1525	LJS
Surrogate: 1,2-Dichloroethane-d4	105	Limit: 61-142	% Rec	1		04/22/24 0000	04/22/24 1525	LJS
Surrogate: 1,2-Dichloroethane-d4	105	Limit: 63-138	% Rec	1		04/22/24 0000	04/22/24 1525	LJS
Surrogate: Toluene-d8	97.8	Limit: 87-116	% Rec	1		04/22/24 0000	04/22/24 1525	LJS
Surrogate: Toluene-d8	97.8	Limit: 82-121	% Rec	1		04/22/24 0000	04/22/24 1525	LJS
Surrogate: 4-Bromofluorobenzene	99.1	Limit: 80-116	% Rec	1		04/22/24 0000	04/22/24 1525	LJS
Surrogate: 4-Bromofluorobenzene	99.1	Limit: 85-111	% Rec	1		04/22/24 0000	04/22/24 1525	LJS
Determination of Conventional Chemistry Parameters	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
2320B								
Alkalinity, as CaCO3	652	50	mg/L	1		04/23/24 0918	04/23/24 1300	BSS
EPA 9040								
рН	6.5	0.5	рН	1	I-03	04/23/24 0916	04/23/24 1347	BSS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/25/24 2332	JAR
Arsenic, total	0.0537	0.0040	mg/L	4		04/24/24 0716	04/25/24 2332	JAR
Barium, total	0.429	0.0040	mg/L	4		04/24/24 0716	04/25/24 2332	JAR
Beryllium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2332	JAR
Cadmium, total	0.0009	0.0008	mg/L	4		04/24/24 0716	04/25/24 2332	JAR
Chromium, total	<0.0080	0.0080	mg/L	4		04/24/24 0716	04/25/24 2332	JAR
Cobalt, total	0.0058	0.0004	mg/L	4		04/24/24 0716	04/25/24 2332	JAR
Copper, total	0.0075	0.0040	mg/L	4		04/24/24 0716	04/25/24 2332	JAR
Lead, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2332	JAR
Nickel, total	0.0162	0.0040	mg/L	4		04/24/24 0716	04/25/24 2332	JAR
Selenium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2332	JAR
Silver, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2332	JAR
Thallium, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/25/24 2332	JAR
			J.					-
Vanadium, total	<0.0200	0.0200	mg/L	4		04/24/24 0716	04/25/24 2332	JAR

1HD1532

Client Sample ID:MW-54Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-06Collection Date:04/17/2024 8:46

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Bromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Chloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Acetone	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Methyl lodide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Chloroform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Benzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Dibromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Toluene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Xylenes, total	<2.0	2.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Styrene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Bromoform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS

Client Sample ID:MW-54Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-06Collection Date:04/17/2024 8:46

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
1,4-Dichlorobenzene	2.3	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1548	LJS
Surrogate: Dibromofluoromethane	103	Limit: 80-126	% Rec	1		04/22/24 0000	04/22/24 1548	LJS
Surrogate: Dibromofluoromethane	103	Limit: 75-136	% Rec	1		04/22/24 0000	04/22/24 1548	LJS
Surrogate: 1,2-Dichloroethane-d4	106	Limit: 63-138	% Rec	1		04/22/24 0000	04/22/24 1548	LJS
Surrogate: 1,2-Dichloroethane-d4	106	Limit: 61-142	% Rec	1		04/22/24 0000	04/22/24 1548	LJS
Surrogate: Toluene-d8	98.0	Limit: 82-121	% Rec	1		04/22/24 0000	04/22/24 1548	LJS
Surrogate: Toluene-d8	98.0	Limit: 87-116	% Rec	1		04/22/24 0000	04/22/24 1548	LJS
Surrogate: 4-Bromofluorobenzene	98.5	Limit: 85-111	% Rec	1		04/22/24 0000	04/22/24 1548	LJS
Surrogate: 4-Bromofluorobenzene	98.5	Limit: 80-116	% Rec	1		04/22/24 0000	04/22/24 1548	LJS
Determination of Conventional Chemistry Parameters	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
2320B								
Alkalinity, as CaCO3	512	10	mg/L	1		04/23/24 0918	04/23/24 1300	BSS
EPA 9040			J					
pH	6.7	0.5	рН	1	I-03	04/23/24 0916	04/23/24 1347	BSS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/25/24 2338	JAR
Arsenic, total	0.0048	0.0040	mg/L	4		04/24/24 0716	04/25/24 2338	JAR
Barium, total	0.449	0.0040	mg/L	4		04/24/24 0716	04/25/24 2338	JAR
Beryllium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2338	JAR
Cadmium, total	<0.0008	0.0008	mg/L	4		04/24/24 0716	04/25/24 2338	JAR
Chromium, total	<0.0080	0.0080	mg/L	4		04/24/24 0716	04/25/24 2338	JAR
Cobalt, total	0.0106	0.0004	mg/L	4		04/24/24 0716	04/25/24 2338	JAR
Copper, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2338	JAR
Lead, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2338	JAR
	0.0224	0.0040	mg/L	4		04/24/24 0716	04/25/24 2338	JAR
Nickel, total			0					
*	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2338	JAR
Selenium, total	<0.0040 <0.0040	0.0040 0.0040	mg/L mg/L	4 4				
Selenium, total Silver, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2338	JAR
Selenium, total			•					

Client Sample ID:MW-81Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-07Collection Date:04/16/2024 11:20

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Vinyl Chloride	6.8	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Bromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Chloroethane	6.8	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Acetone	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Methyl lodide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
trans-1,2-Dichloroethylene	2.2	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
1,1-Dichloroethane	28.2	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
cis-1,2-Dichloroethylene	164	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Chloroform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Benzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
1,2-Dichloroethane	12.3	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Trichloroethylene	1.4	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
1,2-Dichloropropane	6.5	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Dibromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Toluene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Chlorobenzene	1.7	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Xylenes, total	<2.0	2.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Styrene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Bromoform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS

Client Sample ID:MW-81Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-07Collection Date:04/16/2024 11:20

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
1,4-Dichlorobenzene	4.7	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1610	LJS
Surrogate: Dibromofluoromethane	102	Limit: 75-136	% Rec	1		04/22/24 0000	04/22/24 1610	LJS
Surrogate: Dibromofluoromethane	102	Limit: 80-126	% Rec	1		04/22/24 0000	04/22/24 1610	LJS
Surrogate: 1,2-Dichloroethane-d4	104	Limit: 61-142	% Rec	1		04/22/24 0000	04/22/24 1610	LJS
Surrogate: 1,2-Dichloroethane-d4	104	Limit: 63-138	% Rec	1		04/22/24 0000	04/22/24 1610	LJS
Surrogate: Toluene-d8	98.5	Limit: 82-121	% Rec	1		04/22/24 0000	04/22/24 1610	LJS
Surrogate: Toluene-d8	98.5	Limit: 87-116	% Rec	1		04/22/24 0000	04/22/24 1610	LJS
Surrogate: 4-Bromofluorobenzene	98.9	Limit: 80-116	% Rec	1		04/22/24 0000	04/22/24 1610	LJS
Surrogate: 4-Bromofluorobenzene	98.9	Limit: 85-111	% Rec	1		04/22/24 0000	04/22/24 1610	LJS
Determination of Conventional Chemistry Parameters	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
2320B								
Alkalinity, as CaCO3	886	50	mg/L	1		04/23/24 0918	04/23/24 1300	BSS
EPA 9040			J					
pH	6.6	0.5	рН	1	I-03	04/23/24 0916	04/23/24 1347	BSS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/25/24 2345	JAR
Arsenic, total	0.0068	0.0040	mg/L	4		04/24/24 0716	04/25/24 2345	JAR
Barium, total	1.94	0.0100	mg/L	10		04/24/24 0716	04/26/24 0748	JAR
Beryllium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2345	JAR
Cadmium, total	<0.0008	0.0008	mg/L	4		04/24/24 0716	04/25/24 2345	JAR
Chromium, total	<0.0080	0.0080	mg/L	4		04/24/24 0716	04/25/24 2345	JAR
Cobalt, total	0.0105	0.0004	mg/L	4		04/24/24 0716	04/25/24 2345	JAR
Copper, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2345	JAR
Lead, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2345	JAR
Nickel, total	0.0134	0.0040	mg/L	4		04/24/24 0716	04/25/24 2345	JAR
•			mg/L	4		04/24/24 0716	04/25/24 2345	JAR
Selenium, total	<0.0040	0.0040	mg/L	-				
	<0.0040 <0.0040		•	4				JAR
Silver, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2345	JAR JAR
			•					JAR JAR JAR

Client Sample ID:MW-87Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-08Collection Date:04/16/2024 11:02

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Bromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Chloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Acetone	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Methyl lodide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Chloroform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Benzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Dibromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Toluene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Xylenes, total	<2.0	2.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Styrene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Bromoform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS

 Client Sample ID:
 MW-87

 Sample Matrix:
 Aqueous
 Collected By:
 Whipple, Todd

 Lab Sample ID:
 1HD1532-08
 Collection Date:
 04/16/2024 11:02

Lab Sample ID: 1HD1532-08					Collection	Date: 04/16/	2024 11:02	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1633	LJS
Surrogate: Dibromofluoromethane	103	Limit: 75-136	% Rec	1		04/22/24 0000	04/22/24 1633	LJS
Surrogate: Dibromofluoromethane	103	Limit: 80-126	% Rec	1		04/22/24 0000	04/22/24 1633	LJS
Surrogate: 1,2-Dichloroethane-d4	106	Limit: 63-138	% Rec	1		04/22/24 0000	04/22/24 1633	LJS
Surrogate: 1,2-Dichloroethane-d4	106	Limit: 61-142	% Rec	1		04/22/24 0000	04/22/24 1633	LJS
Surrogate: Toluene-d8	98.7	Limit: 82-121	% Rec	1		04/22/24 0000	04/22/24 1633	LJS
Surrogate: Toluene-d8	98.7	Limit: 87-116	% Rec	1		04/22/24 0000	04/22/24 1633	LJS
Surrogate: 4-Bromofluorobenzene	98.3	Limit: 80-116	% Rec	1		04/22/24 0000	04/22/24 1633	LJS
Surrogate: 4-Bromofluorobenzene	98.3	Limit: 85-111	% Rec	1		04/22/24 0000	04/22/24 1633	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/25/24 2351	JAR
Arsenic, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2351	JAR
Barium, total	0.117	0.0040	mg/L	4		04/24/24 0716	04/25/24 2351	JAR
Beryllium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2351	JAR
Cadmium, total	<0.0008	0.0008	mg/L	4		04/24/24 0716	04/25/24 2351	JAR
Chromium, total	<0.0080	0.0080	mg/L	4		04/24/24 0716	04/25/24 2351	JAR
Cobalt, total	<0.0004	0.0004	mg/L	4		04/24/24 0716	04/25/24 2351	JAR
Copper, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2351	JAR
Lead, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2351	JAR
Nickel, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2351	JAR
Selenium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2351	JAR
Silver, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2351	JAR
Thallium, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/25/24 2351	JAR
Vanadium, total	<0.0200	0.0200	mg/L	4		04/24/24 0716	04/25/24 2351	JAR
•								

1HD1532

Client Sample ID:MW-91Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-09Collection Date:04/16/2024 10:05

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Bromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Chloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Acetone	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Methyl lodide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Chloroform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Benzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Dibromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Toluene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Xylenes, total	<2.0	2.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Styrene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Bromoform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
• •			-					

 Client Sample ID:
 MW-91

 Sample Matrix:
 Aqueous
 Collected By:
 Whipple, Todd

 Lab Sample ID:
 1HD1532-09
 Collection Date:
 04/16/2024 10:05

Lab Sample ID: 1HD1532-09					Collection	Date: 04/16/	2024 10:05	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1656	LJS
Surrogate: Dibromofluoromethane	105	Limit: 75-136	% Rec	1		04/22/24 0000	04/22/24 1656	LJS
Surrogate: Dibromofluoromethane	105	Limit: 80-126	% Rec	1		04/22/24 0000	04/22/24 1656	LJS
Surrogate: 1,2-Dichloroethane-d4	107	Limit: 63-138	% Rec	1		04/22/24 0000	04/22/24 1656	LJS
Surrogate: 1,2-Dichloroethane-d4	107	Limit: 61-142	% Rec	1		04/22/24 0000	04/22/24 1656	LJS
Surrogate: Toluene-d8	98.3	Limit: 82-121	% Rec	1		04/22/24 0000	04/22/24 1656	LJS
Surrogate: Toluene-d8	98.3	Limit: 87-116	% Rec	1		04/22/24 0000	04/22/24 1656	LJS
Surrogate: 4-Bromofluorobenzene	97.2	Limit: 85-111	% Rec	1		04/22/24 0000	04/22/24 1656	LJS
Surrogate: 4-Bromofluorobenzene	97.2	Limit: 80-116	% Rec	1		04/22/24 0000	04/22/24 1656	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/25/24 2357	JAR
Arsenic, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2357	JAR
Barium, total	0.186	0.0040	mg/L	4		04/24/24 0716	04/25/24 2357	JAR
Beryllium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2357	JAR
Cadmium, total	<0.0008	0.0008	mg/L	4		04/24/24 0716	04/25/24 2357	JAR
Chromium, total	<0.0080	0.0080	mg/L	4		04/24/24 0716	04/25/24 2357	JAR
Cobalt, total	<0.0004	0.0004	mg/L	4		04/24/24 0716	04/25/24 2357	JAR
Copper, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2357	JAR
Lead, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2357	JAR
Nickel, total	< 0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2357	JAR
Selenium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2357	JAR
Silver, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/25/24 2357	JAR
Thallium, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/25/24 2357	JAR
Vanadium, total	<0.0200	0.0200	mg/L	4		04/24/24 0716	04/25/24 2357	JAR
Zinc, total	<0.0200	0.0200	mg/L	4		04/24/24 0716	04/25/24 2357	JAR

1HD1532

Client Sample ID:MW-93Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-10Collection Date:04/16/2024 11:43

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Bromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Chloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Acetone	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Methyl Iodide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Chloroform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Benzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Dibromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Toluene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Xylenes, total	<2.0	2.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Styrene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Bromoform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS

Client Sample ID:MW-93Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-10Collection Date:04/16/2024 11:43

Lab Sample ID: 1HD1532-10					Collection	Date: 04/16/	2024 11:43	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1719	LJS
Surrogate: Dibromofluoromethane	105	Limit: 75-136	% Rec	1		04/22/24 0000	04/22/24 1719	LJS
Surrogate: Dibromofluoromethane	105	Limit: 80-126	% Rec	1		04/22/24 0000	04/22/24 1719	LJS
Surrogate: 1,2-Dichloroethane-d4	107	Limit: 63-138	% Rec	1		04/22/24 0000	04/22/24 1719	LJS
Surrogate: 1,2-Dichloroethane-d4	107	Limit: 61-142	% Rec	1		04/22/24 0000	04/22/24 1719	LJS
Surrogate: Toluene-d8	99.1	Limit: 82-121	% Rec	1		04/22/24 0000	04/22/24 1719	LJS
Surrogate: Toluene-d8	99.1	Limit: 87-116	% Rec	1		04/22/24 0000	04/22/24 1719	LJS
Surrogate: 4-Bromofluorobenzene	97.9	Limit: 85-111	% Rec	1		04/22/24 0000	04/22/24 1719	LJS
Surrogate: 4-Bromofluorobenzene	97.9	Limit: 80-116	% Rec	1		04/22/24 0000	04/22/24 1719	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/26/24 0003	JAR
Arsenic, total	0.0119	0.0040	mg/L	4		04/24/24 0716	04/26/24 0003	JAR
Barium, total	0.243	0.0040	mg/L	4		04/24/24 0716	04/26/24 0003	JAR
Beryllium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0003	JAR
Cadmium, total	<0.0008	0.0008	mg/L	4		04/24/24 0716	04/26/24 0003	JAR
Chromium, total	<0.0080	0.0080	mg/L	4		04/24/24 0716	04/26/24 0003	JAR
Cobalt, total	0.0098	0.0004	mg/L	4		04/24/24 0716	04/26/24 0003	JAR
Copper, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0003	JAR
Lead, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0003	JAR
Nickel, total	0.0255	0.0040	mg/L	4		04/24/24 0716	04/26/24 0003	JAR
Selenium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0003	JAR
Silver, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0003	JAR
Thallium, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/26/24 0003	JAR
Vanadium, total	<0.0200	0.0200	mg/L	4		04/24/24 0716	04/26/24 0003	JAR
Zinc, total	0.0214	0.0200	mg/L	4		04/24/24 0716	04/26/24 0003	JAR

Client Sample ID:MW-94Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-11Collection Date:04/17/2024 8:29

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Vinyl Chloride	2.2	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Bromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Chloroethane	4.3	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Acetone	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Methyl lodide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
1,1-Dichloroethane	1.3	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
cis-1,2-Dichloroethylene	5.2	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Chloroform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Benzene	2.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
1,2-Dichloropropane	1.1	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Dibromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Toluene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Xylenes, total	<2.0	2.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Styrene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Bromoform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
1,2,0- Monioroproparie	~1.0	1.0	ug/L	1		04/22/24 0000	U4122124 1141	LJ

Client Sample ID:MW-94Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-11Collection Date:04/17/2024 8:29

Determination of Volatile Organic	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Compounds	Nesuit	IXL	Office		Note	riepaieu	Analyzeu	Allalysi
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1741	LJS
Surrogate: Dibromofluoromethane	103	Limit: 75-136	% Rec	1		04/22/24 0000	04/22/24 1741	LJS
Surrogate: Dibromofluoromethane	103	Limit: 80-126	% Rec	1		04/22/24 0000	04/22/24 1741	LJS
Surrogate: 1,2-Dichloroethane-d4	106	Limit: 61-142	% Rec	1		04/22/24 0000	04/22/24 1741	LJS
Surrogate: 1,2-Dichloroethane-d4	106	Limit: 63-138	% Rec	1		04/22/24 0000	04/22/24 1741	LJS
Surrogate: Toluene-d8	98.8	Limit: 87-116	% Rec	1		04/22/24 0000	04/22/24 1741	LJS
Surrogate: Toluene-d8	98.8	Limit: 82-121	% Rec	1		04/22/24 0000	04/22/24 1741	LJS
Surrogate: 4-Bromofluorobenzene	98.1	Limit: 80-116	% Rec	1		04/22/24 0000	04/22/24 1741	LJS
Surrogate: 4-Bromofluorobenzene	98.1	Limit: 85-111	% Rec	1		04/22/24 0000	04/22/24 1741	LJS
Determination of Conventional Chemistry Parameters	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
2320B								
Alkalinity, as CaCO3	698	50	mg/L	1		04/23/24 0918	04/23/24 1300	BSS
EPA 9040								
pH	6.6	0.5	рН	1	I-03	04/23/24 0916	04/23/24 1347	BSS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/26/24 0009	JAR
Arsenic, total	0.0959	0.0040	mg/L	4		04/24/24 0716	04/26/24 0009	JAR
Barium, total	0.308	0.0040	mg/L	4		04/24/24 0716	04/26/24 0009	JAR
Beryllium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0009	JAR
Cadmium, total	<0.0008	0.0008	mg/L	4		04/24/24 0716	04/26/24 0009	JAR
Chromium, total	<0.0080	0.0080	mg/L	4		04/24/24 0716	04/26/24 0009	JAR
Cobalt, total	0.0102	0.0004	mg/L	4		04/24/24 0716	04/26/24 0009	JAR
Copper, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0009	JAR
Lead, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0009	JAR
Nickel, total	0.0092	0.0040	mg/L	4		04/24/24 0716	04/26/24 0009	JAR
Selenium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0009	JAR
Silver, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0009	JAR
,		0.0020	mg/L	4		04/24/24 0716	04/26/24 0009	JAR
Thallium, total	<() ()(12(1							
Thallium, total Vanadium, total	<0.0020 <0.0200	0.0020	mg/L	4		04/24/24 0716	04/26/24 0009	JAR

Client Sample ID:MW-95Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-12Collection Date:04/17/2024 7:35

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Bromomethane	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Chloroethane	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Acetone	<10.0	10.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Methyl Iodide	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Acrylonitrile	<5.0	5.0	ug/L	1	O-07	04/25/24 0000	04/25/24 1645	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Chloroform	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Benzene	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Dibromomethane	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Toluene	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Xylenes, total	<2.0	2.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Styrene	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Bromoform	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
1 1			J.					

Client Sample ID:MW-95Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-12Collection Date:04/17/2024 7:35

Lab Sample ID: 1HD1532-12					Collection	Date: 04/17/	2024 7:35	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		04/25/24 0000	04/25/24 1645	LJS
Surrogate: Dibromofluoromethane	91.2	Limit: 75-136	% Rec	1		04/25/24 0000	04/25/24 1645	LJS
Surrogate: Dibromofluoromethane	91.2	Limit: 80-126	% Rec	1	O-07	04/25/24 0000	04/25/24 1645	LJS
Surrogate: 1,2-Dichloroethane-d4	97.5	Limit: 61-142	% Rec	1		04/25/24 0000	04/25/24 1645	LJS
Surrogate: 1,2-Dichloroethane-d4	97.5	Limit: 63-138	% Rec	1	O-07	04/25/24 0000	04/25/24 1645	LJS
Surrogate: Toluene-d8	98.0	Limit: 87-116	% Rec	1	O-07	04/25/24 0000	04/25/24 1645	LJS
Surrogate: Toluene-d8	98.0	Limit: 82-121	% Rec	1		04/25/24 0000	04/25/24 1645	LJS
Surrogate: 4-Bromofluorobenzene	99.4	Limit: 80-116	% Rec	1		04/25/24 0000	04/25/24 1645	LJS
Surrogate: 4-Bromofluorobenzene	99.4	Limit: 85-111	% Rec	1	O-07	04/25/24 0000	04/25/24 1645	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/26/24 0015	JAR
Arsenic, total	< 0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0015	JAR
Barium, total	0.0427	0.0040	mg/L	4		04/24/24 0716	04/26/24 0015	JAR
Beryllium, total	< 0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0015	JAR
Cadmium, total	<0.0008	0.0008	mg/L	4		04/24/24 0716	04/26/24 0015	JAR
Chromium, total	<0.0080	0.0080	mg/L	4		04/24/24 0716	04/26/24 0015	JAR
Cobalt, total	<0.0004	0.0004	mg/L	4		04/24/24 0716	04/26/24 0015	JAR
Copper, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0015	JAR
Lead, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0015	JAR
Nickel, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0015	JAR
Selenium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0015	JAR
Silver, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0015	JAR
Thallium, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/26/24 0015	JAR
Vanadium, total	<0.0200	0.0200	mg/L	4		04/24/24 0716	04/26/24 0015	JAR
Zinc, total	<0.0200	0.0200	mg/L	4		04/24/24 0716	04/26/24 0015	JAR

1HD1532

Client Sample ID:MW-96RSample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-13Collection Date:04/16/2024 7:55

Determination of Volatile Organic	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Compounds EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Bromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Chloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Acetone	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Methyl lodide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Chloroform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Benzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Dibromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Toluene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Xylenes, total	<2.0	2.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Styrene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Bromoform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS

Client Sample ID:MW-96RSample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-13Collection Date:04/16/20247:55

Lab Sample ID: 1HD1532-13					Collection	Date: 04/16/	2024 7:55	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1804	LJS
Surrogate: Dibromofluoromethane	103	Limit: 75-136	% Rec	1		04/22/24 0000	04/22/24 1804	LJS
Surrogate: Dibromofluoromethane	103	Limit: 80-126	% Rec	1		04/22/24 0000	04/22/24 1804	LJS
Surrogate: 1,2-Dichloroethane-d4	108	Limit: 61-142	% Rec	1		04/22/24 0000	04/22/24 1804	LJS
Surrogate: 1,2-Dichloroethane-d4	108	Limit: 63-138	% Rec	1		04/22/24 0000	04/22/24 1804	LJS
Surrogate: Toluene-d8	99.1	Limit: 87-116	% Rec	1		04/22/24 0000	04/22/24 1804	LJS
Surrogate: Toluene-d8	99.1	Limit: 82-121	% Rec	1		04/22/24 0000	04/22/24 1804	LJS
Surrogate: 4-Bromofluorobenzene	98.5	Limit: 80-116	% Rec	1		04/22/24 0000	04/22/24 1804	LJS
Surrogate: 4-Bromofluorobenzene	98.5	Limit: 85-111	% Rec	1		04/22/24 0000	04/22/24 1804	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/26/24 0034	JAR
Arsenic, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0034	JAR
Barium, total	0.124	0.0040	mg/L	4		04/24/24 0716	04/26/24 0034	JAR
Beryllium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0034	JAR
Cadmium, total	<0.0008	0.0008	mg/L	4		04/24/24 0716	04/26/24 0034	JAR
Chromium, total	<0.0080	0.0080	mg/L	4		04/24/24 0716	04/26/24 0034	JAR
Cobalt, total	0.0018	0.0004	mg/L	4		04/24/24 0716	04/26/24 0034	JAR
Copper, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0034	JAR
Lead, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0034	JAR
Nickel, total	0.0053	0.0040	mg/L	4		04/24/24 0716	04/26/24 0034	JAR
Selenium, total	0.0074	0.0040	mg/L	4		04/24/24 0716	04/26/24 0034	JAR
Silver, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0034	JAR
Thallium, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/26/24 0034	JAR
Vanadium, total	<0.0200	0.0200	mg/L	4		04/24/24 0716	04/26/24 0034	JAR
Zinc, total	<0.0200	0.0200	mg/L					JAR

Client Sample ID:MW-97Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-14Collection Date:04/17/2024 8:09

Determination of Volatile Organic	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Compounds EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Bromomethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Chloroethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Acetone	<10.0	10.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Methyl Iodide	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Chloroform	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Benzene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Dibromomethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Toluene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Xylenes, total	<2.0	2.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Styrene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Bromoform	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS

Client Sample ID:MW-97Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-14Collection Date:04/17/20248:09

Lab Sample ID: 1HD1532-14					Collection	Date: 04/17/	2024 8:09	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		04/23/24 0000	04/23/24 1626	LJS
Surrogate: Dibromofluoromethane	97.1	Limit: 80-126	% Rec	1		04/23/24 0000	04/23/24 1626	LJS
Surrogate: Dibromofluoromethane	97.1	Limit: 75-136	% Rec	1		04/23/24 0000	04/23/24 1626	LJS
Surrogate: 1,2-Dichloroethane-d4	101	Limit: 63-138	% Rec	1		04/23/24 0000	04/23/24 1626	LJS
Surrogate: 1,2-Dichloroethane-d4	101	Limit: 61-142	% Rec	1		04/23/24 0000	04/23/24 1626	LJS
Surrogate: Toluene-d8	97.3	Limit: 82-121	% Rec	1		04/23/24 0000	04/23/24 1626	LJS
Surrogate: Toluene-d8	97.3	Limit: 87-116	% Rec	1		04/23/24 0000	04/23/24 1626	LJS
Surrogate: 4-Bromofluorobenzene	95.4	Limit: 85-111	% Rec	1		04/23/24 0000	04/23/24 1626	LJS
Surrogate: 4-Bromofluorobenzene	95.4	Limit: 80-116	% Rec	1		04/23/24 0000	04/23/24 1626	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/26/24 0040	JAR
Arsenic, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0040	JAR
Barium, total	0.315	0.0040	mg/L	4		04/24/24 0716	04/26/24 0040	JAR
Beryllium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0040	JAR
Cadmium, total	<0.0008	0.0008	mg/L	4		04/24/24 0716	04/26/24 0040	JAR
Chromium, total	<0.0080	0.0080	mg/L	4		04/24/24 0716	04/26/24 0040	JAR
Cobalt, total	<0.0004	0.0004	mg/L	4		04/24/24 0716	04/26/24 0040	JAR
Copper, total	0.0071	0.0040	mg/L	4		04/24/24 0716	04/26/24 0040	JAR
Lead, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0040	JAR
Nickel, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0040	JAR
Selenium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0040	JAR
Silver, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0040	JAR
Thallium, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/26/24 0040	JAR
Vanadium, total	<0.0200	0.0200	mg/L	4		04/24/24 0716	04/26/24 0040	JAR
Zinc, total			0					

1HD1532

Client Sample ID:SRAMP B TileSample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-15Collection Date:04/16/2024 8:30

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Bromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Chloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Acetone	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Methyl lodide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Chloroform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Benzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Dibromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Toluene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Xylenes, total	<2.0	2.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Styrene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Bromoform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS

Client Sample ID:SRAMP B TileSample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-15Collection Date:04/16/20248:3

Lab Sample ID: 1HD1532-15			Date: 04/16/	e: 04/16/2024 8:30				
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1827	LJS
Surrogate: Dibromofluoromethane	105	Limit: 80-126	% Rec	1		04/22/24 0000	04/22/24 1827	LJS
Surrogate: Dibromofluoromethane	105	Limit: 75-136	% Rec	1		04/22/24 0000	04/22/24 1827	LJS
Surrogate: 1,2-Dichloroethane-d4	108	Limit: 63-138	% Rec	1		04/22/24 0000	04/22/24 1827	LJS
Surrogate: 1,2-Dichloroethane-d4	108	Limit: 61-142	% Rec	1		04/22/24 0000	04/22/24 1827	LJS
Surrogate: Toluene-d8	98.5	Limit: 82-121	% Rec	1		04/22/24 0000	04/22/24 1827	LJS
Surrogate: Toluene-d8	98.5	Limit: 87-116	% Rec	1		04/22/24 0000	04/22/24 1827	LJS
Surrogate: 4-Bromofluorobenzene	97.8	Limit: 85-111	% Rec	1		04/22/24 0000	04/22/24 1827	LJS
Surrogate: 4-Bromofluorobenzene	97.8	Limit: 80-116	% Rec	1		04/22/24 0000	04/22/24 1827	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/26/24 0046	JAR
Arsenic, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0046	JAR
Barium, total	0.0161	0.0040	mg/L	4		04/24/24 0716	04/26/24 0046	JAR
Beryllium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0046	JAR
Cadmium, total	<0.0008	0.0008	mg/L	4		04/24/24 0716	04/26/24 0046	JAR
Chromium, total	<0.0080	0.0080	mg/L	4		04/24/24 0716	04/26/24 0046	JAR
Cobalt, total	<0.0004	0.0004	mg/L	4		04/24/24 0716	04/26/24 0046	JAR
Copper, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0046	JAR
Lead, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0046	JAR
Nickel, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0046	JAR
Selenium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0046	JAR
Silver, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0046	JAR
Thallium, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/26/24 0046	JAR
Vanadium, total	<0.0200	0.0200	mg/L	4		04/24/24 0716	04/26/24 0046	JAR
Zinc, total	<0.0200	0.0200	mg/L	4		04/24/24 0716	04/26/24 0046	JAR

1HD1532

Client Sample ID:DuplicateSample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-16Collection Date:04/16/2024

Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/26/24 0052	JAR
Arsenic, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0052	JAR
Barium, total	0.130	0.0040	mg/L	4		04/24/24 0716	04/26/24 0052	JAR
Beryllium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0052	JAR
Cadmium, total	<0.0008	0.0008	mg/L	4		04/24/24 0716	04/26/24 0052	JAR
Chromium, total	<0.0080	0.0080	mg/L	4		04/24/24 0716	04/26/24 0052	JAR
Cobalt, total	0.0019	0.0004	mg/L	4		04/24/24 0716	04/26/24 0052	JAR
Copper, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0052	JAR
Lead, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0052	JAR
Nickel, total	0.0052	0.0040	mg/L	4		04/24/24 0716	04/26/24 0052	JAR
Selenium, total	0.0076	0.0040	mg/L	4		04/24/24 0716	04/26/24 0052	JAR
Silver, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0052	JAR
Thallium, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/26/24 0052	JAR
Vanadium, total	<0.0200	0.0200	mg/L	4		04/24/24 0716	04/26/24 0052	JAR
Zinc, total	<0.0200	0.0200	mg/L	4		04/24/24 0716	04/26/24 0052	JAR

1HD1532

Client Sample ID:MW-89Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1532-17Collection Date:04/16/2024 10:44

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Bromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Chloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Acetone	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Methyl lodide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Chloroform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Benzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Dibromomethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Toluene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Xylenes, total	<2.0	2.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Styrene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Bromoform	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS

1HD1532

Client Sample ID: MW-89

Sample Matrix: Aqueous Collected By: Whipple, Todd
Lab Sample ID: 1HD1532-17 Collection Date: 04/16/2024 10:44

Lab Sample ID: 1HD1532-17				Collection	Date: 04/16/	1/16/2024 10:44		
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		04/22/24 0000	04/22/24 1850	LJS
Surrogate: Dibromofluoromethane	105	Limit: 80-126	% Rec	1		04/22/24 0000	04/22/24 1850	LJS
Surrogate: Dibromofluoromethane	105	Limit: 75-136	% Rec	1		04/22/24 0000	04/22/24 1850	LJS
Surrogate: 1,2-Dichloroethane-d4	109	Limit: 63-138	% Rec	1		04/22/24 0000	04/22/24 1850	LJS
Surrogate: 1,2-Dichloroethane-d4	109	Limit: 61-142	% Rec	1		04/22/24 0000	04/22/24 1850	LJS
Surrogate: Toluene-d8	98.4	Limit: 87-116	% Rec	1		04/22/24 0000	04/22/24 1850	LJS
Surrogate: Toluene-d8	98.4	Limit: 82-121	% Rec	1		04/22/24 0000	04/22/24 1850	LJS
Surrogate: 4-Bromofluorobenzene	97.2	Limit: 85-111	% Rec	1		04/22/24 0000	04/22/24 1850	LJS
Surrogate: 4-Bromofluorobenzene	97.2	Limit: 80-116	% Rec	1		04/22/24 0000	04/22/24 1850	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/26/24 0058	JAR
Arsenic, total	< 0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0058	JAR
Barium, total	0.240	0.0040	mg/L	4		04/24/24 0716	04/26/24 0058	JAR
Beryllium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0058	JAR
Cadmium, total	<0.0008	0.0008	mg/L	4		04/24/24 0716	04/26/24 0058	JAR
Chromium, total	<0.0080	0.0080	mg/L	4		04/24/24 0716	04/26/24 0058	JAR
Cobalt, total	<0.0004	0.0004	mg/L	4		04/24/24 0716	04/26/24 0058	JAR
Copper, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0058	JAR
Lead, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0058	JAR
Nickel, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0058	JAR
Selenium, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0058	JAR
Silver, total	<0.0040	0.0040	mg/L	4		04/24/24 0716	04/26/24 0058	JAR
Thallium, total	<0.0020	0.0020	mg/L	4		04/24/24 0716	04/26/24 0058	JAR
Vanadium, total	<0.0200	0.0200	mg/L	4		04/24/24 0716	04/26/24 0058	JAR
Zinc, total	<0.0200	0.0200	mg/L	4		04/24/24 0716	04/26/24 0058	JAR

Batch Log Summary

Method	Batch	Laboratory ID	Client / Source ID
EPA 8260B	1HD1347	1HD1347-BS1	
		1HD1347-BSD1	
		1HD1347-BLK1	
		1HD1532-02	MW-85 (B)
		1HD1532-03	MW-98 (B)
		1HD1532-05	MW-49
		1HD1532-06	MW-54
		1HD1532-07	MW-81
		1HD1532-08	MW-87
		1HD1532-09	MW-91
		1HD1532-10	MW-93
		1HD1532-11	MW-94
		1HD1532-13	MW-96R
		1HD1532-15	SRAMP B Tile
		1HD1532-17	MW-89
		1HD1347-MS1	1HD1532-07
		1HD1347-MSD1	1HD1532-07
Method	Batch	Laboratory ID	Client / Source ID
EPA 9040	1HD1357	1HD1357-SRM2	
		1HD1357-SRM1	
		1HD1357-DUP1	1HD1532-05
		1HD1532-05	MW-49
		1HD1532-06	MW-54
		1HD1532-07	MW-81
		1HD1532-11	MW-94
Method	Batch	Laboratory ID	Client / Source ID
2320B	1HD1358	1HD1532-06	MW-54
		1HD1358-BS1	
		1HD1358-BS1 1HD1358-MS1	1HD1532-05
		1HD1358-BS1 1HD1358-MS1 1HD1358-BLK1	1HD1532-05
		1HD1358-BS1 1HD1358-MS1 1HD1358-BLK1 1HD1532-05	
		1HD1358-BS1 1HD1358-MS1 1HD1358-BLK1	1HD1532-05 MW-49
		1HD1358-BS1 1HD1358-MS1 1HD1358-BLK1 1HD1532-05 1HD1532-07	1HD1532-05 MW-49 MW-81
Method	Batch	1HD1358-BS1 1HD1358-MS1 1HD1358-BLK1 1HD1532-05 1HD1532-07 1HD1532-11 1HD1358-MSD1	1HD1532-05 MW-49 MW-81 MW-94
Method EPA 8260B	Batch 1HD1408	1HD1358-BS1 1HD1358-MS1 1HD1358-BLK1 1HD1532-05 1HD1532-07 1HD1532-11	1HD1532-05 MW-49 MW-81 MW-94 1HD1532-05

Microbac Laboratories, Inc., Newton

CERTIFICATE OF ANALYSIS

1HD1532

EPA 8260B	1HD1408	1HD1408-BLK1	
		1HD1532-04	MW-99 (B)
		1HD1532-14	MW-97
		1HD1408-MS1	1HD1532-04
		1HD1408-MSD1	1HD1532-04
Method	Batch	Laboratory ID	Client / Source ID
EPA 6020A	1HD1412	1HD1412-BLK1	
		1HD1412-BS1	
		1HD1412-MS1	1HD1511-01
		1HD1412-MSD1	1HD1511-01
		1HD1412-PS1	1HD1511-01
		1HD1532-02	MW-85 (B)
		1HD1532-03	MW-98 (B)
		1HD1532-05	MW-49
		1HD1532-06	MW-54
		1HD1532-07	MW-81
		1HD1532-08	MW-87
		1HD1532-09	MW-91
		1HD1532-10	MW-93
		1HD1532-11	MW-94
		1HD1532-12	MW-95
		1HD1532-13	MW-96R
		1HD1532-14	MW-97
		1HD1532-15	SRAMP B Tile
		1HD1532-16	Duplicate
		1HD1532-17	MW-89
		1HD1532-07RE1	MW-81
Method	Batch	Laboratory ID	Client / Source ID
EPA 6020A	1HD1478	1HD1478-BLK1	
		1HD1478-BS1	
		1HD1478-MS1	1HD0315-03RE3
		1HD1478-MSD1	1HD0315-03RE3
		1HD1478-PS1	1HD0315-03RE3
		1HD1532-04	MW-99 (B)
Method	Batch	Laboratory ID	Client / Source ID
EPA 8260B	1HD1572	1HD1572-BS1	
		1HD1572-BSD1	
		1HD1572-BLK1	
		1HD1532-12	MW-95
		1HD1532-12RE1	MW-95
		1HD1572-MS1	1HD1698-01
	Microbac I	_aboratories, Inc.,	

CERTIFICATE OF ANALYSIS

1HD1532

EPA 8260B 1HD1572 1HD1572-MSD1 1HD1698-01

Batch Quality Control Summary: Microbac Laboratories, Inc., Newton

				Spike	Source		%REC		RPD	
Determination of Volatile	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Organic Compounds										

Batch 1HD1347 - EPA 5030B - EPA 8260B

Blank (1HD1347-BLK1)			Prepared: 04/22/24 00:00 Analyzed: 04/22/24 13:28	
Chloromethane	<1.0	1.0	ug/L	
Vinyl Chloride	<1.0	1.0	ug/L	
Bromomethane	<1.0	1.0	ug/L	
Chloroethane	<1.0	1.0	ug/L	
Trichlorofluoromethane	<1.0	1.0	ug/L	
1,1-Dichloroethylene	<1.0	1.0	ug/L	
Acetone	<10.0	10.0	ug/L	
Methyl lodide	<1.0	1.0	ug/L	
Carbon Disulfide	<1.0	1.0	ug/L	
Methylene Chloride	<5.0	5.0	ug/L	
Acrylonitrile	<5.0	5.0	ug/L	
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	
1,1-Dichloroethane	<1.0	1.0	ug/L	
Vinyl Acetate	<5.0	5.0	ug/L	
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	
2-Butanone (MEK)	<10.0	10.0	ug/L	
Bromochloromethane	<1.0	1.0	ug/L	
Chloroform	<1.0	1.0	ug/L	
1,1,1-Trichloroethane	<1.0	1.0	ug/L	
Carbon Tetrachloride	<1.0	1.0	ug/L	
Benzene	<1.0	1.0	ug/L	
1,2-Dichloroethane	<1.0	1.0	ug/L	
Trichloroethylene	<1.0	1.0	ug/L	
1,2-Dichloropropane	<1.0	1.0	ug/L	
Dibromomethane	<1.0	1.0	ug/L	
Bromodichloromethane	<1.0	1.0	ug/L	
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	
Toluene	<1.0	1.0	ug/L	
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	
1,1,2-Trichloroethane	<1.0	1.0	ug/L	
Tetrachloroethylene	<1.0	1.0	ug/L	
2-Hexanone (MBK)	<5.0	5.0	ug/L	
Dibromochloromethane	<1.0	1.0	ug/L	
1,2-Dibromoethane	<1.0	1.0	ug/L	
Chlorobenzene	<1.0	1.0	ug/L	
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	
Ethylbenzene	<1.0	1.0	ug/L	
Xylenes, total	<2.0	2.0	ug/L	
Styrene	<1.0	1.0	ug/L	

CERTIFICATE OF ANALYSIS

1HD1532

Spike Source

%REC

RPD

Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HD1347 - EPA 5030B - EF	PA 8260B									
Blank (1HD1347-BLK1)			Prepared: 04	4/22/24 00:0	0 Analyzed:	04/22/24 1	3:28			
Bromoform	<1.0	1.0	ug/L							
1,2,3-Trichloropropane	<1.0	1.0	ug/L							
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L							
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L							
1,4-Dichlorobenzene	<1.0	1.0	ug/L							
1,2-Dichlorobenzene	<1.0	1.0	ug/L							
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L							
Surrogate: Dibromofluoromethane	48.8		ug/L	50.2		97.3	80-126			
Surrogate: Dibromofluoromethane	48.8		ug/L	50.2		97.3	75-136			
Surrogate: 1,2-Dichloroethane-d4	50.2		ug/L	50.1		100	61-142			
Surrogate: 1,2-Dichloroethane-d4	50.2		ug/L	50.1		100	63-138			
Surrogate: Toluene-d8	49.2		ug/L	50.4		97.7	87-116			
Surrogate: Toluene-d8	49.2		ug/L	50.4		97.7	82-121			
Surrogate: 4-Bromofluorobenzene Surrogate: 4-Bromofluorobenzene	49.7 49.7		ug/L ug/L	50.1 50.1		99.1 99.1	85-111 80-116			
LCS (1HD1347-BS1)	43.7		Prepared: 04		0 Analyzed:					
Chloromethane	28.57	1.0	ug/L	30.0		95.1	63-155			
Vinyl Chloride	30.89	1.0	ug/L	30.0		103	70-154			
Bromomethane	22.26	1.0	ug/L	30.1		74.0	52-176			
Chloroethane	31.35	1.0	ug/L	30.0		104	72-148			
Trichlorofluoromethane	29.88	1.0	ug/L	30.0		99.6	70-152			
1,1-Dichloroethylene	49.24	1.0	ug/L	50.1		98.2	70-148			
Acetone	81.46	10.0	ug/L	100		81.4	43-172			
Methyl lodide	94.04	1.0	ug/L	100		93.9	69-170			
Carbon Disulfide	97.23	1.0	ug/L	100		97.1	72-162			
Methylene Chloride	47.77	5.0	ug/L	50.2		95.2	68-142			
Acrylonitrile	48.44	5.0	ug/L	50.0		96.9	67-144			
trans-1,2-Dichloroethylene	48.72	1.0	ug/L	50.3		96.9	66-148			
1,1-Dichloroethane	47.66	1.0	ug/L	50.3		94.8	66-143			
Vinyl Acetate	156.9	5.0	ug/L	162		97.2	43-153			
cis-1,2-Dichloroethylene	47.39	1.0	ug/L	50.5		93.8	71-149			
2-Butanone (MEK)	104.7	10.0	ug/L	100		105	52-159			
Bromochloromethane	48.03	1.0	ug/L	50.4		95.2	69-143			
Chloroform	46.73	1.0	ug/L	50.2		93.1	69-144			
1,1,1-Trichloroethane	47.51	1.0	ug/L	50.3		94.4	62-129			
Carbon Tetrachloride	49.48	1.0	ug/L	50.2		98.5	63-141			
Benzene	48.51	1.0	ug/L	50.4		96.2				
1,2-Dichloroethane	46.99	1.0	ug/L ug/L	50.4		93.6	71-134			
•	48.85	1.0	_				72-132			
Trichloroethylene 1,2-Dichloropropane	48.30		ug/L	50.3		97.0	71-135			
Dibromomethane	49.33	1.0	ug/L	50.2		96.2	69-136			
	48.80	1.0	ug/L	50.5		97.7	73-147			
Bromodichloromethane		1.0	ug/L	50.3		97.1	68-129			
cis-1,3-Dichloropropene	49.55	1.0	ug/L	50.2		98.7	65-134			

1HD1532

				Spike	Source		%REC		RPD	Natas
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HD1347 - EPA 5030B - EP.	A 8260B									
.CS (1HD1347-BS1)			Prepared: 04	1/22/24 00:0	0 Analyzed:	04/22/24 1	2:20			
4-Methyl-2-pentanone (MIBK)	104.2	5.0	ug/L	100		104	58-147			
Toluene	47.32	1.0	ug/L	50.5		93.7	72-133			
trans-1,3-Dichloropropene	49.84	1.0	ug/L	50.3		99.1	67-130			
1,1,2-Trichloroethane	48.86	1.0	ug/L	50.2		97.3	69-135			
Tetrachloroethylene	48.97	1.0	ug/L	50.2		97.5	69-130			
2-Hexanone (MBK)	109.4	5.0	ug/L	100		109	55-144			
Dibromochloromethane	50.52	1.0	ug/L	50.3		100	73-127			
1,2-Dibromoethane	49.61	1.0	ug/L	50.4		98.3	67-132			
Chlorobenzene	49.00	1.0	ug/L	50.2		97.5	72-123			
1,1,1,2-Tetrachloroethane	49.70	1.0	ug/L	50.4		98.5	73-127			
Ethylbenzene	50.21	1.0	ug/L	50.5		99.5	71-127			
Xylenes, total	153.1	2.0	ug/L	151		101	74-127			
Styrene	51.90	1.0	ug/L	50.4		103	66-126			
Bromoform	49.89	1.0	ug/L	50.4		99.3	68-130			
1,2,3-Trichloropropane	49.45	1.0	ug/L	50.4		98.0	63-136			
trans-1,4-Dichloro-2-butene	104.2	5.0	ug/L	100		104	54-134			
1,1,2,2-Tetrachloroethane	49.30	1.0	•	50.2		98.2				
1,4-Dichlorobenzene	48.57	1.0	ug/L				61-131			
•	48.80		ug/L	50.2		96.8	70-129			
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	51.81	1.0 5.0	ug/L ug/L	50.2 50.5		97.3 103	69-126 50-143			
1,2-Bibroffio-o-critoroproparie		0.0	ug/L	30.3		103	30-143			
Surrogate: Dibromofluoromethane	48.4		ug/L	50.2		96.5	80-126			
Surrogate: Dibromofluoromethane	48.4		ug/L	50.2		96.5	75-136			
Surrogate: 1,2-Dichloroethane-d4	48.4		ug/L	50.1		96.6	63-138			
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Toluene-d8	48.4 49.4		ug/L	50.1 50.4		96.6 98.0	61-142 87-116			
Surrogate: Toluene-d8	49.4 49.4		ug/L ug/L	50.4 50.4		98.0 98.0	82-121			
Surrogate: 4-Bromofluorobenzene	50.2		ug/L ug/L	50. 4 50.1		100	85-111			
Surrogate: 4-Bromofluorobenzene	50.2		ug/L	50.1		100	80-116			
.CS Dup (1HD1347-BSD1)			Prepared: 04		0 Analyzed:	04/22/24 1				
Chloromethane	28.16	1.0	ug/L	30.0		93.8	63-155	1.45	24	
Vinyl Chloride	30.36	1.0	ug/L	30.0		101	70-154	1.73	25	
Bromomethane	23.59	1.0	ug/L	30.1		78.4	52-176	5.80	27	
Chloroethane	30.71	1.0	ug/L	30.0		102	72-148	2.06	25	
Trichlorofluoromethane	30.06	1.0	ug/L	30.0		100	70-152	0.601	26	
1,1-Dichloroethylene	47.54	1.0	ug/L	50.1		94.8	70-148	3.51	24	
Acetone	89.77	10.0	ug/L	100		89.7	43-172	9.71	30	
Methyl lodide	93.11	1.0	ug/L	100		92.9	69-170	0.994		
Carbon Disulfide	95.11	1.0	_						30	
	48.52		ug/L	100		95.0 06.7	72-162	2.20	24	
Methylene Chloride	51.37	5.0	ug/L	50.2		96.7	68-142	1.56	21	
Acrylonitrile		5.0	ug/L	50.0		103	67-144	5.87	24	
trans-1,2-Dichloroethylene	47.81	1.0	ug/L	50.3		95.1	66-148	1.89	27	
1,1-Dichloroethane	47.44	1.0	ug/L	50.3		94.4	66-143	0.463	24	
Vinyl Acetate	155.4	5.0	ug/L	162		96.2	43-153	0.993	30	

1HD1532

Determination of Volatile	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Organic Compounds	Nesuit	KL	Office	Level	Result	/orceo	Lillits	KFD	Lilling	
Batch 1HD1347 - EPA 5030B - EPA	A 8260B									
CS Dup (1HD1347-BSD1)			Prepared: 04	1/22/24 00:0	0 Analyzed:	04/22/24 1	2:42			
cis-1,2-Dichloroethylene	56.58	1.0	ug/L	50.5		112	71-149	17.7	26	
2-Butanone (MEK)	114.8	10.0	ug/L	100		115	52-159	9.17	27	
Bromochloromethane	48.52	1.0	ug/L	50.4		96.2	69-143	1.02	23	
Chloroform	46.70	1.0	ug/L	50.2		93.1	69-144	0.0642	23	
1,1,1-Trichloroethane	46.90	1.0	ug/L	50.3		93.2	62-129	1.29	24	
Carbon Tetrachloride	48.67	1.0	ug/L	50.2		96.9	63-141	1.65	25	
Benzene	48.30	1.0	ug/L	50.4		95.7	71-134	0.434	23	
1,2-Dichloroethane	47.62	1.0		50.4						
•	48.14		ug/L			94.9	72-132	1.33	24	
Trichloroethylene	49.17	1.0	ug/L	50.3		95.6	71-135	1.46	24	
1,2-Dichloropropane	49.17	1.0	ug/L	50.2		97.9	69-136	1.79	24	
Dibromomethane		1.0	ug/L	50.5		98.3	73-147	0.546	25	
Bromodichloromethane	48.87	1.0	ug/L	50.3		97.2	68-129	0.143	22	
cis-1,3-Dichloropropene	50.06	1.0	ug/L	50.2		99.7	65-134	1.02	23	
4-Methyl-2-pentanone (MIBK)	109.8	5.0	ug/L	100		110	58-147	5.19	27	
Toluene	47.56	1.0	ug/L	50.5		94.2	72-133	0.506	24	
trans-1,3-Dichloropropene	50.90	1.0	ug/L	50.3		101	67-130	2.10	24	
1,1,2-Trichloroethane	49.28	1.0	ug/L	50.2		98.1	69-135	0.856	23	
Tetrachloroethylene	47.89	1.0	ug/L	50.2		95.4	69-130	2.23	25	
2-Hexanone (MBK)	112.9	5.0	ug/L	100		113	55-144	3.20	25	
Dibromochloromethane	50.84	1.0	ug/L	50.3		101	73-127	0.631	22	
1,2-Dibromoethane	49.79	1.0	ug/L	50.4		98.7	67-132	0.362	24	
Chlorobenzene	48.95	1.0	ug/L	50.2		97.4	72-123	0.102	23	
1,1,1,2-Tetrachloroethane	49.82	1.0	ug/L	50.4		98.8	73-127	0.241	24	
Ethylbenzene	50.17	1.0	ug/L	50.5		99.4	71-127	0.0797	26	
Xylenes, total	152.4	2.0	ug/L	151		101	74-127	0.504	25	
Styrene	51.79	1.0	ug/L	50.4		103	66-126	0.212	23	
Bromoform	50.35	1.0	ug/L	50.2		100	68-130	0.918	23	
1,2,3-Trichloropropane	50.79	1.0	ug/L	50.4		101	63-136	2.67	24	
trans-1,4-Dichloro-2-butene	107.0	5.0	ug/L	100		107	54-134	2.65	27	
1,1,2,2-Tetrachloroethane	50.15	1.0	ug/L	50.2		99.9	61-131	1.71		
1,4-Dichlorobenzene	48.31	1.0	ug/L	50.2		96.3	70-129	0.537	29 24	
1,2-Dichlorobenzene	48.50	1.0	•	50.2		96.7				
1,2-Dibromo-3-chloropropane	53.28	5.0	ug/L ug/L	50.5		106	69-126 50-143	0.617 2.80	26 30	
Surrogate: Dibromofluoromethane	48.7		ug/l	50.2		97.1	80-126			
Surrogate: Dibromofluoromethane	46.7 48.7		ug/L ug/L	50.2 50.2		97.1 97.1	75-136			
Surrogate: 1,2-Dichloroethane-d4	48.7		ug/L	50.1		97.2	63-138			
Surrogate: 1,2-Dichloroethane-d4	48.7		ug/L	50.1		97.2	61-142			
Surrogate: Toluene-d8	50.0		ug/L	50.4		99.3	87-116			
Surrogate: Toluene-d8	50.0		ug/L	50.4		99.3	82-121			
Surrogate: 4-Bromofluorobenzene	51.0		ug/L	50.1		102	85-111			
Surrogate: 4-Bromofluorobenzene	51.0		ug/L	50.1		102	80-116			
atrix Spike (1HD1347-MS1)	Source: 11	HD1532-07	Prepared: 04	/22/24 00:0	0 Analyzed:	04/22/24 2	1:30			
Chloromethane	299.4	10.0	ug/L	300	ND	99.7	61-152			

1HD1532

		ΊH	D1532							
				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HD1347 - EPA 5030B - EP	A 8260B									
Matrix Spike (1HD1347-MS1)	Source:	1HD1532-07	Prepared: 0	4/22/24 00:0	0 Analyzed:	: 04/22/24 2	1:30			
Vinyl Chloride	337.5	10.0	ug/L	300	6.82	110	66-149			
Bromomethane	257.6	10.0	ug/L	301	ND	85.6	43-171			
Chloroethane	342.4	10.0	ug/L	300	6.83	112	69-148			
Trichlorofluoromethane	316.6	10.0	ug/L	300	ND	106	62-163			
1,1-Dichloroethylene	523.9	10.0	ug/L	501	ND	104	70-148			
Acetone	860.2	100	ug/L	1000	ND	85.9	45-173			
Methyl Iodide	682.6	10.0	ug/L	1000	ND	68.1	62-167			
Carbon Disulfide	1053	10.0	ug/L	1000	ND	105	71-163			
Methylene Chloride	522.5	50.0	ug/L	502	ND	104	69-140			
Acrylonitrile	482.2	50.0	ug/L	502	ND	96.4	58-151			
trans-1,2-Dichloroethylene	510.4	10.0	ug/L	503	ND	102	69-144			
1,1-Dichloroethane	527.0	10.0	ug/L	503	28.18	99.2	70-138			
Vinyl Acetate	1506	50.0	ug/L	1620	ND	93.3	58-142			
cis-1,2-Dichloroethylene	640.6	10.0	ug/L	505	164.2	94.3	68-151			
2-Butanone (MEK)	1013	100	ug/L	1000	ND	101	50-160			
Bromochloromethane	500.1	10.0	ug/L	504	ND	99.2	65-143			
Chloroform	490.2	10.0	ug/L	502	ND	97.7	71-143			
1,1,1-Trichloroethane	495.5	10.0	ug/L	503	ND	98.5	63-133			
Carbon Tetrachloride	511.0	10.0	ug/L	502	ND	102	63-142			
Benzene	485.9	10.0	ug/L	504	ND	96.3	69-133			
1,2-Dichloroethane	472.1	10.0	ug/L	502	12.26	91.6	63-138			
Trichloroethylene	488.4	10.0	ug/L	503	ND	97.0	71-133			
1,2-Dichloropropane	485.1	10.0	ug/L	502	6.53	95.3	69-132			
Dibromomethane	485.4	10.0	ug/L	505	ND	96.2	70-147			
Bromodichloromethane	477.7	10.0	ug/L	503	ND	95.0	67-130			
cis-1,3-Dichloropropene	465.3	10.0	ug/L	502	ND	92.7	61-126			
4-Methyl-2-pentanone (MIBK)	989.2	50.0	ug/L	1000	ND	98.7	55-147			
Toluene	477.5	10.0	ug/L	505	ND	94.6	71-133			
trans-1,3-Dichloropropene	466.5	10.0	ug/L	503	ND	92.8	63-124			
1,1,2-Trichloroethane	484.5	10.0	ug/L	502	ND	96.5	69-133			
Tetrachloroethylene	479.2	10.0	ug/L	502	ND	95.4	70-124			
2-Hexanone (MBK)	1003	50.0	ug/L	1000	ND	100	53-141			
Dibromochloromethane	483.9	10.0	ug/L	503	ND	96.1	74-122			
1,2-Dibromoethane	481.2	10.0	ug/L	504	ND	95.4	66-127			
Chlorobenzene	486.5	10.0	ug/L	502	ND	96.8	76-116			
1,1,1,2-Tetrachloroethane	481.5	10.0	ug/L	504	ND	95.5	77-121			
Ethylbenzene	498.2	10.0	ug/L	505	ND	98.7	73-124			
Xylenes, total	1512	20.0	ug/L	1510	ND	99.9	75-124			
Styrene	510.7	10.0	ug/L	504	ND	101	70-120			
Bromoform	462.1	10.0	ug/L	502	ND	92.0	70-120			
1,2,3-Trichloropropane	483.9	10.0	ug/L ug/L	504	ND	95.9	62-135			
trans-1,4-Dichloro-2-butene	945.3	50.0	ug/L ug/L	1000	ND	94.3	50-120			
a and in the individual and individual	474.4	30.0	ug/L	1000	יאט.	54.3	50-120			

Microbac Laboratories, Inc., Newton

ug/L

10.0

471.1

1,1,2,2-Tetrachloroethane

63-126

93.8

1HD1532

Spike Source

%REC

RPD

				Spike	Source		,		KFD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HD1347 - EPA 5030B - EPA	8260B									
Matrix Spike (1HD1347-MS1)	Source:	1HD1532-07	Prepared: 04	1/22/24 00:0	0 Analyzed:	04/22/24 2	1:30			
1,4-Dichlorobenzene	474.8	10.0	ug/L	502	ND	94.6	72-119			
1,2-Dichlorobenzene	477.5	10.0	ug/L	502	ND	95.2	71-117			
1,2-Dibromo-3-chloropropane	466.1	50.0	ug/L	505	ND	92.3	49-134			
0 / 0" " "										
Surrogate: Dibromofluoromethane	524 524		ug/L	502		104	80-126			
Surrogate: Dibromofluoromethane Surrogate: 1,2-Dichloroethane-d4	524 518		ug/L	502 501		104 103	75-136 61-142			
Surrogate: 1,2-Dichloroethane-d4	518		ug/L ug/L	501 501		103	63-138			
Surrogate: Toluene-d8	506		ug/L	504		100	87-116			
Surrogate: Toluene-d8	506		ug/L	504		100	82-121			
Surrogate: 4-Bromofluorobenzene	498		ug/L	501		99.4	85-111			
Surrogate: 4-Bromofluorobenzene	498		ug/L	501		99.4	80-116			
Matrix Spike Dup (1HD1347-MSD1)	Source:	1HD1532-07	Prepared: 04	4/22/24 00:0	0 Analyzed:	04/22/24 2	1:53			
Chloromethane	284.9	10.0	ug/L	300	ND	94.9	61-152	4.96	26	
Vinyl Chloride	315.8	10.0	ug/L	300	6.82	103	66-149	6.64	23	
Bromomethane	242.2	10.0	ug/L	301	ND	80.5	43-171	6.16	29	
Chloroethane	320.5	10.0	ug/L	300	6.83	105	69-148	6.61	25	
Trichlorofluoromethane	298.9	10.0	ug/L	300	ND	99.7	62-163	5.75	25	
1,1-Dichloroethylene	497.8	10.0	ug/L	501	ND	99.3	70-148	5.11	22	
Acetone	873.2	100	ug/L	1000	ND	87.2	45-173	1.50	30	
Methyl lodide	777.0	10.0	ug/L	1000	ND	77.5	62-167	12.9	24	
Carbon Disulfide	991.7	10.0	•	1000						
	496.7		ug/L		ND	99.1	71-163	6.01	22	
Methylene Chloride	475.1	50.0	ug/L	502	ND	99.0	69-140	5.06	19	
Acrylonitrile		50.0	ug/L	500	ND	95.0	58-151	1.48	15	
trans-1,2-Dichloroethylene	481.0	10.0	ug/L	503	ND	95.7	69-144	5.93	22	
1,1-Dichloroethane	505.2	10.0	ug/L	503	28.18	94.9	70-138	4.22	20	
Vinyl Acetate	1487	50.0	ug/L	1620	ND	92.1	58-142	1.32	24	
cis-1,2-Dichloroethylene	611.6	10.0	ug/L	505	164.2	88.6	68-151	4.63	22	
2-Butanone (MEK)	991.4	100	ug/L	1000	ND	99.0	50-160	2.16	23	
Bromochloromethane	485.6	10.0	ug/L	504	ND	96.3	65-143	2.94	22	
Chloroform	473.8	10.0	ug/L	502	ND	94.4	71-143	3.40	21	
1,1,1-Trichloroethane	472.5	10.0	ug/L	503	ND	93.9	63-133	4.75	23	
Carbon Tetrachloride	487.6	10.0	ug/L	502	ND	97.1	63-142	4.69	22	
Benzene	467.8	10.0	ug/L	504	ND	92.7	69-133	3.80	18	
1,2-Dichloroethane	460.9	10.0	ug/L	502	12.26	89.4	63-138	2.40	20	
Trichloroethylene	468.7	10.0	ug/L	503	ND	93.1	71-133	4.12	23	
1,2-Dichloropropane	471.1	10.0	ug/L	502	6.53	92.5	69-132	2.93	20	
Dibromomethane	474.5	10.0	ug/L	505	ND	94.0	70-147	2.27	22	
Bromodichloromethane	465.3	10.0	ug/L	503	ND	92.6	67-130	2.63	21	
cis-1,3-Dichloropropene	458.7	10.0	ug/L	502	ND	91.4	61-126	1.43	21	
4-Methyl-2-pentanone (MIBK)	985.0	50.0	ug/L	1000	ND	98.3	55-147	0.425	23	
Toluene	458.4	10.0	ug/L ug/L	505	ND ND	90.8				
trans-1,3-Dichloropropene	458.5	10.0	ug/L ug/L	503			71-133	4.08	19 21	
1,1,2-Trichloroethane	477.0	10.0	ug/L	503	ND	91.2	63-124	1.73	21	

1HD1532

Spike Source

				Spike	Source		%REC		RPD	
Determination of Volatile	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Organic Compounds Batch 1HD1347 - EPA 5030B - EPA	8260B									
		4UD4522.07	Prepared: 04	1/22/24 00:0	M Analyzed:	04/22/24 2	1.52			
Matrix Spike Dup (1HD1347-MSD1)	458.6	1HD1532-07	•					4.00		
Tetrachloroethylene		10.0	ug/L	502	ND	91.3	70-124	4.39	24	
2-Hexanone (MBK)	1010	50.0	ug/L	1000	ND	101	53-141	0.735	24	
Dibromochloromethane	479.4	10.0	ug/L	503	ND	95.2	74-122	0.934	21	
1,2-Dibromoethane	471.0	10.0	ug/L	504	ND	93.4	66-127	2.14	23	
Chlorobenzene	468.8	10.0	ug/L	502	ND	93.3	76-116	3.71	21	
1,1,1,2-Tetrachloroethane	472.6	10.0	ug/L	504	ND	93.7	77-121	1.87	25	
Ethylbenzene	479.5	10.0	ug/L	505	ND	95.0	73-124	3.83	20	
Xylenes, total	1455	20.0	ug/L	1510	ND	96.1	75-123	3.89	20	
Styrene	494.5	10.0	ug/L	504	ND	98.1	70-120	3.22	23	
Bromoform	459.7	10.0	ug/L	502	ND	91.5	70-124	0.521	22	
1,2,3-Trichloropropane	479.1	10.0	ug/L	504	ND	95.0	62-135	0.997	28	
trans-1,4-Dichloro-2-butene	937.3	50.0	ug/L	1000	ND	93.5	50-120	0.850	26	
1,1,2,2-Tetrachloroethane	472.0	10.0	ug/L	502	ND	94.0	63-126	0.191	24	
1,4-Dichlorobenzene	464.6	10.0	ug/L	502	ND	92.6	72-119	2.17	24	
1,2-Dichlorobenzene	465.4	10.0	•	502						
•	476.2		ug/L		ND	92.8	71-117	2.57	24	
1,2-Dibromo-3-chloropropane	470.2	50.0	ug/L	505	ND	94.3	49-134	2.14	28	
Surrogate: Dibromofluoromethane	514		ug/L	502		102	80-126			
Surrogate: Dibromofluoromethane	514		ug/L	502		102	75-136			
Surrogate: 1,2-Dichloroethane-d4	510		ug/L	501		102	63-138			
Surrogate: 1,2-Dichloroethane-d4	510		ug/L	501		102	61-142			
Surrogate: Toluene-d8	504		ug/L	504		99.9	87-116			
Surrogate: Toluene-d8	504		ug/L	504		99.9	82-121			
Surrogate: 4-Bromofluorobenzene Surrogate: 4-Bromofluorobenzene	500		ug/L	501		99.6	85-111			
Surrogate. 4-biomonuorobenzene	500		ug/L	501		99.6	80-116			
Batch 1HD1408 - EPA 5030B - EPA	00000									
Batch Hib 1400 - El A 0000B - El A	8260B									
Blank (1HD1408-BLK1)	8260B		Prepared: 04	1/23/24 00:0	00 Analyzed:	04/23/24 1	0:46			
	<1.0	1.0	Prepared: 04	4/23/24 00:0	00 Analyzed:	04/23/24 1	0:46			
Blank (1HD1408-BLK1)		1.0 1.0		1/23/24 00:0	00 Analyzed:	04/23/24 1	0:46			
Blank (1HD1408-BLK1) Chloromethane	<1.0		ug/L	1/23/24 00:C	00 Analyzed:	04/23/24 1	0:46			
Blank (1HD1408-BLK1) Chloromethane Vinyl Chloride	<1.0 <1.0	1.0	ug/L ug/L ug/L	4/23/24 00:C	00 Analyzed:	04/23/24 1	0:46			
Blank (1HD1408-BLK1) Chloromethane Vinyl Chloride Bromomethane	<1.0 <1.0 <1.0	1.0 1.0	ug/L ug/L ug/L ug/L	1/23/24 00:C	00 Analyzed:	04/23/24 1	0:46			
Blank (1HD1408-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane	<1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L	1/23/24 00:C	00 Analyzed:	04/23/24 1	0:46			
Blank (1HD1408-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L	1/23/24 00:C	00 Analyzed:	04/23/24 1	0:46			
Blank (1HD1408-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4/23/24 00:C	00 Analyzed:	04/23/24 1	0:46			
Blank (1HD1408-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl lodide	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0 1.0 10.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1/23/24 00:C	00 Analyzed:	04/23/24 1	0:46			
Blank (1HD1408-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl lodide Carbon Disulfide	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1/23/24 00:C	00 Analyzed:	04/23/24 1	0:46			
Blank (1HD1408-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl lodide Carbon Disulfide Methylene Chloride	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0 1.0 10.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1/23/24 00:C	00 Analyzed:	04/23/24 1	0:46			
Blank (1HD1408-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl lodide Carbon Disulfide Methylene Chloride Acrylonitrile	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0 1.0 10.0 1.0 5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1/23/24 00:C	00 Analyzed:	04/23/24 1	0:46			
Blank (1HD1408-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl lodide Carbon Disulfide Methylene Chloride Acrylonitrile trans-1,2-Dichloroethylene	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0 1.0 10.0 1.0 5.0 5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4/23/24 00:C	00 Analyzed:	04/23/24 1	0:46			
Blank (1HD1408-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl lodide Carbon Disulfide Methylene Chloride Acrylonitrile	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0 1.0 10.0 1.0 5.0 5.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4/23/24 00:C	00 Analyzed:	04/23/24 1	0:46			
Blank (1HD1408-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl lodide Carbon Disulfide Methylene Chloride Acrylonitrile trans-1,2-Dichloroethylene	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0 1.0 10.0 1.0 5.0 5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1/23/24 00:C	00 Analyzed:	04/23/24 1	0:46			
Blank (1HD1408-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl lodide Carbon Disulfide Methylene Chloride Acrylonitrile trans-1,2-Dichloroethylene 1,1-Dichloroethane	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0 1.0 10.0 1.0 5.0 5.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1/23/24 00:C	00 Analyzed:	04/23/24 1	0:46			

RPD

%REC

CERTIFICATE OF ANALYSIS

1HD1532

Units

RL

Determination of Volatile

Result

Spike Source

Result %REC

Level

%REC

Limits

RPD

Limit

RPD

Notes

Organic Compounds	Result	KL	Units	Levei	Result	%REC	Limits	KPD	Limit	
Batch 1HD1408 - EPA 5030B - EPA	A 8260B									
Slank (1HD1408-BLK1)			Prepared: 0	4/23/24 00:0	0 Analyzed:	04/23/24 10	0:46			
Bromochloromethane	<1.0	1.0	ug/L							
Chloroform	<1.0	1.0	ug/L							
1,1,1-Trichloroethane	<1.0	1.0	ug/L							
Carbon Tetrachloride	<1.0	1.0	ug/L							
- Benzene	<1.0	1.0	ug/L							
1,2-Dichloroethane	<1.0	1.0	ug/L							
Frichloroethylene	<1.0	1.0	ug/L							
1,2-Dichloropropane	<1.0	1.0	ug/L							
Dibromomethane	<1.0	1.0	ug/L							
Bromodichloromethane	<1.0	1.0	ug/L ug/L							
	<1.0		_							
cis-1,3-Dichloropropene		1.0	ug/L							
1-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L							
Toluene	<1.0	1.0	ug/L							
rans-1,3-Dichloropropene	<1.0	1.0	ug/L							
1,1,2-Trichloroethane	<1.0	1.0	ug/L							
Tetrachloroethylene	<1.0	1.0	ug/L							
2-Hexanone (MBK)	<5.0	5.0	ug/L							
Dibromochloromethane	<1.0	1.0	ug/L							
1,2-Dibromoethane	<1.0	1.0	ug/L							
Chlorobenzene	<1.0	1.0	ug/L							
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L							
Ethylbenzene	<1.0	1.0	ug/L							
Xylenes, total	<2.0	2.0	ug/L							
Styrene	<1.0	1.0	ug/L							
, Bromoform	<1.0	1.0	ug/L							
1,2,3-Trichloropropane	<1.0	1.0	ug/L							
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L							
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L							
1,4-Dichlorobenzene	<1.0	1.0	ug/L							
1,2-Dichlorobenzene	<1.0	1.0	ug/L							
1,2-Dichloroberizerie 1,2-Dibromo-3-chloropropane	<5.0	5.0	_							
1,2-Uibi offio-3-Gillotoproparie		5.0	ug/L							
Surrogate: Dibromofluoromethane	50.8		ug/L	50.2		101	80-126			
Surrogate: Dibromofluoromethane	50.8		ug/L	50.2		101	75-136			
Surrogate: 1,2-Dichloroethane-d4	51.8		ug/L	50.1		103	63-138			
Surrogate: 1,2-Dichloroethane-d4	51.8		ug/L	50.1		103	61-142			
Surrogate: Toluene-d8	49.7		ug/L	50.4		98.7	87-116			
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene	49.7 48.6		ug/L	50.4		98.7 96.9	82-121 85 111			
Surrogate: 4-Bromofluorobenzene	48.6 48.6		ug/L ug/L	50.1 50.1		96.9 96.9	85-111 80-116			
CS (1HD1408-BS1)	40.0		ug/L Prepared: 0		0 Analvzed					
Chloromethane	35.96	1.0	ug/L	30.6		117	63-155			
Vinyl Chloride	35.51	1.0	ug/L	30.2		117	70-154			
Bromomethane	30.25	1.0	ug/L	28.8		105	52-176			

1HD1532

Spike Source

%REC

RPD

Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HD1408 - EPA 5030B - EPA	A 8260B									
_CS (1HD1408-BS1)			Prepared: 04	4/23/24 00:0	0 Analyzed:	04/23/24 0	9:38			
Chloroethane	38.95	1.0	ug/L	31.6		123	72-148			
Trichlorofluoromethane	35.99	1.0	ug/L	32.6		110	70-152			
1,1-Dichloroethylene	54.20	1.0	ug/L	50.0		108	70-148			
Acetone	83.64	10.0	ug/L	101		82.6	43-172			
Methyl lodide	100.8	1.0	ug/L	102		98.9	69-170			
Carbon Disulfide	121.4	1.0	ug/L	103		118	72-162			
Methylene Chloride	51.84	5.0	ug/L	50.0		104	68-142			
Acrylonitrile	94.62	5.0	ug/L	100		94.3	67-144			
trans-1,2-Dichloroethylene	53.70	1.0	ug/L	50.0		107	66-148			
1,1-Dichloroethane	51.84	1.0	ug/L	50.0		104	66-143			
Vinyl Acetate	97.50	5.0	ug/L	100		97.5	43-153			
cis-1,2-Dichloroethylene	50.21	1.0	ug/L	50.0		100	71-149			
2-Butanone (MEK)	91.25	10.0	ug/L	102		89.6	52-159			
Bromochloromethane	52.63	1.0	ug/L	50.0		105	69-143			
Chloroform	50.51	1.0	ug/L	50.0		101	69-144			
1,1,1-Trichloroethane	49.46	1.0	ug/L	50.0		98.9	62-129			
Carbon Tetrachloride	52.74	1.0	ug/L	50.0		105	63-141			
Benzene	50.94	1.0	ug/L	50.0		102	71-134			
1,2-Dichloroethane	48.82	1.0	ug/L	50.0		97.6	72-132			
Trichloroethylene	50.80	1.0	ug/L	50.0		102	71-135			
1,2-Dichloropropane	50.57	1.0	ug/L	50.0		101	69-136			
Dibromomethane	51.42	1.0	ug/L	50.0		103	73-147			
Bromodichloromethane	49.96	1.0	ug/L	50.0		99.9	68-129			
cis-1,3-Dichloropropene	49.40	1.0	ug/L	50.0		98.8	65-134			
4-Methyl-2-pentanone (MIBK)	101.2	5.0	ug/L	100		101	58-147			
Toluene	48.89	1.0	ug/L	50.0		97.8	72-133			
trans-1,3-Dichloropropene	50.85	1.0	ug/L	50.0		102	67-130			
1,1,2-Trichloroethane	50.24	1.0	ug/L	50.0		100	69-135			
Tetrachloroethylene	50.30	1.0	ug/L	50.0		101	69-130			
2-Hexanone (MBK)	104.0	5.0	ug/L	99.3		105	55-144			
Dibromochloromethane	51.03	1.0	ug/L	50.0		102	73-127			
1,2-Dibromoethane	50.10	1.0	ug/L	50.0		100	67-132			
Chlorobenzene	50.14	1.0	ug/L	50.0		100	72-123			
1,1,1,2-Tetrachloroethane	51.71	1.0	ug/L	50.0		103	73-127			
Ethylbenzene	51.98	1.0	ug/L	50.0		104	71-127			
Xylenes, total	157.3	2.0	ug/L	150		105	74-127			
Styrene	53.55	1.0	ug/L	50.0		107	66-126			
Bromoform	48.10	1.0	ug/L	50.0		96.2	68-130			
1,2,3-Trichloropropane	49.51	1.0	ug/L	50.0		99.0	63-136			
trans-1,4-Dichloro-2-butene	91.95	5.0	ug/L	103		89.4	54-134			
1,1,2,2-Tetrachloroethane	48.77	1.0	ug/L	50.0		97.5	61-131			
1,4-Dichlorobenzene	49.35	1.0	ug/L	50.0		98.7	70-129			
1,2-Dichlorobenzene	50.94	1.0	ug/L	50.0		102	69-126			

1HD1532

Spike Source

%REC

RPD

Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HD1408 - EPA 5030B - EPA	A 8260B									
LCS (1HD1408-BS1)			Prepared: 04	4/23/24 00:0	0 Analyzed:	04/23/24 0	9:38			
1,2-Dibromo-3-chloropropane	46.92	5.0	ug/L	50.0		93.8	50-143			
Surrogate: Dibromofluoromethane	50.9		ug/L	50.2		102	80-126			
Surrogate: Dibromofluoromethane	50.9		ug/L	50.2		102	75-136			
Surrogate: 1,2-Dichloroethane-d4	50.6		ug/L	50.1		101	63-138			
Surrogate: 1,2-Dichloroethane-d4	50.6		ug/L	50.1		101	61-142			
Surrogate: Toluene-d8	50.3		ug/L	50.4		99.8	87-116			
Surrogate: Toluene-d8	50.3		ug/L	50.4		99.8	82-121			
Surrogate: 4-Bromofluorobenzene	50.4		ug/L	50.1		101	85-111			
Surrogate: 4-Bromofluorobenzene	50.4		ug/L	50.1		101	80-116			
LCS Dup (1HD1408-BSD1)			Prepared: 04	4/23/24 00:0	0 Analyzed:	04/23/24 1	0:01			
Chloromethane	34.15	1.0	ug/L	30.6		111	63-155	5.16	24	
Vinyl Chloride	33.22	1.0	ug/L	30.2		110	70-154	6.66	25	
Bromomethane	30.50	1.0	ug/L	28.8		106	52-176	0.823	27	
Chloroethane	37.41	1.0	ug/L	31.6		118	72-148	4.03	25	
Trichlorofluoromethane	33.93	1.0	ug/L	32.6		104	70-152	5.89	26	
1,1-Dichloroethylene	51.03	1.0	ug/L	50.0		102	70-148	6.02	24	
Acetone	73.24	10.0	ug/L	101		72.4	43-172	13.3	30	
Methyl Iodide	98.09	1.0	ug/L	102		96.3	69-170	2.68	30	
Carbon Disulfide	114.3	1.0	ug/L	103		111	72-162	5.97	24	
	50.42		•							
Methylene Chloride	88.84	5.0	ug/L	50.0		101	68-142	2.78	21	
Acrylonitrile		5.0	ug/L	100		88.5	67-144	6.30	24	
trans-1,2-Dichloroethylene	50.79	1.0	ug/L	50.0		102	66-148	5.57	27	
1,1-Dichloroethane	48.98	1.0	ug/L	50.0		98.0	66-143	5.67	24	
Vinyl Acetate	94.18	5.0	ug/L	100		94.2	43-153	3.46	30	
cis-1,2-Dichloroethylene	47.83	1.0	ug/L	50.0		95.7	71-149	4.86	26	
2-Butanone (MEK)	79.76	10.0	ug/L	102		78.3	52-159	13.4	27	
Bromochloromethane	51.02	1.0	ug/L	50.0		102	69-143	3.11	23	
Chloroform	48.30	1.0	ug/L	50.0		96.6	69-144	4.47	23	
1,1,1-Trichloroethane	46.64	1.0	ug/L	50.0		93.3	62-129	5.87	24	
Carbon Tetrachloride	49.78	1.0	ug/L	50.0		99.6	63-141	5.77	25	
Benzene	48.87	1.0	ug/L	50.0		97.7	71-134	4.15	24	
1,2-Dichloroethane	47.62	1.0	ug/L	50.0		95.2	72-132	2.49	24	
Trichloroethylene	49.00	1.0	ug/L	50.0		98.0				
1,2-Dichloropropane	49.30	1.0	ug/L ug/L	50.0		98.6	71-135	3.61	24	
Dibromomethane	50.60		_				69-136	2.54	24	
		1.0	ug/L	50.0		101	73-147	1.61	25	
Bromodichloromethane	48.54	1.0	ug/L	50.0		97.1	68-129	2.88	22	
cis-1,3-Dichloropropene	48.22	1.0	ug/L	50.0		96.4	65-134	2.42	23	
4-Methyl-2-pentanone (MIBK)	98.38	5.0	ug/L	100		98.3	58-147	2.88	27	
Toluene	47.13	1.0	ug/L	50.0		94.3	72-133	3.67	24	
trans-1,3-Dichloropropene	49.94	1.0	ug/L	50.0		99.9	67-130	1.81	24	
1,1,2-Trichloroethane	49.57	1.0	ug/L	50.0		99.1	69-135	1.34	23	
Tetrachloroethylene	48.32	1.0	ug/L	50.0		96.6	69-130	4.02	25	
2-Hexanone (MBK)	100.7	5.0	ug/L	99.3		101	55-144	3.17	25	

1HD1532

5				Spike	Source		%REC		RPD	Notes
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HD1408 - EPA 5030B - EPA	A 9260B									
	A 0200B		Prepared: 04	4/22/24 DO:0	10 Analyzad	04/22/24 1	0.01			
LCS Dup (1HD1408-BSD1)	50.39	4.0			o Analyzeu.			4.00		
Dibromochloromethane		1.0	ug/L	50.0		101	73-127	1.26	22	
1,2-Dibromoethane	49.13	1.0	ug/L	50.0		98.3	67-132	1.96	24	
Chlorobenzene	48.76	1.0	ug/L	50.0		97.5	72-123	2.79	23	
1,1,1,2-Tetrachloroethane	49.84	1.0	ug/L	50.0		99.7	73-127	3.68	24	
Ethylbenzene	49.99	1.0	ug/L	50.0		100	71-127	3.90	26	
Xylenes, total	151.5	2.0	ug/L	150		101	74-127	3.78	25	
Styrene	51.92	1.0	ug/L	50.0		104	66-126	3.09	23	
Bromoform	47.28	1.0	ug/L	50.0		94.6	68-130	1.72	23	
1,2,3-Trichloropropane	48.94	1.0	ug/L	50.0		97.9	63-136	1.16	24	
trans-1,4-Dichloro-2-butene	90.17	5.0	ug/L	103		87.7	54-134	1.95	27	
1,1,2,2-Tetrachloroethane	48.79	1.0	ug/L	50.0		97.6	61-131	0.0410	29	
1,4-Dichlorobenzene	47.97	1.0	ug/L	50.0		95.9	70-129	2.84	24	
1,2-Dichlorobenzene	50.06	1.0	ug/L	50.0		100	69-126	1.74	26	
1,2-Dibromo-3-chloropropane	47.42	5.0	ug/L	50.0		94.8	50-143	1.06	30	
Surrogate: Dibromofluoromethane	50.9		ug/L	50.2		102	80-126			
Surrogate: Dibromofluoromethane	50.9		ug/L	50.2		102	75-136			
Surrogate: 1,2-Dichloroethane-d4	49.9		ug/L	50.1		99.6	63-138			
Surrogate: 1,2-Dichloroethane-d4	49.9		ug/L	50.1		99.6	61-142			
Surrogate: Toluene-d8	50.3		ug/L	50.4		99.8	87-116			
Surrogate: Toluene-d8	50.3		ug/L	50.4		99.8	82-121			
Surrogate: 4-Bromofluorobenzene	50.3		ug/L	50.1		100	85-111			
Surrogate: 4-Bromofluorobenzene	50.3		ug/L	50.1		100	80-116			
Matrix Spike (1HD1408-MS1)		1HD1532-04	Prepared: 04	4/23/24 00:0	0 Analyzed:					
Chloromethane	321.3	10.0	ug/L	306	ND	105	61-152			
Vinyl Chloride	319.2	10.0	ug/L	302	ND	106	66-149			
Bromomethane	222.6	10.0	ug/L	288	ND	77.3	43-171			
Chloroethane	351.5	10.0	ug/L	316	ND	111	69-148			
Trichlorofluoromethane	326.4	10.0	ug/L	326	ND	100	62-163			
1,1-Dichloroethylene	470.3	10.0	ug/L	500	ND	94.1	70-148			
Acetone	873.1	100	ug/L	1010	ND	86.3	45-173			
Methyl lodide	983.3	10.0	ug/L	1020	ND	96.5	62-167			
Carbon Disulfide	1080	10.0	ug/L	1030	ND	105	71-163			
Methylene Chloride	464.0	50.0	ug/L	500	ND	92.8	69-140			
Acrylonitrile	933.4	50.0	ug/L	1000	ND	93.0	58-151			
trans-1,2-Dichloroethylene	473.0	10.0	ug/L	500	ND	94.6	69-144			
1,1-Dichloroethane	465.8	10.0	ug/L	500	ND	93.2	70-138			
Vinyl Acetate	903.2	50.0	ug/L	1000	ND	90.3	58-142			
cis-1,2-Dichloroethylene	541.4	10.0	ug/L	500	ND	108	68-151			
2-Butanone (MEK)	982.2	100	ug/L	1020	ND	96.5	50-160			
Bromochloromethane	480.7	10.0	ug/L	500	ND	96.1	65-143			
Chloroform	452.5	10.0	ug/L	500	ND	90.5	71-143			
1,1,1-Trichloroethane	439.5	10.0	ug/L	500	ND	87.9	63-133			

1HD1532

Units

RL

Determination of Volatile

Result

Spike Source

Result %REC

Level

%REC

Limits

RPD

Limit

RPD

Notes

Source: 1HD1532-04 .0	Prepared: 0/ ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	4/23/24 00:0 500 500 500 500 500 500 500	ND N	97.0 95.0 96.1 97.5 101 93.9 91.6 106 93.7 96.0 99.0	9:51 69-133 63-138 71-133 69-132 70-147 67-130 61-126 55-147 71-133 63-124			
10.0 10.0 10.0 10.0 4 10.0 6 10.0 7 10.0 7 10.0 7 10.0 1 1 10.0 5 5 0.0 3 10.0 0 10.0 9 10.0 8 10.0 0 5 50.0 7 10.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	500 500 500 500 500 500 500 1000 500 500	ND N	97.0 95.0 96.1 97.5 101 93.9 91.6 106 93.7 96.0	69-133 63-138 71-133 69-132 70-147 67-130 61-126 55-147 71-133			
10.0 .4 10.0 .6 10.0 .7 10.0 .7 10.0 .1 10.0 .5 50.0 .3 10.0 .0 10.0 .9 10.0 .8 10.0 .0 50.0 .7 10.0 .1 10.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	500 500 500 500 500 500 1000 500 500	ND N	95.0 96.1 97.5 101 93.9 91.6 106 93.7 96.0	63-138 71-133 69-132 70-147 67-130 61-126 55-147 71-133			
14 10.0 16 10.0 17 10.0 10.0 11 10.0 11 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	500 500 500 500 500 1000 500 500	ND	96.1 97.5 101 93.9 91.6 106 93.7 96.0	71-133 69-132 70-147 67-130 61-126 55-147 71-133			
.6 10.0 .7 10.0 .7 10.0 .1 10.0 .5 50.0 .3 10.0 .0 10.0 .9 10.0 .8 10.0 .0 50.0 .7 10.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	500 500 500 500 1000 500 500	ND	97.5 101 93.9 91.6 106 93.7 96.0	69-132 70-147 67-130 61-126 55-147 71-133			
.7 10.0 .7 10.0 .1 10.0 .5 50.0 .3 10.0 .0 10.0 .9 10.0 .8 10.0 0 50.0 .7 10.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	500 500 500 500 1000 500 500	ND ND ND ND ND ND	97.5 101 93.9 91.6 106 93.7 96.0	69-132 70-147 67-130 61-126 55-147 71-133			
.7 10.0 .1 10.0 .5 50.0 .3 10.0 .0 10.0 .9 10.0 .8 10.0 0 50.0 .7 10.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	500 500 1000 500 500 500	ND ND ND ND ND	101 93.9 91.6 106 93.7 96.0	67-130 61-126 55-147 71-133			
.1 10.0 5 50.0 .3 10.0 .0 10.0 .9 10.0 .8 10.0 0 50.0 .7 10.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	500 1000 500 500 500	ND ND ND ND	93.9 91.6 106 93.7 96.0	67-130 61-126 55-147 71-133			
5 50.0 .3 10.0 .0 10.0 .9 10.0 .8 10.0 0 50.0 .7 10.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	500 1000 500 500 500	ND ND ND ND	91.6 106 93.7 96.0	61-126 55-147 71-133			
3 10.0 .0 10.0 .9 10.0 .8 10.0 0 50.0 .7 10.0	ug/L ug/L ug/L ug/L ug/L ug/L	1000 500 500 500	ND ND ND ND	106 93.7 96.0	55-147 71-133			
.3 10.0 .0 10.0 .9 10.0 .8 10.0 0 50.0 .7 10.0 .1 10.0	ug/L ug/L ug/L ug/L ug/L	500 500 500	ND ND ND	93.7 96.0	71-133			
10.0 .9 10.0 .8 10.0 0 50.0 .7 10.0 .1	ug/L ug/L ug/L ug/L	500 500	ND ND	96.0				
9 10.0 .8 10.0 0 50.0 .7 10.0 .1 10.0	ug/L ug/L ug/L	500	ND		00 12-			
.8 10.0 0 50.0 .7 10.0 .1 10.0	ug/L ug/L				69-133			
0 50.0 .7 10.0 .1 10.0	ug/L	000	ND	96.6	70-124			
.7 10.0 .1 10.0	•	993	ND	112	53-141			
.1 10.0		500	ND	97.7	74-122			
_	ug/L	500	ND	101				
3 10.0	_				66-127			
	ug/L	500	ND	97.5	76-116			
	ug/L	500	ND	98.5	77-121			
	ug/L	500	ND	100	73-124			
	_							
	_							
	•							
	•							
	_		ND		50-120			
	ug/L	500	ND	99.9	63-126			
	ug/L	500	ND	96.2	72-119			
	ug/L	500	ND	100	71-117			
.5 50.0	ug/L	500	ND	98.9	49-134			
472	ug/L	502		94.1	80-126			
472	ug/L	502		94.1	75-136			
471	ug/L	501		94.0	63-138			
	•							
	_							
	_							
	-		0 Analvzed:					
_	•					6 12	26	
	•							
_	•							
	•							
	•							
	•							
	.2 10.0 .8 10.0 .5 50.0	.7 10.0 ug/L .8 10.0 ug/L .8 10.0 ug/L .8 10.0 ug/L .7 50.0 ug/L .7 10.0 ug/L .8 10.0 ug/L .9 10.0 ug/L	.7 10.0 ug/L 500 .8 10.0 ug/L 500 .8 10.0 ug/L 500 .8 10.0 ug/L 500 .7 50.0 ug/L 1030 .7 10.0 ug/L 500 .8 10.0 ug/L 500 .8 10.0 ug/L 500 .8 10.0 ug/L 500 .5 50.0 ug/L 500 .5 50.0 ug/L 500 .7 472 ug/L 500 .7 472 ug/L 500 .7 50.0 ug/L 500 .8 10.0 ug/L 501 .8 10.0 ug/L 501 .8 10.0 ug/L 501 .8 10.0 ug/L 306 .8 10.0 ug/L 306 .8 10.0 ug/L 326 .8 10.0 ug/L 326 .8 10.0 ug/L 326 .8 10.0 ug/L 326 .8 10.0 ug/L 500	.7 10.0 ug/L 500 ND .8 10.0 ug/L 500 ND .8 10.0 ug/L 500 ND .8 10.0 ug/L 500 ND .7 50.0 ug/L 1030 ND .7 10.0 ug/L 500 ND .8 10.0 ug/L 500 ND .5 50.0 ug/L 500 ND .5 50.0 ug/L 500 ND .5 50.0 ug/L 500 ND .7 10.0 ug/L 500 ND .8 10.0 ug/L 501 .8 10.0 ug/L 501 .8 10.0 ug/L 501 .8 10.0 ug/L 306 ND .8 10.0 ug/L 302 ND .8 10.0 ug/L 302 ND .8 10.0 ug/L 326 ND .8 10.0 ug/L 500 ND	.7 10.0 ug/L 500 ND 104 .8 10.0 ug/L 500 ND 93.8 .8 10.0 ug/L 500 ND 101 .7 50.0 ug/L 1030 ND 87.2 .7 10.0 ug/L 500 ND 99.9 .2 10.0 ug/L 500 ND 99.9 .2 10.0 ug/L 500 ND 100 .5 50.0 ug/L 500 ND 98.9 472 ug/L 500 ND 98.9 472 ug/L 502 94.1 471 ug/L 501 94.0 471 ug/L 501 94.0 479 ug/L 504 99.0 499 ug/L 504 99.0 499 ug/L 501 99.5 Source: 1HD1532-04 Prepared: 04/23/24 00:00 Analyzed: 04/23/24 2 .2 10.0 ug/L 306 ND 98.6 .5 10.0 ug/L 302 ND 99.4 .6 10.0 ug/L 306 ND 98.6 .5 10.0 ug/L 326 ND 96.4 .6 10.0 ug/L 326 ND 96.4 .7 10.0 ug/L 326 ND 96.4 .8 10.0 ug/L 500 ND 89.7	10.0 ug/L 500 ND 104 70-120 108 10.0 ug/L 500 ND 93.8 70-124 10.0 ug/L 500 ND 93.8 70-124 10.0 ug/L 500 ND 93.8 70-124 10.0 ug/L 500 ND 101 62-135 10.7 50.0 ug/L 500 ND 99.9 63-126 10.0 ug/L 500 ND 99.9 63-126 10.0 ug/L 500 ND 96.2 72-119 10.0 ug/L 500 ND 96.2 72-119 10.0 ug/L 500 ND 98.9 49-134 10.0 ug/L 500 ND 98.9 49-134 10.0 ug/L 500 ND 98.9 49-134 10.0 ug/L 501 94.0 63-138 10.0 ug/L 501 94.0 63-138 10.0 ug/L 501 94.0 63-138 10.0 ug/L 504 99.0 87-116 10.0 ug/L 504 99.0 87-116 10.0 ug/L 501 99.5 85-111 10.0 ug/L 501 99.5 80-116 10.0 ug/L 501 99.5 80-116 10.0 ug/L 306 ND 98.6 61-152 10.0 ug/L 302 ND 99.4 66-149 10.0 ug/L 316 ND 106 69-148 10.0 ug/L 326 ND 96.4 62-163 10.0	1.7 10.0 ug/L 500 ND 104 70-120 1.8 10.0 ug/L 500 ND 93.8 70-124 1.8 10.0 ug/L 500 ND 93.8 70-124 1.8 10.0 ug/L 500 ND 101 62-135 1.7 50.0 ug/L 1030 ND 87.2 50-120 1.7 10.0 ug/L 500 ND 99.9 63-126 1.2 10.0 ug/L 500 ND 96.2 72-119 1.8 10.0 ug/L 500 ND 96.2 72-119 1.8 10.0 ug/L 500 ND 98.9 49-134 1.5 50.0 ug/L 500 ND 98.9 49-134 1.7 1 ug/L 502 94.1 80-126 1.7 1 ug/L 501 94.0 63-138 1.7 1 ug/L 501 94.0 63-138 1.7 1 ug/L 501 94.0 61-142 1.8 10.0 ug/L 501 99.0 82-121 1.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.7

Determination of Volatile Organic Compounds	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HD1408 - EPA 5030B - EPA	8260B									
Matrix Spike Dup (1HD1408-MSD1)		1HD1532-04	Prepared: 04	4/23/24 00:0	00 Analyzed:	04/23/24 2	0:14			
Methyl lodide	1030	10.0	ug/L	1020	ND	101	62-167	4.65	24	
Carbon Disulfide	1014	10.0	ug/L	1030	ND	98.7	71-163	6.31	22	
Methylene Chloride	447.2	50.0	ug/L	500	ND	89.4	69-140	3.69	19	
Acrylonitrile	914.8	50.0	ug/L	1000	ND	91.2	58-151	2.01	15	
trans-1,2-Dichloroethylene	450.8	10.0	ug/L	500	ND	90.2	69-144	4.81	22	
1,1-Dichloroethane	444.2	10.0	ug/L	500	ND	88.8	70-138	4.75	20	
Vinyl Acetate	988.4	50.0	ug/L	1000	ND	98.8	58-142	9.01	24	
cis-1,2-Dichloroethylene	520.3	10.0	ug/L	500	ND	104	68-151	3.97	22	
2-Butanone (MEK)	963.8	100	ug/L	1020	ND	94.7	50-160	1.89	23	
Bromochloromethane	456.4	10.0	ug/L	500	ND	91.3	65-143	5.19	22	
Chloroform	435.1	10.0	ug/L	500	ND	87.0	71-143	3.19	21	
1,1,1-Trichloroethane	423.1	10.0	ug/L	500	ND	84.6	63-133	3.80	23	
Carbon Tetrachloride	436.9	10.0	ug/L	500	ND	87.4	63-142	1.29	22	
Benzene	469.9	10.0	ug/L	500	ND	94.0	69-133	3.16	18	
1,2-Dichloroethane	459.9	10.0	ug/L	500	ND	92.0	63-138	3.10	20	
Trichloroethylene	462.8	10.0	ug/L	500	ND	92.6	71-133	3.73	23	
1,2-Dichloropropane	469.6	10.0	ug/L	500	ND	93.9	69-132	3.76	20	
Dibromomethane	488.3	10.0	ug/L	500	ND	97.7		3.10	22	
Bromodichloromethane	458.7	10.0	ug/L	500	ND	91.7	70-147 67-130	2.37	21	
cis-1,3-Dichloropropene	443.2	10.0	ug/L	500	ND	88.6		2.3 <i>1</i> 3.31		
4-Methyl-2-pentanone (MIBK)	1047	50.0	ug/L ug/L	1000	ND ND	105	61-126	3.31 1.70	21	
Toluene	454.6	10.0	ug/L ug/L	500	ND ND	90.9	55-147	2.97	23	
trans-1,3-Dichloropropene	463.1	10.0	ug/L ug/L	500	ND ND	90.9	71-133	3.58	19 21	
1,1,2-Trichloroethane	483.8	10.0	_	500			63-124			
	475.0		ug/L		ND	96.8	69-133	2.27	19	
Tetrachloroethylene	1090	10.0 50.0	ug/L	500 993	ND	95.0	70-124	1.63	24	
2-Hexanone (MBK) Dibromochloromethane	483.7	10.0	ug/L		ND	110	53-141	1.75	24	
1,2-Dibromoethane	493.1	10.0	ug/L	500	ND	96.7 98.6	74-122	1.03	21	
	472.5		ug/L	500	ND		66-127	2.60	23	
Chlorobenzene	482.4	10.0	ug/L	500	ND	94.5	76-116	3.12	21	
1,1,1,2-Tetrachloroethane	489.5	10.0	ug/L	500	ND	96.5	77-121	2.03	25	
Ethylbenzene	1481	10.0	ug/L	500	ND	97.9	73-124	2.38	20	
Xylenes, total	507.0	20.0	ug/L	1500	ND	98.7	75-123	1.99	20	
Styrene Bromoform	468.7	10.0	ug/L	500 500	ND	101	70-120	2.86	23	
	501.0	10.0	ug/L	500 500	ND	93.7	70-124	0.0213	22	
1,2,3-Trichloropropane	889.4	10.0	ug/L	500	ND	100	62-135	0.557	28	
trans-1,4-Dichloro-2-butene		50.0	ug/L	1030	ND	86.5	50-120	0.817	26	
1,1,2,2-Tetrachloroethane	491.2	10.0	ug/L	500	ND	98.2	63-126	1.72	24	
1,4-Dichlorobenzene	465.2	10.0	ug/L	500	ND	93.0	72-119	3.38	24	
1,2-Dichlorobenzene	484.4	10.0	ug/L	500	ND	96.9	71-117	3.33	24	
1,2-Dibromo-3-chloropropane	483.8	50.0	ug/L	500	ND	96.8	49-134	2.19	28	
Surrogate: Dibromofluoromethane	469		ug/L	502		93.5	80-126			
Currente: Dibremeflueremethene	100			500		00.5	75 406			

ug/L

502

93.5

75-136

Surrogate: Dibromofluoromethane

CERTIFICATE OF ANALYSIS

1HD1532

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HD1408 - EPA 5030B - EPA	8260B									
Matrix Spike Dup (1HD1408-MSD1)	Source:	1HD1532-04	Prepared: 04	4/23/24 00:0	0 Analyzed:	04/23/24 2	20:14			
Surrogate: 1,2-Dichloroethane-d4	464		ug/L	501		92.7	63-138			
Surrogate: 1,2-Dichloroethane-d4	464		ug/L	501		92.7	61-142			
Surrogate: Toluene-d8	497		ug/L	504		98.7	87-116			
Surrogate: Toluene-d8	497		ug/L	504		98.7	82-121			
Surrogate: 4-Bromofluorobenzene	499		ug/L	501		99.5	85-111			
Surrogate: 4-Bromofluorobenzene	499		ug/L	501		99.5	80-116			
Batch 1HD1572 - EPA 5030B - EPA	8260B									
Blank (1HD1572-BLK1)			Prepared: 04	4/25/24 00:0	0 Analyzed:	04/25/24 1	0:53			
Chloromethane	<1.0	1.0	ug/L							
Vinyl Chloride	<1.0	1.0	ug/L							
Bromomethane	<1.0	1.0	ug/L							
Chloroethane	<1.0	1.0	ug/L							
Trichlorofluoromethane	<1.0	1.0	ug/L							
1,1-Dichloroethylene	<1.0	1.0	ug/L							
Acetone	<10.0	10.0	ug/L							
Methyl lodide	<1.0	1.0	ug/L							
Carbon Disulfide	<1.0	1.0	ug/L							
Methylene Chloride	<5.0	5.0	ug/L							
Acrylonitrile	<5.0	5.0	ug/L							
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L							
1,1-Dichloroethane	<1.0	1.0	ug/L							
Vinyl Acetate	<5.0	5.0	ug/L							
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L							
2-Butanone (MEK)	<10.0	10.0	ug/L							
Bromochloromethane	<1.0	1.0	ug/L ug/L							
	<1.0		-							
Chloroform	<1.0	1.0	ug/L							
1,1,1-Trichloroethane	<1.0	1.0	ug/L							
Carbon Tetrachloride		1.0	ug/L							
Benzene	<1.0	1.0	ug/L							
1,2-Dichloroethane	<1.0	1.0	ug/L							
Trichloroethylene	<1.0	1.0	ug/L							
1,2-Dichloropropane	<1.0	1.0	ug/L							
Dibromomethane	<1.0	1.0	ug/L							
Bromodichloromethane	<1.0	1.0	ug/L							
cis-1,3-Dichloropropene	<1.0	1.0	ug/L							
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L							
Toluene	<1.0	1.0	ug/L							
trans-1,3-Dichloropropene	<1.0	1.0	ug/L							
1,1,2-Trichloroethane	<1.0	1.0	ug/L							
Tetrachloroethylene	<1.0	1.0	ug/L							
2-Hexanone (MBK)	<5.0	5.0	ug/L							

CERTIFICATE OF ANALYSIS

1HD1532

Spike Source

%REC RPD

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 1HD1572 - EPA 5030B - EPA	A 8260B									
Blank (1HD1572-BLK1)			Prepared: 04	4/25/24 00:0	0 Analyzed:	04/25/24 1	0:53			
Dibromochloromethane	<1.0	1.0	ug/L							
1,2-Dibromoethane	<1.0	1.0	ug/L							
Chlorobenzene	<1.0	1.0	ug/L							
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L							
Ethylbenzene	<1.0	1.0	ug/L							
Xylenes, total	<2.0	2.0	ug/L							
Styrene	<1.0	1.0	ug/L							
Bromoform	<1.0	1.0	ug/L							
1,2,3-Trichloropropane	<1.0	1.0	ug/L							
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L							
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L							
1,4-Dichlorobenzene	<1.0	1.0	ug/L							
1,2-Dichlorobenzene	<1.0	1.0	ug/L ug/L							
1,2-Dibromo-3-chloropropane	<5.0	5.0								
1,2-Dibroffio-3-Cilioroproparie	\0.0	5.0	ug/L							
Surrogate: Dibromofluoromethane	45.9		ug/L	50.2		91.4	80-126			
Surrogate: Dibromofluoromethane	45.9		ug/L	50.2		91.4	75-136			
Surrogate: 1,2-Dichloroethane-d4	47.5		ug/L	50.1		94.9	63-138			
Surrogate: 1,2-Dichloroethane-d4	47.5		ug/L	50.1		94.9	61-142			
Surrogate: Toluene-d8	49.0		ug/L	50.4		97.2	87-116			
Surrogate: Toluene-d8	49.0		ug/L	50.4		97.2	82-121			
Surrogate: 4-Bromofluorobenzene	48.4		ug/L	50.1		96.6	85-111			
Surrogate: 4-Bromofluorobenzene	48.4		ug/L	50.1		96.6	80-116			
CS (1HD1572-BS1)			Prepared: 04		0 Analyzed:	04/25/24 0				
Chloromethane	31.87	1.0	ug/L	30.6		104	63-155			
Vinyl Chloride	31.27	1.0	ug/L	30.2		103	70-154			
Bromomethane	27.29	1.0	ug/L	28.8		94.8	52-176			
Chloroethane	34.72	1.0	ug/L	31.6		110	72-148			
Trichlorofluoromethane	31.60	1.0	ug/L	32.6		96.9	70-152			
1,1-Dichloroethylene	46.16	1.0	ug/L	50.0		92.3	70-148			
Acetone	77.88	10.0	ug/L	101		77.0	43-172			
Methyl lodide	90.24	1.0	ug/L	102		88.6	69-170			
Carbon Disulfide	103.5	1.0	ug/L	103		101	72-162			
Methylene Chloride	45.98	5.0	ug/L	50.0		92.0	68-142			
Acrylonitrile	89.09	5.0	ug/L	100		88.8	67-144			
trans-1,2-Dichloroethylene	47.10	1.0	ug/L	50.0		94.2	66-148			
1,1-Dichloroethane	46.09	1.0	ug/L	50.0		92.2	66-143			
Vinyl Acetate	103.5	5.0	ug/L	100		103	43-153			
cis-1,2-Dichloroethylene	44.41	1.0	ug/L	50.0		88.8	71-149			
•	98.28	10.0	_							
2-Butanone (MEK) Bromochloromethane	46.58		ug/L	102		96.5	52-159			
	44.67	1.0	ug/L	50.0		93.2	69-143			
Chloroform		1.0	ug/L	50.0		89.3	69-144			
1,1,1-Trichloroethane	43.41	1.0	ug/L	50.0		86.8	62-129			

1HD1532

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 1HD1572 - EPA 5030B - EPA	A 8260B									
CS (1HD1572-BS1)			Prepared: 04	1/25/24 00:0	0 Analyzed:	04/25/24 0	9:45			
Benzene	48.21	1.0	ug/L	50.0		96.4	71-134			
1,2-Dichloroethane	46.27	1.0	ug/L	50.0		92.5	72-132			
Trichloroethylene	47.24	1.0	ug/L	50.0		94.5	71-135			
1,2-Dichloropropane	48.29	1.0	ug/L	50.0		96.6	69-136			
Dibromomethane	48.39	1.0	ug/L	50.0		96.8	73-147			
Bromodichloromethane	46.91	1.0	ug/L	50.0		93.8	68-129			
cis-1,3-Dichloropropene	46.00	1.0	ug/L	50.0		92.0	65-134			
4-Methyl-2-pentanone (MIBK)	99.66	5.0	ug/L	100		99.6	58-147			
Toluene	46.08	1.0	ug/L	50.0		92.2	72-133			
trans-1,3-Dichloropropene	48.01	1.0	ug/L	50.0		96.0	67-130			
1,1,2-Trichloroethane	48.29	1.0	ug/L	50.0		96.6	69-135			
Tetrachloroethylene	47.47	1.0	ug/L	50.0		94.9	69-130			
2-Hexanone (MBK)	104.2	5.0	ug/L	99.3		105				
Dibromochloromethane	49.44	1.0	_				55-144			
	48.54		ug/L	50.0		98.9	73-127			
1,2-Dibromoethane	48.15	1.0	ug/L	50.0		97.1	67-132			
Chlorobenzene	49.04	1.0	ug/L	50.0		96.3	72-123			
1,1,1,2-Tetrachloroethane		1.0	ug/L	50.0		98.1	73-127			
Ethylbenzene	49.63	1.0	ug/L	50.0		99.3	71-127			
Xylenes, total	150.2	2.0	ug/L	150		100	74-127			
Styrene	51.38	1.0	ug/L	50.0		103	66-126			
Bromoform	46.93	1.0	ug/L	50.0		93.9	68-130			
1,2,3-Trichloropropane	48.22	1.0	ug/L	50.0		96.4	63-136			
trans-1,4-Dichloro-2-butene	88.46	5.0	ug/L	103		86.1	54-134			
1,1,2,2-Tetrachloroethane	49.14	1.0	ug/L	50.0		98.3	61-131			
1,4-Dichlorobenzene	47.71	1.0	ug/L	50.0		95.4	70-129			
1,2-Dichlorobenzene	49.58	1.0	ug/L	50.0		99.2	69-126			
1,2-Dibromo-3-chloropropane	47.66	5.0	ug/L	50.0		95.3	50-143			
Surrogate: Dibromofluoromethane	46.3		ug/L	50.2		92.2	80-126			
Surrogate: Dibromofluoromethane	46.3		ug/L	50.2		92.2	75-136			
Surrogate: 1,2-Dichloroethane-d4	46.8		ug/L	50.1		93.5	63-138			
Surrogate: 1,2-Dichloroethane-d4	46.8		ug/L	50.1		93.5	61-142			
Surrogate: Toluene-d8	49.6		ug/L	50.4		98.3	87-116			
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene	49.6 50.0		ug/L	50.4 50.1		98.3 99.8	82-121 85-111			
Surrogate: 4-Bromofluorobenzene	50.0 50.0		ug/L ug/L	50.1 50.1		99.8 99.8	80-11 <i>6</i>			
CS Dup (1HD1572-BSD1)	30.0		Prepared: 04		0 Analyzed:					
Chloromethane	30.48	1.0	ug/L	30.6		99.5	63-155	4.46	24	
Vinyl Chloride	29.91	1.0	ug/L	30.2		99.0	70-154	4.45	24 25	
Bromomethane	26.94	1.0	ug/L ug/L	28.8		93.5				
Chloroethane	33.02		•				52-176	1.29	27	
	30.17	1.0	ug/L	31.6		104	72-148	5.02	25	
Trichlorofluoromethane	44.10	1.0	ug/L	32.6		92.5	70-152	4.63	26	
1,1-Dichloroethylene	79.15	1.0	ug/L	50.0		88.2	70-148	4.56	24	

Determination of Valatile	D H	D.	11	Spike	Source	0/ DEO	%REC	222	RPD	Notes
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch 1HD1572 - EPA 5030B - EF	NA 9260B									
Balch 1HD1572 - EPA 5030B - EF	A 0200B									
LCS Dup (1HD1572-BSD1)			Prepared: 04	4/25/24 00:0	00 Analyzed:	04/25/24 1	0:07			
Methyl lodide	85.49	1.0	ug/L	102		83.9	69-170	5.41	30	
Carbon Disulfide	98.52	1.0	ug/L	103		95.9	72-162	4.91	24	
Methylene Chloride	44.51	5.0	ug/L	50.0		89.0	68-142	3.25	21	
Acrylonitrile	88.98	5.0	ug/L	100		88.7	67-144	0.124	24	
trans-1,2-Dichloroethylene	44.92	1.0	ug/L	50.0		89.8	66-148	4.74	27	
1,1-Dichloroethane	44.42	1.0	ug/L	50.0		88.8	66-143	3.69	24	
Vinyl Acetate	97.13	5.0	ug/L	100		97.1	43-153	6.31	30	
cis-1,2-Dichloroethylene	52.28	1.0	ug/L	50.0		105	71-149	16.3	26	
2-Butanone (MEK)	92.77	10.0	ug/L	102		91.1	52-159	5.77	27	
Bromochloromethane	44.92	1.0	ug/L	50.0		89.8	69-143	3.63	23	
Chloroform	43.06	1.0	ug/L	50.0		86.1	69-144	3.67	23	
1,1,1-Trichloroethane	41.29	1.0	ug/L	50.0		82.6	62-129	5.01	24	
Carbon Tetrachloride	43.89	1.0	ug/L	50.0		87.8	63-141	4.69	25	
Benzene	46.39	1.0	ug/L	50.0		92.8	71-134	3.85	24	
1,2-Dichloroethane	45.26	1.0	ug/L	50.0		90.5	72-132	2.21	24	
Trichloroethylene	45.57	1.0	ug/L	50.0		91.1	71-135	3.60	24	
1,2-Dichloropropane	46.95	1.0	ug/L	50.0		93.9	69-136	2.81	24	
Dibromomethane	47.71	1.0	ug/L	50.0		95.4	73-147	1.42	25	
Bromodichloromethane	45.70	1.0	ug/L	50.0		91.4	68-129	2.61	22	
cis-1,3-Dichloropropene	45.21	1.0	ug/L	50.0		90.4	65-134	1.73	23	
4-Methyl-2-pentanone (MIBK)	100.4	5.0	ug/L	100		100	58-147	0.750	27	
Toluene	44.67	1.0	ug/L	50.0		89.3	72-133	3.11	24	
trans-1,3-Dichloropropene	47.20	1.0	ug/L	50.0		94.4	67-130	1.70	24	
1,1,2-Trichloroethane	47.28	1.0	ug/L	50.0		94.6	69-135	2.11	23	
Tetrachloroethylene	45.29	1.0	ug/L	50.0		90.6	69-130	4.70	25	
2-Hexanone (MBK)	104.5	5.0	ug/L	99.3		105	55-144	0.230	25	
Dibromochloromethane	48.16	1.0	ug/L	50.0		96.3	73-127	2.62	22	
1,2-Dibromoethane	47.80	1.0	ug/L	50.0		95.6	67-132	1.54	24	
Chlorobenzene	46.58	1.0	ug/L	50.0		93.2	72-123	3.31	23	
1,1,1,2-Tetrachloroethane	47.89	1.0	ug/L	50.0		95.8	73-127	2.37	24	
Ethylbenzene	47.82	1.0	ug/L	50.0		95.6	71-127	3.71	26	
Xylenes, total	145.6	2.0	ug/L	150		97.0	74-127	3.12	25	
Styrene	49.77	1.0	ug/L	50.0		99.5	66-126	3.18	23	
Bromoform	46.69	1.0	ug/L	50.0		93.4	68-130	0.513	23	
1,2,3-Trichloropropane	47.89	1.0	ug/L	50.0		95.8	63-136	0.687	24	
trans-1,4-Dichloro-2-butene	88.16	5.0	ug/L	103		85.8	54-134	0.340	27	
1,1,2,2-Tetrachloroethane	48.31	1.0	ug/L	50.0		96.6	61-131	1.70	29	
1,4-Dichlorobenzene	46.06	1.0	ug/L	50.0		92.1	70-129	3.52	24	
1,2-Dichlorobenzene	47.96	1.0	ug/L	50.0		95.9	69-126	3.32	26	
1,2-Dibromo-3-chloropropane	48.25	5.0	ug/L	50.0		96.5	50-143	1.23	30	
Surrogate: Dibromofluoromethane	46.2		ug/l	50.2		92.2	80-126			
_			ug/L ug/l							
Surrogate: Dibromofluoromethane	46.2		ug/L	50.2		92.2	75-136			

1HD1532

Spike Source

%REC

RPD

Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HD1572 - EPA 5030B - EP	A 8260B									
LCS Dup (1HD1572-BSD1)			Prepared: 04	1/25/24 00:0	0 Analyzed:	04/25/24 1	0:07			
Surrogate: 1,2-Dichloroethane-d4	46.2		ug/L	50.1		92.2	63-138			
Surrogate: 1,2-Dichloroethane-d4	46.2		ug/L	50.1		92.2	61-142			
Surrogate: Toluene-d8	49.4		ug/L	50.4		98.0	87-116			
Surrogate: Toluene-d8	49.4		ug/L	50.4		98.0	82-121			
Surrogate: 4-Bromofluorobenzene	50.3		ug/L	50.1		100	85-111			
Surrogate: 4-Bromofluorobenzene	50.3		ug/L	50.1		100	80-116			
Matrix Spike (1HD1572-MS1)	Source	: 1HD1698-01	Prepared: 04	4/25/24 00:0	0 Analyzed:	04/25/24 1	9:02			
Chloromethane	276.8	10.0	ug/L	300	ND	92.2	61-152			
Vinyl Chloride	304.3	10.0	ug/L	300	ND	101	66-149			
Bromomethane	210.2	10.0	ug/L	301	ND	69.8	43-171			
Chloroethane	308.6	10.0	ug/L	300	ND	103	69-148			
Trichlorofluoromethane	291.8	10.0	ug/L	300	ND	97.3	62-163			
1,1-Dichloroethylene	472.9	10.0	ug/L	501	ND	94.3	70-148			
Acetone	813.9	100	ug/L	1000	ND	81.3	45-173			
Methyl lodide	737.0	10.0	ug/L	1000	ND	73.6	62-167			
Carbon Disulfide	937.9	10.0	ug/L	1000	ND	93.7	71-163			
Methylene Chloride	465.7	50.0	ug/L	502	ND	92.8	69-140			
Acrylonitrile	477.0	50.0	ug/L	500	ND					
trans-1,2-Dichloroethylene	476.3	10.0	•			95.4	58-151			
•	469.8		ug/L	503	ND	94.7	69-144			
1,1-Dichloroethane		10.0	ug/L	503	ND	93.5	70-138			
Vinyl Acetate	846.4	50.0	ug/L	1620	ND	52.4	58-142			QM-05
cis-1,2-Dichloroethylene	546.4	10.0	ug/L	505	ND	108	68-151			
2-Butanone (MEK)	943.1	100	ug/L	1000	ND	94.2	50-160			
Bromochloromethane	469.3	10.0	ug/L	504	ND	93.0	65-143			
Chloroform	455.5	10.0	ug/L	502	ND	90.8	71-143			
1,1,1-Trichloroethane	460.7	10.0	ug/L	503	ND	91.6	63-133			
Carbon Tetrachloride	470.6	10.0	ug/L	502	ND	93.7	63-142			
Benzene	487.8	10.0	ug/L	504	ND	96.7	69-133			
1,2-Dichloroethane	462.2	10.0	ug/L	502	ND	92.1	63-138			
Trichloroethylene	486.2	10.0	ug/L	503	ND	96.6	71-133			
1,2-Dichloropropane	486.5	10.0	ug/L	502	ND	96.9	69-132			
Dibromomethane	484.7	10.0	ug/L	505	ND	96.0	70-147			
Bromodichloromethane	477.9	10.0	ug/L	503	ND	95.1	67-130			
cis-1,3-Dichloropropene	476.4	10.0	ug/L	502	ND	94.9	61-126			
4-Methyl-2-pentanone (MIBK)	1057	50.0	ug/L	1000	ND	105	55-147			
Toluene	479.4	10.0	ug/L	505	ND	95.0	71-133			
trans-1,3-Dichloropropene	477.7	10.0	ug/L	503	ND	95.0	63-124			
1,1,2-Trichloroethane	489.0	10.0	ug/L	502	ND	97.4	69-133			
Tetrachloroethylene	485.1	10.0	ug/L	502	ND	96.6	70-124			
2-Hexanone (MBK)	1090	50.0	ug/L	1000	ND	109	53-141			
Dibromochloromethane	486.1	10.0	ug/L	503	ND	96.6	74-122			
1,2-Dibromoethane	495.9	10.0	ug/L ug/L	504	ND ND	98.3	66-127			
Chlorobenzene	491.8	10.0	ug/L ug/L	502	ND ND	97.9	76-116			

1HD1532

Spike Source

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HD1572 - EPA 5030B - EPA	8260B									
Matrix Spike (1HD1572-MS1)	Source:	: 1HD1698-01	Prepared: 04	4/25/24 00:0	00 Analyzed:	04/25/24 1	9:02			
1,1,1,2-Tetrachloroethane	485.6	10.0	ug/L	504	ND	96.3	77-121			
Ethylbenzene	507.9	10.0	ug/L	505	ND	101	73-124			
Xylenes, total	1537	20.0	ug/L	1510	ND	102	75-123			
Styrene	517.3	10.0	ug/L	504	ND	103	70-120			
Bromoform	470.4	10.0	ug/L	502	ND	93.7	70-124			
1,2,3-Trichloropropane	496.6	10.0	ug/L	504	ND	98.5	62-135			
trans-1,4-Dichloro-2-butene	1006	50.0	ug/L	1000	ND	100	50-120			
1,1,2,2-Tetrachloroethane	498.5	10.0	ug/L	502	ND	99.3	63-126			
1,4-Dichlorobenzene	483.9	10.0	ug/L	502	ND	96.4	72-119			
1,2-Dichlorobenzene	481.6	10.0	ug/L	502	ND	96.0	71-117			
1,2-Dibromo-3-chloropropane	485.6	50.0	ug/L	505	ND	96.2	49-134			
T,Z BIBTOTHO O GINGTOPICIO			ug/L		IND	90.2	49-104			
Surrogate: Dibromofluoromethane	467		ug/L	502		93.2	80-126			
Surrogate: Dibromofluoromethane	467		ug/L	502		93.2	75-136			
Surrogate: 1,2-Dichloroethane-d4	474		ug/L	501		94.7	63-138			
Surrogate: 1,2-Dichloroethane-d4	474		ug/L	501		94.7	61-142			
Surrogate: Toluene-d8	499		ug/L	504 504		99.0	87-116			
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene	499 500		ug/L	504 501		99.0 99.6	82-121 85-111			
Surrogate: 4-Bromofluorobenzene	500		ug/L ug/L	501 501		99.6 99.6	80-1116			
Matrix Spike Dup (1HD1572-MSD1)		: 1HD1698-01	Prepared: 04		00 Analyzed:					
Chloromethane	264.9	10.0	ug/L	300	ND	88.2	61-152	4.39	26	
Vinyl Chloride	291.2	10.0	ug/L	300	ND	97.0	66-149	4.40	23	
Bromomethane	227.3	10.0	ug/L	301	ND	75.5	43-171	7.82	29	
Chloroethane	296.6	10.0	ug/L	300	ND	98.8	69-148	3.97	25	
Trichlorofluoromethane	287.3	10.0	ug/L	300	ND	95.8	62-163	3.9 <i>1</i> 1.55		
1,1-Dichloroethylene	456.6	10.0	ug/L	501		91.1			25	
Acetone	783.7	10.0	ug/L ug/L	1000	ND ND		70-148	3.51	22	
	801.1	10.0	•	1000		78.3	45-173	3.78	30	
Methyl Iodide Carbon Disulfide	902.2		ug/L		ND	80.0	62-167	8.33	24	
•	450.2	10.0 50.0	ug/L	1000	ND	90.1	71-163	3.88	22	
Methylene Chloride	464.6		ug/L	502	ND	89.7	69-140	3.38	19	
Acrylonitrile	454.5	50.0	ug/L	500	ND	92.9	58-151	2.63	15	
trans-1,2-Dichloroethylene		10.0	ug/L	503	ND	90.4	69-144	4.68	22	
1,1-Dichloroethane	450.4	10.0	ug/L	503	ND	89.6	70-138	4.22	20	014.05
Vinyl Acetate	899.2	50.0	ug/L	1620	ND	55.7	58-142	6.05	24	QM-05
cis-1,2-Dichloroethylene	527.8	10.0	ug/L	505	ND	105	68-151	3.46	22	
2-Butanone (MEK)	969.7	100	ug/L	1000	ND	96.8	50-160	2.78	23	
Bromochloromethane	457.9	10.0	ug/L	504	ND	90.8	65-143	2.46	22	
Chloroform	436.1	10.0	ug/L	502	ND	86.9	71-143	4.35	21	
1,1,1-Trichloroethane	444.5	10.0	ug/L	503	ND	88.3	63-133	3.58	23	
Carbon Tetrachloride	452.8	10.0	ug/L	502	ND	90.2	63-142	3.86	22	
Benzene	466.8	10.0	ug/L	504	ND	92.5	69-133	4.40	18	
1,2-Dichloroethane	450.5	10.0	ug/L	502	ND	89.8	63-138	2.56	20	
Trichloroethylene	464.9	10.0	ug/L	503	ND	92.3	71-133	4.48	23	

Microbac Laboratories, Inc., Newton

RPD

%REC

1HD1532

Spike Source

%REC

RPD

Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
3260B									
Source:	1HD1698-01	Prepared: 04	4/25/24 00:0	0 Analyzed:	04/25/24 1	9:25			
471.3	10.0	ug/L	502	ND	93.8	69-132	3.17	20	
472.6	10.0	ug/L	505	ND	93.6	70-147	2.53	22	
464.0	10.0	ug/L	503	ND	92.3	67-130	2.95	21	
463.0	10.0	ug/L	502	ND	92.2	61-126	2.85	21	
1024	50.0	ug/L	1000	ND	102	55-147	3.14	23	
456.5	10.0	ug/L	505	ND	90.4	71-133	4.89	19	
470.2	10.0	ug/L	503	ND	93.5	63-124	1.58		
474.2	10.0	•							
463.0	10.0	•							
1065		•							
		•							
		•							
		•							
		•							
		•							
		•							
		•							
		•							
		•							
		•				50-120			
	10.0	ug/L				63-126	2.83	24	
	10.0	ug/L	502	ND	92.4	72-119	4.31	24	
	10.0	ug/L	502	ND	93.0	71-117	3.14	24	
484.3	50.0	ug/L	505	ND	95.9	49-134	0.268	28	
471		ug/L	502		93.8	80-126			
471		ug/L	502		93.8	75-136			
473		ug/L	501		94.4	63-138			
473		ug/L	501		94.4	61-142			
		-							
		-							
500		ug/L	501		99.8	80-116			
			Spike	Source		%REC		RPD	Notes
Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
ation - FPA 9040									
	1HD1532.05	Prenared: 0	1/23/24 no·1	6 Analyzed	N4/23/24 1	3·47			
		-	,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	-	UTIZUIZ# 1	U.T1	0 123	10	
- · 	0.0	•	1/23/24 00:1		04/23/24 1	3·47	0.120	10	
		Fiehaleu. 0	+/23/24 03.1	o / maryzca.					
	8260B Source: 471.3 472.6 464.0 463.0 1024 456.5 470.2 474.2 463.0 1065 477.4 484.9 469.2 469.9 484.5 1462 496.6 466.8 479.7 990.8 484.6 463.5 466.7 484.3 471 473 473 473 498 498 500 500 Result	Source: 1HD1698-01	Source: 1HD1698-01	Result RL Units Level	Result RL Units Level Result	Result RL Units Level Result %REC		Source: 1HD1698-01 Prepared: 04/25/24 00:00 Analyzed: 04/25/24 19-25- A71.3 10.0 ug/L 502 ND 93.6 69-132 3.17 472.6 10.0 ug/L 503 ND 93.6 70-147 2.53 464.0 10.0 ug/L 503 ND 92.2 61-126 2.85 1024 50.0 ug/L 505 ND 93.5 63-124 1.58 470.2 10.0 ug/L 503 ND 93.5 63-124 1.58 470.2 10.0 ug/L 503 ND 93.5 63-124 1.58 470.2 10.0 ug/L 502 ND 94.4 69-133 3.07 463.0 10.0 ug/L 502 ND 94.8 74-122 1.81 484.9 10.0 ug/L 503 ND 94.8 74-122 1.81 484.9 10.0 ug/L 504 ND 96.1 66-127 2.24 469.9 10.0 ug/L 504 ND 96.0 73-124 4.72 4.84.5 10.0 ug/L 505 ND 96.0 73-124 4.72 4.84.5 10.0 ug/L 505 ND 96.0 73-124 4.72 4.86.6 10.0 ug/L 504 ND 96.0 73-124 4.72 4.86.6 10.0 ug/L 505 ND 96.5 63-126 2.83 4.86.6 10.0 ug/L 502 ND 92.9 70-124 0.768 4.86.6 10.0 ug/L 502 ND 92.8 85-111 4.81 4	Source: 1HD1698-01 Prepared: 04/25/24 00:00 Analyzed: 04/25/24 19:25

CERTIFICATE OF ANALYSIS

1HD1532

				Spike	Source		%REC		RPD	
Determination of Conventional Chemistry	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Parameters										
Batch 1HD1357 - Wet Chem Prepara	ation - EPA 9040									
Reference (1HD1357-SRM2)			Prepared: 04	1/23/24 09:1	6 Analyzed:	04/23/24 1	3:47			
pH	6.99	0.5	рН	7.00	o,,	99.9	90-110			
PIT	0.00	0.0	ριι	7.00		55.5	30-110			
Batch 1HD1358 - Wet Chem Prepara	ation - 2320B									
Blank (1HD1358-BLK1)			Prepared: 04	1/23/24 09:1	8 Analyzed:	04/23/24 1	3:00			
Alkalinity, as CaCO3	<10	10	mg/L							
LCS (1HD1358-BS1)			Prepared: 04	1/23/24 09:1	8 Analyzed:	04/23/24 1	3:00			
Alkalinity, as CaCO3	224	10	mg/L	235		95.2	88-114			
Matrix Spike (1HD1358-MS1)	Source:	1HD1532-05	Prepared: 04	1/23/24 09:1	8 Analyzed:	04/23/24 1	3:00			
Alkalinity, as CaCO3	1760	50	mg/L	1180	652	94.7	74-122			
Matrix Spike Dup (1HD1358-MSD1)	Source:	1HD1532-05	Prepared: 04	1/23/24 09:1	8 Analyzed:	04/23/24 1	3:00			
Alkalinity, as CaCO3	1740	50	mg/L	1180	652	92.2	74-122	1.66	10	
				0	0		0/ BEQ		DDD	
Determination of Total Metals	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HD1412 - EPA 3005A Total R	Recoverable Metals	- EPA 6020A								
Blank (1HD1412-BLK1)			Prepared: 04	I/24/24 07:1	6 Analyzed:	04/25/24 2	2:31			
Antimony, total	<0.0020	0.0020	mg/L	.,,	o,,	0 1,20,2 1 2				
Arsenic, total	<0.0040	0.0040	mg/L							
Barium, total	<0.0040	0.0040	mg/L							
Beryllium, total	<0.0040	0.0040	mg/L							
Cadmium, total	<0.0008	0.0008	mg/L							
Chromium, total	<0.0080	0.0080	mg/L							
Cobalt, total	<0.0004	0.0004	mg/L							
Copper, total	<0.0040	0.0040	mg/L							
Lead, total	<0.0040	0.0040	mg/L							
Nickel, total	<0.0040	0.0040	mg/L							
Selenium, total	<0.0040	0.0040	mg/L							
Silver, total	<0.0040	0.0040	mg/L							
Thallium, total	<0.0020	0.0020	mg/L							
Vanadium, total	<0.0200	0.0200	mg/L							
Zinc, total	<0.0200	0.0200	mg/L							QB-12
LCS (1HD1412-BS1)			Prepared: 04	1/24/24 07:1	6 Analyzed:	04/25/24 2	2:37			
Antimony, total	0.0958	0.0020	mg/L	0.100		95.8	80-120			
Arsenic, total	0.100	0.0040	mg/L	0.100		100	80-120			
Barium, total	0.108	0.0040	mg/L	0.100		108	80-120			
Beryllium, total	0.0989	0.0040	mg/L	0.100		98.9	80-120			
Cadmium, total	0.101	8000.0	mg/L	0.100		101	80-120			
Chromium, total	0.0974	0.0080	mg/L	0.100		97.4	80-120			
Cobalt, total	0.404									
- ,	0.104	0.0004	mg/L	0.100		104	80-120			

1HD1532

Determination of Total Metals	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HD1412 - EPA 3005A Total R	Recoverable Metals	s - EPA 6020A								
_CS (1HD1412-BS1)			Prepared: (04/24/24 07:1	6 Analyzed:	04/25/24 2	2:37			
Lead, total	0.104	0.0040	mg/L	0.100		104	80-120			
Nickel, total	0.105	0.0040	mg/L	0.100		105	80-120			
Selenium, total	0.1028	0.0040	mg/L	0.100		103	80-120			
Silver, total	0.103	0.0040	mg/L	0.100		103	80-120			
Thallium, total	0.105	0.0020	mg/L	0.100		105	80-120			
Vanadium, total	0.103	0.0200	mg/L	0.100		103	80-120			
Zinc, total	0.108	0.0200	mg/L	0.100		108	80-120			
Matrix Spike (1HD1412-MS1)	Source	: 1HD1511-01	Prepared: (04/24/24 07:1	6 Analyzed:	04/25/24 2	2:49			
Antimony, total	0.0951	0.0020	mg/L	0.100	0.0020	93.2	75-125			
Arsenic, total	0.121	0.0040	mg/L	0.100	0.0214	99.7	75-125			
Barium, total	1.50	0.0040	mg/L	0.100	1.36	141	75-125			QM-4X
Beryllium, total	0.0879	0.0040	mg/L	0.100	ND	87.9	75-125			
Cadmium, total	0.0872	0.0008	mg/L	0.100	ND	87.2	75-125			
Chromium, total	0.0976	0.0080	mg/L	0.100	0.0080	89.7	75-125			
Cobalt, total	0.130	0.0004	mg/L	0.100	0.0221	108	75-125			
Copper, total	0.0970	0.0040	mg/L	0.100	0.0074	89.6	75-125			
Lead, total	0.0963	0.0040	mg/L	0.100	0.0061	90.2	75-125			
Nickel, total	0.208	0.0040	mg/L	0.100	0.103	105	75-125			
Selenium, total	0.0361	0.0040	mg/L	0.100	ND	36.1	75-125			QM-07
Silver, total	0.0921	0.0040	mg/L	0.100	ND	92.1	75-125			
Thallium, total	0.0936	0.0020	mg/L	0.100	0.0002	93.4	75-125			
Vanadium, total	0.123	0.0200	mg/L	0.100	0.0296	93.7	75-125			
Zinc, total	0.0983	0.0200	mg/L	0.100	ND	98.3	75-125			
latrix Spike Dup (1HD1412-MSD1)	Source	: 1HD1511-01	Prepared: (04/24/24 07:1	6 Analyzed:	04/25/24 2	2:56			
Antimony, total	0.0956	0.0020	mg/L	0.100	0.0020	93.6	75-125	0.452	20	
Arsenic, total	0.120	0.0040	mg/L	0.100	0.0214	98.3	75-125	1.16	20	
Barium, total	1.51	0.0040	mg/L	0.100	1.36	159	75-125	1.23	20	QM-4X
Beryllium, total	0.0881	0.0040	mg/L	0.100	ND	88.1	75-125	0.220	20	
Cadmium, total	0.0872	0.0008	mg/L	0.100	ND	87.2	75-125	0.0138	20	
Chromium, total	0.0973	0.0080	mg/L	0.100	0.0080	89.3	75-125	0.376	20	
Cobalt, total	0.129	0.0004	mg/L	0.100	0.0221	107	75-125	0.903	20	
Copper, total	0.0962	0.0040	mg/L	0.100	0.0074	88.7	75-125	0.890	20	
Lead, total	0.0959	0.0040	mg/L	0.100	0.0061	89.8	75-125	0.431	20	
Nickel, total	0.204	0.0040	mg/L	0.100	0.103	101	75-125	1.87	20	
Selenium, total	0.0359	0.0040	mg/L	0.100	ND	35.9	75-125	0.348	20	QM-07
Silver, total	0.0927	0.0040	mg/L	0.100	ND	92.7	75-125	0.668	20	
Thallium, total	0.0932	0.0020	mg/L	0.100	0.0002	93.0	75-125	0.413	20	
Vanadium, total	0.123	0.0200	mg/L	0.100	0.0296	93.3	75-125	0.346	20	
Zinc, total	0.0995	0.0200	mg/L	0.100	ND	99.5	75-125	1.19	20	
Post Spike (1HD1412-PS1)	Source	: 1HD1511-01	Prepared: (04/24/24 07:1	6 Analyzed:	04/25/24 2	3:02			
Antimony, total	0.0782		mg/L	0.0800	0.0020	95.3	80-120			
Arsenic, total	0.101		mg/L	0.0800	0.0214	99.7	80-120			
Barium, total	1.47		mg/L	0.0800	1.36	140	80-120			PS-4X

CERTIFICATE OF ANALYSIS

1HD1532

Units

RL

Source: 1HD1511-01

Determination of Total Metals

Post Spike (1HD1412-PS1)

Result

Batch 1HD1412 - EPA 3005A Total Recoverable Metals - EPA 6020A

Spike Source

Prepared: 04/24/24 07:16 Analyzed: 04/25/24 23:02

Result

%REC

Level

Beryllium, total	0.0720		mg/L	0.0800	0.00007	89.9	80-120
Cadmium, total	0.0707		mg/L	0.0800	0.00003	88.3	80-120
Chromium, total	0.0813		mg/L	0.0800	0.0080	91.7	80-120
Cobalt, total	0.109		mg/L	0.0800	0.0221	108	80-120
Copper, total	0.0802		mg/L	0.0800	0.0074	91.0	80-120
Lead, total	0.0791		mg/L	0.0800	0.0061	91.3	80-120
Nickel, total	0.186		mg/L	0.0800	0.103	104	80-120
Selenium, total	0.0781		mg/L	0.0800	0.0012	96.2	80-120
Silver, total	0.0755		mg/L	0.0800	0.0001	94.2	80-120
Thallium, total	0.0763		mg/L	0.0800	0.0002	95.1	80-120
Vanadium, total	0.106		mg/L	0.0800	0.0296	94.9	80-120
Zinc, total	0.0796		mg/L	0.0800	0.0121	84.5	80-120
Batch 1HD1478 - EPA 3005A T	otal Recoverable Metals	- EPA 6020A					
Blank (1HD1478-BLK1)			Prepared: (04/24/24 16:1	10 Analyzed: (04/26/24 0	01:29
Antimony, total	<0.0020	0.0020	mg/L				
Arsenic, total	<0.0040	0.0040	mg/L				
Barium, total	<0.0040	0.0040	mg/L				
Beryllium, total	<0.0040	0.0040	mg/L				
Cadmium, total	<0.0008	0.0008	mg/L				
Chromium, total	<0.0080	0.0080	mg/L				
Cobalt, total	<0.0004	0.0004	mg/L				
Copper, total	<0.0040	0.0040	mg/L				
Lead, total	<0.0040	0.0040	mg/L				
Nickel, total	<0.0040	0.0040	mg/L				
Selenium, total	<0.0040	0.0040	mg/L				
Silver, total	<0.0040	0.0040	mg/L				
Thallium, total	<0.0020	0.0020	mg/L				
Vanadium, total	<0.0200	0.0200	mg/L				
Zinc, total	<0.0200	0.0200	mg/L				
LCS (1HD1478-BS1)			Prepared: (04/24/24 16:1	10 Analyzed: (04/26/24 0	01:47
Antimony, total	0.0956	0.0020	mg/L	0.100		95.6	80-120
Arsenic, total	0.100	0.0040	mg/L	0.100		100	80-120
Barium, total	0.110	0.0040	mg/L	0.100		110	80-120
Beryllium, total	0.0957	0.0040	mg/L	0.100		95.7	80-120
Cadmium, total	0.0986	0.0008	mg/L	0.100		98.6	80-120
Chromium, total	0.0969	0.0080	mg/L	0.100		96.9	80-120
Cobalt, total	0.103	0.0004	mg/L	0.100		103	80-120
Copper, total	0.105	0.0040	mg/L	0.100		105	80-120
Lead, total	0.102	0.0040	mg/L	0.100		102	80-120
Nickel, total	0.102	0.0040	mg/L	0.100		102	80-120
Selenium, total	0.1045	0.0040	mg/L	0.100		104	80-120
Silver, total	0.104	0.0040	mg/L	0.100		104	80-120

Microbac Laboratories, Inc., Newton

RPD

Limit

RPD

Notes

%REC

Limits

1HD1532

Determination of Total Metals	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HD1478 - EPA 3005A Total R	Recoverable Metals	s - EPA 6020A								
LCS (1HD1478-BS1)			Prepared: 0)4/24/24 16:1	I 0 Analyzed:	04/26/24 0	1:47			
Thallium, total	0.103	0.0020	mg/L	0.100		103	80-120			
Vanadium, total	0.0974	0.0200	mg/L	0.100		97.4	80-120			
Zinc, total	0.105	0.0200	mg/L	0.100		105	80-120			
Matrix Spike (1HD1478-MS1)	Source	: 1HD0315-03RE3	Prepared: 0	4/24/24 16:1	I 0 Analyzed:	04/26/24 0	2:00			
Antimony, total	0.0956	0.0020	mg/L	0.100	ND	95.6	75-125			
Arsenic, total	0.101	0.0040	mg/L	0.100	0.0015	99.6	75-125			
Barium, total	0.356	0.0040	mg/L	0.100	0.262	94.0	75-125			
Beryllium, total	0.0934	0.0040	mg/L	0.100	ND	93.4	75-125			
Cadmium, total	0.0955	0.0008	mg/L	0.100	ND	95.5	75-125			
Chromium, total	0.0944	0.0080	mg/L	0.100	0.0007	93.6	75-125			
Cobalt, total	0.101	0.0004	mg/L	0.100	ND	101	75-125			
Copper, total	0.251	0.0040	mg/L	0.100	0.135	116	75-125			
Lead, total	0.0986	0.0040	mg/L	0.100	ND	98.6	75-125			
Nickel, total	0.0998	0.0040	mg/L	0.100	ND	99.8	75-125			
Selenium, total	0.1018	0.0040	mg/L	0.100	ND	102	75-125			
Silver, total	0.101	0.0040	mg/L	0.100	ND	101	75-125			
Thallium, total	0.101	0.0020	mg/L	0.100	0.0003	101	75-125			
Vanadium, total	0.102	0.0200	mg/L	0.100	ND	102	75-125			
Zinc, total	0.103	0.0200	mg/L	0.100	ND	103	75-125			
Matrix Spike Dup (1HD1478-MSD1)	Source	: 1HD0315-03RE3	Prepared: 0	4/24/24 16:1	I0 Analyzed:	04/26/24 0	2:06			
Antimony, total	0.0972	0.0020	mg/L	0.100	ND	97.2	75-125	1.65	20	
Arsenic, total	0.103	0.0040	mg/L	0.100	0.0015	101	75-125	1.43	20	
Barium, total	0.366	0.0040	mg/L	0.100	0.262	104	75-125	2.91	20	
Beryllium, total	0.0944	0.0040	mg/L	0.100	ND	94.4	75-125	1.02	20	
Cadmium, total	0.0963	0.0008	mg/L	0.100	ND	96.3	75-125	0.835	20	
Chromium, total	0.0954	0.0080	mg/L	0.100	0.0007	94.6	75-125	1.07	20	
Cobalt, total	0.104	0.0004	mg/L	0.100	ND	104	75-125	2.44	20	
Copper, total	0.339	0.0040	mg/L	0.100	0.135	204	75-125	29.8	20	QM-07
Lead, total	0.0999	0.0040	mg/L	0.100	ND	99.9	75-125	1.22	20	
Nickel, total	0.102	0.0040	mg/L	0.100	ND	102	75-125	2.55	20	
Selenium, total	0.1011	0.0040	mg/L	0.100	ND	101	75-125	0.694	20	
Silver, total	0.100	0.0040	mg/L	0.100	ND	100	75-125	0.878	20	
Thallium, total	0.102	0.0020	mg/L	0.100	0.0003	101	75-125	0.679	20	
Vanadium, total	0.102	0.0200	mg/L	0.100	ND	102	75-125	0.427	20	
Zinc, total	0.104	0.0200	mg/L	0.100	ND	104	75-125	1.05	20	
Post Spike (1HD1478-PS1)	Source	: 1HD0315-03RE3	Prepared: 0	4/24/24 16:1	10 Analyzed:	04/26/24 0	2:12			
Antimony, total	0.0750		mg/L	0.0800	0.0002	93.5	80-120			
Arsenic, total	0.0818		mg/L	0.0800	0.0015	100	80-120			
Barium, total	0.343		mg/L	0.0800	0.262	102	80-120			
Beryllium, total	0.0735		mg/L	0.0800	0.000002	91.9	80-120			
Cadmium, total	0.0747		mg/L	0.0800	0.00004	93.3	80-120			
Chromium, total	0.0758		mg/L	0.0800	0.0007	93.8	80-120			
Cobalt, total	0.0831		mg/L	0.0800	0.00008	104	80-120			

CERTIFICATE OF ANALYSIS

1HD1532

Spike

Source

						Бріке	Source		%REC		RPD	
Determination of	f Total Metals	Result		RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HD1478 - El	PA 3005A Total R	ecoverable Me	tals - EPA	6020A								
Post Spike (1HD1478-	-PS1)	Sou	rce: 1HD03	15-03RE3 ^P	repared: 0	4/24/24 16:1	I0 Analyzed:	04/26/24 0	2:12			
Copper, total		0.214			mg/L	0.0800	0.135	98.3	80-120			
Lead, total		0.0797			mg/L	0.0800	0.0001	99.4	80-120			
Nickel, total		0.0816			mg/L	0.0800	0.0006	101	80-120			
Selenium, total		0.0760			mg/L	0.0800	0.0002	94.8	80-120			
Silver, total		0.0805			mg/L	0.0800	0.0001	100	80-120			
Thallium, total		0.0819			mg/L	0.0800	0.0003	102	80-120			
Vanadium, total		0.0836			mg/L	0.0800	0.0056	97.5	80-120			
Zinc, total		0.0840			mg/L	0.0800	0.0075	95.6	80-120			
Definitions												
I-03:	Analyte required laboratory.	d to be analyzed v	vithin 15 mi	nutes of sa	mpling. A	nalysis pei	formed up	on receipt	of sample	at		
O-07:	-	alysis of this samp naximum hold tim	•	QC recover	es outsid	e acceptar	nce criteria.	. It was re	-analyzed	after the		
PS-4X:		ery was outside on concentration.	of QC accep	tance limit	s for the F	Post Spike	due to ana	lyte conce	entration at	4 times o	r	
QB-12:		s found in the blar f the analyte in the								е		
QM-05:		ery and/or RPD was LCSD were within										
QM-07:	•	ery and/or RPD v table LCS recove		acceptance	e limits fo	r the MS a	nd/or MSD	. The bate	ch was acc	epted		
QM-4X:		ery was outside of the spike concen		tance limit	s for the I	MS and/or I	MSD due to	o analyte o	concentration	on at 4		
RL:	Reporting Limit											
RPD:	Relative Percen	t Difference										
Cooler Receipt Lo	g											
Cooler ID:	Default Cooler		Temp:	0.8°C								
Cooler Inspection	Checklist											
Custody Seals				No	Cor	itainers Inta	act					Ye
COC/Labels Agr	ee			Yes	Pre	servation C	Confirmed					N
•												

Report Comments

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions.

Reviewed and Approved By:

Heather Murphy

Customer Relationship Specialist heather.murphy@microbac.com 05/20/24 11:04

RPD

%REC

Veystone LABORATORIES

SPECIAL INSTRUCTIONS

None

Turn Around Time

Standard

600 East 17th Street South Newton, IA 50208 641-702-8451

HLW Engineering PM: Heather Murphy

Page 1 of ted: 3/20/2024 8:31:53A 6

of 75

www.keystonelabs

A Micro	bac Company	
SITE IN	FORMATION	
Sampler:	TODO WHIPPUL	
Project:	Marshall Caritony Landfill D1	
	6003	

,	Story City, IA	5024
CTIONS	LAB USE C	NLY
	Work Order	1+
	Temperature	0
RUSH, need by//	Turn-Cooler:	No

Todd Whipple HIW Engineering PO Box 314 Story City, IA 50246

REPORT TO

Custody Seal Containers Intact COC/Labels Agree Preservation Confirmed Received on Ice

Marshall County Landfill

2313 Marchalltown Blid iviarsitatiitown, iA 50 156

Don Ballalatak

Number	Sample Identification / Client ID	Matrix	Sample Type	Date	Time	Number of Containers	Analyses	Lab Sample Number
-001	MW-66 (B) DRY	Water	GRAB	4/16/29		0	Indfill-app1-voc-group Indfil-app1-metals-6020	01
-001	MW-85 (B)	Water	GRAB (4 117 124	7151	7	Indfill-app1-voc-group Indfill-app1-metals-6020	02
-001	MW-98 (B)	Water	GRAB	4/17/24	9:48	7	lndfill-app1-voc-group lndfil-app1-metals-6020	03
-001	MW-99 (B)	Water	GRAB(4 17 124	9:34	7	Indfill-app1-voc-group Indfil-app1-metals-6020	04
-001	MW-49	Water	GRAB	4/17/24)	9:10		alk-caco3-2320 Indfill-app1-voc-group Indfil-app1-metals-6020 methane-astm-d1946 ph-9040	05
-001	MW-54	Water	GRAB	4 117/24	8:46		alk-caco3-2320 Indfill-app1-voc-group Indfil-app1-metals-6020 methane-astm-d1946 ph-9040	06
						1 '1		

HD1532

Relinquished By	Lexandra Date/Time	4/18/2

Date/Time

Received By

Relinguished By	1		Date/Tim	ne	
Maker 4	18	21	f	9:	39
Received for Lab By			Date/Tim	ie	,
Original - La	ab Cop	y Yel	low - Sai	mpler	Сору

Remarks:		
ionnanno.		

Veystone LABORATORIES A Microbac Company

600 East 17th Street So Newton, IA 50208 641-702-0451

HLW Engineering PM: Heather Murphy

of 75 Page 2 of Printed: 3/20/2024 8:31:53A 8 www.keystonelabs ซึ่วท

SITI	E INFORMATION		RE	PORT TO			/ MYOICE I	0	
Proje	Sampler: Topo WHIPPLE Project: Warshall Sanitary Landfill-D4 6003			l Whipple / Engineering lox 314 / City, IA 502			Don Ballala Marshall Co 2313 March Marshalitow	unty I andfill ultown Bhd	
SPE	CIAL INSTRUCTIONS ——————		LA	B USE ONLY					
No	ne		Work	Order / H	D1536	<u>/</u>	Custody		
	Around Time andard RUSH, need by/			erature () Cooler: No). 8		COC/Lab	oels Agree tion Confirmed	
Number	Sample Identification / Client ID	Motrix	Sample	Data		Number of			
Number	Sample Identification / Client ID	Matrix	Sample Type	Date	Time	Number of Containers	Anal	yses	Lab Sample Number
Number -001	Sample Identification / Client ID	Matrix Water	•	Date 4 // 1/4 // 24	Time		Anal alk-caco3-2320 Indfll-app1-metals-6020 ph-9040	yses Indfill-app1-voc-group methane-astm-d1946	Lab Sample Number
	·		Type			Containers	alk-caco3-2320 Indfll-app1-metals-6020	Indfill-app1-voc-group	Number
-001	MW-81	Water	Type	4 114 24	11:20	Containers	alk-caco3-2320 Indfll-app1-metals-6020 ph-9040	Indfill-app1-voc-group methane-astm-d1946	Number

Cold U	Lizal	4/18/24
Relinquished By	Date/Tir	ne

Received By Date/Time

-00

-001

MW-93

MW-94

Relinquished By Received for Lab By

Water

Water

GRAB

GRAB

Date/Time Date/Time

4/17/24

Remarks:

Indfll-app1-metals-6020

Indfill-app1-voc-group

Indfill-app1-voc-group

Indfll-app1-metals-6020 methane-astm-d1946

alk-caco3-2320

ph-9040

11:43

8:29

8003

th Street Sout 0208

Temperature

Turn-Cooler:

PM: Heather Murphy

nted: 3/20/2024 8:31:53A 8

www.keystonelabs

Page 3 of

eystone	600 East 17th Newton, IA 50
LABŌRATORIES A Microbac Company	644.702.0464

SITE IN	FORMATION	
Sampler:	"NOO WHIPPLE	
Project:	Marshall Conitary Landfill D4	

SPECIAL INSTRUCTIONS	
None	
Turn Around Time Standard RUSH, need by/_	/
	/

REPORT TO	INVOIGE TO
Todd Whipple HI W Engineering PO Box 314 Story City, IA 50246	Don Ballalatak Marshall County Landfill 2313 Marchalltown Bird Marshalliown, IA 50156
Work Order / HD/536	Custody Seal Containers Intact

Number	Sample Identification / Client ID	Matrix	Sample Type	Date	Time	Number of Containers	Analyses	Lab Sample Number
-001	MW-95	Water	GRAB	(4 117 124)	7135	7	Indfill-app1-voc-group Indfll-app1-metals-6020	1312
-001	MW-96R	Water	GRAB	4 116 124	7155	7	Indfill-app1-voc-group Indfil-app1-metals-6020	413
-001	MW-97	Water	GRAB (4/17/29	8109	7	lndfill-app1-voc-group lndfill-app1-metals-6020	1514
-001	SRAMP B Tile	Water	GRAB	+ 116/24	8:30	7	Indfill-app1-voc-group Indfill-app1-metals-6020	1615
-001	PECS B DRY	Water	GRAB	4 16 /24	Solver and the control of the contro	0	lndfill-app1-voc-group	170
-001	Duplicate	Water	GRAB	4/16/24	V	l	Ind fil appl - co up Indfil-app1-metals-6020	10 1827
			,					

No

Relinquished By	1/18/24 Date/Time
Received By	Date/Time

	160	
Relinquished By	/ Date	/Time
\mathcal{M}	15/14	0-2
111ann 41	18/6	4-1
Received for Lab By	Date	/Time

Original - Lab Copy Yellow - Sampler Copy

Remarks:			

COC/Labels Agree Preservation Confirmed

Received on Ice

May 02, 2024

Heather Murphy Keystone Laboratories 600 East 17 th Street South Newton, IA 50208

TEL: (641) 792-8451

FAX:

Illinois 100226

Illinois 1004652024-2

Kansas E-10374

Louisiana 05002

Louisiana 05003

Oklahoma 9978

RE: 1HD1532 **WorkOrder**: 24042287

Dear Heather Murphy:

TEKLAB, INC received 4 samples on 4/29/2024 9:07:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Elizabeth A. Hurley Director of Customer Service (618)344-1004 ex 33 ehurley@teklabinc.com

HLW Engineering
PM: Heather Murphy

Report Contents

http://www.teklabinc.com/

Client: Keystone Laboratories Client Project: 1HD1532	Work Order: 24042287 Report Date: 02-May-24		
This reporting package includes the following:			
Cover Letter	1		
Report Contents	2		
Definitions	3		
Case Narrative	5		
Accreditations	6		
Laboratory Results	7		
Receiving Check List	11		
Chain of Custody	Appended		

Definitions

http://www.teklabinc.com/

Client: Keystone Laboratories Work Order: 24042287

Client Project: 1HD1532 Report Date: 02-May-24

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- NC Data is not acceptable for compliance purposes
- ND Not Detected at the Reporting Limit
- **NELAP NELAP Accredited**
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
 - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Definitions

http://www.teklabinc.com/

Client: Keystone Laboratories Work Order: 24042287

Client Project: 1HD1532 Report Date: 02-May-24

Qualifiers

- Unknown hydrocarbon

C - RL shown is a Client Requested Quantitation Limit

H - Holding times exceeded

J - Analyte detected below quantitation limits

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside recovery limits

X - Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

Locations

1319 Butterfield Rd.

(630) 324-6855

Downers Grove, IL 60515

arenner@teklabinc.com

Address

Phone

Email

Address

Phone

Email

Fax

Fax

http://www.teklabinc.com/

Client: Keystone Laboratories

Work Order: 24042287

Client Project: 1HD1532

Report Date: 02-May-24

Cooler Receipt Temp: 18.3 °C

Collinsville

(618) 344-1004

(618) 344-1005

jhriley@teklabinc.com

5445 Horseshoe Lake Road

Collinsville, IL 62234-7425

EHurley@teklabinc.com

Collinsville Air

(618) 344-1004

(618) 344-1005

Address

Phone

Email

Address

Phone

Fax Email

Fax

5445 Horseshoe Lake Road

Collinsville, IL 62234-7425

Springfield	Kansas City			
3920 Pintail Dr	Address	8421 Nieman Road		
Springfield, IL 62711-9415		Lenexa, KS 66214		
(217) 698-1004	Phone	(913) 541-1998		
(217) 698-1005	Fax	(913) 541-1998		
KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com		
Chicago				

Accreditations

http://www.teklabinc.com/

Client: Keystone Laboratories

Work Order: 24042287

Client Project: 1HD1532

Report Date: 02-May-24

Dept	Cert #	NELAP	Exp Date	Lab
IEPA	100226	NELAP	1/31/2025	Collinsville
IEPA	1004652024-2	NELAP	4/30/2025	Collinsville
KDHE	E-10374	NELAP	4/30/2025	Collinsville
LDEQ	05002	NELAP	6/30/2024	Collinsville
LDEQ	05003	NELAP	6/30/2024	Collinsville
ODEQ	9978	NELAP	8/31/2024	Collinsville
ADEQ	88-0966		3/14/2025	Collinsville
IDPH	17584		5/31/2025	Collinsville
IDNR	430		6/1/2024	Collinsville
UST	0073		1/31/2025	Collinsville
MDNR	00930		10/31/2026	Collinsville
MDNR	930		1/31/2025	Collinsville
	IEPA IEPA KDHE LDEQ LDEQ ODEQ ADEQ IDPH IDNR UST MDNR	IEPA 100226 IEPA 1004652024-2 KDHE E-10374 LDEQ 05002 LDEQ 05003 ODEQ 9978 ADEQ 88-0966 IDPH 17584 IDNR 430 UST 0073 MDNR 00930	IEPA 100226 NELAP IEPA 1004652024-2 NELAP KDHE E-10374 NELAP LDEQ 05002 NELAP LDEQ 05003 NELAP ODEQ 9978 NELAP ADEQ 88-0966 IDPH 17584 IDNR 430 UST 0073 MDNR 00930 00930	IEPA 100226 NELAP 1/31/2025 IEPA 1004652024-2 NELAP 4/30/2025 KDHE E-10374 NELAP 4/30/2025 LDEQ 05002 NELAP 6/30/2024 LDEQ 05003 NELAP 6/30/2024 ODEQ 9978 NELAP 8/31/2024 ADEQ 88-0966 3/14/2025 IDPH 17584 5/31/2025 IDNR 430 6/1/2024 UST 0073 1/31/2025 MDNR 00930 10/31/2026

Laboratory Results

http://www.teklabinc.com/

Client: Keystone Laboratories

Work Order: 24042287

Client Project: 1HD1532

Report Date: 02-May-24

Lab ID: 24042287-001

Client Sample ID: 1HD1532-05

Matrix: AQUEOUS

Collection Date: 04/17/2024 9:10

	nalyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Batch
PERMANENT	GASES (RS	KSOP-175)		arde.				
Methane		*	4.0		22.3	μg/L	1	04/29/2024 12:54 R346446

Laboratory Results

http://www.teklabinc.com/

Client: Keystone Laboratories Work Order: 24042287

Client Project: 1HD1532 Report Date: 02-May-24

Lab ID: 24042287-002 Client Sample ID: 1HD1532-06

Matrix: AQUEOUS Collection Date: 04/17/2024 8:46

Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed Batch
PERMANENT GASES	S (RSKSOP-175)					
Methane	*	4.0	9.1	μg/L	1	04/29/2024 13:04 R346446

Laboratory Results

http://www.teklabinc.com/

Client: Keystone Laboratories Work Order: 24042287

Client Project: 1HD1532 Report Date: 02-May-24

Lab ID: 24042287-003 Client Sample ID: 1HD1532-07

Matrix: AQUEOUS Collection Date: 04/16/2024 11:20

Analyses	Certification	RL Qı	ıal Result	Units	DF	Date Analyzed Batch
PERMANENT GASES (RS	KSOP-175)					
Methane	*	40.0	96.2	μg/L	10	04/29/2024 13:59 R346446

Laboratory Results

http://www.teklabinc.com/

Client: Keystone Laboratories Work Order: 24042287

Client Project: 1HD1532 Report Date: 02-May-24

Lab ID: 24042287-004 Client Sample ID: 1HD1532-11

Matrix: AQUEOUS Collection Date: 04/17/2024 8:29

Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed Batch
PERMANENT GASES (RSI	KSOP-175)					
Methane	*	400	2370	μg/L	100	04/29/2024 14:10 R346446

Receiving Check List

http://www.teklabinc.com/

			113551)	7 WWW.comabinercom			
Client: Keystone Laboratories	Work Order: 24042287						
Client Project: 1HD1532			Report 1	Date: 02-May-24			
Carrier: Spee Dee	Receiv	ved By: LEH					
Completed by:	Revi	ewed by:					
On:	0	-					
29-Apr-24		pr-24					
Paul Schultz		F	Ellie Hopkins				
Pages to follow: Chain of custody 1	Extra pages included	1 0					
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present	Temp °C 18,3			
Type of thermal preservation?	None	Ice 🗹	Blue Ice	Dry Ice			
Chain of custody present?	Yes 🗹	No 🗌					
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌					
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌					
Samples in proper container/bottle?	Yes 🗹	No 🗌					
Sample containers intact?	Yes 🗹	No 🗌					
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌					
All samples received within holding time?	Yes 🗹	No 🗌					
Reported field parameters measured:	Field	Lab 🗌	NA 🗹				
Container/Temp Blank temperature in compliance?	Yes	No 🗸		`			
When thermal preservation is required, samples are complia 0.1°C - 6.0°C, or when samples are received on ice the sam	nt with a temperature e day as collected.	between					
Water – at least one vial per sample has zero headspace?	Yes 🗸	No 🗌	No VOA vials				
Water - TOX containers have zero headspace?	Yes	No 🗌	No TOX containers				
Water - pH acceptable upon receipt?	Yes 🗹	No 🗌	NA 🗆				
NPDES/CWA TCN interferences checked/treated in the field?	Yes 🗌	No 🗌	NA 🗹				
Any No responses i	must be detailed belo	ow or on the	COC.				
NAMES AND DESCRIPTION OF THE PERSON NAMES AND DESCRIPTION OF THE PERSON NAMED ASSESSMENT OF T							

The samples were out of temperature compliance upon receipt. - ehopkins - 4/29/2024 10:42:47 AM

(也)MICROBAC

SUBCONTRACTED CHAIN OF CUSTODY

1HD1532

SENDING LABORATORY:

Microbac Laboratories, Inc., Newton

600 East 17th Street South

Newton, IA 50208 Phone: 641-792-8451

Lab Manager: Heather Murphy

Email: heather.murphy@microbac.com

RECEIVING LABORATORY:

Teklab, Inc.

5445 Horseshoe Lake Road

Collinsville, IL 62234 Phone: (618) 344-1004

Project Info:

Project Type:

Landfills

Report TAT: 10

Project Location:

Description: MW-49

Due: 05/02/24 17:00

Sample ID: 1HD1532-05

100-58-640ME

Sampled: 04/17/24 09:10

Sampler: Whipple, Todd

Matrix: Water

Analysis

SampleType: GRAB

Method

Analysis Due

Expires

methane-astm-d1946

-002

ASTM D1946

05/02/24 17:00

05/01/24 09:10

Sample ID: 1HD1532-06

Sampled: 04/17/24 08:46

Description: MW-54

Sampler: Whipple, Todd

Matrix: Water

Analysis

SampleType: GRAB

Method

Analysis Due

05/02/24 17:00

Expires

methane-astm-d1946

Sample ID: 1HD1532-07

Sampled: 04/16/24 11:20

05/01/24 08:46

Matrix: Water

Description: MW-81

Sampler: Whipple, Todd

SampleType: GRAB

Analysis

Method

ASTM D1946

Analysis Due

Expires

methane-astm-d1946

ASTM D1946

05/02/24 17:00

04/30/24 11:20

Sample ID: 1HD1532-11

Sampled: 04/17/24 08:29

Sampler: Whipple, Todd

Description: MW-94

Matrix: Water

Analysis

SampleType: GRAB

Analysis Due

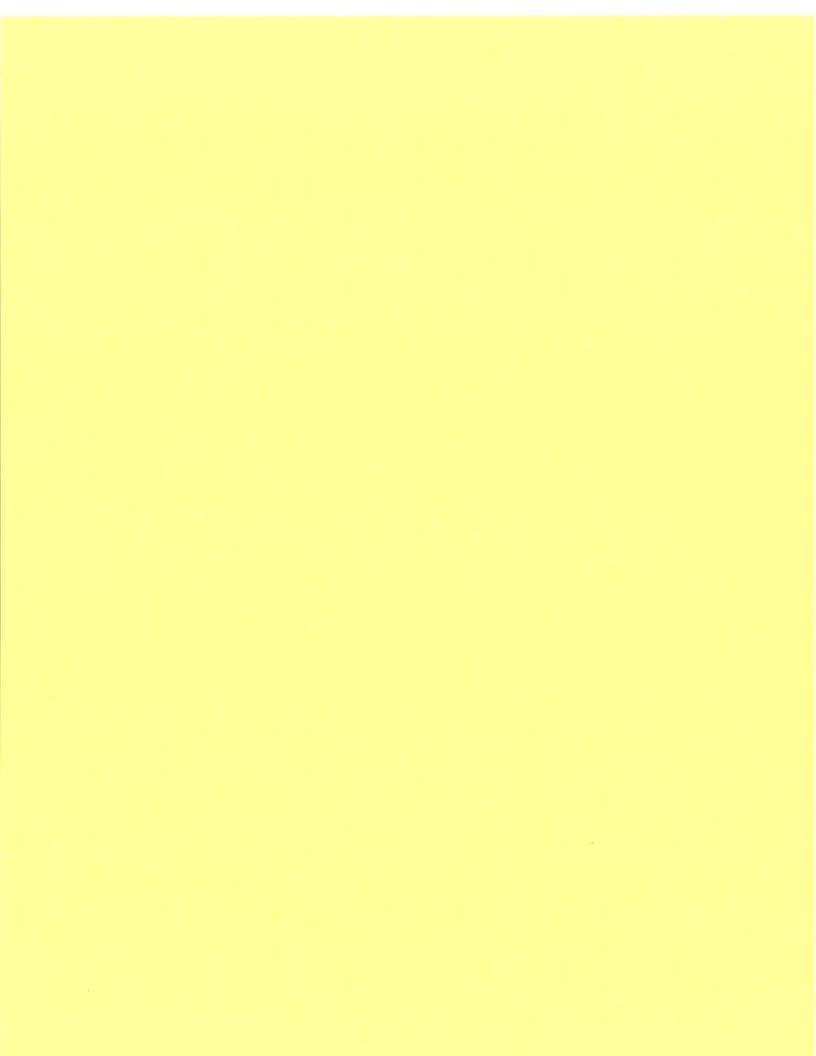
Expires

methane-astm-d1946

ASTM D1946

Method

05/02/24 17:00


05/01/24 08:29

Released By

Date

Received By

Date

CERTIFICATE OF ANALYSIS 1HD1511

Project Description

6003

For:

Todd Whipple

HLW Engineering

PO Box 314

Story City, IA 50248

Heather Murphy

Customer Relationship Specialist

Friday, May 31, 2024

Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories. Review and compilation of your report was completed by Microbac Laboratories, Inc., Newton. If you have any questions, comments, or require further assistance regarding this report, please contact your service representative listed above.

I certify that all test results meet all of the requirements of the accrediting authority listed within this report. Analytical results are reported on a 'as received' basis unless specified otherwise. Analytical results for solids with units ending in (dry) are reported on a dry weight basis. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories. The reported results are related only to the samples analyzed as received.

Microbac Laboratories, Inc.

1HD1511

HLW Engineering

Project Name: 6003

Todd Whipple PO Box 314 Story City, IA 50248 Project / PO Number: N/A Received: 04/18/2024 Reported: 05/31/2024

Sample Summary Report

Sample NameLaboratory IDClient MatrixSample TypeSample BeginSample TakenLab ReceivedLW-751HD1511-01AqueousGRAB04/16/24 15:2204/18/24 09:39

Analytical Testing Parameters

Client Sample ID:LW-75Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1511-01Collection Date:04/16/2024 15:22

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Vinyl Chloride	3.4	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Bromomethane	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Chloroethane	3.9	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Acetone	28.8	10.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Methyl lodide	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Methylene Chloride	75.3	5.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
1,1-Dichloroethane	7.6	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
cis-1,2-Dichloroethylene	6.8	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Chloroform	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Benzene	8.9	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
1,2-Dichloroethane	1.9	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Trichloroethylene	1.7	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Dibromomethane	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
4-Methyl-2-pentanone (MIBK)	6.1	5.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Toluene	108	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Ethylbenzene	Over Cal		ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Ethylbenzene	297	5.0	ug/L	5		04/25/24 0000	04/25/24 1731	LJS
Xylenes, total	231	2.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS

Client Sample ID: LW-75
Sample Matrix: Aqueous
Lab Sample ID: 1HD1511-01

Collected By: Collection Date: Whipple, Todd 04/16/2024 15:22

Determination of Volatile Organic	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Compounds								
Styrene	2.5	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Bromoform	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
1,4-Dichlorobenzene	163	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		04/19/24 0000	04/19/24 1519	LJS
Surrogate: Dibromofluoromethane	94.5	Limit: 80-126	% Rec	1		04/19/24 0000	04/19/24 1519	LJS
Surrogate: Dibromofluoromethane	94.5	Limit: 75-136	% Rec	1		04/19/24 0000	04/19/24 1519	LJS
Surrogate: Dibromofluoromethane	91.3	Limit: 75-136	% Rec	5		04/25/24 0000	04/25/24 1731	LJS
Surrogate: 1,2-Dichloroethane-d4	97.7	Limit: 61-142	% Rec	1		04/19/24 0000	04/19/24 1519	LJS
Surrogate: 1,2-Dichloroethane-d4	97.7	Limit: 63-138	% Rec	1		04/19/24 0000	04/19/24 1519	LJS
Surrogate: 1,2-Dichloroethane-d4	95.7	Limit: 61-142	% Rec	5		04/25/24 0000	04/25/24 1731	LJS
Surrogate: Toluene-d8	98.4	Limit: 87-116	% Rec	1		04/19/24 0000	04/19/24 1519	LJS
Surrogate: Toluene-d8	98.4	Limit: 82-121	% Rec	1		04/19/24 0000	04/19/24 1519	LJS
Surrogate: Toluene-d8	97.8	Limit: 82-121	% Rec	5		04/25/24 0000	04/25/24 1731	LJS
Surrogate: 4-Bromofluorobenzene	99.9	Limit: 80-116	% Rec	1		04/19/24 0000	04/19/24 1519	LJS
Surrogate: 4-Bromofluorobenzene	99.9	Limit: 85-111	% Rec	1		04/19/24 0000	04/19/24 1519	LJS
Surrogate: 4-Bromofluorobenzene	99.5	Limit: 80-116	% Rec	5		04/25/24 0000	04/25/24 1731	LJS
Determination of Conventional Chemistry Parameters	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
2320B								
Alkalinity, as CaCO3	1530	50	mg/L	1		04/19/24 1101	04/19/24 1402	BSS
EPA 410.4								
COD, total	1170	216	mg/L	4		04/25/24 1633	04/26/24 1310	CHP
EPA 9040			· ·					
рН	7.1	0.5	рН	1	I-03		04/19/24 1612	BSS
SM 5210 B	7	0.0	Pi i	•	1.00		01/10/21 1012	200
								MND
	400	6	ma/l	2	1.05	04/40/04 0044	04/40/24 4425	
BOD (5 day)	123	6	mg/L	3	I-05	04/19/24 0841	04/19/24 1125	MND
BOD (5 day) TIMBERLINE			-		I-05			
BOD (5 day) TIMBERLINE Nitrogen, Ammonia	123 109	6 1.00	mg/L	3 10	I-05	04/19/24 0841 04/29/24 0719	04/19/24 1125 04/29/24 1203	LJS
BOD (5 day) TIMBERLINE Nitrogen, Ammonia USGS I-1750-85	109	1.00	mg/L	10	I-05	04/29/24 0719	04/29/24 1203	LJS
BOD (5 day) TIMBERLINE Nitrogen, Ammonia			-		I-05			
BOD (5 day) TIMBERLINE Nitrogen, Ammonia USGS I-1750-85	109	1.00	mg/L	10	I-05	04/29/24 0719	04/29/24 1203	LJS
BOD (5 day) TIMBERLINE Nitrogen, Ammonia USGS I-1750-85 Total Dissolved Solids (TDS)	109	1.00	mg/L	10	1-05	04/29/24 0719	04/29/24 1203	LJS
BOD (5 day) TIMBERLINE Nitrogen, Ammonia USGS I-1750-85 Total Dissolved Solids (TDS) USGS I-3765-85	109 3680	1.00 5	mg/L mg/L	10 1	I-05 Note	04/29/24 0719 04/22/24 1436	04/29/24 1203 04/23/24 0740	LJS MEAH MEAH
BOD (5 day) TIMBERLINE Nitrogen, Ammonia USGS I-1750-85 Total Dissolved Solids (TDS) USGS I-3765-85 Total Suspended Solids (TSS)	109 3680 14	1.00 5 1	mg/L mg/L mg/L	10 1 1		04/29/24 0719 04/22/24 1436 04/22/24 0941	04/29/24 1203 04/23/24 0740 04/22/24 1410	LJS MEAH
BOD (5 day) TIMBERLINE Nitrogen, Ammonia USGS I-1750-85 Total Dissolved Solids (TDS) USGS I-3765-85 Total Suspended Solids (TSS) Determination of Inorganic Anions	109 3680 14	1.00 5 1	mg/L mg/L mg/L	10 1 1		04/29/24 0719 04/22/24 1436 04/22/24 0941	04/29/24 1203 04/23/24 0740 04/22/24 1410	LJS MEAH MEAH

CERTIFICATE OF ANALYSIS

1HD1511

Client Sample ID:LW-75Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HD1511-01Collection Date:04/16/2024 15:22

Determination of Total Metals	Result RL Units DF		DF	Note	Prepared	Analyzed	Analyst	
EPA 3005A/EPA 6020A								
Arsenic, total	0.0214	0.0040	mg/L	4		04/24/24 0716	04/25/24 2243	JAR
Cobalt, total	0.0221	0.0004	mg/L	4		04/24/24 0716	04/25/24 2243	JAR

Batch Log Summary

Method	Batch	Laboratory ID	Client / Source ID
SM 5210 B	1HD1215	1HD1215-BLK1	
		1HD1215-SRM1	
		1HD1511-01	LW-75
		1HD1215-DUP1	1HD1444-01
Method	Batch	Laboratory ID	Client / Source ID
2320B	1HD1237	1HD1237-BLK1	
		1HD1237-BS1	
		1HD1511-01	LW-75
		1HD1237-MS1	1HD1512-01
		1HD1237-MSD1	1HD1512-01
Method	Batch	Laboratory ID	Client / Source ID
EPA 9040	1HD1258	1HD1258-DUP1	1HD1434-01
		1HD1258-SRM2	
		1HD1258-SRM1	
		1HD1511-01	LW-75
Method	Batch	Laboratory ID	Client / Source ID
EPA 8260B	1HD1274	1HD1274-BS1	
		1HD1274-BSD1	
		1HD1274-BLK1	
		1HD1511-01	LW-75
		1HD1274-MS1	1HD1510-05
		1HD1274-MSD1	1HD1510-05
Method	Batch	Laboratory ID	Client / Source ID
USGS I-3765-85	1HD1292	1HD1292-DUP1	1HD1347-01
		1HD1511-01	LW-75
		1HD1292-BS1	
		1HD1292-BLK1	
Method	Batch	Laboratory ID	Client / Source ID
USGS I-1750-85	1HD1318	1HD1511-01	LW-75
		1HD1318-BLK1	
		1HD1318-DUP1	1HD1574-01
		1HD1318-BS1	
Method	Batch	Laboratory ID	Client / Source ID
EPA 8260B	1HD1408	1HD1408-BS1	
		1HD1408-BSD1	

CERTIFICATE OF ANALYSIS

EPA 8260B	1HD1408	1HD1408-BLK1	
		1HD1408-MS1	1HD1532-04
		1HD1408-MSD1	1HD1532-04
Method	Batch	Laboratory ID	Client / Source ID
EPA 6020A	1HD1412	1HD1412-BLK1	
		1HD1412-BS1	
		1HD1511-01	LW-75
		1HD1412-MS1	1HD1511-01
		1HD1412-MSD1	1HD1511-01
		1HD1412-PS1	1HD1511-01
Method	Batch	Laboratory ID	Client / Source ID
EPA 410.4	1HD1566	1HD1566-BLK1	
		1HD1566-MSD1	1HD1361-01
		1HD1566-MS1	1HD1361-01
		1HD1511-01	LW-75
		1HD1566-BS1	
Method	Batch	Laboratory ID	Client / Source ID
EPA 8260B	1HD1572	1HD1572-BS1	
		1HD1572-BSD1	
		1HD1572-BLK1	
		1HD1511-01RE2	LW-75
		1HD1572-MS1	1HD1698-01
		1HD1572-MSD1	1HD1698-01
Method	Batch	Laboratory ID	Client / Source ID
TIMBERLINE	1HD1631	1HD1631-BLK1	
		1HD1631-BS1	
		1HD1631-MS1	2HD0576-02
		1HD1631-MSD1	2HD0576-02
		1HD1511-01	LW-75
Method	Batch	Laboratory ID	Client / Source ID
EPA 9056	1HE0146	1HE0146-BLK1	
		1HE0146-MRL1	
		1HE0146-BS1	
		1HE0146-BSD1	
		1HD1511-01	LW-75
		1HE0146-MS1	1HD1656-01
		1HE0146-MSD1	1HD1656-01
Method	Batch	Laboratory ID	Client / Source ID
EPA 9056	1HE0195	1HE0195-BLK1	
	Microbac L	_aboratories, Inc.,	Newton

CERTIFICATE OF ANALYSIS

1HD1511

EPA 9056 1HE0195 1HE0195-MRL1

1HE0195-BS1 1HE0195-BSD1

1HE0195-MS1 1HD1652-01 1HE0195-MSD1 1HD1652-01

1HE0195-BLK2

1HD1511-01 LW-75

Batch Quality Control Summary: Microbac Laboratories, Inc., Newton

Spike %REC **RPD** Source Notes **Determination of Volatile** RL Limit Result Units Level Result %REC Limits **RPD Organic Compounds**

Batch 1HD1274 - EPA 5030B - EPA 8260B

Blank (1HD1274-BLK1)			Prepared: 04/19/24 00:00 Analyzed: 04/19/24 11:36
Chloromethane	<1.0	1.0	ug/L
Vinyl Chloride	<1.0	1.0	ug/L
Bromomethane	<1.0	1.0	ug/L
Chloroethane	<1.0	1.0	ug/L
Trichlorofluoromethane	<1.0	1.0	ug/L
1,1-Dichloroethylene	<1.0	1.0	ug/L
Acetone	<10.0	10.0	ug/L
Methyl lodide	<1.0	1.0	ug/L
Carbon Disulfide	<1.0	1.0	ug/L
Methylene Chloride	<5.0	5.0	ug/L
Acrylonitrile	<5.0	5.0	ug/L
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L
1,1-Dichloroethane	<1.0	1.0	ug/L
Vinyl Acetate	<5.0	5.0	ug/L
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L
2-Butanone (MEK)	<10.0	10.0	ug/L
Bromochloromethane	<1.0	1.0	ug/L
Chloroform	<1.0	1.0	ug/L
1,1,1-Trichloroethane	<1.0	1.0	ug/L
Carbon Tetrachloride	<1.0	1.0	ug/L
Benzene	<1.0	1.0	ug/L
1,2-Dichloroethane	<1.0	1.0	ug/L
Trichloroethylene	<1.0	1.0	ug/L
1,2-Dichloropropane	<1.0	1.0	ug/L
Dibromomethane	<1.0	1.0	ug/L
Bromodichloromethane	<1.0	1.0	ug/L
cis-1,3-Dichloropropene	<1.0	1.0	ug/L
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L
Toluene	<1.0	1.0	ug/L
trans-1,3-Dichloropropene	<1.0	1.0	ug/L
1,1,2-Trichloroethane	<1.0	1.0	ug/L
Tetrachloroethylene	<1.0	1.0	ug/L
2-Hexanone (MBK)	<5.0	5.0	ug/L

CERTIFICATE OF ANALYSIS

1HD1511

Spike Source

%REC RPD

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 1HD1274 - EPA 5030B - EPA	A 8260B									
Blank (1HD1274-BLK1)			Prepared: 04	4/19/24 00:0	0 Analyzed:	04/19/24 1	1:36			
Dibromochloromethane	<1.0	1.0	ug/L							
1,2-Dibromoethane	<1.0	1.0	ug/L							
Chlorobenzene	<1.0	1.0	ug/L							
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L							
Ethylbenzene	<1.0	1.0	ug/L							
Xylenes, total	<2.0	2.0	ug/L							
Styrene	<1.0	1.0	ug/L							
Bromoform	<1.0	1.0	ug/L							
1,2,3-Trichloropropane	<1.0	1.0	ug/L							
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L							
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L							
1,4-Dichlorobenzene	<1.0	1.0	ug/L							
1,2-Dichlorobenzene	<1.0	1.0	ug/L							
1,2-Dibromo-3-chloropropane	<5.0	5.0	_							
1,2-Dibroffio-3-chiloroproparie		5.0	ug/L							
Surrogate: Dibromofluoromethane	47.8		ug/L	50.2		95.2	80-126			
Surrogate: Dibromofluoromethane	47.8		ug/L	50.2		95.2	75-136			
Surrogate: 1,2-Dichloroethane-d4	48.7		ug/L	50.1		97.3	63-138			
Surrogate: 1,2-Dichloroethane-d4	48.7		ug/L	50.1		97.3	61-142			
Surrogate: Toluene-d8	48.9		ug/L	50.4		97.0	87-116			
Surrogate: Toluene-d8	48.9		ug/L	50.4		97.0	82-121			
Surrogate: 4-Bromofluorobenzene	49.1		ug/L	50.1		97.9	85-111			
Surrogate: 4-Bromofluorobenzene	49.1		ug/L	50.1		97.9	80-116			
.CS (1HD1274-BS1)			Prepared: 04		0 Analyzed:	04/19/24 1	0:28			
Chloromethane	31.07	1.0	ug/L	30.6		101	63-155			
Vinyl Chloride	31.29	1.0	ug/L	30.2		104	70-154			
Bromomethane	26.63	1.0	ug/L	28.8		92.5	52-176			
Chloroethane	35.46	1.0	ug/L	31.6		112	72-148			
Trichlorofluoromethane	31.82	1.0	ug/L	32.6		97.6	70-152			
1,1-Dichloroethylene	50.43	1.0	ug/L	50.0		101	70-148			
Acetone	90.44	10.0	ug/L	102		88.7	43-172			
Methyl Iodide	101.6	1.0	ug/L	99.7		102	69-170			
Carbon Disulfide	94.70	1.0	ug/L	101		93.8	72-162			
Methylene Chloride	51.19	5.0	ug/L	50.0		102	68-142			
Acrylonitrile	100.4	5.0	ug/L	100		100	67-144			
trans-1,2-Dichloroethylene	51.58	1.0	ug/L	50.0		103	66-148			
1,1-Dichloroethane	50.63	1.0	ug/L	50.0		101	66-143			
Vinyl Acetate	111.4	5.0	ug/L	102		109				
·	49.59						43-153			
cis-1,2-Dichloroethylene	111.8	1.0	ug/L	50.0		99.2	71-149			
2-Butanone (MEK)		10.0	ug/L	103		108	52-159			
Bromochloromethane	51.97	1.0	ug/L	50.0		104	69-143			
Ol-1f		1 ()	HQ/I	60.0		100	69-144			
Chloroform 1,1,1-Trichloroethane	49.99 47.72	1.0 1.0	ug/L ug/L	50.0 50.0		95.4	62-129			

1HD1511

				Spike	Source		%REC		RPD	Notes
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HD1274 - EPA 5030B - EPA	A 8260B									
CS (1HD1274-BS1)			Prepared: 04	1/19/24 00:0	0 Analyzed:	04/19/24 1	0:28			
Benzene	51.82	1.0	ug/L	50.0		104	71-134			
1,2-Dichloroethane	51.40	1.0	ug/L	50.0		103	72-132			
Trichloroethylene	51.45	1.0	ug/L	50.0		103	71-135			
1,2-Dichloropropane	52.48	1.0	ug/L	50.0		105	69-136			
Dibromomethane	54.18	1.0	ug/L	50.0		108	73-147			
Bromodichloromethane	52.29	1.0	ug/L	50.0		105	68-129			
cis-1,3-Dichloropropene	52.86	1.0	ug/L	50.0		106	65-134			
4-Methyl-2-pentanone (MIBK)	113.6	5.0	ug/L	101		112	58-147			
Toluene	50.08	1.0	ug/L	50.0		100	72-133			
trans-1,3-Dichloropropene	55.12	1.0	ug/L	50.0		110	67-130			
1,1,2-Trichloroethane	53.60	1.0	ug/L	50.0		107	69-135			
Tetrachloroethylene	51.61	1.0	ug/L	50.0		103	69-130			
2-Hexanone (MBK)	120.8	5.0	ug/L	103		117	55-144			
Dibromochloromethane	55.86	1.0	ug/L	50.0		112	73-127			
1,2-Dibromoethane	54.36	1.0	ug/L	50.0		109	67-132			
Chlorobenzene	52.34	1.0	ug/L	50.0		105	72-123			
1,1,1,2-Tetrachloroethane	54.67	1.0	ug/L	50.0		109	73-127			
Ethylbenzene	53.92	1.0	ug/L	50.0		108	71-127			
Xylenes, total	164.1	2.0	ug/L	150		109	74-127			
Styrene	56.40	1.0	ug/L	50.0		113	66-126			
Bromoform	54.07	1.0	ug/L	50.0		108	68-130			
1,2,3-Trichloropropane	54.40	1.0	ug/L	50.0		109	63-136			
trans-1,4-Dichloro-2-butene	103.3	5.0	ug/L	104		99.4	54-134			
1,1,2,2-Tetrachloroethane	54.53	1.0	ug/L	50.0		109	61-131			
1,4-Dichlorobenzene	52.01	1.0	ug/L	50.0		109	70-129			
1,2-Dichlorobenzene	54.06	1.0	ug/L ug/L	50.0						
1,2-Dibromo-3-chloropropane	55.64	5.0	ug/L	50.0		108 111	69-126 50-143			
1,2 Bibroine o dinereprepane		0.0	49/2				30-143			
Surrogate: Dibromofluoromethane	47.8		ug/L	50.2		95.3	80-126			
Surrogate: Dibromofluoromethane	47.8		ug/L	50.2		95.3	75-136			
Surrogate: 1,2-Dichloroethane-d4	48.1		ug/L	50.1		96.0	63-138			
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Toluene-d8	48.1 49.5		ug/L ug/L	50.1 50.4		96.0 98.3	61-142 87-116			
Surrogate: Toluene-d8	49.5 49.5		ug/L ug/L	50.4 50.4		98.3	82-121			
Surrogate: 4-Bromofluorobenzene	50.3		ug/L	50.1		100	85-111			
Surrogate: 4-Bromofluorobenzene	50.3		ug/L	50.1		100	80-116			
CS Dup (1HD1274-BSD1)			Prepared: 04	1/19/24 00:0	0 Analyzed:	04/19/24 1	0:51			
Chloromethane	24.98	1.0	ug/L	30.6		81.5	63-155	21.7	24	
Vinyl Chloride	21.82	1.0	ug/L	30.2		72.2	70-154	35.7	25	QR-02
Bromomethane	23.19	1.0	ug/L	28.8		80.5	52-176	13.8	27	
Chloroethane	28.16	1.0	ug/L	31.6		89.0	72-148	22.9	25	
Trichlorofluoromethane	25.31	1.0	ug/L	32.6		77.6	70-152	22.8	26	
1,1-Dichloroethylene	39.10	1.0	ug/L	50.0		78.2	70-132	25.3	24	QR-02
Acetone	74.10	10.0	ug/L	102		70.2	43-172	19.9	30	Q. (U2

1	ш	П	1	ᄃ	1	1	
ш	Н	ט	ı	υ		ı	

Determination of Volatile Organic Compounds	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HD1274 - EPA 5030B - EPA	A 8260B									
LCS Dup (1HD1274-BSD1)			Prepared: 04	1/19/24 00:0	0 Analyzed:	04/19/24 1	0:51			
Methyl lodide	83.32	1.0	ug/L	99.7		83.6	69-170	19.8	30	
Carbon Disulfide	73.63	1.0	ug/L	101		72.9	72-162	25.0	24	QR-02
Methylene Chloride	41.44	5.0	ug/L	50.0		82.9	68-142	21.1	21	QR-02
Acrylonitrile	80.73	5.0	ug/L	100		80.4	67-144	21.7	24	
trans-1,2-Dichloroethylene	41.12	1.0	ug/L	50.0		82.2	66-148	22.6	27	
1,1-Dichloroethane	40.69	1.0	ug/L	50.0		81.4	66-143	21.8	24	
Vinyl Acetate	89.66	5.0	ug/L	102		88.0	43-153	21.6	30	
cis-1,2-Dichloroethylene	47.62	1.0	ug/L	50.0		95.2	71-149	4.05	26	
2-Butanone (MEK)	94.14	10.0	ug/L	103		91.1	52-159	17.1	27	
Bromochloromethane	42.26	1.0	ug/L	50.0		84.5	69-143	20.6	23	
Chloroform	40.04	1.0	ug/L	50.0		80.1	69-144	22.1	23	
1,1,1-Trichloroethane	37.82	1.0	ug/L	50.0		75.6	62-129	23.1	24	
Carbon Tetrachloride	40.10	1.0	ug/L	50.0		80.2	63-141	23.8	25	
Benzene	42.04	1.0	ug/L	50.0		84.1	71-134	20.8	24	
1,2-Dichloroethane	41.67	1.0	ug/L	50.0		83.3	72-132	20.9	24	
Trichloroethylene	40.94	1.0	ug/L	50.0		81.9	71-135	22.8	24	
1,2-Dichloropropane	42.59	1.0	ug/L	50.0		85.2	69-136	20.8	24	
Dibromomethane	43.52	1.0	ug/L	50.0		87.0	73-147	21.8	25	
Bromodichloromethane	42.01	1.0	ug/L	50.0		84.0	68-129	21.8	22	
cis-1,3-Dichloropropene	42.63	1.0	ug/L	50.0		85.3	65-134	21.4	23	
4-Methyl-2-pentanone (MIBK)	89.41	5.0	ug/L	101		88.2	58-147	23.9	27	
Toluene	40.46	1.0	ug/L	50.0		80.9	72-133	21.3	24	
trans-1,3-Dichloropropene	44.01	1.0	ug/L	50.0		88.0	67-130	22.4	24	
1,1,2-Trichloroethane	43.23	1.0	ug/L	50.0		86.5	69-135	21.4	23	
Tetrachloroethylene	40.64	1.0	ug/L	50.0		81.3	69-130	23.8	25	
2-Hexanone (MBK)	94.60	5.0	ug/L	103		91.6	55-144	24.4	25	
Dibromochloromethane	44.23	1.0	ug/L	50.0		88.5	73-127	23.2	22	QR-02
1,2-Dibromoethane	43.44	1.0	ug/L	50.0		86.9	67-132	22.3	24	
Chlorobenzene	42.53	1.0	ug/L	50.0		85.1	72-123	20.7	23	
1,1,1,2-Tetrachloroethane	44.19	1.0	ug/L	50.0		88.4	73-127	21.2	24	
Ethylbenzene	43.38	1.0	ug/L	50.0		86.8	71-127	21.7	26	
Xylenes, total	132.4	2.0	ug/L	150		88.2	74-127	21.4	25	
Styrene	45.36	1.0	ug/L	50.0		90.7	66-126	21.7	23	
Bromoform	42.85	1.0	ug/L	50.0		85.7	68-130	23.2	23	QR-02
1,2,3-Trichloropropane	43.46	1.0	ug/L	50.0		86.9	63-136	22.4	24	
trans-1,4-Dichloro-2-butene	82.12	5.0	ug/L	104		79.0	54-134	22.9	27	
1,1,2,2-Tetrachloroethane	43.64	1.0	ug/L	50.0		87.3	61-131	22.2	29	
1,4-Dichlorobenzene	42.13	1.0	ug/L	50.0		84.3	70-129	21.0	24	
1,2-Dichlorobenzene	44.04	1.0	ug/L	50.0		88.1	69-126	20.4	26	
1,2-Dibromo-3-chloropropane	43.57	5.0	ug/L	50.0		87.1	50-143	24.3	30	
Surrogate: Dibromofluoromethane	47.6		ug/L	50.2		94.9	80-126			
Surrogate: Dibromofluoromethane	47.6		ug/L	50.2		94.9	75-136			

Determination of Volatile	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Organic Compounds										
Batch 1HD1274 - EPA 5030B - EPA	A 8260B									
LCS Dup (1HD1274-BSD1)			Prepared: 0-	4/19/24 00:0	00 Analyzed:	04/19/24 1	0:51			
Surrogate: 1,2-Dichloroethane-d4	47.7		ug/L	50.1		95.2	63-138			
Surrogate: 1,2-Dichloroethane-d4	47.7		ug/L	50.1		95.2	61-142			
Surrogate: Toluene-d8	49.7		ug/L	50.4		98.7	87-116			
Surrogate: Toluene-d8	49.7		ug/L	50.4		98.7	82-121			
Surrogate: 4-Bromofluorobenzene	50.4		ug/L	50.1		101	85-111			
Surrogate: 4-Bromofluorobenzene	50.4		ug/L	50.1		101	80-116			
Matrix Spike (1HD1274-MS1)		HD1510-05	Prepared: 0		<u> </u>					
Chloromethane	295.1	10.0	ug/L	306	ND	96.3	61-152			
Vinyl Chloride	304.1	10.0	ug/L	302	ND	101	66-149			
Bromomethane	204.5	10.0	ug/L	288	ND	71.0	43-171			
Chloroethane	344.0	10.0	ug/L	316	ND	109	69-148			
Trichlorofluoromethane	320.3	10.0	ug/L	326	ND	98.2	62-163			
1,1-Dichloroethylene	484.8	10.0	ug/L	500	ND	97.0	70-148			
Acetone	904.5	100	ug/L	1020	ND	88.7	45-173			
Methyl lodide	1053	10.0	ug/L	997	ND	106	62-167			
Carbon Disulfide	901.5	10.0	ug/L	1010	ND	89.3	71-163			
Methylene Chloride	477.5	50.0	ug/L	500	ND	95.5	69-140			
Acrylonitrile	949.5	50.0	ug/L	1000	ND	94.6	58-151			
trans-1,2-Dichloroethylene	493.3	10.0	ug/L	500	ND	98.7	69-144			
1,1-Dichloroethane	483.2	10.0	ug/L	500	ND	96.6	70-138			
Vinyl Acetate	1122	50.0	ug/L	1020	ND	110	58-142			
cis-1,2-Dichloroethylene	566.5	10.0	ug/L	500	ND	113	68-151			
2-Butanone (MEK)	1067	100	ug/L	1030	ND	103	50-160			
Bromochloromethane	491.2	10.0	ug/L	500	ND	98.2	65-143			
Chloroform	469.6	10.0	ug/L	500	ND	93.9	71-143			
1,1,1-Trichloroethane	463.2	10.0	ug/L	500	ND	92.6	63-133			
Carbon Tetrachloride	489.3	10.0	ug/L	500	ND	97.9	63-142			
Benzene	486.6	10.0	ug/L	500	ND	97.3	69-133			
1,2-Dichloroethane	480.6	10.0	ug/L	500	ND	96.1	63-138			
Trichloroethylene	482.7	10.0	ug/L	500	ND	96.5	71-133			
1,2-Dichloropropane	490.5	10.0	ug/L	500	ND	98.1	69-132			
Dibromomethane	497.9	10.0	ug/L	500	ND	99.6	70-147			
Bromodichloromethane	479.8	10.0	ug/L	500	ND	96.0	67-130			
cis-1,3-Dichloropropene	483.9	10.0	ug/L	500	ND	96.8	61-126			
4-Methyl-2-pentanone (MIBK)	1054	50.0	ug/L	1010	ND	104	55-147			
Toluene	470.2	10.0	ug/L	500	ND	94.0	71-133			
trans-1,3-Dichloropropene	498.0	10.0	ug/L ug/L	500	ND ND	99.6	63-124			
1,1,2-Trichloroethane	490.2	10.0	ug/L ug/L	500		98.0				
Tetrachloroethylene	484.7	10.0	ug/L ug/L	500	ND		69-133			
2-Hexanone (MBK)	1104	50.0	_		ND	96.9 107	70-124			
Dibromochloromethane	495.7		ug/L	1030	ND	107	53-141			
	496.8	10.0	ug/L	500	ND	99.1	74-122			
1,2-Dibromoethane		10.0	ug/L	500	ND	99.4	66-127			
Chlorobenzene	482.9	10.0 c Labora	ug/L	500	ND	96.6	76-116			

1HD1511

Spike Source

%REC

RPD

Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HD1274 - EPA 5030B - EPA	8260B									
Matrix Spike (1HD1274-MS1)	Source:	1HD1510-05	Prepared: 04	4/19/24 00:0	00 Analyzed:	04/19/24 1	5:41			
1,1,1,2-Tetrachloroethane	491.8	10.0	ug/L	500	ND	98.4	77-121			
Ethylbenzene	503.2	10.0	ug/L	500	ND	101	73-124			
Xylenes, total	1526	20.0	ug/L	1500	ND	102	75-123			
Styrene	517.0	10.0	ug/L	500	ND	103	70-120			
Bromoform	472.8	10.0	ug/L	500	ND	94.6	70-124			
1,2,3-Trichloropropane	490.6	10.0	ug/L	500	ND	98.1	62-135			
trans-1,4-Dichloro-2-butene	925.9	50.0	ug/L	1040	ND	89.1	50-120			
1,1,2,2-Tetrachloroethane	496.8	10.0	ug/L	500	ND	99.4	63-126			
1,4-Dichlorobenzene	484.9	10.0	ug/L	500	ND	97.0	72-119			
1,2-Dichlorobenzene	498.4	10.0	ug/L	500	ND	99.7	71-117			
1,2-Dibromo-3-chloropropane	494.5	50.0	ug/L	500	ND	98.9	49-134			
Surrogate: Dibromofluoromethane	485		ug/L	502		96.6	80-126			
Surrogate: Dibromofluoromethane	485		ug/L	502		96.6	75-136			
Surrogate: 1,2-Dichloroethane-d4 Surrogate: 1,2-Dichloroethane-d4	491 491		ug/L	501 501		98.1 98.1	63-138 61-142			
Surrogate: Toluene-d8	497 497		ug/L ug/L	501 504		98.1 98.6	87-116			
Surrogate: Toluene-d8	497		ug/L	504		98.6	82-121			
Surrogate: 4-Bromofluorobenzene	502		ug/L	501		100	85-111			
Surrogate: 4-Bromofluorobenzene	502		ug/L	501		100	80-116			
Matrix Spike Dup (1HD1274-MSD1)	Source:	1HD1510-05	Prepared: 04	4/19/24 00:0	00 Analyzed:	04/19/24 1	6:04			
Chloromethane	283.4	10.0	ug/L	306	ND	92.5	61-152	4.04	26	
Vinyl Chloride	289.7	10.0	ug/L	302	ND	95.8	66-149	4.85	23	
Bromomethane	206.0	10.0	ug/L	288	ND	71.5	43-171	0.731	29	
Chloroethane	350.6	10.0	ug/L	316	ND	111	69-148	1.90	25	
Trichlorofluoromethane	292.7	10.0	ug/L	326	ND	89.8	62-163	9.00	25	
1,1-Dichloroethylene	466.9	10.0	ug/L	500	ND	93.4	70-148	3.76	22	
Acetone	664.2	100	ug/L	1020	ND	65.1	45-173	30.6	30	QR-02
Methyl lodide	1034	10.0	ug/L	997	ND	104	62-167	1.79	24	
Carbon Disulfide	874.0	10.0	ug/L	1010	ND	86.5	71-163	3.10	22	
Methylene Chloride	459.7	50.0	ug/L	500	ND	91.9	69-140	3.80	19	
Acrylonitrile	820.0	50.0	ug/L	1000	ND	81.7	58-151	14.6	15	
trans-1,2-Dichloroethylene	472.9	10.0	ug/L	500	ND	94.6	69-144	4.22	22	
1,1-Dichloroethane	462.0	10.0	ug/L	500	ND	92.4	70-138	4.49	20	
Vinyl Acetate	985.5	50.0	ug/L	1020	ND	96.7	58-142	13.0	24	
cis-1,2-Dichloroethylene	451.2	10.0	ug/L	500	ND	90.2	68-151	22.7	22	QR-02
2-Butanone (MEK)	718.4	100	ug/L	1030	ND	69.5	50-160	39.0	23	QR-02
Bromochloromethane	474.8	10.0	ug/L	500	ND	95.0	65-143	3.40	22	
Chloroform	452.7	10.0	ug/L	500	ND	90.5	71-143	3.66	21	
1,1,1-Trichloroethane	440.9	10.0	ug/L	500	ND	88.2	63-133	4.93	23	
Carbon Tetrachloride	470.7	10.0	ug/L	500	ND	94.1	63-142	3.87	22	
Benzene	466.4	10.0	ug/L	500	ND	93.3	69-133	4.24	18	
1,2-Dichloroethane	451.7	10.0	ug/L	500	ND	90.3	63-138	6.20	20	
Trichloroethylene	461.7	10.0	ug/L	500	ND	92.3	71-133	4.45	23	

1HD1511

Spike Source

%REC

RPD

				Spike	Source		/0KEC		KFD	Mata
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HD1274 - EPA 5030B - EPA	8260B									
Matrix Spike Dup (1HD1274-MSD1)	Source:	1HD1510-05	Prepared: 04	4/19/24 00:0	00 Analyzed:	04/19/24 1	6:04			
1,2-Dichloropropane	472.4	10.0	ug/L	500	ND	94.5	69-132	3.76	20	
Dibromomethane	482.9	10.0	ug/L	500	ND	96.6	70-147	3.06	22	
Bromodichloromethane	463.7	10.0	ug/L	500	ND	92.7	67-130	3.41	21	
cis-1,3-Dichloropropene	469.0	10.0	ug/L	500	ND	93.8	61-126	3.13	21	
4-Methyl-2-pentanone (MIBK)	982.4	50.0	ug/L	1010	ND	96.9	55-147	7.01	23	
Toluene	449.5	10.0	ug/L	500	ND	89.9	71-133	4.50	19	
trans-1,3-Dichloropropene	482.4	10.0	ug/L	500	ND	96.5	63-124	3.18	21	
1,1,2-Trichloroethane	473.4	10.0	ug/L	500	ND	94.7	69-133	3.49	19	
Tetrachloroethylene	469.6	10.0	ug/L	500	ND	93.9	70-124	3.16	24	
2-Hexanone (MBK)	1048	50.0	ug/L	1030	ND	102		5.15		
Dibromochloromethane	486.3	10.0	ug/L ug/L	500			53-141		24	
1,2-Dibromoethane	486.8	10.0	•		ND	97.3	74-122	1.91	21	
•	468.1		ug/L	500	ND	97.4	66-127	2.03	23	
Chlorobenzene		10.0	ug/L	500	ND	93.6	76-116	3.11	21	
1,1,1,2-Tetrachloroethane	485.3	10.0	ug/L	500	ND	97.1	77-121	1.33	25	
Ethylbenzene	486.2	10.0	ug/L	500	ND	97.2	73-124	3.44	20	
Xylenes, total	1478	20.0	ug/L	1500	ND	98.6	75-123	3.16	20	
Styrene	504.8	10.0	ug/L	500	ND	101	70-120	2.39	23	
Bromoform	470.1	10.0	ug/L	500	ND	94.0	70-124	0.573	22	
1,2,3-Trichloropropane	484.1	10.0	ug/L	500	ND	96.8	62-135	1.33	28	
trans-1,4-Dichloro-2-butene	906.4	50.0	ug/L	1040	ND	87.2	50-120	2.13	26	
1,1,2,2-Tetrachloroethane	488.9	10.0	ug/L	500	ND	97.8	63-126	1.60	24	
1,4-Dichlorobenzene	464.3	10.0	ug/L	500	ND	92.9	72-119	4.34	24	
1,2-Dichlorobenzene	482.0	10.0	ug/L	500	ND	96.4	71-117	3.35	24	
1,2-Dibromo-3-chloropropane	481.2	50.0	ug/L	500	ND	96.2	49-134	2.73	28	
Surrogate: Dibromofluoromethane	485		ug/L	502		96.7	80-126			
Surrogate: Dibromofluoromethane	485		ug/L	502		96.7	75-136			
Surrogate: 1,2-Dichloroethane-d4	481		ug/L	501		96.1	63-138			
Surrogate: 1,2-Dichloroethane-d4	481		ug/L	501		96.1	61-142			
Surrogate: Toluene-d8	496		ug/L	504		98.4	87-116			
Surrogate: Toluene-d8	496		ug/L	504		98.4	82-121			
Surrogate: 4-Bromofluorobenzene	501		ug/L	501		99.8	85-111			
Surrogate: 4-Bromofluorobenzene	501		ug/L	501		99.8	80-116			
Batch 1HD1408 - EPA 5030B - EPA	8260B									
Blank (1HD1408-BLK1)			Prepared: 04	4/23/24 00:0	00 Analyzed:	04/23/24 1	0:46			
Chloromethane	<1.0	1.0	ug/L							
Vinyl Chloride	<1.0	1.0	ug/L							
Bromomethane	<1.0	1.0	ug/L							
Chloroethane	<1.0	1.0	ug/L							
Trichlorofluoromethane	<1.0	1.0	ug/L							
	<1.0		_							
1,1-Dichloroethylene	<10.0	1.0	ug/L							

Microbac Laboratories, Inc., Newton

ug/L

ug/L

10.0

1.0

<10.0

<1.0

Acetone

Methyl Iodide

CERTIFICATE OF ANALYSIS

1HD1511

Units

RL

Determination of Volatile

Result

Spike Source

Result %REC

Level

%REC

Limits

RPD

Limit

RPD

Notes

Organic Compounds	Nesuit	INL.	Onits	Level	Result	/orce	Lillits	KFD	Lillin
Batch 1HD1408 - EPA 5030B - EPA	A 8260B								
Blank (1HD1408-BLK1)			Prepared: 0	4/23/24 00:0	0 Analyzed:	04/23/24 1	0:46		
Carbon Disulfide	<1.0	1.0	ug/L						
Methylene Chloride	<5.0	5.0	ug/L						
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L						
1,1-Dichloroethane	<1.0	1.0	ug/L						
Vinyl Acetate	<5.0	5.0	ug/L						
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L						
2-Butanone (MEK)	<10.0	10.0	ug/L						
Bromochloromethane	<1.0	1.0	ug/L						
Chloroform	<1.0	1.0	ug/L						
1,1,1-Trichloroethane	<1.0	1.0	ug/L						
Carbon Tetrachloride	<1.0	1.0	ug/L						
Benzene	<1.0	1.0	ug/L						
1,2-Dichloroethane	<1.0	1.0	ug/L						
Trichloroethylene	<1.0	1.0	ug/L						
1,2-Dichloropropane	<1.0	1.0	ug/L						
Dibromomethane	<1.0	1.0	ug/L						
Bromodichloromethane	<1.0	1.0	ug/L						
cis-1,3-Dichloropropene	<1.0	1.0	ug/L						
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L						
Toluene	<1.0	1.0	ug/L						
trans-1,3-Dichloropropene	<1.0	1.0	ug/L						
1,1,2-Trichloroethane	<1.0	1.0	ug/L						
Tetrachloroethylene	<1.0	1.0	ug/L						
2-Hexanone (MBK)	<5.0	5.0	ug/L						
Dibromochloromethane	<1.0	1.0	ug/L						
1,2-Dibromoethane	<1.0	1.0	ug/L						
Chlorobenzene	<1.0	1.0	ug/L						
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L						
Ethylbenzene	<1.0	1.0	ug/L						
Xylenes, total	<2.0	2.0	ug/L						
Styrene	<1.0	1.0	ug/L						
Bromoform	<1.0	1.0	ug/L						
1,2,3-Trichloropropane	<1.0	1.0	ug/L						
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L						
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L						
1,4-Dichlorobenzene	<1.0	1.0	ug/L						
1,2-Dichlorobenzene	<1.0	1.0	ug/L						
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L						
Surrogate: Dibromofluoromethane	50.8		ug/L	50.2		101	75-136		
Surrogate: 1,2-Dichloroethane-d4	51.8		ug/L	50.1		103	61-142		
Surrogate: Toluene-d8	49.7		ug/L	50.4		98.7	82-121		
Surrogate: 4-Bromofluorobenzene	48.6		ug/L	50.1		96.9	80-116		

CERTIFICATE OF ANALYSIS

1HD1511

Spike Source

%REC

RPD

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 1HD1408 - EPA 5030B - EPA	A 8260B									
CS (1HD1408-BS1)			Prepared: 04	4/23/24 00:0	0 Analvzed:	04/23/24 0	9:38			
Chloromethane	35.96	1.0	ug/L	30.6		117	63-155			
Vinyl Chloride	35.51	1.0	ug/L	30.2		117	70-154			
Bromomethane	30.25	1.0	ug/L	28.8		105	52-176			
Chloroethane	38.95	1.0	ug/L	31.6		123	72-148			
Trichlorofluoromethane	35.99	1.0	ug/L	32.6		110	70-152			
1,1-Dichloroethylene	54.20	1.0	ug/L	50.0		108	70-148			
Acetone	83.64	10.0	ug/L	101		82.6	43-172			
Methyl lodide	100.8	1.0	ug/L	102		98.9	69-170			
Carbon Disulfide	121.4	1.0	ug/L	103		118	72-162			
Methylene Chloride	51.84	5.0	ug/L	50.0		104	68-142			
trans-1,2-Dichloroethylene	53.70	1.0	ug/L	50.0		107	66-148			
1,1-Dichloroethane	51.84	1.0	ug/L	50.0		104	66-143			
Vinyl Acetate	97.50	5.0	ug/L	100		97.5	43-153			
cis-1,2-Dichloroethylene	50.21	1.0	ug/L	50.0		100	71-149			
2-Butanone (MEK)	91.25	10.0	ug/L	102		89.6	52-159			
Bromochloromethane	52.63	1.0	ug/L	50.0		105	69-143			
Chloroform	50.51	1.0	ug/L	50.0		101	69-144			
1,1,1-Trichloroethane	49.46	1.0	ug/L	50.0		98.9	62-129			
Carbon Tetrachloride	52.74	1.0	ug/L	50.0		105	63-141			
Benzene	50.94	1.0	ug/L	50.0		102	71-134			
1,2-Dichloroethane	48.82	1.0	ug/L	50.0		97.6	72-132			
Trichloroethylene	50.80	1.0	ug/L	50.0		102	71-135			
1,2-Dichloropropane	50.57	1.0	ug/L	50.0		101	69-136			
Dibromomethane	51.42	1.0	ug/L	50.0		103	73-147			
Bromodichloromethane	49.96	1.0	ug/L	50.0		99.9	68-129			
cis-1,3-Dichloropropene	49.40	1.0	ug/L	50.0		98.8	65-134			
4-Methyl-2-pentanone (MIBK)	101.2	5.0	ug/L	100		101	58-147			
Toluene	48.89	1.0	ug/L	50.0		97.8	72-133			
trans-1,3-Dichloropropene	50.85	1.0	ug/L	50.0		102	67-130			
1,1,2-Trichloroethane	50.24	1.0	ug/L	50.0		100	69-135			
Tetrachloroethylene	50.30	1.0	ug/L	50.0		101	69-130			
2-Hexanone (MBK)	104.0	5.0	ug/L	99.3		105	55-144			
Dibromochloromethane	51.03	1.0	ug/L	50.0		102	73-127			
1,2-Dibromoethane	50.10	1.0	ug/L	50.0		100	67-132			
Chlorobenzene	50.14	1.0	ug/L	50.0		100	72-123			
1,1,1,2-Tetrachloroethane	51.71	1.0	ug/L	50.0		103	73-127			
Ethylbenzene	51.98	1.0	ug/L	50.0		104	71-127			
Xylenes, total	157.3	2.0	ug/L	150		105	74-127			
Styrene	53.55	1.0	ug/L	50.0		107	66-126			
Bromoform	48.10	1.0	ug/L	50.0		96.2	68-130			
1,2,3-Trichloropropane	49.51	1.0	ug/L	50.0		99.0	63-136			
trans-1,4-Dichloro-2-butene	91.95	5.0	ug/L	103		89.4	54-134			
1,1,2,2-Tetrachloroethane	48.77	1.0	ug/L	50.0		97.5	61-131			

				Spike	Source		%REC		RPD	Natas
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HD1408 - EPA 5030B - EPA	A 8260B									
LCS (1HD1408-BS1)			Prepared: 04	4/23/24 00:0	0 Analyzed:	04/23/24 0	9:38			
1,4-Dichlorobenzene	49.35	1.0	ug/L	50.0		98.7	70-129			
1,2-Dichlorobenzene	50.94	1.0	ug/L	50.0		102	69-126			
1,2-Dibromo-3-chloropropane	46.92	5.0	ug/L	50.0		93.8	50-143			
Surrogate: Dibromofluoromethane	50.9		ug/L	50.2		102	75-136			
Surrogate: 1,2-Dichloroethane-d4	50.6		ug/L	50.1		101	61-142			
Surrogate: Toluene-d8	50.3		ug/L	50.4		99.8	82-121			
Surrogate: 4-Bromofluorobenzene	50.4		ug/L	50.1		101	80-116			
LCS Dup (1HD1408-BSD1)			Prepared: 04	4/23/24 00:0	0 Analyzed:	04/23/24 1	0:01			
Chloromethane	34.15	1.0	ug/L	30.6		111	63-155	5.16	24	
Vinyl Chloride	33.22	1.0	ug/L	30.2		110	70-154	6.66	25	
Bromomethane	30.50	1.0	ug/L	28.8		106	52-176	0.823	27	
Chloroethane	37.41	1.0	ug/L	31.6		118	72-148	4.03	25	
Trichlorofluoromethane	33.93	1.0	ug/L	32.6		104	70-152	5.89	26	
1,1-Dichloroethylene	51.03	1.0	ug/L	50.0		102	70-148	6.02	24	
Acetone	73.24	10.0	ug/L	101		72.4	43-172	13.3	30	
Methyl Iodide	98.09	1.0	ug/L	102		96.3	69-170	2.68	30	
Carbon Disulfide	114.3	1.0	ug/L	103		111	72-162	5.97	24	
Methylene Chloride	50.42	5.0	ug/L	50.0		101	68-142	2.78	21	
trans-1,2-Dichloroethylene	50.79	1.0	ug/L	50.0		102	66-148	5.57	27	
1,1-Dichloroethane	48.98	1.0	ug/L	50.0		98.0	66-143	5.67	24	
Vinyl Acetate	94.18	5.0	ug/L	100		94.2	43-153	3.46	30	
cis-1,2-Dichloroethylene	47.83	1.0	ug/L	50.0		95.7	71-149	4.86	26	
2-Butanone (MEK)	79.76	10.0	ug/L	102		78.3	52-159	13.4	27	
Bromochloromethane	51.02	1.0	ug/L	50.0		102	69-143	3.11	23	
Chloroform	48.30	1.0	ug/L	50.0		96.6	69-144	4.47	23	
1,1,1-Trichloroethane	46.64	1.0	ug/L	50.0		93.3	62-129	5.87	24	
Carbon Tetrachloride	49.78	1.0	ug/L	50.0		99.6	63-141	5.77	25	
Benzene	48.87	1.0	ug/L	50.0		97.7	71-134	4.15	24	
1,2-Dichloroethane	47.62	1.0	ug/L	50.0		95.2	72-132	2.49	24	
Trichloroethylene	49.00	1.0	ug/L	50.0		98.0	71-135	3.61	24	
1,2-Dichloropropane	49.30	1.0	ug/L	50.0		98.6	69-136	2.54	24	
Dibromomethane	50.60	1.0	ug/L	50.0		101	73-147	1.61	25	
Bromodichloromethane	48.54	1.0	ug/L	50.0		97.1	68-129	2.88	22	
cis-1,3-Dichloropropene	48.22	1.0	ug/L	50.0		96.4	65-134	2.42	23	
4-Methyl-2-pentanone (MIBK)	98.38	5.0	ug/L	100		98.3	58-147	2.88	27	
Toluene	47.13	1.0	ug/L	50.0		94.3	72-133	3.67	24	
trans-1,3-Dichloropropene	49.94	1.0	ug/L	50.0		99.9	67-130	1.81	24	
1,1,2-Trichloroethane	49.57	1.0	ug/L	50.0		99.1	69-135	1.34	23	
Tetrachloroethylene	48.32	1.0	ug/L	50.0		96.6	69-130	4.02	25 25	
2-Hexanone (MBK)	100.7	5.0	ug/L ug/L	99.3		90.0 101	55-144	4.02 3.17		
Dibromochloromethane	50.39	1.0	ug/L ug/L	99.3 50.0		101			25	
	49.13		_				73-127	1.26	22	
1,2-Dibromoethane	49.13	1.0	ug/L	50.0		98.3	67-132	1.96	24	

Determination of Volatile Organic Compounds	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HD1408 - EPA 5030B - EPA	A 8260B									
LCS Dup (1HD1408-BSD1)			Prepared: 04	4/23/24 00:0	0 Analyzed:	04/23/24 1	0:01			
Chlorobenzene	48.76	1.0	ug/L	50.0		97.5	72-123	2.79	23	
1,1,1,2-Tetrachloroethane	49.84	1.0	ug/L	50.0		99.7	73-127	3.68	24	
Ethylbenzene	49.99	1.0	ug/L	50.0		100	71-127	3.90	26	
Xylenes, total	151.5	2.0	ug/L	150		101	74-127	3.78	25	
Styrene	51.92	1.0	ug/L	50.0		104	66-126	3.09	23	
Bromoform	47.28	1.0	ug/L	50.0		94.6	68-130	1.72	23	
1,2,3-Trichloropropane	48.94	1.0	ug/L	50.0		97.9	63-136	1.16	24	
trans-1,4-Dichloro-2-butene	90.17	5.0	ug/L	103		87.7	54-134	1.95	27	
1,1,2,2-Tetrachloroethane	48.79	1.0	ug/L	50.0		97.6	61-131	0.0410	29	
1,4-Dichlorobenzene	47.97	1.0	ug/L	50.0		95.9	70-129	2.84	24	
1,2-Dichlorobenzene	50.06	1.0	ug/L	50.0		100	69-126	1.74	26	
1,2-Dibromo-3-chloropropane	47.42	5.0	ug/L	50.0		94.8	50-143	1.06	30	
Surrogate: Dibromofluoromethane	50.9		ug/L	50.2		102	75-136			
Surrogate: 1,2-Dichloroethane-d4	49.9		ug/L	50.1		99.6	61-142			
Surrogate: Toluene-d8	50.3		ug/L	50.4		99.8	82-121			
Surrogate: 4-Bromofluorobenzene	50.3		ug/L	50.1		100	80-116			
Matrix Spike (1HD1408-MS1)	Source: 11	HD1532-04	Prepared: 04	4/23/24 00:0	0 Analyzed:	04/23/24 1	9:51			
Chloromethane	321.3	10.0	ug/L	306	ND	105	61-152			
Vinyl Chloride	319.2	10.0	ug/L	302	ND	106	66-149			
Bromomethane	222.6	10.0	ug/L	288	ND	77.3	43-171			
Chloroethane	351.5	10.0	ug/L	316	ND	111	69-148			
Trichlorofluoromethane	326.4	10.0	ug/L	326	ND	100	62-163			
1,1-Dichloroethylene	470.3	10.0	ug/L	500	ND	94.1	70-148			
Acetone	873.1	100	ug/L	1010	ND	86.3	45-173			
Methyl Iodide	983.3	10.0	ug/L	1020	ND	96.5	62-167			
Carbon Disulfide	1080	10.0	ug/L	1030	ND	105	71-163			
Methylene Chloride	464.0	50.0	ug/L	500	ND	92.8	69-140			
trans-1,2-Dichloroethylene	473.0	10.0	ug/L	500	ND	94.6	69-144			
1,1-Dichloroethane	465.8	10.0	ug/L	500	ND	93.2	70-138			
Vinyl Acetate	903.2	50.0	ug/L	1000	ND	90.3	58-142			
cis-1,2-Dichloroethylene	541.4	10.0	ug/L	500	ND	108	68-151			
2-Butanone (MEK)	982.2	100	ug/L	1020	ND	96.5	50-160			
Bromochloromethane	480.7	10.0	ug/L	500	ND	96.1	65-143			
Chloroform	452.5	10.0	ug/L	500	ND	90.5	71-143			
1,1,1-Trichloroethane	439.5	10.0	ug/L	500	ND	87.9	63-133			
Carbon Tetrachloride	431.3	10.0	ug/L	500	ND	86.3	63-142			
Benzene	485.0	10.0	ug/L	500	ND	97.0	69-133			
1,2-Dichloroethane	475.0	10.0	ug/L	500	ND	95.0	63-138			
Trichloroethylene	480.4	10.0	ug/L	500	ND	96.1	71-133			
1,2-Dichloropropane	487.6	10.0	ug/L	500	ND	97.5	69-132			
Dibromomethane	503.7	10.0	ug/L	500	ND	101	70-147			
Bromodichloromethane	469.7	10.0	ug/L	500	ND	93.9	67-130			

		ı.	וופוטו							
				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HD1408 - EPA 5030B - EPA	8260B									
Matrix Spike (1HD1408-MS1)	Source:	1HD1532-04	Prepared: 0	4/23/24 00:0	0 Analyzed:	04/23/24 1	9:51			
cis-1,3-Dichloropropene	458.1	10.0	ug/L	500	ND	91.6	61-126			
4-Methyl-2-pentanone (MIBK)	1065	50.0	ug/L	1000	ND	106	55-147			
Toluene	468.3	10.0	ug/L	500	ND	93.7	71-133			
trans-1,3-Dichloropropene	480.0	10.0	ug/L	500	ND	96.0	63-124			
1,1,2-Trichloroethane	494.9	10.0	ug/L	500	ND	99.0	69-133			
Tetrachloroethylene	482.8	10.0	ug/L	500	ND	96.6	70-124			
2-Hexanone (MBK)	1110	50.0	ug/L	993	ND	112	53-141			
Dibromochloromethane	488.7	10.0	ug/L	500	ND	97.7	74-122			
1,2-Dibromoethane	506.1	10.0	ug/L	500	ND	101	66-127			
Chlorobenzene	487.5	10.0	ug/L	500	ND	97.5	76-116			
1,1,1,2-Tetrachloroethane	492.3	10.0	ug/L	500	ND	98.5	77-121			
Ethylbenzene	501.3	10.0	ug/L	500	ND	100	73-124			
Xylenes, total	1511	20.0	ug/L	1500	ND	101	75-123			
Styrene	521.7	10.0	ug/L	500	ND	104	70-120			
Bromoform	468.8	10.0	ug/L	500	ND	93.8	70-124			
1,2,3-Trichloropropane	503.8	10.0	ug/L	500	ND	101	62-135			
trans-1,4-Dichloro-2-butene	896.7	50.0	ug/L	1030	ND	87.2	50-120			
1,1,2,2-Tetrachloroethane	499.7	10.0	ug/L	500	ND	99.9	63-126			
1,4-Dichlorobenzene	481.2	10.0	ug/L	500	ND	96.2	72-119			
1,2-Dichlorobenzene	500.8	10.0	ug/L	500	ND	100	71-117			
1,2-Dibromo-3-chloropropane	494.5	50.0	ug/L	500	ND	98.9	49-134			
Surrogate: Dibromofluoromethane	472		ug/L	502		94.1	75-136			
Surrogate: 1,2-Dichloroethane-d4	471		ug/L	501		94.0	61-142			
Surrogate: Toluene-d8	499		ug/L	504		99.0	82-121			
Surrogate: 4-Bromofluorobenzene	499		ug/L	501		99.5	80-116			
Matrix Spike Dup (1HD1408-MSD1)	Source:	1HD1532-04	Prepared: 0	4/23/24 00:0	0 Analyzed:	04/23/24 2	0:14			
Chloromethane	302.2	10.0	ug/L	306	ND	98.6	61-152	6.13	26	
Vinyl Chloride	300.5	10.0	ug/L	302	ND	99.4	66-149	6.04	23	
Bromomethane	229.6	10.0	ug/L	288	ND	79.7	43-171	3.10	29	
Chloroethane	336.9	10.0	ug/L	316	ND	106	69-148	4.24	25	
Trichlorofluoromethane	314.4	10.0	ug/L	326	ND	96.4	62-163	3.75	25	
1,1-Dichloroethylene	448.3	10.0	ug/L	500	ND	89.7	70-148	4.79	22	
Acetone	851.0	100	ug/L	1010	ND	84.1	45-173	2.56	30	
Methyl lodide	1030	10.0	ug/L	1020	ND	101	62-167	4.65	24	
Carbon Disulfide	1014	10.0	ug/L	1030	ND	98.7	71-163	6.31	22	
Methylene Chloride	447.2	50.0	ug/L	500	ND	89.4	69-140	3.69	19	
trans-1,2-Dichloroethylene	450.8	10.0	ug/L	500	ND	90.2	69-144	4.81	22	
1,1-Dichloroethane	444.2	10.0	ug/L	500	ND	88.8	70-138	4.75	20	
Vinyl Acetate	988.4	50.0	ug/L	1000	ND	98.8	58-142	9.01	24	
cis-1,2-Dichloroethylene	520.3	10.0	ug/L	500	ND	104	68-151	3.97	22	
2-Butanone (MEK)	963.8	100	ug/L	1020	ND	94.7	50-160	1.89	23	

Microbac Laboratories, Inc., Newton

ug/L

500

ND

91.3

5.19

65-143

10.0

456.4

Bromochloromethane

22

Units

Level

Microbac Laboratories, Inc., Newton CERTIFICATE OF ANALYSIS 1HD1511

RL

		Snika

Result

<1.0

<1.0

<1.0

<1.0

Determination of Volatile

Vinyl Chloride

Chloroethane

Bromomethane

Trichlorofluoromethane

Matrix Spike Dup (1HD1408-MSD1)	Source: 1	HD1532-04	Prepared: 0	4/23/24 00:0	0 Analyzed:	04/23/24 2	0:14		
Chloroform	435.1	10.0	ug/L	500	ND	87.0	71-143	3.92	21
1,1,1-Trichloroethane	423.1	10.0	ug/L	500	ND	84.6	63-133	3.80	23
Carbon Tetrachloride	436.9	10.0	ug/L	500	ND	87.4	63-142	1.29	22
Benzene	469.9	10.0	ug/L	500	ND	94.0	69-133	3.16	18
1,2-Dichloroethane	459.9	10.0	ug/L	500	ND	92.0	63-138	3.23	20
Trichloroethylene	462.8	10.0	ug/L	500	ND	92.6	71-133	3.73	23
1,2-Dichloropropane	469.6	10.0	ug/L	500	ND	93.9	69-132	3.76	20
Dibromomethane	488.3	10.0	ug/L	500	ND	97.7	70-147	3.10	22
Bromodichloromethane	458.7	10.0	ug/L	500	ND	91.7	67-130	2.37	21
cis-1,3-Dichloropropene	443.2	10.0	ug/L	500	ND	88.6	61-126	3.31	21
4-Methyl-2-pentanone (MIBK)	1047	50.0	ug/L	1000	ND	105	55-147	1.70	23
Toluene	454.6	10.0	ug/L	500	ND	90.9	71-133	2.97	19
trans-1,3-Dichloropropene	463.1	10.0	ug/L	500	ND	92.6	63-124	3.58	21
1,1,2-Trichloroethane	483.8	10.0	ug/L	500	ND	96.8	69-133	2.27	19
Tetrachloroethylene	475.0	10.0	ug/L	500	ND	95.0	70-124	1.63	24
2-Hexanone (MBK)	1090	50.0	ug/L	993	ND	110	53-141	1.75	24
Dibromochloromethane	483.7	10.0	ug/L	500	ND	96.7	74-122	1.03	21
1,2-Dibromoethane	493.1	10.0	ug/L	500	ND	98.6	66-127	2.60	23
Chlorobenzene	472.5	10.0	ug/L	500	ND	94.5	76-116	3.12	21
1,1,1,2-Tetrachloroethane	482.4	10.0	ug/L	500	ND	96.5	77-121	2.03	25
Ethylbenzene	489.5	10.0	ug/L	500	ND	97.9	73-124	2.38	20
Xylenes, total	1481	20.0	ug/L	1500	ND	98.7	75-123	1.99	20
Styrene	507.0	10.0	ug/L	500	ND	101	70-120	2.86	23
Bromoform	468.7	10.0	ug/L	500	ND	93.7	70-124	0.0213	22
1,2,3-Trichloropropane	501.0	10.0	ug/L	500	ND	100	62-135	0.557	28
trans-1,4-Dichloro-2-butene	889.4	50.0	ug/L	1030	ND	86.5	50-120	0.817	26
1,1,2,2-Tetrachloroethane	491.2	10.0	ug/L	500	ND	98.2	63-126	1.72	24
1,4-Dichlorobenzene	465.2	10.0	ug/L	500	ND	93.0	72-119	3.38	24
1,2-Dichlorobenzene	484.4	10.0	ug/L	500	ND	96.9	71-117	3.33	24
1,2-Dibromo-3-chloropropane	483.8	50.0	ug/L	500	ND	96.8	49-134	2.19	28
Surrogate: Dibromofluoromethane	469		ug/L	502		93.5	75-136		
Surrogate: 1,2-Dichloroethane-d4	464		ug/L	501		92.7	61-142		
Surrogate: Toluene-d8	497		ug/L	504		98.7	82-121		
Surrogate: 4-Bromofluorobenzene	499		ug/L	501		99.5	80-116		
Batch 1HD1572 - EPA 5030B - EPA 8	260B								
Blank (1HD1572-BLK1)			Prepared: 0	4/25/24 00:0	0 Analyzed:	04/25/24 1	0:53		
Chloromethane	<1.0	1.0	ug/L						
	44.0								

Microbac Laboratories, Inc., Newton

ug/L

ug/L

ug/L

ug/L

1.0

1.0

1.0

1.0

RPD

Limit

RPD

Notes

%REC

Limits

Source

Result

%REC

CERTIFICATE OF ANALYSIS

1HD1511

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HD1572 - EPA 5030B - EPA	A 8260B									
Blank (1HD1572-BLK1)			Prepared: 04	1/25/24 00:0	0 Analyzed:	04/25/24 1	0:53			
1,1-Dichloroethylene	<1.0	1.0	ug/L							
Acetone	<10.0	10.0	ug/L							
Methyl lodide	<1.0	1.0	ug/L							
Carbon Disulfide	<1.0	1.0	ug/L							
Methylene Chloride	<5.0	5.0	ug/L							
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L							
1,1-Dichloroethane	<1.0	1.0	ug/L							
Vinyl Acetate	<5.0	5.0	ug/L							
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L							
2-Butanone (MEK)	<10.0	10.0	ug/L							
Bromochloromethane	<1.0	1.0	ug/L							
Chloroform	<1.0	1.0	ug/L							
1,1,1-Trichloroethane	<1.0	1.0	ug/L							
Carbon Tetrachloride	<1.0	1.0	ug/L							
Benzene	<1.0	1.0	ug/L							
1,2-Dichloroethane	<1.0	1.0	ug/L							
Trichloroethylene	<1.0	1.0	ug/L							
1,2-Dichloropropane	<1.0	1.0	ug/L							
Dibromomethane	<1.0	1.0	ug/L							
Bromodichloromethane	<1.0	1.0	ug/L							
cis-1,3-Dichloropropene	<1.0	1.0	ug/L							
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L							
Toluene	<1.0	1.0	ug/L							
trans-1,3-Dichloropropene	<1.0	1.0	ug/L							
1,1,2-Trichloroethane	<1.0	1.0	ug/L							
Tetrachloroethylene	<1.0	1.0	ug/L							
2-Hexanone (MBK)	<5.0	5.0	ug/L							
Dibromochloromethane	<1.0	1.0	ug/L							
1,2-Dibromoethane	<1.0	1.0	ug/L							
Chlorobenzene	<1.0	1.0	ug/L							
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L							
Ethylbenzene	<1.0	1.0	ug/L							
Xylenes, total	<2.0	2.0	ug/L							
Styrene	<1.0	1.0	ug/L							
Bromoform	<1.0	1.0	ug/L							
1,2,3-Trichloropropane	<1.0	1.0	ug/L							
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L							
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L							
1,4-Dichlorobenzene	<1.0	1.0	ug/L							
1,2-Dichlorobenzene	<1.0	1.0	ug/L							
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L							

ug/L

50.2

91.4

75-136

45.9

Surrogate: Dibromofluoromethane

1HD1511

Spike Source

%REC

RPD

Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HD1572 - EPA 5030B - EPA	A 8260B									
Blank (1HD1572-BLK1)			Prepared: 04	4/25/24 00:0	00 Analyzed	: 04/25/24 1	0:53			
Surrogate: 1,2-Dichloroethane-d4	47.5		ug/L	50.1		94.9	61-142			
Surrogate: Toluene-d8	49.0		ug/L	50.4		97.2	82-121			
Surrogate: 4-Bromofluorobenzene	48.4		ug/L	50.1		96.6	80-116			
LCS (1HD1572-BS1)			Prepared: 0	4/25/24 00:0	00 Analyzed	: 04/25/24 0	9:45			
Chloromethane	31.87	1.0	ug/L	30.6		104	63-155			
Vinyl Chloride	31.27	1.0	ug/L	30.2		103	70-154			
Bromomethane	27.29	1.0	ug/L	28.8		94.8	52-176			
Chloroethane	34.72	1.0	ug/L	31.6		110	72-148			
Trichlorofluoromethane	31.60	1.0	ug/L	32.6		96.9	70-152			
1,1-Dichloroethylene	46.16	1.0	ug/L	50.0		92.3	70-148			
Acetone	77.88	10.0	ug/L	101		77.0	43-172			
Methyl lodide	90.24	1.0	ug/L	102		88.6	69-170			
Carbon Disulfide	103.5	1.0	ug/L	103		101	72-162			
Methylene Chloride	45.98	5.0	ug/L	50.0		92.0	68-142			
trans-1,2-Dichloroethylene	47.10	1.0	ug/L	50.0		94.2	66-148			
1,1-Dichloroethane	46.09	1.0	ug/L	50.0		92.2	66-143			
Vinyl Acetate	103.5	5.0	ug/L	100		103	43-153			
cis-1,2-Dichloroethylene	44.41	1.0	ug/L	50.0		88.8	71-149			
2-Butanone (MEK)	98.28	10.0	ug/L	102		96.5	52-159			
Bromochloromethane	46.58	1.0	ug/L	50.0		93.2	69-143			
Chloroform	44.67	1.0	ug/L	50.0		89.3	69-144			
1,1,1-Trichloroethane	43.41	1.0	ug/L	50.0		86.8	62-129			
Carbon Tetrachloride	46.00	1.0	ug/L	50.0		92.0	63-141			
Benzene	48.21	1.0	ug/L	50.0		96.4	71-134			
1,2-Dichloroethane	46.27	1.0	ug/L	50.0		92.5	72-132			
Trichloroethylene	47.24	1.0	ug/L	50.0		94.5	71-135			
1,2-Dichloropropane	48.29	1.0	ug/L	50.0		96.6	69-136			
Dibromomethane	48.39	1.0	ug/L	50.0		96.8	73-147			
Bromodichloromethane	46.91	1.0	ug/L	50.0		93.8	68-129			
cis-1,3-Dichloropropene	46.00	1.0	ug/L	50.0		92.0	65-134			
4-Methyl-2-pentanone (MIBK)	99.66	5.0	ug/L	100		99.6	58-147			
Toluene	46.08	1.0	ug/L	50.0		92.2	72-133			
trans-1,3-Dichloropropene	48.01	1.0	ug/L	50.0		96.0	67-130			
1,1,2-Trichloroethane	48.29	1.0	ug/L	50.0		96.6	69-135			
Tetrachloroethylene	47.47	1.0	ug/L	50.0		94.9	69-130			
2-Hexanone (MBK)	104.2	5.0	ug/L	99.3		105	55-144			
Dibromochloromethane	49.44	1.0	ug/L	50.0		98.9	73-127			
1,2-Dibromoethane	48.54	1.0	ug/L	50.0		97.1	67-132			
Chlorobenzene	48.15	1.0	ug/L	50.0		96.3	72-123			
1,1,1,2-Tetrachloroethane	49.04	1.0	ug/L	50.0		98.1	73-127			
Ethylbenzene	49.63	1.0	ug/L	50.0		99.3	71-127			
Xylenes, total	150.2	2.0	ug/L	150		100	74-127			

Determination of Volatile Organic Compounds	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HD1572 - EPA 5030B - EPA	A 8260B									
LCS (1HD1572-BS1)			Prepared: 04	1/25/24 00:0	0 Analyzed:	04/25/24 0	9:45			
Styrene	51.38	1.0	ug/L	50.0		103	66-126			
Bromoform	46.93	1.0	ug/L	50.0		93.9	68-130			
1,2,3-Trichloropropane	48.22	1.0	ug/L	50.0		96.4	63-136			
trans-1,4-Dichloro-2-butene	88.46	5.0	ug/L	103		86.1	54-134			
1,1,2,2-Tetrachloroethane	49.14	1.0	ug/L	50.0		98.3	61-131			
1,4-Dichlorobenzene	47.71	1.0	ug/L	50.0		95.4	70-129			
1,2-Dichlorobenzene	49.58	1.0	ug/L	50.0		99.2	69-126			
1,2-Dibromo-3-chloropropane	47.66	5.0	ug/L	50.0		95.3	50-143			
Surrogate: Dibromofluoromethane	46.3		ug/L	50.2		92.2	75-136			
Surrogate: 1,2-Dichloroethane-d4	46.8		ug/L	50.1		93.5	61-142			
Surrogate: Toluene-d8	49.6		ug/L	50.4		98.3	82-121			
Surrogate: 4-Bromofluorobenzene	50.0		ug/L	50.1		99.8	80-116			
LCS Dup (1HD1572-BSD1)			Prepared: 04	1/25/24 00:0	0 Analyzed:	04/25/24 1	0:07			
Chloromethane	30.48	1.0	ug/L	30.6		99.5	63-155	4.46	24	
Vinyl Chloride	29.91	1.0	ug/L	30.2		99.0	70-154	4.45	25	
Bromomethane	26.94	1.0	ug/L	28.8		93.5	52-176	1.29	27	
Chloroethane	33.02	1.0	ug/L	31.6		104	72-148	5.02	25	
Trichlorofluoromethane	30.17	1.0	ug/L	32.6		92.5	70-152	4.63	26	
1,1-Dichloroethylene	44.10	1.0	ug/L	50.0		88.2	70-148	4.56	24	
Acetone	79.15	10.0	ug/L	101		78.2	43-172	1.62	30	
Methyl Iodide	85.49	1.0	ug/L	102		83.9	69-170	5.41	30	
Carbon Disulfide	98.52	1.0	ug/L	103		95.9	72-162	4.91	24	
Methylene Chloride	44.51	5.0	ug/L	50.0		89.0	68-142	3.25	21	
trans-1,2-Dichloroethylene	44.92	1.0	ug/L	50.0		89.8	66-148	4.74	27	
1,1-Dichloroethane	44.42	1.0	ug/L	50.0		88.8	66-143	3.69	24	
Vinyl Acetate	97.13	5.0	ug/L	100		97.1	43-153	6.31	30	
cis-1,2-Dichloroethylene	52.28	1.0	ug/L	50.0		105	71-149	16.3	26	
2-Butanone (MEK)	92.77	10.0	ug/L	102		91.1	52-159	5.77	27	
Bromochloromethane	44.92	1.0	ug/L	50.0		89.8	69-143	3.63	23	
Chloroform	43.06	1.0	ug/L	50.0		86.1	69-144	3.67	23	
1,1,1-Trichloroethane	41.29	1.0	ug/L	50.0		82.6	62-129	5.01	24	
Carbon Tetrachloride	43.89	1.0	ug/L	50.0		87.8	63-141	4.69	25	
Benzene	46.39	1.0	ug/L	50.0		92.8	71-134	3.85	24	
1,2-Dichloroethane	45.26	1.0	ug/L	50.0		90.5	72-132	2.21	24	
Trichloroethylene	45.57	1.0	ug/L	50.0		91.1	71-135	3.60	24	
1,2-Dichloropropane	46.95	1.0	ug/L	50.0		93.9	69-136	2.81	24	
Dibromomethane	47.71	1.0	ug/L	50.0		95.4	73-147	1.42	25	
Bromodichloromethane	45.70	1.0	ug/L	50.0		91.4	68-129	2.61	22	
cis-1,3-Dichloropropene	45.21	1.0	ug/L	50.0		90.4	65-134	1.73	23	
4-Methyl-2-pentanone (MIBK)	100.4	5.0	ug/L	100		100	58-147	0.750	27	
Toluene	44.67	1.0	ug/L	50.0		89.3	72-133	3.11	24	
trans-1,3-Dichloropropene	47.20	1.0	ug/L	50.0		94.4	67-130	1.70	24	

1HD1511

Determination of Volatile Organic Compounds	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HD1572 - EPA 5030B - EPA	A 8260B									
LCS Dup (1HD1572-BSD1)			Prepared: 04	4/25/24 00:0	0 Analyzed:	04/25/24 1	0:07			
1,1,2-Trichloroethane	47.28	1.0	ug/L	50.0		94.6	69-135	2.11	23	
Tetrachloroethylene	45.29	1.0	ug/L	50.0		90.6	69-130	4.70	25	
2-Hexanone (MBK)	104.5	5.0	ug/L	99.3		105	55-144	0.230	25	
Dibromochloromethane	48.16	1.0	ug/L	50.0		96.3	73-127	2.62	22	
1,2-Dibromoethane	47.80	1.0	ug/L	50.0		95.6	67-132	1.54	24	
Chlorobenzene	46.58	1.0	ug/L	50.0		93.2	72-123	3.31	23	
1,1,1,2-Tetrachloroethane	47.89	1.0	ug/L	50.0		95.8	73-127	2.37	24	
Ethylbenzene	47.82	1.0	ug/L	50.0		95.6	71-127	3.71	26	
Xylenes, total	145.6	2.0	ug/L	150		97.0	74-127	3.12	25	
Styrene	49.77	1.0	ug/L	50.0		99.5	66-126	3.18	23	
Bromoform	46.69	1.0	ug/L	50.0		93.4	68-130	0.513	23	
1,2,3-Trichloropropane	47.89	1.0	ug/L	50.0		95.8	63-136	0.687	24	
trans-1,4-Dichloro-2-butene	88.16	5.0	ug/L	103		85.8	54-134	0.340	27	
1,1,2,2-Tetrachloroethane	48.31	1.0	ug/L	50.0		96.6	61-131	1.70	29	
1,4-Dichlorobenzene	46.06	1.0	ug/L	50.0		92.1	70-129	3.52	24	
1,2-Dichlorobenzene	47.96	1.0	ug/L	50.0		95.9	69-126	3.32	26	
1,2-Dibromo-3-chloropropane	48.25	5.0	ug/L	50.0		96.5	50-143	1.23	30	
Surrogate: Dibromofluoromethane	46.2		ug/L	50.2		92.2	75-136			
Surrogate: 1,2-Dichloroethane-d4	46.2		ug/L	50.1		92.2	61-142			
Surrogate: Toluene-d8	49.4		ug/L	50.4		98.0	82-121			
Surrogate: 4-Bromofluorobenzene	50.3		ug/L	50.1		100	80-116			
Matrix Spike (1HD1572-MS1)	Source: 1	IHD1698-01	Prepared: 04	4/25/24 00:0	0 Analyzed:	04/25/24 1	9:02			
Chloromethane	276.8	10.0	ug/L	300	ND	92.2	61-152			
Vinyl Chloride	304.3	10.0	ug/L	300	ND	101	66-149			
Bromomethane	210.2	10.0	ug/L	301	ND	69.8	43-171			
Chloroethane	308.6	10.0	ug/L	300	ND	103	69-148			
Trichlorofluoromethane	291.8	10.0	ug/L	300	ND	97.3	62-163			
1,1-Dichloroethylene	472.9	10.0	ug/L	501	ND	94.3	70-148			
Acetone	813.9	100	ug/L	1000	ND	81.3	45-173			
Methyl Iodide	737.0	10.0	ug/L	1000	ND	73.6	62-167			
Carbon Disulfide	937.9	10.0	ug/L	1000	ND	93.7	71-163			
Methylene Chloride	465.7	50.0	ug/L	502	ND	92.8	69-140			
trans-1,2-Dichloroethylene	476.3	10.0	ug/L	503	ND	94.7	69-144			
1,1-Dichloroethane	469.8	10.0	ug/L	503	ND	93.5	70-138			
Vinyl Acetate	846.4	50.0	ug/L	1620	ND	52.4	58-142			QM-05
cis-1,2-Dichloroethylene	546.4	10.0	ug/L	505	ND	108	68-151			
2-Butanone (MEK)	943.1	100	ug/L	1000	ND	94.2	50-160			
Bromochloromethane	469.3	10.0	ug/L	504	ND	93.0	65-143			
Chloroform	455.5	10.0	ug/L	502	ND	90.8	71-143			
1,1,1-Trichloroethane	460.7	10.0	ug/L	503	ND	91.6	63-133			
Carbon Tetrachloride	470.6	10.0	ug/L	502	ND	93.7	63-142			
Benzene	487.8	10.0	ug/L	504	ND	96.7	69-133			

1HD1511

Spike Source

				Бріке	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HD1572 - EPA 5030B - EPA	8260B									
Matrix Spike (1HD1572-MS1)	Source: 1	HD1698-01	Prepared: 04	1/25/24 00:0	00 Analyzed:	04/25/24 1	9:02			
1,2-Dichloroethane	462.2	10.0	ug/L	502	ND	92.1	63-138			
Trichloroethylene	486.2	10.0	ug/L	503	ND	96.6	71-133			
1,2-Dichloropropane	486.5	10.0	ug/L	502	ND	96.9	69-132			
Dibromomethane	484.7	10.0	ug/L	505	ND	96.0	70-147			
Bromodichloromethane	477.9	10.0	ug/L	503	ND	95.1	67-130			
cis-1,3-Dichloropropene	476.4	10.0	ug/L	502	ND	94.9	61-126			
4-Methyl-2-pentanone (MIBK)	1057	50.0	ug/L	1000	ND	105	55-147			
Toluene	479.4	10.0	ug/L	505	ND	95.0	71-133			
trans-1,3-Dichloropropene	477.7	10.0	ug/L	503	ND	95.0	63-124			
1,1,2-Trichloroethane	489.0	10.0	ug/L	502	ND	97.4	69-133			
Tetrachloroethylene	485.1	10.0	ug/L	502	ND	96.6	70-124			
2-Hexanone (MBK)	1090	50.0	ug/L	1000	ND	109	53-141			
Dibromochloromethane	486.1	10.0	ug/L	503	ND	96.6	74-122			
1,2-Dibromoethane	495.9	10.0	ug/L	504	ND	98.3	66-127			
Chlorobenzene	491.8	10.0	ug/L	502	ND	97.9	76-116			
1,1,1,2-Tetrachloroethane	485.6	10.0	ug/L	504	ND	96.3	77-121			
Ethylbenzene	507.9	10.0	ug/L	505	ND	101	73-124			
Xylenes, total	1537	20.0	ug/L	1510	ND	102	75-123			
Styrene	517.3	10.0	ug/L	504	ND	103	70-120			
Bromoform	470.4	10.0	ug/L	502	ND	93.7	70-124			
1,2,3-Trichloropropane	496.6	10.0	ug/L	504	ND	98.5	62-135			
trans-1,4-Dichloro-2-butene	1006	50.0	ug/L	1000	ND	100	50-120			
1,1,2,2-Tetrachloroethane	498.5	10.0	ug/L	502	ND	99.3	63-126			
1,4-Dichlorobenzene	483.9	10.0	ug/L	502	ND	96.4	72-119			
1,2-Dichlorobenzene	481.6	10.0	ug/L	502	ND	96.0	71-117			
1,2-Dibromo-3-chloropropane	485.6	50.0	ug/L	505	ND	96.2	49-134			
Surrogate: Dibromofluoromethane	467		ug/L	502		93.2	75-136			
Surrogate: 1,2-Dichloroethane-d4	474		ug/L	501		94.7	61-142			
Surrogate: Toluene-d8	499		ug/L	504		99.0	82-121			
Surrogate: 4-Bromofluorobenzene	500		ug/L	501		99.6	80-116			
Matrix Spike Dup (1HD1572-MSD1)	Source: 1	HD1698-01	Prepared: 04	1/25/24 00:0	00 Analyzed:	04/25/24 1	9:25			
Chloromethane	264.9	10.0	ug/L	300	ND	88.2	61-152	4.39	26	
Vinyl Chloride	291.2	10.0	ug/L	300	ND	97.0	66-149	4.40	23	
Bromomethane	227.3	10.0	ug/L	301	ND	75.5	43-171	7.82	29	
Chloroethane	296.6	10.0	ug/L	300	ND	98.8	69-148	3.97	25	
Trichlorofluoromethane	287.3	10.0	ug/L	300	ND	95.8	62-163	1.55	25	
1,1-Dichloroethylene	456.6	10.0	ug/L	501	ND	91.1	70-148	3.51	22	
Acetone	783.7	100	ug/L	1000	ND	78.3	45-173	3.78	30	
Methyl lodide	801.1	10.0	ug/L	1000	ND	80.0	62-167	8.33	24	
Carbon Disulfide	902.2	10.0	ug/L	1000	ND	90.1	71-163	3.88	22	
Methylene Chloride	450.2	50.0	ug/L	502	ND	89.7	69-140	3.38	19	
trans-1,2-Dichloroethylene	454.5	10.0	ug/L	503	ND	90.4	69-144	4.68	22	

RPD

%REC

1HD1511

Spike Source

				Spike	Source		%KEC		KPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 1HD1572 - EPA 5030B - EPA	8260B									
Matrix Spike Dup (1HD1572-MSD1)	Source	1HD1698-01	Prepared: 04	4/25/24 00:0	00 Analyzed:	04/25/24 1	9:25			
1,1-Dichloroethane	450.4	10.0	ug/L	503	ND	89.6	70-138	4.22	20	
Vinyl Acetate	899.2	50.0	ug/L	1620	ND	55.7	58-142	6.05	24	QM-0
cis-1,2-Dichloroethylene	527.8	10.0	ug/L	505	ND	105	68-151	3.46	22	
2-Butanone (MEK)	969.7	100	ug/L	1000	ND	96.8	50-160	2.78	23	
Bromochloromethane	457.9	10.0	ug/L	504	ND	90.8	65-143	2.46	22	
Chloroform	436.1	10.0	ug/L	502	ND	86.9	71-143	4.35	21	
1,1,1-Trichloroethane	444.5	10.0	ug/L	503	ND	88.3	63-133	3.58	23	
Carbon Tetrachloride	452.8	10.0	ug/L	502	ND	90.2	63-142	3.86	22	
Benzene	466.8	10.0	ug/L	504	ND	92.5	69-133	4.40	18	
1,2-Dichloroethane	450.5	10.0	ug/L	502	ND	89.8	63-138	2.56	20	
Trichloroethylene	464.9	10.0	ug/L	503	ND	92.3	71-133	4.48	23	
1,2-Dichloropropane	471.3	10.0	ug/L	502	ND	93.8	69-132	3.17	20	
Dibromomethane	472.6	10.0	ug/L	505	ND	93.6	70-147	2.53	22	
Bromodichloromethane	464.0	10.0	ug/L	503	ND	92.3	67-130	2.95	21	
cis-1,3-Dichloropropene	463.0	10.0	ug/L	502	ND	92.2	61-126	2.85	21	
4-Methyl-2-pentanone (MIBK)	1024	50.0	ug/L	1000	ND	102	55-147	3.14	23	
Toluene	456.5	10.0	ug/L	505	ND	90.4	71-133	4.89	23 19	
trans-1,3-Dichloropropene	470.2	10.0	ug/L	503	ND	93.5	63-124	1.58	21	
1,1,2-Trichloroethane	474.2	10.0	ug/L	502	ND	94.4	69-133	3.07	19	
Tetrachloroethylene	463.0	10.0	ug/L	502	ND	92.2	70-124	4.66		
2-Hexanone (MBK)	1065	50.0	ug/L	1000	ND	106	53-141	2.32	24 24	
Dibromochloromethane	477.4	10.0	ug/L	503	ND	94.8	74-122	1.81		
1,2-Dibromoethane	484.9	10.0	_	503					21	
Chlorobenzene	469.2	10.0	ug/L		ND	96.1	66-127	2.24	23	
	469.9		ug/L	502	ND	93.4	76-116	4.70	21	
1,1,1,2-Tetrachloroethane	484.5	10.0	ug/L	504	ND	93.2	77-121	3.29	25	
Ethylbenzene	1462	10.0	ug/L	505	ND	96.0	73-124	4.72	20	
Xylenes, total		20.0	ug/L	1510	ND	96.6	75-123	4.97	20	
Styrene	496.6	10.0	ug/L	504	ND	98.5	70-120	4.08	23	
Bromoform	466.8	10.0	ug/L	502	ND	92.9	70-124	0.768	22	
1,2,3-Trichloropropane	479.7	10.0	ug/L	504	ND	95.1	62-135	3.46	28	
trans-1,4-Dichloro-2-butene	990.8	50.0	ug/L	1000	ND	98.8	50-120	1.48	26	
1,1,2,2-Tetrachloroethane	484.6	10.0	ug/L	502	ND	96.5	63-126	2.83	24	
1,4-Dichlorobenzene	463.5	10.0	ug/L	502	ND	92.4	72-119	4.31	24	
1,2-Dichlorobenzene	466.7	10.0	ug/L	502	ND	93.0	71-117	3.14	24	
1,2-Dibromo-3-chloropropane	484.3	50.0	ug/L	505	ND	95.9	49-134	0.268	28	
Surrogate: Dibromofluoromethane	471		ug/L	502		93.8	75-136			
Surrogate: 1,2-Dichloroethane-d4	473		ug/L	501		94.4	61-142			
Surrogate: Toluene-d8	498		ug/L	504		98.8	82-121			
Surrogate: 4-Bromofluorobenzene	500		ug/L	501		99.8	80-116			

RPD

%REC

CERTIFICATE OF ANALYSIS

Determination of Conventional Chemistry Parameters	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HD1215 - General Prep Micr	o - SM 5210 B									
Blank (1HD1215-BLK1)			Prepared: 04	/19/24 08:4	1 Analyzed:	04/19/24 1	0:25			
BOD (5 day)	<2	2	mg/L							B-06
Duplicate (1HD1215-DUP1)	Source	: 1HD1444-01	Prepared: 04	/19/24 08:4	1 Analyzed:	04/19/24 1	1:27			
BOD (5 day)	63.5	24	mg/L		55.6			13.4	29	
Reference (1HD1215-SRM1)			Prepared: 04	/19/24 08:4	1 Analyzed:	04/19/24 1	0:31			
BOD (5 day)	194	100	mg/L	198		97.8	84.6-115.4	ļ		
Batch 1HD1237 - Wet Chem Prepara	ation - 2320B									
Blank (1HD1237-BLK1)			Prepared: 04	/19/24 11:0	1 Analyzed:	04/19/24 1	4:02			
Alkalinity, as CaCO3	<10	10	mg/L							
LCS (1HD1237-BS1)			Prepared: 04	/19/24 11:0	1 Analyzed:	04/19/24 1	4:02			
Alkalinity, as CaCO3	223	10	mg/L	235		94.9	88-114			
Matrix Spike (1HD1237-MS1)	Source	: 1HD1512-01	Prepared: 04	/19/24 11:0	1 Analyzed:	04/19/24 1	4:02			
Alkalinity, as CaCO3	400	10	mg/L	235	189	89.5	74-122			
Matrix Spike Dup (1HD1237-MSD1)	Source	: 1HD1512-01	Prepared: 04	/19/24 11:0	1 Analyzed:	04/19/24 1	4:02			
Alkalinity, as CaCO3	398	10	mg/L	235	189	88.7	74-122	0.476	10	
Batch 1HD1258 - Wet Chem Prepara		: 1HD1434-01	Prepared & A	Analyzed: 04		2				
pH	7.47	0.5	рН	,	7.46			0.107	10	
Reference (1HD1258-SRM1)		0.0	Prepared & A	Analyzed: 04		2		0.107	10	
pH	7.01	0.5	рН	7.00	., ,	100	90-110			
Reference (1HD1258-SRM2)		0.0	Prepared & A		1/19/24 16·1:		30-110			
pH	7.02	0.5	На	7.00		100	90-110			
		0.0	μ	1.00		100	00 110			
Batch 1HD1292 - Wet Chem Prepara	ation - USGS I-376	5-85								
Batch 1HD1292 - Wet Chem Prepara Blank (1HD1292-BLK1)	ation - USGS I-376	5-85	Prepared: 04	:/22/24 09:4	1 Analyzed:	04/22/24 1	4:10			
	ation - USGS I-376	5-85	Prepared: 04	./22/24 09:4	1 Analyzed:	04/22/24 1	4:10			
Blank (1HD1292-BLK1)			•							
Blank (1HD1292-BLK1) Total Suspended Solids (TSS)			mg/L							
Blank (1HD1292-BLK1) Total Suspended Solids (TSS) LCS (1HD1292-BS1)	<1 14.1	1	mg/L Prepared: 04	./22/24 09:4 15.0	1 Analyzed:	04/22/24 1 94.0	4:10 74-114			
Blank (1HD1292-BLK1) Total Suspended Solids (TSS) LCS (1HD1292-BS1) Total Suspended Solids (TSS)	<1 14.1	1	mg/L Prepared: 04 mg/L	./22/24 09:4 15.0	1 Analyzed:	04/22/24 1 94.0	4:10 74-114	6.27	30	
Blank (1HD1292-BLK1) Total Suspended Solids (TSS) LCS (1HD1292-BS1) Total Suspended Solids (TSS) Duplicate (1HD1292-DUP1)	<1 14.1 Source 55.6	1 1 : 1HD1347-01 1	mg/L Prepared: 04 mg/L Prepared: 04	./22/24 09:4 15.0	1 Analyzed:	04/22/24 1 94.0	4:10 74-114	6.27	30	
Blank (1HD1292-BLK1) Total Suspended Solids (TSS) LCS (1HD1292-BS1) Total Suspended Solids (TSS) Duplicate (1HD1292-DUP1) Total Suspended Solids (TSS)	<1 14.1 Source 55.6	1 1 : 1HD1347-01 1	mg/L Prepared: 04 mg/L Prepared: 04	//22/24 09:4 15.0 //22/24 09:4	1 Analyzed: 1 Analyzed: 59.2	04/22/24 1 94.0 04/22/24 1	4:10 74-114 4:10	6.27	30	
Blank (1HD1292-BLK1) Total Suspended Solids (TSS) LCS (1HD1292-BS1) Total Suspended Solids (TSS) Duplicate (1HD1292-DUP1) Total Suspended Solids (TSS) Batch 1HD1318 - Wet Chem Prepara	<1 14.1 Source 55.6	1 1 : 1HD1347-01 1	mg/L Prepared: 04 mg/L Prepared: 04 mg/L	//22/24 09:4 15.0 //22/24 09:4	1 Analyzed: 1 Analyzed: 59.2	04/22/24 1 94.0 04/22/24 1	4:10 74-114 4:10	6.27	30	
Blank (1HD1292-BLK1) Total Suspended Solids (TSS) LCS (1HD1292-BS1) Total Suspended Solids (TSS) Duplicate (1HD1292-DUP1) Total Suspended Solids (TSS) Batch 1HD1318 - Wet Chem Prepara	<1 14.1 Source 55.6 ation - USGS I-1750	1 : 1HD1347-01 1 0-85	mg/L Prepared: 04 mg/L Prepared: 04 mg/L Prepared: 04	15.0 15.0 122/24 09:4	1 Analyzed: 1 Analyzed: 59.2 6 Analyzed:	04/22/24 1 94.0 04/22/24 1 04/23/24 0	4:10 74-114 4:10 7:40	6.27	30	

Determination of Conventional Chemistry Parameters	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HD1318 - Wet Chem Prepara	ation - USGS I-1750	-85								
Duplicate (1HD1318-DUP1)	Source:	1HD1574-01	Prepared: 04	/22/24 14:3	6 Analyzed:	04/23/24 0	7:40			
Total Dissolved Solids (TDS)	1130	5	mg/L		1130			0.235	30	
Batch 1HD1566 - Wet Chem Prepara	ation - EPA 410.4									
Blank (1HD1566-BLK1)			Prepared: 04	/25/24 16:3	3 Analyzed:	04/26/24 1	3:10			
COD, total	<54	54	mg/L							
LCS (1HD1566-BS1)			Prepared: 04	/25/24 16:3	3 Analyzed:	04/26/24 1	3:10			
COD, total	162	54	mg/L	150	-	108	90-110			
Matrix Spike (1HD1566-MS1)	Source:	1HD1361-01	Prepared: 04	/25/24 16:3	3 Analyzed:	04/26/24 1	3:10			
COD, total	404	108	mg/L	300	ND	135	90-110			QM-13
Matrix Spike Dup (1HD1566-MSD1)	Source:	1HD1361-01	Prepared: 04	/25/24 16:3	3 Analyzed:	04/26/24 1	3:10			
COD, total	1420	108	mg/L	300	ND	474	90-110	111	10	QM-13
Batch 1HD1631 - General Prep HPL	C/IC - TIMBERLINE									
Blank (1HD1631-BLK1)			Prepared: 04	/29/24 07:1	9 Analyzed:	04/29/24 1	1:54			
Nitrogen, Ammonia	<0.10	0.10	mg/L							
LCS (1HD1631-BS1)			Prepared: 04	/29/24 07:1	9 Analyzed:	04/29/24 1	1:56			
Nitrogen, Ammonia	5.31	0.10	mg/L	5.00		106	90-114			
Matrix Spike (1HD1631-MS1)	Source:	2HD0576-02	Prepared: 04	/29/24 07:1	9 Analyzed:	04/29/24 1	1:57			
Nitrogen, Ammonia	5.60	0.10	mg/L	5.00	ND	112	84-115			
Matrix Spike Dup (1HD1631-MSD1)	Source:	2HD0576-02	Prepared: 04	/29/24 07:1	9 Analyzed:	04/29/24 1	1:59			
Nitrogen, Ammonia	5.70	0.10	mg/L	5.00	ND	114	84-115	1.66	20	
Determination of Inorganic Anions	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HE0146 - General Prep HPL	C/IC - EPA 9056					05/04/04	4.00			
Blank (1HE0146-BLK1)	-1.0	4.0	Prepared: 05	0/01/24 00:0	0 Analyzed:	05/01/24 1	1:39			
Sulfate	<1.0	1.0	mg/L	104104.00	0.4	05/04/04	0.04			
LCS (1HE0146-BS1)	22.40	4.0	Prepared: 05		u Analyzed:					
Sulfate	33.16	1.0	mg/L	33.9	0.4	97.7	80-120			
LCS Dup (1HE0146-BSD1)	22.00		Prepared: 05		u Analyzed:					
Sulfate	33.09	1.0	mg/L	33.9		97.5	80-120	0.229	10	
Matrix Spike (1HE0146-MS1)		1HD1656-01	Prepared: 05		-					
Sulfate	413.7	10.0	mg/L	339	77.90	99.0	87-113			
Matrix Spike Dup (1HE0146-MSD1)		1HD1656-01	Prepared: 05		-		0:59			
Sulfate Batch 1HE0195 - General Prep HPL	413.2 C/IC - EPA 9056	10.0	mg/L	339	77.90	98.8	87-113	0.133	10	

CERTIFICATE OF ANALYSIS

Determination of Inorganic Anions	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HE0195 - General Prep HPL	C/IC - EPA 9056									
Blank (1HE0195-BLK1)			Prepared: 05	5/02/24 00:0	0 Analyzed:	05/02/24 1	0:15			
Chloride	<1.0	1.0	mg/L							
Blank (1HE0195-BLK2)			Prepared: 05	5/02/24 00:0	0 Analyzed:	05/02/24 1	6:59			
Chloride	<1.0	1.0	mg/L							
LCS (1HE0195-BS1)			Prepared: 05	5/02/24 00:0	0 Analyzed:	05/02/24 1	1:00			
Chloride	15.33	1.0	mg/L	15.4	<u> </u>	99.2	80-120			
LCS Dup (1HE0195-BSD1)			Prepared: 05		0 Analyzed:					
Chloride	15.09	1.0	mg/L	15.4		97.6	80-120	1.61	10	
Matrix Spike (1HE0195-MS1)	Source	: 1HD1652-01	Prepared: 05		0 Analyzed:			1.01	10	
Chloride	291.2	10.0	mg/L	154	142.9	96.0	81-116			
Matrix Spike Dup (1HE0195-MSD1)	Source	: 1HD1652-01	Prepared: 05							
Chloride	291.5	10.0	mg/L	154	142.9	96.2		0.0858	10	
			3			00.2	01 110	0.0000	.0	
				Spike	Source		%REC		RPD	Notes
Determination of Total Metals	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Determination of Total Metals Batch 1HD1412 - EPA 3005A Total R			Units	•		%REC		RPD		Notes
			Units Prepared: 04	Level	Result		Limits	RPD		Notes
Batch 1HD1412 - EPA 3005A Total R				Level	Result		Limits	RPD		Notes
Batch 1HD1412 - EPA 3005A Total R Blank (1HD1412-BLK1)	Recoverable Metals	s - EPA 6020A	Prepared: 04	Level	Result		Limits	RPD		Notes
Batch 1HD1412 - EPA 3005A Total R Blank (1HD1412-BLK1) Arsenic, total Cobalt, total	Recoverable Metals <0.0040	0.0040	Prepared: 04	Level	Result 6 Analyzed:	04/25/24 2	Limits	RPD		Notes
Batch 1HD1412 - EPA 3005A Total R Blank (1HD1412-BLK1) Arsenic, total Cobalt, total	Recoverable Metals <0.0040	0.0040	Prepared: 04 mg/L mg/L	Level	Result 6 Analyzed:	04/25/24 2	Limits	RPD		Notes
Batch 1HD1412 - EPA 3005A Total R Blank (1HD1412-BLK1) Arsenic, total Cobalt, total LCS (1HD1412-BS1)	<0.0040 <0.0004	0.0040 0.0004	Prepared: 04 mg/L mg/L Prepared: 04	Level 3/24/24 07:1	Result 6 Analyzed:	04/25/24 2	2:31 2:37	RPD		Notes
Batch 1HD1412 - EPA 3005A Total R Blank (1HD1412-BLK1) Arsenic, total Cobalt, total LCS (1HD1412-BS1) Arsenic, total Cobalt, total	<0.0040 <0.0004 0.100 0.104	0.0040 0.0040 0.0040	Prepared: 04 mg/L mg/L Prepared: 04 mg/L	Level 4/24/24 07:1 6/24/24 07:1 0.100 0.100	Result 6 Analyzed: 6 Analyzed:	04/25/24 2 04/25/24 2 100 104	2:31 2:37 80-120 80-120	RPD		Notes
Batch 1HD1412 - EPA 3005A Total R Blank (1HD1412-BLK1) Arsenic, total Cobalt, total LCS (1HD1412-BS1) Arsenic, total Cobalt, total	<0.0040 <0.0004 0.100 0.104	0.0040 0.0004 0.0004 0.0004	Prepared: 04 mg/L mg/L Prepared: 04 mg/L mg/L	Level 4/24/24 07:1 6/24/24 07:1 0.100 0.100	Result 6 Analyzed: 6 Analyzed:	04/25/24 2 04/25/24 2 100 104	2:31 2:37 80-120 80-120	RPD		Notes
Batch 1HD1412 - EPA 3005A Total R Blank (1HD1412-BLK1) Arsenic, total Cobalt, total LCS (1HD1412-BS1) Arsenic, total Cobalt, total Cobalt, total Matrix Spike (1HD1412-MS1)	Recoverable Metals <0.0040 <0.0004 0.100 0.104 Source:	0.0040 0.0004 0.0004 0.0004 1.1HD1511-01	Prepared: 04 mg/L mg/L Prepared: 04 mg/L mg/L Prepared: 04	Level 3/24/24 07:1 3/24/24 07:1 0.100 0.100 3/24/24 07:1	Result 6 Analyzed: 6 Analyzed: 6 Analyzed:	04/25/24 2 04/25/24 2 100 104 04/25/24 2	Limits 2:31 2:37 80-120 80-120 2:49	RPD		Notes
Batch 1HD1412 - EPA 3005A Total R Blank (1HD1412-BLK1) Arsenic, total Cobalt, total LCS (1HD1412-BS1) Arsenic, total Cobalt, total Matrix Spike (1HD1412-MS1) Arsenic, total Cobalt, total	Recoverable Metals <0.0040 <0.0004 0.100 0.104 Source: 0.121 0.130	0.0040 0.0040 0.0004 0.0004 : 1HD1511-01 0.0040	Prepared: 04 mg/L mg/L Prepared: 04 mg/L mg/L Prepared: 04 mg/L	Level 4/24/24 07:1 0.100 0.100 0.100 0.100 0.100 0.100	Result 6 Analyzed: 6 Analyzed: 0.0214 0.0221	04/25/24 2 04/25/24 2 100 104 04/25/24 2 99.7 108	2:31 2:37 80-120 80-120 2:49 75-125	RPD		Notes
Batch 1HD1412 - EPA 3005A Total R Blank (1HD1412-BLK1) Arsenic, total Cobalt, total LCS (1HD1412-BS1) Arsenic, total Cobalt, total Matrix Spike (1HD1412-MS1) Arsenic, total Cobalt, total	Recoverable Metals <0.0040 <0.0004 0.100 0.104 Source: 0.121 0.130	0.0040 0.0004 0.0004 0.0004 : 1HD1511-01 0.0040 0.0004	Prepared: 04 mg/L mg/L Prepared: 04 mg/L prepared: 04 mg/L mg/L mg/L	Level 4/24/24 07:1 0.100 0.100 0.100 0.100 0.100 0.100	Result 6 Analyzed: 6 Analyzed: 0.0214 0.0221	04/25/24 2 04/25/24 2 100 104 04/25/24 2 99.7 108	2:31 2:37 80-120 80-120 2:49 75-125	RPD		Notes
Batch 1HD1412 - EPA 3005A Total R Blank (1HD1412-BLK1) Arsenic, total Cobalt, total LCS (1HD1412-BS1) Arsenic, total Cobalt, total Matrix Spike (1HD1412-MS1) Arsenic, total Cobalt, total Matrix Spike (1HD1412-MS1)	Recoverable Metals <0.0040 <0.0004 0.100 0.104 Source: 0.121 0.130 Source:	0.0040 0.0004 0.0004 0.0004 : 1HD1511-01 0.0004 : 1HD1511-01	Prepared: 04 mg/L mg/L Prepared: 04 mg/L mg/L Prepared: 04 mg/L Prepared: 04	Level 2/24/24 07:1 0.100 0.100 2/24/24 07:1 0.100 0.100 0.100 0.100	Result 6 Analyzed: 6 Analyzed: 0.0214 0.0221 6 Analyzed:	04/25/24 2 04/25/24 2 100 104 04/25/24 2 99.7 108 04/25/24 2	2:31 2:37 80-120 80-120 2:49 75-125 75-125 2:56		Limit	Notes
Batch 1HD1412 - EPA 3005A Total R Blank (1HD1412-BLK1) Arsenic, total Cobalt, total LCS (1HD1412-BS1) Arsenic, total Cobalt, total Matrix Spike (1HD1412-MS1) Arsenic, total Cobalt, total Matrix Spike Dup (1HD1412-MSD1) Arsenic, total	 <0.0040 <0.0004 0.100 0.104 Source: 0.121 0.130 Source: 0.120 0.129 	0.0040 0.0004 0.0004 0.0004 1HD1511-01 0.0004 1HD1511-01 0.0040	Prepared: 04 mg/L mg/L Prepared: 04 mg/L mg/L Prepared: 04 mg/L mg/L prepared: 04 mg/L	A/24/24 07:1 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	Result 6 Analyzed: 6 Analyzed: 0.0214 0.0221 6 Analyzed: 0.0214 0.0221	04/25/24 2 04/25/24 2 100 104 04/25/24 2 99.7 108 04/25/24 2 98.3 107	2:31 2:37 80-120 80-120 2:49 75-125 75-125 75-125 75-125	1.16	Limit 20	Notes
Batch 1HD1412 - EPA 3005A Total R Blank (1HD1412-BLK1) Arsenic, total Cobalt, total LCS (1HD1412-BS1) Arsenic, total Cobalt, total Matrix Spike (1HD1412-MS1) Arsenic, total Cobalt, total Matrix Spike Dup (1HD1412-MSD1) Arsenic, total Cobalt, total Cobalt, total Cobalt, total	 <0.0040 <0.0004 0.100 0.104 Source: 0.121 0.130 Source: 0.120 0.129 	0.0040 0.0004 0.0004 0.0004 : 1HD1511-01 0.0004 : 1HD1511-01 0.0040 0.0004	Prepared: 04 mg/L mg/L Prepared: 04 mg/L Prepared: 04 mg/L prepared: 04 mg/L mg/L Prepared: 04 mg/L	A/24/24 07:1 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	Result 6 Analyzed: 6 Analyzed: 0.0214 0.0221 6 Analyzed: 0.0214 0.0221	04/25/24 2 04/25/24 2 100 104 04/25/24 2 99.7 108 04/25/24 2 98.3 107	2:31 2:37 80-120 80-120 2:49 75-125 75-125 75-125 75-125	1.16	Limit 20	Notes

CERTIFICATE OF ANALYSIS

1HD1511

Definitions

B-06: Unseeded Blank equals .41mg/L

I-03: Analyte required to be analyzed within 15 minutes of sampling. Analysis performed upon receipt of sample at

laboratory.

I-05: Sample received at laboratory past hold time for this analyte.

QM-05: The spike recovery and/or RPD was outside acceptance limits for the MS and/or MSD due to matrix interference.

The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is

acceptable.

QM-13: The spike recovery was outside acceptance limits for the MS and/or MSD. Batch accepted based on acceptable

initial and continuing calibration results.

QR-02: The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results

for the QC batch were accepted based on percent recoveries and completeness of QC data.

RL: Reporting Limit

RPD: Relative Percent Difference

Cooler Receipt Log

Cooler ID: Default Cooler Temp: 0.8°C

Cooler Inspection Checklist

Custody Seals	No	Containers Intact	Yes
COC/Labels Agree	Yes	Preservation Confirmed	No
Received On Ice	Yes		

Report Comments

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions.

Reviewed and Approved By:

atheram urphy

Heather Murphy

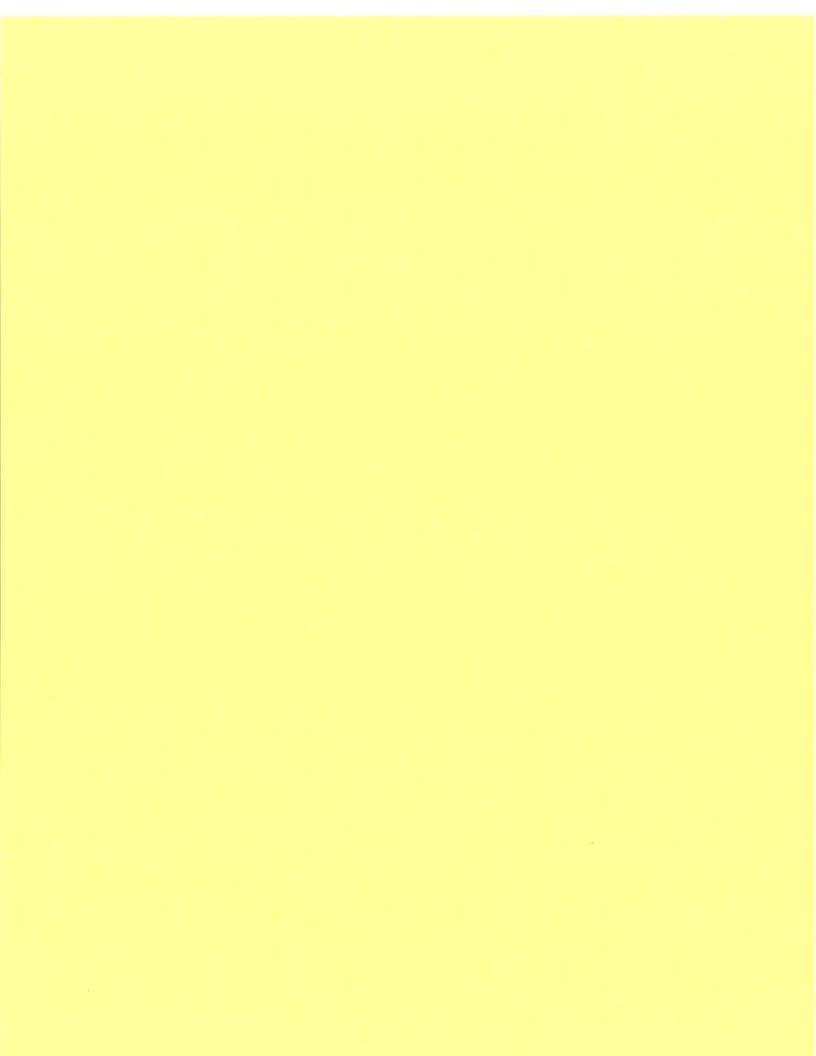
Customer Relationship Specialist heather.murphy@microbac.com 05/31/24 11:21

Veystone LABORATORIES A Microbac Company

600 East 17th Street South

Newton, IA 50208 241 702 0454

HLW Engineering PM: Heather Murphy


of 31 Page 4 of ын 3/20/2024 8:31:53A Б

www.keystonelab

SITE	INFORMATION		RE	PORT TO		1	= AWOICE		
Sampl	ct: Marshall Cariftary Landfill-D1		HI W	l Whipple / Engineering Pox 214 / City, IA 502			2313 March	atak nunty Landfill nulltævn Blvd vn, iA 50156	
Nor	round Time RUSH, need by/	/	Work Tempe	Order Cooler: No	HD1511		COC/La	ers Intact bels Agree ation Confirmed	
Number	Sample Identification / Client ID	Matrix	Sample Type	Date	Time	Number of Containers	Ana	llyses	Lab Sample Number
-001	LW-75 ₹	Water	GRAB	4/16/24	15:22	15	alk-caco3-2320 bod-5210 cod-t-410.4 Indfill-app1-voc-group nh3-timberline so4-9056-w tss-i-3765-85	as-t-6020 cl-9056-w co-t-6020 methane-astm-d1946 ph-9040 tds-i-1750-85	ÒL

Received By Date/Time Relinquished By Received for Lab By

Remarks: + please run all analyses if hold time has passed.

Microbac Laboratories, Inc., Newton

CERTIFICATE OF ANALYSIS 1HG1939

Project Description

6003

For:

Todd Whipple

HLW Engineering

PO Box 314

Story City, IA 50248

Heather Murphy

Customer Relationship Specialist

Friday, August 2, 2024

Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories. Review and compilation of your report was completed by Microbac Laboratories, Inc., Newton. If you have any questions, comments, or require further assistance regarding this report, please contact your service representative listed above.

I certify that all test results meet all of the requirements of the accrediting authority listed within this report. Analytical results are reported on a 'as received' basis unless specified otherwise. Analytical results for solids with units ending in (dry) are reported on a dry weight basis. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories. The reported results are related only to the samples analyzed as received.

Microbac Laboratories, Inc.

1HG1939

HLW Engineering

Project Name: 6003

Todd Whipple PO Box 314 Story City, IA 50248 Project / PO Number: N/A Received: 07/24/2024 Reported: 08/02/2024

Sample Summary Report

Sample NameLaboratory IDClient MatrixSample TypeSample BeginSample TakenLab ReceivedMW971HG1939-01AqueousGRAB07/18/24 14:5007/24/24 10:04

Analytical Testing Parameters

Client Sample ID:MW97Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HG1939-01Collection Date:07/18/2024 14:50

Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020A								
Copper, total	<0.0040	0.0040	mg/L	4		07/31/24 1544	08/01/24 2138	RVV

Batch Log Summary

Method		В	atch	Lab	oratory ID		Client	/ Source	ID			
EPA 6020A		1	HG1686	1HG	1686-BLK1							
				1HG	1686-BS1							
				1HG	1939-01		MW97					
				1HG	1686-MS1		1HG20	76-02				
				1HG	1686-MSD1		1HG20	76-02				
				1HG	1686-PS1		1HG20	76-02				
Batch Quality Cor	ntrol Summary: Micr	obac Lab	oratories, In	c., New	ton							
						Spike	Source		%REC		RPD	
Determination o	f Total Metals	Result		RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HG1686 - E	PA 3005A Total Rec	overable	Metals - EPA	6020A								
Blank (1HG1686-BLK	1)				Prepared: 0	7/31/24 15:4	4 Analyzed:	08/01/24 2	21:26			
Copper, total		<0.0040		0.0040	mg/L							
LCS (1HG1686-BS1)					Prepared: 0	7/31/24 15:4	4 Analyzed:	08/01/24 2	21:32			
Copper, total		0.108		0.0040	mg/L	0.100		108	80-120			
Matrix Spike (1HG168	36-MS1)	;	Source: 1HG20	76-02	Prepared: 0	7/31/24 15:4	l4 Analyzed:	08/01/24 2	22:03			
Copper, total		0.141		0.0040	mg/L	0.100	0.0456	95.9	75-125			
Matrix Spike Dup (1H	G1686-MSD1)	;	Source: 1HG20	76-02	Prepared: 0	7/31/24 15:4	4 Analyzed:	08/01/24 2	22:09			
Copper, total		0.143		0.0040	mg/L	0.100	0.0456	97.6	75-125	1.19	20	
Post Spike (1HG1686	-PS1)	;	Source: 1HG20	76-02	Prepared: 0	7/31/24 15:4	4 Analyzed:	08/01/24 2	22:15			
Copper, total		0.120			mg/L	0.0800	0.0447	94.8	80-120			
Definitions												
RL:	Reporting Limit											
RPD:	Relative Percent Di	fference										
Cooler Receipt Lo	g											
Cooler ID:	Default Cooler		Temp:	0.0°C								
Cooler Inspection	Checklist											
Custody Seals				N	o Con	tainers Inta	act					Yes
COC/Labels Agr	ree			Ye	es Pres	servation C	onfirmed					No
Received On Ice	•			Ye	es							

Report Comments

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions.

Reviewed and Approved By:

atheram urphy

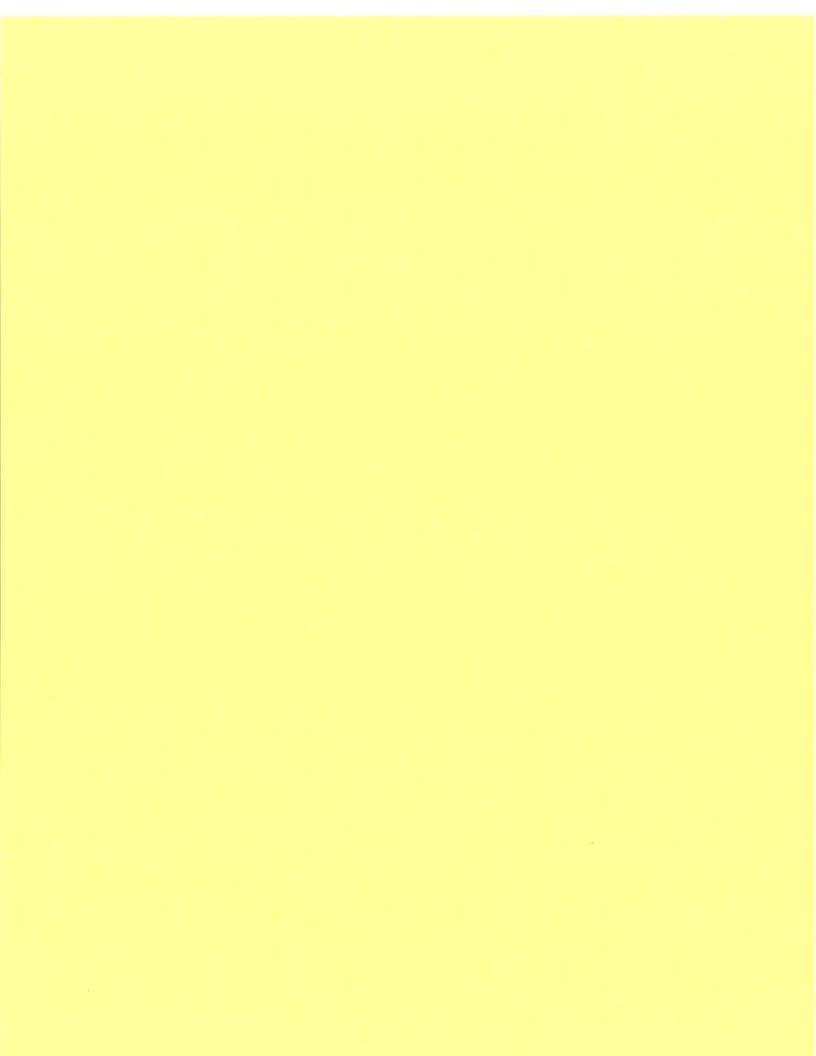
Heather Murphy

Customer Relationship Specialist heather.murphy@microbac.com 08/02/24 16:39

CHAIN OF CHSTODY RECORD 600 E. 17th St. S. 30

LABORATORILLA, INC.

600 E. 17th St. S. Newton, IA 50208 Phone: 641-792-8451 Fax: 641-792-7989 30 Wa Ph Fa


HLW Engineering
PM: Heather Murphy

205 E \	VanBuren St
Center	ville, IA 52544
Phone:	641-437-7023
Fax:	641-437-7040

641-437-7040 PAGE OF

Page 5 of 5

SAMPLER:	whipp all Co	SUF		REPORT TO: NAME: COMPANY NAME: ADDRESS: CITY/ST/ZIP: PHONE: 5(5) FAX:	HLD B	* 3 CA	Eng 14	inee	502	48_	ADDRE CITY/S' PHONE	NY NAM SS: [/ZIP:	Marshallto	clatak, Mgv Co SLF 217 wn, IA 50158
CLIENT SAMPLE NUMBER	DATE	TIME	SAMP	LE LOCATION	NO. OF CONTAINERS	MATRIX	GRAB/COMPOSITE	Copper Total (A)	ANAL	YSES RI	EQUIRED	SAI	LAB USE ORATORY WORK ORDER	LABORATORY SAMPLE NUMBER
100 gg	7-18-24	14:50	M	w97	1	W	6	X	_				mice	01
			- L. T. M.						_					
					_			\vdash	+	1				
					_			-	_	-				
									_	+				
								\vdash	+	++	++-			
					_				+	++				
					_		\vdash		+	++				
					-				+	-				
						4			\perp					
Relinquished by: (Signatur	re)	Date 1/2 Time	Received Received	ved by: (Signature)		Date				rn-Aroun Stan			RushContact Lab	Prior to Submission
Relinquished by: (Signatur	re)	Date Time	Receiv	yed for Lab by: (Signa	ture)	Date	A	4-29	/ Re	marks:	ga (ga (r. 1974), 1974), 1974, 1974, 1974, 1974, 1974, 1974, 1974, 1974, 1974, 1974, 1974, 1974, 1974, 1974, 1		į.	
			Y	Original - Lab	Сору	• Y	ellow	- Samp	ler Co	ру				FORM: CCR 7-97

Microbac Laboratories, Inc., Newton

CERTIFICATE OF ANALYSIS 1HJ1337

Project Description

6003

For:

Todd Whipple

HLW Engineering

204 West Broad St

Story City, IA 50248

Heather Murphy

pasheram urph

Customer Relationship Specialist

Friday, November 1, 2024

Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories. Review and compilation of your report was completed by Microbac Laboratories, Inc., Newton. If you have any questions, comments, or require further assistance regarding this report, please contact your service representative listed above.

I certify that all test results meet all of the requirements of the accrediting authority listed within this report. Analytical results are reported on a 'as received' basis unless specified otherwise. Analytical results for solids with units ending in (dry) are reported on a dry weight basis. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories. The reported results are related only to the samples analyzed as received.

Microbac Laboratories, Inc.

HLW Engineering

Project Name: 6003

Todd Whipple 204 West Broad St Story City, IA 50248 Project / PO Number: N/A Received: 10/16/2024 Reported: 11/01/2024

Sample Summary Report

Sample Name MW-85 (B)	<u>Laboratory ID</u> 1HJ1337-01	Client Matrix Aqueous	Sample Type GRAB	Sample Begin	<u>Sample Taken</u> 10/15/24 11:33	<u>Lab Received</u> 10/16/24 10:26
WVV-63 (B)	11131337-01	Aqueous	GNAD		10/13/24 11.33	10/10/24 10.20
MW-98 (B)	1HJ1337-02	Aqueous	GRAB		10/15/24 14:53	10/16/24 10:26
MW-99 (B)	1HJ1337-03	Aqueous	GRAB		10/15/24 10:10	10/16/24 10:26
MW-49	1HJ1337-04	Aqueous	GRAB		10/15/24 12:38	10/16/24 10:26
MW-54	1HJ1337-05	Aqueous	GRAB		10/15/24 12:20	10/16/24 10:26
MW-81	1HJ1337-06	Aqueous	GRAB		10/15/24 15:48	10/16/24 10:26
MW-87	1HJ1337-07	Aqueous	GRAB		10/15/24 15:36	10/16/24 10:26
MW-89	1HJ1337-08	Aqueous	GRAB		10/15/24 15:20	10/16/24 10:26
MW-91	1HJ1337-09	Aqueous	GRAB		10/15/24 15:09	10/16/24 10:26
MW-93	1HJ1337-10	Aqueous	GRAB		10/15/24 09:53	10/16/24 10:26
MW-94	1HJ1337-11	Aqueous	GRAB		10/15/24 12:03	10/16/24 10:26
MW-95	1HJ1337-12	Aqueous	GRAB		10/15/24 11:07	10/16/24 10:26
MW-96R	1HJ1337-13	Aqueous	GRAB		10/15/24 13:59	10/16/24 10:26
MW-97	1HJ1337-14	Aqueous	GRAB		10/15/24 11:49	10/16/24 10:26
Duplicate	1HJ1337-15	Aqueous	GRAB		10/15/24 00:00	10/16/24 10:26
LW-75	1HJ1337-16	Aqueous	GRAB		10/15/24 13:07	10/16/24 10:26

Analytical Testing Parameters

Client Sample ID: MW-85 (B)
Sample Matrix: Aqueous
Lab Sample ID: 1HJ1337-01

Collected By: Whipple, Todd
Collection Date: 10/15/2024 11:33

Analyses Performed by: Microbac Laboratories, Inc., Newton

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Bromomethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Chloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Acetone	<10.0	10.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Methyl lodide	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1	Q3	10/17/24 0000	10/17/24 2059	BDF
Methylene Chloride	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Acrylonitrile	<5.0	5.0	ug/L	1		10/22/24 0000	10/22/24 1355	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Bromochloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Chloroform	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Benzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Trichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Dibromomethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Toluene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Chlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Ethylbenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Xylenes, total	<2.0	2.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF

Client Sample ID:MW-85 (B)Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HJ1337-01Collection Date:10/15/2024 11:33

Compounds Styrene <1.0	Lab Sample ID: 1HJ1337-01					Collection	Date: 10/15/	2024 11:33	
Promoform	•	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
1,2,3-Trichloropropane	Styrene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
trans-1,4-Dichloro-2-butene <5.0 5.0 ug/L 1 10/17/24 0000 10/17/24 2059 BDF 1,1,2,2-Tetrachloroethane <1.0	Bromoform	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
1,1,2,2-Tetrachloroethane	1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
1,4-Dichlorobenzene <1.0 1.0 ug/L 1 10/17/24 0000 10/17/24 2059 BDR 1,2-Dichlorobenzene <1.0 1.0 ug/L 1 10/17/24 0000 10/17/24 2059 BDR 1,2-Dichlorobenzene <5.0 5.0 ug/L 1 10/17/24 0000 10/17/24 2059 BDR Surrogate: Dibromofluoromethane 97.1 Limit: 75-136 % Rec 1 10/17/24 0000 10/17/24 2059 BDR Surrogate: Dibromofluoromethane 98.3 Limit: 55-134 % Rec 1 10/22/24 0000 10/22/24 1355 CSM Surrogate: Dibromofluorobentane-d4 103 Limit: 56-140 % Rec 1 10/22/24 0000 10/22/24 1355 CSM Surrogate: 10luene-d8 93.0 Limit: 86-114 % Rec 1 10/22/24 0000 10/17/24 2059 BDR Surrogate: 4-Bromofluorobenzene 99.4 Limit: 78-121 % Rec 1 10/17/24 0000 10/17/24 2059 BDR Determination of Total Metals Result Result Result Note	trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
1,2-Dichlorobenzene <1.0	1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
1,2-Dibromo-3-chloropropane	1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Surrogate: Dibromofituoromethane 97.1 Limit: 75-136 % Rec 1 10/17/24 0000 10/17/24 2059 BDF Surrogate: Dibromofituoromethane 98.3 Limit: 57-134 % Rec 1 10/22/24 0000 10/22/24 1355 CSM Surrogate: 1,2-Dichloroethane-d4 103 Limit: 53-140 % Rec 1 10/22/24 0000 10/22/24 1355 CSM Surrogate: 1,2-Dichloroethane-d4 98.4 Limit: 86-114 % Rec 1 10/17/24 0000 10/22/24 1355 CSM Surrogate: Toluene-d8 93.0 Limit: 86-114 % Rec 1 10/17/24 0000 10/17/24 2059 BDF Surrogate: Toluene-d8 97.1 Limit: 82-121 % Rec 1 10/17/24 0000 10/17/24 2059 BDF Surrogate: 4-Bromofluorobenzene 99.4 Limit: 78-121 % Rec 1 10/17/24 0000 10/17/24 2059 BDF Determination of Total Metals Result RL Units DF Note Prepared Analyzed Analyzed Analyzed EPA 3005A/EPA 6020A A<	1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Surrogate: Dibromofituoromethane 98.3 Limit: 57-134 % Rec 1 10/22/24 0000 10/22/24 1355 CSM. Surrogate: 1,2-Dichloroethane-d4 103 Limit: 53-140 % Rec 1 10/22/24 0000 10/22/24 1355 CSM. Surrogate: 1,2-Dichloroethane-d4 98.4 Limit: 61-142 % Rec 1 10/17/24 0000 10/17/24 2059 BDF Surrogate: Toluene-d8 93.0 Limit: 61-142 % Rec 1 10/17/24 0000 10/17/24 2059 BDF Surrogate: Toluene-d8 97.1 Limit: 78-121 % Rec 1 10/17/24 0000 10/17/24 2059 BDF Surrogate: 4-Bromofluorobenzene 99.4 Limit: 78-121 % Rec 1 10/17/24 0000 10/17/24 2059 BDF Surrogate: 4-Bromofluorobenzene 95.9 Limit: 80-116 % Rec 1 10/17/24 0000 10/17/24 2059 BDF Determination of Total Metals Result RL Units DF Note Prepared Analyzed Analyzed Analyzed Analyzed Analyzed Anal	1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2059	BDF
Surrogate: 1,2-Dichloroethane-d4 103 Limit: 53-140 % Rec 1 10/22/24 0000 10/22/24 1355 CSM Surrogate: 1,2-Dichloroethane-d4 98.4 Limit: 61-142 % Rec 1 10/17/24 0000 10/17/24 2059 BDF Surrogate: Toluene-d8 93.0 Limit: 86-114 % Rec 1 10/17/24 0000 10/22/24 1355 CSM Surrogate: Toluene-d8 97.1 Limit: 86-114 % Rec 1 10/17/24 0000 10/17/24 2059 BDF Surrogate: 4-Bromofluorobenzene 99.4 Limit: 87-121 % Rec 1 10/17/24 0000 10/17/24 2059 BDF Surrogate: 4-Bromofluorobenzene 95.9 Limit: 80-116 % Rec 1 10/17/24 0000 10/17/24 2059 BDF Determination of Total Metals Result RL Units DF Note Prepared Analyzed Analyzed Analyzed Analyzed Analyzed Analyzed Analyzed <t< td=""><td>Surrogate: Dibromofluoromethane</td><td>97.1</td><td>Limit: 75-136</td><td>% Rec</td><td>1</td><td></td><td>10/17/24 0000</td><td>10/17/24 2059</td><td>BDF</td></t<>	Surrogate: Dibromofluoromethane	97.1	Limit: 75-136	% Rec	1		10/17/24 0000	10/17/24 2059	BDF
Surrogate: 1,2-Dichloroethane-d4 98.4 Limit: 61-142 % Rec 1 10/17/24 0000 10/17/24 2059 BDF Surrogate: Toluene-d8 93.0 Limit: 86-114 % Rec 1 10/22/24 0000 10/22/24 1355 CSN Surrogate: Toluene-d8 97.1 Limit: 82-121 % Rec 1 10/17/24 0000 10/17/24 2059 BDF Surrogate: 4-Bromofluorobenzene 99.4 Limit: 80-116 % Rec 1 10/22/24 0000 10/22/24 2059 BDF Surrogate: 4-Bromofluorobenzene 95.9 Limit: 80-116 % Rec 1 10/17/24 0000 10/17/24 2059 BDF Determination of Total Metals Result RL Units DF Note Prepared Analyzed Analyz	Surrogate: Dibromofluoromethane	98.3	Limit: 57-134	% Rec	1		10/22/24 0000	10/22/24 1355	CSM
Surrogate: Toluene-d8 93.0 Limit: 86-114 % Rec 1 10/22/24 0000 10/22/24 1355 CSM. Surrogate: Toluene-d8 97.1 Limit: 82-121 % Rec 1 10/17/24 0000 10/17/24 2059 BDF Surrogate: 4-Bromofluorobenzene 99.4 Limit: 80-116 % Rec 1 10/22/24 0000 10/22/24 1355 CSM. Surrogate: 4-Bromofluorobenzene 95.9 Limit: 80-116 % Rec 1 10/17/24 0000 10/17/24 2059 BDF Determination of Total Metals Result RL Units DF Note Prepared Analyzed Analyzed <td>Surrogate: 1,2-Dichloroethane-d4</td> <td>103</td> <td>Limit: 53-140</td> <td>% Rec</td> <td>1</td> <td></td> <td>10/22/24 0000</td> <td>10/22/24 1355</td> <td>CSM</td>	Surrogate: 1,2-Dichloroethane-d4	103	Limit: 53-140	% Rec	1		10/22/24 0000	10/22/24 1355	CSM
Surrogate: Toluene-d8 97.1 Limit: 82-121 % Rec 1 10/17/24 0000 10/17/24 2059 BDF Surrogate: 4-Bromofluorobenzene 99.4 Limit: 78-121 % Rec 1 10/22/24 0000 10/17/24 2059 BDF Determination of Total Metals Result RL Units DF Note Prepared Analyzed	Surrogate: 1,2-Dichloroethane-d4	98.4	Limit: 61-142	% Rec	1		10/17/24 0000	10/17/24 2059	BDF
Surrogate: 4-Bromofluorobenzene 99.4 Limit: 78-121 % Rec 1 10/22/24 0000 10/22/24 1355 CSM. Surrogate: 4-Bromofluorobenzene 95.9 Limit: 80-116 % Rec 1 10/17/24 0000 10/17/24 2059 BDF Determination of Total Metals Result RL Units DF Note Prepared Analyzed	Surrogate: Toluene-d8	93.0	Limit: 86-114	% Rec	1		10/22/24 0000	10/22/24 1355	CSM
Determination of Total Metals Result RL Units DF Note Prepared Analyzed	Surrogate: Toluene-d8	97.1	Limit: 82-121	% Rec	1		10/17/24 0000	10/17/24 2059	BDF
Determination of Total Metals Result RL Units DF Note Prepared Analyzed Analyzed	Surrogate: 4-Bromofluorobenzene	99.4	Limit: 78-121	% Rec	1		10/22/24 0000	10/22/24 1355	CSM
EPA 3005A/EPA 6020A Antimony, total	Surrogate: 4-Bromofluorobenzene	95.9	Limit: 80-116	% Rec	1		10/17/24 0000	10/17/24 2059	BDF
Antimony, total	Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
Arsenic, total 	EPA 3005A/EPA 6020A								
Barium, total 0.136 0.0040 mg/L 4 10/17/24 1551 10/18/24 2318 RVA Beryllium, total <0.0040	Antimony, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/18/24 2318	RVV
Beryllium, total <0.0040 0.0040 mg/L 4 10/17/24 1551 10/18/24 2318 RVX Cadmium, total <0.0008	Arsenic, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/18/24 2318	RVV
Cadmium, total <0.0008 0.0008 mg/L 4 10/17/24 1551 10/18/24 2318 RVA Chromium, total <0.0080	Barium, total	0.136	0.0040	mg/L	4		10/17/24 1551	10/18/24 2318	RVV
Cadmium, total <0.0008 0.0008 mg/L 4 10/17/24 1551 10/18/24 2318 RVA Chromium, total <0.0080	Beryllium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/18/24 2318	RVV
Cobalt, total		<0.0008	0.0008	mg/L	4		10/17/24 1551	10/18/24 2318	RVV
Cobalt, total <0.0004 0.0004 mg/L 4 10/17/24 1551 10/18/24 2318 RVX Copper, total <0.0040	Chromium, total	<0.0080	0.0080	mg/L	4		10/17/24 1551	10/18/24 2318	RVV
Copper, total <0.0040 0.0040 mg/L 4 10/17/24 1551 10/18/24 2318 RVV Lead, total <0.0040	Cobalt, total	<0.0004	0.0004	_	4		10/17/24 1551	10/18/24 2318	RVV
Lead, total <0.0040	Copper, total	<0.0040	0.0040	-	4		10/17/24 1551	10/18/24 2318	RVV
Nickel, total <0.0040 0.0040 mg/L 4 10/17/24 1551 10/18/24 2318 RVX Selenium, total <0.0040		<0.0040		_	4		10/17/24 1551		RVV
Selenium, total <0.0040		<0.0040	0.0040	Ū	4				RVV
Silver, total <0.0040 0.0040 mg/L 4 10/17/24 1551 10/18/24 2318 RVX Thallium, total <0.0020	·			_					RVV
Thallium, total <0.0020 0.0020 mg/L 4 10/17/24 1551 10/18/24 2318 RVV Vanadium, total <0.0200	·			_					RVV
Vanadium, total <0.0200 0.0200 mg/L 4 10/17/24 1551 10/18/24 2318 RVV	·			-					RVV
·				Ū					RVV
	Zinc, total	<0.0200	0.0200	mg/L	4		10/17/24 1551	10/18/24 2318	RVV

Client Sample ID: MW-98 (B)
Sample Matrix: Aqueous
Lab Sample ID: 1HJ1337-02

Collected By: Whipple, Todd
Collection Date: 10/15/2024 14:53

Analyses Performed by: Microbac Laboratories, Inc., Newton

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Bromomethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Chloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Acetone	<10.0	10.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Methyl lodide	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1	Q3	10/17/24 0000	10/17/24 2122	BDF
Methylene Chloride	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Acrylonitrile	<5.0	5.0	ug/L	1		10/22/24 0000	10/22/24 1418	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Bromochloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Chloroform	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Benzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Trichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Dibromomethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Toluene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Chlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Ethylbenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Xylenes, total	<2.0	2.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Styrene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Bromoform	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF

Client Sample ID:MW-98 (B)Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HJ1337-02Collection Date:10/15/2024 14:5

Lab Sample ID: 1HJ1337-02				(Collection	Date: 10/1	5/2024 14:53	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2122	BDF
Surrogate: Dibromofluoromethane	98.4	Limit: 57-134	% Rec	1		10/22/24 0000	10/22/24 1418	CSM
Surrogate: Dibromofluoromethane	96.9	Limit: 75-136	% Rec	1		10/17/24 0000	10/17/24 2122	BDF
Surrogate: 1,2-Dichloroethane-d4	104	Limit: 53-140	% Rec	1		10/22/24 0000	10/22/24 1418	CSM
Surrogate: 1,2-Dichloroethane-d4	98.3	Limit: 61-142	% Rec	1		10/17/24 0000	10/17/24 2122	BDF
Surrogate: Toluene-d8	93.1	Limit: 86-114	% Rec	1		10/22/24 0000	10/22/24 1418	CSM
Surrogate: Toluene-d8	97.1	Limit: 82-121	% Rec	1		10/17/24 0000	10/17/24 2122	BDF
Surrogate: 4-Bromofluorobenzene	96.0	Limit: 80-116	% Rec	1		10/17/24 0000	10/17/24 2122	BDF
Surrogate: 4-Bromofluorobenzene	99.4	Limit: 78-121	% Rec	1		10/22/24 0000	10/22/24 1418	CSM
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/18/24 2355	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/18/24 2355	RVV
Barium, total	0.137	0.0040	mg/L	4		10/17/24 1551	10/18/24 2355	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/18/24 2355	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		10/17/24 1551	10/18/24 2355	RVV
			9, =	4				
Chromium, total	<0.0080	0.0080	mg/L	4		10/17/24 1551	10/18/24 2355	RVV
Chromium, total Cobalt, total	<0.0080 0.0019					10/17/24 1551 10/17/24 1551	10/18/24 2355 10/18/24 2355	RVV RVV
		0.0080	mg/L	4				
Cobalt, total	0.0019	0.0080 0.0004	mg/L mg/L	4 4		10/17/24 1551	10/18/24 2355	RVV
Cobalt, total Copper, total	0.0019 <0.0040	0.0080 0.0004 0.0040	mg/L mg/L mg/L	4 4 4		10/17/24 1551 10/17/24 1551	10/18/24 2355 10/18/24 2355	RVV RVV
Cobalt, total Copper, total Lead, total	0.0019 <0.0040 <0.0040	0.0080 0.0004 0.0040 0.0040	mg/L mg/L mg/L mg/L	4 4 4 4		10/17/24 1551 10/17/24 1551 10/17/24 1551	10/18/24 2355 10/18/24 2355 10/18/24 2355	RVV RVV RVV
Cobalt, total Copper, total Lead, total Nickel, total	0.0019 <0.0040 <0.0040 <0.0040	0.0080 0.0004 0.0040 0.0040 0.0040	mg/L mg/L mg/L mg/L mg/L	4 4 4 4		10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551	10/18/24 2355 10/18/24 2355 10/18/24 2355 10/18/24 2355	RVV RVV RVV
Cobalt, total Copper, total Lead, total Nickel, total Selenium, total	0.0019 <0.0040 <0.0040 <0.0040 <0.0040	0.0080 0.0004 0.0040 0.0040 0.0040 0.0040	mg/L mg/L mg/L mg/L mg/L	4 4 4 4 4		10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551	10/18/24 2355 10/18/24 2355 10/18/24 2355 10/18/24 2355 10/18/24 2355	RVV RVV RVV RVV
Cobalt, total Copper, total Lead, total Nickel, total Selenium, total Silver, total	0.0019 <0.0040 <0.0040 <0.0040 <0.0040	0.0080 0.0004 0.0040 0.0040 0.0040 0.0040	mg/L mg/L mg/L mg/L mg/L mg/L	4 4 4 4 4		10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551	10/18/24 2355 10/18/24 2355 10/18/24 2355 10/18/24 2355 10/18/24 2355 10/18/24 2355	RVV RVV RVV RVV RVV

Client Sample ID: MW-99 (B)
Sample Matrix: Aqueous
Lab Sample ID: 1HJ1337-03

Collected By: Whipple, Todd
Collection Date: 10/15/2024 10:10

Analyses Performed by: Microbac Laboratories, Inc., Newton

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Bromomethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Chloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Acetone	<10.0	10.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Methyl Iodide	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1	Q3	10/17/24 0000	10/17/24 2145	BDF
Methylene Chloride	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Acrylonitrile	<5.0	5.0	ug/L	1		10/22/24 0000	10/22/24 1441	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Bromochloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Chloroform	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Benzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Trichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Dibromomethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Toluene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Chlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Ethylbenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Xylenes, total	<2.0	2.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Styrene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Bromoform	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF

Client Sample ID:MW-99 (B)Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HJ1337-03Collection Date:10/15/2024 10:10

Lab Sample ID: 1HJ1337-03					Collection	Date: 10/15/	2024 10:10	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2145	BDF
Surrogate: Dibromofluoromethane	96.8	Limit: 75-136	% Rec	1		10/17/24 0000	10/17/24 2145	BDF
Surrogate: Dibromofluoromethane	98.4	Limit: 57-134	% Rec	1		10/22/24 0000	10/22/24 1441	CSM
Surrogate: 1,2-Dichloroethane-d4	98.8	Limit: 61-142	% Rec	1		10/17/24 0000	10/17/24 2145	BDF
Surrogate: 1,2-Dichloroethane-d4	104	Limit: 53-140	% Rec	1		10/22/24 0000	10/22/24 1441	CSM
Surrogate: Toluene-d8	97.2	Limit: 82-121	% Rec	1		10/17/24 0000	10/17/24 2145	BDF
Surrogate: Toluene-d8	94.5	Limit: 86-114	% Rec	1		10/22/24 0000	10/22/24 1441	CSM
Surrogate: 4-Bromofluorobenzene	96.1	Limit: 80-116	% Rec	1		10/17/24 0000	10/17/24 2145	BDF
Surrogate: 4-Bromofluorobenzene	98.4	Limit: 78-121	% Rec	1		10/22/24 0000	10/22/24 1441	CSM
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0001	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0001	RVV
Barium, total	0.0888	0.0040	mg/L	4		10/17/24 1551	10/19/24 0001	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0001	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		10/17/24 1551	10/19/24 0001	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/17/24 1551	10/19/24 0001	RVV
Cobalt, total	0.0009	0.0004	mg/L	4		10/17/24 1551	10/19/24 0001	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0001	RVV
Lead, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0001	RVV
Nickel, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0001	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0001	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0001	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0001	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/17/24 1551	10/19/24 0001	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		10/17/24 1551	10/19/24 0001	RVV
	-0.0200	0.0200	9/ -	7		10/11/24 1001	13/13/24 3001	1 X V

Client Sample ID: MW-49
Sample Matrix: Aqueous
Lab Sample ID: 1HJ1337-04

Collected By: Whipple, Todd
Collection Date: 10/15/2024 12:38

Volatile Organic Compounds by GCMS	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA RSK-175								
Methane	4770	100	ug/L	20	D3	10/23/24 1040	10/23/24 1548	KJB
Ethene	<5.00	5.00	ug/L	1		10/22/24 1401	10/22/24 1553	KJB
Ethane	<5.00	5.00	ug/L	1		10/22/24 1401	10/22/24 1553	KJB

Analyses Performed by: Microbac Laboratories, Inc., Newton

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
Bromomethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
Chloroethane	5.5	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
Acetone	<10.0	10.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
Methyl lodide	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1	Q3	10/17/24 0000	10/17/24 2208	BDF
Methylene Chloride	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
Acrylonitrile	<5.0	5.0	ug/L	1		10/22/24 0000	10/22/24 1503	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
1,1-Dichloroethane	1.2	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
Bromochloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
Chloroform	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
Benzene	3.7	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
Trichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
Dibromomethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
Toluene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF

Client Sample ID:MW-49Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HJ1337-04Collection Date:10/15/2024 12:38

Lab Sample ID: 1HJ1337-04					Collection	Date: 10/15/	Date: 10/15/2024 12:38		
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst	
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF	
Dibromochloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF	
1,2-Dibromoethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF	
Chlorobenzene	1.1	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF	
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF	
Ethylbenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF	
Xylenes, total	<2.0	2.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF	
Styrene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF	
Bromoform	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF	
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF	
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF	
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF	
1,4-Dichlorobenzene	7.9	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF	
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF	
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2208	BDF	
Surrogate: Dibromofluoromethane	97.5	Limit: 57-134	% Rec	1		10/22/24 0000	10/22/24 1503	CSM	
Surrogate: Dibromofluoromethane	96.5	Limit: 75-136	% Rec	1		10/17/24 0000	10/17/24 2208	BDF	
Surrogate: 1,2-Dichloroethane-d4	98.7	Limit: 61-142	% Rec	1		10/17/24 0000	10/17/24 2208	BDF	
Surrogate: 1,2-Dichloroethane-d4	104	Limit: 53-140	% Rec	1		10/22/24 0000	10/22/24 1503	CSM	
Surrogate: Toluene-d8	97.3	Limit: 82-121	% Rec	1		10/17/24 0000	10/17/24 2208	BDF	
Surrogate: Toluene-d8	95.2	Limit: 86-114	% Rec	1		10/22/24 0000	10/22/24 1503	CSM	
Surrogate: 4-Bromofluorobenzene	97.2	Limit: 80-116	% Rec	1		10/17/24 0000	10/17/24 2208	BDF	
Surrogate: 4-Bromofluorobenzene	99.4	Limit: 78-121	% Rec	1		10/22/24 0000	10/22/24 1503	CSM	
Determination of Conventional Chemistry Parameters	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst	
2320B									
Alkalinity, as CaCO3	1170	50	mg/L	1		10/18/24 1042	10/18/24 1458	BSS	
EPA 9040									
рН	6.3	0.5	рН	1	H4		10/21/24 0916	BSS	
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst	
EPA 3005A/EPA 6020A									
Antimony, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0007	RVV	
Arsenic, total	0.520	0.0040	mg/L	4		10/17/24 1551	10/19/24 0007	RVV	
Barium, total	0.213	0.0040	mg/L	4		10/17/24 1551	10/19/24 0007	RVV	
Beryllium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0007	RVV	
Cadmium, total	<0.0008	0.0008	mg/L	4		10/17/24 1551	10/19/24 0007	RVV	
Chromium, total	<0.0080	0.0080	mg/L	4		10/17/24 1551	10/19/24 0007	RVV	
Cobalt, total	0.0669	0.0004	mg/L	4		10/17/24 1551	10/19/24 0007	RVV	
Copper, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0007	RVV	
Lead, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0007	RVV	
Nickel, total	0.0339	0.0040	mg/L	4		10/17/24 1551	10/19/24 0007	RVV	
randa, total	0.0009	0.0040	g/ L	_		10/11/24 1001	10/10/27 0007	. (v v	

Microbac Laboratories, Inc., Newton

CERTIFICATE OF ANALYSIS

1HJ1337

Client Sample ID:MW-49Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HJ1337-04Collection Date:10/15/2024 12:38

Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Selenium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0007	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0007	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0007	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/17/24 1551	10/19/24 0007	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		10/17/24 1551	10/19/24 0007	RVV

Client Sample ID: MW-54
Sample Matrix: Aqueous
Lab Sample ID: 1HJ1337-05

Collected By: Whipple, Todd

Collection Date: 10/15/2024 12:20

Analyses Performed b	y: Microbac	Laboratories	Inc., - Marietta, OH
----------------------	-------------	--------------	----------------------

Volatile Organic Compounds by GCMS	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA RSK-175								
Methane	78.0	5.00	ug/L	1		10/23/24 1040	10/23/24 1441	KJB
Ethene	<5.00	5.00	ug/L	1		10/22/24 1401	10/22/24 1607	KJB
Ethane	<5.00	5.00	ug/L	1		10/22/24 1401	10/22/24 1607	KJB

Analyses Performed by: Microbac Laboratories, Inc., Newton

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Bromomethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Chloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Acetone	<10.0	10.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Methyl lodide	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1	Q3	10/17/24 0000	10/17/24 2231	BDF
Methylene Chloride	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Acrylonitrile	<5.0	5.0	ug/L	1		10/22/24 0000	10/22/24 1526	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Bromochloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Chloroform	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Benzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Trichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Dibromomethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Toluene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF

Client Sample ID:MW-54Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HJ1337-05Collection Date:10/15/2024 12:20

Lab Sample ID: 1HJ1337-05					Collection	Date: 10/15/	2024 12:20	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Chlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Ethylbenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Xylenes, total	<2.0	2.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Styrene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Bromoform	<1.0		ug/L	1		10/17/24 0000	10/17/24 2231	BDF
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
trans-1,4-Dichloro-2-butene	<5.0		ug/L	1		10/17/24 0000	10/17/24 2231	BDF
1,1,2,2-Tetrachloroethane	<1.0		ug/L	1		10/17/24 0000	10/17/24 2231	BDF
1,4-Dichlorobenzene	2.9	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2231	BDF
1,2-Dibromo-3-chloropropane	<5.0		ug/L	1		10/17/24 0000	10/17/24 2231	BDF
Surrogate: Dibromofluoromethane	97.9	Limit: 57-134	% Rec	1		10/22/24 0000	10/22/24 1526	CSM
Surrogate: Dibromofluoromethane	96.9	Limit: 75-136	% Rec	1		10/17/24 0000	10/17/24 2231	BDF
Surrogate: 1,2-Dichloroethane-d4	97.8	Limit: 61-142	% Rec	1		10/17/24 0000	10/17/24 2231	BDF
Surrogate: 1,2-Dichloroethane-d4	104	Limit: 53-140	% Rec	1		10/22/24 0000	10/22/24 1526	CSM
Surrogate: Toluene-d8	94.5	Limit: 86-114	% Rec	1		10/22/24 0000	10/22/24 1526	CSM
Surrogate: Toluene-d8	97.0	Limit: 82-121	% Rec	1		10/17/24 0000	10/17/24 2231	BDF
Surrogate: 4-Bromofluorobenzene	97.0	Limit: 80-116	% Rec	1		10/17/24 0000	10/17/24 2231	BDF
Surrogate: 4-Bromofluorobenzene	99.3	Limit: 78-121	% Rec	1		10/22/24 0000	10/22/24 1526	CSM
Determination of Conventional Chemistry Parameters	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
2320B								
Alkalinity, as CaCO3	612	50	mg/L	1		10/18/24 1042	10/18/24 1458	BSS
EPA 9040								
рН	6.4	0.5	pН	1	H4		10/21/24 0916	BSS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0013	RVV
Arsenic, total	0.0054	0.0040	mg/L	4		10/17/24 1551	10/19/24 0013	RVV
Barium, total	0.481	0.0040	mg/L	4		10/17/24 1551	10/19/24 0013	RVV
Beryllium, total	<0.0040		mg/L	4		10/17/24 1551	10/19/24 0013	RVV
Cadmium, total	<0.0008		mg/L	4		10/17/24 1551	10/19/24 0013	RVV
Chromium, total	<0.0080		mg/L	4		10/17/24 1551	10/19/24 0013	RVV
Cobalt, total	0.0099	0.0004	mg/L	4		10/17/24 1551	10/19/24 0013	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0013	RVV
Lead, total	<0.0040		mg/L	4		10/17/24 1551	10/19/24 0013	RVV
Nickel, total	0.0226	0.0040	mg/L	4		10/17/24 1551	10/19/24 0013	RVV
monor, total	0.0220	0.0040	mg/L	7		10/11/24 1001	10/13/24 0013	1 X V

1HJ1337

Client Sample ID:MW-54Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HJ1337-05Collection Date:10/15/2024 12:20

Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Selenium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0013	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0013	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0013	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/17/24 1551	10/19/24 0013	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		10/17/24 1551	10/19/24 0013	RVV

Client Sample ID: MW-81
Sample Matrix: Aqueous
Lab Sample ID: 1HJ1337-06

Collected By: Whipple, Todd
Collection Date: 10/15/2024 15:48

Volatile Organic Compounds by GCMS	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA RSK-175								
Methane	560	5.00	ug/L	1		10/22/24 1401	10/22/24 1620	KJB
Ethene	<5.00	5.00	ug/L	1		10/22/24 1401	10/22/24 1620	KJB
Ethane	<5.00	5.00	ug/L	1		10/22/24 1401	10/22/24 1620	KJB

Analyses Performed by: Microbac Laboratories, Inc., Newton

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Vinyl Chloride	6.5	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Bromomethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Chloroethane	6.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Acetone	<10.0	10.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Methyl lodide	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1	Q3	10/17/24 0000	10/17/24 2254	BDF
Methylene Chloride	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Acrylonitrile	<5.0	5.0	ug/L	1		10/22/24 0000	10/22/24 1548	CSM
trans-1,2-Dichloroethylene	2.4	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
1,1-Dichloroethane	24.8	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
cis-1,2-Dichloroethylene	127	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Bromochloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Chloroform	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Benzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
1,2-Dichloroethane	11.2	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Trichloroethylene	2.2	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
1,2-Dichloropropane	6.9	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Dibromomethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Toluene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF

Client Sample ID:MW-81Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HJ1337-06Collection Date:10/15/2024 15:48

Lab Sample ID: 1HJ1337-06					Collection	Date: 10/15/	2024 15:48	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Chlorobenzene	1.8	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Ethylbenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Xylenes, total	<2.0	2.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Styrene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Bromoform	<1.0		ug/L	1		10/17/24 0000	10/17/24 2254	BDF
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
trans-1,4-Dichloro-2-butene	<5.0		ug/L	1		10/17/24 0000	10/17/24 2254	BDF
1,1,2,2-Tetrachloroethane	<1.0		ug/L	1		10/17/24 0000	10/17/24 2254	BDF
1,4-Dichlorobenzene	5.6	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2254	BDF
1,2-Dibromo-3-chloropropane	<5.0		ug/L	1		10/17/24 0000	10/17/24 2254	BDF
Surrogate: Dibromofluoromethane	97.2	5.0 Limit: 57-134	wg/∟ % Rec	1		10/17/24 0000		CSM
Surrogate: Dibromofluoromethane	96.5	Limit: 75-136	% Rec	1		10/22/24 0000	10/22/24 1548 10/17/24 2254	BDF
Surrogate: 1,2-Dichloroethane-d4	103	Limit: 73-130	% Rec	1		10/17/24 0000	10/17/24 2254	CSM
Surrogate: 1,2-Dichloroethane-d4	97.8	Limit: 61-142	% Rec	1		10/17/24 0000	10/17/24 2254	BDF
Surrogate: Toluene-d8	98.0	Limit: 82-121	% Rec	1		10/17/24 0000	10/17/24 2254	BDF
Surrogate: Toluene-d8	95.5	Limit: 86-114	% Rec	1		10/22/24 0000	10/22/24 1548	CSM
Surrogate: 4-Bromofluorobenzene	98.2	Limit: 78-121	% Rec	1		10/22/24 0000	10/22/24 1548	CSM
Surrogate: 4-Bromofluorobenzene	95.9	Limit: 80-116	% Rec	1		10/17/24 0000	10/17/24 2254	BDF
Determination of Conventional Chemistry Parameters	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
2320B								
Alkalinity, as CaCO3	907	50	mg/L	1		10/18/24 1042	10/18/24 1458	BSS
EPA 9040								
рН	6.3	0.5	рН	1	H4		10/21/24 0916	BSS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0020	RVV
Arsenic, total	0.0060	0.0040	mg/L	4		10/17/24 1551	10/19/24 0020	RVV
Barium, total	1.58	0.0040	mg/L	4		10/17/24 1551	10/19/24 0020	RVV
Beryllium, total	<0.0040		mg/L	4		10/17/24 1551	10/19/24 0020	RVV
Cadmium, total	<0.0008		mg/L	4		10/17/24 1551	10/19/24 0020	RVV
Chromium, total	<0.0080		mg/L	4		10/17/24 1551	10/19/24 0020	RVV
Cobalt, total	0.0082	0.0004	mg/L	4		10/17/24 1551	10/19/24 0020	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0020	RVV
Lead, total	<0.0040		mg/L	4		10/17/24 1551	10/19/24 0020	RVV
Nickel, total	0.0094	0.0040	mg/L	4		10/17/24 1551	10/19/24 0020	RVV
Nickoi, totai	0.0034	0.0040	mg/L	4		10/11/24 1001	10/13/24 0020	IXV V

Microbac Laboratories, Inc., Newton

CERTIFICATE OF ANALYSIS

1HJ1337

Client Sample ID:MW-81Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HJ1337-06Collection Date:10/15/2024 15:48

Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Selenium, total	< 0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0020	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0020	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0020	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/17/24 1551	10/19/24 0020	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		10/17/24 1551	10/19/24 0020	RVV

Client Sample ID: MW-87
Sample Matrix: Aqueous
Lab Sample ID: 1HJ1337-07

Collected By: Whipple, Todd
Collection Date: 10/15/2024 15:36

Analyses Performed by: Microbac Laboratories, Inc., Newton

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Bromomethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Chloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Acetone	<10.0	10.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Methyl lodide	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1	Q3	10/17/24 0000	10/17/24 2316	BDF
Methylene Chloride	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Acrylonitrile	<5.0	5.0	ug/L	1		10/22/24 0000	10/22/24 1611	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Bromochloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Chloroform	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Benzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Trichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Dibromomethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Toluene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Chlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Ethylbenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Xylenes, total	<2.0	2.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Styrene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Bromoform	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF

Client Sample ID:MW-87Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HJ1337-07Collection Date:10/15/2024 15:36

Lab Sample ID: 1HJ1337-07					Collection	Date: 10/15	5/2024 15:36	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2316	BDF
Surrogate: Dibromofluoromethane	97.9	Limit: 57-134	% Rec	1		10/22/24 0000	10/22/24 1611	CSM
Surrogate: Dibromofluoromethane	97.4	Limit: 75-136	% Rec	1		10/17/24 0000	10/17/24 2316	BDF
Surrogate: 1,2-Dichloroethane-d4	103	Limit: 53-140	% Rec	1		10/22/24 0000	10/22/24 1611	CSM
Surrogate: 1,2-Dichloroethane-d4	99.1	Limit: 61-142	% Rec	1		10/17/24 0000	10/17/24 2316	BDF
Surrogate: Toluene-d8	94.0	Limit: 86-114	% Rec	1		10/22/24 0000	10/22/24 1611	CSM
Surrogate: Toluene-d8	96.8	Limit: 82-121	% Rec	1		10/17/24 0000	10/17/24 2316	BDF
Surrogate: 4-Bromofluorobenzene	99.2	Limit: 78-121	% Rec	1		10/22/24 0000	10/22/24 1611	CSM
Surrogate: 4-Bromofluorobenzene	96.2	Limit: 80-116	% Rec	1		10/17/24 0000	10/17/24 2316	BDF
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0026	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0026	RVV
Barium, total	0.100	0.0040	mg/L	4		10/17/24 1551	10/19/24 0026	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0026	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		10/17/24 1551	10/19/24 0026	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/17/24 1551	10/19/24 0026	RVV
0 1 11 1 1 1								RVV
Cobalt, total	<0.0004	0.0004	mg/L	4		10/17/24 1551	10/19/24 0026	
Copper, total	<0.0004 <0.0040	0.0004 0.0040	mg/L mg/L	4 4		10/17/24 1551 10/17/24 1551	10/19/24 0026 10/19/24 0026	RVV
•			•					
Copper, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0026	RVV
Copper, total Lead, total	<0.0040 <0.0040	0.0040 0.0040	mg/L mg/L	4 4		10/17/24 1551 10/17/24 1551	10/19/24 0026 10/19/24 0026	RVV RVV
Copper, total Lead, total Nickel, total	<0.0040 <0.0040 <0.0040	0.0040 0.0040 0.0040	mg/L mg/L mg/L	4 4 4		10/17/24 1551 10/17/24 1551 10/17/24 1551	10/19/24 0026 10/19/24 0026 10/19/24 0026	RVV RVV RVV
Copper, total Lead, total Nickel, total Selenium, total	<0.0040 <0.0040 <0.0040 <0.0040	0.0040 0.0040 0.0040 0.0040	mg/L mg/L mg/L mg/L	4 4 4 4		10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551	10/19/24 0026 10/19/24 0026 10/19/24 0026 10/19/24 0026	RVV RVV RVV
Copper, total Lead, total Nickel, total Selenium, total Silver, total	<0.0040 <0.0040 <0.0040 <0.0040 <0.0040	0.0040 0.0040 0.0040 0.0040 0.0040	mg/L mg/L mg/L mg/L mg/L	4 4 4 4		10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551	10/19/24 0026 10/19/24 0026 10/19/24 0026 10/19/24 0026 10/19/24 0026	RVV RVV RVV RVV

Client Sample ID: MW-89
Sample Matrix: Aqueous
Lab Sample ID: 1HJ1337-08

Collected By: Whipple, Todd
Collection Date: 10/15/2024 15:20

Analyses Performed by: Microbac Laboratories, Inc., Newton

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Bromomethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Chloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Acetone	<10.0	10.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Methyl Iodide	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1	Q3	10/17/24 0000	10/17/24 2339	BDF
Methylene Chloride	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Acrylonitrile	<5.0	5.0	ug/L	1		10/22/24 0000	10/22/24 1634	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Bromochloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Chloroform	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Benzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Trichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Dibromomethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Toluene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Chlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Ethylbenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Xylenes, total	<2.0	2.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Styrene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Bromoform	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF

Client Sample ID:MW-89Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HJ1337-08Collection Date:10/15/2024 15:20

Lab Sample ID: 1HJ1337-08					Collection	Date: 10/15/	2024 15:20	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		10/17/24 0000	10/17/24 2339	BDF
Surrogate: Dibromofluoromethane	96.6	Limit: 75-136	% Rec	1		10/17/24 0000	10/17/24 2339	BDF
Surrogate: Dibromofluoromethane	98.4	Limit: 57-134	% Rec	1		10/22/24 0000	10/22/24 1634	CSM
Surrogate: 1,2-Dichloroethane-d4	99.0	Limit: 61-142	% Rec	1		10/17/24 0000	10/17/24 2339	BDF
Surrogate: 1,2-Dichloroethane-d4	104	Limit: 53-140	% Rec	1		10/22/24 0000	10/22/24 1634	CSM
Surrogate: Toluene-d8	97.2	Limit: 82-121	% Rec	1		10/17/24 0000	10/17/24 2339	BDF
Surrogate: Toluene-d8	94.6	Limit: 86-114	% Rec	1		10/22/24 0000	10/22/24 1634	CSM
Surrogate: 4-Bromofluorobenzene	95.9	Limit: 80-116	% Rec	1		10/17/24 0000	10/17/24 2339	BDF
Surrogate: 4-Bromofluorobenzene	99.4	Limit: 78-121	% Rec	1		10/22/24 0000	10/22/24 1634	CSM
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0032	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0032	RVV
Barium, total	0.215	0.0040	mg/L	4		10/17/24 1551	10/19/24 0032	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0032	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		10/17/24 1551	10/19/24 0032	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/17/24 1551	10/19/24 0032	RVV
Cobalt, total	<0.0004	0.0004	mg/L	4		10/17/24 1551	10/19/24 0032	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0032	RVV
Lead, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0032	RVV
Nickel, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0032	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0032	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0032	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0032	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/17/24 1551	10/19/24 0032	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		10/17/24 1551	10/19/24 0032	RVV
	-0.0200	0.0200	9/ -	7		10/11/24 1001	13/13/24 3032	1100

Client Sample ID: MW-91
Sample Matrix: Aqueous
Lab Sample ID: 1HJ1337-09

Collected By: Whipple, Todd
Collection Date: 10/15/2024 15:09

Analyses Performed by: Microbac Laboratories, Inc., Newton

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Bromomethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Chloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Acetone	<10.0	10.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Methyl Iodide	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1	Q3	10/17/24 0000	10/18/24 0002	BDF
Methylene Chloride	<5.0	5.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Acrylonitrile	<5.0	5.0	ug/L	1		10/22/24 0000	10/22/24 1656	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Bromochloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Chloroform	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Benzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Trichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Dibromomethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Toluene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Chlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Ethylbenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Xylenes, total	<2.0	2.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Styrene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Bromoform	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF

Client Sample ID:MW-91Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HJ1337-09Collection Date:10/15/2024 15:09

Lab Sample ID: 1HJ1337-09					Collection	Date: 10/15/	2024 15:09	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		10/17/24 0000	10/18/24 0002	BDF
Surrogate: Dibromofluoromethane	97.5	Limit: 57-134	% Rec	1		10/22/24 0000	10/22/24 1656	CSM
Surrogate: Dibromofluoromethane	97.8	Limit: 75-136	% Rec	1		10/17/24 0000	10/18/24 0002	BDF
Surrogate: 1,2-Dichloroethane-d4	98.7	Limit: 61-142	% Rec	1		10/17/24 0000	10/18/24 0002	BDF
Surrogate: 1,2-Dichloroethane-d4	103	Limit: 53-140	% Rec	1		10/22/24 0000	10/22/24 1656	CSM
Surrogate: Toluene-d8	94.5	Limit: 86-114	% Rec	1		10/22/24 0000	10/22/24 1656	CSM
Surrogate: Toluene-d8	98.0	Limit: 82-121	% Rec	1		10/17/24 0000	10/18/24 0002	BDF
Surrogate: 4-Bromofluorobenzene	95.7	Limit: 80-116	% Rec	1		10/17/24 0000	10/18/24 0002	BDF
Surrogate: 4-Bromofluorobenzene	97.9	Limit: 78-121	% Rec	1		10/22/24 0000	10/22/24 1656	CSM
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0038	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0038	RVV
Barium, total	0.242	0.0040	mg/L	4		10/17/24 1551	10/19/24 0038	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0038	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		10/17/24 1551	10/19/24 0038	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/17/24 1551	10/19/24 0038	RVV
Cobalt, total	<0.0004	0.0004	mg/L	4		10/17/24 1551	10/19/24 0038	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0038	RVV
Lead, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0038	RVV
Nickel, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0038	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0038	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0038	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0038	RVV
,							J	
Vanadium, total	<0.0200	0.0200	mg/L	4		10/17/24 1551	10/19/24 0038	RVV

Client Sample ID: MW-93
Sample Matrix: Aqueous
Lab Sample ID: 1HJ1337-10

Collected By: Whipple, Todd
Collection Date: 10/15/2024 9:53

Analyses Performed by: Microbac Laboratories, Inc., Newton

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Bromomethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Chloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Acetone	<10.0	10.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Methyl lodide	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1	Q3	10/17/24 0000	10/18/24 0024	BDF
Methylene Chloride	<5.0	5.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Acrylonitrile	<5.0	5.0	ug/L	1		10/22/24 0000	10/22/24 1719	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Bromochloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Chloroform	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Benzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Trichloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Dibromomethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Toluene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Chlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Ethylbenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Xylenes, total	<2.0	2.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Styrene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Bromoform	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF

Client Sample ID:MW-93Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HJ1337-10Collection Date:10/15/2024 9:53

Lab Sample ID: 1HJ1337-10					Collection	Date: 10/15/	2024 9:53	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		10/17/24 0000	10/18/24 0024	BDF
Surrogate: Dibromofluoromethane	96.5	Limit: 57-134	% Rec	1		10/22/24 0000	10/22/24 1719	CSM
Surrogate: Dibromofluoromethane	96.7	Limit: 75-136	% Rec	1		10/17/24 0000	10/18/24 0024	BDF
Surrogate: 1,2-Dichloroethane-d4	103	Limit: 53-140	% Rec	1		10/22/24 0000	10/22/24 1719	CSM
Surrogate: 1,2-Dichloroethane-d4	98.4	Limit: 61-142	% Rec	1		10/17/24 0000	10/18/24 0024	BDF
Surrogate: Toluene-d8	95.0	Limit: 86-114	% Rec	1		10/22/24 0000	10/22/24 1719	CSM
Surrogate: Toluene-d8	97.5	Limit: 82-121	% Rec	1		10/17/24 0000	10/18/24 0024	BDF
Surrogate: 4-Bromofluorobenzene	99.6	Limit: 78-121	% Rec	1		10/22/24 0000	10/22/24 1719	CSM
Surrogate: 4-Bromofluorobenzene	97.2	Limit: 80-116	% Rec	1		10/17/24 0000	10/18/24 0024	BDF
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0056	RVV
Arsenic, total	0.0152	0.0040	mg/L	4		10/17/24 1551	10/19/24 0056	RVV
Barium, total	0.242	0.0040	mg/L	4		10/17/24 1551	10/19/24 0056	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0056	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		10/17/24 1551	10/19/24 0056	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/17/24 1551	10/19/24 0056	RVV
Cobalt, total	0.0099	0.0004	mg/L	4		10/17/24 1551	10/19/24 0056	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0056	RVV
Lead, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0056	RVV
Nickel, total	0.0271	0.0040	mg/L	4		10/17/24 1551	10/19/24 0056	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0056	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0056	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0056	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/17/24 1551	10/19/24 0056	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		10/17/24 1551	10/19/24 0056	RVV
	0.0200	0.0200		•			. 3, . 0, 2 . 0000	

Client Sample ID: MW-94
Sample Matrix: Aqueous
Lab Sample ID: 1HJ1337-11

Collected By: Whipple, Todd
Collection Date: 10/15/2024 12:03

Volatile Organic Compounds by GCMS	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA RSK-175								
Methane	1380	25.0	ug/L	5	D3	10/23/24 1040	10/23/24 1535	KJB
Ethene	<5.00	5.00	ug/L	1		10/22/24 1401	10/22/24 1651	KJB
Ethane	<5.00	5.00	ug/L	1		10/22/24 1401	10/22/24 1651	KJB

Analyses Performed by: Microbac Laboratories, Inc., Newton

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Vinyl Chloride	2.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Bromomethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Chloroethane	3.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Trichlorofluoromethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Acetone	<10.0	10.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Methyl Iodide	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Carbon Disulfide	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Methylene Chloride	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Acrylonitrile	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
1,1-Dichloroethane	1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Vinyl Acetate	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
cis-1,2-Dichloroethylene	6.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
2-Butanone (MEK)	<10.0	10.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Bromochloromethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Chloroform	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Carbon Tetrachloride	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Benzene	1.8	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
1,2-Dichloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Trichloroethylene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
1,2-Dichloropropane	1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Dibromomethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Bromodichloromethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Toluene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Tetrachloroethylene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM

Client Sample ID:MW-94Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HJ1337-11Collection Date:10/15/2024 12:03

Lab Sample ID: 1HJ1337-11					Collection	Date: 10/15/2024 12:03		
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analysi
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Dibromochloromethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
1,2-Dibromoethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Chlorobenzene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Ethylbenzene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Xylenes, total	<2.0	2.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Styrene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Bromoform	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1621	CSM
Surrogate: Dibromofluoromethane	96.0	Limit: 75-136	% Rec	1		10/21/24 0000	10/21/24 1621	CSM
Surrogate: Dibromofluoromethane	96.0	Limit: 57-134	% Rec	1		10/21/24 0000	10/21/24 1621	CSM
Surrogate: 1,2-Dichloroethane-d4	100	Limit: 53-140	% Rec	1		10/21/24 0000	10/21/24 1621	CSM
Surrogate: 1,2-Dichloroethane-d4	100	Limit: 61-142	% Rec	1		10/21/24 0000	10/21/24 1621	CSM
Surrogate: Toluene-d8	95.2	Limit: 82-121	% Rec	1		10/21/24 0000	10/21/24 1621	CSM
Surrogate: Toluene-d8	95.2	Limit: 86-114	% Rec	1		10/21/24 0000	10/21/24 1621	CSM
Surrogate: 4-Bromofluorobenzene	99.0	Limit: 80-116	% Rec	1		10/21/24 0000	10/21/24 1621	CSM
Surrogate: 4-Bromofluorobenzene	99.0	Limit: 78-121	% Rec	1		10/21/24 0000	10/21/24 1621	CSM
Determination of Conventional Chemistry Parameters	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
2320B								
Alkalinity, as CaCO3	752	50	mg/L	1		10/18/24 1042	10/18/24 1458	BSS
EPA 9040								
рН	6.4	0.5	рН	1	H4		10/21/24 0916	BSS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0102	RVV
Arsenic, total	0.0758	0.0040	mg/L	4		10/17/24 1551	10/19/24 0102	RVV
Barium, total	0.305	0.0040	mg/L	4		10/17/24 1551	10/19/24 0102	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0102	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		10/17/24 1551	10/19/24 0102	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/17/24 1551	10/19/24 0102	RVV
·						10/17/04 1551		
Cobalt, total	0.0088	0.0004	mg/L	4		10/17/24 1551	10/19/24 0102	rv v
Cobalt, total Copper. total	0.0088 < 0.0040	0.0004 0.0040	mg/L ma/L	4 4		10/17/24 1551 10/17/24 1551	10/19/24 0102 10/19/24 0102	RVV RVV
Copper, total Lead, total		0.0004 0.0040 0.0040	mg/L mg/L mg/L	4 4 4		10/17/24 1551 10/17/24 1551 10/17/24 1551	10/19/24 0102 10/19/24 0102 10/19/24 0102	RVV RVV RVV

1HJ1337

Client Sample ID:MW-94Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HJ1337-11Collection Date:10/15/2024 12:03

Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Selenium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0102	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0102	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0102	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/17/24 1551	10/19/24 0102	RVV
Zinc, total	0.0203	0.0200	mg/L	4		10/17/24 1551	10/19/24 0102	RVV

Client Sample ID: MW-95
Sample Matrix: Aqueous
Lab Sample ID: 1HJ1337-12

Collected By: Whipple, Todd
Collection Date: 10/15/2024 11:07

Analyses Performed by: Microbac Laboratories, Inc., Newton

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Vinyl Chloride	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Bromomethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Chloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Trichlorofluoromethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Acetone	<10.0	10.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Methyl Iodide	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Carbon Disulfide	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Methylene Chloride	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Acrylonitrile	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
1,1-Dichloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Vinyl Acetate	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
2-Butanone (MEK)	<10.0	10.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Bromochloromethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Chloroform	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Carbon Tetrachloride	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Benzene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
1,2-Dichloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Trichloroethylene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
1,2-Dichloropropane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Dibromomethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Bromodichloromethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Toluene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Tetrachloroethylene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Dibromochloromethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
1,2-Dibromoethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Chlorobenzene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Ethylbenzene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Xylenes, total	<2.0	2.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Styrene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Bromoform	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM

Client Sample ID:MW-95Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HJ1337-12Collection Date:10/15/2024 11:07

Lab Sample ID: 1HJ1337-12					Collection	Date: 10/15/	2024 11:07	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1644	CSM
Surrogate: Dibromofluoromethane	97.2	Limit: 57-134	% Rec	1		10/21/24 0000	10/21/24 1644	CSM
Surrogate: Dibromofluoromethane	97.2	Limit: 75-136	% Rec	1		10/21/24 0000	10/21/24 1644	CSM
Surrogate: 1,2-Dichloroethane-d4	102	Limit: 53-140	% Rec	1		10/21/24 0000	10/21/24 1644	CSM
Surrogate: 1,2-Dichloroethane-d4	102	Limit: 61-142	% Rec	1		10/21/24 0000	10/21/24 1644	CSM
Surrogate: Toluene-d8	93.8	Limit: 86-114	% Rec	1		10/21/24 0000	10/21/24 1644	CSM
Surrogate: Toluene-d8	93.8	Limit: 82-121	% Rec	1		10/21/24 0000	10/21/24 1644	CSM
Surrogate: 4-Bromofluorobenzene	97.1	Limit: 78-121	% Rec	1		10/21/24 0000	10/21/24 1644	CSM
Surrogate: 4-Bromofluorobenzene	97.1	Limit: 80-116	% Rec	1		10/21/24 0000	10/21/24 1644	CSM
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0109	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0109	RVV
Barium, total	0.0323	0.0040	mg/L	4		10/17/24 1551	10/19/24 0109	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0109	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		10/17/24 1551	10/19/24 0109	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/17/24 1551	10/19/24 0109	RVV
Cobalt, total	<0.0004	0.0004	mg/L	4		10/17/24 1551	10/19/24 0109	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0109	RVV
Lead, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0109	RVV
Nickel, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0109	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0109	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0109	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0109	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/17/24 1551	10/19/24 0109	RVV
Zinc, total	<0.0200	0.0200	mg/L					

Client Sample ID: MW-96R
Sample Matrix: Aqueous
Lab Sample ID: 1HJ1337-13

Collected By: Whipple, Todd
Collection Date: 10/15/2024 13:59

Analyses Performed by: Microbac Laboratories, Inc., Newton

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Vinyl Chloride	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Bromomethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Chloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Trichlorofluoromethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Acetone	<10.0	10.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Methyl lodide	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Carbon Disulfide	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Methylene Chloride	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Acrylonitrile	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
1,1-Dichloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Vinyl Acetate	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
2-Butanone (MEK)	<10.0	10.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Bromochloromethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Chloroform	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Carbon Tetrachloride	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Benzene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
1,2-Dichloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Trichloroethylene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
1,2-Dichloropropane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Dibromomethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Bromodichloromethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Toluene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Tetrachloroethylene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Dibromochloromethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
1,2-Dibromoethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Chlorobenzene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Ethylbenzene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Xylenes, total	<2.0	2.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Styrene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM
Bromoform	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM

Client Sample ID:MW-96RSample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HJ1337-13Collection Date:10/15/2024 13:5

Lab Sample ID: 1HJ1337-13					Collection	Date: 10/15/	10/15/2024 13:59		
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys	
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM	
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM	
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM	
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM	
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM	
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1706	CSM	
Surrogate: Dibromofluoromethane	97.0	Limit: 75-136	% Rec	1		10/21/24 0000	10/21/24 1706	CSM	
Surrogate: Dibromofluoromethane	97.0	Limit: 57-134	% Rec	1		10/21/24 0000	10/21/24 1706	CSM	
Surrogate: 1,2-Dichloroethane-d4	102	Limit: 61-142	% Rec	1		10/21/24 0000	10/21/24 1706	CSM	
Surrogate: 1,2-Dichloroethane-d4	102	Limit: 53-140	% Rec	1		10/21/24 0000	10/21/24 1706	CSM	
Surrogate: Toluene-d8	94.1	Limit: 82-121	% Rec	1		10/21/24 0000	10/21/24 1706	CSM	
Surrogate: Toluene-d8	94.1	Limit: 86-114	% Rec	1		10/21/24 0000	10/21/24 1706	CSM	
Surrogate: 4-Bromofluorobenzene	98.3	Limit: 80-116	% Rec	1		10/21/24 0000	10/21/24 1706	CSM	
Surrogate: 4-Bromofluorobenzene	98.3	Limit: 78-121	% Rec	1		10/21/24 0000	10/21/24 1706	CSM	
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys	
EPA 3005A/EPA 6020A									
EPA 3005A/EPA 6020A Antimony, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0115	RVV	
	<0.0020 0.0066	0.0020 0.0040	mg/L mg/L	4 4		10/17/24 1551 10/17/24 1551	10/19/24 0115 10/19/24 0115	RVV RVV	
Antimony, total			_						
Antimony, total Arsenic, total	0.0066	0.0040	mg/L	4		10/17/24 1551	10/19/24 0115	RVV	
Antimony, total Arsenic, total Barium, total	0.0066 0.338	0.0040 0.0040	mg/L mg/L	4 4		10/17/24 1551 10/17/24 1551	10/19/24 0115 10/19/24 0115	RVV RVV	
Antimony, total Arsenic, total Barium, total Beryllium, total	0.0066 0.338 <0.0040	0.0040 0.0040 0.0040	mg/L mg/L mg/L	4 4 4		10/17/24 1551 10/17/24 1551 10/17/24 1551	10/19/24 0115 10/19/24 0115 10/19/24 0115	RVV RVV RVV	
Antimony, total Arsenic, total Barium, total Beryllium, total Cadmium, total	0.0066 0.338 <0.0040 <0.0008	0.0040 0.0040 0.0040 0.0008	mg/L mg/L mg/L mg/L	4 4 4 4		10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551	10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115	RVV RVV RVV	
Antimony, total Arsenic, total Barium, total Beryllium, total Cadmium, total Chromium, total	0.0066 0.338 <0.0040 <0.0008 <0.0080	0.0040 0.0040 0.0040 0.0008 0.0080	mg/L mg/L mg/L mg/L mg/L	4 4 4 4		10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551	10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115	RVV RVV RVV RVV	
Antimony, total Arsenic, total Barium, total Beryllium, total Cadmium, total Chromium, total Cobalt, total	0.0066 0.338 <0.0040 <0.0008 <0.0080 0.0105	0.0040 0.0040 0.0040 0.0008 0.0080 0.0004	mg/L mg/L mg/L mg/L mg/L	4 4 4 4 4		10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551	10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115	RVV RVV RVV RVV RVV	
Antimony, total Arsenic, total Barium, total Beryllium, total Cadmium, total Chromium, total Cobalt, total Copper, total	0.0066 0.338 <0.0040 <0.0008 <0.0080 0.0105 <0.0040	0.0040 0.0040 0.0040 0.0008 0.0080 0.0004	mg/L mg/L mg/L mg/L mg/L mg/L	4 4 4 4 4		10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551	10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115	RVV RVV RVV RVV RVV RVV	
Antimony, total Arsenic, total Barium, total Beryllium, total Cadmium, total Chromium, total Cobalt, total Copper, total Lead, total	0.0066 0.338 <0.0040 <0.0008 <0.0080 0.0105 <0.0040 <0.0040	0.0040 0.0040 0.0040 0.0008 0.0080 0.0004 0.0040	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	4 4 4 4 4 4		10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551	10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115	RVV RVV RVV RVV RVV RVV	
Antimony, total Arsenic, total Barium, total Beryllium, total Cadmium, total Chromium, total Cobalt, total Copper, total Lead, total Nickel, total	0.0066 0.338 <0.0040 <0.0008 <0.0080 0.0105 <0.0040 <0.0040	0.0040 0.0040 0.0040 0.0008 0.0080 0.0004 0.0040 0.0040	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	4 4 4 4 4 4 4		10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551	10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115	RVV RVV RVV RVV RVV RVV RVV	
Antimony, total Arsenic, total Barium, total Beryllium, total Cadmium, total Chromium, total Cobalt, total Copper, total Lead, total Nickel, total Selenium, total	0.0066 0.338 <0.0040 <0.0008 <0.0080 0.0105 <0.0040 <0.0040 0.0046 <0.0040	0.0040 0.0040 0.0040 0.0008 0.0080 0.0004 0.0040 0.0040 0.0040	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	4 4 4 4 4 4 4		10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551 10/17/24 1551	10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115	RVV RVV RVV RVV RVV RVV RVV RVV	
Antimony, total Arsenic, total Barium, total Beryllium, total Cadmium, total Chromium, total Cobalt, total Copper, total Lead, total Nickel, total Selenium, total Silver, total	0.0066 0.338 <0.0040 <0.0008 <0.0080 0.0105 <0.0040 <0.0040 <0.0040 <0.0040	0.0040 0.0040 0.0040 0.0008 0.0080 0.0004 0.0040 0.0040 0.0040 0.0040	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	4 4 4 4 4 4 4 4		10/17/24 1551 10/17/24 1551	10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115 10/19/24 0115	RVV RVV RVV RVV RVV RVV RVV RVV	

Client Sample ID: MW-97
Sample Matrix: Aqueous
Lab Sample ID: 1HJ1337-14

Collected By: Whipple, Todd
Collection Date: 10/15/2024 11:49

Analyses Performed by: Microbac Laboratories, Inc., Newton

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Vinyl Chloride	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Bromomethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Chloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Trichlorofluoromethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Acetone	<10.0	10.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Methyl lodide	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Carbon Disulfide	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Methylene Chloride	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Acrylonitrile	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
1,1-Dichloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Vinyl Acetate	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
2-Butanone (MEK)	<10.0	10.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Bromochloromethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Chloroform	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Carbon Tetrachloride	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Benzene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
1,2-Dichloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Trichloroethylene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
1,2-Dichloropropane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Dibromomethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Bromodichloromethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Toluene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Tetrachloroethylene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Dibromochloromethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
1,2-Dibromoethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Chlorobenzene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Ethylbenzene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Xylenes, total	<2.0	2.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Styrene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Bromoform	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM

Client Sample ID:MW-97Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HJ1337-14Collection Date:10/15/2024 11:49

Lab Sample ID: 1HJ1337-14					Collection	Date: 10/15/	2024 11:49	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		10/21/24 0000	10/21/24 1729	CSM
Surrogate: Dibromofluoromethane	99.4	Limit: 75-136	% Rec	1		10/21/24 0000	10/21/24 1729	CSM
Surrogate: Dibromofluoromethane	99.4	Limit: 57-134	% Rec	1		10/21/24 0000	10/21/24 1729	CSM
Surrogate: 1,2-Dichloroethane-d4	104	Limit: 61-142	% Rec	1		10/21/24 0000	10/21/24 1729	CSM
Surrogate: 1,2-Dichloroethane-d4	104	Limit: 53-140	% Rec	1		10/21/24 0000	10/21/24 1729	CSM
Surrogate: Toluene-d8	95.1	Limit: 82-121	% Rec	1		10/21/24 0000	10/21/24 1729	CSM
Surrogate: Toluene-d8	95.1	Limit: 86-114	% Rec	1		10/21/24 0000	10/21/24 1729	CSM
Surrogate: 4-Bromofluorobenzene	98.8	Limit: 80-116	% Rec	1		10/21/24 0000	10/21/24 1729	CSM
Surrogate: 4-Bromofluorobenzene	98.8	Limit: 78-121	% Rec	1		10/21/24 0000	10/21/24 1729	CSM
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0121	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0121	RVV
Barium, total	0.274	0.0040	mg/L	4		10/17/24 1551	10/19/24 0121	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0121	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		10/17/24 1551	10/19/24 0121	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/17/24 1551	10/19/24 0121	RVV
Cobalt, total	<0.0004	0.0004	mg/L	4		10/17/24 1551	10/19/24 0121	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0121	RVV
Lead, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0121	RVV
Nickel, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0121	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0121	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0121	RVV
•			_					
I hallium, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0121	RVV
Thallium, total Vanadium, total	<0.0020 <0.0200	0.0020 0.0200	mg/L mg/L	4 4		10/17/24 1551 10/17/24 1551	10/19/24 0121 10/19/24 0121	RVV RVV

Client Sample ID: Duplicate
Sample Matrix: Aqueous
Lab Sample ID: 1HJ1337-15

Collected By: Whipple, Todd
Collection Date: 10/15/2024

Analyses Performed by: Microbac Laboratories, Inc., Newton

Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0127	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0127	RVV
Barium, total	0.0272	0.0040	mg/L	4		10/17/24 1551	10/19/24 0127	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0127	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		10/17/24 1551	10/19/24 0127	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/17/24 1551	10/19/24 0127	RVV
Cobalt, total	<0.0004	0.0004	mg/L	4		10/17/24 1551	10/19/24 0127	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0127	RVV
Lead, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0127	RVV
Nickel, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0127	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0127	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/17/24 1551	10/19/24 0127	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/17/24 1551	10/19/24 0127	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/17/24 1551	10/19/24 0127	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		10/17/24 1551	10/19/24 0127	RVV

Client Sample ID: LW-75
Sample Matrix: Aqueous
Lab Sample ID: 1HJ1337-1

Collected By: Whipple, Todd
Collection Date: 10/15/2024 13:07

Lab Sample ID: 1HJ1337-16					Collection	•	2024 13:07	
	Analyses Performed by:	Microbac L	aboratories	s Inc., - M	arietta, Ol	1		
Volatile Organic Compounds by GCMS	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA RSK-175								
Methane	5530	100	ug/L	20	D3	10/23/24 1040	10/23/24 1601	KJB
Ethene	<5.00	5.00	ug/L	1		10/22/24 1401	10/22/24 1705	KJB
Ethane	<5.00	5.00	ug/L	1		10/22/24 1401	10/22/24 1705	KJB
	Analyses Performed I	oy: Microba	c Laborato	ries, Inc.,	Newton			
Determination of Conventional Chemistry Parameters	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
2320B								
Alkalinity, as CaCO3	1730	50	mg/L	1		10/18/24 1042	10/18/24 1458	BSS
EPA 410.4								
COD, total	1050	108	mg/L	2	A15	10/24/24 0748	10/24/24 1105	CES
EPA 9040								
рН	6.6	0.5	pН	1	H4		10/21/24 0916	BSS
SM 5210 B								
BOD (5 day)	82	24	mg/L	12		10/16/24 1719	10/16/24 1920	MND
TIMBERLINE								
Nitrogen, Ammonia	109	1.00	mg/L	10		10/21/24 1446	10/22/24 1436	RAF
USGS I-1750-85								
Total Dissolved Solids (TDS)	3780	5	mg/L	1		10/17/24 0845	10/17/24 1230	RDH
USGS I-3765-85								
Total Suspended Solids (TSS)	7	1	mg/L	1		10/17/24 0837	10/21/24 0950	MEAH
Determination of Inorganic Anions	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 9056								
Chloride	1220	50.0	mg/L	50			10/25/24 1601	MID
Sulfate	138	50.0	mg/L	50			10/25/24 1601	MID
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020A								
Arsenic, total	0.0176	0.0040	mg/L	4		10/17/24 1551	10/19/24 0133	RVV
Cobalt, total	0.0188	0.0004	mg/L	4		10/17/24 1551	10/19/24 0133	RVV

Batch Log Summary

Method	Batch	Laboratory ID	Client / Source ID	
SM 5210 B	1HJ1006	1HJ1006-BLK1		
		1HJ1006-SRM1		
		1HJ1337-16	LW-75	
		1HJ1006-DUP2	1HJ1321-01	
Method	Batch	Laboratory ID	Client / Source ID	
USGS I-3765-85	1HJ1020	1HJ1337-16	LW-75	
		1HJ1020-BS1		
		1HJ1020-DUP1	1HJ1331-01	
		1HJ1020-BLK1		
Method	Batch	Laboratory ID	Client / Source ID	
USGS I-1750-85	1HJ1022	1HJ1022-BLK1		
		1HJ1022-DUP1	1HJ1211-01	
		1HJ1022-BS1		
		1HJ1337-16	LW-75	
Method	Batch	Laboratory ID	Client / Source ID	
EPA 6020A	1HJ1084	1HJ1084-BLK1		
		1HJ1084-BS1		
		1HJ1337-01	MW-85 (B)	
		1HJ1084-MS1	1HJ1337-01	
		1HJ1084-MSD1	1HJ1337-01	
		1HJ1084-PS1	1HJ1337-01	
		1HJ1337-02	MW-98 (B)	
		1HJ1337-03	MW-99 (B)	
		1HJ1337-04	MW-49	
		1HJ1337-05	MW-54	
		1HJ1337-06	MW-81	
		1HJ1337-07	MW-87	
		1HJ1337-08	MW-89	
		1HJ1337-09	MW-91	
		1HJ1337-10	MW-93	
		1HJ1337-11	MW-94	
		1HJ1337-12	MW-95	
		1HJ1337-13	MW-96R	
		1HJ1337-14	MW-97	
		1HJ1337-15	Duplicate	
		1HJ1337-16	LW-75	
Method	Batch	Laboratory ID	Client / Source ID	

CERTIFICATE OF ANALYSIS

2320B	1HJ1125	1HJ1337-06	MW-81
		1HJ1337-11	MW-94
		1HJ1125-BLK1	
		1HJ1337-05	MW-54
		1HJ1337-04	MW-49
		1HJ1125-MSD1	1HJ1319-04
		1HJ1125-MS1	1HJ1319-04
		1HJ1337-16	LW-75
		1HJ1125-BS1	
Method	Batch	Laboratory ID	Client / Source ID
EPA 8260B	1HJ1173	1HJ1173-BS1	
		1HJ1173-BSD1	
		1HJ1173-BLK1	
		1HJ1337-01	MW-85 (B)
		1HJ1337-02	MW-98 (B)
		1HJ1337-03	MW-99 (B)
		1HJ1337-04	MW-49
		1HJ1337-05	MW-54
		1HJ1337-06	MW-81
		1HJ1337-07	MW-87
		1HJ1337-08	MW-89
		1HJ1337-09	MW-91
		1HJ1337-10	MW-93
		1HJ1173-MS1	1HJ1076-02
		1HJ1173-MSD1	1HJ1076-02
Method	Batch	Laboratory ID	Client / Source ID
EPA 9040	1HJ1184	1HJ1184-SRM2	
		1HJ1184-SRM1	
		1HJ1337-11	MW-94
		1HJ1337-06	MW-81
		1HJ1337-05	MW-54
		1HJ1337-04	MW-49
		1HJ1337-16	LW-75
		1HJ1184-DUP1	1HJ1337-04
Method	Batch	Laboratory ID	Client / Source ID
TIMBERLINE	1HJ1226	1HJ1226-BLK1	
		1HJ1226-BS1	
		1HJ1226-BS1 1HJ1226-MS1	1HJ1325-02
			1HJ1325-02 1HJ1325-02

CERTIFICATE OF ANALYSIS

Method	Batch	Laboratory ID	Client / Source ID
EPA 8260B	1HJ1301	1HJ1301-BS1	
		1HJ1301-BSD1	
		1HJ1301-BLK1	
		1HJ1337-11	MW-94
		1HJ1337-11	MW-94
		1HJ1337-12	MW-95
		1HJ1337-12	MW-95
		1HJ1337-13	MW-96R
		1HJ1337-13	MW-96R
		1HJ1337-14	MW-97
		1HJ1337-14	MW-97
		1HJ1301-BS2	
		1HJ1301-BSD2	
		1HJ1301-BLK2	
		1HJ1301-MS1	1HJ1342-01
		1HJ1301-MSD1	1HJ1342-01
		1HJ1301-MS2	1HJ1340-05
		1HJ1301-MSD2	1HJ1340-05
Method	Batch	Laboratory ID	Client / Source ID
EPA 8260B	1HJ1355	1HJ1355-BS1	
		1HJ1355-BSD1	
		1HJ1355-BLK1	
		1HJ1337-01	MW-85 (B)
		1HJ1337-02	MW-98 (B)
		1HJ1337-03	MW-99 (B)
		1HJ1337-04	MW-49
		1HJ1337-05	MW-54
		1HJ1337-06	MW-81
		1HJ1337-07	MW-87
		1HJ1337-08	MW-89
		1HJ1337-09	MW-91
		1HJ1337-10	MW-93
		1HJ1355-MS1	1HJ1617-04
		1HJ1355-MSD1	1HJ1617-04
		1HJ1355-BS2	
		1HJ1355-BSD2	
		1HJ1355-BLK2	
		1HJ1355-MS2	1HJ1633-01
		1HJ1355-MS2 1HJ1355-MSD2	1HJ1633-01 1HJ1633-01

CERTIFICATE OF ANALYSIS

EPA 410.4	1HJ1457	1HJ1	337-16		LW-75					
		1HJ1	457-MS1		1HJ137	6-04				
		1HJ1	457-MSD1		1HJ137	6-04				
		1HJ1	457-BS1							
		1HJ1	457-BLK1							
Method	Batch	Labo	ratory ID		Client	/ Source	ID			
EPA 9056	1HJ1779	1HJ1	779-BLK1							
		1HJ1	779-BS1							
		1HJ1	779-BSD1							
		1HJ1	779-MS1		1HJ135	2-01				
		1HJ1	779-MSD1		1HJ135	2-01				
		1HJ1	337-16		LW-75					
Method	Batch	Labo	ratory ID		Client	/ Source	ID			
EPA RSK-175	B4J1197	B4J1	197-BLK1							
		B4J1	197-BS1							
		B4J1	197-BSD1							
		1HJ1	337-04		MW-49					
		1HJ1	337-05		MW-54					
		1HJ1	337-06		MW-81					
		1HJ1	337-11		MW-94					
		1HJ1	337-16		LW-75					
Method	Batch	Labo	ratory ID		Client	/ Source	ID			
EPA RSK-175	B4J1225	B4J1:	225-BLK1							
		B4J1:	225-BS1							
		B4J1:	225-BSD1							
		1HJ1	337-05RE1		MW-54					
		1HJ1	337-11RE1		MW-94					
		1HJ1	337-04RE1		MW-49					
		1HJ1	337-16RE1		LW-75					
Batch Quality Control Summary:	Microbac Laboratories,	Inc., Newt	on							
				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ1173 - EPA 5030B - EPA	8260B									
Blank (1HJ1173-BLK1)			Prepared: 10/	17/24 00:0	0 Analyzed:	10/17/24 1	2:48			
Chloromethane	<1.0	1.0	ug/L							
Vinyl Chloride	<1.0	1.0	ug/L							
Bromomethane	<1.0	1.0	ug/L							
Chloroethane	<1.0	1.0	ug/L							
Trichlorofluoromethane	<1.0	1.0	ug/L							

1HJ1337

Spike Source

				Spike	Source		%REC		RPD	Notes
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ1173 - EPA 5030B - EPA	A 8260B									
Blank (1HJ1173-BLK1)			Prepared: 10	0/17/24 00:0	00 Analyzed:	10/17/24 1	2:48			
1,1-Dichloroethylene	<1.0	1.0	ug/L							
Acetone	<10.0	10.0	ug/L							
Methyl lodide	<1.0	1.0	ug/L							
Carbon Disulfide	<1.0	1.0	ug/L							
Methylene Chloride	<5.0	5.0	ug/L							
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L							
1,1-Dichloroethane	<1.0	1.0	ug/L							
Vinyl Acetate	<5.0	5.0	ug/L							
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L							
2-Butanone (MEK)	<10.0	10.0	ug/L							
Bromochloromethane	<1.0	1.0	ug/L							
Chloroform	<1.0	1.0	ug/L							
1,1,1-Trichloroethane	<1.0	1.0	ug/L							
Carbon Tetrachloride	<1.0	1.0	ug/L							
Benzene	<1.0	1.0	ug/L							
1,2-Dichloroethane	<1.0	1.0	ug/L							
Trichloroethylene	<1.0	1.0	ug/L							
1,2-Dichloropropane	<1.0	1.0	ug/L							
Dibromomethane	<1.0	1.0	ug/L							
Bromodichloromethane	<1.0	1.0	ug/L							
cis-1,3-Dichloropropene	<1.0	1.0	ug/L							
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L							
Toluene	<1.0	1.0	ug/L							
trans-1,3-Dichloropropene	<1.0	1.0	ug/L							
1,1,2-Trichloroethane	<1.0	1.0	ug/L							
Tetrachloroethylene	<1.0	1.0	ug/L							
2-Hexanone (MBK)	<5.0	5.0	ug/L							
Dibromochloromethane	<1.0	1.0	ug/L							
1,2-Dibromoethane	<1.0	1.0	ug/L							
Chlorobenzene	<1.0	1.0	ug/L							
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L							
Ethylbenzene	<1.0	1.0	ug/L							
Xylenes, total	<2.0	2.0	ug/L							
Styrene	<1.0	1.0	ug/L							
Bromoform	<1.0	1.0	ug/L							
1,2,3-Trichloropropane	<1.0	1.0	ug/L							
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L ug/L							
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L ug/L							
1,4-Dichlorobenzene	<1.0	1.0	_							
	<1.0		ug/L							
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	<5.0	1.0 5.0	ug/L ug/L							
1,2 5,5101110 0 officiopropario		0.0	ug/L							
Surrogate: Dibromofluoromethane	48.1		ug/L	50.2		95.8	75-136			

RPD

%REC

1HJ1337

Spike Source

%REC

RPD

Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ1173 - EPA 5030B - EPA	8260B									
Blank (1HJ1173-BLK1)			Prepared: 10	0/17/24 00:0	0 Analyzed:	10/17/24 1	2:48			
Surrogate: 1,2-Dichloroethane-d4	49.2		ug/L	50.4		97.6	61-142			
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene	48.9 48.5		ug/L ug/L	50.5 50.2		96.9 96.7	82-121 80-116			
LCS (1HJ1173-BS1)			Prepared: 10		0 Analyzed:	10/17/24 1				
Chloromethane	22.05	1.0	ug/L	30.0		73.5	63-155			
Vinyl Chloride	22.82	1.0	ug/L	30.0		76.1	70-154			
Bromomethane	22.95	1.0	ug/L	30.0		76.5	52-176			
Chloroethane	26.55	1.0	ug/L	30.0		88.5	72-148			
Trichlorofluoromethane	25.67	1.0	ug/L	30.0		85.6	70-152			
1,1-Dichloroethylene	44.68	1.0	ug/L	50.0		89.4	70-148			
Acetone	99.17	10.0	ug/L	101		98.0	43-172			
Methyl lodide	97.97	1.0	ug/L	102		96.2	69-170			
Carbon Disulfide	68.29	1.0	ug/L	103		66.5	72-162			S
Methylene Chloride	46.61	5.0	ug/L	50.0		93.2	68-142			
trans-1,2-Dichloroethylene	44.81	1.0	ug/L	50.0		89.6	66-148			
1,1-Dichloroethane	44.82	1.0	ug/L	50.0		89.6	66-143			
Vinyl Acetate	97.23	5.0	ug/L	100		97.2	43-153			
cis-1,2-Dichloroethylene	43.79	1.0	ug/L	50.0		87.6	71-149			
2-Butanone (MEK)	88.92	10.0	ug/L	102		87.3	52-159			
Bromochloromethane	42.95	1.0	ug/L	50.0		85.9	69-143			
Chloroform	42.09	1.0	ug/L	50.0		84.2	69-144			
1,1,1-Trichloroethane	45.27	1.0	ug/L	50.0		90.5	62-129			
Carbon Tetrachloride	48.70	1.0	ug/L	50.0		97.4	63-141			
Benzene	44.38	1.0	ug/L	50.0		88.8	71-134			
1,2-Dichloroethane	44.14	1.0	ug/L	50.0		88.3	72-132			
Trichloroethylene	45.42	1.0	ug/L	50.0		90.8	71-135			
1,2-Dichloropropane	45.72	1.0	ug/L	50.0		91.4	69-136			
Dibromomethane	48.01	1.0	ug/L	50.0		96.0	73-147			
Bromodichloromethane	47.33	1.0	ug/L	50.0		94.7	68-129			
cis-1,3-Dichloropropene	44.19	1.0	ug/L	50.0		88.4	65-134			
4-Methyl-2-pentanone (MIBK)	99.24	5.0	ug/L	100		99.1	58-147			
Toluene	43.92	1.0	ug/L	50.0		87.8	72-133			
trans-1,3-Dichloropropene	45.70	1.0	ug/L	50.0		91.4	67-130			
1,1,2-Trichloroethane	46.39	1.0	ug/L	50.0		92.8	69-135			
Tetrachloroethylene	46.73	1.0	ug/L	50.0		93.5	69-130			
2-Hexanone (MBK)	101.3	5.0	ug/L	99.3		102	55-144			
Dibromochloromethane	47.83	1.0	ug/L	50.0		95.7	73-127			
1,2-Dibromoethane	46.60	1.0	ug/L	50.0		93.2	67-132			
Chlorobenzene	44.61	1.0	ug/L ug/L	50.0		93.2 89.2	72-123			
1,1,1,2-Tetrachloroethane	47.25	1.0	ug/L	50.0		94.5	72-123 73-127			
Ethylbenzene	46.50	1.0	ug/L ug/L	50.0		93.0	73-127 71-127			
Xylenes, total	141.1	2.0	ug/L	150		94.1	71-127 74-127			

1HJ1337

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ1173 - EPA 5030B - EP	A 8260B									
LCS (1HJ1173-BS1)			Prepared: 10	0/17/24 00:0	0 Analyzed:	10/17/24 1	1:40			
Styrene	48.95	1.0	ug/L	50.0		97.9	66-126			
Bromoform	48.29	1.0	ug/L	50.0		96.6	68-130			
1,2,3-Trichloropropane	48.97	1.0	ug/L	50.0		97.9	63-136			
trans-1,4-Dichloro-2-butene	88.67	5.0	ug/L	103		86.3	54-134			
1,1,2,2-Tetrachloroethane	47.83	1.0	ug/L	50.0		95.7	61-131			
1,4-Dichlorobenzene	44.21	1.0	ug/L	50.0		88.4	70-129			
1,2-Dichlorobenzene	46.15	1.0	ug/L	50.0		92.3	69-126			
1,2-Dibromo-3-chloropropane	49.94	5.0	ug/L	50.0		99.9	50-143			
Surrogate: Dibromofluoromethane	47.7		ug/L	50.2		95.1	75-136			
Surrogate: 1,2-Dichloroethane-d4	47.6		ug/L	50.4		94.4	61-142			
Surrogate: Toluene-d8	50.0		ug/L	50.5		99.0	82-121			
Surrogate: 4-Bromofluorobenzene	50.6		ug/L	50.2		101	80-116			
LCS Dup (1HJ1173-BSD1)			Prepared: 10	0/17/24 00:0	0 Analyzed:	10/17/24 1	2:03			
Chloromethane	21.14	1.0	ug/L	30.0		70.5	63-155	4.21	24	
Vinyl Chloride	22.06	1.0	ug/L	30.0		73.5	70-154	3.39	25	
Bromomethane	22.43	1.0	ug/L	30.0		74.8	52-176	2.29	27	
Chloroethane	25.81	1.0	ug/L	30.0		86.0	72-148	2.83	25	
Trichlorofluoromethane	24.45	1.0	ug/L	30.0		81.5	70-152	4.87	26	
1,1-Dichloroethylene	43.34	1.0	ug/L	50.0		86.7	70-148	3.04	24	
Acetone	94.71	10.0	ug/L	101		93.6	43-172	4.60	30	
Methyl lodide	94.99	1.0	ug/L	102		93.2	69-170	3.09	30	
Carbon Disulfide	65.46	1.0	ug/L	103		63.7	72-162	4.23	24	S
Methylene Chloride	46.51	5.0	ug/L	50.0		93.0	68-142	0.215	21	
trans-1,2-Dichloroethylene	43.30	1.0	ug/L	50.0		86.6	66-148	3.43	27	
1,1-Dichloroethane	43.64	1.0	ug/L	50.0		87.3	66-143	2.67	24	
Vinyl Acetate	96.62	5.0	ug/L	100		96.6	43-153	0.629	30	
cis-1,2-Dichloroethylene	43.29	1.0	ug/L	50.0		86.6	71-149	1.15	26	
2-Butanone (MEK)	92.96	10.0	ug/L	102		91.3	52-159	4.44	27	
Bromochloromethane	42.53	1.0	ug/L	50.0		85.1	69-143	0.983	23	
Chloroform	41.17	1.0	ug/L	50.0		82.3	69-144	2.21	23	
1,1,1-Trichloroethane	43.58	1.0	ug/L	50.0		87.2	62-129	3.80	24	
Carbon Tetrachloride	47.31	1.0	ug/L	50.0		94.6	63-141	2.90	25	
Benzene	43.22	1.0	ug/L	50.0		86.4	71-134	2.65	24	
1,2-Dichloroethane	44.04	1.0	ug/L	50.0		88.1	72-132	0.227	24	
Trichloroethylene	43.86	1.0	ug/L	50.0		87.7	71-135	3.49	24	
1,2-Dichloropropane	44.76	1.0	ug/L	50.0		89.5	69-136	2.12	24	
Dibromomethane	47.38	1.0	ug/L	50.0		94.8	73-147	1.32	25	
Bromodichloromethane	46.68	1.0	ug/L	50.0		93.4	68-129	1.38	22	
cis-1,3-Dichloropropene	43.68	1.0	ug/L	50.0		87.4	65-134	1.16	23	
4-Methyl-2-pentanone (MIBK)	99.52	5.0	ug/L	100		99.4	58-147	0.282	27	
Toluene	42.62	1.0	ug/L	50.0		85.2	72-133	3.00	24	
trans-1,3-Dichloropropene	45.40	1.0	ug/L	50.0		90.8	67-130	0.659	24	
As the shares			J. =				0. 100	3.300		

Determination of M. L. (1)	D . "			Spike	Source	0/ ===	%REC		RPD	Notes
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	NOLE
Batch 1HJ1173 - EPA 5030B - EPA	A 8260B									
.CS Dup (1HJ1173-BSD1)			Prepared: 10	0/17/24 00:0	0 Analyzed:	10/17/24 1	2:03			
1,1,2-Trichloroethane	46.49	1.0	ug/L	50.0		93.0	69-135	0.215	23	
Tetrachloroethylene	45.40	1.0	ug/L	50.0		90.8	69-130	2.89	25	
2-Hexanone (MBK)	102.1	5.0	ug/L	99.3		103	55-144	0.777	25	
Dibromochloromethane	47.86	1.0	ug/L	50.0		95.7	73-127	0.0627	22	
1,2-Dibromoethane	46.42	1.0	ug/L	50.0		92.8	67-132	0.387	24	
Chlorobenzene	43.99	1.0	ug/L	50.0		88.0	72-123	1.40	23	
1,1,1,2-Tetrachloroethane	46.73	1.0	ug/L	50.0		93.5	73-127	1.11	24	
Ethylbenzene	45.22	1.0	ug/L	50.0		90.4	71-127	2.79	26	
Xylenes, total	137.9	2.0	ug/L	150		91.9	74-127	2.28	25	
Styrene	48.08	1.0	ug/L	50.0		96.2	66-126	1.79	23	
Bromoform	48.21	1.0	ug/L	50.0		96.4	68-130	0.166	23	
1,2,3-Trichloropropane	48.37	1.0	ug/L	50.0		96.7	63-136	1.23	24	
trans-1,4-Dichloro-2-butene	88.14	5.0	ug/L	103		85.7	54-134	0.600	27	
1,1,2,2-Tetrachloroethane	47.36	1.0	ug/L	50.0		94.7	61-131	0.988	29	
1,4-Dichlorobenzene	43.54	1.0	ug/L	50.0		87.1	70-129	1.53	24	
1,2-Dichlorobenzene	45.78	1.0	ug/L	50.0		91.6	69-126	0.805	26	
1,2-Dibromo-3-chloropropane	49.82	5.0	ug/L	50.0		99.6	50-143	0.241	30	
Surrogate: Dibromofluoromethane	47.7		ug/L	50.2		94.9	75-136			
Surrogate: 1,2-Dichloroethane-d4	47.7		ug/L	50.4		94.7	61-142			
Surrogate: Toluene-d8	49.7		ug/L	50.5		98.5	82-121			
Surrogate: 4-Bromofluorobenzene	50.2		ug/L	50.2		100	80-116			
Matrix Spike (1HJ1173-MS1)	Source: 11	IJ1076-02	Prepared: 10	0/17/24 00:0	0 Analyzed:	10/18/24 0	0:47			
Chloromethane	214.8	10.0	ug/L	300	ND	71.6	61-152			
Vinyl Chloride	225.4	10.0	ug/L	300	ND	75.1	66-149			
Bromomethane	211.0	10.0	ug/L	300	ND	70.3	43-171			
Chloroethane	266.5	10.0	ug/L	300	ND	88.8	69-148			
Trichlorofluoromethane	251.4	10.0	ug/L	300	ND	83.8	62-163			
1,1-Dichloroethylene	448.8	10.0	ug/L	500	ND	89.8	70-148			
Acetone	928.5	100	ug/L	1010	ND	91.7	45-173			
Methyl lodide	929.4	10.0	ug/L	1020	ND	91.2	62-167			
Carbon Disulfide	690.5	10.0	ug/L	1030	ND	67.2	71-163			S
Methylene Chloride	504.5	50.0	ug/L	500	ND	101	69-140			
trans-1,2-Dichloroethylene	450.0	10.0	ug/L	500	ND	90.0	69-144			
1,1-Dichloroethane	444.9	10.0	ug/L	500	ND	89.0	70-138			
Vinyl Acetate	969.3	50.0	ug/L	1000	ND	96.9	58-142			
cis-1,2-Dichloroethylene	434.2	10.0	ug/L	500	ND	86.8	68-151			
2-Butanone (MEK)	862.1	100	ug/L	1020	ND	84.7	50-160			
Bromochloromethane	428.4	10.0	ug/L	500	ND	85.7	65-143			
Chloroform	427.1	10.0	ug/L	500	ND	85.4	71-143			
1,1,1-Trichloroethane	454.7	10.0	ug/L	500	ND	90.9	63-133			
Carbon Tetrachloride	430.2	10.0	ug/L	500	ND	86.0	63-142			
n	400.0	40.0								

Microbac Laboratories, Inc., Newton

ug/L

500

87.9

69-133

ND

10.0

439.6

Benzene

Determination of Volatile	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Organic Compounds	Result	KL	Units	Levei	Result	%REC	Limits	KPD	Limit	
Batch 1HJ1173 - EPA 5030B - EPA	8260B									
Matrix Spike (1HJ1173-MS1)		HJ1076-02	Prepared: 10	0/17/24 00:0	00 Analvzed:	10/18/24 0	0:47			
1,2-Dichloroethane	441.0	10.0	ug/L	500	ND	88.2	63-138			
Trichloroethylene	450.1	10.0	ug/L	500	ND	90.0	71-133			
1,2-Dichloropropane	453.2	10.0	ug/L	500	ND	90.6	69-132			
Dibromomethane	476.6	10.0	ug/L	500	ND	95.3	70-147			
Bromodichloromethane	456.5	10.0	ug/L	500	ND	91.3	67-130			
cis-1,3-Dichloropropene	408.8	10.0	ug/L	500	ND	81.8	61-126			
4-Methyl-2-pentanone (MIBK)	967.8	50.0	ug/L	1000	ND	96.7	55-147			
Toluene	434.6	10.0	ug/L	500	ND	86.9	71-133			
trans-1,3-Dichloropropene	432.0	10.0	ug/L	500	ND	86.4	63-124			
1,1,2-Trichloroethane	454.0	10.0	ug/L	500	ND	90.8	69-133			
Tetrachloroethylene	461.5	10.0	ug/L	500	ND	92.3	70-124			
2-Hexanone (MBK)	988.9	50.0	ug/L	993	ND	99.6	53-141			
Dibromochloromethane	464.9	10.0	ug/L	500	ND	93.0	74-122			
1,2-Dibromoethane	458.5	10.0	ug/L	500	ND	91.7	66-127			
Chlorobenzene	443.1	10.0	ug/L	500	ND	88.6	76-116			
1,1,1,2-Tetrachloroethane	464.2	10.0	ug/L	500	ND	92.8	77-121			
Ethylbenzene	460.8	10.0	ug/L	500	ND	92.2	73-124			
Xylenes, total	1393	20.0	ug/L	1500	ND	92.9	75-123			
Styrene	481.2	10.0	ug/L	500	ND	96.2	70-120			
Bromoform	462.5	10.0	ug/L	500	ND	92.5	70-124			
1,2,3-Trichloropropane	483.3	10.0	ug/L	500	ND	96.7	62-135			
trans-1,4-Dichloro-2-butene	811.4	50.0	ug/L	1030	ND	78.9	50-120			
1,1,2,2-Tetrachloroethane	458.5	10.0	ug/L	500	ND	91.7	63-126			
1,4-Dichlorobenzene	429.8	10.0	ug/L	500	ND	86.0	72-119			
1,2-Dichlorobenzene	454.2	10.0	ug/L	500	ND	90.8	71-117			
1,2-Dibromo-3-chloropropane	496.9	50.0	ug/L	500	ND	99.4	49-134			
Surrogate: Dibromofluoromethane	480		ug/L	502		95.5	75-136			
Surrogate: 1,2-Dichloroethane-d4	487		ug/L	504		96.7	61-142			
Surrogate: Toluene-d8	500		ug/L	505		99.1	82-121			
Surrogate: 4-Bromofluorobenzene	504		ug/L	502		100	80-116			
Matrix Spike Dup (1HJ1173-MSD1)		HJ1076-02	Prepared: 10	0/17/24 00:0	0 Analyzed:	10/18/24 0	1:10			
Chloromethane	206.8	10.0	ug/L	300	ND	68.9	61-152	3.80	26	
Vinyl Chloride	216.9	10.0	ug/L	300	ND	72.3	66-149	3.84	23	
Bromomethane	213.1	10.0	ug/L	300	ND	71.0	43-171	0.990	29	
Chloroethane	256.4	10.0	ug/L	300	ND	85.5	69-148	3.86	25	
Trichlorofluoromethane	238.6	10.0	ug/L	300	ND	79.5	62-163	5.22	25	
1,1-Dichloroethylene	428.7	10.0	ug/L	500	ND	85.7	70-148	4.58	22	
Acetone	908.7	100	ug/L	1010	ND	89.8	45-173	2.16	30	
Methyl lodide	915.7	10.0	ug/L	1020	ND	89.9	62-167	1.49	24	
Carbon Disulfide	654.1	10.0	ug/L	1030	ND	63.7	71-163	5.41	22	S
Methylene Chloride	493.3	50.0	ug/L	500	ND	98.7	69-140	2.24	19	
trans-1,2-Dichloroethylene	428.8	10.0	ug/L	500	ND	85.8	69-144	4.82	22	

				Spike	Source		%REC		RPD	NI - 4 -
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
atch 1HJ1173 - EPA 5030B - EPA	8260B									
atrix Spike Dup (1HJ1173-MSD1)	Source	: 1HJ1076-02	Prepared: 1	0/17/24 00:0	0 Analyzed:	10/18/24 0	1:10			
1,1-Dichloroethane	430.5	10.0	ug/L	500	ND	86.1	70-138	3.29	20	
Vinyl Acetate	968.3	50.0	ug/L	1000	ND	96.8	58-142	0.103	24	
cis-1,2-Dichloroethylene	419.9	10.0	ug/L	500	ND	84.0	68-151	3.35	22	
2-Butanone (MEK)	846.5	100	ug/L	1020	ND	83.2	50-160	1.83	23	
3romochloromethane	417.2	10.0	ug/L	500	ND	83.4	65-143	2.65	22	
Chloroform	415.0	10.0	ug/L	500	ND	83.0	71-143	2.87	21	
1,1,1-Trichloroethane	434.7	10.0	ug/L	500	ND	86.9	63-133	4.50	23	
Carbon Tetrachloride	427.3	10.0	ug/L	500	ND	85.5	63-142	0.676	22	
Benzene	424.9	10.0	ug/L	500	ND	85.0	69-133	3.40	18	
1,2-Dichloroethane	430.5	10.0	ug/L	500	ND	86.1	63-138	2.41	20	
Trichloroethylene	431.7	10.0	ug/L	500	ND	86.3	71-133	4.17	23	
1,2-Dichloropropane	441.2	10.0	ug/L	500	ND	88.2	69-132	2.68	20	
Dibromomethane	465.9	10.0	ug/L	500	ND	93.2	70-147	2.27	22	
Bromodichloromethane	450.6	10.0	ug/L	500	ND	90.1	67-130	1.30	21	
cis-1,3-Dichloropropene	406.1	10.0	ug/L	500	ND	81.2	61-126	0.663	21	
4-Methyl-2-pentanone (MIBK)	963.8	50.0	ug/L	1000	ND	96.3	55-147	0.414	23	
Foluene	420.6	10.0	ug/L	500	ND	84.1	71-133	3.27	19	
rans-1,3-Dichloropropene	428.2	10.0	ug/L	500	ND	85.6		0.884	21	
1,1,2-Trichloroethane	458.4	10.0	_				63-124			
	447.5		ug/L	500	ND	91.7	69-133	0.964	19	
Tetrachloroethylene	990.3	10.0	ug/L	500	ND	89.5	70-124	3.08	24	
2-Hexanone (MBK)	469.3	50.0	ug/L	993	ND	99.7	53-141	0.141	24	
Dibromochloromethane		10.0	ug/L	500	ND	93.9	74-122	0.942	21	
1,2-Dibromoethane	458.2	10.0	ug/L	500	ND	91.6	66-127	0.0654	23	
Chlorobenzene	432.3	10.0	ug/L	500	ND	86.5	76-116	2.47	21	
1,1,1,2-Tetrachloroethane	455.8	10.0	ug/L	500	ND	91.2	77-121	1.83	25	
Ethylbenzene	445.6	10.0	ug/L	500	ND	89.1	73-124	3.35	20	
Xylenes, total	1355	20.0	ug/L	1500	ND	90.3	75-123	2.75	20	
Styrene	469.9	10.0	ug/L	500	ND	94.0	70-120	2.38	23	
3romoform Sromoform	474.2	10.0	ug/L	500	ND	94.8	70-124	2.50	22	
1,2,3-Trichloropropane	478.5	10.0	ug/L	500	ND	95.7	62-135	0.998	28	
rans-1,4-Dichloro-2-butene	813.0	50.0	ug/L	1030	ND	79.1	50-120	0.197	26	
1,1,2,2-Tetrachloroethane	460.1	10.0	ug/L	500	ND	92.0	63-126	0.348	24	
1,4-Dichlorobenzene	425.2	10.0	ug/L	500	ND	85.0	72-119	1.08	24	
1,2-Dichlorobenzene	446.3	10.0	ug/L	500	ND	89.3	71-117	1.75	24	
1,2-Dibromo-3-chloropropane	484.7	50.0	ug/L	500	ND	96.9	49-134	2.49	28	
Surrogate: Dibromofluoromethane	482		ug/L	502		96.0	75-136			
Surrogate: 1,2-Dichloroethane-d4	481		ug/L	504		95.5	61-142			
Surrogate: Toluene-d8	498		ug/L	505		98.6	82-121			
Surrogate: 4-Bromofluorobenzene	499		ug/L	502		99.5	80-116			

Blank (1HJ1301-BLK1)

Prepared: 10/21/24 00:00 Analyzed: 10/21/24 11:09

1HJ1337

Determination of Volatile	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Organic Compounds	Nesuit	IXL	Onits	Level	Nesuit	MINEC	Lillits	KFD	Lillin	
Batch 1HJ1301 - EPA 5030B - EI	PA 8260B									
Blank (1HJ1301-BLK1)			Prepared: 10	0/21/24 00:0	0 Analyzed:	10/21/24 1	1:09			
Chloromethane	<1.0	1.0	ug/L							
Vinyl Chloride	<1.0	1.0	ug/L							
Bromomethane	<1.0	1.0	ug/L							
Chloroethane	<1.0	1.0	ug/L							
Trichlorofluoromethane	<1.0	1.0	ug/L							
1,1-Dichloroethylene	<1.0	1.0	ug/L							
Acetone	<10.0	10.0	ug/L							
Methyl lodide	<1.0	1.0	ug/L							
Carbon Disulfide	<1.0	1.0	ug/L							
Methylene Chloride	<5.0	5.0	ug/L							
Acrylonitrile	<5.0	5.0	ug/L							
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L							
1,1-Dichloroethane	<1.0	1.0	ug/L							
Vinyl Acetate	<5.0	5.0	ug/L							
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L							
2-Butanone (MEK)	<10.0	10.0	ug/L							
Bromochloromethane	<1.0	1.0	ug/L							
Chloroform	<1.0	1.0	ug/L							
1,1,1-Trichloroethane	<1.0	1.0	ug/L							
Carbon Tetrachloride	<1.0	1.0	ug/L							
Benzene	<1.0	1.0	ug/L							
1,2-Dichloroethane	<1.0	1.0	ug/L							
Trichloroethylene	<1.0	1.0	ug/L							
1,2-Dichloropropane	<1.0	1.0	ug/L							
Dibromomethane	<1.0	1.0	ug/L							
Bromodichloromethane	<1.0	1.0	ug/L							
cis-1,3-Dichloropropene	<1.0	1.0	ug/L							
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L							
Toluene	<1.0	1.0	ug/L							
trans-1,3-Dichloropropene	<1.0	1.0	ug/L							
1,1,2-Trichloroethane	<1.0	1.0	ug/L							
Tetrachloroethylene	<1.0	1.0	ug/L							
2-Hexanone (MBK)	<5.0	5.0	ug/L							
Dibromochloromethane	<1.0	1.0	ug/L							
1,2-Dibromoethane	<1.0	1.0	ug/L							
Chlorobenzene	<1.0	1.0	ug/L							
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L							
Ethylbenzene	<1.0	1.0	ug/L							
Xylenes, total	<2.0	2.0	ug/L							
Styrene	<1.0	1.0	ug/L							
Bromoform	<1.0	1.0	ug/L							
1,2,3-Trichloropropane	<1.0	1.0	ug/L							

Microbac Laboratories, Inc., Newton

ug/L

5.0

<5.0

trans-1,4-Dichloro-2-butene

CERTIFICATE OF ANALYSIS

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ1301 - EPA 5030B - EPA	A 8260B									
	4 0200B		Prepared: 10	N21/24 00:0	IO Analyzed:	10/21/24 1	1:00			
Blank (1HJ1301-BLK1)	<1.0	1.0	<u> </u>	J/2 1/24 00.0	o Arialyzeu.	10/21/24 1	1.09			
1,1,2,2-Tetrachloroethane		1.0	ug/L							
1,4-Dichlorobenzene	<1.0	1.0	ug/L							
1,2-Dichlorobenzene	<1.0	1.0	ug/L							
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L							
Surrogate: Dibromofluoromethane	47.6		ug/L	50.2		94.7	57-134			
Surrogate: Dibromofluoromethane	47.6		ug/L	50.2		94.7	75-136			
Surrogate: 1,2-Dichloroethane-d4	50.0		ug/L	50.4		99.3	53-140			
Surrogate: 1,2-Dichloroethane-d4	50.0		ug/L	50.4		99.3	61-142			
Surrogate: Toluene-d8	47.2		ug/L	50.5		93.5	86-114			
Surrogate: Toluene-d8	47.2		ug/L	50.5		93.5	82-121			
Surrogate: 4-Bromofluorobenzene	49.4		ug/L	50.2		98.4	78-121			
Surrogate: 4-Bromofluorobenzene	49.4		ug/L	50.2		98.4	80-116			
Blank (1HJ1301-BLK2)			Prepared: 10	0/21/24 00:0	0 Analyzed:	10/22/24 0	1:23			
Chloromethane	<1.0	1.0	ug/L							
Vinyl Chloride	<1.0	1.0	ug/L							
Bromomethane	<1.0	1.0	ug/L							
Chloroethane	<1.0	1.0	ug/L							
Trichlorofluoromethane	<1.0	1.0	ug/L							
1,1-Dichloroethylene	<1.0	1.0	ug/L							
Acetone	<10.0	10.0	ug/L							
Methyl Iodide	<1.0	1.0	ug/L							
Carbon Disulfide	<1.0	1.0	ug/L							
Methylene Chloride	<5.0	5.0	ug/L							
Acrylonitrile	<5.0	5.0	ug/L							
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L							
1,1-Dichloroethane	<1.0	1.0	ug/L							
Vinyl Acetate	<5.0	5.0	ug/L							
	<1.0	1.0								
cis-1,2-Dichloroethylene	<10.0	10.0	ug/L							
2-Butanone (MEK)	<1.0		ug/L							
Bromochloromethane		1.0	ug/L							
Chloroform	<1.0	1.0	ug/L							
1,1,1-Trichloroethane	<1.0	1.0	ug/L							
Carbon Tetrachloride	<1.0	1.0	ug/L							
Benzene	<1.0	1.0	ug/L							
1,2-Dichloroethane	<1.0	1.0	ug/L							
Trichloroethylene	<1.0	1.0	ug/L							
1,2-Dichloropropane	<1.0	1.0	ug/L							
Dibromomethane	<1.0	1.0	ug/L							
Bromodichloromethane	<1.0	1.0	ug/L							
cis-1,3-Dichloropropene	<1.0	1.0	ug/L							
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L							
Toluene	<1.0	1.0	ug/L							
trans-1,3-Dichloropropene	<1.0	1.0	ug/L							

1HJ1337

Spike Source

%REC

RPD

Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ1301 - EPA 5030B - EPA	A 8260B									
Blank (1HJ1301-BLK2)			Prepared: 10	0/21/24 00:0	0 Analyzed:	10/22/24 0	1:23			
1,1,2-Trichloroethane	<1.0	1.0	ug/L							
Tetrachloroethylene	<1.0	1.0	ug/L							
2-Hexanone (MBK)	<5.0	5.0	ug/L							
Dibromochloromethane	<1.0	1.0	ug/L							
1,2-Dibromoethane	<1.0	1.0	ug/L							
Chlorobenzene	<1.0	1.0	ug/L							
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L							
Ethylbenzene	<1.0	1.0	ug/L							
Xylenes, total	<2.0	2.0	ug/L							
Styrene	<1.0	1.0	ug/L							
Bromoform	<1.0	1.0	ug/L							
1,2,3-Trichloropropane	<1.0	1.0	ug/L							
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L							
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L							
1,4-Dichlorobenzene	<1.0	1.0	ug/L							
1,2-Dichlorobenzene	<1.0	1.0	ug/L							
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L							
Surrogate: Dibromofluoromethane	52.2		ug/L	50.2		104	57-134			
Surrogate: Dibromofluoromethane	52.2		ug/L	50.2		104	75-136			
Surrogate: 1,2-Dichloroethane-d4	54.8		ug/L	50.4		109	53-140			
Surrogate: 1,2-Dichloroethane-d4	54.8		ug/L	50.4		109	61-142			
Surrogate: Toluene-d8	47.9		ug/L	50.5		94.9	86-114			
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene	47.9		ug/L	50.5		94.9	82-121			
Surrogate: 4-Bromofluorobenzene Surrogate: 4-Bromofluorobenzene	49.9 49.9		ug/L ug/L	50.2 50.2		99.5 99.5	78-121 80-116			
LCS (1HJ1301-BS1)	40.5		Prepared: 10		0 Analyzed:					
Chloromethane	30.14	1.0	ug/L	30.0		100	63-155			
Vinyl Chloride	28.96	1.0	ug/L	30.0		96.5	70-154			
Bromomethane	33.12	1.0	ug/L	30.0		110	52-176			
Chloroethane	24.87	1.0	ug/L	30.0		82.9	72-148			
Trichlorofluoromethane	24.34	1.0	ug/L	30.0		81.1	70-152			
1,1-Dichloroethylene	44.45	1.0	ug/L	50.0		88.9	70-132			
Acetone	99.33	10.0	ug/L	101		98.2	43-172			
Methyl lodide	96.99	1.0	ug/L	101		95.2	69-170			
Carbon Disulfide	67.06	1.0	ug/L	102		65.3	72-162			Q3
Methylene Chloride	43.27	5.0	ug/L	50.0		86.5	68-142			QJ
Acrylonitrile	77.56	5.0	ug/L	100		77.3				
trans-1,2-Dichloroethylene	45.12	1.0	ug/L ug/L	50.0		90.2	56-135 66-148			
1,1-Dichloroethane	44.18	1.0	•							
	91.56		ug/L	50.0		88.4	66-143			
Vinyl Acetate		5.0	ug/L	100		91.6	43-153			
cis-1,2-Dichloroethylene	44.44	1.0	ug/L	50.0		88.9	71-149			
2-Butanone (MEK)	92.08	10.0	ug/L	102		90.5	52-159			
Bromochloromethane	43.62	1.0	ug/L	50.0		87.2	69-143			

1HJ1337

Determination of Volatile	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Organic Compounds	Resuit	KL	Units	Level	Result	70REU	Liffii(S	KPU	LIMIT	
Batch 1HJ1301 - EPA 5030B - EPA	A 8260B									
.CS (1HJ1301-BS1)			Prepared: 10	0/21/24 00:0	0 Analyzed:	10/21/24 1	0:02			
Chloroform	44.14	1.0	ug/L	50.0		88.3	69-144			
1,1,1-Trichloroethane	44.67	1.0	ug/L	50.0		89.3	62-129			
Carbon Tetrachloride	45.86	1.0	ug/L	50.0		91.7	63-141			
Benzene	48.01	1.0	ug/L	50.0		96.0	71-134			
1,2-Dichloroethane	52.15	1.0	ug/L	50.0		104	72-132			
Trichloroethylene	47.37	1.0	ug/L	50.0		94.7	71-135			
1,2-Dichloropropane	45.95	1.0	ug/L	50.0		91.9	69-136			
Dibromomethane	48.86	1.0	ug/L	50.0		97.7	73-147			
Bromodichloromethane	47.09	1.0	ug/L	50.0		94.2	68-129			
cis-1,3-Dichloropropene	45.20	1.0	ug/L	50.0		90.4	65-134			
4-Methyl-2-pentanone (MIBK)	102.1	5.0	ug/L	100		102	58-147			
Toluene	46.37	1.0	ug/L	50.0		92.7	72-133			
trans-1,3-Dichloropropene	46.70	1.0	ug/L	50.0		93.4	67-130			
1,1,2-Trichloroethane	46.58	1.0	ug/L	50.0		93.2	69-135			
Tetrachloroethylene	50.31	1.0	ug/L	50.0		101	69-130			
2-Hexanone (MBK)	101.6	5.0	ug/L	99.3		102	55-144			
Dibromochloromethane	48.07	1.0	ug/L	50.0		96.1	73-127			
1,2-Dibromoethane	48.68	1.0	ug/L	50.0		97.4	67-132			
Chlorobenzene	47.64	1.0	ug/L	50.0		95.3	72-123			
1,1,1,2-Tetrachloroethane	50.14	1.0	ug/L	50.0		100	73-127			
Ethylbenzene	50.00	1.0	ug/L	50.0		100	71-127			
Xylenes, total	144.8	2.0	ug/L	150		96.6	74-127			
Styrene	49.55	1.0	ug/L	50.0		99.1	66-126			
Bromoform	48.34	1.0	ug/L	50.0		96.7	68-130			
1,2,3-Trichloropropane	49.06	1.0	ug/L	50.0		98.1	63-136			
trans-1,4-Dichloro-2-butene	90.82	5.0	ug/L	103		88.3				
1,1,2,2-Tetrachloroethane	48.58	1.0	ug/L	50.0		97.2	54-134			
1.4-Dichlorobenzene	46.59	1.0	_	50.0		93.2	61-131			
1,2-Dichlorobenzene	47.28	1.0	ug/L				70-129			
1,2-Dibromo-3-chloropropane	42.84	5.0	ug/L ug/L	50.0 50.0		94.6 85.7	69-126 50-143			
1,2-Dibromo-o-cinoropropane	12.01	0.0	ug/L	30.0		00.1	30-143			
Surrogate: Dibromofluoromethane	46.3		ug/L	50.2		92.2	57-134			
Surrogate: Dibromofluoromethane	46.3		ug/L	50.2		92.2	75-136			
Surrogate: 1,2-Dichloroethane-d4	47.2		ug/L	50.4		93.8	53-140			
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Toluene-d8	47.2 49.2		ug/L ug/L	50.4 50.5		93.8 97.4	61-142 86-114			
Surrogate: Toluene-d8	49.2 49.2		ug/L ug/L	50.5 50.5		97.4 97.4	82-121			
Surrogate: 4-Bromofluorobenzene	49.4		ug/L ug/L	50.2		98.5	78-121			
Surrogate: 4-Bromofluorobenzene	49.4		ug/L	50.2		98.5	80-116			
.CS (1HJ1301-BS2)			Prepared: 10	0/21/24 00:0	0 Analyzed:	10/22/24 0	0:15			
Chloromethane	35.79	1.0	ug/L	30.0		119	63-155			
Vinyl Chloride	33.44	1.0	ug/L	30.0		111	70-154			
Bromomethane	38.13	1.0	ug/L	30.0		127	52-176			
Chloroethane	28.96	1.0	ug/L	30.0		96.5	72-148			

1HJ1337

Spike Source

%REC

RPD

Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 1HJ1301 - EPA 5030B - EPA	A 8260B									
LCS (1HJ1301-BS2)			Prepared: 10	0/21/24 00:0	00 Analyzed:	10/22/24 0	0:15			
Trichlorofluoromethane	26.87	1.0	ug/L	30.0		89.6	70-152			
1,1-Dichloroethylene	50.89	1.0	ug/L	50.0		102	70-148			
Acetone	117.9	10.0	ug/L	101		116	43-172			
Methyl lodide	110.5	1.0	ug/L	102		108	69-170			
Carbon Disulfide	76.48	1.0	ug/L	103		74.5	72-162			
Methylene Chloride	51.38	5.0	ug/L	50.0		103	68-142			
Acrylonitrile	90.93	5.0	ug/L	100		90.6	56-135			
trans-1,2-Dichloroethylene	53.17	1.0	ug/L	50.0		106	66-148			
1,1-Dichloroethane	52.88	1.0	ug/L	50.0		106	66-143			
Vinyl Acetate	102.8	5.0	ug/L	100		103	43-153			
cis-1,2-Dichloroethylene	51.62	1.0	ug/L	50.0		103	71-149			
2-Butanone (MEK)	110.8	10.0	ug/L	102		109	52-159			
Bromochloromethane	52.57	1.0	ug/L	50.0		105	69-143			
Chloroform	52.26	1.0	ug/L	50.0		105	69-144			
1,1,1-Trichloroethane	51.69	1.0	ug/L	50.0		103	62-129			
Carbon Tetrachloride	52.38	1.0	ug/L	50.0		105	63-141			
Benzene	53.07	1.0	ug/L	50.0		106	71-134			
1,2-Dichloroethane	56.57	1.0	ug/L	50.0		113	72-132			
Trichloroethylene	50.92	1.0	ug/L	50.0		102	71-135			
1,2-Dichloropropane	51.66	1.0	ug/L	50.0		103	69-136			
Dibromomethane	53.48	1.0	ug/L	50.0		107	73-147			
Bromodichloromethane	52.33	1.0	ug/L	50.0		105	68-129			
cis-1,3-Dichloropropene	48.84	1.0	ug/L	50.0		97.7	65-134			
4-Methyl-2-pentanone (MIBK)	113.2	5.0	ug/L	100		113	58-147			
Toluene	51.24	1.0	ug/L	50.0		102	72-133			
trans-1,3-Dichloropropene	49.52	1.0	ug/L	50.0		99.0	67-130			
1,1,2-Trichloroethane	51.38	1.0	ug/L	50.0		103	69-135			
Tetrachloroethylene	51.58	1.0	ug/L	50.0		103	69-130			
2-Hexanone (MBK)	108.5	5.0	ug/L	99.3		109	55-144			
Dibromochloromethane	51.28	1.0	ug/L	50.0		103	73-127			
1,2-Dibromoethane	51.91	1.0	ug/L	50.0		104	67-132			
Chlorobenzene	50.99	1.0	ug/L	50.0		102	72-123			
1,1,1,2-Tetrachloroethane	53.59	1.0	ug/L	50.0		107	73-127			
Ethylbenzene	53.82	1.0	ug/L	50.0		108	71-127			
Xylenes, total	156.5	2.0	ug/L	150		104	74-127			
Styrene	53.57	1.0	ug/L	50.0		107	66-126			
Bromoform	50.30	1.0	ug/L	50.0		101	68-130			
1,2,3-Trichloropropane	52.59	1.0	ug/L	50.0		105	63-136			
trans-1,4-Dichloro-2-butene	95.70	5.0	ug/L	103		93.1	54-134			
1,1,2,2-Tetrachloroethane	51.76	1.0	ug/L	50.0		104	61-131			
1,4-Dichlorobenzene	49.42	1.0	ug/L	50.0		98.8	70-129			
1,2-Dichlorobenzene	50.44	1.0	ug/L	50.0		101	69-126			
1,2-Dibromo-3-chloropropane	45.00	5.0	ug/L	50.0		90.0	50-143			

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 1HJ1301 - EPA 5030B - EPA	8260B									
_CS (1HJ1301-BS2)			Prepared: 10	0/21/24 00:0	0 Analyzed:	10/22/24 0	0:15			
Surrogate: Dibromofluoromethane	51.3		ug/L	50.2		102	57-134			
Surrogate: Dibromofluoromethane	51.3		ug/L	50.2		102	75-136			
Surrogate: 1,2-Dichloroethane-d4	52.6		ug/L	50.4		104	53-140			
Surrogate: 1,2-Dichloroethane-d4	52.6		ug/L	50.4		104	61-142			
Surrogate: Toluene-d8	50.5		ug/L	50.5		100	86-114			
Surrogate: Toluene-d8	50.5		ug/L	50.5		100	82-121			
Surrogate: 4-Bromofluorobenzene	49.9		ug/L	50.2		99.4	78-121			
Surrogate: 4-Bromofluorobenzene	49.9		ug/L	50.2	0 4 1 1	99.4	80-116			
.CS Dup (1HJ1301-BSD1)	20.77	4.0	Prepared: 10		u Analyzeu.					
Chloromethane	28.77	1.0	ug/L	30.0		95.9	63-155	4.65	24	
Vinyl Chloride	27.81	1.0	ug/L	30.0		92.7	70-154	4.05	25	
Bromomethane	32.00	1.0	ug/L	30.0		107	52-176	3.44	27	
Chloroethane	23.72	1.0	ug/L	30.0		79.1	72-148	4.73	25	
Trichlorofluoromethane	23.08	1.0	ug/L	30.0		76.9	70-152	5.31	26	
1,1-Dichloroethylene	42.78	1.0	ug/L	50.0		85.6	70-148	3.83	24	
Acetone	96.37	10.0	ug/L	101		95.2	43-172	3.03	30	
Methyl lodide	94.39	1.0	ug/L	102		92.7	69-170	2.72	30	
Carbon Disulfide	64.32	1.0	ug/L	103		62.6	72-162	4.17	24	Q3
Methylene Chloride	42.95	5.0	ug/L	50.0		85.9	68-142	0.742	21	
Acrylonitrile	76.96	5.0	ug/L	100		76.7	56-135	0.777	16	
trans-1,2-Dichloroethylene	43.93	1.0	ug/L	50.0		87.9	66-148	2.67	27	
1,1-Dichloroethane	43.12	1.0	ug/L	50.0		86.2	66-143	2.43	24	
Vinyl Acetate	91.64	5.0	ug/L	100		91.6	43-153	0.0873	30	
cis-1,2-Dichloroethylene	44.31	1.0	ug/L	50.0		88.6	71-149	0.293	26	
2-Butanone (MEK)	93.49	10.0	ug/L	102		91.8	52-159	1.52	27	
Bromochloromethane	43.36	1.0	ug/L	50.0		86.7		0.598		
Chloroform	43.75	1.0	ug/L	50.0		87.5	69-143		23	
	44.07		•				69-144	0.887	23	
1,1,1-Trichloroethane	45.28	1.0	ug/L	50.0		88.1	62-129	1.35	24	
Carbon Tetrachloride	45.26 47.83	1.0	ug/L	50.0		90.6	63-141	1.27	25	
Benzene		1.0	ug/L	50.0		95.7	71-134	0.376	24	
1,2-Dichloroethane	53.08	1.0	ug/L	50.0		106	72-132	1.77	24	
Trichloroethylene	46.95	1.0	ug/L	50.0		93.9	71-135	0.891	24	
1,2-Dichloropropane	46.23	1.0	ug/L	50.0		92.5	69-136	0.608	24	
Dibromomethane	49.75	1.0	ug/L	50.0		99.5	73-147	1.81	25	
Bromodichloromethane	48.03	1.0	ug/L	50.0		96.1	68-129	1.98	22	
cis-1,3-Dichloropropene	45.81	1.0	ug/L	50.0		91.6	65-134	1.34	23	
4-Methyl-2-pentanone (MIBK)	103.6	5.0	ug/L	100		104	58-147	1.44	27	
Toluene	46.51	1.0	ug/L	50.0		93.0	72-133	0.301	24	
trans-1,3-Dichloropropene	47.51	1.0	ug/L	50.0		95.0	67-130	1.72	24	
1,1,2-Trichloroethane	47.32	1.0	ug/L	50.0		94.6	69-135	1.58	23	
Tetrachloroethylene	50.18	1.0	ug/L	50.0		100	69-130	0.259	25	
2-Hexanone (MBK)	102.9	5.0	ug/L	99.3		104	55-144	1.24	25	
Dibromochloromethane	49.60	1.0	ug/L	50.0		99.2	73-127	3.13	22	

1HJ1337

				Spike	Source		%REC		RPD	Notes
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ1301 - EPA 5030B - EP	A 8260B									
	A 0200B		D	2/04/04 00 0	0.4	40/04/04 4	0.04			
LCS Dup (1HJ1301-BSD1)	50.07		Prepared: 10		u Anaiyzed:					
1,2-Dibromoethane	50.07	1.0	ug/L	50.0		100	67-132	2.82	24	
Chlorobenzene	48.07	1.0	ug/L	50.0		96.1	72-123	0.899	23	
1,1,1,2-Tetrachloroethane	51.22	1.0	ug/L	50.0		102	73-127	2.13	24	
Ethylbenzene	50.70	1.0	ug/L	50.0		101	71-127	1.39	26	
Xylenes, total	147.0	2.0	ug/L	150		98.0	74-127	1.45	25	
Styrene	50.75	1.0	ug/L	50.0		102	66-126	2.39	23	
Bromoform	50.28	1.0	ug/L	50.0		101	68-130	3.93	23	
1,2,3-Trichloropropane	49.77	1.0	ug/L	50.0		99.5	63-136	1.44	24	
trans-1,4-Dichloro-2-butene	92.71	5.0	ug/L	103		90.2	54-134	2.06	27	
1,1,2,2-Tetrachloroethane	49.96	1.0	ug/L	50.0		99.9	61-131	2.80	29	
1,4-Dichlorobenzene	47.87	1.0	ug/L	50.0		95.7	70-129	2.71	24	
1,2-Dichlorobenzene	48.91	1.0	ug/L	50.0		97.8	69-126	3.39	26	
1,2-Dibromo-3-chloropropane	44.18	5.0	ug/L	50.0		88.4	50-143	3.08	30	
Surrogate: Dibromofluoromethane	45.8		ug/L	50.2		91.2	57-134			
Surrogate: Dibromofluoromethane	45.8		ug/L	50.2		91.2	75-136			
Surrogate: 1,2-Dichloroethane-d4	47.2		ug/L	50.4		93.8	53-140			
Surrogate: 1,2-Dichloroethane-d4	47.2		ug/L	50.4		93.8	61-142			
Surrogate: Toluene-d8	49.4		ug/L	50.5		97.9	86-114			
Surrogate: Toluene-d8	49.4		ug/L	50.5		97.9	82-121			
Surrogate: 4-Bromofluorobenzene Surrogate: 4-Bromofluorobenzene	50.0 50.0		ug/L ug/L	50.2 50.2		99.6 99.6	78-121 80-116			
LCS Dup (1HJ1301-BSD2)	30.0		Prepared: 10		0 Analyzed:					
Chloromethane	34.06	1.0	ug/L	30.0		114	63-155	4.95	24	
Vinyl Chloride	32.00	1.0	ug/L	30.0		107	70-154	4.40	25	
Bromomethane	36.39	1.0	ug/L	30.0		121	52-176	4.67	27	
Chloroethane	27.79	1.0	ug/L	30.0		92.6	72-148	4.12	25	
Trichlorofluoromethane	26.03	1.0	ug/L	30.0		86.8	70-152	3.18	26	
1,1-Dichloroethylene	49.28	1.0	ug/L	50.0		98.6	70-132	3.21	24	
Acetone	119.2	10.0	ug/L	101		118	43-172	1.10	30	
Methyl lodide	107.9	1.0	ug/L	101		106				
Carbon Disulfide	73.31	1.0		102			69-170	2.35	30	02
	49.96		ug/L			71.4	72-162	4.23	24	Q3
Methylene Chloride	90.42	5.0 5.0	ug/L	50.0		99.9	68-142	2.80	21	
Acrylonitrile	51.34		ug/L	100		90.1	56-135	0.562	16	
trans-1,2-Dichloroethylene	51.34	1.0	ug/L	50.0		103	66-148	3.50	27	
1,1-Dichloroethane		1.0	ug/L	50.0		102	66-143	3.27	24	
Vinyl Acetate	102.6	5.0	ug/L	100		103	43-153	0.175	30	
cis-1,2-Dichloroethylene	50.04	1.0	ug/L	50.0		100	71-149	3.11	26	
2-Butanone (MEK)	111.1	10.0	ug/L	102		109	52-159	0.325	27	
Bromochloromethane	52.20	1.0	ug/L	50.0		104	69-143	0.706	23	
Chloroform	51.33	1.0	ug/L	50.0		103	69-144	1.80	23	
1,1,1-Trichloroethane	50.04	1.0	ug/L	50.0		100	62-129	3.24	24	
Carbon Tetrachloride	50.53	1.0	ug/L	50.0		101	63-141	3.60	25	
Benzene	52.09	1.0	ug/L	50.0		104	71-134	1.86	24	

5				Spike	Source		%REC		RPD	Notes
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ1301 - EPA 5030B - EPA	A 8260B									
LCS Dup (1HJ1301-BSD2)			Prepared: 10	0/21/24 00:0	0 Analyzed:	10/22/24 0	0:38			
1,2-Dichloroethane	56.17	1.0	ug/L	50.0		112	72-132	0.710	24	
Trichloroethylene	50.28	1.0	ug/L	50.0		101	71-135	1.26	24	
1,2-Dichloropropane	51.01	1.0	ug/L	50.0		102	69-136	1.27	24	
Dibromomethane	52.98	1.0	ug/L	50.0		106	73-147	0.939	25	
Bromodichloromethane	51.57	1.0	ug/L	50.0		103	68-129	1.46	22	
cis-1,3-Dichloropropene	48.44	1.0	ug/L	50.0		96.9	65-134	0.822	23	
4-Methyl-2-pentanone (MIBK)	114.8	5.0	ug/L	100		115	58-147	1.37	27	
Toluene	50.29	1.0	ug/L	50.0		101	72-133	1.87	24	
trans-1,3-Dichloropropene	49.53	1.0	ug/L	50.0		99.1	67-130	0.0202	24	
1,1,2-Trichloroethane	51.06	1.0	ug/L	50.0		102	69-135	0.625	23	
Tetrachloroethylene	49.89	1.0	ug/L	50.0		99.8	69-130	3.33	25	
2-Hexanone (MBK)	110.0	5.0	ug/L	99.3		111	55-144	1.37	25	
Dibromochloromethane	50.52	1.0	ug/L	50.0		101	73-127	1.49	22	
1,2-Dibromoethane	51.35	1.0	ug/L	50.0		103	67-132	1.08	24	
Chlorobenzene	49.99	1.0	ug/L	50.0		100	72-123	1.98	23	
1,1,1,2-Tetrachloroethane	52.40	1.0	ug/L	50.0		105	73-127	2.25	24	
Ethylbenzene	52.53	1.0	ug/L	50.0		105	71-127	2.43	26	
Xylenes, total	153.2	2.0	ug/L	150		102	74-127	2.13	25	
Styrene	52.68	1.0	ug/L	50.0		105	66-126	1.68	23	
Bromoform	50.29	1.0	ug/L	50.0		101	68-130		23	
1,2,3-Trichloropropane	51.72	1.0	ug/L	50.0		103	63-136	1.67	23 24	
trans-1,4-Dichloro-2-butene	94.84	5.0	ug/L	103		92.3	54-134	0.903	24 27	
1,1,2,2-Tetrachloroethane	51.28	1.0	ug/L	50.0		103		0.903	2 <i>1</i> 29	
1,4-Dichlorobenzene	48.86	1.0	_	50.0		97.7	61-131			
1,2-Dichlorobenzene	49.66	1.0	ug/L				70-129	1.14	24	
1,2-Dibromo-3-chloropropane	45.25	5.0	ug/L ug/L	50.0 50.0		99.3 90.5	69-126 50-143	1.56 0.554	26 30	
								0.004		
Surrogate: Dibromofluoromethane	50.6		ug/L	50.2		101	57-134			
Surrogate: Dibromofluoromethane	50.6		ug/L	50.2		101	75-136			
Surrogate: 1,2-Dichloroethane-d4 Surrogate: 1,2-Dichloroethane-d4	52.5 52.5		ug/L ug/L	50.4 50.4		104 104	53-140 61-142			
Surrogate: Toluene-d8	51.0		ug/L ug/L	50. 4 50.5		104	86-114			
Surrogate: Toluene-d8	51.0		ug/L	50.5		101	82-121			
Surrogate: 4-Bromofluorobenzene	49.6		ug/L	50.2		98.8	78-121			
Surrogate: 4-Bromofluorobenzene	49.6		ug/L	50.2		98.8	80-116			
Matrix Spike (1HJ1301-MS1)	Source: 11	HJ1342-01	Prepared: 10	0/21/24 00:0	0 Analyzed:	10/22/24 0	4:24			
Chloromethane	357.8	10.0	ug/L	300	ND	119	61-152			
Vinyl Chloride	334.2	10.0	ug/L	300	ND	111	66-149			
Bromomethane	359.2	10.0	ug/L	300	ND	120	43-171			
Chloroethane	288.5	10.0	ug/L	300	ND	96.2	69-148			
Trichlorofluoromethane	274.5	10.0	ug/L	300	ND	91.5	62-163			
1,1-Dichloroethylene	511.5	10.0	ug/L	500	ND	102	70-148			
Acetone	1189	100	ug/L	1010	ND	118	45-173			
Methyl lodide	1049	10.0	ug/L	1020	ND	103	62-167			

Determination of Volatile Organic Compounds	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HJ1301 - EPA 5030B - EPA	A 8260B									
Matrix Spike (1HJ1301-MS1)		HJ1342-01	Prepared: 10	0/21/24 00:0	0 Analvzed:	10/22/24 0	4:24			
Carbon Disulfide	765.6	10.0	ug/L	1030	ND	74.5	71-163			
Methylene Chloride	513.6	50.0	ug/L	500	ND	103	69-140			
Acrylonitrile	903.2	50.0	ug/L	1000	ND	90.0	38-147			
trans-1,2-Dichloroethylene	528.2	10.0	ug/L	500	ND	106	69-144			
1,1-Dichloroethane	526.6	10.0	ug/L	500	ND	105	70-138			
Vinyl Acetate	1006	50.0	ug/L	1000	ND	101	58-142			
cis-1,2-Dichloroethylene	505.4	10.0	ug/L	500	ND	101	68-151			
2-Butanone (MEK)	1048	100	ug/L	1020	ND	103	50-160			
Bromochloromethane	526.0	10.0	ug/L	500	ND	105	65-143			
Chloroform	516.2	10.0	ug/L	500	ND	103	71-143			
1,1,1-Trichloroethane	511.6	10.0	ug/L	500	ND	102	63-133			
Carbon Tetrachloride	520.3	10.0	ug/L	500	ND	104	63-142			
Benzene	530.0	10.0	ug/L	500	ND	106	69-133			
1,2-Dichloroethane	566.1	10.0	ug/L	500	ND	113	63-138			
Trichloroethylene	507.9	10.0	ug/L	500	ND	102	71-133			
1,2-Dichloropropane	509.9	10.0	ug/L	500	ND	102	69-132			
Dibromomethane	530.2	10.0	ug/L	500	ND	106	70-147			
Bromodichloromethane	513.7	10.0	ug/L	500	ND	103	67-130			
cis-1,3-Dichloropropene	469.8	10.0	ug/L	500	ND	94.0	61-126			
4-Methyl-2-pentanone (MIBK)	1094	50.0	ug/L	1000	ND	109	55-147			
Toluene	506.5	10.0	ug/L	500	ND	101	71-133			
trans-1,3-Dichloropropene	481.3	10.0	ug/L	500	ND	96.3	63-124			
1,1,2-Trichloroethane	509.0	10.0	ug/L	500	ND	102	69-133			
Tetrachloroethylene	511.4	10.0	ug/L	500	ND	102	70-124			
2-Hexanone (MBK)	1044	50.0	ug/L	993	ND	105	53-141			
Dibromochloromethane	505.4	10.0	ug/L	500	ND	101	74-122			
1,2-Dibromoethane	510.0	10.0	ug/L	500	ND	102	66-127			
Chlorobenzene	504.8	10.0	ug/L	500	ND	101	76-116			
1,1,1,2-Tetrachloroethane	523.4	10.0	ug/L	500	ND	105	77-121			
Ethylbenzene	533.7	10.0	ug/L	500	ND	107	73-124			
Xylenes, total	1545	20.0	ug/L	1500	ND	103	75-123			
Styrene	527.4	10.0	ug/L	500	ND	105	70-120			
Bromoform	492.6	10.0	ug/L	500	ND	98.5	70-124			
1,2,3-Trichloropropane	506.6	10.0	ug/L	500	ND	101	62-135			
trans-1,4-Dichloro-2-butene	898.2	50.0	ug/L	1030	ND	87.4	50-120			
1,1,2,2-Tetrachloroethane	506.0	10.0	ug/L	500	ND	101	63-126			
1,4-Dichlorobenzene	486.9	10.0	ug/L	500	ND	97.4	72-119			
1,2-Dichlorobenzene	504.8	10.0	ug/L	500	ND	101	71-117			
1,2-Dibromo-3-chloropropane	439.0	50.0	ug/L	500	ND	87.8	49-134			
Surrogate: Dibromofluoromethane	514		ug/L	502		102	57-134			
Surrogate: Dibromofluoromethane	514		ug/L	502		102	75-136			
Surrogate: 1,2-Dichloroethane-d4	529		ug/L	504		105	53-140			
Surrogato: 1.2 Diablaraathana d4	E20		/1	E0.4		405	04 440			

ug/L

504

529

Surrogate: 1,2-Dichloroethane-d4

61-142

105

Spike Source %REC RPD

Determination of Volatile Result RL Units Level Result %REC Limits RPD Limit Notes

Organic Compounds

urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene	Source:	1HJ1342-01	Prepared: 1	10/21/24 00:0	0 Analyzed	10/22/24 0)4:24
Surrogate: Toluene-d8	509		ug/L	505		101	86-114
Surrogate: Toluene-d8	509		ug/L	505		101	82-121
Surrogate: 4-Bromofluorobenzene	497		ug/L	502		99.0	78-121
Surrogate: 4-Bromofluorobenzene	497		ug/L	502		99.0	80-116
Matrix Spike (1HJ1301-MS2)	Source:	1HJ1340-05	Prepared: 1	10/21/24 00:0	0 Analyzed	10/22/24 0	05:09
Chloromethane	347.5	10.0	ug/L	300	ND	116	61-152
Vinyl Chloride	335.4	10.0	ug/L	300	ND	112	66-149
Bromomethane	366.9	10.0	ug/L	300	ND	122	43-171
Chloroethane	286.2	10.0	ug/L	300	ND	95.4	69-148
Trichlorofluoromethane	275.3	10.0	ug/L	300	ND	91.8	62-163
1,1-Dichloroethylene	516.7	10.0	ug/L	500	ND	103	70-148
Acetone	1222	100	ug/L	1010	ND	121	45-173
Methyl lodide	1093	10.0	ug/L	1020	ND	107	62-167
Carbon Disulfide	775.1	10.0	ug/L	1030	ND	75.5	71-163
Methylene Chloride	518.8	50.0	ug/L	500	ND	104	69-140
Acrylonitrile	931.7	50.0	ug/L	1000	ND	92.8	38-147
trans-1,2-Dichloroethylene	537.6	10.0	ug/L	500	ND	108	69-144
1,1-Dichloroethane	535.3	10.0	ug/L	500	ND	107	70-138
Vinyl Acetate	1044	50.0	ug/L	1000	ND	104	58-142
cis-1,2-Dichloroethylene	516.5	10.0	ug/L	500	ND	103	68-151
2-Butanone (MEK)	1102	100	ug/L	1020	ND	108	50-160
Bromochloromethane	533.9	10.0	ug/L	500	ND	107	65-143
Chloroform	527.5	10.0	ug/L	500	ND	106	71-143
1,1,1-Trichloroethane	524.3	10.0	ug/L	500	ND	105	63-133
Carbon Tetrachloride	536.0	10.0	ug/L	500	ND	107	63-142
Benzene	535.6	10.0	ug/L	500	ND	107	69-133
1,2-Dichloroethane	577.4	10.0	ug/L	500	ND	115	63-138
Trichloroethylene	515.3	10.0	ug/L	500	ND	103	71-133
1,2-Dichloropropane	520.9	10.0	ug/L	500	ND	104	69-132
Dibromomethane	538.8	10.0	ug/L	500	ND	108	70-147
Bromodichloromethane	524.5	10.0	ug/L	500	ND	105	67-130
cis-1,3-Dichloropropene	483.7	10.0	ug/L	500	ND	96.7	61-126
4-Methyl-2-pentanone (MIBK)	1146	50.0	ug/L	1000	ND	115	55-147
Toluene	518.7	10.0	ug/L	500	ND	104	71-133
trans-1,3-Dichloropropene	496.1	10.0	ug/L	500	ND	99.2	63-124
1,1,2-Trichloroethane	519.0	10.0	ug/L	500	ND	104	69-133
Tetrachloroethylene	525.7	10.0	ug/L	500	ND	105	70-124
2-Hexanone (MBK)	1112	50.0	ug/L	993	ND	112	53-141
Dibromochloromethane	522.0	10.0	ug/L	500	ND	104	74-122
1,2-Dibromoethane	528.2	10.0	ug/L	500	ND	104	66-127
Chlorobenzene	516.0	10.0	ug/L	500	ND	103	76-116
1,1,1,2-Tetrachloroethane	538.7	10.0	ug/L	500	ND	108	76-116 77-121
1, 1, 1,2-15tla01ll010Etl1a1lE	555.7	10.0	ug/L	500	טא	100	11-121

Spike Source

%REC

RPD

				Shike	Source		/OKEC		KFD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ1301 - EPA 5030B - EPA	8260B									
Matrix Spike (1HJ1301-MS2)	Source:	1HJ1340-05	Prepared: 1	0/21/24 00:0	00 Analyzed:	10/22/24 0	5:09			
Ethylbenzene	549.3	10.0	ug/L	500	ND	110	73-124			
Xylenes, total	1596	20.0	ug/L	1500	ND	106	75-123			
Styrene	545.0	10.0	ug/L	500	ND	109	70-120			
Bromoform	508.8	10.0	ug/L	500	ND	102	70-124			
1,2,3-Trichloropropane	534.2	10.0	ug/L	500	ND	107	62-135			
trans-1,4-Dichloro-2-butene	953.8	50.0	ug/L	1030	ND	92.8	50-120			
1,1,2,2-Tetrachloroethane	529.2	10.0	ug/L	500	ND	106	63-126			
1,4-Dichlorobenzene	504.5	10.0	ug/L	500	ND	101	72-119			
1,2-Dichlorobenzene	518.5	10.0	ug/L	500	ND	104	71-117			
1,2-Dibromo-3-chloropropane	464.1	50.0	ug/L	500	ND	92.8	49-134			
			<u>J</u>							
Surrogate: Dibromofluoromethane	508		ug/L	502		101	57-134			
Surrogate: Dibromofluoromethane	508		ug/L	502		101	75-136			
Surrogate: 1,2-Dichloroethane-d4 Surrogate: 1,2-Dichloroethane-d4	527 527		ug/L	504 504		105 105	53-140 61-142			
Surrogate: Toluene-d8	507		ug/L ug/L	50 4 505		103	86-114			
Surrogate: Toluene-d8	507 507		ug/L	505 505		101	82-121			
Surrogate: 4-Bromofluorobenzene	498		ug/L	502		99.4	78-121			
Surrogate: 4-Bromofluorobenzene	498		ug/L	502		99.4	80-116			
Matrix Spike Dup (1HJ1301-MSD1)	Source:	1HJ1342-01	Prepared: 1	0/21/24 00:0	00 Analyzed:	10/22/24 0	4:47			
Chloromethane	338.4	10.0	ug/L	300	ND	113	61-152	5.57	26	
Vinyl Chloride	322.6	10.0	ug/L	300	ND	108	66-149	3.53	23	
Bromomethane	355.2	10.0	ug/L	300	ND	118	43-171	1.12	29	
Chloroethane	275.2	10.0	ug/L	300	ND	91.7	69-148	4.72	25	
Trichlorofluoromethane	265.5	10.0	ug/L	300	ND	88.5	62-163	3.33	25	
1,1-Dichloroethylene	492.8	10.0	ug/L	500	ND	98.6	70-148	3.72	22	
Acetone	1172	100	ug/L	1010	ND	116	45-173	1.50	30	
Methyl lodide	1055	10.0	ug/L	1020	ND	104	62-167	0.618	24	
Carbon Disulfide	744.0	10.0	ug/L	1030	ND	72.4	71-163	2.86	22	
Methylene Chloride	501.1	50.0	ug/L	500	ND	100	69-140	2.46	19	
Acrylonitrile	894.9	50.0	ug/L	1000	ND	89.1	38-147	0.923	30	
trans-1,2-Dichloroethylene	516.5	10.0	ug/L	500	ND	103	69-144	2.24	22	
1,1-Dichloroethane	509.5	10.0	ug/L	500	ND	102	70-138	3.30	20	
Vinyl Acetate	1004	50.0	ug/L	1000	ND	100	58-142	0.189	24	
cis-1,2-Dichloroethylene	502.3	10.0	ug/L	500	ND	100	68-151	0.615	22	
2-Butanone (MEK)	1066	100	ug/L	1020	ND	105	50-160	1.74	23	
Bromochloromethane	527.1	10.0	ug/L	500	ND	105	65-143	0.209	22	
Chloroform	509.8	10.0	ug/L	500	ND	102	71-143	1.25	21	
1,1,1-Trichloroethane	505.3	10.0	ug/L	500	ND	101	63-133	1.24	23	
Carbon Tetrachloride	512.1	10.0	ug/L	500	ND	102	63-142	1.59	22	
Benzene	511.3	10.0	ug/L	500	ND	102	69-133	3.59	18	
1,2-Dichloroethane	559.4	10.0	ug/L	500	ND	112	63-138	1.19	20	
Trichloroethylene	494.4	10.0	ug/L	500	ND	98.9	71-133	2.69	23	
1,2-Dichloropropane	505.6	10.0	ug/L ug/L	500	ND	101	69-132	0.847	20	
., E Diomoropropario	300.0	10.0	ug/L	500	טויו	101	09-132	0.047	20	

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ1301 - EPA 5030B - EPA	8260B									
latrix Spike Dup (1HJ1301-MSD1)	Source:	1HJ1342-01	Prepared: 1	0/21/24 00:0	0 Analyzed:	10/22/24 0	4:47			
Dibromomethane	527.3	10.0	ug/L	500	ND	105	70-147	0.548	22	
Bromodichloromethane	509.6	10.0	ug/L	500	ND	102	67-130	0.801	21	
cis-1,3-Dichloropropene	470.1	10.0	ug/L	500	ND	94.0	61-126	0.0638	21	
4-Methyl-2-pentanone (MIBK)	1099	50.0	ug/L	1000	ND	110	55-147	0.447	23	
Toluene	493.5	10.0	ug/L	500	ND	98.7	71-133	2.60	19	
trans-1,3-Dichloropropene	482.6	10.0	ug/L	500	ND	96.5	63-124	0.270	21	
1,1,2-Trichloroethane	502.7	10.0	ug/L	500	ND	101	69-133	1.25	19	
Tetrachloroethylene	506.9	10.0	ug/L	500	ND	101	70-124	0.884	24	
2-Hexanone (MBK)	1045	50.0	ug/L	993	ND	105	53-141	0.0766	24	
Dibromochloromethane	506.2	10.0	ug/L	500	ND	101	74-122	0.158	21	
1,2-Dibromoethane	513.8	10.0	ug/L	500	ND	103	66-127	0.742	23	
Chlorobenzene	497.7	10.0	ug/L	500	ND	99.5	76-116	1.42	21	
1,1,1,2-Tetrachloroethane	522.6	10.0	ug/L	500	ND	105	77-121	0.153	25	
Ethylbenzene	525.0	10.0	ug/L	500	ND	105	73-124	1.64	20	
Xylenes, total	1527	20.0	ug/L	1500	ND	102	75-123	1.16	20	
Styrene	524.3	10.0	ug/L	500	ND	105	70-120	0.590	23	
3romoform	498.5	10.0	ug/L	500	ND	99.7	70-124	1.19	22	
1,2,3-Trichloropropane	517.3	10.0	ug/L	500	ND	103	62-135	2.09	28	
trans-1,4-Dichloro-2-butene	912.3	50.0	ug/L	1030	ND	88.7	50-120	1.56	26	
1,1,2,2-Tetrachloroethane	512.7	10.0	ug/L	500	ND	103	63-126	1.32	24	
1,4-Dichlorobenzene	484.4	10.0	ug/L	500	ND	96.9	72-119	0.515	24	
1,2-Dichlorobenzene	499.1	10.0	ug/L	500	ND	99.8	71-117	1.14	24	
1,2-Dibromo-3-chloropropane	434.2	50.0	ug/L	500	ND	86.8	49-134	1.10	28	
Surrogate: Dibromofluoromethane	512		ug/L	502		102	57-134			
Surrogate: Dibromofluoromethane	512		ug/L	502		102	75-136			
Surrogate: 1,2-Dichloroethane-d4	531		ug/L	504		105	53-140			
Surrogate: 1,2-Dichloroethane-d4	531		ug/L	504		105	61-142			
Surrogate: Toluene-d8	501		ug/L	505		99.4	86-11 <i>4</i>			
Surrogate: Toluene-d8	501		ug/L	505		99.4	82-121			
Surrogate: 4-Bromofluorobenzene Surrogate: 4-Bromofluorobenzene	500 500		ug/L	502		99.7	78-121			
-		1HJ1340-05	ug/L Prepared: 1	<i>502</i> n/21/24 nn:n	I∩ Analyzed:	99.7	80-116 5:32			
atrix Spike Dup (1HJ1301-MSD2) Chloromethane	337.5	10.0	ug/L					2.02	26	
Vinyl Chloride	315.4	10.0	ug/L ug/L	300 300	ND	112	61-152	2.92	26	
Bromomethane	355.1	10.0	_		ND	105	66-149	6.15	23	
Chloroethane	281.7	10.0	ug/L	300	ND	118	43-171	3.27	29	
	262.5		ug/L	300	ND	93.9	69-148	1.58	25	
Trichlorofluoromethane	494.6	10.0	ug/L	300	ND	87.5	62-163	4.76	25	
1,1-Dichloroethylene	1220	10.0	ug/L	500	ND	98.9	70-148	4.37	22	
Acetone		100	ug/L	1010	ND	121	45-173	0.139	30	
Methyl lodide	1068	10.0	ug/L	1020	ND	105	62-167	2.38	24	
Carbon Disulfide	745.3	10.0	ug/L	1030	ND	72.6	71-163	3.92	22	
Methylene Chloride	510.6	50.0	ug/L	500	ND	102	69-140	1.59	19	
Acrylonitrile	918.8	50.0	ug/L	1000	ND	91.5	38-147	1.39	30	

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ1301 - EPA 5030B - EPA 8	8260B									
Matrix Spike Dup (1HJ1301-MSD2)	Source:	1HJ1340-05	Prepared: 10	0/21/24 00:0	0 Analyzed:	10/22/24 0	5:32			
trans-1,2-Dichloroethylene	518.9	10.0	ug/L	500	ND	104	69-144	3.54	22	
1,1-Dichloroethane	513.8	10.0	ug/L	500	ND	103	70-138	4.10	20	
Vinyl Acetate	1030	50.0	ug/L	1000	ND	103	58-142	1.37	24	
cis-1,2-Dichloroethylene	499.5	10.0	ug/L	500	ND	99.9	68-151	3.35	22	
2-Butanone (MEK)	1127	100	ug/L	1020	ND	111	50-160	2.23	23	
Bromochloromethane	529.1	10.0	ug/L	500	ND	106	65-143	0.903	22	
Chloroform	510.3	10.0	ug/L	500	ND	102	71-143	3.31	21	
1,1,1-Trichloroethane	505.3	10.0	ug/L	500	ND	101	63-133	3.69	23	
Carbon Tetrachloride	513.8	10.0	ug/L	500	ND	103	63-142	4.23	22	
Benzene	518.7	10.0	ug/L	500	ND	104	69-133	3.21	18	
1,2-Dichloroethane	570.9	10.0	ug/L	500	ND	114	63-138	1.13	20	
Trichloroethylene	499.2	10.0	ug/L	500	ND	99.8	71-133	3.17	23	
1,2-Dichloropropane	510.8	10.0	ug/L	500	ND	102	69-132	1.96	20	
Dibromomethane	540.7	10.0	ug/L	500	ND	108	70-147	0.352	22	
Bromodichloromethane	514.7	10.0	ug/L	500	ND	103	67-130	1.89	21	
cis-1,3-Dichloropropene	483.2	10.0	ug/L	500	ND	96.6	61-126	0.103	21	
4-Methyl-2-pentanone (MIBK)	1149	50.0	ug/L	1000	ND	115	55-147	0.218	23	
Toluene	499.6	10.0	ug/L	500	ND	99.9	71-133	3.75	19	
trans-1,3-Dichloropropene	495.5	10.0	ug/L	500	ND	99.1	63-124	0.121	21	
1,1,2-Trichloroethane	515.6	10.0	ug/L	500	ND	103	69-133	0.657	19	
Tetrachloroethylene	501.0	10.0	ug/L	500	ND	100	70-124	4.81	24	
2-Hexanone (MBK)	1110	50.0	ug/L	993	ND	112	53-141	0.198	24	
Dibromochloromethane	513.4	10.0	ug/L	500	ND	103	74-122	1.66	21	
1,2-Dibromoethane	532.2	10.0	ug/L	500	ND	106	66-127	0.754	23	
Chlorobenzene	501.1	10.0	ug/L	500	ND	100	76-116	2.93	21	
1,1,1,2-Tetrachloroethane	522.9	10.0	ug/L	500	ND	105	77-121	2.98	25	
Ethylbenzene	524.9	10.0	ug/L	500	ND	105	73-124	4.54	20	
Xylenes, total	1539	20.0	ug/L	1500	ND	103	75-124	3.66	20	
Styrene	531.3	10.0	ug/L	500	ND	106	70-120	2.55	23	
Bromoform	517.2	10.0	ug/L	500	ND	103	70-120	1.64	23 22	
1,2,3-Trichloropropane	534.6	10.0	ug/L	500	ND	107	62-135	0.0748	28	
	943.8	50.0								
trans-1,4-Dichloro-2-butene 1,1,2,2-Tetrachloroethane	513.1	10.0	ug/L ug/L	1030	ND	91.8	50-120	1.05	26 24	
1,1,2,2-Tetrachioroethane 1,4-Dichlorobenzene	487.6	10.0	_	500 500	ND	103	63-126	3.09	24	
<i>'</i>	503.1		ug/L	500 500	ND	97.5	72-119	3.41	24	
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	455.6	10.0	ug/L	500	ND	101	71-117	3.01	24	
ווטרסpropane	400.0	50.0	ug/L	500	ND	91.1	49-134	1.85	28	
Surrogate: Dibromofluoromethane	511		ug/L	502		102	57-134			
Surrogate: Dibromofluoromethane	511		ug/L	502		102	75-136			
Surrogate: 1,2-Dichloroethane-d4	531		ug/L	504		105	53-140			
Surrogate: 1,2-Dichloroethane-d4	531		ug/L	504		105	61-142			
Surrogate: Toluene-d8	507		ug/L	505		100	86-114			
Surrogate: Toluene-d8	507		ug/L	505 500		100	82-121			

Microbac Laboratories, Inc., Newton

ug/L

502

498

Surrogate: 4-Bromofluorobenzene

78-121

99.3

Determination of Volatile Organic Compounds	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HJ1301 - EPA 5030B - EPA 8	3260B									
Matrix Spike Dup (1HJ1301-MSD2)	Source: 11	HJ1340-05	Prepared: 10	0/21/24 00:0	0 Analyzed:	10/22/24 0	5:32			
Surrogate: 4-Bromofluorobenzene	498		ug/L	502		99.3	80-116			
Batch 1HJ1355 - EPA 5030B - EPA 8	3260B									
Blank (1HJ1355-BLK1)			Prepared: 10	0/22/24 00:0	0 Analyzed:	10/22/24 1	1:05			
Acrylonitrile	<5.0	5.0	ug/L							
Surrogate: Dibromofluoromethane	49.7		ug/L	50.2		99.0	57-134			
Surrogate: 1,2-Dichloroethane-d4	53.4		ug/L	50.4		106	53-140			
Surrogate: Toluene-d8	47.5		ug/L	50.5		94.2	86-114			
Surrogate: 4-Bromofluorobenzene	49.8		ug/L	50.2		99.2	78-121			
Blank (1HJ1355-BLK2)			Prepared: 10	0/22/24 00:0	0 Analyzed:	10/23/24 0	0:08			
Acrylonitrile	<5.0	5.0	ug/L							
Surrogate: Dibromofluoromethane	47.7		ug/L	50.2		95.0	57-134			
Surrogate: 1,2-Dichloroethane-d4	51.7		ug/L	50.4		103	53-140			
Surrogate: Toluene-d8	47.4		ug/L	50.5		93.8	86-114			
Surrogate: 4-Bromofluorobenzene	49.6		ug/L	50.2		98.8	78-121			
LCS (1HJ1355-BS1)			Prepared: 10	0/22/24 00:0	0 Analyzed:	10/22/24 0	9:57			
Acrylonitrile	90.68	5.0	ug/L	50.2		181	56-135			Q2
Surrogate: Dibromofluoromethane	49.9		ug/L	50.2		99.4	57-134			
Surrogate: 1,2-Dichloroethane-d4	52.1		ug/L	50.4		103	53-140			
Surrogate: Toluene-d8	49.8		ug/L	50.5		98.8	86-114			
Surrogate: 4-Bromofluorobenzene	49.4		ug/L	50.2		98.4	78-121			
LCS (1HJ1355-BS2)			Prepared: 10	0/22/24 00:0	0 Analyzed:	10/22/24 2	3:01			
Acrylonitrile	85.78	5.0	ug/L	50.2		171	56-135			Q2
Surrogate: Dibromofluoromethane	47.2		ug/L	50.2		94.0	57-134			
Surrogate: 1,2-Dichloroethane-d4	49.5		ug/L	50.4		98.3	53-140			
Surrogate: Toluene-d8	49.8		ug/L	50.5		98.7	86-114			
Surrogate: 4-Bromofluorobenzene	50.1		ug/L	50.2		99.9	78-121			
LCS Dup (1HJ1355-BSD1)			Prepared: 10	0/22/24 00:0	0 Analyzed:	10/22/24 1	0:20			
Acrylonitrile	88.06	5.0	ug/L	50.2		175	56-135	2.93	16	Q2
Surrogate: Dibromofluoromethane	50.2		ug/L	50.2		100	57-134			
Surrogate: 1,2-Dichloroethane-d4	52.2		ug/L	50.4		104	53-140			
Surrogate: Toluene-d8	50.0		ug/L	50.5		99.0	86-114			
Surrogate: 4-Bromofluorobenzene	49.9		ug/L	50.2		99.4	78-121			
LCS Dup (1HJ1355-BSD2)			Prepared: 10	0/22/24 00:0	0 Analyzed:	10/22/24 2	3:23			
Acrylonitrile	85.67	5.0	ug/L	50.2		171	56-135	0.128	16	Q2
Surrogate: Dibromofluoromethane	47.1		ug/L	50.2		93.7	57-134			
Surrogate: 1,2-Dichloroethane-d4	49.9		ug/L	50.4		99.0	53-140			
•						20.0				

Determination of Volatile Organic Compounds	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HJ1355 - EPA 5030B - EPA	8260B									
LCS Dup (1HJ1355-BSD2)			Prepared: 10	0/22/24 00:0	0 Analyzed:	10/22/24	23:23			
Surrogate: 4-Bromofluorobenzene	50.0		ug/L	50.2		99.7	78-121			
Matrix Spike (1HJ1355-MS1)	Source: 1	HJ1617-04	Prepared: 10	0/22/24 00:0	0 Analyzed:	10/22/24	21:30			
Acrylonitrile	851.1	50.0	ug/L	502	ND	170	38-147			M1
Surrogate: Dibromofluoromethane	469		ug/L	502		93.3	57-134			
Surrogate: 1,2-Dichloroethane-d4	492		ug/L	504		97.7	53-140			
Surrogate: Toluene-d8	498		ug/L	505		98.7	86-114			
Surrogate: 4-Bromofluorobenzene	500		ug/L	502		99.7	78-121			
Matrix Spike (1HJ1355-MS2)	Source: 1	HJ1633-01	Prepared: 10	0/22/24 00:0	0 Analyzed:	10/23/24	08:04			
Acrylonitrile	917.8	50.0	ug/L	502	ND	183	38-147			M1
Surrogate: Dibromofluoromethane	468		ug/L	502		93.3	57-134			
Surrogate: 1,2-Dichloroethane-d4	499		ug/L	504		99.1	53-140			
Surrogate: Toluene-d8	502		ug/L	505		99.4	86-114			
Surrogate: 4-Bromofluorobenzene	500		ug/L	502		99.6	78-121			
Matrix Spike Dup (1HJ1355-MSD1)		HJ1617-04	Prepared: 10		0 Analyzed:					
Acrylonitrile	857.2	50.0	ug/L	502	ND	171	38-147	0.714	30	M1
Surrogate: Dibromofluoromethane	472		ug/L	502		94.0	57-134			
Surrogate: 1,2-Dichloroethane-d4	500		ug/L	504		9 4 .0	53-140			
Surrogate: Toluene-d8	501		ug/L	50 - 7		99.3	86-114			
Surrogate: 4-Bromofluorobenzene	496		ug/L	502		98.9	78-121			
Matrix Spike Dup (1HJ1355-MSD2)		HJ1633-01	Prepared: 10		0 Analvzed:					
Acrylonitrile	880.4	50.0	ug/L	502	ND	175	38-147	4.16	30	M1
•			9		112		00 111	1.10		
Surrogate: Dibromofluoromethane	467		ug/L	502		93.1	57-134			
Surrogate: 1,2-Dichloroethane-d4	500		ug/L	504		99.2	53-140			
Surrogate: Toluene-d8	498		ug/L	505		98.7	86-114			
Surrogate: 4-Bromofluorobenzene	504		ug/L	502		100	78-121			
				Spike	Source		%REC		RPD	
Determination of Conventional Chemistry Parameters	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ1006 - General Prep Micr	o - SM 5210 B									
Blank (1HJ1006-BLK1)			Prepared: 10)/16/24 17:1	9 Analyzed:	10/16/24	18:42			
BOD (5 day)	<2	2	mg/L							
Duplicate (1HJ1006-DUP2)	Source: 1	HJ1321-01	Prepared: 10	0/16/24 17:1	9 Analyzed:	10/16/24	19:47			
BOD (5 day)	243	24	mg/L		242			0.412	30	
Reference (1HJ1006-SRM1)			Prepared: 10	0/16/24 17:1	9 Analyzed:	10/16/24	18:57			
BOD (5 day)	203	100	mg/L	198		102	84.6-115.4	ļ		
Batch 1HJ1020 - Wet Chem Prepara	ation - USGS I-3765-8	35								

Determination of Conventional Chemistry Parameters	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (1HJ1020-BLK1)			Prepared: 10)/17/24 08:3	37 Analyzed:	10/21/24 (09:50			
Total Suspended Solids (TSS)	<1	1	mg/L							
LCS (1HJ1020-BS1)			Prepared: 10)/17/24 08:3	37 Analyzed:	10/21/24 (09:50			
Total Suspended Solids (TSS)	15.9	1	mg/L	15.0		106	71-110			
Duplicate (1HJ1020-DUP1)	Source:	1HJ1331-01	Prepared: 10	/17/24 08:3	37 Analyzed:	10/21/24 (09:50			
Total Suspended Solids (TSS)	70.0	1	mg/L		74.0			5.56	30	
Batch 1HJ1022 - Wet Chem Prepar	ation - USGS I-1750	-85								
Blank (1HJ1022-BLK1)			Prepared: 10)/17/24 08:4	15 Analyzed:	10/17/24	12:30			
Total Dissolved Solids (TDS)	<5	5	mg/L							
LCS (1HJ1022-BS1)			Prepared: 10)/17/24 08:4	15 Analyzed:	10/17/24	12:30			
Total Dissolved Solids (TDS)	96	5	mg/L	100		96.5	79-114			
Duplicate (1HJ1022-DUP1)	Source:	1HJ1211-01	Prepared: 10)/17/24 08:4	15 Analyzed:	10/17/24	12:30			
Total Dissolved Solids (TDS)	1700	5	mg/L		1730			1.56	24	
Batch 1HJ1125 - Wet Chem Prepar	ation - 2320B									
Blank (1HJ1125-BLK1)			Prepared: 10)/18/24 10:4	12 Analyzed:	10/18/24	14:58			
Alkalinity, as CaCO3	<10	10	mg/L							
LCS (1HJ1125-BS1)			Prepared: 10)/18/24 10:4	12 Analyzed:	10/18/24	14:58			
Alkalinity, as CaCO3	50.4	10	mg/L	50.0		101	82-112			
Matrix Spike (1HJ1125-MS1)	Source:	1HJ1319-04	Prepared: 10)/18/24 10:4	12 Analyzed:	10/18/24	14:58			
Alkalinity, as CaCO3	200	10	mg/L	50.0	163	73.2	70-113			
Matrix Spike Dup (1HJ1125-MSD1)	Source:	1HJ1319-04	Prepared: 10)/18/24 10:4	12 Analyzed:	10/18/24	14:58			
Alkalinity, as CaCO3	201	10	mg/L	50.0	163	75.6	70-113	0.600	10	
Batch 1HJ1184 - Wet Chem Prepar	ation - EPA 9040									
Duplicate (1HJ1184-DUP1)	Source:	1HJ1337-04	Prepared & A	Analyzed: 1	0/21/24 09:1	6				
рН	6.29	0.5	рН		6.29			0.0318	10	
Reference (1HJ1184-SRM1)			Prepared & A	Analyzed: 1	0/21/24 09:1	6				
рН	6.96	0.5	pН	7.00		99.4	98.6-101.	4		
Reference (1HJ1184-SRM2)			Prepared & A	Analyzed: 1	0/21/24 09:1	6				
рН	7.00	0.5	рН	7.00		99.9	98.6-101.	4		
Batch 1HJ1226 - General Prep HPL	C/IC - TIMBERLINE									
Blank (1HJ1226-BLK1)			Prepared: 10)/21/24 14:4	16 Analyzed:	10/22/24	14:09			
Nitrogen, Ammonia	<0.10	0.10	mg/L							
LCS (1HJ1226-BS1)			Prepared: 10)/21/24 14:4	16 Analyzed:	10/22/24	14:11			
Nitrogen, Ammonia	5.11	0.10	mg/L	5.06		101	90-114			
Matrix Spike (1HJ1226-MS1)	Source:	1HJ1325-02	Prepared: 10)/21/24 14:4	16 Analyzed:	10/22/24	14:12			

Determination of Conventional Chemistry Parameters	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HJ1226 - General Prep HPLC	C/IC - TIMBER	RLINE								
Matrix Spike (1HJ1226-MS1)	s	ource: 1HJ1325-02	Prepared: 10	0/21/24 14:4	6 Analyzed:	10/22/24 1	4:12			
Nitrogen, Ammonia	4.24	0.10	mg/L	5.06	0.181	80.3	84-115			M2
Matrix Spike Dup (1HJ1226-MSD1)	s	ource: 1HJ1325-02	Prepared: 10	0/21/24 14:4	6 Analyzed:	10/22/24 1	4:14			R
Nitrogen, Ammonia	5.92	0.10	mg/L	5.06	0.181	113	84-115	33.0	20	
Batch 1HJ1457 - Wet Chem Prepara	tion - EPA 41	0.4								
Blank (1HJ1457-BLK1)			Prepared: 10	0/24/24 07:4	8 Analyzed:	10/24/24 1	1:05			
COD, total	<54	54	mg/L							
LCS (1HJ1457-BS1)			Prepared: 10	0/24/24 07:4	8 Analyzed:	10/24/24 1	1:05			
COD, total	1050	108	mg/L	1000		105	90-110			
Matrix Spike (1HJ1457-MS1)	s	ource: 1HJ1376-04	Prepared: 10	0/24/24 07:4	8 Analyzed:	10/24/24 1	1:05			
COD, total	1070	108	mg/L	1000	ND	107	90-110			
Matrix Spike Dup (1HJ1457-MSD1)	s	ource: 1HJ1376-04	Prepared: 10	0/24/24 07:4	8 Analyzed:	10/24/24 1	1:05			
COD, total	1100	108	mg/L	1000	ND	110	90-110	2.10	10	
Determination of Inorganic Anions	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HJ1779 - General Prep HPLC	/IC - EPA 90	56								
Blank (1HJ1779-BLK1)			Prepared &	Analyzed: 10	0/25/24 10:0	7				
Chloride	<1.0	1.0	mg/L							
Sulfate	<1.0	1.0	mg/L							
LCS (1HJ1779-BS1)			Prepared &	Analyzed: 10	0/25/24 10:4	4				
Chloride	15.53	1.0	mg/L	15.3		102	80-120			
Sulfate	34.71	1.0	mg/L	34.2		102	80-120			
LCS Dup (1HJ1779-BSD1)			Prepared &	Analyzed: 10	0/25/24 11:0	2				
Chloride	15.54	1.0	mg/L	15.3		102		0.0386	10	
Sulfate	34.70	1.0	mg/L	34.2		102	80-120	0.0461	10	
Matrix Spike (1HJ1779-MS1)		ource: 1HJ1352-01	Prepared &	Analyzed: 10	0/25/24 13:1	8				
Chloride	425.9	10.0	mg/L	153	280.6	95.0	81-116			
Sulfate	831.5	10.0	mg/L	342	498.3	97.6	87-113			
Matrix Spike Dup (1HJ1779-MSD1)		ource: 1HJ1352-01	Prepared & /	-						
Chloride	424.1	10.0	mg/L	153	280.6	93.9	81-116	0.416	10	
	842.6	10.0	mg/L	342	498.3	101	87-113	1.32	10	
Sulfate										
Sulfate Determination of Total Metals	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
			Units	•	Source Result	%REC		RPD		Notes

				Spike	Source		%REC		RPD	Notes
Determination of Total Metals	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ1084 - EPA 3005A Total Re	coverable Metals	- EPA 6020A								
Blank (1HJ1084-BLK1)			Prepared: 10	0/17/24 15:5	1 Analyzed:	10/18/24 2	2:54			
Antimony, total	<0.0020	0.0020	mg/L							
Arsenic, total	<0.0040	0.0040	mg/L							
Barium, total	<0.0040	0.0040	mg/L							
Beryllium, total	<0.0040	0.0040	mg/L							
Cadmium, total	<0.0008	8000.0	mg/L							
Chromium, total	<0.0080	0.0080	mg/L							
Cobalt, total	<0.0004	0.0004	mg/L							
Copper, total	<0.0040	0.0040	mg/L							
Lead, total	<0.0040	0.0040	mg/L							
Nickel, total	<0.0040	0.0040	mg/L							
Selenium, total	<0.0040	0.0040	mg/L							
Silver, total	<0.0040	0.0040	mg/L							
Thallium, total	<0.0020	0.0020	mg/L							
Vanadium, total	<0.0200	0.0200	mg/L							
Zinc, total	<0.0200	0.0200	mg/L							
LCS (1HJ1084-BS1)			Prepared: 10	0/17/24 15:5	1 Analyzed:	10/18/24 2	3:00			
Antimony, total	0.0946	0.0020	mg/L	0.100		94.6	80-120			
Arsenic, total	0.0953	0.0040	mg/L	0.100		95.3	80-120			
Barium, total	0.104	0.0040	mg/L	0.100		104	80-120			
Beryllium, total	0.0974	0.0040	mg/L	0.100		97.4	80-120			
Cadmium, total	0.0916	0.0008	mg/L	0.100		91.6	80-120			
Chromium, total	0.0919	0.0080	mg/L	0.100		91.9	80-120			
Cobalt, total	0.0958	0.0004	mg/L	0.100		95.8	80-120			
Copper, total	0.0929	0.0040	mg/L	0.100		92.9	80-120			
Lead, total	0.0986	0.0040	mg/L	0.100		98.6	80-120			
Nickel, total	0.0929	0.0040	mg/L	0.100		92.9	80-120			
Selenium, total	0.0934	0.0040	mg/L	0.100		93.4	80-120			
Silver, total	0.0964	0.0040	mg/L	0.100		96.4	80-120			
Thallium, total	0.0913	0.0020	mg/L	0.100		91.3	80-120			
Vanadium, total	0.0951	0.0200	mg/L	0.100		95.1	80-120			
Zinc, total	0.0910	0.0200	mg/L	0.100		91.0	80-120			
Matrix Spike (1HJ1084-MS1)	Source:	1HJ1337-01	Prepared: 10	0/17/24 15:5	1 Analyzed:	10/18/24 2	3:24			
Antimony, total	0.0958	0.0020	mg/L	0.100	ND	95.8	75-125			
Arsenic, total	0.0953	0.0040	mg/L	0.100	0.0013	94.0	75-125			
Barium, total	0.242	0.0040	mg/L	0.100	0.136	106	75-125			
Beryllium, total	0.0965	0.0040	mg/L	0.100	ND	96.5	75-125			
Cadmium, total	0.0940	0.0008	mg/L	0.100	ND	94.0	75-125			
Chromium, total	0.0924	0.0080	mg/L	0.100	0.0007	91.7	75-125			
Cobalt, total	0.0939	0.0004	mg/L	0.100	ND	93.9	75-125			
Copper, total	0.0891	0.0040	mg/L	0.100	ND	89.1	75-125			
Lead, total	0.0964	0.0040	mg/L	0.100	ND	96.4	75-125			
Nickel, total	0.0935	0.0040	mg/L	0.100	0.0016	91.9	75-125			
Selenium, total	0.0967	0.0040	mg/L	0.100	ND	96.7	75-125			

Determination of Total Metals	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HJ1084 - EPA 3005A Total Re	ecoverable Metals	s - EPA 6020A								
Matrix Spike (1HJ1084-MS1)	Source	e: 1HJ1337-01	Prepared:	10/17/24 15:5	51 Analyzed:	10/18/24 2	3:24			
Silver, total	0.0955	0.0040	mg/L	0.100	ND	95.5	75-125			
Thallium, total	0.0919	0.0020	mg/L	0.100	ND	91.9	75-125			
Vanadium, total	0.0977	0.0200	mg/L	0.100	ND	97.7	75-125			
Zinc, total	0.0911	0.0200	mg/L	0.100	ND	91.1	75-125			
Matrix Spike Dup (1HJ1084-MSD1)	Source	e: 1HJ1337-01	Prepared:	10/17/24 15:5	51 Analyzed:	10/18/24 2	3:43			
Antimony, total	0.0945	0.0020	mg/L	0.100	ND	94.5	75-125	1.31	20	
Arsenic, total	0.0917	0.0040	mg/L	0.100	0.0013	90.3	75-125	3.89	20	
Barium, total	0.244	0.0040	mg/L	0.100	0.136	108	75-125	0.720	20	
Beryllium, total	0.0936	0.0040	mg/L	0.100	ND	93.6	75-125	3.06	20	
Cadmium, total	0.0903	0.0008	mg/L	0.100	ND	90.3	75-125	4.08	20	
Chromium, total	0.0905	0.0080	mg/L	0.100	0.0007	89.8	75-125	2.04	20	
Cobalt, total	0.0908	0.0004	mg/L	0.100	ND	90.8	75-125	3.37	20	
Copper, total	0.0850	0.0040	mg/L	0.100	ND	85.0	75-125	4.78	20	
Lead, total	0.0939	0.0040	mg/L	0.100	ND	93.9	75-125	2.62	20	
Nickel, total	0.0905	0.0040	mg/L	0.100	0.0016	88.9	75-125	3.24	20	
Selenium, total	0.0947	0.0040	mg/L	0.100	ND	94.7	75-125	2.06	20	
Silver, total	0.0935	0.0040	mg/L	0.100	ND	93.5	75-125	2.17	20	
Thallium, total	0.0904	0.0020	mg/L	0.100	ND	90.4	75-125	1.69	20	
Vanadium, total	0.0949	0.0200	mg/L	0.100	ND	94.9	75-125	2.93	20	
Zinc, total	0.0901	0.0200	mg/L	0.100	ND	90.1	75-125	1.12	20	
Post Spike (1HJ1084-PS1)	Source	e: 1HJ1337-01	•		51 Analyzed:					
Antimony, total	0.0767		mg/L	0.0800	0.0003	95.4	80-120			
Arsenic, total	0.0745		mg/L	0.0800	0.0013	91.5	80-120			
Barium, total	0.217		mg/L	0.0800	0.133	105	80-120			
Beryllium, total	0.0775		mg/L	0.0800	0.000005	96.8	80-120			
Cadmium, total	0.0749		mg/L	0.0800	-0.00001	93.6	80-120			
Chromium, total	0.0740		mg/L	0.0800	0.0007	91.6	80-120			
Cobalt, total	0.0738		mg/L	0.0800	0.0001	92.1	80-120			
Copper, total	0.0713		mg/L	0.0800	0.0006	88.3	80-120			
Lead, total	0.0768		mg/L	0.0800	0.00002	96.0	80-120			
Nickel, total	0.0730		mg/L	0.0800	0.0005	89.4	80-120			
Selenium, total	0.0712		mg/L	0.0800	0.0004	88.5	80-120			
Silver, total	0.0776		mg/L	0.0800	0.0004	96.9	80-120			
Thallium, total	0.0741		mg/L	0.0800	0.0001	92.5	80-120			
Vanadium, total	0.0781		mg/L	0.0800	0.0031	93.7	80-120			
Zinc, total	0.0727		mg/L	0.0800	0.0031	87.0	80-120			
,			····•	3.3000	0.0001	00	00 120			

Batch Quality Control Summary: Microbac Laboratories Inc., - Marietta, OH

Spike Source %REC RPD

Volatile Organic Compounds Result RL Units Level Result %REC Limits RPD Limit Notes
by GCMS

Microbac Laboratories, Inc., Newton CERTIFICATE OF ANALYSIS

1HJ1337

Volatile Organic Compounds	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
by GCMS	Result	KL	Ullits	Level	Result	/6REC	Lillits	KFD	Lillin	
Batch B4J1197 - 5021 - EPA RSK-17	75									
Blank (B4J1197-BLK1)			Prepared: 1	0/22/24 14:0	1 Analyzed:	10/22/24 1	4:37			
Methane	<5.00	5.00	ug/L							
Ethene	<5.00	5.00	ug/L							
Ethane	<5.00	5.00	ug/L							
Propane	<5.00	5.00	ug/L							
LCS (B4J1197-BS1)			Prepared: 1	0/22/24 14:0	1 Analyzed:	10/22/24 1	4:50			
Methane	107	5.00	ug/L	114.1884		93.8	85-115			
Ethene	181	5.00	ug/L	199.6873		90.7	85-115			
Ethane	192	5.00	ug/L	213.9965		89.6	85-115			
Propane	271	5.00	ug/L	313.9185		86.3	85-115			
LCS Dup (B4J1197-BSD1)			Prepared: 1	0/22/24 14:0	1 Analyzed:	10/22/24 1	5:03			
Methane	110	5.00	ug/L	114.1884		96.3	85-115	2.65	40	
Ethene	184	5.00	ug/L	199.6873		92.3	85-115	1.74	40	
Ethane	195	5.00	ug/L	213.9965		91.0	85-115	1.51	40	
Propane	275	5.00	ug/L	313.9185		87.6	85-115	1.50	40	
Batch B4J1225 - 5021 - EPA RSK-17	75									
Blank (B4J1225-BLK1)			Prepared: 1	0/23/24 10:4	0 Analyzed:	10/23/24 1	3:12			
Methane	<5.00	5.00	ug/L							
Ethene	<5.00	5.00	ug/L							
Ethane	<5.00	5.00	ug/L							
Propane	<5.00	5.00	ug/L							
LCS (B4J1225-BS1)			Prepared: 1	0/23/24 10:4	0 Analyzed:	10/23/24 1	3:26			
Methane	111	5.00	ug/L	114.1884		97.6	85-115			
Ethene	204	5.00	ug/L	199.6873		102	85-115			
Ethane	216	5.00	ug/L	213.9965		101	85-115			
Propane	319	5.00	ug/L	313.9185		102	85-115			
LCS Dup (B4J1225-BSD1)			Prepared: 1	0/23/24 10:4	0 Analyzed:	10/23/24 1	3:40			
Methane	126	5.00	ug/L	114.1884		110	85-115	11.9	40	
Ethene	230	5.00	ug/L	199.6873		115	85-115	12.0	40	
Ethane	246	5.00	ug/L	213.9965		115	85-115	12.6	40	
Propane	368	5.00	ug/L	313.9185		117	85-115	14.3	40	Q

Microbac Laboratories, Inc., Newton CERTIFICATE OF ANALYSIS 1HJ1337

Definitions

A15: Proper preservation cannot be achieved due to the sample matrix.

D3: Dilution was performed due to high target analyte concentration.

H4: The test was performed outside of the EPA recommended holding time of 15 minutes.

M1: Matrix spike recovery is above acceptance limits.M2: Matrix spike recovery is below acceptance limits.

MDL: Minimum Detection Limit

Q: One or more quality control criteria failed.Q2: LCS recovery is above acceptance limits.

Q3: LCS recovery is below acceptance limits. The reported value is estimated.

R1: Duplicate RPD is outside acceptance criteria.

RL: Reporting Limit

RPD: Relative Percent Difference

S: Spike recovery outside of acceptance limits.

Cooler Receipt Log

Cooler ID: Default Cooler Temp: 4.9°C

Cooler Inspection Checklist

Custody SealsNoContainers IntactYesCOC/Labels AgreeYesPreservation ConfirmedNoReceived On IceYes

Report Comments

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions.

Reviewed and Approved By:

seather am urphy

Heather Murphy

Customer Relationship Specialist heather.murphy@microbac.com 11/01/24 08:14

CHAIN OF CUST

HLW Engineering
PM: Heather Murphy

Page 1 of 1/2 ped: 9/30/2024 2:59:01P 89 abe www.keystonelabs.com

MICROBAC®

								vw.keysto	nelabs.com
SITE	INFORMATION		REF	PORT TO			INVOICE T	0	
Sample	r: Poss WHIPPLE						Don Ballala		
Projec	t: Marshall Sanitary Landfill-B1		1	/ Engineering West Broad S		1.40	2313 Marsh	eunty Landfill alltown Blvd	
	6003		Ston	y City, IA 502	48	- Au)	Marshalltow	m, IA 50158	J
SPEC	IAL INSTRUCTIONS		LAB USE ONLY Custody Seal						
Not	ne in the second se	,	Work C	Order	133		Custody		
Turn Ar	ound Time ndard RUSH, need by/	./)	Tempe Turn-C		4.9	1		els Agree ion Confirmed on Ice	
			Sample			Number of			Lab Sample
umber	Sample Identification / Client ID	Matrix	Туре	Date	Time	Containers	Analy	/ses	Number
()() f	MW-66 (B) DRY	Aqueous	GRAB	10/15/24	SECURITY AND ADDRESS ASSESSMENT AND ADDRESS ASSESSMENT ASSESSMENT ADDRESS ASSESSMENT ADDRESS ASSESSMENT ADDRESS ASSESSMENT ASSESSMENT ADDRESS ASSESSMENT ASSESSMENT ADDRESS ASSESSMENT A	<i>D</i>	hulfill-app1-voc-group	ImHIII-14pp1-me(abs-6020	NACO POR SERVICIO DE LOS CALVAS DE LOS CALVA
-001	MW-85 (B)	Aqueous	GRAB	10/15/24	11:33	7	Indfill-app1-vnc-group	Indff1-app1-metals-6020	01
00.0	EMALOR (53)	Aduonic	CDAD	to the second se	14.50	Annual and Annual Annua	hidfill-con 1-voc-group	bulfil-son 1-metals-6000	57

				\$1.00 to the first and the first thinks are makened for the	AND REAL PROPERTY OF THE PROPE	ALTERNATION AND INCIDENT AND IN		
-001	MW-05 (B)	Aqueous	GRAB	10/15/24	11:33	sanona and order or the formers a trade of	Indfill-արր1-voc-group Indfil-արր1-metals-6020	01
-001	MW-98 (B)	Aqueous	GRAB	10/15/24	14:53	y	hdfill-spp1-voc-group hdfill-spp1-mefals-6020	02
QQ 1	MV4-99 (B)	Aqueous	GRAB	10 15 24	10:10	7	Indfill-app1-voc-group Indfil-app1-me6ds-6020	03
m()()1	MW49	Aqueous	GRAB	10 15 24 Serios contractivo de contr	12:38	disconnection of the control and transfer and all	alk-caca3-2320 Indfili-app1-voc-group Indfili-app1-metals-6020 permgas-rsk-175	O44
-001	and sa	Aqueous	GRAB	10-15-24	12:20 Villestade a stricture de la INNA DA	Usua de superior de l'assession de accession de la constitución de la	ph-9040 alk-caco3-2320 Indfill-appi-voc-group Indfill-appi-metals-6020 permgas-rsk-175	DANGE SERVICE META-ACADAS SERVICES
							ph-9040	

Relinquished By	Date/Time	Relinquianta By X	Date/Time /6//6/2024 /0:24,	Remarks:	
Received By	Date/Time	Received for Lab By	Date/Time		
•		Original - Lab Copy	Yellow - Sampler Copy		

CHAIN OF CUS

600 East 17th Street Sou Newton, IA 50208 641-792-8451

HLW Engineering PM: Heather Murphy

Page 2 of to be inted: 9/30/2024 2:59:01P 89 abe

SITE INFORMATION	REPORT TO	INVOICE TO
Project: Marshall Sanitary Landfill-B1 6003	Todd Whipple HLW Engineering 204 West Broad St Story City, IA 50248	Don Ballalatak Marshall County Landfill 2313 Marshalltown Blvd Marshalltown, IA 50158
None SPECIAL INSTRUCTIONS	Work Order Temperature	Custody Seal Containers Intact
Turn Around Time Standard RUSH, need by//	Turn-Cooler: No	COC/Labels Agree Preservation Confirmed Received on Ice

			Sample			Number of		Lab Sample
Number	Sample Identification / Client ID	Matrix	Type	Date	Time	Containers	Analyses	Number
OO	164-21	Acueous	GRAB	10/15/24	1548		alk-caeco3-2320 Indfill-app1-vnc-group Indfill-app1-metals-6020 permgas-rsk-175 ph-9040	SALVANA ANTO ANTO ANTO ANTO ANTO ANTO ANTO A
-00	8 (1.4.1 / 1.7) 103 8 4 ~ C /	Aqueous	GRAB	10 15 24	15:36	**************************************	hulfill-app1-voc-group hulfil-app1-mebds-6020	67
OQ 1	MAY-00	Aqueous	GRAB	10 15 24	15:20	7	hdfil-գոր1-vac-group hdfil-գոր1-mebds-6020	8
-001	EKAL O4	Aqueous	GRAB	10/15/24	15:09	7	հուննե-գոր 1-voc-group հուննե-գոր 1-տունեո-6020	00
-001	mar-63	Aqueous	GRAB	10 15 24	9:53	7	hdfill-որր1-voc-group hdfill-որր1-meնds-6020	+0-
QO	15°4-94	Aqueous	GRAB	10 15 24	12:03		alk-eaco3-2320 Indfill-app1-voe-group Indfill-app1-metals-6020 permgas-rsk-175 ph-9040	And the consensation of the
				f		p P		

-000	Weligo 10	116/24		- I - I - I - I - I - I - I - I - I - I	
Relinquished By	Date/Time	Relinquished By	Date/Time	Remarks:	
			1		
	6.6	(M) 1291	10/16/2010 10:261	in	
Received By	Date/Time	Received for Lab By	Date/fime	17	
		Original - Lab Copy	Yellow - Sampler Copy		

Received By

Date/Time

600 East 17th Stree Newton, IA 50208 641-792-8451

HLW Engineering

Printed: 9/30/2024 2:59:01P

Page 3 of Company Page 3 of Company Printed: 9/30/2024 2:59:01P 2 obed 2:59:01P 2 obed 2:59:01P 2 obed 2:59:01P 2:59:01P

					PM: Hea	ather Murphy		www.ncystc	niciabs.com	
SITE INFORM	MATION		RE	POR			INVOICE T	0		
Sampler:	arshall Sanitary Landfill-B1		HLW	d Whipple V Engineering West Broad			Don Ballalatak Marshall County Landfill 2313 Marshalltown Blvd			
60	003		Stor	y City, IA 502	248		Marshalltov	vn, IA 50158		
SPECIAL INS	STRUCTIONS		LAI	B USE ONLY						
None			Work (Custody			
Turn Around Ti	me RUSH, need by/	/	Tempe Turn-C	erature Cooler: No	4.9	, · · ·		oels Agree tion Confirmed		
Number Sam	nple Identification / Client ID	Matrix	Sample Type	Date	Time	Number of Containers	Anal	yses	Lab Sample Number	
-001 554-05		Aqueous	GRAB	10 15 24	11:07	all according to a construction described as placed, percentage	Indfill-app1-voc-group	Indff1-:գրբ1me6.ds-6020	12	
-001 MW-96	SPR .	Aqueous	GRAB	10 15 24	13:59	97 (60.7.8.1) (10.1.1) (10.1.1) (10.1.1) (10.1.1)	Indfill-որբ1-voc-g-ուր	Indf[[-:գրр1-rnebals-6020	B	
-001 MW-97	7	Aqueous	GRAB	10/15/24	11:49	7	Indfill-app1-voc-group	Indffl-upp1-metals-6020	AMERICA PLANS DE AMERICA DE DESCRIPTOR DE DE	
-001 SRAM	PB Tile Dry	Aqueous	GRAB	10/15/24	Let be the first of the State State of the S	O constant and disselvative and to the disself of the loss	Indfill-wpp1-voc-group	hidfH-app1-metids-6020	on the second reference across across about 18 EV	
-OOI PECC	B Dry	Aqueous	GRAB	10/15/24	A NAME OF THE PARTY OF THE PART	CALLED BY AND DEPOSIT OF THE PARTY OF THE PA	dno.B-20A-Lddr-Ilijpii		BUT STEELS OF THE STEEL STEELS	
-001 Duplic	ate	Aqueous	GRAB	10/15/24	Anguero de el comission de Las anticidados de la Comission de Comissio		In dûli napî we get p	Indfli-app1-metals-6020	15	
							, 3			
Relinquished By	Date/Time (ofice/24)	Relinquished	Ву		Date/Time	Re	emarks:			

Original - Lab Copy Yellow - Sampler Copy

CHAIN OF C

600 East 17th Street S Newton, IA 50208 641-792-8451

HLW Engineering
PM: Heather Murphy

Page 4 of

Printed: 9/30/2024 2:59:01P

www.keystonelabs.com

SITE INFORMATION		REPORT TO			INVOICE TO				
Project: Marshall Sanitary Landfill-B1		Todd Whipple HLW Engineering 204 West Broad Story City, IA 502	St		Don Ballalatak Marshall County Landfill 2313 Marshalltown Blvd Marshalltown, IA 50158				
SPECIAL INSTRUCTIONS None		- LAB USE ONLY ork Order			Custody Seal Containers Intact				
Turn Around Time Standard RUSH, need by//_	To	emperature ern-Cooler: No	4.9	7	COC/Labels Agree Preservation Confirmed Received on Ice				
Number Sample Identification / Client ID	Sam Matrix Tyr		Time	Number of Containers	Analyses	Lab Sample Number			
-001 LW-75	Aqueous G	RAB 10 / 15/24	13:07		alk-caco3-2320 as-f-6020 bod-5210 cl-9056-w cod-t-410.4 cc-t-6020 nh3-timberline permgas-rsk-175 ph-9040 so4-9056-w tds-i-1750-85 tss-i-3765-85				
\ /	Mingulation By Mingulation Age Age Age Age Age Age Age Age	7 //	Date/Time	10:26 kg	marks:				

Original - Lab Copy Yellow - Sampler Copy

Appendix D Field Turbidity Summary

Marshall County Sanitary Landfill

Field Turbidity Over Time

No-Purge Sampling

_												
	10/16/14	1/14/15	4/3/15	7/6/15	10/1/15	4/14/16	10/13/16	4/10/17	7/11/17	10/9/17	1/9/18	4/17/18
Well	<u>NTU</u>											
49	0.62		0.62		0.18	1.68	1.03	2.32		0.39	13.70	11.77
54	1.73		1.72		1.76	2.30	4.38	6.96		0.24		36.03
66	0.34	1.93	0.74	0.16	0.13	0.96	0.46	3.28				
81	3.79		5.74		0.35	5.04	0.38	12.67		1.90		1.23
85	1.44	15.50	11.12	7.89	12.72	4.86	0.67	8.96		0.63		0.63
87	0.11		0.93		0.11	0.60	0.18	0.43		0.28		0.39
89	0.79		1.62		1.02	1.21	0.36	0.59		0.16		0.69
91	1.93		0.28		0.38	0.71	0.37	0.96	1.75	0.54	3.54	0.60
93	1.14		4.69		17.38	91.67	7.28	16.02		0.79		0.97
94	1.79		34.27		1.66	26.86	1.74	5.29		6.52		3.60
95	0.99		0.19		2.34	9.23	0.26	13.66		1.85		1.02
96R												
97	8.91		1.62		1.15	1.29	0.41	3.89		3.64		0.66
98							2.53	96.54		1.95		94.24
99							1.62	3.10		42.22		12.68
Max	14.42	15.50	34.27	7.89	17.38	91.67	7.28	96.54	1.75	42.22	13.70	94.24
Min	0.11	1.93	0.19	0.16	0.11	0.60	0.18	0.43	1.75	0.16	3.54	0.39
Median	1.44	8.72	1.62	4.03	1.02	1.68	0.67	3.89	1.75	1.32	8.62	1.00
Average	2.92	8.72	4.95	4.03	3.05	11.32	1.55	11.70	1.75	4.90	8.62	11.79

Marshall

Field Turbic

No-Purge

	7/2/18	10/22/18	4/22/19	10/23/19	4/10/20	10/19/20	1/7/21	4/5/21	7/2/21	10/8/21	4/6/22	10/25/22
<u>Well</u>	<u>NTU</u>											
49		21.71	2.42	1.33	3.03	12.50		2.11		1.32	2.73	1.22
54		1.81	2.84	27.00	67.72	8.40		11.60		7.42	13.66	2.27
66												
81		5.52	1.68	0.69	1.85	1.05		7.06		1.06	9.07	1.54
85		0.82	1.07	1.95	1.29	5.18		2.47		1.41	2.78	2.22
87		0.49	0.85	0.87	0.82	1.77		2.28		1.44	1.13	1.05
89		0.92	0.71	1.53	0.90	0.80		3.46		1.40	1.49	1.21
91	2.95	0.70	1.02	0.94	0.83	2.54	1.73	2.11		3.35	6.64	1.37
93		1.24	72.30	4.73	3.08	1.20		2.25	2.95	5.85	1.35	59.40
94		0.88	17.74	1.47	52.74	11.90		36.96		1.48	8.26	1.97
95		0.72	0.72	0.62	1.13	4.40		4.89		2.10	1.76	3.20
96R								153.60	7.92	8.12	59.05	20.70
97		2.99	2.15	1.01	1.19	0.92		1.89		9.53	1.09	1.72
98		3.84	26.54	12.50	16.20	1.97		9.80		11.07	5.72	12.70
99		1.62	1.55	20.00	1.12	1.97		2.44		3.73	1.48	1.70
Max	2.95	21.71	72.30	27.00	67.72	12.50	1.73	153.60	7.92	11.07	59.05	59.40
Min	2.95	0.49	0.71	0.62	0.82	0.80	1.73	1.89	2.95	1.06	1.09	1.05
Median	2.95	1.08	1.62	1.44	1.57	1.97	1.73	2.97	5.44	2.73	2.76	1.85
Average	2.95	3.13	9.46	5.43	11.22	4.20	1.73	17.35	5.44	4.23	8.30	8.02

Marshall

Field Turbic

No-Purge

Average

6.41

3.77

19.40

8.05

33.91

1.95

4.74

110 1 41 9)1										
	4/10/23	7/7/23	7/20/23	10/13/23	4/16/24	7/18/24	10/15/24	Max	Min	Ave	Std Dev
Well	<u>NTU</u>										
49	2.07			1.54	14.83		8.80	21.71	0.18	4.91	6.06
54	6.93			43.51	19.53		5.99	67.72	0.24	13.04	17.24
66								3.28	0.13	1.00	1.09
81	6.07			3.19	1.56		2.50	12.67	0.35	3.52	3.22
85	0.80			3.97	6.76		2.99	15.50	0.63	4.27	4.28
87	1.01			3.22	1.82		2.53	3.22	0.11	1.06	0.84
89	1.12			2.98	2.11		2.66	3.46	0.16	1.32	0.85
91	1.16			3.15	1.69		3.20	6.64	0.28	1.78	1.44
93	1.35			2.31	5.75		3.49	91.67	0.79	13.96	25.49
94	5.76			2.91	6.96		4.00	52.74	0.88	11.18	14.41
95	1.70			2.81	2.27		4.31	13.66	0.19	2.87	3.23
96R	2.44	3.77	19.40	13.98	14.22		14.54	153.60	2.44	28.89	44.12
97	4.38			1.32	2.20	1.95	1.95	9.53	0.41	2.54	2.40
98	53.92			29.91	393.50		6.06	393.50	1.95	45.82	0.00
99	0.98			2.59	1.60		3.34	42.22	0.98	6.10	0.00
Max	53.92	3.77	19.40	43.51	393.50	1.95	14.54				
Min	0.80	3.77	19.40	1.32	1.56	1.95	1.95				
Median	1.89	3.77	19.40	3.07	4.01	1.95	3.42				

Appendix E

Running Summary of Prediction Limit Exceedances

<u>Inorganic – Compound concentrations that exceed the Prediction Limits</u>

Spring 2013*	Fall 2013*
MW-49 – arsenic, barium, cobalt	MW-49 – arsenic, barium, cobalt
MW-54 – barium	MW-54 – barium
MW-81 – barium	MW-81 – barium
MW-94 – barium	MW-94 – cobalt
MW-96 – barium	MW-96 – barium
Spring 2014*	Fall 2014*
MW-49 – barium, cobalt	MW-49 – arsenic, cobalt
MW-54 – cadmium	MW-54 – none
MW-81 – barium	MW-81 – barium
	MW-94 – cobalt
Spring 2015*	Fall 2015*
MW-49 – arsenic, cobalt	MW-49 – arsenic, cobalt, nickel
MW-54 – none	MW-54 - cobalt, nickel
MW-81 – barium	MW-81 – barium, cobalt, nickel
MW-93 – none	MW-93 - arsenic, cobalt, nickel
MW-94 – cobalt	MW-94 – arsenic, cobalt, nickel
MW-96 – barium	MW-96 – cobalt, nickel
a	T 7 20461
<u>Spring 2016*</u>	Fall 2016*
MW-49 – arsenic, cobalt, nickel	MW-49 – arsenic, cobalt, nickel
MW-54 – cobalt, nickel	MW-54 - cobalt, nickel
MW-81 – barium, cobalt, nickel	MW-81 – barium, cobalt, nickel
MW-93 – arsenic, cobalt, nickel	MW-93 - cobalt, nickel
MW-94 – arsenic, cobalt, nickel	MW-94 – arsenic, cobalt, nickel
MW-96 – cobalt, nickel	MW-96 – nickel
MW-97 – cobalt, nickel	
Spring 2017*	Fall 2017*
	MW-49 – cobalt
MW-49 – arsenic, cobalt, nickel	
MW-54 – cobalt, nickel	MW-54 - cobalt, nickel
MW-81 – barium, cobalt, nickel	MW-81 – barium, cobalt, nickel
MW-93 – cobalt, nickel	MW-93 - nickel
MW-94 – cobalt, nickel	MW-94 – cobalt, nickel
MW-96 – nickel	MW-96 – nickel
*does not yet include sufficient data from backgroun	d wells MW-98 and MW-99 in the calculation o

^{*}does not yet include sufficient data from background wells MW-98 and MW-99 in the calculation of Site Prediction Limits for inorganic compounds.

Spring 2018	Fall 2018
MW-49 – arsenic, cobalt, nickel	MW-49 – arsenic, cobalt, nickel
MW-54 – cobalt, nickel	MW-54 - cobalt, nickel
MW-81 – barium, cobalt, nickel	MW-81 – barium, nickel
MW-93 – nickel	MW-93 - nickel
MW-94 – arsenic, cobalt, nickel	MW-94 – cobalt, copper, nickel
MW-96 – nickel	MW-96 – nickel

Spring 2019	Fall 2019
MW-49 – arsenic, cobalt, nickel	MW-49 – arsenic, cobalt, nickel
MW-54 – cobalt, nickel	MW-54 - cobalt, nickel
MW-81 – barium, cobalt	MW-81 – barium, cobalt
MW-93 – arsenic, cobalt, nickel	MW-93 - cobalt, nickel
MW-94 – cobalt, nickel	MW-94 – cobalt, nickel
MW-96 – nickel	MW-96 – nickel
Spring 2020	Fall 2020
MW-49 – arsenic, cobalt, nickel	MW-49 – arsenic, cobalt, nickel
MW-54 – arsenic, cobalt, copper, nickel, zinc	MW-54 - cobalt, nickel
MW-81 – barium, cobalt	MW-81 – barium, cobalt, nickel
MW-93 – cobalt, nickel	MW-93 - nickel
MW-94 – arsenic, cobalt, nickel	MW-94 – arsenic, cobalt, nickel
MW-96 – nickel	MW-96 – plugged
	1 66
Spring 2021 (interwell)	Fall 2021 (interwell)
MW-49 – arsenic, barium, cobalt, nickel	MW-49 – arsenic, barium, cobalt, nickel
MW-54 –cobalt, nickel	MW-54 - arsenic, cobalt, nickel
MW-81 – barium, cobalt, nickel	MW-81 – barium, cobalt, nickel
MW-91 – selenium	
MW-93 – arsenic, cobalt, copper*, nickel	MW-93 - arsenic, cobalt, nickel
MW-94 – arsenic, cobalt, nickel	MW-94 – arsenic, cobalt, nickel
MW-96R – arsenic, barium, cobalt MW-9	6R – arsenic, barium, cobalt
Spring 2022 (interwell)	Fall 2022 (interwell)
MW-49 – arsenic, cobalt, nickel	MW-49 – arsenic, cobalt, nickel
MW-54 –cobalt, nickel	MW-54 - cobalt, nickel
MW-81 – arsenic, barium, cobalt, nickel	MW-81 – barium, cobalt, nickel
MW-91 – none	MW-91-none
MW-93 – arsenic, cobalt, nickel	MW-93 - arsenic, cobalt, nickel
MW-94 – arsenic, cobalt, nickel	MW-94 – arsenic, cobalt
MW-96R – arsenic, cobalt, selenium	MW-96R – arsenic, barium, cobalt
Spring 2022 (intrawell)	Fall 2022 (intrawell)
MW-93 – none	MW-93 – none
*starting in 2023 the supplemental wells were no lo Prediction Limits	nger evaluated for exceedances of the
	Fall 2022 (interwell)
Spring 2023 (interwell) MW-93 – arsenic, cobalt, nickel	Fall 2023 (interwell) MW-93 - arsenic, cobalt, nickel
MW-96R –arsenic, cobalt, selenium	MW-96R – arsenic, barium, cobalt
•	
Spring 2023 (intrawell)	Fall 2023 (intrawell)
MW-93 – none	MW-93 – none

MW-96R -none

MW-96R -none

Spring 2024 (interwell)	Fall 2024 (interwell)
MW-93 – arsenic, cobalt, nickel	MW-93 - arsenic, cobalt, nickel
MW-96R – selenium	MW-96R -cobalt
Spring 2024 (intrawell)	Fall 2024 (intrawell)
MW-93 – none	MW-93 – none
MW-96R –none	MW-96R –none

Organic - Statistically Significant Increases (SSI)

Spring 2013	distinctify Significant mercuses (E	Fall 2013	
MW-49 –	1,1-dichloroethane	MW-49 –	1,1-dichloroethane
	1,4-dichlorobenzene		1,4-dichlorobenzene
	benzene		chloroethane
	chloroethane		cis-1,2-dichloroethylene
	cis-1,2-dichloroethylene		vinyl chloride
	vinyl chloride		
MW-54 –	1,1-dichloroethane	MW-54 –	1,1-dichloroethane
	chloroethane		1,4-dichlorobenzene
	cis-1,2-dichloroethylene		benzene
	•		chloroethane
			cis-1,2-dichloroethylene
MW-81 –	1,1-dichloroethane	MW-81 -	1,1-dichloroethane
	1,2-dichloroethane		1,2-dichloroethane
	1,2-dichloropropane		1,2-dichloropropane
	1,4-dichlorobenzene		1,4-dichlorobenzene
	benzene		benzene
	chloroethane		chloroethane
	cis-1,2-dichloroethylene		cis-1,2-dichloroethylene
	tetrachloroethene		tetrachloroethene
	trans-1,2-dichloroethylene		trans-1,2-dichloroethylen
	trichloroethene		trichloroethene
	vinyl chloride		vinyl chloride
MW-94 –	1,1-dichloroethane	MW-94 –	1,1-dichloroethane
111 11 -24	1,2-dichloropropane	111 11 - 24	1,2-dichloropropane
	benzene		benzene
	chloroethane		chloroethane
	cis-1,2-dichloroethylene		cis-1,2-dichloroethylene
	trans-1,2-dichloroethylene		trans-1,2-dichloroethylen
	trichloroethylene		trichloroethylene
	vinyl chloride.		vinyl chloride
Spring 2014	•	Fall 2014	villyl chloride
Spring 2014 MW-49 –	1,1-dichloroethane	<u>Fall 2014</u> MW-49 –	1,4-dichlorobenzene
IVI VV -49 —	1,4-dichlorobenzene	IVI VV -49 —	benzene
	chloroethane		chloroethane
	cis-1,2-dichloroethylene		cis-1,2-dichloroethylene
NAXX/ 5.4	vinyl chloride	N#337 E 4	vinyl chloride
MW-54 –	1,1-dichloroethane	MW-54 –	1,1-dichloroethane
	1,4-dichlorobenzene		1,4-dichlorobenzene
	chloroethane		benzene
	cis-1,2-dichloroethylene		chloroethane
			cis-1,2-dichloroethylene
			vinyl chloride
MW-81 –	1,1-dichloroethane	MW-81 –	1,1-dichloroethane
	1,2-dichloroethane		1,2-dichloroethane
	1,2-dichloropropane		1,2-dichloropropane
	1,4-dichlorobenzene		1,4-dichlorobenzene
	chloroethane		chloroethane
	cis-1,2-dichloroethylene		cis-1,2-dichloroethylene
	trans-1,2-dichloroethylene		trans-1,2-dichloroethylen

	trichloroethene vinyl chloride		trichloroethene vinyl chloride
MW-87 -	bis(2-ethylhexyl)phthalate	MW-87 -	none
MW-89 -	bis(2-ethylhexyl)phthalate	MW-89 -	none
MW-91 -	1,1-dichloroethane	MW-91 -	1,1-dichloroethane
MW-94 –	1,1-dichloroethane benzene chloroethane cis-1,2-dichloroethylene trans-1,2-dichloroethylene trichloroethylene vinyl chloride	MW-94 –	1,1-dichloroethane 1,2-dichloropropane benzene chloroethane cis-1,2-dichloroethylene trans-1,2-dichloroethylene trichloroethylene vinyl chloride
Spring 2015		Fall 2015	
MW-49 –	1,1-dichloroethane 1,4-dichlorobenzene benzene bis(2 ethylhexyl) phthalate chloroethane cis-1,2-dichloroethylene vinyl chloride	MW-49 –	1,1-dichloroethane 1,4-dichlorobenzene benzene chloroethane cis-1,2-dichloroethylene vinyl chloride
MW-54 –	1,1-dichloroethane 1,4-dichlorobenzene chloroethane cis-1,2-dichloroethylene	MW-54 –	1,1-dichloroethane 1,4-dichlorobenzene chloroethane cis-1,2-dichloroethylene vinyl chloride
MW-81 –	1,1-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,4-dichlorobenzene bis(2 ethylhexyl) phthalate chloroethane cis-1,2-dichloroethylene trans-1,2-dichloroethylene trichloroethene vinyl chloride	MW-81 –	1,1-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,4-dichlorobenzene chloroethane cis-1,2-dichloroethylene trans-1,2-dichloroethylene trichloroethene vinyl chloride
MW-91 -	1,1-dichloroethane cis-1,2-dichloroethylene	MW-91 -	1,1-dichloroethane
MW-94 –	1,1-dichloroethane benzene chloroethane cis-1,2-dichloroethylene trans-1,2-dichloroethylene trichloroethylene vinyl chloride	MW-94 –	1,1-dichloroethane 1,2-dichloroethane 1,2-dichloropropane benzene chloroethane cis-1,2-dichloroethylene vinyl chloride

Spring 2016		Fall 2016	
MW-49 –	1,1-dichloroethane 1,4-dichlorobenzene benzene chloroethane cis-1,2-dichloroethylene vinyl chloride	MW-49 –	1,1-dichloroethane 1,4-dichlorobenzene benzene chloroethane cis-1,2-dichloroethylene vinyl chloride
MW-54 –	1,1-dichloroethane 1,4-dichlorobenzene chloroethane cis-1,2-dichloroethylene	MW-54 –	1,1-dichloroethane 1,4-dichlorobenzene benzene chloroethane cis-1,2-dichloroethylene vinyl chloride
MW-81 –	1,1-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,4-dichlorobenzene chloroethane cis-1,2-dichloroethylene trans-1,2-dichloroethylene trichloroethene vinyl chloride	MW-81 –	1,1-dichloroethane 1,2-dichloropropane 1,4-dichlorobenzene benzene chlorobenzene chloroethane cis-1,2-dichloroethylene trans-1,2-dichloroethylene trichloroethene vinyl chloride
MW-89 - MW-94 -	bis(2 ethylhexyl) phthalate 1,1-dichloroethane benzene chloroethane cis-1,2-dichloroethylene vinyl chloride	MW-94 –	1,1-dichloroethane 1,2-dichloroethane 1,2-dichloropropane benzene chloroethane cis-1,2-dichloroethylene trans-1,2-dichloroethylene vinyl chloride
Spring 2017		Fall 2017	vinyi emoriae
MW-49 – MW-54 –	1,1-dichloroethane 1,4-dichlorobenzene benzene chloroethane cis-1,2-dichloroethylene vinyl chloride 1,1-dichloroethane 1,4-dichlorobenzene chloroethane cis-1,2-dichloroethylene	MW-49 – MW-54 –	1,1-dichloroethane 1,4-dichlorobenzene benzene chloroethane cis-1,2-dichloroethylene vinyl chloride 1,1-dichloroethane 1,4-dichlorobenzene benzene chloroethane
MW-81 –	vinyl chloride 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,4-dichlorobenzene	MW-81 –	cis-1,2-dichloroethylene vinyl chloride 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,4-dichlorobenzene

MW-91 – MW-94 –	benzene chlorobenzene chloroethane cis-1,2-dichloroethylene trans-1,2-dichloroethylene trichloroethene vinyl chloride none 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloropropane Benzene chloroethane	MW-91 – MW-94 –	benzene chlorobenzene chloroethane cis-1,2-dichloroethylene trans-1,2-dichloroethylene trichloroethene vinyl chloride 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloropropane benzene chloroethane
Spring 2018		Fall 2018	
MW-49 –	1,1-dichloroethane 1,4-dichlorobenzene benzene chloroethane cis-1,2-dichloroethylene vinyl chloride	MW-49 –	1,1-dichloroethane 1,4-dichlorobenzene acetone benzene chloroethane cis-1,2-dichloroethylene vinyl chloride
MW-54 –	1,1-dichloroethane 1,4-dichlorobenzene chloroethane cis-1,2-dichloroethylene	MW-54 –	1,1-dichloroethane chloroethane
MW-81 –	1,1-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,4-dichlorobenzene benzene chlorobenzene chloroethane cis-1,2-dichloroethylene trans-1,2-dichloroethylene trichloroethene	MW-81 —	1,1-dichloroethane 1,2-dichloroethane 1,2-dichloropropane acetone chloroethane cis-1,2-dichloroethylene vinyl chloride
MW-94 –	vinyl chloride 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloropropane benzene chloroethane cis-1,2-dichloroethene vinyl chloride	MW-94 –	1,1-dichloroethane 1,2-dichloropropane benzene chloroethane cis-1,2-dichloroethylene vinyl chloride

Spring 2019		Fall 2019	
MW-49 –	1,1-dichloroethane 1,4-dichlorobenzene benzene chlorobenzene chloroethane cis-1,2-dichloroethylene vinyl chloride	MW-49 –	1,1-dichloroethane 1,4-dichlorobenzene benzene chloroethane vinyl chloride
MW-54 –	1,1-dichloroethane 1,4-dichlorobenzene chloroethane toluene	MW-54 –	1,1-dichloroethane 1,4-dichlorobenzene chloroethane
MW-81 –	1,1-dichloroethane 1,2-dichlorobenzene 1,2-dichloroethane 1,2-dichloropropane 1,4-dichlorobenzene benzene chlorobenzene chloroethane cis-1,2-dichloroethylene trans-1,2-dichloroethylene vinyl chloride	MW-81 –	1,1-dichloroethane 1,2-dichlorobenzene 1,2-dichloropropane 1,4-dichlorobenzene benzene chlorobenzene chloroethane cis-1,2-dichloroethylene trans-1,2-dichloroethylene vinyl chloride
MW-91 –	1,1-dichloroethane	MW-91 –	none
MW-94 –	1,1-dichloroethane 1,2-dichloropropane benzene chloroethane cis-1,2-dichloroethene vinyl chloride	MW-94 –	1,1-dichloroethane 1,2-dichloropropane benzene chloroethane cis-1,2-dichloroethylene
Spring 2020		Fall 2020	
MW-49 –	1,1-dichloroethane benzene chlorobenzene chloroethane cis-1,2-dichloroethylene vinyl chloride	MW-49 –	1,1-dichloroethane 1,4-dichlorobenzene benzene chlorobenzene chloroethane cis-1,2-dichloroethylene vinyl chloride
MW-54 –	chloroethane	MW-54 –	1,1-dichloroethane 1,4-dichlorobenzene chloroethane

MW-81 –	1,1-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,2-dichloropropane benzene chloroethane cis-1,2-dichloroethylene trans-1,2-dichloroethylene vinyl chloride	MW-81 –	1,1-dichloroethane 1,2-dichlorobenzene 1,2-dichloroethane 1,2-dichloropropane 1,4-dichlorobenzene benzene chlorobenzene chloroethane cis-1,2-dichloroethylene trans-1,2-dichloroethylene trichloroethene vinyl chloride
MW-91 –	none	MW-91 –	1,1-dichloroethane
MW-94 –	1,1-dichloroethane 1,2-dichloropropane benzene chloroethane cis-1,2-dichloroethene trans-1,2-dichloroethylene vinyl chloride	MW-94 –	1,1-dichloroethane 1,2-dichloropropane benzene chloroethane cis-1,2-dichloroethylene trans-1,2-dichloroethylene vinyl chloride
LW-75 –	none	LW-75 –	1,4-dichlorobenzene acetone benzene chloroethane ethylbenzene xylenes

Spring 2021		Fall 2021	
MW-49 –	1,1-dichloroethane 1,4-dichlorobenzene benzene chloroethane	MW-49 –	1,1-dichloroethane 1,4-dichlorobenzene benzene chloroethane cis-1,2-dichloroethylene
MW-54 –	1,4-dichlorobenzene	MW-54 –	1,1-dichloroethane 1,4-dichlorobenzene
MW-81 –	1,1-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,4-dichlorobenzene benzene chlorobenzene chloroethane cis-1,2-dichloroethylene trans-1,2-dichloroethylene trichloroethene vinyl chloride	MW-81 –	1,1-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,4-dichlorobenzene chlorobenzene chloroethane cis-1,2-dichloroethylene trans-1,2-dichloroethylene trichloroethene vinyl chloride
MW-94 –	1,1-dichloroethane 1,2-dichloropropane benzene chloroethane cis-1,2-dichloroethene	MW-94 –	1,1-dichloroethane 1,2-dichloropropane benzene chloroethane cis-1,2-dichloroethylene
MW-96R –	none	MW-96R –	bis(2-ethylhexyl)phthalate
LW-75 –	1,4-dichlorobenzene acetone benzene chloroethane cis-1,2-dichloroethylene ethylbenzene xylenes		

Spring 2022		Fall 2022	
MW-49 –	1,1-dichloroethane 1,4-dichlorobenzene acetone benzene chloroethane	MW-49 –	1,1-dichloroethane 1,4-dichlorobenzene acetone benzene chlorobenzene chloroethane cis-1,2-dichloroethylene
MW-54 –	1,4-dichlorobenzene	MW-54 –	1,1-dichloroethane 1,4-dichlorobenzene chloroethane
MW-81 —	1,1-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,4-dichlorobenzene chlorobenzene chloroethane cis-1,2-dichloroethylene trichloroethene vinyl chloride	MW-81 –	1,1-dichloroethane 1,2-dichloroethane 1,2-dichloropropane 1,4-dichlorobenzene chlorobenzene chloroethane cis-1,2-dichloroethylene trans-1,2-dichloroethylene trichloroethene vinyl chloride
MW-91 –	carbon disulfide	MW-91 –	none
MW-94 –	1,1-dichloroethane 1,2-dichloropropane benzene chloroethane cis-1,2-dichloroethene	MW-94 –	1,1-dichloroethane 1,2-dichloropropane benzene chloroethane cis-1,2-dichloroethylene trans-1,2-dichloroethylene vinyl chloride

^{*}starting in 2023 the supplemental wells were no longer evaluated for exceedances of the Prediction Limits

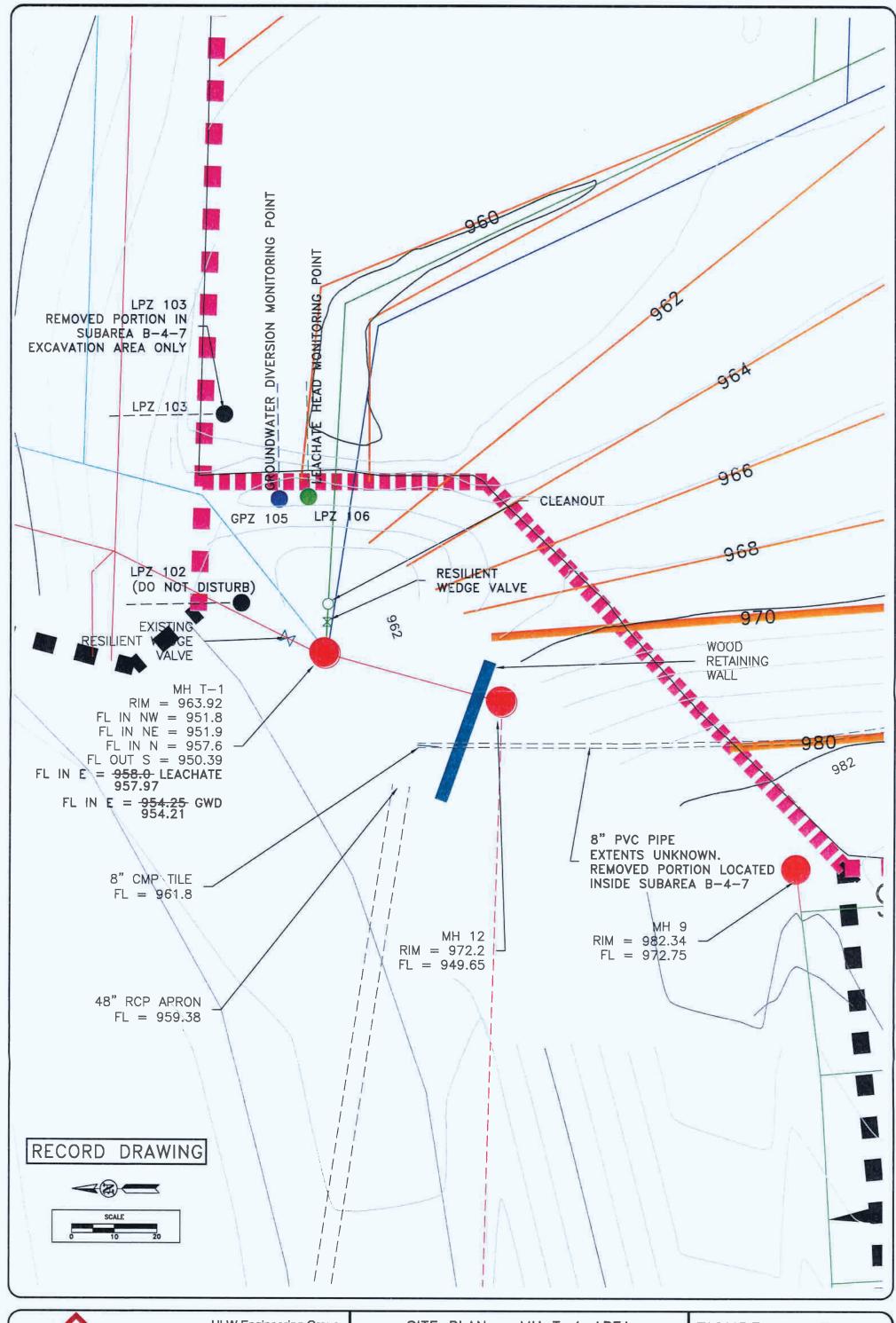
Appendix F

Summary of On-Going Assessment Monitoring (green highlights on the following tables represent the full Appendix II sample collection events)

bis (2-ethylhexyl)phthalate (ug/L)

Date							
	Detection	Detection	Assessment	Detection	Detection	Detection	Detection
	AZPOC	AZPOC	AZPOC	POC	POC	POC	AZPOC
	MW87	MW89	MW91	MW93	MW95	MW96R	MW97
3/28/08	<8	<8	<8	NT	NT	DNE	NT
6/25/08	<8	<8	<8	NT	NT	DNE	NT
8/25/08	<8	<8	<8	NT	NT	DNE	NT
10/3/08	<8	<8	<8	NT	NT	DNE	NT
12/8/08	28.0	60.0	9.0	NT	NT	DNE	NT
4/1/09	<10	<10	<10	NT	NT	DNE	NT
10/21/09	<10	<10	<10	NT	NT	DNE	NT
4/20/10	<10	<10	<10	NT	NT	DNE	NT
10/8/10	<10	<10	15.0	NT	NT	DNE	NT
4/4/11	<10	<14	<10	NT	NT	DNE	NT
10/6/11	<10	<10	<10	NT	NT	DNE	NT
4/10/12	<10	<10	<10	NT	NT	DNE	NT
10/8/12	<10	<10	<10	<12	NT	DNE	NT
4/4/13	<10	<10	<10	<8	NT	DNE	NT
10/16/13	<8	9.0	142.0	NT	NT	DNE	NT
4/9/14	13.0	18.0	<10	NT	NT	DNE	NT
10/16/14	<10	<10	<10	NT	NT	DNE	NT
4/3/2015	<10	NT	<10	NT	NT	DNE	NT
10/1/2015	<10	<10	<10	NT	NT	DNE	NT
4/14/2016	<10	19.0	<10	NT	NT	DNE	NT
10/13/2016	<10	<10	<10	NT	NT	DNE	NT
4/10/2017	<10	<10	<10	NT	NT	DNE	NT
10/9/2017	NT	NT	NT	NT	NT	DNE	NT
4/17/2018	NT	NT	NT	NT	NT	DNE	NT
10/22/2018	NT	NT	<6	<6	NT	DNE	NT
4/22/2019	NT	NT	NT	NT	NT	DNE	NT
10/23/2019	NT	NT	NT	NT	NT	DNE	NT
4/10/2020	NT	NT	NT	NT	NT	DNE	NT
10/19/2020	NT	NT	NT	NT	NT	DNE	NT
4/5/2021	NT	NT	NT	NT	NT	NT	NT
10/8/2021	NT	NT	NT	NT	NT	NT	NT
4/6/2022	NT	NT	NT	NT	NT	6.0	NT
10/25/2022	NT	NT	NT	NT	NT	NT	NT
4/10/2023	NT	NT	NT	NT	NT	<6	NT
10/13/2023	NT	NT	<6	<6	NT	NT	NT
4/17/2024	NT	NT	NT	NT	NT	NT	NT
10/15/2024	NT	NT	NT	NT	NT	NT	NT

bis (2-ethylhexyl)phthalate (ug/L)

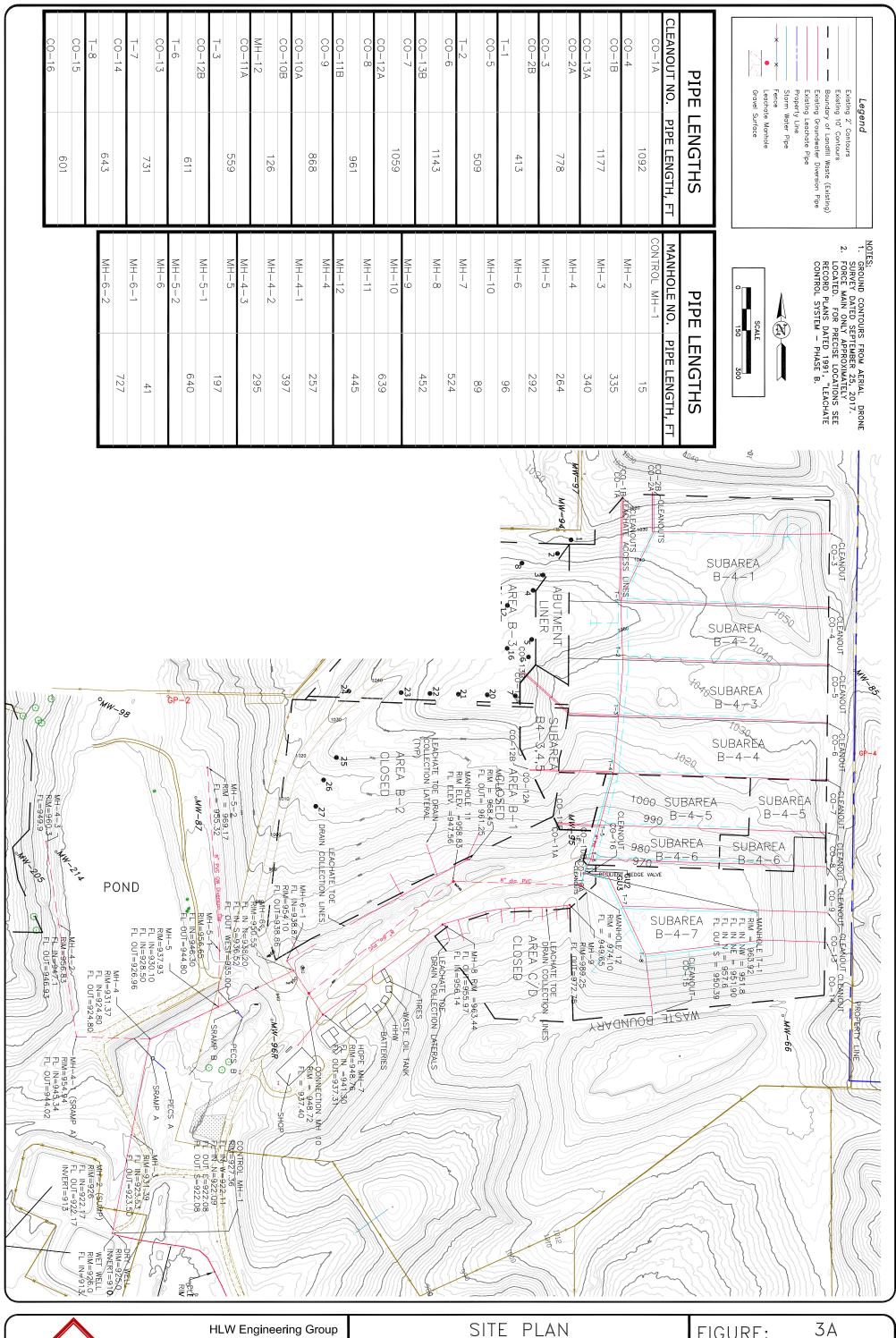

Date		al Monitoring		
	MW49	MW54	MW81	MW94
3/28/08	<8	<8	<8	NT
6/25/08	<8	<8	<8	NT
8/25/08	<8	<8	<8	NT
10/3/08	<8	<8	<11	NT
12/8/08	13.0	16.0	<8	NT
4/1/09	<10	<10	<10	NT
10/21/09	NT	NT	NT	NT
4/20/10	NT	NT	<10	NT
10/8/10	NT	NT	NT	NT
4/4/11	NT	NT	NT	<8
10/6/11	NT	NT	NT	<8
4/10/12	NT	NT	NT	NT
10/8/12	<10	<10	<10	8.0
4/4/13	<10	<10	<10	<10
10/16/13	<8	<11	<8	<10
4/9/14	<10	<10	<10	<10
10/16/14	<10	<17	<10	<10
4/3/2015	65.0	<10	36.0	<10
10/1/2015	<10	<10	<10	<10
4/14/2016	<10	<10	<10	<10
10/13/2016	<10	<10	<10	<10
4/10/2017	<10	<10	<10	<10
10/9/2017	NT	NT	NT	<6
4/17/2018	NT	NT	NT	NT
10/22/2018	<6	<6	<6	NT
4/22/2019	NT	NT	NT	NT
10/23/2019	NT	NT	NT	NT
4/10/2020	NT	NT	NT	NT
10/19/2020	NT	NT	NT	NT
4/5/2021	NT	NT	NT	NT
7/2/2021	NT	NT	NT	NT
10/8/2021	NT	NT	NT	NT
4/6/2022	NT	NT	NT	NT
10/25/2022	NT	NT	NT	NT
4/10/2023	NT	NT	NT	NT
10/13/2023	NT	NT	NT	NT
4/17/2024	NT	NT	NT	NT
10/15/2024	NT	NT	NT	NT

DNE = Did Not Exist

Appendix G

Leachate Collection System Performance Evaluation Report

Appendix G.1 – Map of Monitoring Points Area B4 & Maps Illustrating all Leachate Lines and Groundwater Diversion Lines



HLW Engineering Group 204 West Broad Street, P.O. Box 314 Story City, Iowa 50248 Phone: (515) 733-4144 FAX: (515) 733-4146 SITE PLAN -- MH T-1 AREA SUBAREA B-4-7 EXPANSION

MARSHALL COUNTY SANITARY LANDFILL MARSHALL COUNTY, IOWA

FIGURE	E: 7	7
REVISION	NO.	DATE
DRAWN JGH	PROJECT NO. 6003-16A	DATE 8/7/17

204 West Broad Street, P.O. Box 314 Story City, Iowa 50248 Phone: (515) 733-4144 FAX: (515) 733-4146 SILE PLAN

LEACHATE COLLECTION SYSTEM

& MONITORING WELLS — EAST HALF

MARSHALL COUNTY SLF, MARSHALLTOWN, IOWA

FIGURE	3:	Α `
REVISION	NO.	DATE
DRAWN JGH	PROJECT NO. 6003-17A	DATE 3/23/21

Appendix G.2 – Map of Leachate Well Locations & Comprehensive Leachate Head Elevation Data - Areas B-1/B-2/B-3/B-4/C/D

HLW Engineering Group 204 West Broad Street, P.O. Box 314 Story City, lowa 50248 Phone: (515) 733-4144 FAX: (515) 733-4146

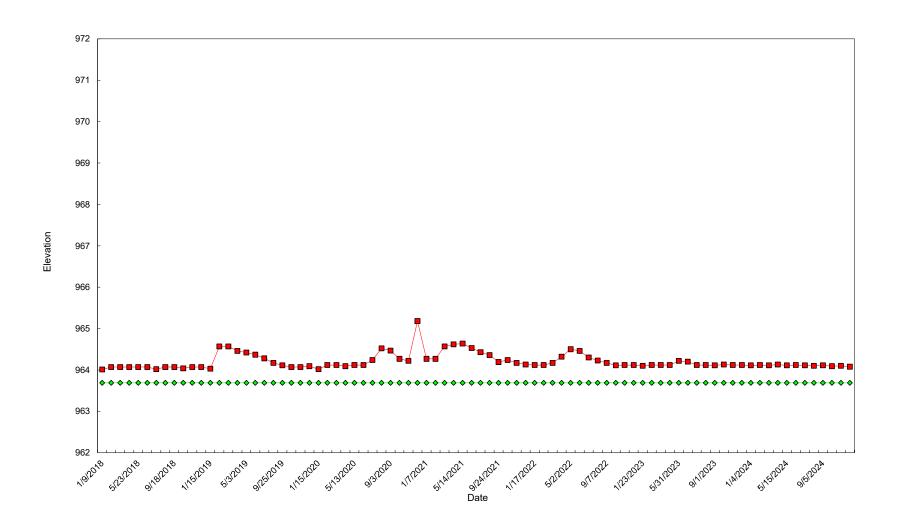
DATE 10-17-21

DATE

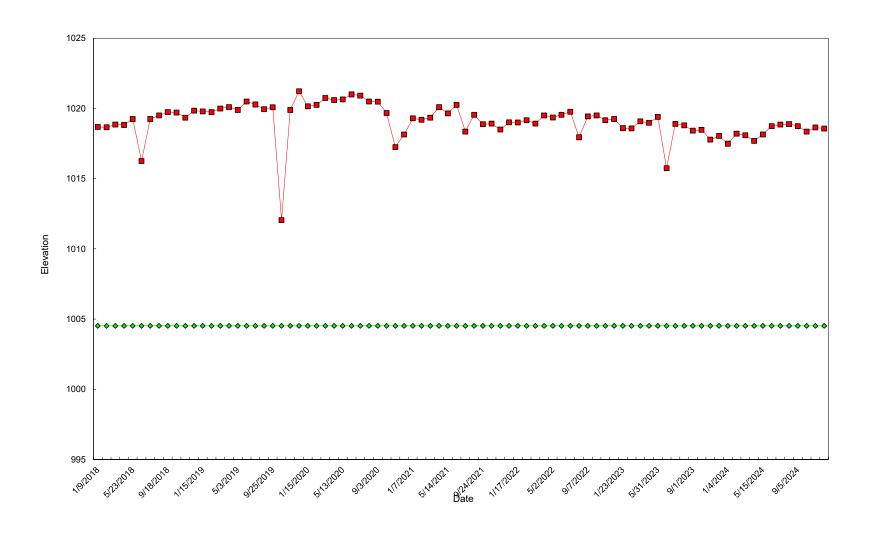
REVISION

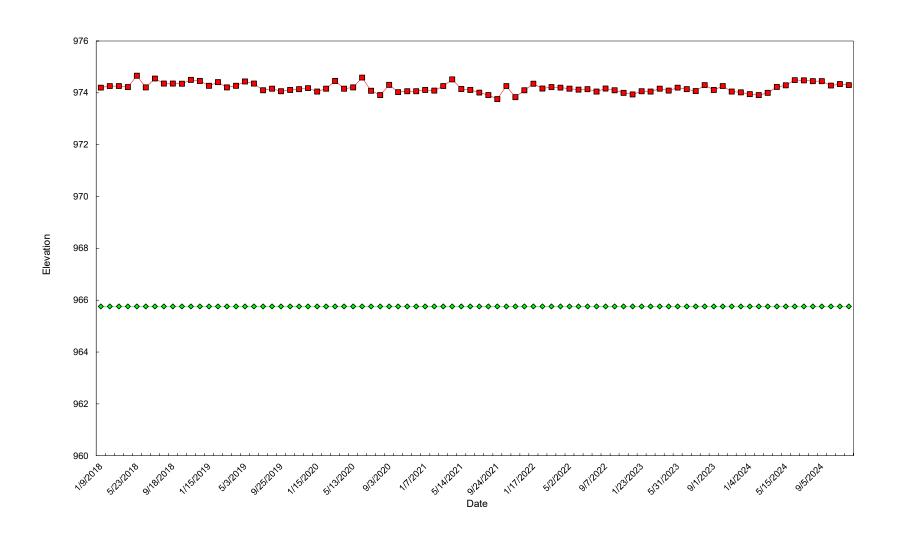
MARSHALL COUNTY SANITARY LANDFILL MARSHALLTOWN, IOWA

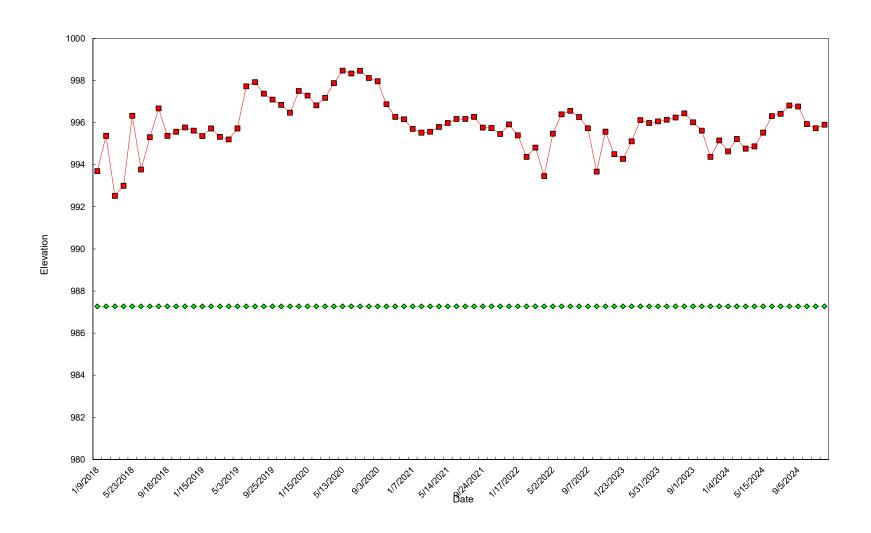
10/21/92		MARSHALL C	OUNTY SANI	TARY LANDFI	LL			
CP PVC. ELEV.FT 993.77 1021.72 1049.75 1047.47 1046.54 991.66 1010.27			64-SDP-2-75F)		Leacha	te Eleva	ations
DATE		MONTHLY	WATER ELEV	/ATIONS				
10/21/92		LHMW 73	LHMW 74	LHMW 75	LHPZ 76	LHPZ 77	LHMW 78	LHMW 79
10/21/92	FOP PVC. ELEV, FT	993.77	1021.72	1049.75	1047.47	1046.54	991.66	1010.27
11/20/92 963.43 986.75 1014.13 1015.45 1015.86 12/28/92 963.43 986.75 1014.13 1015.45 1015.86 12/28/92 963.43 986.75 1014.10 1015.42 1015.99 12/28/92 963.43 987.13 1014.25 1015.57 1015.70 1017.54 1017.55 1017.54 1017.55 1017.54 1017.55 1017.54 1017.55	DATE							
12/28/92 963.43 986.75 1014.13 1015.45 1015.86								
1/11/93								
2/15/93 963.43 986.74 1013.78 1047.47 1015.53 972.36 990.58 4/16/93 963.57 989.87 1014.80 1016.22 1017.54 972.66 990.77 5/14/93 963.57 989.87 1014.80 1016.22 1017.54 972.66 990.77 5/14/93 963.61 987.04 1014.90 1017.16 1018.41 973.19 990.93 7/16/93 963.63 987.81 1014.90 1017.16 1018.11 973.19 990.93 7/16/93 963.63 987.81 1014.90 1017.16 1018.11 973.19 990.93 7/16/93 963.65 988.07 1015.10 1017.50 1020.54 975.71 991.17 8/31/93 963.66 988.38 1015.75 1019.16 1020.35 976.35 992.37 9/21/93 963.62 988.33 1015.75 1019.16 1020.35 976.35 992.36 10/11/93 963.62 988.33 1015.75 1019.16 1020.35 976.35 992.36 10/11/93 963.64 988.22 1015.85 1018.97 1019.74 973.31 991.57 11/10/93 963.64 988.32 1016.04 1018.45 1018.76 973.31 991.57 11/10/93 963.65 988.37 1016.04 1018.45 1018.76 973.31 991.81 12/10/93 963.66 988.57 1016.04 1018.45 1018.26 973.06 991.81 12/10/94 963.66 988.76 1017.53 1018.38 1018.18 973.06 991.81 12/10/94 963.66 988.06 1017.53 1018.38 1018.16 973.17 992.24 3/15/94 963.76 988.50 1017.53 1018.38 1018.16 973.17 992.24 3/15/94 963.67 988.50 1017.23 1017.96 1018.84 973.57 992.49 2/11/94 963.66 988.06 1017.53 1018.38 1018.16 973.17 992.24 3/15/94 963.67 988.18 1016.75 1017.76 1019.94 972.96 991.57 5/31/94 963.69 988.75 1016.65 1017.05 1018.84 973.17 992.26 991.57 5/31/94 963.69 988.75 1016.65 1017.06 1017.14 973.27 992.07 7/12/94 963.69 988.75 1016.65 1017.06 1017.14 973.27 992.07 7/12/94 963.69 988.75 1016.65 1017.06 1017.14 973.77 992.39 991.57 1016.94 963.68 989.77 1016.65 1016.87 1017.44 973.37 992.39 1017.89 1017.89 963.69 983.75 1016.65 1016.67 1016.69 973.41 993.67 998.39 1016.64 1016.65 1016.40 973.39 991.87 1016.99 963.69 963.67 988.30 1016.65 1016.67 1016.69 973.41 993.67 998.37 998.38 1016.65 1016.67 1016.69 973.49 993.67 998.39 993.67 1016.66 1016.67 1016.69 973.49 993.67 993.69 993.67 1016.66 1016.67 1016.69 973.49 993.67 998.39 993.67 1016.66 1016.67 1016.69 973.49 993.67 993.67 998.30 993.67 1016.66 1016.67 1016.69 973.49 993.77 992.03 1017.99 993.67 993.67 996.82 1016.65 1016.67 1016.69 973.66 993.77 998.								
3/17/93								
4/16/93 963.67 999.87 10/14.80 10/16.22 10/17.54 972.66 990.77 6/14/93 963.61 987.04 10/14.99 10/16.88 10/18.44 972.78 990.93 6/14/93 963.64 987.81 10/14.99 10/17.16 10/18.11 973.79 990.93 7/16/93 963.64 987.81 10/14.99 10/17.16 10/18.11 973.79 990.93 7/16/93 963.67 988.07 10/15.10 10/17.50 10/20.54 975.71 991.17 8/31/93 963.61 988.38 10/15.76 10/18.95 10/20.54 975.71 991.17 8/31/93 963.62 988.33 10/15.75 10/19.16 10/20.54 975.71 991.17 10/11/93 963.47 988.22 10/15.85 10/18.97 10/19.74 973.31 991.57 11/10/93 963.64 988.32 10/16.04 10/18.45 10/18.76 973.31 991.57 11/10/93 963.65 988.57 10/16.04 10/18.45 10/18.76 973.31 991.81 12/10/93 963.65 988.57 10/16.04 10/18.45 10/18.76 973.31 991.81 12/10/93 963.66 988.76 10/17.30 10/18.09 10/17.84 973.57 992.47 2/11/94 963.66 988.09 10/17.30 10/18.09 10/17.84 973.57 992.47 3/15/94 963.67 988.50 10/17.23 10/18.38 10/18.16 973.17 992.24 3/15/94 963.67 988.50 10/17.23 10/17.96 10/18.84 973.17 991.57 4/16/94 963.67 988.18 10/16.25 10/17.67 10/19.94 972.26 991.57 5/331/94 963.65 989.06 10/17.25 10/17.67 10/19.94 972.26 991.57 5/331/94 963.65 989.06 10/17.12 10/17.58 10/17.44 973.27 992.07 7/12/94 963.65 989.06 10/17.12 10/17.58 10/17.44 973.27 992.07 7/12/94 963.65 989.06 10/17.12 10/17.58 10/17.44 973.27 992.07 9/17/2/94 963.65 989.06 10/17.12 10/17.58 10/17.44 973.27 992.07 9/17/2/94 963.68 985.75 10/16.65 10/17.06 10/17.14 9/17.75 992.39 9/17/19/19/19/19/19/19/19/19/19/19/19/19/19/								
65/14/93 963.61 987.81 1014.99 1016.88 1018.44 972.78 990.93 67/933 963.67 988.07 1015.10 1017.50 1020.54 975.71 991.17 8/31/93 963.61 988.33 1015.34 1018.95 1020.54 973.27 992.37 9/21/93 963.62 988.33 1015.75 1019.16 1020.54 973.27 992.37 10/11/93 963.47 988.22 1015.85 1018.97 1019.74 973.31 991.57 11/10/93 963.64 988.32 1016.60 1018.97 1019.74 973.31 991.57 11/10/93 963.65 988.76 1016.80 1018.33 1018.28 973.06 991.81 12/28/94 963.67 988.77 1016.80 1017.84 973.67 992.24 2/11/94 963.67 988.50 1017.53 1018.38 1018.16 973.17 992.24 3/15/94 963.67 988.12 1017.53 1017.96 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
6/17/93 963.64 987.81 1014.90 1017.16 1018.11 973.19 990.90 7/6/93 963.67 988.07 1015.10 1017.50 1020.54 975.71 991.17 8/31/93 963.61 988.38 1015.34 1018.95 1020.54 973.27 992.37 992.19 963.62 988.33 1015.75 1019.16 1020.35 976.35 992.36 10/11/93 963.62 988.33 1015.75 1019.16 1020.35 976.35 992.36 10/11/93 963.64 988.22 1016.04 1018.45 1018.74 973.31 991.57 11/10/93 963.66 988.57 1016.04 1018.45 1018.76 973.31 991.81 12/10/93 963.66 988.57 1016.04 1018.33 1018.28 973.06 991.81 12/10/93 963.66 988.67 1016.00 1018.33 1018.28 973.06 991.81 1/28/94 963.66 988.09 1017.53 1018.88 1018.16 973.17 992.24 1/17/94 963.66 988.09 1017.53 1018.38 1018.16 973.17 992.24 1/17/94 963.67 988.50 1017.25 1017.67 1019.84 973.17 992.24 1/17/94 963.67 988.18 1017.25 1017.67 1019.94 972.96 991.57 1019.49 963.67 988.18 1017.25 1017.67 1019.94 972.96 991.57 1019.49 963.67 988.18 1016.75 1017.18 1017.02 973.17 992.20 1/17/94 963.67 988.18 1016.75 1017.18 1017.02 973.17 992.20 1/17/94 963.69 988.75 1016.65 1017.05 1017.44 973.27 992.01 1/17/94 963.69 988.75 1016.65 1017.06 1017.14 974.75 993.87 8/26/94 963.68 989.77 1016.64 1017.05 1017.44 973.27 992.01 1/17/94 963.68 989.77 1016.65 1017.06 1017.14 974.75 993.87 8/26/94 963.68 989.77 1016.54 1016.65 1017.06 1017.14 974.75 993.87 8/26/94 963.68 989.77 1016.54 1016.65 973.41 991.97 1/17/26/94 963.68 985.11 1016.61 1016.79 1016.65 973.41 991.97 1/17/26/94 963.68 985.11 1016.65 1016.04 1016.34 973.06 991.67 1/17/26/94 963.68 985.51 1016.65 1016.04 1016.35 973.63 991.95 10/18/94 963.67 984.32 1016.25 1016.27 1016.34 973.06 991.67 1/17/26/94 963.68 985.11 1016.65 1016.27 1016.34 973.06 991.67 1/17/26/94 963.68 985.11 1016.65 1016.27 1016.34 973.06 991.67 1/17/26/94 963.68 983.77 984.32 1016.25 1016.09 1016.34 973.06 991.67 1/17/26/94 963.69 963.77 984.32 1016.55 1016.27 1016.34 973.66 991.97 1/17/26/94 963.68 1016.66 1016.54 1016.59 1016.34 973.66 991.97 1/17/26/94 963.67 988.22 1016.55 1016.57 1016.54 973.66 991.97 1/17/26/96 963.77 984.52 1016.55 1016.57 1015.54 973.56 992.17 1/17/26/96 963.71								
7/6/93 963.57 988.07 1015.10 1017.50 1020.54 975.71 991.17 8/31/93 963.61 988.38 1015.34 1018.95 1020.54 973.27 992.37 9/21/93 963.62 988.33 1015.75 1019.16 1020.35 976.35 992.36 10/11/93 963.62 988.32 1015.85 1018.97 1019.74 973.31 991.57 11/10/93 963.64 988.32 1016.04 1018.45 1018.76 973.31 991.57 11/10/93 963.65 988.57 1016.80 1018.33 1018.28 973.06 991.81 12/21/94 963.66 988.07 1017.30 1018.09 1017.84 973.57 992.49 2/11/94 963.66 988.09 1017.53 1018.38 1018.16 973.17 992.24 3/15/94 963.67 988.60 1017.33 1018.38 1018.16 973.17 992.24 3/15/94 963.67 988.80 1017.23 1017.96 1018.84 973.57 992.49 4/6/94 963.77 988.12 1017.25 1017.67 1019.94 972.96 991.57 5/31/94 963.66 988.09 1017.12 1017.58 1017.44 973.27 992.01 6/14/94 963.67 988.18 1016.76 1017.18 1017.07 1019.94 972.96 991.57 8/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2								
8/31/93 963.61 988.38 1015.34 1018.95 1020.54 973.27 992.37 99/21/93 963.62 988.33 1015.75 1019.16 1020.35 976.35 992.36 10/11/19/31 963.62 988.33 1015.75 1019.16 1020.35 976.35 992.36 10/11/19/31 963.64 988.32 1016.04 1018.45 1018.76 973.31 991.57 11/10/93 963.64 988.32 1016.04 1018.45 1018.76 973.31 991.57 11/10/93 963.65 988.67 1016.80 1018.33 1018.28 973.06 991.81 12/21/94 963.66 988.09 1017.30 1018.09 1017.84 973.57 992.49 2/21/11/94 963.66 988.09 1017.53 1018.38 1018.16 973.17 992.24 2/21/11/94 963.66 988.09 1017.53 1018.38 1018.16 973.17 992.57 4/6/94 963.67 988.12 1017.25 1017.67 1019.94 972.96 991.57 5/31/94 963.67 988.18 1016.67 1017.18 1017.02 973.17 992.36 6/44/94 963.67 988.18 1016.67 1017.18 1017.02 973.17 992.37 1/12/94 963.69 989.06 1017.12 1017.58 1017.40 1017.02 973.37 992.37 1/12/94 963.69 989.06 1017.12 1017.58 1017.40 1017.40 973.27 992.01 9/2/994 963.68 989.77 1016.65 1017.06 1017.14 974.75 993.87 8/2/094 963.68 989.77 1016.64 1016.84 1016.65 973.41 991.97 11/2/2/94 963.69 988.51 1016.64 1016.84 1016.65 973.63 991.95 10/18/94 963.77 984.32 1016.54 1016.84 1016.65 973.63 991.95 10/18/94 963.67 984.52 1016.64 1016.79 1016.65 973.63 991.95 10/18/94 963.67 984.52 1016.65 1016.64 1016.79 1016.65 973.63 991.95 10/18/94 963.77 984.32 1016.54 1016.67 1016.79 1016.58 973.63 991.95 10/18/94 963.67 984.52 1016.54 1016.57 1016.34 973.06 991.57 11/22/94 963.67 984.52 1016.54 1016.67 1016.79 1016.53 973.68 1000.27 11/22/94 963.67 984.52 1016.55 1016.67 1016.70 1016.35 973.68 1000.27 11/22/94 963.67 985.61 1016.65 1016.67 1016.70 1016.35 973.68 994.17 1016.65 963.77 984.52 1016.55 1016.67 1016.70 1016.35 973.67 992.20 1016.55 1016.67 1016.69 1016.49 973.39 994.17 1016.69 963.77 984.52 1016.55 1016.67 1016.69 1016.49 973.39 994.17 1016.79 963.79 985.61 1016.65 1016.67 1016.69 973.36 994.17 1016.79 963.67 986.82 1016.55 1016.67 1016.69 973.36 994.17 1016.69 963.77 986.82 1016.55 1016.67 1016.69 973.36 994.17 1016.99 963.77 986.82 1016.55 1016.67 1016.69 973.56 993.77 1016.69 963.77 986.62 1016.55 1016.67 1								
9/21/93 963.62 988.33 1015.75 1019.16 1020.35 976.35 992.36 1011/193 963.47 988.22 1015.85 1018.97 1019.74 973.31 991.57 11/10/93 963.64 988.32 1016.04 1018.45 1018.76 973.31 991.57 11/10/93 963.65 988.57 1016.80 1018.33 1018.28 973.06 991.81 12/10/93 963.65 988.57 1016.80 1018.33 1018.28 973.06 991.81 12/10/94 963.76 988.76 1017.30 1018.09 1017.84 973.57 992.49 2/11/94 963.66 988.09 1017.53 1018.38 1018.16 973.17 992.49 3/15/94 963.67 988.50 1017.23 1017.96 1018.84 973.17 992.54 3/15/94 963.67 988.12 1017.23 1017.96 1018.84 973.17 991.57 4/6/94 963.67 988.18 1016.75 1017.67 1019.94 973.67 991.57 5/31/94 963.65 989.06 1017.25 1017.67 1019.94 973.17 992.25 6/14/94 963.65 989.06 1017.12 1017.58 1017.44 973.27 992.01 7/12/94 963.69 988.75 1016.65 1017.06 1017.14 974.75 993.87 8/26/94 963.68 989.77 1016.54 1016.65 1017.06 1017.14 974.75 993.87 8/26/94 963.68 985.71 1016.64 1016.69 1017.04 973.68 991.95 10/18/94 963.69 988.35 1016.65 1017.06 1017.14 974.75 993.87 8/26/94 963.68 985.11 1016.61 1016.79 1016.58 973.63 991.95 10/18/94 963.67 984.32 1016.25 1016.27 1016.34 973.06 991.57 10/18/94 963.67 984.32 1016.25 1016.27 1016.34 973.06 991.57 10/18/94 963.71 984.32 1016.25 1016.27 1016.34 973.06 991.57 10/18/94 963.71 984.32 1016.25 1016.27 1016.34 973.06 991.57 10/18/94 963.71 984.32 1016.25 1016.27 1016.34 973.06 991.57 10/18/94 963.71 984.32 1016.25 1016.27 1016.34 973.06 991.57 10/18/94 963.71 984.52 1016.55 1016.27 1016.34 973.06 991.57 10/18/95 963.64 982.77 1016.54 1016.59 1016.04 973.58 1000.27 12/20/94 963.71 984.52 1016.55 1016.27 1016.34 973.06 991.57 10/18/95 963.66 1006.32 1017.65 1016.67 1016.59 973.74 992.03 1/19/95 963.66 1006.32 1017.65 1016.67 1016.59 973.74 992.03 1/19/95 963.66 1006.32 1017.65 1016.67 1016.69 973.79 992.03 1/19/95 963.67 986.82 1017.55 1016.67 1016.69 973.79 992.37 1016.69 973.79 992.37 1016.69 1016.67 1016.69 973.79 992.37 1016.69 973.79 993.77 1016.69 1016.69 973.79 993.77 1016.69 1016.67 1016.69 973.79 993.77 1016.69 1016.67 1016.69 973.79 993.77 1016.69 973.79 986.87 1016.69 1								
10/11/93 963.64 988.32 1016.04 1018.45 1016.74 973.31 991.57 11/10/93 963.65 988.57 1016.04 1018.45 1018.76 973.31 991.81 12/10/93 963.65 988.57 1016.80 1018.33 1018.28 973.06 991.81 1/28/94 963.76 988.76 1017.30 1018.09 1017.84 973.57 992.49 2/11/94 963.66 988.09 1017.53 1018.38 1018.16 973.17 992.54 3/15/94 963.67 988.50 1017.23 1017.96 1018.38 1018.16 973.17 992.54 1/6/94 963.67 988.50 1017.23 1017.96 1018.38 1018.16 973.17 992.54 1/6/94 963.67 988.12 1017.25 1017.67 1019.94 972.96 991.57 5/31/94 963.67 988.18 1016.75 1017.18 1017.02 973.17 992.32 1/7/12/94 963.69 988.75 1016.65 1017.06 1017.14 974.75 993.87 8/26/94 963.68 989.77 1016.54 1016.65 1017.06 1017.14 974.75 993.87 8/26/94 963.68 989.77 1016.54 1016.65 1016.65 973.41 991.91 9/20/94 963.68 985.11 1016.65 1016.27 1016.34 973.06 991.67 11/25/94 963.63 985.61 1016.54 1016.57 1016.34 973.06 991.67 11/25/94 963.63 985.61 1016.55 1016.27 1016.34 973.06 991.67 11/25/94 963.63 985.61 1016.54 1016.59 1016.34 973.06 991.67 11/25/94 963.63 985.61 1016.55 1016.27 1016.34 973.06 991.67 11/25/94 963.63 985.61 1016.55 1016.27 1016.34 973.06 991.67 11/25/94 963.63 985.61 1016.55 1016.67 1016.39 1016.04 973.58 1000.27 12/20/94 963.67 984.56 1016.65 1016.39 1016.04 973.58 1000.27 12/20/94 963.67 984.56 1016.65 1016.37 1016.39 973.68 991.97 10/16.59 963.70 981.27 1016.64 1016.65 1016.39 973.68 991.97 10/16.99 973.68 992.92 10/16.99 973.69 993.67 986.82 10/16.55 10/16.67 10/16.44 973.46 992.92 10/16.99 973.69 993.77 10/16.99 973.69 993.77 10/16.99 973.69 993.77 10/16.99 97								
11/10/93 963.64 983.32 1016.04 1018.45 1018.76 973.31 991.81 12/10/93 963.65 988.57 1016.80 1018.33 1018.28 973.06 991.81 1/28/94 963.65 988.76 1017.30 1018.99 1017.84 973.57 992.49 22/11/94 963.66 988.09 1017.53 1018.38 1018.16 973.17 992.24 3/15/94 963.67 988.50 1017.23 1017.96 1018.84 973.17 992.24 3/15/94 963.67 988.12 1017.25 1017.67 1019.94 972.96 991.57 5/5/31/94 963.67 988.18 1016.75 1017.67 1019.94 972.96 991.57 5/5/31/94 963.67 988.18 1016.75 1017.67 1019.94 972.96 991.57 5/5/31/94 963.65 989.06 1017.12 1017.67 1019.94 972.96 991.57 1/7/2/94 963.69 988.75 1016.65 1017.48 1017.02 973.17 992.32 6/14/94 963.65 989.06 1017.12 1017.58 1017.44 973.27 992.01 973.27 992.01 1016.54 1016.54 1016.55 973.41 991.91 9/20/94 963.68 985.71 1016.54 1016.64 1016.55 973.41 991.91 9/20/94 963.68 985.11 1016.61 1016.64 1016.65 973.41 991.91 1016/94 963.77 984.32 1016.25 1016.27 1016.34 973.06 991.57 11/25/94 963.63 985.61 1016.64 1016.67 1016.79 1016.34 973.06 991.57 11/25/94 963.63 985.61 1016.54 1016.63 1016.04 973.58 1000.27 12/20/94 963.77 984.32 1016.25 1016.27 1016.34 973.06 991.57 11/25/94 963.63 985.61 1016.64 1016.65 1016.39 1016.04 973.58 1000.27 12/20/94 963.71 984.56 1016.64 1016.65 1016.35 976.18 996.46 2/28/95 963.70 981.27 1016.66 1016.67 1016.35 976.18 996.46 2/28/95 963.70 981.27 1016.66 1016.67 1016.35 976.18 996.47 04/19/95 963.77 984.52 1016.55 1016.27 1016.14 973.66 991.97 5/30/95 963.66 1006.32 1017.65 1016.67 1016.35 976.18 996.47 04/19/95 963.67 987.62 1017.65 1016.67 1016.94 973.76 993.77 1992.16 1016.95 1016.67 1016.14 973.66 991.97 5/30/95 963.66 1006.32 1017.65 1016.67 1016.35 976.18 996.47 1016.95 963.67 986.82 1017.65 1016.67 1016.94 973.76 993.77 1995.96 963.67 986.82 1017.65 1016.67 1016.94 973.76 993.77 1995.96 963.67 986.82 1016.55 1016.27 1016.14 973.66 991.97 5/30/95 963.66 1010.22 1019.65 1015.27 1016.64 973.76 993.77 1995.96 963.67 986.82 1015.55 1015.67 1015.84 973.76 993.77 1995.96 963.77 986.82 1017.55 1015.67 1015.84 973.76 993.77 1996.99 963.71 986.62 1015.55 1015.67 1015.84 973.								
12/10/93 963.65 988.57 1016.80 1018.33 1018.28 973.06 991.81 1/28/94 963.76 988.76 1017.30 1018.09 1017.84 973.57 992.49 2/211/94 963.66 988.09 1017.53 1018.38 1018.16 973.17 992.24 3/15/94 963.67 988.50 1017.23 1017.96 1018.84 973.17 991.57 4/6/94 963.67 988.50 1017.23 1017.96 1018.84 973.17 991.57 4/6/94 963.67 988.12 1017.25 1017.67 1019.94 972.96 991.57 5/31/94 963.67 988.18 1016.75 1017.67 1019.94 972.96 991.57 5/31/94 963.67 988.18 1016.75 1017.67 1019.94 972.96 991.57 1017.29 1017.29 973.17 992.32 6/14/94 963.65 989.06 1017.12 1017.58 1017.44 973.27 992.01 7/12/94 963.66 989.06 1017.12 1017.58 1017.44 973.27 992.01 7/12/94 963.68 989.77 1016.55 1017.06 1017.14 974.75 993.87 8/26/94 963.68 989.77 1016.54 1016.84 1016.65 973.41 991.91 9/20/94 963.68 985.11 1016.61 1016.79 1016.58 973.63 991.95 10/18/94 963.67 984.32 1016.25 1016.27 1016.34 973.06 991.67 11/25/94 963.63 985.61 1016.54 1016.39 1016.04 973.58 1000.27 12/20/94 963.63 985.61 1016.54 1016.39 1016.04 973.58 1000.27 12/20/94 963.67 988.27 1016.54 1016.65 1016.37 973.77 992.03 1/30/95 963.72 978.58 1016.64 1016.65 1016.37 973.77 992.03 1/30/95 963.72 978.58 1016.64 1016.65 1016.37 973.77 992.03 1/30/95 963.70 981.27 1016.64 1016.65 1016.37 973.77 992.03 1/30/95 963.66 1006.32 1016.65 1016.62 1016.09 977.36 994.17 04/19/95 963.67 984.52 1016.55 1016.62 1016.09 977.36 994.17 04/19/95 963.66 1006.32 1017.65 1016.62 1016.09 977.36 994.17 04/19/95 963.66 1006.32 1017.65 1016.62 1016.04 973.56 993.77 984.52 1016.55 1016.27 1016.14 973.66 991.97 7/6/95 963.67 986.82 1016.55 1016.57 1015.54 973.76 993.77 992.03 1017.95 1015.55 1015.94 973.76 993.77 992.03 1017.95 1015.94 973.76 993.77 994.17 1016.69 1016.69 1016.09 977.36 994.17 1016.95 1016.09 977.36 994.17 1016.95 1016.95 1016.95 973.66 993.77 986.82 1016.55 1016.67 1016.69 973.76 993.77 994.17 1016.69 1016.69 1016.97 1016.69 973.76 993.77 1016.96 1016.97 1016.69 973.76 993.77 1016.96 973.76 986.82 1016.55 1016.57 1015.54 973.66 992.97 1016.99 973.76 986.82 1016.55 1016.57 1015.64 973.56 992.77 1016.96 9								
1/28/94 963.76 988.76 1017.30 1018.09 1017.84 973.57 992.49 2/11/94 963.66 988.09 1017.53 1018.38 1018.16 973.17 992.59 3/15/94 963.67 988.50 1017.23 1017.96 1018.84 973.17 991.57 4/6/94 963.67 988.50 1017.25 1017.67 1019.94 972.96 991.57 5/5/31/94 963.67 988.18 1016.75 1017.18 1017.02 973.17 992.32 6/14/94 963.65 989.06 1017.12 1017.58 1017.44 973.27 992.32 7/12/94 963.65 989.06 1017.12 1017.58 1017.44 973.27 992.01 7/12/94 963.66 988.75 1016.65 1017.06 1017.14 974.75 993.87 8/26/94 963.68 999.77 1016.54 1016.84 1016.65 973.41 991.91 9/20/94 963.68 985.11 1016.61 1016.79 1016.58 973.63 991.95 10/18/94 963.63 985.51 1016.61 1016.79 1016.58 973.63 991.95 11/25/94 963.63 985.61 1016.54 1016.27 1016.34 973.06 991.67 11/25/94 963.63 985.61 1016.54 1016.39 1016.04 973.58 1000.27 12/20/94 963.71 984.56 1016.64 1016.65 1016.37 973.77 992.03 11/30/95 963.72 978.58 1016.64 1016.65 1016.37 973.77 992.03 1/30/95 963.77 984.52 1016.64 1016.65 1016.37 973.77 992.03 3/28/95 963.64 982.77 1016.64 1016.70 1016.35 976.18 996.46 2/28/95 963.64 982.77 1016.75 1016.62 1016.09 977.36 994.17 04/19/95 963.77 984.52 1016.55 1016.62 1016.09 977.36 994.17 6/30/95 963.66 1006.32 1017.65 1016.62 1016.09 977.36 994.17 6/30/95 963.66 1006.32 1017.65 1016.87 1017.14 975.96 994.17 6/30/95 963.66 1006.32 1017.65 1016.87 1017.14 975.96 994.17 6/30/95 963.66 1006.32 1017.65 1016.62 1016.09 973.36 994.17 6/30/95 963.67 988.52 1016.55 1016.27 1016.14 973.66 991.97 6/30/95 963.67 983.67 986.82 1016.55 1016.27 1016.14 973.46 992.25 11/15/95 963.67 986.62 1015.55 1016.77 1016.74 973.76 993.67 9/19/95 963.67 986.82 1015.55 1016.77 1016.54 973.76 993.67 9/19/95 963.67 986.82 1015.55 1016.57 1015.59 973.76 993.67 9/19/95 963.67 986.82 1015.55 1015.67 1015.59 973.66 992.77 7/6/96 963.71 986.82 1015.55 1015.67 1015.64 973.56 992.77 7/6/96 963.71 986.82 1015.55 1015.67 1015.64 973.56 992.77 9/19/96 963.77 986.82 1015.55 1015.67 1015.64 973.56 992.77 9/19/96 963.77 986.82 1015.55 1015.57 1015.64 973.56 992.77 9/19/96 963.77 986.82 1015.55 1015.57 1015.64 97								
2/11/94 963.66 988.09 1017.53 1018.38 1018.16 973.17 992.24 3/15/94 963.67 988.50 1017.23 1017.96 1018.84 973.17 991.57 4/6/94 963.77 988.12 1017.25 1017.67 1019.94 972.96 991.57 5/31/94 963.67 988.18 1016.75 1017.18 1017.02 973.17 992.32 6/14/94 963.65 989.06 1017.12 1017.58 1017.44 973.27 992.01 7/12/94 963.69 988.75 1016.65 1017.06 1017.14 974.75 993.87 8/26/94 963.69 988.75 1016.65 1017.06 1017.14 974.75 993.87 8/26/94 963.69 989.77 1016.54 1016.84 1016.65 973.41 991.91 9/20/94 963.69 985.11 1016.61 1016.79 1016.58 973.63 991.95 10/18/94 963.77 984.32 1016.25 1016.27 1016.34 973.06 991.67 11/25/94 963.63 985.61 1016.54 1016.39 1016.04 973.58 1000.27 12/20/94 963.77 984.52 1016.55 1016.67 1016.31 973.77 992.03 1/30/95 963.72 978.58 1016.75 1016.70 1016.35 976.18 996.46 2/28/95 963.70 981.27 1016.46 1017.30 1015.84 973.71 992.16 3/28/95 963.67 984.52 1016.55 1016.27 1016.09 977.36 994.17 04/19/95 963.77 984.52 1016.55 1016.27 1016.09 977.36 994.17 04/19/95 963.67 983.27 1016.46 1017.30 1015.84 973.71 992.16 3/28/95 963.69 1016.00 977.36 994.17 04/19/95 963.67 983.52 1016.55 1016.27 1016.10 973.56 994.17 04/19/95 963.67 983.52 1016.55 1016.27 1016.10 973.66 991.97 7/6/95 963.67 983.52 1017.55 1016.27 1016.14 973.66 991.97 7/6/95 963.67 983.52 1017.55 1016.27 1016.14 973.66 991.37 7/6/95 963.67 983.52 1017.55 1017.47 1016.74 973.66 992.37 1/11/19/95 963.67 986.82 1017.55 1017.47 1016.74 973.66 992.37 1/11/19/95 963.67 986.82 1017.55 1017.47 1016.74 973.66 992.37 1/11/19/95 963.67 986.82 1016.55 1016.57 1015.54 974.76 993.77 1/12/19/95 963.67 986.72 1016.15 1016.20 1016.19 973.39 992.38 1/11/19/95 963.67 986.72 1016.16 1016.27 1015.84 973.76 993.67 9/19/95 963.67 986.82 1016.55 1016.57 1015.64 973.66 992.97 3/11/19/95 963.77 986.22 1016.55 1016.67 1015.84 973.66 992.97 3/11/19/96 963.71 986.62 1015.55 1015.67 1015.64 973.66 992.97 3/11/19/96 963.71 986.62 1015.55 1015.67 1015.84 973.56 992.76 9/14/96 963.71 986.62 1015.55 1015.67 1015.84 973.56 992.76 9/14/96 963.77 986.27 1016.25 1015.87 1015.84 973.56 992.37 9								
3/15/94 963.67 988.50 1017.23 1017.96 1018.84 973.17 991.57 4/6/94 963.77 988.12 1017.25 1017.67 1019.94 972.96 991.57 5/31/94 963.67 988.18 1016.75 1017.18 1017.02 973.17 992.32 6/14/94 963.65 989.06 1017.12 1017.58 1017.44 973.27 992.01 7/12/94 963.66 988.75 1016.65 1017.06 1017.14 974.75 993.87 8/26/94 963.68 988.75 1016.65 1017.06 1017.14 974.75 993.87 8/26/94 963.68 985.71 1016.54 1016.84 1016.65 973.41 991.91 9/20/94 963.68 985.71 1016.61 1016.79 1016.58 973.63 991.95 10/18/94 963.63 985.61 1016.62 1016.27 1016.34 973.06 991.67 11/25/94 963.63 985.61 1016.54 1016.65 1016.34 973.06 991.67 11/25/94 963.77 984.32 1016.25 1016.27 1016.34 973.06 991.67 11/25/94 963.71 984.56 1016.64 1016.65 1016.31 973.77 992.03 1/30/95 963.72 978.58 1016.75 1016.70 1016.35 976.18 996.46 2/28/95 963.70 981.27 1016.46 1017.30 1015.84 973.71 992.13 3/28/95 963.64 982.77 1016.75 1016.62 1016.09 977.36 994.17 04/19/95 963.77 984.52 1016.55 1016.27 1016.14 973.66 991.97 5/30/95 963.66 1006.32 1017.65 1016.87 1016.14 973.66 991.97 5/30/95 963.66 1006.32 1017.65 1016.87 1017.14 973.66 991.97 5/30/95 963.66 1006.32 1017.65 1016.87 1017.14 973.66 994.77 7/6/95 963.67 987.62 1017.55 1017.47 1017.47 973.46 992.27 8/28/95 963.67 987.62 1017.55 1016.27 1016.14 973.76 993.67 9/19/95 963.67 987.62 1017.55 1016.27 1016.14 973.76 993.67 9/19/95 963.67 987.62 1017.55 1016.27 1015.44 973.66 992.27 8/28/95 963.66 1006.32 1017.65 1016.87 1017.14 973.46 992.27 8/28/95 963.67 987.62 1017.55 1016.57 1015.64 973.76 993.67 9/19/95 963.67 986.82 1016.55 1016.57 1015.58 975.66 992.77 8/28/95 963.67 987.62 1017.55 1017.77 1016.74 973.76 993.67 9/19/95 963.67 986.82 1016.55 1016.57 1015.58 975.66 992.77 8/28/95 963.67 986.82 1016.55 1015.67 1015.58 975.66 992.77 8/28/95 963.67 986.62 1015.55 1015.67 1015.64 973.56 992.77 8/14/96 963.71 986.62 1015.55 1015.67 1015.64 973.56 992.77 8/14/96 963.71 986.62 1015.55 1015.67 1015.64 973.56 992.77 8/29/96 963.77 986.27 1016.25 1015.86 1015.84 973.56 992.77 8/26/96 963.77 986.27 1016.25 1015.86 1015.84 973.56 992.77								
4/6/94 963.77 988.12 1017.25 1017.67 1019.94 972.96 991.57 5/3/1/94 963.67 988.18 1016.75 1017.18 1017.02 973.17 992.32 6/14/94 963.69 988.75 1016.65 1017.06 1017.14 974.75 992.01 7/12/94 963.69 988.75 1016.65 1017.06 1017.14 974.75 993.87 8/26/94 963.68 989.77 1016.54 1016.84 1016.65 973.41 991.91 9/20/94 963.68 985.11 1016.61 1016.79 1016.58 973.63 991.95 10/18/94 963.77 984.32 1016.25 1016.27 1016.34 973.06 991.67 11/25/94 963.63 985.61 1016.54 1016.99 1016.33 973.77 992.03 1/3/095 963.71 984.56 1016.62 1016.31 973.77 992.03 1/3/28/95 963.62 981.27 1016.64 1017.30 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
5/31/94 963.67 988.18 1016.75 1017.18 1017.02 973.17 992.32 6/14/94 963.65 989.06 1017.12 1017.58 1017.44 973.27 992.01 7/12/94 963.69 988.75 1016.65 1017.06 1017.14 974.75 993.87 8/26/94 963.68 989.77 1016.54 1016.84 1016.65 973.41 991.91 9/20/94 963.68 985.11 1016.61 1016.79 1016.58 973.63 991.95 10/18/94 963.67 984.32 1016.25 1016.27 1016.34 973.06 991.67 11/25/94 963.63 985.61 1016.64 1016.39 910.60 973.77 992.03 1/30/95 963.72 978.58 1016.75 1016.05 1016.31 973.77 992.03 2/28/95 963.70 981.27 1016.75 1016.62 1016.39 977.31 992.16 3/328/95 963.64 982.77 1016.75								
6/14/94 963.65 989.06 1017.12 1017.58 1017.44 973.27 992.01 7/12/94 963.69 988.75 1016.65 1017.06 1017.14 974.75 993.87 8/26/94 963.68 989.77 1016.54 1016.84 1016.65 973.41 991.91 9/20/94 963.68 985.11 1016.61 1016.79 1016.38 973.63 991.95 10/18/94 963.77 984.32 1016.25 1016.27 1016.34 973.06 991.67 11/25/94 963.63 985.61 1016.64 1016.39 1016.04 973.58 1000.27 12/20/94 963.71 984.56 1016.64 1016.35 1016.31 973.77 992.03 130/95 963.72 978.58 1016.75 1016.65 1016.31 973.77 992.03 3/28/95 963.64 982.77 1016.75 1016.62 1016.09 977.36 994.17 04/19/95 963.67 984.52 1016.55 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
7/12/94 963.69 988.75 1016.65 1017.06 1017.14 974.75 993.87 8/26/94 963.68 989.77 1016.54 1016.84 1016.65 973.41 991.91 9/20/94 963.68 985.11 1016.61 1016.79 1016.58 973.63 991.95 10/18/94 963.77 984.32 1016.25 1016.27 1016.04 973.58 1000.27 11/25/94 963.63 985.61 1016.54 1016.39 1016.04 973.58 1000.27 12/20/94 963.71 984.56 1016.64 1016.65 1016.31 973.77 992.03 1/30/95 963.72 978.58 1016.75 1016.70 1016.35 976.18 996.46 2/28/95 963.64 982.77 1016.46 1017.30 1015.84 973.71 992.16 3/28/95 963.64 982.77 1016.75 1016.27 1016.14 973.36 994.17 04/19/95 963.67 104.52 1016.55 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
8/26/94 963.68 989.77 1016.54 1016.84 1016.65 973.41 991.91 9/20/94 963.68 985.11 1016.61 1016.79 1016.58 973.63 991.95 10/18/94 963.77 984.32 1016.25 1016.27 1016.34 973.06 991.67 11/25/94 963.63 985.61 1016.54 1016.39 1016.04 973.55 1000.27 12/20/94 963.71 984.56 1016.64 1016.65 1016.31 973.77 992.03 1/30/95 963.72 978.58 1016.75 1016.70 1016.35 976.18 996.46 2/28/95 963.70 981.27 1016.46 1017.30 1015.84 973.71 992.03 3/28/95 963.64 982.77 1016.75 1016.69 977.36 994.17 04/19/95 963.67 984.52 1016.55 1016.27 1016.14 973.66 991.97 5/30/95 963.66 1006.32 1017.65 1016.87 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
9/20/94 963.68 985.11 1016.61 1016.79 1016.58 973.63 991.95 10/18/94 963.77 984.32 1016.25 1016.27 1016.34 973.06 991.67 11/25/94 963.63 985.61 1016.54 1016.39 1016.04 973.58 1000.27 12/20/94 963.71 984.56 1016.64 1016.65 1016.31 973.77 992.03 1/30/95 963.72 978.58 1016.75 1016.70 1016.35 976.18 996.46 2/28/95 963.70 981.27 1016.46 1017.30 1015.84 973.71 992.16 3/28/95 963.64 982.77 1016.75 1016.62 1016.09 977.36 994.17 04/19/95 963.67 984.52 1016.55 1016.27 1016.14 973.66 991.97 5/30/95 963.66 1006.32 1017.65 1016.87 1017.14 975.96 994.77 6/30/95 963.66 1010.22 1019.65 1018.27 1018.54 974.76 993.77 7/6/95 963.67 988.32 1017.45 1017.47 1017.74 973.46 992.27 8/28/95 963.67 987.62 1017.55 1016.27 1016.74 973.76 993.67 9/19/95 963.67 987.62 1017.55 1017.17 1016.74 973.76 993.67 9/19/95 963.67 986.82 1016.55 1016.37 1016.49 973.76 993.67 11/15/95 963.76 986.82 1016.55 1016.37 1016.49 973.76 993.47 11/15/95 963.76 986.72 1016.69 1016.37 1016.49 973.76 993.47 11/15/95 963.76 986.72 1016.65 1016.37 1016.49 973.76 993.47 11/15/95 963.76 986.72 1016.16 1016.27 1015.58 975.65 992.16 11/11/96 963.71 986.62 1016.05 1015.77 1015.64 973.56 992.77 3/11/96 963.71 986.62 1016.05 1015.77 1015.64 973.56 992.77 3/11/96 963.77 986.17 1015.36 106.2 1015.89 973.56 992.77 8/26/96 963.77 986.21 1015.35 1015.07 1015.69 973.56 992.37 11/19/96 963.71 986.62 1016.25 1015.07 1015.64 973.66 992.97 5/14/96 963.71 986.82 1015.55 1015.77 1015.64 973.66 992.97 5/14/96 963.71 986.82 1015.55 1015.07 1015.69 973.56 992.77 8/26/96 963.77 986.17 1015.31 1016.22 1015.08 974.21 994.32 1/11/96 963.71 985.82 1015.25 1015.07 1015.69 973.56 992.77 8/26/96 963.77 986.27 1016.25 1015.07 1015.69 973.56 992.77 8/26/96 963.77 986.27 1016.25 1015.07 1015.89 973.56 992.77 8/26/96 963.77 986.27 1016.25 1015.07 1015.89 973.56 992.77 8/26/96 963.71 985.82 1015.25 1015.07 1015.69 973.56 992.77 8/26/96 963.71 985.82 1015.25 1015.07 1015.89 973.56 992.77 8/26/96 963.71 985.93 1015.15 1015.37 1015.14 974.76 994.67								991.91
10/18/94 963.77 984.32 1016.25 1016.27 1016.34 973.06 991.67 11/25/94 963.63 985.61 1016.54 1016.39 1016.04 973.58 1000.27 12/20/94 963.71 984.56 1016.64 1016.65 1016.31 973.77 992.03 1/30/95 963.72 978.58 1016.75 1016.05 1016.35 976.18 996.46 2/28/95 963.70 981.27 1016.46 1017.30 1015.84 973.71 992.16 3/28/95 963.64 982.77 1016.75 1016.62 1016.09 977.36 994.17 04/19/95 963.77 984.52 1016.55 1016.27 1016.14 973.66 991.97 5/30/95 963.66 1006.32 1017.65 1016.87 1017.14 975.96 994.17 6/30/95 963.67 988.32 1017.45 1017.47 1017.74 973.46 992.27 8/28/95 963.67 987.62 1017.55 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
12/20/94 963.71 984.56 1016.64 1016.65 1016.31 973.77 992.03 1/30/95 963.72 978.58 1016.75 1016.70 1016.35 976.18 996.46 2/28/95 963.70 981.27 1016.46 1047.30 1015.84 973.71 992.16 3/28/95 963.64 982.77 1016.75 1016.62 1016.09 977.36 994.17 04/19/95 963.77 984.52 1016.55 1016.27 1016.14 973.66 991.97 5/30/95 963.66 1006.32 1017.65 1016.87 1017.14 975.96 994.17 6/30/95 963.66 1010.22 1019.65 1018.27 1018.54 974.76 993.77 7/6/95 963.67 988.32 1017.45 1017.47 1017.74 973.46 992.27 8/28/95 963.67 987.62 1017.55 1017.17 1016.74 973.76 993.67 9/19/95 963.52 987.36 1017.27	10/18/94	963.77	984.32	1016.25	1016.27	1016.34	973.06	991.67
1/30/95 963.72 978.58 1016.75 1016.70 1016.35 976.18 996.46 2/28/95 963.70 981.27 1016.46 1017.30 1015.84 973.71 992.16 3/28/95 963.64 982.77 1016.75 1016.62 1016.09 977.36 994.17 04/19/95 963.67 984.52 1016.55 1016.27 1016.14 973.66 991.97 5/30/95 963.66 1006.32 1017.65 1016.87 1017.14 975.96 994.17 6/30/95 963.66 1010.22 1019.65 1018.27 1018.54 974.76 993.77 7/6/95 963.67 988.32 1017.45 1017.47 1017.74 973.46 992.27 8/28/95 963.67 987.62 1017.55 1017.17 1016.74 973.76 993.67 9/19/95 963.67 986.82 1016.55 1016.37 1016.44 973.46 992.92 11/15/95 963.67 986.82 1016.55	11/25/94	963.63	985.61	1016.54	1016.39	1016.04	973.58	1000.27
2/28/95 963.70 981.27 1016.46 1017.30 1015.84 973.71 992.16 3/28/95 963.64 982.77 1016.75 1016.62 1016.09 977.36 994.17 04/19/95 963.77 984.52 1016.55 1016.27 1016.14 973.66 991.97 5/30/95 963.66 1006.32 1017.65 1016.87 1017.14 975.96 994.17 6/30/95 963.66 1010.22 1019.65 1018.27 1018.54 974.76 993.77 7/6/95 963.67 988.32 1017.45 1017.47 1017.74 973.46 992.27 8/28/95 963.67 987.62 1017.55 1017.17 1016.74 973.76 993.67 9/19/95 963.52 987.36 1017.27 1016.20 1016.12 973.39 992.38 10/12/95 963.67 986.82 1016.55 1016.37 1016.44 973.46 992.92 11/15/95 963.76 986.72 1016.16 <td>12/20/94</td> <td></td> <td>984.56</td> <td>1016.64</td> <td>1016.65</td> <td>1016.31</td> <td>973.77</td> <td>992.03</td>	12/20/94		984.56	1016.64	1016.65	1016.31	973.77	992.03
3/28/95 963.64 982.77 1016.75 1016.62 1016.09 977.36 994.17 04/19/95 963.77 984.52 1016.55 1016.27 1016.14 973.66 991.97 5/30/95 963.66 1006.32 1017.65 1016.87 1017.14 975.96 994.17 6/30/95 963.66 1010.22 1019.65 1018.27 1018.54 974.76 993.77 7/6/95 963.67 983.32 1017.45 1017.47 1017.74 973.46 992.27 8/28/95 963.67 987.62 1017.55 1017.17 1016.74 973.76 993.67 9/19/95 963.52 987.36 1017.27 1016.20 1016.12 973.39 992.38 10/12/95 963.67 986.82 1016.55 1016.37 1016.44 973.46 992.92 11/15/95 963.76 986.75 1017.05 1016.57 1015.94 973.76 993.47 12/21/95 963.76 986.72 1016.16 <td></td> <td>963.72</td> <td>978.58</td> <td>1016.75</td> <td></td> <td>1016.35</td> <td>976.18</td> <td>996.46</td>		963.72	978.58	1016.75		1016.35	976.18	996.46
04/19/95 963.77 984.52 1016.55 1016.27 1016.14 973.66 991.97 5/30/95 963.66 1006.32 1017.65 1016.87 1017.14 975.96 994.17 6/30/95 963.66 1010.22 1019.65 1018.27 1018.54 974.76 993.77 7/6/95 963.67 988.32 1017.45 1017.47 1017.74 973.46 992.27 8/28/95 963.67 987.62 1017.55 1017.17 1016.74 973.76 993.67 9/19/95 963.52 987.36 1017.27 1016.20 1016.12 973.39 992.38 10/12/95 963.67 986.82 1016.55 1016.37 1016.44 973.46 992.92 11/15/95 963.76 986.75 1017.05 1016.57 1015.94 973.76 993.47 12/21/95 963.76 986.72 1016.16 1016.27 1015.64 973.56 992.17 3/11/96 963.71 986.62 1016.05 <td>2/28/95</td> <td>963.70</td> <td>981.27</td> <td>1016.46</td> <td>1017.30</td> <td>1015.84</td> <td>973.71</td> <td>992.16</td>	2/28/95	963.70	981.27	1016.46	1017.30	1015.84	973.71	992.16
5/30/95 963.66 1006.32 1017.65 1016.87 1017.14 975.96 994.17 6/30/95 963.66 1010.22 1019.65 1018.27 1018.54 974.76 993.77 7/6/95 963.67 988.32 1017.45 1017.47 1017.74 973.46 992.27 8/28/95 963.67 987.62 1017.55 1017.17 1016.74 973.76 993.67 9/19/95 963.52 987.36 1017.27 1016.20 1016.12 973.39 992.38 10/12/95 963.67 986.82 1016.55 1016.37 1016.44 973.46 992.92 11/15/95 963.76 986.72 1016.16 1016.57 1015.94 973.76 993.47 12/21/95 963.71 986.62 1016.16 1016.27 1015.68 975.65 992.16 1/11/96 963.71 986.62 1016.05 1015.77 1015.64 973.56 992.77 3/11/96 963.71 986.62 1015.55 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
6/30/95 963.66 1010.22 1019.65 1018.27 1018.54 974.76 993.77 7/6/95 963.67 988.32 1017.45 1017.47 1017.74 973.46 992.27 8/28/95 963.67 987.62 1017.55 1017.17 1016.74 973.76 993.67 9/19/95 963.52 987.36 1017.27 1016.20 1016.12 973.39 992.38 10/12/95 963.67 986.82 1016.55 1016.37 1016.44 973.46 992.92 11/15/95 963.76 986.75 1017.05 1016.57 1015.94 973.76 993.47 12/21/95 963.76 986.72 1016.16 1016.27 1015.58 975.65 992.16 1/11/96 963.71 986.62 1016.05 1015.77 1015.64 973.56 992.32 4/11/96 963.71 986.62 1015.55 1015.67 1015.64 973.56 992.97 5/14/96 963.77 986.22 1015.55								
7/6/95 963.67 988.32 1017.45 1017.47 1017.74 973.46 992.27 8/28/95 963.67 987.62 1017.55 1017.17 1016.74 973.76 993.67 9/19/95 963.52 987.36 1017.27 1016.20 1016.12 973.39 992.38 10/12/95 963.67 986.82 1016.55 1016.37 1016.44 973.46 992.92 11/15/95 963.76 986.75 1017.05 1016.57 1015.94 973.76 993.47 12/21/95 963.76 986.72 1016.16 1016.27 1015.58 975.65 992.16 1/11/96 963.71 986.62 1016.05 1015.77 1015.64 973.56 992.32 4/11/96 963.71 986.62 1015.36 lced 1015.35 973.56 992.97 5/14/96 963.71 986.62 1015.55 1015.67 1015.64 973.56 992.97 6/20/96 963.77 986.17 1015.31								
8/28/95 963.67 987.62 1017.55 1017.17 1016.74 973.76 993.67 9/19/95 963.52 987.36 1017.27 1016.20 1016.12 973.39 992.38 10/12/95 963.67 986.82 1016.55 1016.37 1016.44 973.46 992.92 11/15/95 963.76 986.75 1017.05 1016.57 1015.94 973.76 993.47 12/21/95 963.76 986.72 1016.16 1016.27 1015.58 975.65 992.16 1/11/96 963.71 986.62 1016.05 1015.77 1015.64 973.56 992.77 3/11/96 963.71 985.93 1015.36 lced 1015.35 973.56 992.32 4/11/96 963.71 986.62 1015.55 1015.67 1015.64 973.66 992.97 5/14/96 963.77 986.22 1016.25 1015.03 1015.19 973.56 993.77 6/20/96 963.77 986.17 1015.31								
9/19/95 963.52 987.36 1017.27 1016.20 1016.12 973.39 992.38 10/12/95 963.67 986.82 1016.55 1016.37 1016.44 973.46 992.92 11/15/95 963.76 986.75 1017.05 1016.57 1015.94 973.76 993.47 12/21/95 963.76 986.72 1016.16 1016.27 1015.58 975.65 992.16 1/11/96 963.71 986.62 1016.05 1015.77 1015.64 973.56 992.77 3/11/96 963.71 985.93 1015.36 lced 1015.35 973.56 992.32 4/11/96 963.71 986.62 1015.55 1015.67 1015.64 973.66 992.97 5/14/96 963.77 986.22 1016.25 1015.03 1015.19 973.56 993.77 6/20/96 963.77 986.17 1015.31 1016.22 1015.08 974.21 994.32 7/12/96 963.71 985.82 1015.25								
10/12/95 963.67 986.82 1016.55 1016.37 1016.44 973.46 992.92 11/15/95 963.76 986.75 1017.05 1016.57 1015.94 973.76 993.47 12/21/95 963.76 986.72 1016.16 1016.27 1015.58 975.65 992.16 1/11/96 963.71 986.62 1016.05 1015.77 1015.64 973.56 992.77 3/11/96 963.71 985.93 1015.36 Iced 1015.35 973.56 992.32 4/11/96 963.71 986.62 1015.55 1015.67 1015.64 973.66 992.97 5/14/96 963.71 986.22 1016.25 1015.03 1015.19 973.56 993.77 6/20/96 963.77 986.17 1015.31 1016.22 1015.08 974.21 994.32 7/12/96 963.71 985.82 1015.25 1015.07 1015.66 973.56 992.77 8/26/96 963.77 986.27 1016.25								
11/15/95 963.76 986.75 1017.05 1016.57 1015.94 973.76 993.47 12/21/95 963.76 986.72 1016.16 1016.27 1015.58 975.65 992.16 1/11/96 963.71 986.62 1016.05 1015.77 1015.64 973.56 992.77 3/11/96 963.71 985.93 1015.36 Iced 1015.35 973.56 992.32 4/11/96 963.71 986.62 1015.55 1015.67 1015.64 973.66 992.97 5/14/96 963.77 986.22 1016.25 1015.03 1015.19 973.56 993.77 6/20/96 963.77 986.17 1015.31 1016.22 1015.08 974.21 994.32 7/12/96 963.71 985.82 1015.25 1015.07 1015.66 973.56 992.77 8/26/96 963.77 986.27 1016.25 1016.87 1015.84 974.93 993.72 9/25/96 963.75 986.20 1016.24								
12/21/95 963.76 986.72 1016.16 1016.27 1015.58 975.65 992.16 1/11/96 963.71 986.62 1016.05 1015.77 1015.64 973.56 992.77 3/11/96 963.71 985.93 1015.36 lced 1015.35 973.56 992.32 4/11/96 963.71 986.62 1015.55 1015.67 1015.64 973.66 992.97 5/14/96 963.77 986.22 1016.25 1015.03 1015.19 973.56 993.77 6/20/96 963.77 986.17 1015.31 1016.22 1015.08 974.21 994.32 7/12/96 963.71 985.82 1015.25 1015.07 1015.66 973.56 992.77 8/26/96 963.77 986.27 1016.25 1016.87 1015.84 974.93 993.72 9/25/96 963.75 986.20 1016.24 1015.86 1015.84 973.51 994.67 10/03/1996 963.71 985.93 1015.15								
1/11/96 963.71 986.62 1016.05 1015.77 1015.64 973.56 992.77 3/11/96 963.71 985.93 1015.36 Iced 1015.35 973.56 992.32 4/11/96 963.71 986.62 1015.55 1015.67 1015.64 973.66 992.97 5/14/96 963.77 986.22 1016.25 1015.03 1015.19 973.56 993.77 6/20/96 963.77 986.17 1015.31 1016.22 1015.08 974.21 994.32 7/12/96 963.71 985.82 1015.25 1015.07 1015.66 973.56 992.77 8/26/96 963.77 986.27 1016.25 1016.87 1015.84 974.93 993.72 9/25/96 963.75 986.20 1016.24 1015.86 1015.84 973.51 994.67 10/03/1996 963.71 985.93 1015.15 1015.37 1015.14 974.76 994.67								
3/11/96 963.71 985.93 1015.36 Iced 1015.35 973.56 992.32 4/11/96 963.71 986.62 1015.55 1015.67 1015.64 973.66 992.97 5/14/96 963.77 986.22 1016.25 1015.03 1015.19 973.56 993.77 6/20/96 963.77 986.17 1015.31 1016.22 1015.08 974.21 994.32 7/12/96 963.71 985.82 1015.25 1015.07 1015.66 973.56 992.77 8/26/96 963.77 986.27 1016.25 1016.87 1015.84 974.93 993.72 9/25/96 963.75 986.20 1016.24 1015.86 1015.84 973.51 994.67 10/03/1996 963.71 985.93 1015.15 1015.37 1015.94 973.66 994.37 11/13/1996 963.77 986.92 1014.85 1015.37 1015.14 974.76 994.67								
4/11/96 963.71 986.62 1015.55 1015.67 1015.64 973.66 992.97 5/14/96 963.77 986.22 1016.25 1015.03 1015.19 973.56 993.77 6/20/96 963.77 986.17 1015.31 1016.22 1015.08 974.21 994.32 7/12/96 963.71 985.82 1015.25 1015.07 1015.66 973.56 992.77 8/26/96 963.77 986.27 1016.25 1016.87 1015.84 974.93 993.72 9/25/96 963.75 986.20 1016.24 1015.86 1015.84 973.51 994.67 10/03/1996 963.71 985.93 1015.15 1015.37 1015.94 973.66 994.37 11/13/1996 963.77 986.92 1014.85 1015.37 1015.14 974.76 994.67								
5/14/96 963.77 986.22 1016.25 1015.03 1015.19 973.56 993.77 6/20/96 963.77 986.17 1015.31 1016.22 1015.08 974.21 994.32 7/12/96 963.71 985.82 1015.25 1015.07 1015.66 973.56 992.77 8/26/96 963.77 986.27 1016.25 1016.87 1015.84 974.93 993.72 9/25/96 963.75 986.20 1016.24 1015.86 1015.84 973.51 994.67 10/03/1996 963.71 985.93 1015.15 1015.37 1015.94 973.66 994.37 11/13/1996 963.77 986.92 1014.85 1015.37 1015.14 974.76 994.67								
6/20/96 963.77 986.17 1015.31 1016.22 1015.08 974.21 994.32 7/12/96 963.71 985.82 1015.25 1015.07 1015.66 973.56 992.77 8/26/96 963.77 986.27 1016.25 1016.87 1015.84 974.93 993.72 9/25/96 963.75 986.20 1016.24 1015.86 1015.84 973.51 994.67 10/03/1996 963.71 985.93 1015.15 1015.37 1015.94 973.66 994.37 11/13/1996 963.77 986.92 1014.85 1015.37 1015.14 974.76 994.67								
7/12/96 963.71 985.82 1015.25 1015.07 1015.66 973.56 992.77 8/26/96 963.77 986.27 1016.25 1016.87 1015.84 974.93 993.72 9/25/96 963.75 986.20 1016.24 1015.86 1015.84 973.51 994.67 10/03/1996 963.71 985.93 1015.15 1015.37 1015.94 973.66 994.37 11/13/1996 963.77 986.92 1014.85 1015.37 1015.14 974.76 994.67								
8/26/96 963.77 986.27 1016.25 1016.87 1015.84 974.93 993.72 9/25/96 963.75 986.20 1016.24 1015.86 1015.84 973.51 994.67 10/03/1996 963.71 985.93 1015.15 1015.37 1015.94 973.66 994.37 11/13/1996 963.77 986.92 1014.85 1015.37 1015.14 974.76 994.67								
9/25/96 963.75 986.20 1016.24 1015.86 1015.84 973.51 994.67 10/03/1996 963.71 985.93 1015.15 1015.37 1015.94 973.66 994.37 11/13/1996 963.77 986.92 1014.85 1015.37 1015.14 974.76 994.67								
10/03/1996 963.71 985.93 1015.15 1015.37 1015.94 973.66 994.37 11/13/1996 963.77 986.92 1014.85 1015.37 1015.14 974.76 994.67								
11/13/1996 963.77 986.92 1014.85 1015.37 1015.14 974.76 994.67								
4 12/11/1996 l 963.75l 986.35l 1015.18l 1016.25l 1015.39l 975.51l 994.62	12/11/1996	963.75	986.35		1016.25			994.62


	MARSHALL C	OUNTY SANI	TARY LANDFI	LL			
		64-SDP-2-75F	o		Leacha	te Eleva	ations
	MONTHLY	WATER ELEV	/ATIONS				
	LHMW 73	LHMW 74	LHMW 75	LHPZ 76	LHPZ 77	LHMW 78	LHMW 79
FOP PVC. ELEV, FT	993.77	1021.72	1049.75	1047.47	1046.54	991.66	1010.27
DATE							
01/13/1997	963.69	976.85		1014.27	1014.54	973.56	
02/26/1997	964.57	986.72	1014.73	1015.42	1013.40	974.46	
03/31/1997	964.67	985.29	1014.41	1014.61	1015.04	975.66	
04/08/1997	964.57	984.72	1014.45	1014.47	1015.04	973.66	
05/21/1997	964.77	999.72	1014.75	1014.69			994.67
06/27/1997 07/16/1997	964.57 964.37	993.82 986.22	1014.75 1014.65	1014.66 1014.87	1015.34 1015.84	974.26 973.86	
08/27/1997	964.27	986.82	1014.80	1014.87		973.60	
09/30/1997	964.42	987.37	1016.33	1015.90	1015.59		
10/13/1997	964.27	976.85	1014.65	1015.27	1015.54	973.76	
11/26/1997	964.21	987.04	1014.73	1014.65	1015.15		995.08
12/15/1997	964.27	985.92	1014.80	1015.12	1015.08	974.35	
01/26/1998	963.87	976.85		1014.47	1014.79	973.86	
02/28/1998	964.37	987.32	1015.03	1015.12	1015.32	973.88	
03/03/1998			1049.75	1047.47	1046.54		
04/20/1998	964.07	976.85	1014.55	1015.17	1017.54	973.86	995.27
05/26/1998	964.00	982.77	1016.45	1015.62	1017.13	976.92	
06/22/1998	963.99	985.72	1015.95	1015.90	1017.95	973.86	995.98
07/09/1998	963.97	976.85		1016.27	1018.14	973.86	
08/31/1998	963.99	985.13	1015.06	1015.97	1016.79	975.89	997.36
09/30/1998			1014.89	1015.77	1016.45		
10/13/1998	963.97	985.42	1015.15	1015.67	1016.44	973.86	
11/24/1998	964.08	985.72	1015.54	1015.52	1016.54	977.16	
12/30/1998	964.02	984.95	1014.87	1015.50			
01/26/1999	963.97	006.25	1014.55	1015.07	1015.84		
02/28/1999 04/20/1999	964.24	986.35	1014.87 1014.85	1015.03 1015.27	1015.25 1016.34		
07/13/1999		984.92	1014.65	1015.27	1010.34		
10/09/1999		985.12	1015.25	1015.97	1017.64	974.10	
01/06/2000		300.12	1010.00	1010.07	1010.04	374.20	330.11
04/13/2000							
06/26/2000		984.52	1014.39	1014.17	1015.14		
07/05/2000				-			
09/09/2000							
10/04/2000	964.93	983.81	1014.57	1014.55	1015.45	974.21	997.07
01/17/2001							
02/07/2001							
04/25/2001	966.07	987.02	1014.35	1015.47	1018.04		
07/20/2001	965.47	Removed	1015.15	1016.17	1017.94		
10/05/2001	965.07	Removed	1014.95	1015.47	1014.54		
01/03/2002	964.97	Removed	1014.35	1014.87	1015.64		
04/29/2002	965.95	Removed	1014.61	1014.73			
07/03/2002	965.47	Removed	1014.45	1014.67	1015.64		
10/14/2002	965.31	Removed	1014.21	1014.39			
01/27/2003 04/21/2003	965.83	Removed Removed	1015.75 1013.85	1014.67 1013.65	1046.54		
07/10/2003	903.63	Removed	1013.65	1013.05	1013.68	974.18	990.41
10/01/2003	965.19	Removed	1014.30	1014.35	1015.94	974.30	996.87
04/22/2004	965.19	Removed	1014.30	1014.35			
10/05/2004		Removed	1014.45	1013.27	1017.54		
10/05/2004	964.77	Removed	1013.75	1014.67	1016.14	9/3.66	996.27

	MARSHALL C	OUNTY SANI	TARY LANDFIL	L			
		64-SDP-2-75F	•		Leacha	te Eleva	ations
	MONTHLY	WATER ELEV	ATIONS				
				LHPZ 76	LHPZ 77	LHMW 78	LHMW 79
FOP PVC. ELEV, FT		1021.72	1049.75	1047.47	1046.54	991.66	1010.27
DATE							
04/01/2005	964.47	Removed	1014.45	1014.27	1016.40	974.16	995.67
07/12/2005	964.67	Removed	1014.45	1014.67	1016.64	974.36	996.17
10/04/2005	964.46	Removed	1014.73	1014.34	1015.48	974.58	996.02
01/09/2006	964.29	Removed	1014.28	1013.73	1013.96	974.07	995.35
02/01/2006		Removed					
04/05/2006	964.16	Removed	1014.27	1014.05	1015.44	974.48	995.08
07/13/2006	964.08	Removed	1014.54	1014.37	1016.21	974.55	995.60
10/05/2006	964.07	Removed	1014.27	1014.22	1016.01	974.54	995.13
01/02/2007	964.06	Removed	1014.44		1015.14		
04/10/2007	964.99	Removed	1014.77	1014.59	1017.22	974.29	994.87
07/30/2007	964.67	Removed	1015.09	1015.46	1017.76	974.59	995.90
10/10/2007	964.53	Removed	1015.01	1015.21	1017.01	974.71	995.53
01/16/2008	964.33	Removed	1014.88	1014.65	1016.03	974.58	995.47
04/01/2008	965.89	Removed	1014.61	1014.70	1017.01	974.52	994.84
06/20/2008		Removed					
08/05/2008		Removed					
10/02/2008	965.27	Removed	1017.05	1015.77	1017.29	974.66	996.37
12/10/2008	964.87	Removed	1016.05		1016.24	974.66	996.27
04/01/2009	965.77	Removed	1017.25	1015.37	1016.54	974.86	996.57
10/21/2009	965.17	Removed	1016.55	1015.47	1017.04	974.56	996.37
01/29/2010			1016.54	1016.02	1018.17	974.56	996.32
04/20/2010	966.17	Removed	1017.55	1017.17	1020.24	974.76	997.07
07/20/2010	965.57	Removed	1017.35	1016.77	1019.29	974.61	997.67
10/08/2010	963.77	Removed	1017.25	1016.17	1017.14	973.96	997.17
01/14/2011	964.87	Removed	1016.50	1015.57	1016.94	974.41	992.57
04/04/2011	965.67	Removed	1017.75	1016.17		974.66	
10/05/2011	964.97	Removed	1016.85	1015.97		974.76	996.77
01/17/2012	964.67	Removed	1016.65	1015.37		974.76	993.52
02/21/2012	964.66	Removed	1017.06	1015.60		974.80	996.37
03/29/2012	964.54	Removed	1016.90	1015.70		975.01	996.07
04/09/2012	964.47	Removed	1017.45	1015.47	1016.74	975.01	996.17
05/15/2012	964.55	Removed	1017.06	1015.82		975.56	996.40
06/08/2012	964.37	Removed	1016.85	1015.67	1017.34	977.26	996.37
07/17/2012	964.30	Removed	1016.85	1015.70		975.05	996.80
08/27/2012	964.37	Removed	1016.45	1015.47	1017.34	977.36	996.17
09/25/2012	964.27	Removed	1016.55	1015.47	1016.59	977.26	995.87
10/08/2012	964.07	Removed	1016.75	1015.17		974.76	995.87
11/16/2012	964.11	Removed	1015.90	Removed	Removed	976.56	995.13
12/28/2012	964.97	Removed	1016.14	Removed	Removed	977.17	995.10
01/16/2013	964.07	Removed	1016.05	Removed	Removed	975.06	995.37
02/25/2013	964.05	Removed	1016.35	Removed	Removed	974.76	994.89
03/29/2013	964.08	Removed	1016.27	Removed	Removed	974.94	995.29
04/03/2013	964.07	Removed	1016.35	Removed	Removed	974.66	995.12
05/29/2013	964.05	Removed	1017.84	Removed	Removed	975.55	995.98
06/28/2013	964.07	Removed	1018.22	Removed	Removed	975.14	996.63
07/12/2013	964.02	Removed	1017.95	Removed	Removed	974.96	996.67
08/28/2013	964.11	Removed	1017.93	Removed	Removed	975.66	996.15
09/16/2013	964.11	Removed	1010.00	Removed	Removed	974.66	996.27
10/15/2013	964.07	Removed	1017.55	Removed	Removed	974.00	996.27
11/21/2013		Removed	1017.90		Removed	975.01	995.16
	964.03			Removed			
12/28/2013	964.06	Removed	1017.57	Removed	Removed	974.84	995.72


	MARSHALL C	OUNTY SANI	TARY LANDFI	LL			
		64-SDP-2-75	o		Leacha	te Eleva	ations
		WATER ELE\	•				
		LHMW 74	LHMW 75	LHPZ 76	LHPZ 77	LHMW 78	LHMW 79
TOP PVC. ELEV, FT	993.77	1021.72	1049.75	1047.47	1046.54	991.66	1010.27
DATE							
01/13/2014	964.02	Removed	1017.95	Removed	Removed	974.86	995.57
02/28/2014	964.07	Removed	1017.23	Removed	Removed	974.79	994.72
03/29/2014	964.03	Removed	1017.18	Removed	Removed	974.43	994.79
04/10/2014	964.06	Removed	1017.50	Removed	Removed	974.60	995.03
05/28/2014	964.12	Removed	1017.90	Removed	Removed	974.96	995.59
06/24/2014	964.10	Removed	1017.96	Removed	Removed	974.98	995.70
07/09/2014	964.07	Removed	1017.95	Removed	Removed	975.06	995.87
08/25/2014	964.06	Removed	1018.11	Removed	Removed	975.26	996.06
09/26/2014	964.07	Removed	1017.97	Removed	Removed	975.05	996.62
10/17/2014	964.02	Removed	1018.55	Removed	Removed	974.51	996.42
11/25/2014	964.07	Removed	1018.35	Removed	Removed	974.66	995.77
12/29/2014	964.07	Removed	1017.84	Removed	Removed	974.82	995.92
01/14/2015	964.07	Removed	1017.95	Removed	Removed	974.76	996.12
02/24/2015	964.11	Removed	1018.18	Removed	Removed	974.84	996.07
03/23/2015	964.19	Removed	1018.08	Removed	Removed	975.19	995.72
04/03/2015	964.22	Removed	1018.15	Removed	Removed	974.36	995.17
05/13/2015	964.13	Removed	1018.10	Removed	Removed	974.71	995.83
06/29/2015	964.10	Removed	1018.45	Removed	Removed	976.07	997.47
07/06/2015	964.09	Removed	1018.52	Removed	Removed	974.71	997.45
08/17/2015	964.07	Removed	1018.47	Removed	Removed	974.71	997.47
09/20/2015	964.08	Removed	1018.64	Removed	Removed	974.66	
10/01/2015	964.07	Removed	1018.35	Removed	Removed	974.41	996.12
11/23/2015	964.07	Removed	1018.44	Removed	Removed	974.42	
12/30/2015	963.97	Removed	1018.36	Removed	Removed	974.84	
01/06/2016	964.27	Removed	1018.15	Removed	Removed	974.86	
02/11/2016	964.07	Removed	1018.75		Removed	974.36	
03/30/2016	964.06	Removed	1019.07		Removed	974.51	
04/14/2016	964.04	Removed	1019.05		Removed	974.64	
05/23/2016	964.06	Removed	1019.04		Removed	974.58	
06/30/2016	964.07	Removed	1018.90		Removed	974.29	
07/08/2016	964.02	Removed	1019.00	Removed	Removed	974.16	
08/22/2016	964.06	Removed	1018.49	Removed	Removed	974.07	997.09
9/19/2016	964.07	Removed	1018.72	Removed	Removed	974.15	
10/13/2016	964.02	Removed	1018.68		Removed	974.06	
11/30/2016	964.06	Removed	1019.15		Removed	974.32	
12/16/2016	964.07	Removed	1018.54		Removed	974.26	
1/26/2017	964.02	Removed	1018.60	Removed	Removed	974.46	
2/16/2017	964.07	Removed	1018.30		Removed	974.70	
3/21/2017	964.06	Removed	1018.25		Removed	974.66	
4/10/2017	964.07	Removed	1019.18	Removed	Removed	974.51	
5/31/2017	964.08	Removed	1019.59		Removed	974.56	
6/13/2017	964.07	Removed	1019.79	Removed	Removed	974.36	
7/11/2017	964.02	Removed	1019.70		Removed	974.86	
8/23/2017	963.77	Removed	1020.04	Removed	Removed	974.16	
9/29/2017	964.07	Removed	1018.85		Removed	974.16	
10/9/2017	963.97	Removed	1018.97	Removed	Removed	974.23	
11/30/2017	964.07	Removed	1018.75		Removed	974.31	
12/18/2017	964.07	Removed	1018.95		Removed	974.16	


	MARSHALL C	COUNTY SANI	TARY LANDFI	LL			
		64-SDP-2-75I	P		Leacha	te Eleva	ations
	MONTHLY	WATER ELE\	/ATIONS				
	LHMW 73	LHMW 74	LHMW 75	LHPZ 76	LHPZ 77	LHMW 78	LHMW 79
OP PVC. ELEV, FT	993.77	1021.72	1049.75	1047.47	1046.54	991.66	1010.27
DATE							
1/9/2018	964.01	Removed	1018.68	Removed	Removed	974.20	993.69
2/23/2018	964.07	Removed	1018.67	Removed	Removed	974.26	995.37
3/9/2018	964.07	Removed	1018.85	Removed	Removed	974.26	992.52
4/2/2018	964.07	Removed	1018.83	Removed	Removed	974.22	993.00
5/23/2018	964.07	Removed	1019.25	Removed	Removed	974.66	996.32
6/18/2018	964.07	Removed	1016.25	Removed	Removed	974.21	993.77
7/2/2018	964.02	Removed	1019.25	Removed	Removed	974.55	995.30
8/14/2018	964.07	Removed	1019.50	Removed	Removed	974.36	996.67
9/18/2018	964.07	Removed	1019.75	Removed	Removed	974.36	995.37
10/22/2018	964.04	Removed	1019.71	Removed	Removed	974.35	
11/13/2018	964.07	Removed	1019.35	Removed	Removed	974.50	
12/11/2018	964.07	Removed	1019.85		Removed	974.46	
1/15/2019	964.03		1019.79		Removed	974.27	995.36
2/28/2019	964.57	Removed	1019.75		Removed	974.41	995.72
3/28/2019	964.57	Removed	1020.00		Removed	974.21	995.32
4/22/2019	964.46	Removed	1020.10		Removed	974.27	995.20
5/3/2019	964.42	Removed	1019.90	Removed	Removed	974.44	
6/19/2019	964.37	Removed	1020.50	Removed	Removed	974.36	
7/8/2019	964.28	Removed	1020.30	Removed	Removed	974.10	
8/23/2019	964.17	Removed	1020.29		Removed	974.16	
	ļ		1			ļ	
9/25/2019	964.11	Removed	1020.08		Removed	974.06	
10/23/2019	964.07	Removed	1012.05		Removed	974.11	
11/14/2019	964.07	Removed	1019.90	Removed	Removed	974.14	
12/12/2019	964.09	Removed	1021.23	Removed	Removed	974.18	
1/15/2020	964.02	Removed	1020.15	Removed	Removed	974.05	
2/5/2020	964.12		1020.25		Removed	974.16	
3/3/2020	964.12		1020.75		Removed	974.46	
4/10/2020	964.09		1020.60		Removed	974.16	
5/13/2020	964.12		1020.65		Removed	974.21	
6/3/2020	964.12		1021.00		Removed	974.59	
7/8/2020	964.24		1020.92		Removed	974.08	
8/4/2020	964.52	Removed	1020.50		Removed	973.91	
9/3/2020	964.47	Removed	1020.49		Removed	974.31	
10/23/2020	964.27	Removed	1019.68		Removed	974.03	
11/30/2020	964.22	Removed	1017.25	Removed	Removed	974.06	996.27
12/18/2020	965.18	Removed	1018.15	Removed	Removed	974.06	996.16
1/7/2021	964.27	Removed	1019.30	Removed	Removed	974.11	995.70
2/19/2021	964.27	Removed	1019.20	Removed	Removed	974.09	995.52
3/9/2021	964.57	Removed	1019.35	Removed	Removed	974.26	995.56
4/5/2021	964.62	Removed	1020.09		Removed	974.52	
5/14/2021	964.64		1019.65		Removed	974.15	
6/9/2021	964.53		1020.25		Removed	974.11	
7/1/2021	964.43		1018.35		Removed	974.01	996.17
8/5/2021	964.36		1019.55		Removed	973.91	
9/24/2021	964.19		1018.88		Removed	973.76	
10/8/2021	964.24		1018.92		Removed	974.26	
11/2/2021	964.17	Removed	1018.50		Removed	973.83	
12/3/2021	964.13		1019.01	Removed	Removed	974.10	


	MARSHALL C	COUNTY SANI	TARY LANDFI	LL			
		64-SDP-2-75F	>		Leacha	te Eleva	ations
	MONTHLY	WATER ELEV	/ATIONS				
	LHMW 73	LHMW 74	LHMW 75	LHPZ 76	LHPZ 77	LHMW 78	LHMW 79
TOP PVC. ELEV, FT	993.77	1021.72	1049.75	1047.47	1046.54	991.66	1010.27
DATE							
1/17/2022	964.12	Removed	1019.00	Removed	Removed	974.35	995.39
2/1/2022	964.12	Removed	1019.16	Removed	Removed	974.17	994.37
3/2/2022	964.17	Removed	1018.92	Removed	Removed	974.22	994.81
4/6/2022	964.32	Removed	1019.51	Removed	Removed	974.20	993.46
5/2/2022	964.50	Removed	1019.36	Removed	Removed	974.16	995.47
6/1/2022	964.46	Removed	1019.55	Removed	Removed	974.12	996.39
7/8/2022	964.30	Removed	1019.77	Removed	Removed	974.14	996.56
8/11/2022	964.23	Removed	1017.95		Removed	974.05	996.26
9/7/2022	964.17	Removed	1019.43	Removed	Removed	974.17	995.73
10/25/2022	964.11	Removed	1019.51	Removed	Removed	974.10	993.67
11/1/2022	964.12	Removed	1019.16	Removed	Removed	974.00	995.57
12/8/2022	964.12	Removed	1019.25	Removed	Removed	973.94	994.50
1/23/2023	964.10	Removed	1018.60	Removed	Removed	974.06	994.27
2/2/2023	964.12	Removed	1018.58	Removed	Removed	974.05	995.11
3/23/2023	964.12	Removed	1019.09	Removed	Removed	974.16	996.12
4/11/2023	964.12	Removed	1018.98	Removed	Removed	974.09	995.98
5/31/2023	964.22	Removed	1019.40	Removed	Removed	974.20	996.06
6/12/2023	964.20	Removed	1015.75	Removed	Removed	974.14	996.13
7/7/2023	964.12	Removed	1018.90	Removed	Removed	974.07	996.24
8/2/2023	964.12	Removed	1018.80	Removed	Removed	974.30	996.44
9/1/2023	964.11	Removed	1018.42	Removed	Removed	974.11	996.01
10/13/2023	964.13	Removed	1018.48	Removed	Removed	974.26	995.62
11/2/2023	964.12	Removed	1017.78	Removed	Removed	974.05	994.37
12/4/2023	964.12	Removed	1018.04	Removed	Removed	974.02	995.15
1/4/2024	964.11	Removed	1017.49	Removed	Removed	973.95	994.63
2/8/2024	964.12	Removed	1018.21	Removed	Removed	973.91	995.22
3/12/2024	964.11	Removed	1018.09	Removed	Removed	974.00	994.76
4/17/2024	964.13	Removed	1017.70	Removed	Removed	974.23	994.87
5/15/2024	964.11	Removed	1018.15	Removed	Removed	974.29	995.52
6/25/2024	964.12	Removed	1018.74	Removed	Removed	974.49	996.3
7/23/2024	964.11	Removed	1018.86	Removed	Removed	974.48	996.42
8/8/2024	964.10	Removed	1018.89	Removed	Removed	974.45	996.8
9/5/2024	964.11	Removed	1018.74	Removed	Removed	974.45	996.76
10/15/2024	964.09	Removed	1018.35	Removed	Removed	974.28	995.93
11/18/2024	964.10	Removed	1018.65	Removed	Removed	974.34	995.73
12/9/2024	964.08	Removed	1018.57	Removed	Removed	974.30	995.90

Appendix G.3 – Treatment Agreement with Marshalltown

The City of Marshalltown, Iowa
Joel T.S. Greer, Mayor
Jessica Kinser, City Administrator
Bob Ranson, Superintendent WPC
1001 Woodland Street
Marshalltown, IA 50158-1810
Tel - (641) 754-5709
Fax - (641) 754-5741
Email - branson@marshalltown-ia.gov

WATER POLLUTION CONTROL

Date: September 1, 2022

To: Wastewater Discharge Permit Holders

From: Bob Ranson, Superintendent

Re: New Wastewater Discharge Permits

Enclosed is your wastewater discharge permit, renewed for three (3) years, effective January 1, 2023. Please maintain a copy of this permit in your pretreatment facility. Additionally, I will be sending signed electronic copies of your wastewater discharge permit.

Please let me know if you have any questions.

Sincerely,

Bob Ranson

CITY OF MARSHALLTOWN Water Pollution Control Plant

SIGNIFICANT INDUSTRIAL USER WASTEWATER DISCHARGE PERMIT

Permit No. MCL0123

In accordance with all terms and conditions of the Marshalltown Industrial Pretreatment Ordinance, and also with any applicable provisions of Federal or State law or regulation:

Permission is Hereby Granted to:

Marshall County Landfill PO Box 217 2313 Marshalltown Blvd. Marshalltown, Iowa 50158

Classified for the contribution of Landfill Leachate to the City of Marshalltown sanitary sewer lines and the Marshalltown Wastewater Treatment Plant.

This permit is granted in accordance with the application filed on July 11, 2022, in the office of the Superintendent of the Marshalltown POTW, and in conformity with plans, specifications, and other data submitted to the Superintendent in support of the above application, all of which are filed with and considered as part of this permit, together with the following conditions and requirements.

Effective: January 1, 2023 To expire: December 31, 2025

Bob Ranson, Superintendent
Water Pollution Control Plant

PERMIT LIMITATIONS

Compatible Waste in Contribution (Organics)	Not to Exceed	Maximum for 24-hour Period	Sample Type
Flow	65 gal./minute	93,600 gal.	
BOD ₅	200 mg/L *		
Total Suspended Solids, lbs.	200 mg/L *		
TKN	75mg/L *		
Oil & Grease, mg/L	ditions of the March	in all terms and cor	In accordance w
See Note #1	ble provisions of l	dec with eny applic	Ordinance, and

^{*}Surcharge rates apply above these values (these are not permit limits)

Range of pH level in contribution 5.5 - 11.0. Peak hourly f	low contribution of
Hours of operation during the peak day of operation	Days of operation/wk

Incompatible Wastes in Contribution (metals)	Monthly Average	Maximum for any 24 hour period	Sample Type
See Note #1	viet ne batt nonas	negs and the communication	ञ्चावताष्ट्र हो सामाञ्च हता ।
- doise in the maintain as	r (cintedinos of innr) - contenti la trappo		ric Super lareadeur r and edice data anhait
hes mostibees gales II	ot odt diturnalinger.	All many might have transport boundling	san lan dija balikan strammiupa

Test Methods

All samples analyzed according to 40 CFR Part 136 and/or OA-1 and OA-2.

ADDENDUM #1

General Operating Conditions

24 hours/day with a flow rate not to exceed 65 gallons/minute.

Landfill agrees to maintain the sewer line from the leachate lagoon to the City sanitary sewer on Lincoln Way, west of Highland Acres Road. MH # E09-011.

Landfill agrees to promptly pay all sewage treatment costs as outlined by the City's User Charge Ordinance.

<u>Note #1:</u> No limit will be applied to metal and/or organics at this time. If tests indicate the presence of metals or organics, discharge limits will be developed.

Monitoring Requirements

During each discharge event from the leachate lagoon system, a composite sample will be collected consisting of six (6) equal grabs evenly spaced over a six hour period. The collection point will be from the force main discharge to the sanitary sewer. The sample will be analyzed for the compatible wastes listed on page two of the permit, and the heavy metals, Cadmium (Cd), Chrome (Cr), Copper (Cu), Lead (Pb), Nickel (Ni), and Zinc (Zn). The sample shall be delivered to the WPCP for analysis in accordance with City procedures. At the time of one of the grab sample collections, Landfill staff will measure and record pH using a WPCP pH meter.

This sample will be used to calculate the monthly surcharge rate. The Landfill can bring in other samples to be tested to change the monthly average.

A complete Priority Pollutant Scan shall be run every five (5) years on a representative sample of the lagoon leachate content.

If a new landfill site is opened and the leach field is connected to the existing lagoon, a Priority Pollutant scan should be run within 30 days of connection. If there is no flow to the lagoon from the new site, then wait until a representative sample can be taken.

Industry is required to resample and resubmit results within 30 days following a violation and is responsible for self-monitoring in case the City is unable to conduct sampling analysis.

Reporting Requirements

- 1) A monthly flow report containing daily flow totals shall be an original document signed by the appropriate industry representative and mailed or hand delivered, within the first five (5) working days of the following month.
- 2) A copy of all leachate analysis required or provided to the Iowa Department of Natural Resources (IDNR) shall be submitted to the City within 15 days of submittal to the IDNR.

Note: Daily flow readings will be taken from an approved flow meter.

Flow report shall be sent to:

Bob Ranson
Superintendent
Marshalltown WPCP
1001 Woodland Street
Marshalltown, Iowa 50158-1810
Phone (641) 754-5709
Fax (641) 754-5741

STANDARD PERMIT CONDITIONS

Marshalltown City Code available at: https://marshalltown-ia.gov/ (Chapter 28 Water and Sewers).

1) Inspection of premises

City personnel shall have the right to enter a permitted industry's property for inspection and/or sampling. (Ordinance Section 28.92)

2) Maintenance of records

You are required to maintain records of your operation in accordance with Ordinance Section 28-94 for three (3) years.

3) Penalty provisions

Failure to comply with any permit conditions can result in enforcement action as stated in Ordinance Section 28-97.

4) Revocation of permit

The City may revoke a permit if any of the provisions of (Ordinance Section 28-97 (b)) are not met

5) Permit transfer

Wastewater discharge permits are issued to a specific user for a specific operation. A wastewater discharge permit shall not be reassigned or transferred or sold to a new owner, new user, different premises, or a new or changed operation without the approval of the City. Any succeeding owner or user shall also comply with the terms and conditions of the existing permit. (Ordinance Section 28-88(f))

6) Notification of slug load/accidental discharge

Permit holders are required to notify the POTW immediately of any slug load/accidental discharge to the sanitary sewer system. (Ordinance Section 28-89 (f)(g))

7) Accidental discharge/slug control plans

The City may require any industrial user to develop and implement an accidental discharge/slug control plan. (Ordinance Section 28-85)

8) Civil/Criminal penalties

Industrial users are subject to civil/criminal penalties if they violate any permit/ordinance conditions.

9) Permit renewal

An application for permit renewal shall be submitted to the Water Pollution Control Plant 90 days prior to the expiration date of the current permit. (Ordinance section 28-88(e))

10) Notification of changes in wastewater discharge

The Permittee shall promptly notify the City of any new introduction of wastewater constituents or any substantial change in the volume or character of the wastewater constituents being introduced into the wastewater treatment system. (Ordinance section 28-88(g))

11) Application of other authority

This permit does not relieve you of the responsibility to comply with all local, State, and Federal laws, ordinances, regulations or other legal requirements applying to the operation of your facility or your discharge.

12) Periodic report on continued compliance 40 CFR, Section 403.12(e)

Categorical and noncategorical industrial users are required to report on their regulated waste discharges to the control authority at least semiannually. The regulations (section 403.12(e)(1)) state that the reports are to contain information indicating the nature and concentration of pollutants in the effluent that are limited by such categorical pretreatment standards. For some categorical TTO standards, the categorical regulation provides for the use of a certification as a substitute for sampling and analysis results. In addition, this report shall include a record of measured or estimated average daily flows for the reporting period. If the city performs all of the monitoring and sampling requirements of the industrial user's permit, every six months the City will send all permitted industrial users a standard six-month compliance form for the industrial user to certify compliance.

13) Additional monitoring

Any Significant Industrial User (SIU) that conducts self-monitoring in lieu of the City conducting all of the monitoring must submit all monitoring data to the City. If a SIU conducts sampling more frequently than the minimum required by their permit, all of the sampling data must be submitted to the City.

14) Testing responsibility

If the City of Marshalltown Water Pollution Control Plant Laboratory provides testing services for an industry and is unable to conduct testing for permit compliance, the industry is still responsible for testing and data submittal.

Appendix G.4- Leachate Volumes Discharged to the POTW

Annual Leachate Discharge to POTW Marshall County Sanitary Landfill

2024

	Gallons
<u>Month</u>	<u>Discharged</u>
January	
February	
March	
April	1,257,168
May	
June	
July	1,043,452
August	756,444
September	
October	
November	
December	
	3.057.064

Appendix G.5 – Leachate Analyses by POTW

	~~~												~																						
TKN		18.358	36.717	36.717	36.717	36.717	36.717	36.717	36 717	36 717	36 717	36 717	36 717	36 717	36 717	36 717	30.717	30.717	18.358	18.358	18.358	15.303	representation of the control of the	The state of the s		and the same of th			And the state of t	and the control of th	070 070	6/6.268	32.203	36./1/	0000
TKN MG/L		64.5	64.5	64.5	64.5	64.5	04.0 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	64.5	64.5	64.5	64.5	64.5	64.5	64.5	64.5	57.5 57.5	04.5 84.5	04.0	04.0	04.0	04.0	0.4.0	The second of th	The second section of Artist Control C	-				And the control of th	-	254 5	0		64.5	
Ammonia LB				OREN DE FINIT PRODUCTION - PER TRANSPORTATION -	- Open and an appropriate of the control of the con		e · man				As the second control of the second control	-				and the second s	and the complete of the comple		POR COLOR	and the second s			The second section of the second second				1		THE RESERVE OF THE PROPERTY OF	APPLY MENDER AND THE PROPERTY OF THE PROPERTY					,
Ammonia MG/L							And the second s			Activities of Application and	Andrew Property Commence of the Property of th	de la companya de Colon de La colon de		The second secon		Minimum and the second	Accepted on the Control of the Contr	The second of th	-	-			And the state of t	And and the second seco						CONTRACTOR OF THE CONTRACTOR O				And the second s	
TSS		15.37	30.74	30.74	30.74	30.74	30.74	30.74	30.74	30.74	30.74	30.74	30.74	30.74	30.74	30.74	30.74	15.37	15.37	15.37	12.86			The first own comments by partitions by the fact that the		Annual Control of Special Control of the Control of					566 18	26 96 26 96	30.74	12.86	-
TSS (mg/L)		54	54 74	54	54	54	54	54	54	54	54	54	54	54	54	54	54	54	54	54	54		And the control of th	Windowskie and the same and the						A COUNTY OF SECURE OF MARK AND A SECURE OF MARK AND A SECURE OF THE SECU		-		54	
BOD 5 LB		8.254	16.500	16.508	16.508	16.508	16.508	16.508	16.508	16.508	16.508	16.508	16.508	16.508	16.508	16.508	16.508	8.254	8.254	8.254	6.908	and the second second second second second	Annual and the second of the s	A CONTRACT OF THE PROPERTY OF	The same of the sa				And the second s		304.059			6.908	
BOD 5 MG/L		28.00	29.00	29.00	29.00	29.00			***************************************												29.00			The second secon					Action property the country of the contract of the country of the	The state of the second of the state of the second of the	00.609			29.00	
Flow	24 400	34,128 68,256	68,236	68,256	68,256	68,256	68,256	68,256	68,256	68,256	68,256	68,256	68,256	68,256	68,256	68,256	68,256	34,128	34,128	34,128	28,560					-			The second of th	The same and the same section of the same sect	1,257,168	59,865	38,256	28,560	
Marshall County Landfill Daily 4/1/2024 - 4/30/2024	() • () • () • () • () • () • () • () •	4/2/2024	4/3/2024	4/4/2024	4/5/2024				4/9/2024		11/2024	12/2024					17/2024	18/2024				4/22/2024	4/23/2024	4/24/2024	4/25/2024	4/26/2024	4/27/2024	4/28/2024	4/29/2024	4/30/2024			>	Min	



MONTH: April YEAR: 2024

	FLOW	BOD	DOD						
DATE	MGD	mg/L	BOD LBS		TSS	TSS	TKN	TKN	
1	0.0341	29		pH	mg/L	LBS	mg/L	LBS	
2	0.0683	29	8.25	8.50	54	15	64.5	18	
3	0.0683	29	16.51 16.51	8.50	54	31	64.5	37	
4	0.0683	29		8.50	54	31	64.5	37	
5 .	0.0683	29	16.51	8.50	54	31	64.5	37	
6	0.0683	29	16.51	8.50	54	31	64.5	37	
7	0.0683	29	16.51	8.50	54	31	64.5	37	
8	0.0683	29	16.51	8.50	54	31	64.5	37	
9	0.0683	29	16.51	8.50	54	31	64.5	37	
10	0.0683		16.51	8.50	54	31	64.5	37	
11	0.0683	29	16.51	8.50	54	31	64.5	37	
12		29	16.51	8.50	54	31	64.5	37	
13	0.0683	29	16.51	8.50	54	31	64.5	37	
	0.0683	29	16.51	8.50	54	31	64.5	37	
14	0.0683	29	16.51	8.50	54	31	64.5	37	
15	0.0683	29	16.51	8.50	54	31	64.5	37	
16	0.0683	29	16.51	8.50	54	31	64.5	37	
17	0.0683	29	16.51	8.50	54	31	64.5	37	
18	0.0341	29	8.25	8.50	54	15	64.5	18	
19	0.0341	29	8.25	8.50	54	15	64.5	18	
20	0.0341	29	8.25	8.50	54	15	64.5	18	
21	0.0286	29	6.91	8.50	54	13	64.5	15	
22			0.00			0		0	
23			0.00			0		0	
24			0.00			0		0	
25			0.00			0		0	
26			0.00			0		0	
27			0.00			0		Ō	
28			0.00			0		0	
29			0.00			0		Ö	
30			0.00			0		0	
TOTAL	1.2572		304			566		676	
AVE	0.0599	29	14	8.50	54	27		32	
MAX	0.0683	29	17	8.50	54	31	64.5	37	
MIN	0.0286	29	. 0	8.50	54	0	64.5	0	
Sample was	s brought in or	1 4-10-24							

MONTH:

April

YEAR:

2024

DATE	FLOW MGD	BOD mg/L	BOD-200	BOD	TSS	TSS-200	TSS	TKN	TKN-75	TKN
1	0.0341	29	mg/L	LBS	mg/L	mg/L	LBS	mg/L	mg/L	LBS
2	0.0683	29	0	0	54	0	0	64.5	0	0
3	0.0683		0	0	54	0	0	64.5	0	0
4		29	0	0	54	0	0	64.5	0	0
	0.0683	29	0	0	54	0	0	64.5	0	0
5	0.0683	29	0	0	. 54	0	0	64.5	0	0
6	0.0683	29	0	0	54	0	0	64.5	0	0
7	0.0683	29	0	0	54	0	0	64.5	0	0
8	0.0683	29	0	0	54	0	0	64.5	0	0
9	0.0683	29	0	0	54	0	0	64.5	0	0
10	0.0683	29	0	0	54	0	0	64.5	0	0
11	0.0683	29	0	0	54	0	0	64.5	0	0
12	0.0683	29	0	0	54	0	0	64.5	0	0
13	0.0683	29	0	0	54	0	0	64.5	0	Ö
14	0.0683	29	0	0	54	0	0	64.5	0	Ö
15	0.0683	29	0	0	54	0	0	64.5	0	0
16	0.0683	29	0	0	54	0	0	64.5	0	Ö
17	0.0683	29	0	0	54	0	0	64.5	0	0
18	0.0341	29	0	0	54	0	0	64.5	0	0
19	0.0341	29	0	0	54	0	0	64.5	0	0
20	0.0341	29	0	0	54	0	0	64.5	0	0
21	0.0286	29	0	0	54	0	Ö	64.5	0	0
22	0.0000	0	0	0	0	0	0	0.0	0	0
23	0.0000	0	0	0	0	Ö	0	0.0	0	0
24	0.0000	0	0	0	0	Ö	0	0.0	0	0
25	0.0000	0	0	0	0	0	0	0.0	0	0
26	0.0000	0	0	0	0	0	0	0.0	0	0
27	0.0000	0	0	0	0	0	0	0.0		
28	0.0000	0	0	0	0	0	0	0.0	0	0
29	0.0000	Ō	Ö	0	0	0	0		0	0
30	0.0000	Ö	0	0	0	0	0	0.0	0	0
TOTAL	1.2572			0	U	U	0	0.0	0	0
							U		0.000	0

•	TOTAL	\$ 0.00
0	#TKN*0.402=	0.00
0	#SS*0.371=	0.00
0	#CBOD*0.618=	0.00

4
202
02
N
_1
-
4
Q
2
V
_i
5
2
OI
0
니
1
V
I
S
0
$\geq$
7
5
0000

MARSHALL COUNTY LANDFILL 2024																
MARSHALL	PB	0.0004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0000	00.0	0.00
	Pb	0.00076											0.0008	0000	00.0	2.5
	Cu	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.0000	0 0000	000	00.0	5
	Cu ma/L	<0.002											#DIV/0!	0.00	000	
	Cr	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.0000	0.0000	0.00	0.00	
	Cr mg/L	<0.00025											#DIV/0i	0.000	0.000	
124	Cd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0.000	0.000	T. W. C.
WARSHALL COUNTY LANDFILL 2024	.Cd mg/L	<0.00025								i			#DIV/0i	0.000	0.000	
COUNTYL	Hd	8.50											8.50	8.50	8.50	
AKSHALL	FLOW	0.0683											0.0683	0.0683	0.0683	
<1	DATE	04/10/24					,					1,14	AVE	MAX	Z	

Zn	lbs	0.0118	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0013	0.012	0.000
Zn	mg/L	0.021											0.021	0.021	0.021
Z	Ibs	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.002	0.01	0.00
Z	mg/L	0.023663											#REF!	#REF!	#REF!
FLOW	MGD	0.0683	0.0186	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.0000	0.0000	#REF!	#REF!	#REF!
	DATE	04/10/24	01/00/00	01/00/00	01/00/00	01/00/00	01/00/00	01/00/00	01/00/00	01/00/00	01/00/00	01/00/00	AVE	MAX	MIN

Niarshall County Landfill Daily 8/1/2024 - 8/31/2024	Flow	BOD 5 MG/L	BOD 5	TSS (mg/L)	TSS	Ammonia MG/L	Ammonia LB	TKN MG/L	T K B
<b>→</b>									
8/1/2024	22,480	41.00	7.687	7	1.27			77.0	14.436
8/2/2024	53,952	41.00	18.448	7	3.05		A STATE OF THE STA	77.0	34.647
8/3/2024	53,952	41.00	18.448	7	3.05			77.0	34.647
8/4/2024	53,952	41.00	18.448		3.05		to the part above descriptions where the part of the p	77.0	34.647
8/5/2024	53,952	41.00	18.448	7	3.05	And the second s		77.0	34.647
8/6/2024	53,952	41.00	18.448	7	3.05		-	77.0	34.647
8/7/2024	53,952	41.00	18.448	7	3.05			77.0	34.647
8/8/2024	53,952	41.00	18.448	2.	3.05			77.0	34.647
8/9/2024	53,952	41.00	18.448	7	3.05			77.0	34.647
8/10/2024	53,952	41.00	18.448		3.05		manuscriptures of the second o	77.0	34.647
8/11/2024	53,952	41.00	18.448	7	3.05		are the mark and as the following little digits and	77.0	34.647
8/12/2024	53,952	41.00	18.448	7	3.05			77.0	34.647
8/13/2024	53,952	41.00	18.448	7	3.05			77.0	34.647
8/14/2024	53,952	41.00	18.448	7	3.05			77.0	34.647
8/15/2024	22,480	41.00	7.687	7	1.27		1 A	77.0	14.436
8/16/2024	53,952	41.00	18.448	7	3.05		The second of th	77.0	34.647
8/17/2024	53,952	41.00	18.448	7	3.05			77.0	34.647
8/18/2024	26,976	41.00	9.224	7	1.53			77.0	17.323
8/19/2024	53,952	41.00	18.448	7	3.05			77.0	34.647
8/20/2024	53,952	41.00	18.448	7	3.05			77.0	34.647
8/21/2024	22,480	41.00	7.687	7	1.27	•		77.0	14.436
8/22/2024	22,480	41.00	7.687	7	1.27	and the second s		77.0	
8/23/2024	9,368	41.00	3.203	7	0.53	-	The second secon	77.0	6.016
8/24/2024									
8/26/2024									
0/20/2024									and the same
0/21/2024									
8/20/2024	Commence of the commence of th		to Market Africa	debides de ser en	and another in Australia and A	Access designation of the second of the seco	Constitution of the state of th		
8/30/2024	The second secon	Manual Company of the			the state of the s	and the second s	The second secon	140 100 100	the second secon
8/34/2024									
4707									
	1,043,448	943.00	356.797	156	29.00	**		1,771.0	670.081
	45,367	41.00		7	2.57			77.0	29.134
Max	53,952	41.00	- 04 M	7	3.05	and the state of t		77.0	34.647
MIN	9,368	41.00	3.203	7	0.53		THE PROPERTY OF THE PARTY OF TH	77.0	6.016



MONTH: August YEAR: 2024

DATE	FLOW MGD	BOD mg/L	BOD LBS	рН	TSS mg/L	TSS LBS	TKN mg/L	TKN LBS	
1	0.0225	41	7.69	6.78	25	5	77.0	14	
2	0.0540	41	18.45	6.78	25	11	77.0	35	
3	0.0540	41	18.45	6.78	25	11	77.0	35	
4	0.0540	41	18.45	6.78	25	11	77.0	35	
5	0.0540	41	18.45	6.78	25	11	77.0	35	
6	0.0540	41	18.45	6.78	25	11	77.0	35	
7	0.0540	41	18.45	6.78	25	11	77.0	35	
8	0.0540	41	18.45	6.78	25	11	77.0	35	
9	0.0540	41	18.45	6.78	25	11	77.0	35	
10	0.0540	41	18.45	6.78	25	11	77.0	35	
11	0.0540	41	18.45	6.78	25	11	77.0	35	
12	0.0540	41	18.45	6.78	25	11	77.0	35	
13	0.0540	41	18.45	6.78	25	11	77.0	35	
14	0.0540	41	18.45	6.78	25	11	77.0	35	
15	0.0225	41	7.69	6.78	25	5	77.0	14	
16	0.0540	41	18.45	6.78	25	11	77.0	35	
17	0.0540	41	18.45	6.78	25	11	77.0	35	
18	0.0270	41	9.22	6.78	25	6	77.0	17	
19	0.0540	41	18.45	6.78	25	11	77.0	35	
20	0.0540	41	18.45	6.78	25	11	77.0	35	
21	0.0225	41	7.69	6.78	25	5	77.0	14	
22	0.0225	41	7.69	6.78	25	5	77.0	14	
23	0.0094	41	3.20	6.78	25	2	77.0	6	
24			0.00			0		0	
25			0.00			0		0	
26			0.00			0		0	
27			0.00			0		0	
28			0.00			0		0	
29			0.00			0		0	
30			0.00			0		0	
31			0.00			0		0	
TOTAL	1.0434		357			218		670	
AVE	0.0454	41	16	6.78	25	10		29	
MAX -	0.0540	41	18	6.78	25	11	77.0	35	
MIN	0.0094	41	0	6.78	25	0	77.0	0	

Sample was brought in on 8-1-24

MONTH:

August 2024

YEAR:

DATE	FLOW MGD	BOD mg/L	BOD-200 mg/L	BOD LBS	TSS mg/L	TSS-200 mg/L	TSS LBS	TKN mg/L	TKN-75 mg/L	TKN LBS
1	0.0225	41	0	0	25	0	0	77.0	2	0
2	0.0540	41	0	0	25	0	0	77.0	2	1
3	0.0540	41	0	0	25	0	0	77.0	2	1
4	0.0540	41	0	0	25	0	0	77.0	2	1
5	0.0540	41	0	0	25	0	0	77.0	2	1
6	0.0540	41	0	0	25	0	0	77.0	2	1
7	0.0540	41	0	0	25	0	0	77.0	2	1
8	0.0540	41	0	0	25	0	0	77.0	2	1
9	0.0540	41	0	0	25	0	0	77.0	2	1
10	0.0540	41	0	0	25	0	0	77.0	2	1
11	0.0540	41	0	0	25	0	0	77.0	2	1
12	0.0540	41	0	0	25	0	0	77.0	2	1
13	0.0540	41	0	0	25	0	0	77.0	2	1
14	0.0540	41	0	0	25	0	0	77.0	2	1
15	0.0225	41	0	0	25	0	0	77.0	2	0
16	0.0540	41	0	0	25	0	0	77.0	2	1
17	0.0540	41	0	0	25	0	0	77.0	2	1
18	0.0270	41	0	0	25	0	0	77.0	2	0
19	0.0540	41	0	0	25	0	0	77.0	2	1
20	0.0540	41	0	0	25	0	0	77.0	2	1
21	0.0225	41	0	0	25	0	0	77.0	2	0
22	0.0225	41	0	0	25	0	0	77.0	2	0
23	0.0094	41	0	0	25	0	0	77.0	2	0
24	0.0000	0	0	0	0	0	0	0.0	0	0
25	0.0000	0	0	0	0	0	0	0.0	0	0
26	0.0000	0	0	0	0	0	0	0.0	0	0
27	0.0000	0	0	0	0	0	0	0.0	0	0
28	0.0000	0	0	0	0	0	0	0.0	0	0
29	0.0000	0	0	0	0	0	0	0.0	0	0
30	0.0000	0	0	0	0	0	0	0.0	0	0
31	0.0000	0	0	0	0	0	0	0.0	0	0
TOTAL	1.0434			0			0			17.405

	TOTAL	 7.00
17.4047	#TKN*0.402=	7.00
0	#SS*0.371=	0.00
. 0	#CBOD*0.618=	0.00

# MARSHALL COUNTY LANDFILL 2024

4	
2	
$\approx$	
-	
=	
Щ	
0	
2	
5	
7	
~	
<	
Š	
0	
O	
_	
7	
7	
7	
7	
S	
K	
V	
2	
-	

	PB	LBS	0.0004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.0001	00.00	00.0	PRODUCE OF A DESIGNATION OF THE PERSONS
ā	d Q	mg/L	0.00076	<0.00075										0.0008	00.00	00.00	
ć	3	LBS	0.0000	0.0026	0.0000	0.000.0	0.000.0	0.000	0.000	0.0000	0.000.0	0.0000	0.000	0.0003	0.00	0.00	
ć	כם	mg/L	<0.002	0.014										0.0138	0.01	0.01	
ć	<u>ל</u>	LBS	0.0000	0.0010	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.00	0.00	
ċ	5	mg/L	<0.00025	0.005										0.005	0.000	0.000	
3	3	LBS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0.000	0.000	
Š	3	mg/L	<0.00025	<0.00025										#DIV/0i	0.000	0.000	
		Hd	8.50	6.78										7.64	8.50	6.78	
MO II	L LOW	MGD	0.0683	0.0225										0.0454	0.0683	0.0683	
		DATE	04/10/24	08/01/24										AVE	MAX	ZIV	

Zn	0.0118	0.0043	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0018	0.012	0.000
ZnZ	0.021	0.023										0.022	0.023	0.021
Ξg	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.002	0.01	00.00
i N	0.023663	0.018759										#REF!	#REF!	#REF!
FLOW	0.0683	0.0225	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.0000	#REF!	#REF!	#REF!
DATE	04/10/24	08/01/24	01/00/00	01/00/00	01/00/00	01/00/00	01/00/00	01/00/00	01/00/00	01/00/00	01/00/00	AVE	MAX	NIM

Ammonia TKN TKN TKN LB MG/L LB	44.7 7.303			-	-	44.7 17.527																	The state of the s	the second contract of					The control of the co	the second of th		44.7 16.588	
TSS Ammonia LB MG/L	12.58	30.19	30.19	30.19	30.19	30.19	30.19	30.19	30.19	30.19	30.19	30.19	30.19	30.19	30.19	30.19	20.30												THE COLUMN TWO COLUMNS AND ADDRESS OF THE COLUMN TWO COLUMNS AND ADDRE	and the second s	485 77	28.57	20.40
TSS (mg/L)						. 77			-		The state of the s	and the part of the same of th				And the second of the second of the second			-	The state of the s			A CONTRACTOR OF THE PARTY OF TH	and the second s			The state of the s		the distribution with a few or a security of the security	* Mill provides with the second secon		77	
BOD 5 LB	5.065	12.156	12.156	12.156	12.156	12.156	12.156	12.156	12.156	12.156	12.156	12.156	12.156	12.156	12.156	12.156	8.173		the state of the s					THE RESIDENCE OF THE RESIDENCE OF THE PROPERTY	the state of the s				The second property points assess and country Assessor. The or	the first and a second or	195.571	11.504	01707
BOD 5 MG/L	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00		S. September 1		- Cartha	o near teaching	The second secon				7		About the second of the second	The state of the s	527.00	31.00	24.00
Flow	19,590	47,016	47,016	47,016	47,016	47,016	47,016	47,016	47,016	47,016	47,016	47,016	47,016	47,016	47,016	47,016	31.614						The second secon						ARREST AND A CONTROL OF THE STATE OF THE STA		756.444	44,497	47 046
Marshall County Landfill Daily 9/1/2024 - 9/30/2024	9/1/2024	9/2/2024	9/3/2024	9/4/2024	9/5/2024	9/6/2024	9/7/2024	9/8/2024	9/9/2024	9/10/2024	9/11/2024	9/12/2024	9/13/2024	9/14/2024	9/15/2024	9/16/2024	9/17/2024	9/18/2024	9/19/2024	9/20/2024	9/21/2024	9/22/2024	9/23/2024	9/24/2024	9/25/2024	9/26/2024	9/27/2024	9/28/2024	9/29/2024	9/30/2024	Sum	Avg	Ve/V



FILL 2024																	
UNTY LAND																	
MARSHALL COUNTY LANDFILL 2024	PB	LBS	0.0004	00000	0.0000	0000	0000	0000	0.000.0	0000	0.000.0	0.000.0	0000	0.0001	0.00	0.00	
MA	Pb	mg/L		_		0	0	0	0	0	0	0	0	0.0008	0.00	0.00	
	Cu	LBS	0.000.0	0.0026	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.000.0	0.0003	00.0	0.00	
	Cu	mg/L	<0.002	0.014	<0.002									0.0138	0.01	0.01	
	ວັ	LBS	0.0000	0.0010	0.0015	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.000.0	0.0003	0.00	00.00	
	ວັ	mg/L	<0.00025	0.005	0.004									0.004	0.000	0.000	
24	Р	LBS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0.000	0.000	
ANDFILL 20	S	mg/L	<0.00025	<0.00025	<0.00025									#DIV/0i	0.000	0.000	
COUNTYL		ЬH	8.50	6.78	8.15									7.81	8.50	6.78	
MARSHALL COUNTY LANDFILL 2024	FLOW	MGD	0.0683	0.0225	0.0470									0.0459	0.0683	0.0683	
77		DATE	)4/10/24	)8/01/24	19/05/24									AVE	MAX	Z	

Zn	sql	0.0118	0.0043	0.0048	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0023	0.012	0.000
Zn	mg/L	0.021	0.023	0.012									0.019	0.023	0.012
ž	sql	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.004	0.01	0.00
Z	mg/L	0.023663	0.018759	0.019355									#REF!	#REF!	#REF!
FLOW	MGD	0.0683	0.0225	0.0470	0.0000	0.000	0.000	0.000.0	0.000	0.000	0.000.0	0.0000	#REF!	#REF!	#REF!
	DATE	4/10/24	8/01/24	9/05/24	1/00/00	1/00/00	1/00/00	1/00/00	1/00/00	1/00/00	1/00/00	1/00/00	AVE	MAX	MIN

MONTH: September YEAR: 2024

DATE	FLOW MGD	BOD mg/L	BOD LBS	рН	TSS mg/L	TSS LBS	TKN mg/L	TKN LBS	
1	0.0196	31	5.06	8.15	77	13	44.7	7	
2	0.0470	31	12.16	8.15	77	30	44.7	18	
3	0.0470	31	12.16	8.15	77	30	44.7	18	
4	0.0470	31	12.16	8.15	77	30	44.7	18	
5	0.0470	31	12.16	8.15	77	30	44.7	18	
6	0.0470	31	12.16	8.15	77	30	44.7	18	
7	0.0470	31	12.16	8.15	77	30	44.7	18	
8	0.0470	31	12.16	8.15	77	30	44.7	18	
9	0.0470	31	12.16	8.15	77	30	44.7	18	
10	0.0470	31	12.16	8.15	77	30	44.7	18	
11	0.0470	31	12.16	8.15	77	30	44.7	18	
12	0.0470	31	12.16	8.15	77	30	44.7	18	
13	0.0470	31	12.16	8.15	77	30	44.7	18	
14	0.0470	31	12.16	8.15	77	30	44.7	18	
15	0.0470	31	12.16	8.15	77	30	44.7	18	
16	0.0470	31	12.16	8.15	77	30	44.7	18	
17	0.0316	31	8.17	8.15	77	20	44.7	12	
18			0.00			0		0	
19			0.00			0		0	
20			0.00			0		0	
21			0.00			0		0	
22			0.00			0		0	
23			0.00			0		0	
24			0.00			0		0	
25			0.00			0		0	
26			0.00			0		0	
27			0.00			0		0	
28			0.00			0		0	
29			0.00			0		0	
30			0.00			0		0	
TOTAL	0.7564		196			486		282	
AVE	0.0445	31	12	8.15	77	29		17	
MAX	0.0470	31	12	8.15	77	30	44.7	18	
MIN	0.0196	31	0	8.15	77	0	44.7	0	

Annual Inspection sample was collected 9-5-24

MONTH:

September

YEAR:

2024

DATE	FLOW MGD	BOD mg/L	BOD-200 mg/L	BOD LBS	TSS mg/L	TSS-200 mg/L	TSS LBS	TKN mg/L	TKN-75 mg/L	TKN LBS
1	0.0196	31	0	0	77	0	0	44.7	0	0
2	0.0470	31	0	0	77	0	0	44.7	0	0
3	0.0470	31	0	0	77	0	0	44.7	0	0
4	0.0470	31	0	0	77	0	0	44.7	0	0
5	0.0470	31	0	0	77	0	0	44.7	0	0
6	0.0470	31	0	0	77	0	Q	44.7	0	0
7	0.0470	31	0	0	77	0	0	44.7	0	0
8	0.0470	31	0	0	77	0	0	44.7	0	0
9	0.0470	31	0	0	77	0	0	44.7	0	0
10	0.0470	31	0	0	77	0	0	44.7	0	0
11	0.0470	31	0	0	77	0	0	44.7	0	0
12	0.0470	31	0	0	77	0	0	44.7	0	0
13	0.0470	31	0	0	77	0	0	44.7	0	0
14	0.0470	31	0	0	77	0	0	44.7	0	0
15	0.0470	31	0	0	77	0	0	44.7	0	0
16	0.0470	31	0	0	77	0	0	44.7	0	0
17	0.0316	31	0	0	77	0	0	44.7	0	0
18	0.0000	0	0	0	0	0	0	0.0	0	0
19	0.0000	0	0	0	0	0	0	0.0	0	0
20	0.0000	0	0	0	0	0	0	0.0	0	0
21	0.0000	0	0	0	0	0	0	0.0	0	0
22	0.0000	0	0	0	0	0	0	0.0	0	0
23	0.0000	0	0	0	0	0	0	0.0	0	0
24	0.0000	0	0	0	0	0	0	0.0	0	0
25	0.0000	0	0	0	0	0	0	0.0	0	0
26	0.0000	0	0	0	0	0	0	0.0	0	0
27	0.0000	0	0	0	0	0	0	0.0	0	0
28	0.0000	0	0	0	0	0	0	0.0	0	0
29	0.0000	0	0	0	0	0	0	0.0	0	0
30	0.0000	0	0	0	0	0	0	0.0	0	0
TOTAL	0.7564			0			0			0

	TOTAL	\$ 0
0	#TKN*0.402=	0.00
0	#SS*0.371=	0.00
0	#CBOD*0.618=	0.00

# **Appendix G.6 – Priority Pollutant Scan**



Collection L	ocation	Collector and Phone	Client Reference	Accession #	
leachole lagoon		draper damien	marshall co landfill	2269894	
		641/754-5709			
		Collected	Received	Project	
MARSHALLTOWN,		2023-04-20	2023-04-20 13:16		
Tr.				Sample Description	
	DAMIEN DRA	PER		non drinking water	
ပ	MARSHALLTO	OWN WPCP		Sample Type	
T				Non-Drinking Water	
Report	1001 WOODLAND ST			Sample Source	
	MARSHALLIC	DWN, IA 50158-1810		Sample Note(s)	
				1	

# **ADDITIONAL SAMPLE INFORMATION**

Purchase Order: 04202023DD01

# **RESULTS OF ANALYSIS - FINAL REPORT**

IEST	RESULT (ug/L)	QUANT LIMIT CORRECTED REPORT 1	ANALYSIS NOTE(S)
GCMS Volatiles, EPA 624	E		2
Chloromethane Bromomethane	<5	5 5	
	<5		
Vinyl chloride	<5	5	
Chloroethane	<5	5	
Methylene chloride	<5	5	
1,1-Dichloroethene	<5	5	
1,1-Dichloroethane	<5	5	
Total 1,2-Dichloroethenes	<5	5	
Chloroform	<5	5	
1,2-Dichloroethane	<5	5	
1,1,1-Trichloroethane	<5	5	
Carbon tetrachloride	<5	5	
Bromodichloromethane	<5	5	
1,2-Dichloropropane	<5	5	
cis-1,3-Dichloropropene	<5	5	
Trichloroethene	<5	5	
Dibromochloromethane	<5	5	
1,1,2-Trichloroethane	<5	5	
Benzene	<5	5	
trans-1,3-Dichloropropene	<5	5	
Bromoform	<5	5	
Tetrachloroethene	<5	5	
1,1,2,2-Tetrachloroethane	<5	5	
Toluene	<5	5	
Chlorobenzene	<5	5	
Ethylbenzene	<5	5	
GCMS Volatiles, EPA 624 AAC			
Acrolein	<20.	20.	
Acrylonitrile	<20.	20.	
2-Chloroethylvinyl ether	<20.	20.	
GCMS Semivolatiles, EPA 625			
Phenol	<5	5	
bis(2-Chloroethyl)ether	<5	5	
2-Chlorophenol	<5	5	
	Page 1 of 4		



Collection Location	Collector	Client Reference	Accession #
leachole lagoon	draper damien	marshall co landfill	2269894

TEST		RESULT (ug/L)	QUANT LIMIT	ANALYSIS NOTE(S)
	1,3-Dichlorobenzene	<5	5	
	1,4-Dichlorobenzene	<5	5	
	1,2-Dichlorobenzene	<5	5	
	2-Methylphenol	<5	5	
	2,2'-oxybis(1-Chloropropane)	<5	5	
	4-Methylphenol	<5	5	
	N-Nitroso-di-n-propylamine	<5	5	
	Hexachloroethane	<5	5	
	Nitrobenzene	<5	5	
	Isophorone	<5	5	
	2-Nitrophenol	<5	5	
	2,4-Dimethylphenol	<5	5	
	bis(2-Chloroethoxy) methane	<5	5	
	2,4-Dichlorophenol	<5	5	
	1,2,4-Trichlorobenzene	<5	5	
	Naphthalene	<5	5	
	4-Chloroaniline	<5	5	
	Hexachlorobutadiene	<5	5	
	4-Chloro-3-methylphenol	<5	5	
	2-Methylnaphthalene	<5	5	
	Hexachlorocyclopentadiene	<5 <5	5	
	2,4,6-Trichlorophenol	<5 <5	5	
	2,4,5-Trichlorophenol	<5 <5	5	
	2-Chloronaphthalene	<5 <5	5	
	2-Nitroaniline	<5 <5	5	
	Dimethyl phthalate	<5 <5	5 5	
	Acenaphthylene	<5	5	
	2,6-Dinitrotoluene 3-Nitroaniline	<5	5	
		<5	5	
	Acenaphthene	<5	5	
	2,4-Dinitrophenol	<5	5	
	4-Nitrophenol Dibenzofuran	<5	5	
		<5	5	
	2,4-Dinitrotoluene	<5	5	
	Diethyl phthalate	<5	5	
	Fluorene	<5	5	
	4-Chlorophenyl phenyl ether	<5	5	
	4-Nitroaniline	<5	5	
	4,6-Dinitro-2-methylphenol	< 5	5	
	N-Nitrosodiphenylamine	<5	5	
	4-Bromophenyl phenyl ether	<5	5	
	Hexachlorobenzene	<5	5	
	Pentachlorophenol	<5	5	
	Phenanthrene	<5	5	
	Carbazole	<5	5	
	Anthracene	<5	5	
	Di-n-butyl phthalate	<5	5	
	Fluoranthene	<5	5	
	Pyrene	<5	5	
	Butyl benzyl phthalate	<5	5	
	Benzo(a)anthracene	<5	5	
	3,3'-Dichlorobenzidine	<5	5	
	Chrysene	<5	5	
	bis(2-Ethylhexyl)phthalate	<5	5	



Collection Location		Client Reference	Accession #	
leachole lagoon	draper damien r	marshall co landfill	2269894	
TEST Discount ababatas	RESULT (L		T LIMIT ANALYSIS	S NOTE(S
Di-n-octyl phthalate	<5	5		
Benzo(b)fluoranthene	<5	5		
Benzo(k)fluoranthene	<5	5		
Benzo(a)pyrene	<5	5		
Indeno(1,2,3-cd)pyrene	<5	5		
Dibenzo(a,h)anthracene	<5	5		
Benzo(g,h,i)perylene	<5	5		
N-Nitrosodimethylamine	<5	5		
Benzidine	<5	5		
1,2-Diphenylhydrazine	<5	5		
Chlorinated Hydrocarbon Insecticides, EP.	A 608			
Aldrin	<0.05	0.05		
alpha-BHC	<0.05	0.05		
beta-BHC	<0.05	0.05		
delta-BHC	<0.05	0.05		
Lindane	<0.05	0.05		
4,4'-DDD	<0.05	0.05		
4,4'-DDE	<0.05	0.05		
4,4'-DDT	<0.05	0.05		
Dieldrin	<0.05	0.05		
Endosulfan I	<0.10	0.10		
Endosulfan II	<0.05	0.05		
Endosulfan sulfate	<0.05	0.05		
Endrin	<0.05	0.05		
Endrin aldehyde	<0.05	0.05		
Endrin ketone	<0.05	0.05		
Heptachlor	<0.05	0.05		
Heptachlor epoxide	<0.05	0.05		
Methoxychlor	<0.05	0.05		
Chlordane	<0.05	0.05		
Toxaphene	<0.05	0.05		
Aroclor 1016				
	<0.5	0.5		
Aroclor 1221	<0.5	0.5		
Aroclor 1232	<0.5	0.5		
Aroclor 1242	<0.5	0.5		
Aroclor 1248	<0.5	0.5		
Aroclor 1254	<0.5	0.5		
Aroclor 1260	<0.5	0.5		

# **SAMPLE AND ANALYSIS NOTES**

- 1. Upon arrival, sample met container and preservation requirements for the analysis requested. Please review carefully your sample results for additional analyte comments or method exceptions.
- 2. The analysis note was removed by TGC on 2023-04-26.

# **ANALYSIS INFORMATION**

TEST 1. GCMS Volatiles, EPA 624	ANALYZED 2023-04-24 15:37 LJL	<u>SITE</u> 3200	RELEASED 2023-04-26 11:45 TGC	ANALYSIS PREP
2. GCMS Volatiles, EPA 624 AAC	2023-04-24 16:16 LJL	3200	2023-04-26 11:45 TGC	
3. GCMS Semivolatiles, EPA 625	2023-04-24 12:32 VER	3200	2023-04-26 11:03 TGC	Test 4
4. Prep by Separatory Funnel, EPA 625	2023-04-21 08:00 MZ	3200	2023-04-24 07:50 MES	



1-800-421-IOWA (4692)

Collection Location	Collector	Client Reference	Accession #
leachole lagoon	draper damien	marshall co landfill	2269894

TEST
5. Chlorinated Hydrocarbon Insecticides, EPA 608

ANALYZED

SITE RELEASED

**ANALYSIS PREP** 

6. Prep by Separatory Funnel, EPA 608

2023-04-26 04:46 VER

3200 2023-04-27 14:26 TGC

Test 6

2023-04-24 08:00 MES

3200 20

2023-04-28 07:11 LWL

# **DESCRIPTION OF UNITS**

ug/L = Micrograms per Liter

## SITE(S) PERFORMING TESTING

3200 STATE HYGIENIC LABORATORY CORALVILLE, UNIVERSITY OF IOWA RESEARCH PK, 2490 CROSSPARK RD, CORALVILLE, IA 52241; Phone 319/335-4500; Fax 319/335-4555; Michael D. Schueller, M.S., Associate Director; Wade K. Aldous, Ph.D. (D)ABMM, Associate Director; IOWA ENVIRONMENTAL LAB ID #027

The result(s) of this report relate only to the items analyzed. Where the laboratory has not been responsible for the sampling stage the results apply only to the sample as received. This report shall not be reproduced except in full without the written approval of the laboratory. If you have any questions, please call Client Services at 800/421-IOWA (4692) or 319/335-4500.



Collection Location		Collector and Phone	Client Reference	Accession #
leachate lagoon	draper damien 641/754-5709	marshall co landfill	2269903	
		Collected	Received	Project
MARSH	ALLTOWN,	2023-04-20	2023-04-20 13:16	
		-		Sample Description
	DAMIEN DRA	PER		waste water
ပ္	MARSHALLTO	OWN WPCP		Sample Type
T T				Non-Drinking Water
Report	1001 WOODLAND ST			Sample Source
	MARSHALLI	OWN, IA 50158-1810		Sample Note(s)
				1

# **ADDITIONAL SAMPLE INFORMATION**

Purchase Order: 04202023DD01

# **RESULTS OF ANALYSIS - FINAL REPORT**

IEST	RESULT (mg/L)	1	QUANT LIMIT	ANALYSIS NOTE(S)
Ammonia as N, LAC 10-107-06-1J  Ammonia nitrogen as N	64		0.1	
TEST	RESULT (mg/L)	QUANT LIMIT	MCL	ANALYSIS NOTE(S)
Anions, EPA 300.0				4
Nitrate nitrogen as N	0.99	0.05	10	
TEST	RESULT (mg/L)	1	QUANT LIMIT	ANALYSIS NOTE(S)
Chloride, EPA 300.0				
Chloride	180		0.2	
Sulfate, EPA 300.0				
Sulfate	60		0.2	
Total Phenol, EPA 420.1				
Phenol	< 0.035		0.035	
Total Phosphorus as P, LAC 10-115-01-2B				
Total Phosphorus as P	0.51		0.5	
Total Kjeldahl Nitrogen as N, LAC 10-107-06-2M				
Total Kjeldahl Nitrogen as N	74		0.2	
Total Organic Carbon, SM 5310 B				
Total Organic Carbon	44		0.5	
BOD, 5 Day, SM 5210 B				
BOD, 5 Day	26		2	
BOD, Carbonaceous 5 Day, SM 5210 B				
CBOD, 5 Day	25		2	
Chemical Oxygen Demand, SM 5220 D				
Chemical Oxygen Demand	150		10	
Cyanide, SM 4500-CN E				2
Cyanide	< 0.005		0.005	
Total Hardness as CaCO3, SM 2340 C				
Total Hardness	710		1.0	



Collection Location	Collector	Client Reference	Accession #	
logobato logopa	dranar damian	marchall as landfill	2260002	

leachate lagoon	draper damien n	narshall co landfill	2269903	
TEST	RESULT (p	H)		ANALYSIS NOTE(S)
Laboratory pH, SM 4500 H+B	HEOSET (B	11/		3, 5
Laboratory pH	7.3			0, 0
TEST	RESULT (m	ig/L) QUA	ANT LIMIT	<b>ANALYSIS NOTE(S)</b>
Total Dissolved Solids, SM 2540 C				
Total Dissolved Solids	1200	1		
Total Suspended Solids, USGS I-3765-85				
Total Suspended Solids	38	1		
Total Volatile Solids, EPA 160.4				
Total Volatile Solids	280	1		
Boron, EPA 200.7				
Boron	2.3	0.0	5	
Mercury, EPA 245.2				
Mercury	<0.00020	0.00	<b>)02</b>	
Metals, EPA 200.8				
Antimony	<0.005	0.00		
Arsenic	<0.01	0.0		
Barium	0.38	0.0		
Beryllium	<0.02	0.03		
Cadmium	<0.02	0.02		
Chromium	<0.02	0.02		
Copper	<0.01	0.0		
Lead	<0.01	0.0		
Manganese	0.76	0.03		
Nickel	<0.05	0.0		
Selenium	<0.01	0.0		
Silver	<0.01	0.0		
Strontium	<0.02	0.03		
Thallium	<0.001	0.00		
Zinc	<0.02	0.02	2	

### SAMPLE AND ANALYSIS NOTES

- 1. Upon arrival, sample met container and preservation requirements for the analysis requested. Please review carefully your sample results for additional analyte comments or method exceptions.
- 2. The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.
- 3. Waste pH measured in water at 22.8 ℃
- 4. The MCL (maximum contaminant level) is only applicable to compliance monitoring samples under the Safe Drinking Water Act (SDWA).
- 5. EPA holding time requires pH analysis be completed within 15 minutes of collection to be valid for regulatory reporting. Results reported as Laboratory pH do not meet this requirement and must be qualified if reported for regulatory purposes.

### **ANALYSIS INFORMATION**

TEST 1. Ammonia as N, LAC 10-107-06-1J	ANALYZED 2023-05-03 09:00 KAR	<u>SITE</u> 3201	RELEASED 2023-05-03 12:45 JAE	ANALYSIS PREP
2. Anions, EPA 300.0	2023-04-20 23:54 MGB	3201	2023-04-21 09:50 JAE	
3. Chloride, EPA 300.0	2023-04-21 23:09 MGB	3201	2023-04-24 10:08 JAE	
4. Sulfate, EPA 300.0	2023-04-21 23:09 MGB	3201	2023-04-24 10:08 JAE	



1-800-421-IOWA (4692)

leachate lagoon draper damien	marshall co landfill	2269903	

TEST 5. Total Phenol, EPA 420.1	ANALYZED 2023-04-27 08:41 BRW	<u>SITE</u> 228	RELEASED 2023-04-27 15:55 MLS	ANALYSIS PREP
6. Total Phosphorus as P, LAC 10-115-01-2B	2023-04-28 09:46 KAR, MLS	3201	2023-05-01 14:24 MGB	
7. Total Kjeldahl Nitrogen as N, LAC 10-107-06-2M	2023-04-28 09:46 KAR, MLS	3201	2023-05-01 14:24 MGB	
8. Total Organic Carbon, SM 5310 B	2023-04-26 09:43 AJB	3201	2023-04-28 08:29 JAE	
9. BOD, 5 Day, SM 5210 B	2023-04-20 13:25 AMG	3201	2023-04-25 15:03 JAE	
10. BOD, Carbonaceous 5 Day, SM 5210 B	2023-04-20 13:25 AMG	3201	2023-04-25 15:03 JAE	
11. Chemical Oxygen Demand, SM 5220 D	2023-04-25 09:15 MLS	3201	2023-04-25 13:25 JAE	
12. Cyanide, SM 4500-CN E	2023-04-25 08:09 BRW	228	2023-04-27 15:55 MLS	
13. Total Hardness as CaCO3, SM 2340 C	2023-04-26 10:00 MLS	3201	2023-04-26 11:06 AMG	
14. Laboratory pH, SM 4500 H+B	2023-04-20 14:35 AMG	3201	2023-04-21 08:36 JAE	
15. Total Dissolved Solids, SM 2540 C	2023-04-25 10:00 WMH	3201	2023-04-27 12:22 JAE	
16. Total Suspended Solids, USGS I-3765-85	2023-04-25 10:00 WMH	3201	2023-04-27 12:22 JAE	
17. Total Volatile Solids, EPA 160.4	2023-04-25 10:00 WMH	3201	2023-04-27 12:22 JAE	
18. Boron, EPA 200.7	2023-05-24 13:00 MRC	3201	2023-05-26 10:48 BRW	
19. Mercury, EPA 245.2	2023-04-28 11:49 SGB	3201	2023-04-28 14:14 MRC	
20. Metals, EPA 200.8	2023-05-03 09:50 SGB	3201	2023-05-04 13:51 MRC	

# **DESCRIPTION OF UNITS**

mg/L = Milligrams per Liter pH = pH Units

# SITE(S) PERFORMING TESTING

3201 STATE HYGIENIC LABORATORY ANKENY, IOWA LABORATORIES COMPLEX, 2220 S ANKENY BLVD, ANKENY, IA 50023; Phone 515/725-1600; Fax 515/725-1642; Michael D. Schueller, M.S., Associate Director; Wade K. Aldous, Ph.D. (D)ABMM, Associate Director; IOWA ENVIRONMENTAL LAB ID #397

228 KEYSTONE LABS INC, 600 E 17TH ST S STE B, NEWTON, IA 50208;

The result(s) of this report relate only to the items analyzed. Where the laboratory has not been responsible for the sampling stage the results apply only to the sample as received. This report shall not be reproduced except in full without the written approval of the laboratory. If you have any questions, please call Client Services at 800/421-IOWA (4692) or 319/335-4500.

Appendix G.7 – Daily/Weekly Leachate Recirculation Logs

# Leachate Recirculation Marshall County Sanitary Landfill 2024

APRIL			JUNE			SEPTEMBE	R		OCTOBER		
Date	Loads	Gallons	Date	Loads	Gallons	Date	Loads	Gallons	Date	Loads	Gallons
4/12/2024	2	10,000	6/3/2024	8	40,000	9/25/2024	11	55,000	10/15/2024	21	105,000
4/13/2024	4	20,000	6/4/2024	18	90,000	9/26/2024	15	75,000	10/16/2024	8	40,000
			6/11/2024	19	95,000	9/30/2024	14	70,000	10/19/2024	2	10,000
			6/18/2024	21	105,000				10/23/2024	7	35,000
									10/24/2024	3	15,000
									10/25/2024	3	15,000
	6	-		66	-		40	-		44	-
		30,000			330,000			200,000			220,000

156 Loads 780,000 Gallons

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Date						4/12/24	4/13/24
Liquid Level							
(not to exceed							
12-inches)							
LPZ-101						Dry	Dry
LPZ-106						Dry	Dry
Recirculation							
Quantity							
Number of						2	4
Tanks							
Recirculated							
Total Gallons						10,000	20,000
Recirculated							

- 1) LPZ-101 and LPZ-106 measurement required at least once per week when leachate is being recirculated.
- 2) If liquid level in LPZ-101 or LPZ-106 exceeds 12" leachate recirculation shall stop and not resume until the liquid level in LPZ-101 and LPZ-106 is less than 12".

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Date		6/3/24	6/4/24				
Liquid Level							
(not to exceed							
12-inches)							
LPZ-101		Dry	Dry				
LPZ-106		Dry	Dry				
Recirculation							
Quantity							
Number of		8	18				
Tanks							
Recirculated							
Total Gallons		40,000	90,000				
Recirculated							

- 1) LPZ-101 and LPZ-106 measurement required at least once per week when leachate is being recirculated.
- 2) If liquid level in LPZ-101 or LPZ-106 exceeds 12" leachate recirculation shall stop and not resume until the liquid level in LPZ-101 and LPZ-106 is less than 12".

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Date		<i></i>	6/11/24	,			,
Liquid Level							
(not to exceed							
12-inches)							
LPZ-101			Dry				
LPZ-106			Dry				
Recirculation							
Quantity							
Number of			19				
Tanks							
Recirculated							
Total Gallons			95,000				
Recirculated							

- 1) LPZ-101 and LPZ-106 measurement required at least once per week when leachate is being recirculated.
- 2) If liquid level in LPZ-101 or LPZ-106 exceeds 12" leachate recirculation shall stop and not resume until the liquid level in LPZ-101 and LPZ-106 is less than 12".

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Date	j		6/18/24	,			j
Liquid Level							
(not to exceed							
12-inches)							
LPZ-101			Dry				
LPZ-106			Dry				
Recirculation							
Quantity							
Number of			21				
Tanks							
Recirculated							
Total Gallons			105,000				
Recirculated							

- 1) LPZ-101 and LPZ-106 measurement required at least once per week when leachate is being recirculated.
- 2) If liquid level in LPZ-101 or LPZ-106 exceeds 12" leachate recirculation shall stop and not resume until the liquid level in LPZ-101 and LPZ-106 is less than 12".

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Date				9/25/24	9/26/24		
Liquid Level							
(not to exceed							
12-inches)							
LPZ-101				Dry	Dry		
LPZ-106				Dry	Dry		
Recirculation							
Quantity							
Number of				11	15		
Tanks							
Recirculated							
Total Gallons				55,000	75,000		
Recirculated							

- 1) LPZ-101 and LPZ-106 measurement required at least once per week when leachate is being recirculated.
- 2) If liquid level in LPZ-101 or LPZ-106 exceeds 12" leachate recirculation shall stop and not resume until the liquid level in LPZ-101 and LPZ-106 is less than 12".

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Date		9/30/24					
Liquid Level							
(not to exceed							
12-inches)							
LPZ-101		Dry					
LPZ-106		Dry					
Recirculation							
Quantity							
Number of		14					
Tanks							
Recirculated							
Total Gallons		70,000					
Recirculated							

- 1) LPZ-101 and LPZ-106 measurement required at least once per week when leachate is being recirculated.
- 2) If liquid level in LPZ-101 or LPZ-106 exceeds 12" leachate recirculation shall stop and not resume until the liquid level in LPZ-101 and LPZ-106 is less than 12".

THE SHEET CO.		, to 1 y = 1011 0.		J' ' Cerry E		cen canen	<u> </u>
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Date			10/15/24	10/16/24			10/19/24
Liquid Level (not to exceed 12-inches)							
LPZ-101			Dry	Dry			Dry
LPZ-106			Dry	Dry			Dry
Recirculation Quantity							
Number of Tanks Recirculated			21	8			2
Total Gallons Recirculated			105,000	40,000			10,000

- 1) LPZ-101 and LPZ-106 measurement required at least once per week when leachate is being recirculated.
- 2) If liquid level in LPZ-101 or LPZ-106 exceeds 12" leachate recirculation shall stop and not resume until the liquid level in LPZ-101 and LPZ-106 is less than 12".

Traisman County Sumany Landin Daily, Weekly Leachate Reen culation Log							
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Date				10/23/24	10/24/24	10/25/24	
Liquid Level (not to exceed 12-inches)							
LPZ-101				Dry	Dry	Dry	
LPZ-106				Dry	Dry	Dry	
Recirculation Quantity							
Number of				7	3	3	
Tanks							
Recirculated							
Total Gallons				35,000	15,000	15,000	
Recirculated							

- 1) LPZ-101 and LPZ-106 measurement required at least once per week when leachate is being recirculated.
- 2) If liquid level in LPZ-101 or LPZ-106 exceeds 12" leachate recirculation shall stop and not resume until the liquid level in LPZ-101 and LPZ-106 is less than 12".