2024 ANNUAL GROUNDWATER QUALITY REPORT

FOR THE PAGE COUNTY SANITARY LANDFILL 73-SDP-01-75P CLARINDA, IOWA

by:

HLW Engineering Group 204 West Broad Street P.O. Box 314 Story City, Iowa 50248 (515) 733-4144

January, 2025

Table of Contents

			•				
e	rı	ī	Ħ	ca	Ħ	n	n

Section 1.0 Background Information

Monitoring Well Maintenance Performance Reevaluation

Section 2.0 Reporting Period Activities

Section 3.0 Data Evaluation and Summary

Quality Assurance/Quality Control

Background data Validation

Site Specific GWPS

Statistically Significant Increases/Exceedances of Prediction Limits

Assessment Monitoring

Statistically Significant Levels

Assessment of Corrective Measures

Corrective Action Evaluations & Monitoring

Section 4.0 Leachate Collection System Performance Reevaluation

Section 5.0 Gas Monitoring Evaluation

Section 6.0 Recommendations

Figures

Figure 1 – Site Plan Total Property

Figure 2 – Site Plan & Gas Monitoring Locations

Figure 3 – Water Table Contour Map

Tables in IDNR Format

Table 1 – Monitoring Program Summary

Table 2 – Monitoring Program Implementation Schedule

Table 2A – Summary of Testing to Data

Table 3 – Monitoring Well Maintenance Performance Reevaluation Schedule

Table 4 – Monitoring Well Maintenance Performance Reevaluation Summary

Table 4A- Summary of Historic Water Elevation Data

Table 5 – Background and GWPS Summary

Table 6 – Summary of Detections

Table 7 – Summary of Ongoing and Newly Identified SSI

Table 8 - Summary of Ongoing and Newly Identified SSL

Table 9 – Analytical Data Summary

Table 10 – Historic SSI and SSL

Table 11 – Corrective Action Trend Analysis

Table 12 – Gas Monitoring Summary

Appendices

Appendix A - Field Sampling Forms

Appendix B - Statistical Reports

Appendix C - Laboratory Reports for Report Period

Appendix D – Turbidity

Appendix E – Prediction Limit Exceedances

Appendix F - Assessment Monitoring Results

Appendix G – Expansion Area Design Layout

Appendix H - Leachate Collection System Performance Evaluation Information

Certification

Typed: <u>Todd Whipple, CPG</u>

Section 1.0 Background Information

1.1 Report Format

Table 1 through Table 12 are attached to this report and satisfy the IDNR requirement to provide the tables to meet the IDNR format requirements included in Special Provision 4.k. of the Permit, dated August 20, 2024 (Doc #110726).

1.2 Report Priority

No requests are made herein for priority review of this document.

1.3 Period of Report Coverage

Water quality data evaluation is based on a running compilation of data beginning in September, 2014. Statistical evaluations herein are based on the most recent water quality data collected November 25, 2024.

1.4 Current Site Map

Figure 1 is attached illustrating the current site features, monitoring well locations, and subsurface gas probe locations.

1.5 Site Status and Applicable Rules

Site Location

The Page County Sanitary Landfill is located in the S½ of the NW¼ and the SW¼ of Section 28, T69N, R37W, Page County, Iowa. The site encompasses approximately 216 acres. The facility is situated north of Highway 2. The facility operates under the Iowa Department of Natural Resources (IDNR) Permit Number 73-SDP-1-75P.

The site is generally described as being developed in pre-Illinoian Pleistocene glacial till that is overlying Pennsylvanian age bedrock. Information from the Iowa Geologic Survey Bureau indicates the till is over 100 ft thick consisting of clay rich sediments with interbedded deposits of sand and gravel. The uppermost bedrock unit consists of cyclic shale and limestone sequences which, as a whole, is typically over 1,000 feet thick (James M. Montgomery HIR 1990).

Landfill Layout

The site is situated in the uplands south of a tributary to Snake Creek.

As illustrated in Figure 1, the site is described as the original 80-acre parcel. The original 80-acre parcel was divided into the East Landfill, the West Landfill, and the West Expansion Area. A horizontal expansion was approved September 20, 2005 consisting of a RCRA Subtitle D alternate liner in between the West and East Landfills. Phases 1-5 are subsequent RCRA Subtitle D composite liner expansions.

The recently approved West Expansion Area Phase W-1 abuts the Original Landfill on the west side. Construction activities associated with development in the Expansion Area Phase W-1 were completed in early August of 2024 and waste placement was initiated after approved by IDNR in the Permit, dated August 20, 2024 (Doc #110726).

Applicable Rules

Iowa Administrative Code (IAC) 567-113 is applicable to the site.

1.6 Summary of Hydrologic Monitoring System Plan (HMSP)

The HMSP includes upgradient monitoring points MW-44 and MW-17. There are eleven (11) downgradient monitoring wells designated MW-1d, MW-3, MW-7, MW-10, MW-13, MW-14, MW-16, MW-18, MW-19, MW-20, and MW-53. There are also four (4) downgradient groundwater diversion underdrain designated GU-1, GU-2, GU-3, and GU-4. GU-2 and GU-4 are underdrains below the east lagoon and the west lagoon, respectively.

Note that MW-1 was moved from the background system to the downgradient assessment monitoring system in 2023 and is now designated MW-1d. Existing MW-44, located in the future South Expansion Area was added to the background system to replace MW-1.

MW-14 also serves as a downgradient monitoring point to the east leachate storage lagoon on the site. MW-53 also serves as a downgradient monitoring point to the west leachate storage lagoon on the site. The current HMSP is summarized in Table 1. The HMSP Implementation Schedule for 2025 is itemized in Table 2.

MW-11 was plugged April 3, 2023 (Doc #108594).

MONITORING WELL MAINTENANCE PERFORMANCE REEVALUATION

Table 3 outlines the status of well performance and maintenance activities performed as required by IAC 567-113.10(2) f.

Hydrologic Monitoring System Plan (HMSP) Updates

Upon completion of the Phase W-1 Expansion in the West Expansion Area the following monitoring points were added to the HMSP:

MW-53 – Downgradient well below the Phase W-1 Expansion and West Lagoon

GU-3 – Groundwater Underdrain below the Phase W-1 Expansion

GU-4 – Groundwater Underdrain below the West Lagoon

High & Low Water Levels

Current year water elevation data is included on Table 4. Historic water elevation data (2017-2024) is included in the Table 4A. A Water Table Contour Map (Figure 2) dated September, 2024 is included with this report and illustrates the water table surface and the effects of the topography.

Review of the 2024 water elevation data does not indicate any remarkable water elevation conditions.

Well Depth & Sedimentation

Well depth measurements were made September 25, 2024. Review of the well depth data included on Table 4 indicate that well sedimentation is estimated to be less than one (1) foot at all site monitoring wells.

Well Recharge Rates & Chemistry

The most recent measured horizontal hydraulic conductivity testing results (2004, 2020, 2023, and 2024) for site monitoring wells are included on Table 4. Horizontal hydraulic conductivities ranged between 10⁻⁵ cm/sec and 10⁻⁶ cm/sec.

Field recovery data recorded on March 18, 2024 (also on Table 4) indicates that the monitoring wells recover to at least 90% recovery within 3 to 24 hours after purging. The exception is at MW-13 where more than 24 hours was required for the well to recover. Well recovery information indicates that recharge to the individual wells remained sufficient to promote collection of representative water quality samples and the wells were functioning as intended. Monitoring well recharge reevaluation is due biennially according to 113.10(2)"f", and should be evaluated again in 2026.

Based on the apparent static condition of the water surfaces across the site, it appears that the semiannual water elevation data is sufficient to adequately monitor the hydrologic condition of the site. Further, the wells are interpreted to be appropriately located to detect any impact, should it occur.

Section 2.0 Reporting Period Monitoring Activities

A summary of the planned 2025 sample collection events at each well is included on Table 2. A comprehensive summary of sampling episodes from 2018 to present is included in Table 2A.

Field sampling information for March 18, 2024; August 1, 2024, September 25, 2024; and November 25, 2024 sampling episodes is included on the field forms (IDNR Form 542-1322) in Appendix A.

A comprehensive summary of Analytical Data for the episodes between September 17, 2014 and September 25, 2024 is included on Table 9.

2.1 Current Detection Monitoring Activities

Background wells are currently MW-44 and MW-17.

Downgradient monitoring points include MW-1d, MW-3, MW-7, MW-10, MW-13, MW-14, MW-16, MW-18, MW-19, MW-20, MW-53, GU-1, GU-2, GU-3, and GU-4.

MW-13, MW-14, MW-17, MW-53, GU-1, GU-2, GU-3, and GU-4 remain in the detection monitoring system.

Note that the August 1, 2024 samples collected at MW-53, GU-3, and GU-4 were collected prior to deposition of any waste in the Phase W-1 Expansion Area. The underdrain tile lines (GU-1, GU-2, GU-3, and GU-4) will be evaluated by intrawell statistical evaluation methods once the minimum number of data points (8 points in the background) are available (estimated 2028).

2.2 Current Assessment Monitoring Activities

MW-1d, MW-3, MW-7, MW-10, MW-16, and MW-19 are in the assessment monitoring system. A five (5) year frequency for full Appendix II sampling was approved in Special Provision X.4.h of the Permit, dated August 20, 2024 (Doc #110726).

Two (2) rounds of full Appendix II sampling are completed at MW-3, MW-7, MW-10, MW-16, MW-18, MW-19, and MW-20. The first round of full Appendix II sampling is completed at MW-1d. The next full Appendix II sample collection event is scheduled to occur at MW-1d in March, 2025 (Table 2).

2.3 Current Corrective Action Activities

MW-18 and MW-20 are in the corrective action monitoring system related to elevated arsenic concentration.

Assessment of Corrective Measures (ACM) has not yet been initiated.

MW-18 (2009) is positioned hydraulically upgradient of MW-16 (1993). MW-16 has monitored the performance of the apparent attenuation zone near MW-18. MW-16 has not recorded a Statistically Significant Level (SSL) over the course of time (1993 to present).

MW-20 is located in the Expansion Area to the west of the active site. The Expansion Area will abut the Original Landfill along the west side. Construction activities associated with development in the Expansion Area to the west commenced in 2024. Development of the Expansion Area will likely benefit water quality near MW-20.

Section 3.0 Data Evaluation and Summary

Statistical Evaluations are prepared by Otter Creek Environmental Services for each monitoring episode. The Groundwater Statistics Report for the Page County Sanitary Landfill, First Semi-Annual Monitoring Event in 2024, dated April 2024 is included in Appendix B.1. The Groundwater Statistics Report for the Page County Sanitary Landfill, Second Semi-Annual Monitoring Event in 2024, dated October, 2024 is included in Appendix B.2.

The Keystone Analytical Reports for the laboratory testing on samples collected March 18, 2024; August 1, 2024, September 25, 2024; and November 25, 2024 are included in Appendix C.

QUALITY ASSURANCE/QUALITY CONTROL

A blind duplicate sample was collected at MW-18 during the March 18, 2024 sampling episode. A blind duplicate sample was collected at MW-16 during the September 25, 2024 sampling episode.

The purpose of the field duplicate is to evaluate the precision of sample collection and analysis process from the field through the laboratory. The calculation of the Relative Percent Difference (RPD) for duplicate pair results is used as a means to evaluate the precision.

The Quality Control (QC) limit for the RPD on field duplicates is established at thirty percent (30%) for duplicate pairs that have reported concentrations five (5) times greater than the laboratory Reporting Limit. For samples and respective duplicates with reported analyte concentrations nearer the Reporting Limit, the RPD calculations demonstrate greater variability and the RPD can be very large. RPD values are considered non-representative in the following conditions:

- a) Both the original and the duplicate results are less than five (5) times the Reporting Limit.
- b) One or both results are qualified, flagged, or estimated.
- c) One or both results are non-detected.

The results of the blind duplicate and the monitoring well results for March 18, 2024 and September 25, 2024 were within the limits established and indicate that the data quality is acceptable without restriction.

BACKGROUND DATA VALIDATION

On July 10, 2014 an unnumbered Permit Amendment and Memo was issued by the IDNR regarding turbidity (Doc # 80692). A TSS and Field Turbidity Evaluation Report was prepared and submitted on December 12, 2017 (Doc# 91110) and was approved by IDNR on December 27, 2017 (Doc #91168). A summary table of field measured turbidity is included in Appendix D.

The background data utilized herein has been restricted to include only sample results that have been collected by "No Purge" methods in order to avoid turbidity related issues that may have been associated with historic sample collection methods. No-purge sampling has been performed at the facility beginning with the September 17, 2014 sampling episode.

<u>Upgradient Data</u>, Table 1, Attachment B, to the October, 2024 Statistical Evaluation Report (Appendix B.2) includes a summary of the most current background data. Any water quality results tagged with an asterisk is a statistical outlier and is excluded from use in calculating the Prediction Limits. The calculated Prediction Limits are summarized on Table 5.

SITE SPECIFIC GWPS

Review of the information included on Table 5 indicates that the prediction limit for cobalt (30.6 ug/L) calculated from the background data exceeds the published IAC 567, Chapter 137 Statewide

Standard (2.1 ug/L). The Site-Specific GWPS should not be set lower than the Site Prediction Limit calculated from the site background data. For this report, the prediction limits for cobalt (30.6 ug/L) is utilized as the Site-Specific GWPS. For all other compounds the published IAC 567, Chapter 137 Statewide Standard are utilized as the GWPS.

STATISTICALLY SIGNIFICANT INCREASES (SSI)

The detected concentration of each compound is compared to the current site prediction limit for each respective compound calculated based on the background data set. A detected concentration for a compound that is in excess of the calculated site prediction limit is recorded as a Statistically Significant Increase (SSI) at detection monitoring wells.

Since the Prediction limit for VOC is set at the laboratory Reporting Level, any VOC detection is recorded as an SSI. Table 6 is a summary of all compounds at site monitoring wells that have exceeded a *current* prediction limit in 2024.

The August 1, 2024 samples collected at MW-53, GU-3, and GU-4 were collected prior to deposition of any waste in the Phase W-1 Expansion Area. It is noted that barium, cobalt, nickel, selenium, and zinc are detected at GU-3 prior to waste acceptance. Similarly, barium, nickel, and zinc are detected at GU-4 prior to waste acceptance. The water quality at GU-3 and GU-4 will be evaluated by intrawell statistical evaluation methods, rather than comparing the underdrain discharges to the background well information.

Wells that are currently included in the assessment monitoring system or the corrective action monitoring system (MW-1d, MW-3, MW-7, MW-10, MW-16, MW-18, MW-19, and MW-20). Table 7 includes an on-going summary of compound detections that exceed the prediction limits (highlighted in light brown).

Exceedances of the Prediction Limit at a well that is in the assessment monitoring system or the corrective action monitoring system is not an SSI, instead the exceedance is further evaluated by Confidence Interval Statistics.

Exceedance of the Prediction Limits for the current year is summarized on Table 1. A running summary of recorded Prediction Limit exceedances by year since 2018 is included in Appendix E.

This report serves as notice to the operating record in accordance with IAC 567-113.10(5)c.

ASSESSMENT MONITORING SUMMARY

A five (5) year frequency for full Appendix II sampling was approved in Special Provision X.4.h of the Permit, dated August 20, 2024 (Doc #110726).

Two (2) rounds of full Appendix II sampling are completed at MW-3, MW-7, MW-10, MW-16, MW-18, MW-19, and MW-20. The first round of full Appendix II monitoring at MW-1d was completed September 7, 2023. The second round of full Appendix II monitoring at MW-1d is scheduled for March, 2025.

The on-going supplemental sampling includes Appendix I plus all detected Appendix II compounds per 113.10(6)b.2. Compounds detected to date beyond the Appendix I list are limited to dichlorodifluoromethane and bis(2-ethylhexyl) phthalate.

The summary of assessment monitoring detections 2014 to date is presented in Appendix F. The full Appendix II sampling episodes are highlighted in green in the tables in Appendix F.

Based on the results to date, dichlorodifluoromethane and bis (2-ethylhexyl) phthalate will continue to be monitored as appropriate to findings during assessment monitoring episodes at assessment monitoring wells (see Table 2).

STATISTICALLY SIGNIFICANT LEVELS (SSL)

The compounds with detections that exceed site prediction limits (see summary in Tables 1 & 7) are utilized to calculate the Confidence Interval (the 95% lower confidence limits (LCL) and the 95% upper control limits (UCL)) in accordance with the 2009 Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities by US EPA. The 95% LCL values are compared to applicable GWPS. Any 95% LCL value that exceeds an applicable GWPS is recorded as an SSL. All wells with a recorded SSL required the plume of impact to be defined in the horizontal and vertical directions and required completion of an Assessment of Corrective Measures (ACM).

The SSL Evaluation is based on data collected since September 17, 2014. The Confidence Intervals (95% LCL and 95% UCL) are calculated during each statistical evaluation based on the most recent four (4) data points. The 95% LCL evaluation is presented in Table 7. The yellow highlights in Table 7 indicate an exceedance of the GWPS.

The findings indicate that the following compounds are Statistically Significant Levels (SLL) at the following monitoring wells:

MW-18 Arsenic

MW-20 Arsenic & Barium

ASSESSMENT OF CORRECTIVE MEASURES (ACM)

MW-18 (arsenic) and MW-20 (arsenic and barium) have demonstrated elevated concentrations since prior to 2014.

As illustrated on Groundwater Contour Map (Figure 2), MW-18 (constructed 2009) is located in a position that is both hydraulically downgradient from the waste mass and hydraulically upgradient from existing MW-16 (constructed 1993). As demonstrated in Table 7 for MW-16 7

and MW-18, the arsenic concentrations are greatly diminished between the initial detection at MW-18 and the subsequent detection at downgradient well MW-16. Based on the recognition that the impact area is restricted and that the arsenic is attenuated in the region between MW-18 and MW-16, ongoing arsenic monitoring has been implemented. The results of the monitoring over time support the interpretation that the ACM can continue to be suspended while the monitoring is ongoing.

It has been recognized for many years the upcoming development of the landfill expansion area to the west of the Original Landfill will add beneficial control to the shallow groundwater flow in the vicinity of MW-20. The planned landfill development in the Expansion Area will include groundwater diversion systems under each future landfill cell. Further, the planned development in the Expansion Area has converted the existing (1997 era) leachate cut-off and collection system along the west side of the closed area to from a pumped sump system to an unrestricted gravity flow system with the construction of the leachate holding lagoon along the west property boundary. A copy of the Cell and Infrastructure Layout Plan for the Expansion Area Project to the west of the operating landfill is included in Appendix G. Construction of the first cell and the leachate lagoon was completed in early August, 2024.

CORRECTIVE MEASURES MONITORING

The Confidence Interval of Corrective Action Monitoring points are utilized to determine the success of the on-going Corrective Measures. A Corrective Action is complete when the 95% UCL value at all points within the plume are below the applicable GWPS for a minimum of three (3) years.

The 95% UCL evaluations for MW-18 and MW-20 are presented in Table 8. The green highlights in Table 8 indicate the 95% UCL values that exceed the GWPS.

Table 10 represent summary of the recorded SSI and SSL over time at MW-18 and MW-20. Table 11 includes the evaluation of the corrective action trends over time at MW-18 and MW-20.

The results indicate that the 95% UCL for arsenic at Corrective Action Monitoring Point MW-18 remains above the GWPS and that MW-18 should remain in the Corrective Action Monitoring Plan.

The results indicate that the 95% UCL for arsenic and barium at the Corrective Action Monitoring Point MW-20 remain above the GWPS and that MW-20 should remain in the Corrective Action Monitoring Plan.

Section 4.0 Leachate Collection System Performance Evaluation

The Page County Sanitary Landfill initially was constructed as a trench type fill. An area fill method is now being used as documented in the previously approved design plans.

The first Leachate Control Plan for this site was completed in 1990. In 1993, further evaluation included the installation of leachate monitoring piezometers in each of the filled trenches. The October 1993 Montgomery Watson report *Leachate Extraction Testing Results and Waste Area Characterization for the Page County Sanitary Landfill* shows the locations of all the trenches and piezometers. A total of 38 piezometers were installed most of which have now been abandoned and removed.

The Page County Sanitary Landfill Leachate Control Plan was submitted to IDNR in April 1995. IDNR approval to construct the system was received August 1995. Construction began during the fall of 1995 and was completed during May 1996. As-built plans were submitted and approved by IDNR in December 1996.

Following approval of a new design, the *4.5-Acre New Cell* included an additional leachate collection system along with a groundwater dewatering system and an approved alternative liner. The first phase of this approved Subtitle D cell was completed in September 2005 and was approved for waste disposal in an IDNR letter dated September 30, 2005.

In 2007, a ½ acre abutment clay-liner was installed adjacent to the north end of the Subtitle D cell. A 1.3-acre FML composite abutment liner was constructed in October 2008 on the northeast slope. During the summer of 2010, an additional FML composite liner was installed over existing waste on the south end of the old ravine and is the new Phase 1. During 2012, Phase 2 was constructed over previously deposited waste in the southeast corner of the landfill. Leachate generated in this cell flows into Phase 1 for collection.

Phase 3 was constructed in 2013. Phases 4 and 5 were completed in 2016. With the construction of Phase 4 and 5, LPZ-40 was removed, and LPZ-41 was installed for measuring the leachate on the new Subtitle D cell liners.

The Phase W-1 expansion was completed in 2024. The Phase W-1 project included construction of a new leachate storage lagoon (West Lagoon) with a freeboard storage capacity of approximately 630,150 gallons and a new leachate loadout station. The leachate collection line in Phase W-1 gravity flows to the West Lagoon. All collection lines from Phase 3, 4, and 5 gravity flow to a leachate pump station where accumulated leachate is pumped to the new leachate conveyance system installed during the Phase W-1 Expansion project and conveyed to the West Lagoon for storage. The East Lagoon (freeboard capacity of approximately 498,500 gallons) is being maintained on site as a backup. The leachate storage tanks (10,000-gallon storage tank and 20,000-gallon storage tank) and the associated leachate loadout station have been removed.

Special Provision X.5. of the Permit, dated August 20, 2024 (Doc #110726) approves the recirculation of leachate over composite lined landfill cells. There was no leachate recirculated in 2024.

Between January 1, 2024, and December 31, 2024, approximately 780,000 gallons of leachate were hauled to treatment at a nearby municipal WWTP. A summary of the leachate volume hauled by month is included in Appendix H.1.

Treatment Agreements are in place with Coin, Iowa; Shenandoah, Iowa; and Clarinda, Iowa for treatment of leachate. Copies of the Treatment Agreements are included in Appendix H.2. A "Routine Inspection of Industrial Pretreatment Facility" related to the treatment agreements was conducted by IDNR Field Office #4 on December 19, 2024.

As required by the treatment agreements with the Cities of Coin, Shenandoah, and Clarinda leachate is tested monthly for BOD, total suspended solids, and ammonia nitrogen; and annually for a more comprehensive list of constituents. A summary of testing (Table H1) and copies of the Monthly Laboratory Reports are included in Appendix H.3. A copy of the Annual Testing Results is included in Appendix H.4.

Leachate Line Cleaning

IAC 567-113.7(5)b(5) requires that the leachate system be cleaned every three (3) years at a minimum. The leachate gravity collection lines were cleaned in April 2023. All leachate lines should be cleaned again in 2026 in accordance with regulations.

Leachate Level Monitoring

The September 5, 2024 IDNR Letter requires biennial monitoring of the leachate piezometers in the unlined areas at LPZ-1, LPZ-24, LPZ-25, LPZ-29, LPZ-33, and LPZ-36 (Doc #110837).

Monitoring of the leachate piezometers in the lined Subtitle D cells (LPZ-39 and LPZ-41) is conducted monthly. Table H2 in Appendix H.5 provides the summary of the 2024 measurements.

Original Landfill LCSPE

Piezometers that continue to be functional and are monitored biennially are LPZ-1, LPZ-24, LPZ-25, LPZ-29, LPZ-33, and LPZ-36. Note MW-38 was removed during the Phase W-1 Expansion project in 2024.

The reported level measurements in the piezometers monitoring the unlined and non-Subtitle D areas have stabilized and do not vary significantly over the course of time. The retrofitted leachate collection system is functioning satisfactorily.

Subtitle D Landfill Areas LCSPE – RCRA Landfill

LPZ-39 and LPZ-41 serve as the required points to monitoring the leachate head on the lined Subtitle D cells.

The 2024 level measurements in LPZ-39 indicate minimal liquid thickness (normally less than 2 inches). The measurements in LPZ-41 also indicate a leachate thickness of less than 2 inches. Measurements did not exceed one foot of leachate thickness over the liner. The Subtitle D leachate systems are functioning and maintaining the leachate head below one foot.

Separation of the base of waste and the groundwater table is evaluated through observation of groundwater elevation measurements collected from groundwater piezometers GPZ-1. Groundwater head measurements are required semiannually in accordance with the SDP Permit with the measurements included on Table 4. Based on the groundwater head data presented in Table 4, separation is maintained between the base of the solid waste and the groundwater surface. No changes are recommended.

Subtitle D Landfill Areas LCSPE - Phase W-1

LPZ-2 serves as the required points to monitor the leachate head on the lined Subtitle D cell Phase W-1.

The 2024 level measurements in LPZ-2 (starting September 2024) indicate minimal liquid thickness (normally less than 2 inches). Measurements did not exceed one foot of leachate thickness over the liner. The Subtitle D leachate system in Phase W-1 is functioning and maintaining the leachate head below one foot.

Separation of the base of waste and the groundwater table is evaluated through observation of groundwater elevation measurements collected from groundwater piezometers GPZ-2. Groundwater head measurements are required semiannually in accordance with the SDP Permit with the measurements included on Table 4. Based on the groundwater head data presented in Table 4, separation is maintained between the base of the solid waste and the groundwater surface. No changes are recommended.

Section 5.0 Gas Monitoring

Explosive gas monitoring per 113.9(2) and the approved GMSP in Special Provision X.6. of the Permit, dated August 20, 2024 (Doc #110726) was conducted quarterly during the last reporting period (2024). The monitoring includes indoor ambient air monitoring in buildings and subsurface monitoring in dedicated gas probes and underdrain tile lines.

Monitoring points currently include four (4) buildings, six (6) subsurface gas probes, and four (4) underdrain pipe ends. Figure 1 & Figure 2 illustrate the monitoring points.

GP-1 is located in the utility line in the northwest corner of the site. GP-2 is located east of the recycling building. GP-3 is located on the southwest corner of the site near MW-11. GP-4 is located on the southeast corner of the site near MW-17. MW-15 is approved to serve as an adequate gas monitoring location on the northeast side and has been designated as GP-5. GP-5A exists as a step-out monitoring point to GP-5. GP-5A is installed about 1½ feet from the east property/fence line and approximately 61 feet from GP-5.

As a result of detecting methane gas at GP-5 (MW15), the notification of a detection was submitted to IDNR and Field Office #4 on July 24, 2012. A *Methane Gas Remediation Plan* was submitted September 10, 2012. MW-15 (GP-5) was installed too close to the deposited waste and in silty-sandy soils. Step-out gas probe GP-5A was installed December 13, 2012.

Gas is periodically detected in GP-5 (MW-15). No gas has ever been detected in the step-out probe (GP-5A).

Explosive gas concentrations (%LEL) were undetected *or* were below action levels during the monitoring episodes, or additional actions are not warranted at GP-5. A summary table of gas monitoring is included as Table 12.

Section 6.0 Recommendations

It is recommended that the detection monitoring, assessment monitoring, and corrective action monitoring continue to be performed on a semi-annual basis at the monitoring points listed in Table 1 and Table 2.

It is recommended that the prediction limits for cobalt (30.6 ug/L) be utilized as the Site-Specific GWPS. For all other compounds, it is recommended that the published IAC 567, Chapter 137 Statewide Standard be utilized as the GWPS.

It is recommended that detection monitoring continue semi-annually at GU-1, GU-2, GU-3, and GU-4. Upon completion of eight (8) rounds of background at GU-1, GU-2, GU-3, and GU-4 intrawell statistical evaluation of the groundwater should be performed following each sample collection and reporting event.

HLW Engineering Group 204 West Broad Street, P.O. Box 314 Story City, Iowa 50248 Phone: (515) 733-4144 FAX: (515) 733-4146

SITE PLAN — TOTAL PROPERTY

PAGE COUNTY SANITARY LANDFILL

CLARINDA, IOWA

FIGURE: 1

REVISION NO. DATE

DRAWN PROJECT NO. DATE
DRA 6047 12-16-24

Tables (in IDNR Format)

Table Index

- Table 1 Monitoring Program Summary
- Table 2 Monitoring Program Implementation Schedule
- Table 2A Summary of Testing to Data
- Table 3 Monitoring Well Maintenance Performance Reevaluation Schedule
- Table 4 Monitoring Well Maintenance Performance Reevaluation Summary
- Table 4 A- Summary of Historic Water Elevation Data
- Table 5 Background and GWPS Summary
- Table 6 Summary of Detections
- Table 7 Summary of Ongoing and Newly Identified SSI
- Table 8 Summary of Ongoing and Newly Identified SSL
- Table 9 Analytical Data Summary
- Table 10 Historic SSI and SSL
- Table 11 Corrective Action Trend Analysis
- Table 12 Gas Monitoring Summary

Table 1 – Monitoring Program Summary

Table 1
Monitoring Program Summary
Annual Water Quality Report
Page County Sanitary Landfill
Permit No. 73-SDP-01-75P

Mania Wall	Change for ne	Change for next		Spring 2024 Constituents w/ SSI		Historic - Constituents	Spring 2024 -	Fall 2024 -	Total # of Samples in each monitoring program since October 15, 2014			
Monitoring Well	Monitoring Well Formation Current Monitoring Program	sampling event	Historic - Constituents w/ SSI	Spring 2024 - Constituents w/ SSI	Fall 2024 - Constituents w/ SSI	w/ SSL	Constituents w/ SSL	Constituents w/ SSL	Detection	Assessment	Corrective Action	
MW-1	Glacial Till	Background through 2022	NC	None	None	None	None	None	None	17	0	0
MW-17	Glacial Till	Background	NC	None	None	None	None	None	None	21	0	0
√W-44	Glacial Till	Background	NC	None	None	None	None	None	None	3	0	0
MW-1d	Glacial Till	Assessment	NC	barium, benzene, chlorobenzene, chloroethane	barium, benzene, chlorobenzene, chloroethane	None	None	None	None	0	4	0
 ИW-3	Glacial Till	Assessment	NC	copper, selenium, bis(2ethylhexyl)phthlate	None	None	None	None	None	0	21	0
√W-7	Glacial Till	Assessment	NC	arsenic, benzene, bis(2ethylhexyl)phthlate	None	arsenic	None	None	None	0	21	0
√W-10	Glacial Till	Assessment	NC	arsenic, barium, zinc, acetone, benzene, bis(2- ethylhexyl)phthlate	None	None	None	None	None	0	21	0
MW-13	Glacial Till	Detection	NC	None	None	None	None	None	None	21	0	0
√W-14	Glacial Till	Detection	NC	None	None	None	None	None	None	21	0	0
MW-16	Glacial Till	Assessment	NC	arsenic, barium, 1,1-dichloroethane, 1,2-dichloropropane, 1,4 dichlorobenzene, benzene, chlorobenzene, cis-1,2-dichloroethylene, dichlorodifluoromethane, vinyl chloride	arsenic, 1,1-dichloroethane, 1,4-dichlorobenzene, benzene, chlorobenzene	arsenic, chlorobenzene	None	None	None	0	21	0
 ИW-18	Glacial Till	Corrective Action	NC	arsenic, barium, zinc	arsenic	arsenic	arsenic	arsenic	arsenic	0	0	21
MW-19	Glacial Till	Assessment	NC	1,1-dichloroethane, acetone, benzene, chloroethane, cis-1,2- dichloroethylene, vinyl chloride	1,1-dichloroethane, cis-1,2-dichloroethylene	1,1-dichloroethane, cis-1,2-dichloroethylene	None	None	None	0	21	0
MW-20	Glacial Till	Corrective Action	NC	arsenic, barium, zinc, acetone, benzene, bis(2- ethylhexyl)phthalate, chlorobenzene, chloroethane	arsenic, barium, benzene, chlorobenzene, chloroethane	arsenic, barium, benzene, chlorobenzene	arsenic, barium	arsenic, barium	arsenic, barium	0	0	21
MW-53	Glacial Till	Detection	NC	None	None	None	None	None	None	2	0	0
GWD-1	Glacial Till	Detection	NC	None	None	None	None	None	None	21	0	0
GWD-2	Glacial Till	Detection	NC	None	None	None	None	None	None	0	0	0
GWD-3	Glacial Till	Detection	NC	None	None	None	None	None	None	2	0	0
GWD-4	Glacial Till	Detection	NC	None	None	None	None	None	None	2	0	0

Table 2 – Monitoring Program Implementation Schedule

Table 2
Monitoring Program Implementation Schedule
Annual Water Quality Report
Page County Sanitary Landfill
Permit No. 73-SDP-01-75P

	Recent Sampling Dates and Constituents	Upcoming Sampling D	ates and Constituents	Full Appendix II Sample Dates		
Monitoring Well		March, 2025	September, 2025	Previously Collected	Next Event	
MW-17 (background)		Appendix I	Appendix I		N/A	
MW-44 (background)		Appendix I	Appendix I			
MW-1d		Appendix II	Appendix I	9/7/2023	2025	
MW-3	See Table 2A	Appendix I	Appendix I	9/1/2016, 9/16/2021	2026	
MW-7		Appendix I	Appendix I	3/25/2021, 9/1/2022	2027	
MW-10		Appendix I ⁽¹⁾	Appendix I ⁽¹⁾	9/6/2018, 9/26/2019, 9/25/2024	2029	
MW-13		Appendix I	Appendix I			
MW-14		Appendix I	Appendix I			
MW-16		Appendix I	Appendix I	9/1/2016, 9/16/2021	2026	
MW-18		Appendix I	Appendix I	9/1/2016, 9/16/2021	2026	
MW-19		Appendix I	Appendix I	3/21/2017, 3/16/2022	2027	
MW-20		Appendix I	Appendix I	9/1/2016, 9/16/2021	2026	
MW-53		Appendix I	Appendix I			
GWD-1		Appendix I	Appendix I			
GWD-2		Appendix I	Appendix I			
GWD-3		Appendix I	Appendix I			
GWD-4		Appendix I	Appendix I			

(1) = bis(2-ethylhexyl)phthalate

Table 2A – Summary of Testing to Data

Table 2A -- Itemized Summary of Hydrologic Monitoring (2018-present)

WELL	1/12/2018	3/9/2018	9/6/2018	12/18/2018
MW-1 (b)		Appendix I	Appendix I	
MW-17 (b)		Appendix I	Appendix I	
MW-3	R - Se	Appendix I	Appendix I	R - Se
MW-7		Appendix I	Appendix I	
MW-10		Appendix I	Appendix II	
MW-11		Appendix I	Appendix I	
MW-13	R - Se	Appendix I	Appendix I	
MW-14		Appendix I	Appendix I	R - Pb
MW-16	R - Ba	Appendix I ⁽¹⁾	Appendix I ⁽¹⁾	
MW-18	R - VOC	Appendix I	Appendix I	
MW-19		Appendix I	Appendix I	
MW-20		Appendix I	Appendix I	
GU-1		Appendix I	Appendix I	
Duplicate		At GU-1	At MW-10	

(1)	Appendix	I plus	dichlorodifluoromethane
-----	----------	--------	-------------------------

(R) = Resample

(2) Appendix I plus bis(2ethylhexyl)phthalate

WELL	3/7/2019	9/26/2019	12/17/2019
MW-1 (b)	Appendix I	Appendix I	
MW-17 (b)	Appendix I	Appendix I	
MW-3	Appendix I	Appendix I	
MW-7	Appendix I	Appendix I	R - As
MW-10	Appendix I ⁽²⁾	Appendix II	
MW-11	Appendix I	Appendix I	
MW-13	Appendix I	Appendix I	
MW-14	Appendix I	Appendix I	
MW-16	Appendix I ⁽¹⁾	Appendix I ⁽¹⁾	
MW-18	Appendix I	Appendix I	
MW-19	Appendix I	Appendix I	
MW-20	Appendix I	Appendix I	·
GU-1	Appendix I	Appendix I	
Duplicate	At MW-10	At MW-17	

	Appendix I plus dichlorodifluorome	than
--	------------------------------------	------

(R) = Resample

⁽¹⁾ Appendix I plus dichlorodifluoromethane(2) Appendix I plus bis(2ethylhexyl)phthalate

WELL	4/2/2020	9/17/2020	12/5/2020
MW-1 (b)	Appendix I	Appendix I	
MW-17 (b)	Appendix I	Appendix I	
MW-3	Appendix I	Appendix I	
MW-7	Appendix I	Appendix I	R - As
MW-10	Appendix I ⁽²⁾	Appendix I ⁽²⁾	
MW-11	Appendix I	Appendix I	
MW-13	Appendix I	Appendix I	
MW-14	Appendix I	Appendix I	
MW-16	Appendix I ⁽¹⁾	Appendix I ⁽¹⁾	
MW-18	Appendix I	Appendix I	
MW-19	Appendix I	Appendix I	
MW-20	Appendix I	Appendix I	
GU-1	Appendix I	Appendix I	
Duplicate	At MW-3	At MW-18	

(1)	Appendix	I plus	dichlorodifluoromethane
-----	----------	--------	-------------------------

(R) = Resample

(2) Appendix I plus bis(2ethylhexyl)phthalate

WELL	3/25/2021	6/3/2021	9/16/2021	12/8/2021
MW-1 (b)	Appendix I	R – benzene,	Appendix I	R - TCE
. , ,		chloroethane		
MW-17 (b)	Appendix I		Appendix I	
MW-3	Appendix I		Appendix II	
MW-7	Appendix II	Appendix I ⁽³⁾	Appendix I	
MW-10	Appendix I ⁽²⁾		Appendix I ⁽²⁾	
MW-11	Appendix I		Appendix I	
MW-13	Appendix I		Appendix I	
MW-14	Appendix I		Appendix I	
MW-16	Appendix I		Appendix II	
MW-18	Appendix I		Appendix II	
MW-19	Appendix I		Appendix I	
MW-20	Appendix I		Appendix II	
GU-1	Appendix I		IDNR Study	
Duplicate	At MW-14		At MW-3	

Appendix I plus dichlorodifluoromethane
 Appendix I plus bis(2ethylhexyl)phthalate
 1,1-dichloropropene & 2,4,5 T

(R) = Resample IDNR Study = Pilot Underdrain Study by NPDES

WELL	3/16/2022	6/14/2022	9/1/2022	11/29/2022
MW-1 (b)	Appendix I	R - benzene	Appendix I	
MW-17 (b)	Appendix I		Appendix I	
MW-3	Appendix I ⁽²⁾		Appendix I	
MW-7	Appendix I		Appendix II	
MW-10	Appendix I		Appendix I	
MW-11	Appendix I		Appendix I	
MW-13	Appendix I		Appendix I	
MW-14	Appendix I		Appendix I	R - cd
MW-16	Appendix I		Appendix I	
MW-18	Appendix I		Appendix I	
MW-19	Appendix I		Appendix II	
MW-20	Appendix I ⁽²⁾		Appendix I ⁽²⁾	
GU-1	Appendix I		Appendix I	
Duplicate	At MW-17		At MW-18	

(R) = Resample

Appendix I plus dichlorodifluoromethane
 Appendix I plus bis(2ethylhexyl)phthalate

WELL	3/24/2023	5/9/2023	9/7/2023	11/13/2023
MW-1d	Appendix I	R - benzene	Appendix II	
MW-17 (b)	Appendix I		Appendix I	
MW-3	Appendix I		Appendix I	
MW-7	Appendix I ⁽¹⁾		Appendix I	
MW-10	Appendix I		Appendix I	
MW-11	Appendix I		Appendix I	
MW-13	Appendix I		Appendix I	
MW-14	Appendix I		Appendix I	
MW-16	Appendix I		Appendix I	
MW-18	Appendix I		Appendix I	
MW-19	Appendix I		Appendix I	
MW-20	Appendix I		Appendix I	
GU-1	Appendix I			Dry
MW-44 (b)				Appendix I
MW-53	pending		pending	
Duplicate	At MW-3		At MW-20	

(1) (Appendix I plus bis(2ethylhexyl)phthalate

(R) = Resample

WELL	3/18/2024	8/1/2024	9/25/2024	11/25/2024
MW-1d	Appendix I		Appendix I	
MW-17 (b)	Appendix I		Appendix I	
MW-3	Appendix I		Appendix I	
MW-7	Appendix I		Appendix I	
MW-10	Appendix I		Appendix II	
MW-11	Appendix I		Appendix I	
MW-13	Appendix I		Appendix I	
MW-14	Appendix I		Appendix I	R - Cd
MW-16	Appendix I		Appendix I	
MW-18	Appendix I		Appendix I	
MW-19	Appendix I			
MW-19R				Appendix I
MW-20	Appendix I		Appendix I	
MW-44 (b)	Appendix I			Appendix I
MW-53	pending	Appendix I	Appendix I	
GU-1	Appendix I		Dry	Appendix I
GU-2	Dry		Dry	
GU-3	pending	Appendix I	Appendix I	
GU-4	pending	Appendix I	Appendix I	R - Zn
Duplicate	At MW-18		At MW-16	

(1) (Appendix I plus bis(2ethylhexyl)phthalate

(R) = Resample

Table 3 – Monitoring Well Maintenance Performance Reevaluation Schedule

Table 3 Monitoring Well Maintenance and Performance Revaluation Schedule Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

Compliance with:	Monitoring Calendar Years											
Compliance with:	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023		
567 IAC 113.10(2)"f"(1) high and low water levels (biennial)	Х	Х	Х	Χ	Х	Χ	Х	Х	Х	Х		
567 IAC 113.10(2)"f"(2) changes in the hydrologic setting and flow paths (biennial)	Х		х		Х		Х		х			
567 IAC 113.10(2)"f"(3) well depths (annual)	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ		
567 IAC 113.10(2)"f"(4) well recharge rates and chemistry (biennial)	Х		Х		Х		Х		Х			
Waste separation from ground water 113.6(2)"I"	Х	Х	Х	Χ	Х	Χ	Х	Х	х	х		

Compliance with:	Monitoring Calendar Years											
Compliance with.	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033		
567 IAC 113.10(2)"f"(1) high and low water levels (biennial)	Χ	Р	Р	Р	Р	Р	Р	Р	Р	Р		
567 IAC 113.10(2)"f"(2) changes in the hydrologic setting and flow paths (biennial)	Χ		Р		Р		Р		Р			
567 IAC 113.10(2)"f"(3) well depths (annual)	Х	Р	Р	Р	Р	Р	Р	Р	Р	Р		
567 IAC 113.10(2)"f"(4) well recharge rates and chemistry (biennial)	Х		Р		Р		Р		Р			
Waste separation from ground water 113.6(2)"I"	2X	2P										

X = completed P = Planned N/A = Not Applicable

Table 4 – Monitoring Well Maintenance Performance Reevaluation Summary

Table 4 Monitoring Well Maintenance and Performance Summary Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

., .,	Well Top of Top of				Date of Me	asurements	Maximum Depth	Hydraulic Cond.	Most Recent	Recharge Ra
	casing	Screen	Depth		3/18/2024	9/25/2024	Discrepancy (ft)	(cm/sec)/date	3/18/2024	Change
									Full	
N N N / 4	4405 40	4460.04	24.55						recovery in	None
MW-1d	1185.49	1160.94	34.55	Groundwater Level (ft)	21.71	20.19	0	0.00004	24 hour	percieve
				Groundwater Elevation (Ft MSL)	1163.78	1165.3	-	0.00001		
				Measured Well Depth (ft) Submerged (+) or Exposed screen (-)	34.55 2.84	34.55 4.36	-	2004		
				Submerged (+) or exposed screen (-)	2.04	4.50			Full	
									recovery in	None
MW-3	1145.59	1115.84	39.75	Groundwater Level (ft)	22.05	21.51			6 hour	percieve
			000	Groundwater Elevation (Ft MSL)	22.05 21.51 0 1123.54 1124.08	0	0.00005	0	perdieve	
				Measured Well Depth (ft)	39.75	39.75		2004		
				Submerged (+) or Exposed screen (-)	7.7	8.24		200 .		
									Full	
									recovery in	None
MW-7	MW-7 1118.81 1	1097.01	31.8	Groundwater Level (ft)	20	20.29	-0.02		4 hour	percieve
				Groundwater Elevation (Ft MSL)	1098.81	1098.52	-0.02	0.00003		
			Measured Well Depth (ft)	31.82	31.82		2004			
				Submerged (+) or Exposed screen (-)	1.8	1.51				
									Full	
									recovery in	None
MW-10	1151.88	1126.48	35.4	Groundwater Level (ft)	32.7	32.09	0	0.0000	4 hour	percieve
				Groundwater Elevation (Ft MSL)	1119.18	1119.79	_	0.00002		
				Measured Well Depth (ft)	35.4	35.4	-	2004		
				Submerged (+) or Exposed screen (-)	-7.3	-6.69			FII	
									Full recovery in	Nana
MW-13	1127.99	1095.11	42.88	Groundwater Level (ft)	18.3	17.72			recovery in > 24 hour	None nercieve
CT-AAIAI	1127.99	1053.11	+∠.00	Groundwater Level (ft) Groundwater Elevation (Ft MSL)	18.3	17.72	0	0.000001	/ 24 HOUR	percieve
				Measured Well Depth (ft)	42.88	42.88	┪ !	2004		
				Submerged (+) or Exposed screen (-)	14.58	15.16	-	2004		
				casine gea (*) er zipesea seresii (†)	255				Full	
									recovery in	None
MW-14	1095.66	1082.91	22.75	Groundwater Level (ft)	12	15.11			5 hour	percieve
				Groundwater Elevation (Ft MSL)	1083.66	1080.55	0	0.00005		· ·
				Measured Well Depth (ft)	22.75	22.75		2004		
				Submerged (+) or Exposed screen (-)	0.75	-2.36				
									Full	
									recovery in	None
MW-16	1099.36	1069.36	40	Groundwater Level (ft)	11.95	13.68	0		6 hour	percieve
				Groundwater Elevation (Ft MSL)	1087.41	1085.68		0.00004	l	
				Measured Well Depth (ft)	40	40		2004		
				Submerged (+) or Exposed screen (-)	18.05	16.32				
									Full	
									recovery in	None
MW-17	1159.5	1122.00	47.5	Groundwater Level (ft)	18.28	18.27	0	0.000000	6 hour	percieve
				Groundwater Elevation (Ft MSL)	1141.22	1141.23	_	0.0000393		
				Measured Well Depth (ft) Submerged (+) or Exposed screen (-)	47.5 19.22	47.5 19.23	-	2023		
				Submerged (+) or Exposed screen (-)	19.22	19.25				
		Submerged (1) or Exposed se						I		
								1	Full	None
MW-18	1130 69	1118 09	27.6	Groundwater Level (ft)	19 3/	17 97			recovery in	None
MW-18	1130.69	1118.09	27.6	Groundwater Level (ft) Groundwater Elevation (Et MSL)	19.34	17.97	0	0 000471	1	None percieve
MW-18	1130.69	1118.09	27.6	Groundwater Elevation (Ft MSL)	1111.35	1112.72	0	0.000471 2023	recovery in	
MW-18	1130.69	1118.09	27.6	Groundwater Elevation (Ft MSL) Measured Well Depth (ft)	1111.35 27.6	1112.72 27.6	0	0.000471 2023	recovery in	
MW-18	1130.69	1118.09	27.6	Groundwater Elevation (Ft MSL)	1111.35	1112.72	0		recovery in	
MW-18	1130.69	1118.09	27.6	Groundwater Elevation (Ft MSL) Measured Well Depth (ft)	1111.35 27.6	1112.72 27.6	0		recovery in 6 hour	
MW-18	1130.69 1127.7	1118.09 1112.95	27.6 24.75	Groundwater Elevation (Ft MSL) Measured Well Depth (ft)	1111.35 27.6	1112.72 27.6			recovery in 6 hour Full	percieve
				Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-)	1111.35 27.6 -6.74	1112.72 27.6 -5.37	0		recovery in 6 hour Full recovery in	percieve None
				Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft)	1111.35 27.6 -6.74 19.27	1112.72 27.6 -5.37 19.63		2023	recovery in 6 hour Full recovery in	percieve None
				Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL)	1111.35 27.6 -6.74 19.27 1108.43	1112.72 27.6 -5.37 19.63 1108.07		0.000755	recovery in 6 hour Full recovery in	percieve None
				Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft)	1111.35 27.6 -6.74 19.27 1108.43 24.75	1112.72 27.6 -5.37 19.63 1108.07 24.75		0.000755	recovery in 6 hour Full recovery in	percieve None
MW-19	1127.7	1112.95	24.75	Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88		0.000755	Full recovery in 5 hour	None percieve
				Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88	0	2023 0.000755 2023	recovery in 6 hour Full recovery in 5 hour	None percieve
MW-19	1127.7	1112.95	24.75	Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52 19.27 1112.19	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88 19.87 1111.59		0.000755 2023 0.000367	Full recovery in 5 hour	None percieve
MW-19	1127.7	1112.95	24.75	Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52 19.27 1112.19 29.65	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88 19.87 1111.59 29.65	0	2023 0.000755 2023	Full recovery in 5 hour	None percieve
MW-19	1127.7	1112.95	24.75	Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52 19.27 1112.19	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88 19.87 1111.59	0	0.000755 2023 0.000367	Full recovery in 5 hour Full recovery in 1 hour	None percieve
MW-19	1127.7	1112.95	24.75	Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52 19.27 1112.19 29.65	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88 19.87 1111.59 29.65	0	0.000755 2023 0.000367	Full recovery in 5 hour Full recovery in 1 hour	None percieve None percieve
MW-19 MW-19R	1127.7	1112.95	24.75	Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52 19.27 1112.19 29.65 -0.07	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88 19.87 1111.59 29.65 -0.67	0	0.000755 2023 0.000367	Full recovery in 1 hour Full recovery in 1 hour	None percieve None percieve
MW-19	1127.7	1112.95	24.75	Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52 19.27 1112.19 29.65 -0.07	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88 19.87 1111.59 29.65 -0.67	0	0.000755 2023 0.000367 2024	Full recovery in 5 hour Full recovery in 1 hour	None percieve None percieve
MW-19 MW-19R	1127.7	1112.95	24.75	Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Level (ft) Groundwater Level (ft) Groundwater Level (ft)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52 19.27 1112.19 29.65 -0.07 18.64 1104.32	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88 19.87 1111.59 29.65 -0.67 18.61 1104.35	0	0.000755 2023 0.000367 2024	Full recovery in 1 hour Full recovery in 1 hour	None percieve None percieve
MW-19 MW-19R	1127.7	1112.95	24.75	Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52 19.27 1112.19 29.65 -0.07 18.64 1104.32 25.3	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88 19.87 1111.59 29.65 -0.67 18.61 1104.35 25.3	0	0.000755 2023 0.000367 2024	Full recovery in 1 hour Full recovery in 1 hour	None percieve None percieve
MW-19 MW-19R	1127.7	1112.95	24.75	Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Level (ft) Groundwater Level (ft) Groundwater Level (ft)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52 19.27 1112.19 29.65 -0.07 18.64 1104.32	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88 19.87 1111.59 29.65 -0.67 18.61 1104.35	0	0.000755 2023 0.000367 2024	Full recovery in 1 hour Full recovery in 1 hour	None percieve
MW-19 MW-19R	1127.7	1112.95	24.75	Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52 19.27 1112.19 29.65 -0.07 18.64 1104.32 25.3	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88 19.87 1111.59 29.65 -0.67 18.61 1104.35 25.3	0	0.000755 2023 0.000367 2024	Full recovery in 1 hour Full recovery in 1 hour Full recovery in 1 hour	None percieve None percieve
MW-19 MW-19R	1127.7 1131.46 1122.96	1112.95 1112.26 1107.66	24.75	Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52 19.27 1112.19 29.65 -0.07 18.64 1104.32 25.3 -3.34	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88 19.87 1111.59 29.65 -0.67 18.61 1104.35 25.3 -3.31	0	0.000755 2023 0.000367 2024	Full recovery in 1 hour Full recovery in 1 hour Full recovery in 4 hour	None percieve None percieve None percieve
MW-19 MW-19R	1127.7	1112.95	24.75	Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52 19.27 1112.19 29.65 -0.07 18.64 1104.32 25.3 -3.34	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88 19.87 1111.59 29.65 -0.67 18.61 1104.35 25.3 -3.31	0	0.000755 2023 0.000367 2024 0.000848 2023	Full recovery in 1 hour Full recovery in 1 hour Full recovery in 1 hour	None percieve None percieve
MW-19R	1127.7 1131.46 1122.96	1112.95 1112.26 1107.66	29.65	Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52 19.27 1112.19 29.65 -0.07 18.64 1104.32 25.3 -3.34 15.95 1150.41	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88 19.87 1111.59 29.65 -0.67 18.61 1104.35 25.3 -3.31 13.93 1152.43	0	0.000755 2023 0.000367 2024 0.000848 2023	Full recovery in 1 hour Full recovery in 1 hour Full recovery in 4 hour	None percieve None percieve
MW-19R MW-20	1127.7 1131.46 1122.96	1112.95 1112.26 1107.66	29.65	Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52 19.27 1112.19 29.65 -0.07 18.64 1104.32 25.3 -3.34 15.95 1150.41 47.18	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88 19.87 1111.59 29.65 -0.67 18.61 1104.35 25.3 -3.31 13.93 1152.43 47.18	0	0.000755 2023 0.000367 2024 0.000848 2023	Full recovery in 1 hour Full recovery in 1 hour Full recovery in 4 hour	None percieve None percieve
MW-19R	1127.7 1131.46 1122.96	1112.95 1112.26 1107.66	29.65	Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52 19.27 1112.19 29.65 -0.07 18.64 1104.32 25.3 -3.34 15.95 1150.41	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88 19.87 1111.59 29.65 -0.67 18.61 1104.35 25.3 -3.31 13.93 1152.43	0	0.000755 2023 0.000367 2024 0.000848 2023	Full recovery in 1 hour Full recovery in 1 hour Full recovery in 4 hour Full recovery in 4 hour	None percieve None percieve None percieve
MW-19R	1127.7 1131.46 1122.96	1112.95 1112.26 1107.66	29.65	Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52 19.27 1112.19 29.65 -0.07 18.64 1104.32 25.3 -3.34 15.95 1150.41 47.18	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88 19.87 1111.59 29.65 -0.67 18.61 1104.35 25.3 -3.31 13.93 1152.43 47.18	0	0.000755 2023 0.000367 2024 0.000848 2023	Full recovery in 1 hour Full recovery in 1 hour Full recovery in 4 hour Full recovery in 4 hour	None percieve None percieve None percieve
MW-19R MW-20	1127.7 1131.46 1122.96	1112.95 1112.26 1107.66	24.75 29.65 25.3	Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52 19.27 1112.19 29.65 -0.07 18.64 1104.32 25.3 -3.34 15.95 1150.41 47.18 21.23	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88 19.87 1111.59 29.65 -0.67 18.61 1104.35 25.3 -3.31 13.93 1152.43 47.18 23.25	0	0.000755 2023 0.000367 2024 0.000848 2023	Full recovery in 1 hour Full recovery in 1 hour Full recovery in 4 hour Full recovery in 4 hour	None percieve None percieve None percieve
MW-19R MW-20	1127.7 1131.46 1122.96	1112.95 1112.26 1107.66	29.65	Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Level (ft) Groundwater Level (ft) Groundwater Level (ft)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52 19.27 1112.19 29.65 -0.07 18.64 1104.32 25.3 -3.34 15.95 1150.41 47.18 21.23	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88 19.87 1111.59 29.65 -0.67 18.61 1104.35 25.3 -3.31 13.93 1152.43 47.18 23.25	0	0.000755 2023 0.000367 2024 0.000848 2023	Full recovery in 1 hour Full recovery in 1 hour Full recovery in 4 hour Full recovery in 4 hour	None percieve None percieve None percieve
MW-19R	1127.7 1131.46 1122.96	1112.95 1112.26 1107.66	24.75 29.65 25.3	Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft) Groundwater Elevation (Ft MSL) Measured Well Depth (ft) Submerged (+) or Exposed screen (-) Groundwater Level (ft)	1111.35 27.6 -6.74 19.27 1108.43 24.75 -4.52 19.27 1112.19 29.65 -0.07 18.64 1104.32 25.3 -3.34 15.95 1150.41 47.18 21.23	1112.72 27.6 -5.37 19.63 1108.07 24.75 -4.88 19.87 1111.59 29.65 -0.67 18.61 1104.35 25.3 -3.31 13.93 1152.43 47.18 23.25	0	0.000755 2023 0.000367 2024 0.000848 2023	Full recovery in 1 hour Full recovery in 1 hour Full recovery in 4 hour Full recovery in 4 hour	None percieve None percieve None percieve

Groundwater Underdrain Piezometer

Well	Da	ate of Measurem	ents
		3/18/2024	9/25/2024
GPZ-1	Top of Casing Elevation Bottom GPZ Elevation (depth = 11.6 ft) Liquid Level (depth in ft) Liquid Elevation Liner Elevation @ GPZ-1 Separation (ft)	1116.07 1104.47 11.4 1104.67 1110.00 5.33	1116.07 1104.47 11.4 1104.67 1110.00 5.33
GPZ-2	Top of Casing Elevation Bottom GPZ Elevation (depth = 14.6 ft) Liquid Level (depth in ft) Liquid Elevation Liner Elevation @ GPZ-2 Separation (ft)	Not Yet Installed	1112.36 1097.76 14.60 1097.76 1103.00 5.24

Table 4A – Summary of Historic Water Elevation Data

Well/TOC	MW-1	1185.49			MW-3	1145.59			MW-7	1118.81			MW-10	1151.88		
	Water	Water	Top of Screen (TOS)	above(+)/below(-)	Water	Water	Top of Screen (TOS)	above(+)/below(-)	Water	Water	Top of Screen (TOS)	above(+)/below(-)	Water	Water	Top of Screen (TOS)	above(+)/below(-)
	Depth	Elevation	Elevation	TOS												
10/13/17	16.80	1168.69	1160.94	7.75	26.12	1119.47	1115.84	3.63	18.10	1100.71	1097.01	3.70	27.25	1124.63	1126.48	-1.85
03/09/18	24.02	1161.47	1160.94	0.53	21.70	1123.89	1115.84	8.05	20.81	1098.00	1097.01	0.99	31.45	1120.43	1126.48	-6.05
09/06/18	15.80	1169.69	1160.94	8.75	21.24	1124.35	1115.84	8.51	17.74	1101.07	1097.01	4.06	26.65	1125.23	1126.48	-1.25
03/07/19	19.66	1165.83	1160.94	4.89	15.67	1129.92	1115.84	14.08	20.33	1098.48	1097.01	1.47	24.94	1126.94	1126.48	0.46
09/26/19	19.43	1166.06	1160.94	5.12	18.78	1126.81	1115.84	10.97	19.70	1099.11	1097.01	2.10	28.47	1123.41	1126.48	-3.07
04/02/20	20.32	1165.17	1160.94	4.23	15.50	1130.09	1115.84	14.25	19.76	1099.05	1097.01	2.04	22.96	1128.92	1126.48	2.44
09/17/20	21.43	1164.06	1160.94	3.12	19.72	1125.87	1115.84	10.03	20.33	1098.48	1097.01	1.47	30.06	1121.82	1126.48	-4.66
03/25/21	16.85	1168.64	1160.94	7.70	20.35	1125.24	1115.84	9.40	18.64	1100.17	1097.01	3.16	30.18	1121.70	1126.48	-4.78
09/16/21	19.81	1165.68	1160.94	4.74	21.65	1123.94	1115.84	8.10	20.47	1098.34	1097.01	1.33	31.06	1120.82	1126.48	-5.66
03/16/22	23.85	1161.64	1160.94	0.70	21.63	1123.96	1115.84	8.12	20.57	1098.24	1097.01	1.23	31.57	1120.31	1126.48	-6.17
09/01/22	20.05	1165.44	1160.94	4.50	20.15	1125.44	1115.84	9.60	20.33	1098.48	1097.01	1.47	30.70	1121.18	1126.48	-5.30
03/24/23	20.97	1164.52	1160.94	3.58	20.41	1125.18	1115.84	9.34	19.55	1099.26	1097.01	2.25	31.53	1120.35	1126.48	-6.13
09/07/23	20.91	1164.58	1160.94	3.64	21.90	1123.69	1115.84	7.85	20.53	1098.28	1097.01	1.27	31.80	1120.08	1126.48	-6.40
03/18/24	21.71	1163.78	1160.94	2.84	22.05	1123.54	1115.84	7.70	20.00	1098.81	1097.01	1.80	32.70	1119.18	1126.48	-7.30
09/25/24	20.19	1165.30	1160.94	4.36	21.51	1124.08	1115.84	8.24	20.29	1098.52	1097.01	1.51	32.09	1119.79	1126.48	-6.69
minimum	15.80	1161.47		0.53	15.50	1119.47		3.63	17.74	1098.00		0.99	22.96	1119.18		-7.30
maximum	24.02	1169.69		8.75	26.12	1130.09		14.25	20.81	1101.07		4.06	32.70	1128.92		2.44
average				4.43				9.19				1.99				-4.16

Exposed Screens

Submerged Screens

/ell/TOC	MW-11	1140.3	3		MW-13	1127.99			MW-14	1095.66	3		MW-16	1099.36	3	
	Water	Water	Top of Screen (TOS)	above(+)/below(-)	Water	Water	Top of Screen (TOS)	above(+)/below(-)	Water	Water	Top of Screen (TOS)	above(+)/below(-)	Water	Water	Top of Screen (TOS)	above(+)/below(-
	Depth	Elevation	Elevation	TOS	Depth	Elevation	Elevation	TOS	Depth	Elevation	Elevation	TOS	Depth	Elevation	Elevation	TOS
10/13/17	17.05	1123.25	1121.95	1.30	18.20	1109.79	1095.11	14.68	10.23	1085.43	1082.91	2.52	9.80	1089.56	1069.36	20.20
03/09/18	20.30	1120.00	1121.95	-1.95	18.21	1109.78	1095.11	14.67	11.92	1083.74	1082.91	0.83	11.90	1087.46	1069.36	18.10
09/06/18	16.19	1124.11	1121.95	2.16	17.96	1110.03	1095.11	14.92	10.44	1085.22	1082.91	2.31	10.29	1089.07	1069.36	19.71
03/07/19	15.51	1124.79	1121.95	2.84	16.32	1111.67	1095.11	16.56	11.48	1084.18	1082.91	1.27	10.91	1088.45	1069.36	19.09
09/26/19	17.30	1123.00	1121.95	1.05	17.52	1110.47	1095.11	15.36	11.90	1083.76	1082.91	0.85	11.50	1087.86	1069.36	18.50
04/02/20	13.77	1126.53	1121.95	4.58	16.96	1111.03	1095.11	15.92	11.08	1084.58	1082.91	1.67	10.26	1089.10	1069.36	19.74
09/17/20	19.66	1120.64	1121.95	-1.31	17.63	1110.36	1095.11	15.25	15.35	1080.31	1082.91	-2.60	13.20	1086.16	1069.36	16.80
03/25/21	15.15	1125.15	1121.95	3.20	17.91	1110.08	1095.11	14.97	9.53	1086.13	1082.91	3.22	9.78	1089.58	1069.36	20.22
09/16/21	20.33	1119.97	1121.95	-1.98	18.20	1109.79	1095.11	14.68	14.82	1080.84	1082.91	-2.07	13.61	1085.75	1069.36	16.39
03/16/22	20.75	1119.55	1121.95	-2.40	18.21	1109.78	1095.11	14.67	12.29	1083.37	1082.91	0.46	11.75	1087.61	1069.36	18.25
09/01/22	19.94	1120.36	1121.95	-1.59	17.73	1110.26	1095.11	15.15	15.60	1080.06	1082.91	-2.85	13.90	1085.46	1069.36	16.10
03/24/23	19.54	1120.76	1121.95	-1.19	18.18	1109.81	1095.11	14.70	10.72	1084.94	1082.91	2.03	10.75	1088.61	1069.36	19.25
09/07/23	removed				18.16	1109.83	1095.11	14.72	15.70	1079.96	1082.91	-2.95	14.54	1084.82	1069.36	15.46
03/18/24					18.30	1109.69	1095.11	14.58	12.00	1083.66	1082.91	0.75	11.95	1087.41	1069.36	18.05
09/25/24					17.72	1110.27	1095.11	15.16	15.11	1080.55	1082.91	-2.36	13.68	1085.68	1069.36	16.32
minimum	13.77	1119.55		-2.40	16.32	1109.69		14.58	9.53	1079.96		-2.95	9.78	1084.82		15.46
maximum	20.75	1126.53		4.58	18.30	1111.67		16.56	9.55 15.70	1079.90		3.22	9.76 14.54	1089.58		20.22
	20.75	1 120.00		0.39	10.30	1111.07		15.07	13.70	1000.13		0.21	14.04	1009.50		18.15
average				0.39				15.07				0.21				10.15

Well/TOC	MW-17	1159.5			MW-18	1130.69			MW-19	1127.7			MW-20	1122.96		
_ ,)A/ /	1 10/	T (0 (T00)	1 (.)// (.)	\A/ 1		I = (0 /TOO)		MW-19R	1131.46	2024		10/	I 107 1	T (0 (T00)	1 1 / . / . / . /
Date	Water	Water	Top of Screen (TOS)	` ′ ` ` '	Water	Water	Top of Screen (TOS)	1 ','	Water	Water	Top of Screen (TOS)	above(+)/below(-)	Water	Water	Top of Screen (TOS)	• • • • • • • • • • • • • • • • • • • •
	Depth	Elevation	Elevation	TOS	Depth	Elevation	Elevation	TOS	Depth	Elevation	Elevation	TOS	Depth	Elevation	Elevation	TOS
10/13/17	11.71	1147.79	1122.00	25.79	10.49	1120.20	1118.09	2.11	18.72	1108.98	1112.95	-3.97	18.32	1104.64	1107.66	-3.02
03/09/18	15.15	1144.35	1122.00	22.35	18.57	1112.12	1118.09	-5.97	19.14	1108.56	1112.95	-4.39	18.86	1104.10	1107.66	-3.56
09/06/18	13.08	1146.42	1122.00	24.42	9.35	1121.34	1118.09	3.25	18.32	1109.38	1112.95	-3.57	18.38	1104.58	1107.66	-3.08
03/07/19	9.30	1150.20	1122.00	28.20	15.34	1115.35	1118.09	-2.74	18.25	1109.45	1112.95	-3.50	18.23	1104.73	1107.66	-2.93
09/26/19	11.66	1147.84	1122.00	25.84	13.16	1117.53	1118.09	-0.56	18.37	1109.33	1112.95	-3.62	18.15	1104.81	1107.66	-2.85
04/02/20	8.95	1150.55	1122.00	28.55	13.01	1117.68	1118.09	-0.41	17.88	1109.82	1112.95	-3.13	17.80	1105.16	1107.66	-2.50
09/17/20	12.70	1146.80	1122.00	24.80	18.60	1112.09	1118.09	-6.00	17.95	1109.75	1112.95	-3.20	18.45	1104.51	1107.66	-3.15
03/25/21	11.78	1147.72	1122.00	25.72	19.10	1111.59	1118.09	-6.50	18.38	1109.32	1112.95	-3.63	18.27	1104.69	1107.66	-2.97
09/16/21	15.30	1144.20	1122.00	22.20	18.39	1112.30	1118.09	-5.79	19.38	1108.32	1112.95	-4.63	18.70	1104.26	1107.66	-3.40
03/16/22	16.86	1142.64	1122.00	20.64	18.18	1112.51	1118.09	-5.58	19.20	1108.50	1112.95	-4.45	18.73	1104.23	1107.66	-3.43
09/01/22	14.27	1145.23	1122.00	23.23	18.18	1112.51	1118.09	-5.58	19.15	1108.55	1112.95	-4.40	18.57	1104.39	1107.66	-3.27
03/24/23	14.89	1144.61	1122.00	22.61	14.67	1116.02	1118.09	-2.07	19.15	1108.55	1112.95	-4.40	18.28	1104.68	1107.66	-2.98
09/07/23	17.20	1142.30	1122.00	20.30	18.71	1111.98	1118.09	-6.11	19.63	1108.07	1112.95	-4.88	18.80	1104.16	1107.66	-3.50
03/18/24	18.28	1141.22	1122.00	19.22	19.34	1111.35	1118.09	-6.74	19.27	1108.43	1112.95	-4.52	18.64	1104.32	1107.66	-3.34
09/25/24	18.27	1141.23	1122.00	19.23	17.97	1112.72	1118.09	-5.37	20.25	1111.21	1112.26	-1.05	18.61	1104.35	1107.66	-3.31
minimum	8.95	1141.22		19.22	9.35	1111.35		-6.74	17.88	1108.07		-4.88	17.80	1104.10		-3.56
maximum	18.28	1150.55		28.55	19.34	1121.34		3.25	20.25	1111.21		-1.05	18.86	1105.16		-2.50
average				23.54				-3.60				-3.82				-3.15

page 4 of 4

Water Elevation Data Page County Sanitary Landfill 73-SDP-01-75P

Well/TOC	MW-44	1166.36	3		MW-53	1107.26	5	
Date	Water	Water	Top of Screen (TOS)	above(+)/below(-)	Water	Water	Top of Screen (TOS	above(+)/below(-)
	Depth	Elevation	Elevation	TOS	Depth	Elevation	Elevation	TOS
3/16/2022 9/7/2023 3/18/2024	14.23 16.00 15.95	1152.13 1150.36 1150.41	1129.18 1129.18 1129.18	22.95 21.18 21.23				
9/25/2024	13.93	1152.43	1129.18	23.25	18.61	1088.65	1087.26	1.39
minimum maximum average	13.93 16.00	1150.36 1152.43		21.18 23.25 22.15	18.61 18.61	1088.65 1088.65		1.39 1.39 1.39

P.N. 6039.320 Delaware County Landfill Annual Report

Table 5 – Background and GWPS Summary

Table 5 **Background and GWPS Summary Annual Water Quality Report Page County Sanitary Landfill** Permit No. 73-SDP-01-75P

Interwell Background Wells (MW-1 prior to 2023, MW-17, and MW-44)

Inorganics - Appendix I												
Constituent	Units	Model Type	Samples - N	Detections	Mean	SD	Prediction Limit	Confidence	GWPS	Source		
Antimony (Sb)	μg/l	nonparametric	42	0			2.0000	0.99	6	SS		
Arsenic (As)	μg/l	nonparametric	42	1			5.6000	0.99	10	SS		
Barium (Ba)	μg/l	normal	42	42	258.9714	208.3134	769.2044		2000	SS		
Beryllium (Be)	μg/l	nonparametric	42	0			4.0000	0.99	4	SS		
Cadmium (Cd)	μg/l	nonparametric	42	3			1.4000	0.99	5	SS		
Chromium (Cr)	μg/l	nonparametric	42	1			8.9000	0.99	100	SS		
Cobalt (Co)	μg/l	nonparametric	42	11			30.6000	0.99	30.6	Site		
Copper (Cu)	μg/l	nonparametric	42	2			11.6000	0.99	1300	SS		
Lead (Pb)	μg/l	nonparametric	42	3			7.4000	0.99	15	SS		
Nickel (Ni)	μg/l	nonparametric	42	12			60.4000	0.99	100	SS		
Selenium (Se)	μg/l	nonparametric	42	0			4.0000	0.99	50	SS		
Silver (Ag)	μg/l	nonparametric	42	0			4.0000	0.99	100	SS		
Thallium (TI)	μg/l	nonparametric	42	0			2.0000	0.99	2	SS		
Vanadium (V)	μg/l	nonparametric	42	0			20.0000	0.99	35	SS		
Zinc (Zn)	μg/l	nonparametric	42	9			69.2000	0.99	2000	SS		
VOC - Appendix I												
Constituent	Units	Model Type	Samples - N	Detections	Mean	SD	Prediction Limit	Confidence	GWPS	Source		
All	μg/l	DQR	42	0	<1	<1	<1	<1	various	SS		

VOC - Appendix i	oc - Appendix i												
Constituent	Units	Model Type	Samples - N	Detections	Mean	SD	Prediction Limit	Confidence	GWPS	Source			
All	μg/l	DQR	42	0	<1	<1	<1	<1	various	SS			

⁼ Prediction limit exceeds the GWPS. A Site-Specific GWPS is warranted

Table 6 – Summary of Detections

Table 6
Summary of Well/Detected Constituent Pairs that Exceed the Prediction Limit
Annual Water Quality Report
Page County Sanitary Landfill
Permit No. 73-SDP-01-75P

14. II	Wall		Most recent result	Background	
Well	Constituent	Date	(ug/L)	Standard (ug/L)	Monitoring Program
MW-1d	Barium	3/18/2024	784	776.07	Assessment Monitoring Well
MW-1d	Benzene	3/18/2024	1.3	1	Assessment Monitoring Well
MW-1d	Chlorobenzene	3/18/2024	1.5	1	Assessment Monitoring Well
MW-1d	Cloroethane	3/18/2024	1.1	1	Assessment Monitoring Well
MW-7	Arsenic	9/25/2024	9.0	5.6	Assessment Monitoring Well
MW-16	Arsenic	3/18/2024	20.4	5.6	Assessment Monitoring Well
MW-16	Arsenic	9/25/2024	26.2	5.6	Assessment Monitoring Well
MW-16	1,1-Dichloroethane	3/18/2024	1.0	1.0	Assessment Monitoring Well
MW-16	1,4-dichlorobenzene	3/18/2024	1.8	1.0	Assessment Monitoring Well
MW-16	Benzene	3/18/2024	1.5	1.0	Assessment Monitoring Well
MW-16	Chlorobenzene	3/18/2024	5.2	1.0	Assessment Monitoring Well
MW-16	Chlorobenzene	9/25/2024	2.3	1.0	Assessment Monitoring Well
MW-18	Arsenic	3/18/2024	23.7	5.6	Corrective Action Monitoring Well
MW-18	Arsenic	9/25/2024	43.6	5.6	Corrective Action Monitoring Well
MW-19	1,1-dichloroethane	3/24/2023	2.3	1.0	Assessment Monitoring Well
MW-19R	1,1-dichloroethane	11/25/2024	3.0	1.0	Assessment Monitoring Well
MW-19	cis-1,2-dichloroethylene	3/24/2023	1.4	1.0	Assessment Monitoring Well
MW-19R	cis-1,2-dichloroethylene	11/25/2024	2.4	1.0	Assessment Monitoring Well
MW-20	Arsenic	3/18/2024	112	5.6	Corrective Action Monitoring Well
MW-20	Arsenic	9/25/2024	44.1	5.6	Corrective Action Monitoring Well
MW-20	Barium	3/18/2024	2110	776.07	Corrective Action Monitoring Well
MW-20	Barium	9/25/2024	1950	769.20	Corrective Action Monitoring Well
MW-20	benzene	3/18/2024	2.2	1.0	Corrective Action Monitoring Well
MW-20	benzene	9/25/2024	2.1	1.0	Corrective Action Monitoring Well
MW-20	chlorobenzene	3/18/2024	1.2	1.0	Corrective Action Monitoring Well
MW-20	chlorobenzene	9/25/2024	1.9	1.0	Corrective Action Monitoring Well
MW-20	chloroethane	3/18/2024	1.2	1.0	Corrective Action Monitoring Well
GU-3	Zinc	8/1/2024	173	69.2	Detection Monitoring Well
GU-3	Zinc	9/25/2024	<20	69.2	Detection Monitoring Well
GU-3	Zinc	11/25/2024	NT	69.2	Detection Monitoring Well
GU-4	Zinc	8/1/2024	67.2	69.2	Detection Monitoring Well
GU-4	Zinc	9/25/2024	106.0	69.2	Detection Monitoring Well
GU-4	Zinc	11/25/2024	127.0	69.2	Detection Monitoring Well

Note: Testing at GU-3 and GU-4 was initiated prior to waste placement. Intrawell statistical evaluation will be applied as sufficient data bemomes available.

Table 7 – Summary of Ongoing and Newly Identified SSI

Table 7KEY:SSISSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P Note: The absence of shading indicates that the condition does not exist.

							SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-1d	Barium	9/7/2023	660	754.8120		2000			
MW-1d	Barium	3/18/2024	784	776.0663		2000			
MW-1d	Barium	9/25/2024	637	769.2044		2000			
MW-1d	Benzene	9/7/2023	1.1	1		5	5/9/2023	NA	pending
MW-1d	Benzene	3/18/2024	1.3	1		5	5/9/2023	NA	pending
MW-1d	Benzene	9/25/2024	<1.0	1		5	5/9/2023	NA	pending
MW-1d	Chlorobenzene	9/7/2023	1.0	1		100			
MW-1d	Chlorobenzene	3/18/2024	1.5	1		100			
MW-1d	Chlorobenzene	9/25/2024	<1.0	1		100			
MW-1d	Cloroethane	9/7/2023	1.0	1		2800	5/9/2023	NA	pending
MW-1d	Cloroethane	3/18/2024	1.1	1		2800	5/9/2023	NA	pending
MW-1d	Cloroethane	9/25/2024	<1.0	1		2800	5/9/2023	NA	pending

Table 7 KEY: SSI SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

	1 CHINE 140. 73-3D1 -01-73								
		Sample	Each	Prediction		GWPS	SSI Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-3	Copper	9/17/2014	<4.0	11.6		1300	3/16/2022	NA	9/1/2016
MW-3	Copper	4/28/2015	<4.0	11.6		1300	3/16/2022	NA	9/1/2016
MW-3	Copper	10/6/2015	<4.0	11.6		1300	3/16/2022	NA	9/1/2016
MW-3	Copper	4/23/2016	<4.0	11.6		1300	3/16/2022	NA	9/1/2016
MW-3	Copper	9/1/2016	<4.0	11.6		1300	3/16/2022	NA	9/1/2016
MW-3	Copper	3/21/2017	<4.0	11.6		1300	3/16/2022	NA	9/1/2016
MW-3	Copper	10/13/2017	<4.0	11.6		1300	3/16/2022	NA	9/1/2016
MW-3	Copper	3/9/2018	<4.0	11.6		1300	3/16/2022	NA	9/1/2016
MW-3	Copper	9/6/2018	<4.0	11.6		1300	3/16/2022	NA	9/1/2016
MW-3	Copper	3/7/2019	<4.0	11.6		1300	3/16/2022	NA	9/1/2016
MW-3	Copper	9/26/2019	<4.0	11.6		1300	3/16/2022	NA	9/1/2016
MW-3	Copper	4/2/2020	<4.0	11.6		1300	3/16/2022	NA	9/1/2016
MW-3	Copper	9/17/2020	4.40	11.6	2.000	1300	3/16/2022	NA	9/1/2016
MW-3	Copper	3/25/2021	<4.0	11.6	2.000	1300	3/16/2022	NA	9/1/2016
MW-3	Copper	9/16/2021	<4.0	11.6	2.000	1300	3/16/2022	NA	9/1/2016
MW-3	Copper	3/16/2022	12.00	11.6	0.998	1300	3/16/2022	NA	9/1/2016
MW-3	Copper	9/1/2022	<4.0	11.6	0.170	1300	3/16/2022	NA	9/1/2016
MW-3	Copper	3/24/2023	<4.0	11.6	0.170	1300	3/16/2022	NA	9/1/2016
MW-3	Copper	9/7/2023	<4.0	11.6	0.170	1300	3/16/2022	NA	9/1/2016
MW-3	Copper	3/18/2024	<4.0	11.6	0.170	1300	3/16/2022	NA	9/1/2016
MW-3	Copper	9/25/2024	<4.0	11.6	0.170	1300	3/16/2022	NA	9/1/2016

Table 7 KEY: SSI SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report

Page County Sanitary Landfill

Permit No. 73-SDP-01-75P

Note: The absence of shading indicates that the condition does not exist.

	1 CHINE 140: 75-501 -01-751								
		Sample	Each	Prediction		GWPS	SSI Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-3	Selenium	9/17/2014	<4.0	4.00		50	4/28/2015	NA	9/1/2016
MW-3	Selenium	4/28/2015	5.80	4.00		50	4/28/2015	NA	9/1/2016
MW-3	Selenium	10/6/2015	<4.0	4.00		50	4/28/2015	NA	9/1/2016
MW-3	Selenium	4/23/2016	4.60	4.00		50	4/28/2015	NA	9/1/2016
MW-3	Selenium	9/1/2016	4.20	4.00		50	4/28/2015	NA	9/1/2016
MW-3	Selenium	3/21/2017	4.00	4.00		50	4/28/2015	NA	9/1/2016
MW-3	Selenium	10/13/2017	4.20	4.00		50	4/28/2015	NA	9/1/2016
MW-3	Selenium	1/12/2018	6.10	4.00		50	4/28/2015	NA	9/1/2016
MW-3	Selenium	3/9/2018	4.50	4.00		50	4/28/2015	NA	9/1/2016
MW-3	Selenium	9/6/2018	4.20	4.00		50	4/28/2015	NA	9/1/2016
MW-3	Selenium	3/7/2019	7.50	4.00		50	4/28/2015	NA	9/1/2016
MW-3	Selenium	9/26/2019	9.80	4.00		50	4/28/2015	NA	9/1/2016
MW-3	Selenium	4/2/2020	<4.0	4.00		50	4/28/2015	NA	9/1/2016
MW-3	Selenium	9/17/2020	5.00	4.00	3.174	50	4/28/2015	NA	9/1/2016
MW-3	Selenium	3/25/2021	<4.0	4.00	1.511	50	4/28/2015	NA	9/1/2016
MW-3	Selenium	9/16/2021	<4.0	4.00	0.986	50	4/28/2015	NA	9/1/2016
MW-3	Selenium	3/16/2022	<4.0	4.00	0.986	50	4/28/2015	NA	9/1/2016
MW-3	Selenium	9/1/2022	5.00	4.00	0.986	50	4/28/2015	NA	9/1/2016
MW-3	Selenium	3/24/2023	4.80	4.00	1.478	50	4/28/2015	NA	9/1/2016
MW-3	Selenium	9/7/2023	<4.0	4.00	1.478	50	4/28/2015	NA	9/1/2016
MW-3	Selenium	3/18/2024	<4.0	4.00	1.478	50	4/28/2015	NA	9/1/2016
MW-3	Selenium	9/25/2024	<4.0	4.00	1.478	50	4/28/2015	NA	9/1/2016

Table 7 KEY: SSI SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-7	Arsenic	9/17/2014	<4.0	5.6	2.000	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	4/28/2015	<4.0	5.6	2.000	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	10/6/2015	<4.0	5.6	2.000	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	4/23/2016	<4.0	5.6	2.000	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	9/1/2016	<4.0	5.6	2.000	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	3/21/2017	<4.0	5.6	2.000	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	10/13/2017	<4.0	5.6	2.000	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	3/9/2018	<4.0	5.6	2.000	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	9/6/2018	<4.0	5.6	2.000	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	3/7/2019	<4.0	5.6	2.000	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	9/26/2019	8.20	5.6	0.865	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	12/17/2019	4.70	5.6	1.679	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	4/2/2020	<4.0	5.6	1.679	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	9/17/2020	6.90	5.6	3.098	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	12/3/2020	7.20	5.6	3.116	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	3/25/2021	<4.0	5.6	1.998	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	9/16/2021	<4.0	5.6	1.998	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	3/16/2022	4.30	5.6	0.972	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	9/1/2022	5.70	5.6	1.355	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	3/24/2023	<4.0	5.6	1.355	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	9/7/2023	8.80	5.6	1.855	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	3/18/2024	5.40	5.6	2.205	10	9/26/2019	NA	9/1/2016
MW-7	Arsenic	9/25/2024	9.00	5.6	2.408	10	9/26/2019	NA	9/1/2016

Table 7 KEY: SSI SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI Note: The absence of shading indicates that the condition does not exist.

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report

Page County Sanitary Landfill

Permit No. 73-SDP-01-75P

							SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-7	bis(2-ethylhexyl)phthalate	9/17/2014	NT	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	4/28/2015	NT	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	10/6/2015	NT	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	4/23/2016	NT	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	9/1/2016	NT	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	3/21/2017	NT	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	10/13/2017	NT	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	3/9/2018	NT	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	9/6/2018	NT	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	3/7/2019	NT	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	9/26/2019	NT	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	12/17/2019	NT	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	4/2/2020	NT	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	9/17/2020	NT	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	12/3/2020	NT	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	3/25/2021	<6	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	9/16/2021	NT	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	3/16/2022	NT	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	9/1/2022	9.00	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	3/24/2023	<6	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	9/7/2023	NT	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	3/18/2024	NT	6		6	9/26/2019	NA	9/1/2022
MW-7	bis(2-ethylhexyl)phthalate	9/25/2024	NT	6		6	9/26/2019	NA	9/1/2022

KEY:

SSI

SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

Note: The absence of shading indicates that the condition does not e	xist.
--	-------

							SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-10	Arsenic	9/17/2014	18.20	5.6		10	9/17/2014	NA	9/1/2016
MW-10	Arsenic	4/28/2015	6.50	5.6		10	9/17/2014	NA	9/1/2016
MW-10	Arsenic	10/6/2015	7.10	5.6		10	9/17/2014	NA	9/1/2016
MW-10	Arsenic	4/23/2016	16.70	5.6	6.769	10	9/17/2014	NA	9/1/2016
MW-10	Arsenic	9/1/2016	9.20	5.6	5.809	10	9/17/2014	NA	9/1/2016
MW-10	Arsenic	3/21/2017	<4.0	5.6	3.466	10	9/17/2014	NA	9/1/2016
MW-10	Arsenic	10/13/2017	18.20	5.6	5.055	10	9/17/2014	NA	9/1/2016
MW-10	Arsenic	3/9/2018	7.70	5.6	3.464	10	9/17/2014	NA	9/1/2016
MW-10	Arsenic	9/6/2018	47.80	5.6	1.270	10	9/17/2014	NA	9/1/2016
MW-10	Arsenic	3/7/2019	4.10	5.6	2.282	10	9/17/2014	NA	9/1/2016
MW-10	Arsenic	9/26/2019	11.30	5.6	0.176	10	9/17/2014	NA	9/1/2016
MW-10	Arsenic	4/2/2020	38.60	5.6	7.226	10	9/17/2014	NA	9/1/2016
MW-10	Arsenic	9/17/2020	<4.0	5.6	0.000	10	9/17/2014	NA	9/1/2016
MW-10	Arsenic	3/25/2021	8.70	5.6	1.192	10	9/17/2014	NA	9/1/2016
MW-10	Arsenic	9/16/2021	<4.0	5.6	0.000	10	9/17/2014	NA	9/1/2016
MW-10	Arsenic	3/16/2022	26.60	5.6	0.000	10	9/17/2014	NA	9/1/2016
MW-10	Arsenic	9/1/2022	<4.0	5.6	0.000	10	9/17/2014	NA	9/1/2016
MW-10	Arsenic	3/24/2023	<4.0	5.6	0.000	10	9/17/2014	NA	9/1/2016
MW-10	Arsenic	9/7/2023	<4.0	5.6	0.000	10	9/17/2014	NA	9/1/2016
MW-10	Arsenic	3/18/2024	<4.0	5.6	2.000	10	9/17/2014	NA	9/1/2016
MW-10	Arsenic	9/25/2024	5.20	5.6	0.918	10	9/17/2014	NA	9/1/2016

KEY:

SSI

SSL LCL>GWPS

SSI

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-10	Barium	9/17/2014	651.0	744.8651		2000	4/23/2016	NA	9/1/2016
MW-10	Barium	4/28/2015	549.0	744.8651		2000	4/23/2016	NA	9/1/2016
MW-10	Barium	10/6/2015	481.0	744.8651		2000	4/23/2016	NA	9/1/2016
MW-10	Barium	4/23/2016	859.0	744.8651	492.220	2000	4/23/2016	NA	9/1/2016
MW-10	Barium	9/1/2016	420.0	744.8651	408.303	2000	4/23/2016	NA	9/1/2016
MW-10	Barium	3/21/2017	370.0	744.8651	339.940	2000	4/23/2016	NA	9/1/2016
MW-10	Barium	10/13/2017	685.0	744.8651	384.429	2000	4/23/2016	NA	9/1/2016
MW-10	Barium	3/9/2018	342.0	744.8651	318.128	2000	4/23/2016	NA	9/1/2016
MW-10	Barium	9/6/2018	761.0	744.8651	353.779	2000	4/23/2016	NA	9/1/2016
MW-10	Barium	3/7/2019	661.0	744.8651	451.914	2000	4/23/2016	NA	9/1/2016
MW-10	Barium	9/26/2019	483.0	744.8651	400.472	2000	4/23/2016	NA	9/1/2016
MW-10	Barium	4/2/2020	871.0	744.8651	551.322	2000	4/23/2016	NA	9/1/2016
MW-10	Barium	9/17/2020	550.0	744.8651	494.158	2000	4/23/2016	NA	9/1/2016
MW-10	Barium	3/25/2021	1070.0	744.8651	504.669	2000	4/23/2016	NA	9/1/2016
MW-10	Barium	9/16/2021	449.0	744.8651	486.634	2000	4/23/2016	NA	9/1/2016
MW-10	Barium	3/16/2022	1950.0	744.8651	197.352	2000	4/23/2016	NA	9/1/2016
MW-10	Barium	9/1/2022	441.0	744.8651	139.810	2000	4/23/2016	NA	9/1/2016
MW-10	Barium	3/24/2023	524.0	762.2866	0.000	2000	4/23/2016	NA	9/1/2016
MW-10	Barium	9/7/2023	553.0	754.8120	15.887	2000	4/23/2016	NA	9/1/2016
MW-10	Barium	3/18/2024	465.0	776.0663	434.936	2000	4/23/2016	NA	9/1/2016
MW-10	Barium	9/25/2024	575.0	769.2044	473.195	2000	4/23/2016	NA	9/1/2016

 Table 7
 KEY:
 SSI
 SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report
Page County Sanitary Landfill
Permit No. 73-SDP-01-75P

Note: The absence of shading indicates that the condition does not exist.

		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-10	Zinc	9/17/2014	16.40	32.0		2000	9/6/2018	NA	9/1/2016
MW-10	Zinc	4/28/2015	11.10	32.0		2000	9/6/2018	NA	9/1/2016
MW-10	Zinc	10/6/2015	19.70	32.0		2000	9/6/2018	NA	9/1/2016
MW-10	Zinc	4/23/2016	<20	32.0	10.353	2000	9/6/2018	NA	9/1/2016
MW-10	Zinc	9/1/2016	<8	32.0	5.598	2000	9/6/2018	NA	9/1/2016
MW-10	Zinc	3/21/2017	<8	32.0	3.007	2000	9/6/2018	NA	9/1/2016
MW-10	Zinc	10/13/2017	<8	32.0	2.902	2000	9/6/2018	NA	9/1/2016
MW-10	Zinc	3/9/2018	<8	32.0	4.000	2000	9/6/2018	NA	9/1/2016
MW-10	Zinc	9/6/2018	34.90	32.0	0.000	2000	9/6/2018	NA	9/1/2016
MW-10	Zinc	3/7/2019	<8	32.0	0.000	2000	9/6/2018	NA	9/1/2016
MW-10	Zinc	9/26/2019	17.70	32.0	2.450	2000	9/6/2018	NA	9/1/2016
MW-10	Zinc	4/2/2020	<20	32.0	5.048	2000	9/6/2018	NA	9/1/2016
MW-10	Zinc	9/17/2020	<20	32.0	5.563	2000	9/6/2018	NA	9/1/2016
MW-10	Zinc	3/25/2021	<20	32.0	8.591	2000	9/6/2018	NA	9/1/2016
MW-10	Zinc	9/16/2021	<20	32.0	10.000	2000	9/6/2018	NA	9/1/2016
MW-10	Zinc	3/16/2022	207.0	32.0	0.000	2000	9/6/2018	NA	9/1/2016
MW-10	Zinc	9/1/2022	<20	32.0	0.000	2000	9/6/2018	NA	9/1/2016
MW-10	Zinc	3/24/2023	<20	32.0	0.000	2000	9/6/2018	NA	9/1/2016
MW-10	Zinc	9/7/2023	<20	32.0	0.000	2000	9/6/2018	NA	9/1/2016
MW-10	Zinc	3/18/2024	28.30	69.2	0.000	2000	9/6/2018	NA	9/1/2016
MW-10	Zinc	9/25/2024	<20	69.2	3.812	2000	9/6/2018	NA	9/1/2016

KEY:

SSI

SSL LCL>GWPS

SSI

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-16	Arsenic	9/18/2014	34.30	5.6		10	9/17/2014	NA	9/1/2016
MW-16	Arsenic	4/28/2015	38.50	5.6		10	9/17/2014	NA	9/1/2016
MW-16	Arsenic	10/6/2015	<4.0	5.6		10	9/17/2014	NA	9/1/2016
MW-16	Arsenic	4/23/2016	<4.0	5.6	1.936	10	9/17/2014	NA	9/1/2016
MW-16	Arsenic	9/1/2016	<4.0	5.6	0.000	10	9/17/2014	NA	9/1/2016
MW-16	Arsenic	3/21/2017	9.30	5.6	0.664	10	9/17/2014	NA	9/1/2016
MW-16	Arsenic	10/13/2017	19.00	5.6	1.099	10	9/17/2014	NA	9/1/2016
MW-16	Arsenic	3/9/2018	<4.0	5.6	1.099	10	9/17/2014	NA	9/1/2016
MW-16	Arsenic	9/6/2018	<4.0	5.6	1.099	10	9/17/2014	NA	9/1/2016
MW-16	Arsenic	9/26/2019	6.30	5.6	0.360	10	9/17/2014	NA	9/1/2016
MW-16	Arsenic	4/2/2020	9.30	5.6	1.812	10	9/17/2014	NA	9/1/2016
MW-16	Arsenic	9/17/2020	6.50	5.6	3.416	10	9/17/2014	NA	9/1/2016
MW-16	Arsenic	3/25/2021	21.20	5.6	4.719	10	9/17/2014	NA	9/1/2016
MW-16	Arsenic	9/16/2021	10.40	5.6	6.268	10	9/17/2014	NA	9/1/2016
MW-16	Arsenic	3/16/2022	26.50	5.6	5.224	10	9/17/2014	NA	9/1/2016
MW-16	Arsenic	9/1/2022	4.70	5.6	4.016	10	9/17/2014	NA	9/1/2016
MW-16	Arsenic	3/24/2023	4.30	5.6	0.000	10	9/17/2014	NA	9/1/2016
MW-16	Arsenic	9/7/2023	<4.0	5.6	0.000	10	9/17/2014	NA	9/1/2016
MW-16	Arsenic	3/18/2024	20.40	5.6	0.000	10	9/17/2014	NA	9/1/2016
MW-16	Arsenic	9/25/2024	26.20	5.6	0.000	10	9/17/2014	NA	9/1/2016

KEY:

SSI

SSL LCL>GWPS

SSI

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-16	Barium	9/18/2014	1130.0	744.8651		2000	4/23/2016	NA	9/1/2016
MW-16	Barium	4/28/2015	1370.0	744.8651		2000	4/23/2016	NA	9/1/2016
MW-16	Barium	10/6/2015	790.0	744.8651		2000	4/23/2016	NA	9/1/2016
MW-16	Barium	4/23/2016	779.0	744.8651	769.485	2000	4/23/2016	NA	9/1/2016
MW-16	Barium	9/1/2016	711.0	744.8651	646.635	2000	4/23/2016	NA	9/1/2016
MW-16	Barium	3/21/2017	867.0	744.8651	731.413	2000	4/23/2016	NA	9/1/2016
MW-16	Barium	10/13/2017	1020.0	744.8651	728.688	2000	4/23/2016	NA	9/1/2016
MW-16	Barium	1/12/2018	818.0	744.8651	742.791	2000	4/23/2016	NA	9/1/2016
MW-16	Barium	3/9/2018	668.0	744.8651	717.597	2000	4/23/2016	NA	9/1/2016
MW-16	Barium	9/6/2018	719.0	744.8651	671.572	2000	4/23/2016	NA	9/1/2016
MW-16	Barium	9/26/2019	796.0	744.8651	690.198	2000	4/23/2016	NA	9/1/2016
MW-16	Barium	4/2/2020	925.0	744.8651	680.163	2000	4/23/2016	NA	9/1/2016
MW-16	Barium	9/17/2020	806.0	744.8651	737.830	2000	4/23/2016	NA	9/1/2016
MW-16	Barium	3/25/2021	1010.0	744.8651	795.671	2000	4/23/2016	NA	9/1/2016
MW-16	Barium	9/16/2021	798.0	744.8651	796.667	2000	4/23/2016	NA	9/1/2016
MW-16	Barium	3/16/2022	1010.0	744.8651	764.689	2000	4/23/2016	NA	9/1/2016
MW-16	Barium	9/1/2022	655.0	744.8651	663.837	2000	4/23/2016	NA	9/1/2016
MW-16	Barium	3/24/2023	481.0	762.2866	472.531	2000	4/23/2016	NA	9/1/2016
MW-16	Barium	9/7/2023	311.0	754.8120	262.676	2000	4/23/2016	NA	9/1/2016
MW-16	Barium	3/18/2024	713.0	776.0663	326.235	2000	4/23/2016	NA	9/1/2016
MW-16	Barium	9/25/2024	756.0	769.2044	320.427	2000	4/23/2016	NA	9/1/2016

KEY: SSI

Summary of Ongoing & Newly Identified SSI

Note: The absence of shading indicates that the condition does not exist.

SSL LCL>GWPS

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

							SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-16	1,1-dichloroethane	9/18/2014	2.0	1		140	9/18/2014	NA	9/1/2016
MW-16	1,1-dichloroethane	4/28/2015	2.2	1		140	9/18/2014	NA	9/1/2016
MW-16	1,1-dichloroethane	10/6/2015	1.9	1		140	9/18/2014	NA	9/1/2016
MW-16	1,1-dichloroethane	4/23/2016	2.5	1	1.921	140	9/18/2014	NA	9/1/2016
MW-16	1,1-dichloroethane	9/1/2016	1.9	1	1.876	140	9/18/2014	NA	9/1/2016
MW-16	1,1-dichloroethane	3/21/2017	1.6	1	1.648	140	9/18/2014	NA	9/1/2016
MW-16	1,1-dichloroethane	10/13/2017	1.8	1	1.615	140	9/18/2014	NA	9/1/2016
MW-16	1,1-dichloroethane	3/9/2018	2.4	1	1.630	140	9/18/2014	NA	9/1/2016
MW-16	1,1-dichloroethane	9/6/2018	<1	1	0.888	140	9/18/2014	NA	9/1/2016
MW-16	1,1-dichloroethane	3/7/2019	1.7	1	0.911	140	9/18/2014	NA	9/1/2016
MW-16	1,1-dichloroethane	9/26/2019	1.3	1	0.788	140	9/18/2014	NA	9/1/2016
MW-16	1,1-dichloroethane	4/2/2020	<1	1	0.480	140	9/18/2014	NA	9/1/2016
MW-16	1,1-dichloroethane	9/17/2020	<1	1	0.480	140	9/18/2014	NA	9/1/2016
MW-16	1,1-dichloroethane	3/25/2021	1.2	1	0.498	140	9/18/2014	NA	9/1/2016
MW-16	1,1-dichloroethane	9/16/2021	<1	1	0.372	140	9/18/2014	NA	9/1/2016
MW-16	1,1-dichloroethane	3/16/2022	1.9	1	0.237	140	9/18/2014	NA	9/1/2016
MW-16	1,1-dichloroethane	9/1/2022	<1	1	0.237	140	9/18/2014	NA	9/1/2016
MW-16	1,1-dichloroethane	3/24/2023	<1	1	0.270	140	9/18/2014	NA	9/1/2016
MW-16	1,1-dichloroethane	9/7/2023	<1	1	0.270	140	9/18/2014	NA	9/1/2016
MW-16	1,1-dichloroethane	3/18/2024	1.0	1	0.331	140	9/18/2014	NA	9/1/2016
MW-16	1,1-dichloroethane	9/25/2024	<1	1	0.331	140	9/18/2014	NA	9/1/2016

KEY: SSI SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

							SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-16	1,2-dichloropropane	9/18/2014	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-16	1,2-dichloropropane	4/28/2015	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-16	1,2-dichloropropane	10/6/2015	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-16	1,2-dichloropropane	4/23/2016	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-16	1,2-dichloropropane	9/1/2016	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-16	1,2-dichloropropane	3/21/2017	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-16	1,2-dichloropropane	10/13/2017	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-16	1,2-dichloropropane	3/9/2018	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-16	1,2-dichloropropane	9/6/2018	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-16	1,2-dichloropropane	3/7/2019	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-16	1,2-dichloropropane	9/26/2019	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-16	1,2-dichloropropane	4/2/2020	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-16	1,2-dichloropropane	9/17/2020	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-16	1,2-dichloropropane	3/25/2021	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-16	1,2-dichloropropane	9/16/2021	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-16	1,2-dichloropropane	3/16/2022	1.0	1	0.500	5	3/16/2022	NA	9/1/2016
MW-16	1,2-dichloropropane	9/1/2022	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-16	1,2-dichloropropane	3/24/2023	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-16	1,2-dichloropropane	9/7/2023	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-16	1,2-dichloropropane	3/18/2024	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-16	1,2-dichloropropane	9/25/2024	<1	1	0.500	5	3/16/2022	NA	9/1/2016

KEY: SSI SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI

Note: The absence of shading indicates that the condition does not exist.

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-16	1,4-dichlorobenzene	9/18/2014	<1	1		75	4/28/2015	NA	9/1/2016
MW-16	1,4-dichlorobenzene	4/28/2015	1.5	1		75	4/28/2015	NA	9/1/2016
MW-16	1,4-dichlorobenzene	10/6/2015	2.0	1		75	4/28/2015	NA	9/1/2016
MW-16	1,4-dichlorobenzene	4/23/2016	1.6	1	0.848	75	4/28/2015	NA	9/1/2016
MW-16	1,4-dichlorobenzene	9/1/2016	2.1	1	1.545	75	4/28/2015	NA	9/1/2016
MW-16	1,4-dichlorobenzene	3/21/2017	2.6	1	1.719	75	4/28/2015	NA	9/1/2016
MW-16	1,4-dichlorobenzene	10/13/2017	2.0	1	1.719	75	4/28/2015	NA	9/1/2016
MW-16	1,4-dichlorobenzene	3/9/2018	1.8	1	1.830	75	4/28/2015	NA	9/1/2016
MW-16	1,4-dichlorobenzene	9/6/2018	2.7	1	1.892	75	4/28/2015	NA	9/1/2016
MW-16	1,4-dichlorobenzene	3/7/2019	3.8	1	1.793	75	4/28/2015	NA	9/1/2016
MW-16	1,4-dichlorobenzene	9/26/2019	<1	1	0.990	75	4/28/2015	NA	9/1/2016
MW-16	1,4-dichlorobenzene	4/2/2020	<1	1	0.446	75	4/28/2015	NA	9/1/2016
MW-16	1,4-dichlorobenzene	9/17/2020	1.8	1	0.300	75	4/28/2015	NA	9/1/2016
MW-16	1,4-dichlorobenzene	3/25/2021	1.8	1	0.500	75	4/28/2015	NA	9/1/2016
MW-16	1,4-dichlorobenzene	9/16/2021	2.2	1	0.933	75	4/28/2015	NA	9/1/2016
MW-16	1,4-dichlorobenzene	3/16/2022	2.1	1	1.733	75	4/28/2015	NA	9/1/2016
MW-16	1,4-dichlorobenzene	9/1/2022	<1	1	0.726	75	4/28/2015	NA	9/1/2016
MW-16	1,4-dichlorobenzene	3/24/2023	<1	1	0.203	75	4/28/2015	NA	9/1/2016
MW-16	1,4-dichlorobenzene	9/7/2023	<1	1	0.000	75	4/28/2015	NA	9/1/2016
MW-16	1,4-dichlorobenzene	3/18/2024	1.8	1	0.060	75	4/28/2015	NA	9/1/2016
MW-16	1,4-dichlorobenzene	9/25/2024	<1	1	0.060	75	4/28/2015	NA	9/1/2016

SSI

KEY:

SSI

SSL LCL>GWPS

SSI

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-16	benzene	9/18/2014	<1	1		5	10/6/2015	NA	9/1/2016
MW-16	benzene	4/28/2015	<1	1		5	10/6/2015	NA	9/1/2016
MW-16	benzene	10/6/2015	1.0	1		5	10/6/2015	NA	9/1/2016
MW-16	benzene	4/23/2016	<1	1	0.408	5	10/6/2015	NA	9/1/2016
MW-16	benzene	9/1/2016	1.2	1	0.492	5	10/6/2015	NA	9/1/2016
MW-16	benzene	3/21/2017	1.3	1	0.692	5	10/6/2015	NA	9/1/2016
MW-16	benzene	10/13/2017	1.1	1	0.714	5	10/6/2015	NA	9/1/2016
MW-16	benzene	3/9/2018	<1	1	0.714	5	10/6/2015	NA	9/1/2016
MW-16	benzene	9/6/2018	1.7	1	0.717	5	10/6/2015	NA	9/1/2016
MW-16	benzene	3/7/2019	2.1	1	0.744	5	10/6/2015	NA	9/1/2016
MW-16	benzene	9/26/2019	<1	1	0.486	5	10/6/2015	NA	9/1/2016
MW-16	benzene	4/2/2020	1.6	1	0.882	5	10/6/2015	NA	9/1/2016
MW-16	benzene	9/17/2020	<1	1	0.477	5	10/6/2015	NA	9/1/2016
MW-16	benzene	3/25/2021	1.5	1	0.499	5	10/6/2015	NA	9/1/2016
MW-16	benzene	9/16/2021	1.3	1	0.793	5	10/6/2015	NA	9/1/2016
MW-16	benzene	3/16/2022	1.6	1	0.638	5	10/6/2015	NA	9/1/2016
MW-16	benzene	9/1/2022	<1	1	0.638	5	10/6/2015	NA	9/1/2016
MW-16	benzene	3/24/2023	<1	1	0.314	5	10/6/2015	NA	9/1/2016
MW-16	benzene	9/7/2023	<1	1	0.128	5	10/6/2015	NA	9/1/2016
MW-16	benzene	3/18/2024	1.5	1	0.162	5	10/6/2015	NA	9/1/2016
MW-16	benzene	9/25/2024	<1	1	0.162	5	10/6/2015	NA	9/1/2016

KEY:

SSI

SSL LCL>GWPS

SSI

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

Note: The absence o	f shadina	indicates	that the	condition	does not	exist.
NOTE: THE ADJUNCT	, Jiiaaiiia	mulcutes	tilat tile	COMMITTED	accs me	CAISE

		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-16	chlorobenzene	9/18/2014	4.3	1		100	9/18/2014	NA	9/1/2016
MW-16	chlorobenzene	4/28/2015	4.4	1		100	9/18/2014	NA	9/1/2016
MW-16	chlorobenzene	10/6/2015	4.9	1		100	9/18/2014	NA	9/1/2016
MW-16	chlorobenzene	4/23/2016	3.5	1	3.773	100	9/18/2014	NA	9/1/2016
MW-16	chlorobenzene	9/1/2016	6.0	1	3.797	100	9/18/2014	NA	9/1/2016
MW-16	chlorobenzene	3/21/2017	6.4	1	4.075	100	9/18/2014	NA	9/1/2016
MW-16	chlorobenzene	10/13/2017	5.1	1	4.135	100	9/18/2014	NA	9/1/2016
MW-16	chlorobenzene	3/9/2018	4.7	1	4.870	100	9/18/2014	NA	9/1/2016
MW-16	chlorobenzene	9/6/2018	8.1	1	7.748	100	9/18/2014	NA	9/1/2016
MW-16	chlorobenzene	3/7/2019	9.7	1	4.817	100	9/18/2014	NA	9/1/2016
MW-16	chlorobenzene	9/26/2019	4.8	1	4.674	100	9/18/2014	NA	9/1/2016
MW-16	chlorobenzene	4/2/2020	8.8	1	6.000	100	9/18/2014	NA	9/1/2016
MW-16	chlorobenzene	9/17/2020	4.7	1	4.727	100	9/18/2014	NA	9/1/2016
MW-16	chlorobenzene	3/25/2021	5.8	1	4.366	100	9/18/2014	NA	9/1/2016
MW-16	chlorobenzene	9/16/2021	7.3	1	5.103	100	9/18/2014	NA	9/1/2016
MW-16	chlorobenzene	3/16/2022	5.2	1	4.242	100	9/18/2014	NA	9/1/2016
MW-16	chlorobenzene	9/1/2022	2.1	1	2.528	100	9/18/2014	NA	9/1/2016
MW-16	chlorobenzene	3/24/2023	3.0	1	1.658	100	9/18/2014	NA	9/1/2016
MW-16	chlorobenzene	9/7/2023	<1	1	0.393	100	9/18/2014	NA	9/1/2016
MW-16	chlorobenzene	3/18/2024	5.2	1	0.393	100	9/18/2014	NA	9/1/2016
MW-16	chlorobenzene	9/25/2024	2.3	1	0.464	100	9/18/2014	NA	9/1/2016

KEY:

SSI

SSL LCL>GWPS

SSI

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-16	cis-1,2-dichloroethylene	9/18/2014	<1	1		70	9/1/2016	NA	9/1/2016
MW-16	cis-1,2-dichloroethylene	4/28/2015	<1	1		70	9/1/2016	NA	9/1/2016
MW-16	cis-1,2-dichloroethylene	10/6/2015	<1	1		70	9/1/2016	NA	9/1/2016
MW-16	cis-1,2-dichloroethylene	4/23/2016	<1	1	0.500	70	9/1/2016	NA	9/1/2016
MW-16	cis-1,2-dichloroethylene	9/1/2016	1.1	1	0.390	70	9/1/2016	NA	9/1/2016
MW-16	cis-1,2-dichloroethylene	3/21/2017	<1	1	0.390	70	9/1/2016	NA	9/1/2016
MW-16	cis-1,2-dichloroethylene	10/13/2017	1.2	1	0.498	70	9/1/2016	NA	9/1/2016
MW-16	cis-1,2-dichloroethylene	3/9/2018	<1	1	0.498	70	9/1/2016	NA	9/1/2016
MW-16	cis-1,2-dichloroethylene	9/6/2018	<1	1	0.372	70	9/1/2016	NA	9/1/2016
MW-16	cis-1,2-dichloroethylene	3/7/2019	1.4	1	0.494	70	9/1/2016	NA	9/1/2016
MW-16	cis-1,2-dichloroethylene	9/26/2019	<1	1	0.335	70	9/1/2016	NA	9/1/2016
MW-16	cis-1,2-dichloroethylene	4/2/2020	<1	1	0.335	70	9/1/2016	NA	9/1/2016
MW-16	cis-1,2-dichloroethylene	9/17/2020	<1	1	0.335	70	9/1/2016	NA	9/1/2016
MW-16	cis-1,2-dichloroethylene	3/25/2021	1.3	1	0.354	70	9/1/2016	NA	9/1/2016
MW-16	cis-1,2-dichloroethylene	9/16/2021	<1	1	0.354	70	9/1/2016	NA	9/1/2016
MW-16	cis-1,2-dichloroethylene	3/16/2022	2.1	1	0.199	70	9/1/2016	NA	9/1/2016
MW-16	cis-1,2-dichloroethylene	9/1/2022	<1	1	0.199	70	9/1/2016	NA	9/1/2016
MW-16	cis-1,2-dichloroethylene	3/24/2023	<1	1	0.000	70	9/1/2016	NA	9/1/2016
MW-16	cis-1,2-dichloroethylene	9/7/2023	<1	1	0.000	70	9/1/2016	NA	9/1/2016
MW-16	cis-1,2-dichloroethylene	3/18/2024	<1	1	0.500	70	9/1/2016	NA	9/1/2016
MW-16	cis-1,2-dichloroethylene	9/25/2024	<1	1	0.500	70	9/1/2016	NA	9/1/2016

Table 7 KEY:

KEY: SSI SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P Note: The absence of shading indicates that the condition does not exist.

		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-16	dichlorodifluoromethane	9/18/2014	3.6	1		1000	9/18/2014	NA	9/1/2016
MW-16	dichlorodifluoromethane	4/28/2015	2.6	1		1000	9/18/2014	NA	9/1/2016
MW-16	dichlorodifluoromethane	10/6/2015	2.9	1		1000	9/18/2014	NA	9/1/2016
MW-16	dichlorodifluoromethane	4/23/2016	3.2	1	2.705	1000	9/18/2014	NA	9/1/2016
MW-16	dichlorodifluoromethane	9/1/2016	3.6	1	2.705	1000	9/18/2014	NA	9/1/2016
MW-16	dichlorodifluoromethane	3/21/2017	2.2	1	2.463	1000	9/18/2014	NA	9/1/2016
MW-16	dichlorodifluoromethane	10/13/2017	1.6	1	1.858	1000	9/18/2014	NA	9/1/2016
MW-16	dichlorodifluoromethane	3/9/2018	3.0	1	1.838	1000	9/18/2014	NA	9/1/2016
MW-16	dichlorodifluoromethane	9/6/2018	<1	1	0.913	1000	9/18/2014	NA	9/1/2016
MW-16	dichlorodifluoromethane	3/7/2019	4.6	1	0.888	1000	9/18/2014	NA	9/1/2016
MW-16	dichlorodifluoromethane	9/26/2019	<1	1	0.406	1000	9/18/2014	NA	9/1/2016
MW-16	dichlorodifluoromethane	4/2/2020	<1	1	0.000	1000	9/18/2014	NA	9/1/2016
MW-16	dichlorodifluoromethane	9/17/2020	<1	1	0.000	1000	9/18/2014	NA	9/1/2016
MW-16	dichlorodifluoromethane	3/25/2021	NT	1	0.000	1000	9/18/2014	NA	9/1/2016
MW-16	dichlorodifluoromethane	9/16/2021	<1	1	0.500	1000	9/18/2014	NA	9/1/2016
MW-16	dichlorodifluoromethane	3/16/2022	NT	1	0.500	1000	9/18/2014	NA	9/1/2016
MW-16	dichlorodifluoromethane	9/1/2022	NT	1	0.500	1000	9/18/2014	NA	9/1/2016
MW-16	dichlorodifluoromethane	3/24/2023	NT	1	0.500	1000	9/18/2014	NA	9/1/2016
MW-16	dichlorodifluoromethane	9/7/2023	NT	1	0.500	1000	9/18/2014	NA	9/1/2016
MW-16	dichlorodifluoromethane	3/18/2024	NT	1	0.500	1000	9/18/2014	NA	9/1/2016
MW-16	dichlorodifluoromethane	9/25/2024	NT	1	0.500	1000	9/18/2014	NA	9/1/2016

SSI

KEY: SSI SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI
Annual Water Quality Report
Page County Sanitary Landfill

Permit No. 73-SDP-01-75P

Note: The absence of shading indicates that the condition does not exist.

		•					SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-18	Arsenic	9/17/2014	22.00	5.6		10	9/17/2014	NA	9/1/2016
MW-18	Arsenic	4/28/2015	45.90	5.6		10	9/17/2014	NA	9/1/2016
MW-18	Arsenic	10/6/2015	39.20	5.6		10	9/17/2014	NA	9/1/2016
MW-18	Arsenic	4/23/2016	51.80	5.6	28.563	10	9/17/2014	NA	9/1/2016
MW-18	Arsenic	9/1/2016	81.40	5.6	38.459	10	9/17/2014	NA	9/1/2016
MW-18	Arsenic	3/21/2017	49.70	5.6	39.842	10	9/17/2014	NA	9/1/2016
MW-18	Arsenic	10/13/2017	50.10	5.6	44.861	10	9/17/2014	NA	9/1/2016
MW-18	Arsenic	3/9/2018	46.10	5.6	42.551	10	9/17/2014	NA	9/1/2016
MW-18	Arsenic	9/6/2018	74.40	5.6	43.809	10	9/17/2014	NA	9/1/2016
MW-18	Arsenic	3/7/2019	87.20	5.6	47.426	10	9/17/2014	NA	9/1/2016
MW-18	Arsenic	9/26/2019	99.20	5.6	56.988	10	9/17/2014	NA	9/1/2016
MW-18	Arsenic	4/2/2020	81.70	5.6	76.567	10	9/17/2014	NA	9/1/2016
MW-18	Arsenic	9/17/2020	34.80	5.6	51.264	10	9/17/2014	NA	9/1/2016
MW-18	Arsenic	3/25/2021	9.60	5.6	20.518	10	9/17/2014	NA	9/1/2016
MW-18	Arsenic	9/16/2021	36.00	5.6	14.520	10	9/17/2014	NA	9/1/2016
MW-18	Arsenic	3/16/2022	34.70	5.6	13.722	10	9/17/2014	NA	9/1/2016
MW-18	Arsenic	9/1/2022	24.10	5.6	11.722	10	9/17/2014	NA	9/1/2016
MW-18	Arsenic	3/24/2023	67.40	5.6	18.581	10	9/17/2014	NA	9/1/2016
MW-18	Arsenic	9/7/2023	26.90	5.6	14.834	10	9/17/2014	NA	9/1/2016
MW-18	Arsenic	9/7/2023	23.70	5.6	10.473	10	9/17/2014	NA	9/1/2016
MW-18	Arsenic	9/7/2023	43.60	5.6	16.871	10	9/17/2014	NA	9/1/2016

KEY:

SSI

SSL LCL>GWPS

SSI

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-19	1,1-dichloroethane	9/17/2014	1.8	1		140	9/17/2014	NA	9/1/2016
MW-19	1,1-dichloroethane	4/28/2015	<1	1		140	9/17/2014	NA	9/1/2016
MW-19	1,1-dichloroethane	10/6/2015	1.3	1		140	9/17/2014	NA	9/1/2016
MW-19	1,1-dichloroethane	4/23/2016	2.2	1	0.816	140	9/17/2014	NA	9/1/2016
MW-19	1,1-dichloroethane	9/1/2016	1.6	1	0.788	140	9/17/2014	NA	9/1/2016
MW-19	1,1-dichloroethane	3/21/2017	2.2	1	1.435	140	9/17/2014	NA	9/1/2016
MW-19	1,1-dichloroethane	10/13/2017	1.0	1	1.253	140	9/17/2014	NA	9/1/2016
MW-19	1,1-dichloroethane	3/9/2018	3.1	1	1.199	140	9/17/2014	NA	9/1/2016
MW-19	1,1-dichloroethane	9/6/2018	3.0	1	1.484	140	9/17/2014	NA	9/1/2016
MW-19	1,1-dichloroethane	3/7/2019	<1	1	0.736	140	9/17/2014	NA	9/1/2016
MW-19	1,1-dichloroethane	9/26/2019	<1	1	0.500	140	9/17/2014	NA	9/1/2016
MW-19	1,1-dichloroethane	4/2/2020	<1	1	0.042	140	9/17/2014	NA	9/1/2016
MW-19	1,1-dichloroethane	9/17/2020	2.3	1	0.171	140	9/17/2014	NA	9/1/2016
MW-19	1,1-dichloroethane	3/25/2021	2.6	1	0.494	140	9/17/2014	NA	9/1/2016
MW-19	1,1-dichloroethane	9/16/2021	3.4	1	1.139	140	9/17/2014	NA	9/1/2016
MW-19	1,1-dichloroethane	3/16/2022	4.9	1	1.932	140	9/17/2014	NA	9/1/2016
MW-19	1,1-dichloroethane	9/1/2022	3.8	1	2.549	140	9/17/2014	NA	9/1/2016
MW-19	1,1-dichloroethane	3/24/2023	3.1	1	2.874	140	9/17/2014	NA	9/1/2016
MW-19	1,1-dichloroethane	9/7/2023	2.9	1	2.613	140	9/17/2014	NA	9/1/2016
MW-19	1,1-dichloroethane	3/18/2024	2.3	1	2.489	140	9/17/2014	NA	9/1/2016
MW-19R	1,1-dichloroethane	11/25/2024	3.0	1	2.514	140	9/17/2014	NA	9/1/2016

KEY:

SSI

SSL LCL>GWPS

SSI

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

Note: The absence of shading indicates that the condition does not exist.

		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-19	Benzene	9/17/2014	<1	1		5	3/16/2022	NA	9/1/2016
MW-19	Benzene	4/28/2015	<1	1		5	3/16/2022	NA	9/1/2016
MW-19	Benzene	10/6/2015	<1	1		5	3/16/2022	NA	9/1/2016
MW-19	Benzene	4/23/2016	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-19	Benzene	9/1/2016	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-19	Benzene	3/21/2017	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-19	Benzene	10/13/2017	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-19	Benzene	3/9/2018	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-19	Benzene	9/6/2018	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-19	Benzene	3/7/2019	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-19	Benzene	9/26/2019	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-19	Benzene	4/2/2020	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-19	Benzene	9/17/2020	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-19	Benzene	3/25/2021	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-19	Benzene	9/16/2021	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-19	Benzene	3/16/2022	1.2	1	0.263	5	3/16/2022	NA	9/1/2016
MW-19	Benzene	9/1/2022	1.0	1	0.381	5	3/16/2022	NA	9/1/2016
MW-19	Benzene	3/24/2023	<1	1	0.381	5	3/16/2022	NA	9/1/2016
MW-19	Benzene	9/7/2023	<1	1	0.381	5	3/16/2022	NA	9/1/2016
MW-19	Benzene	3/18/2024	<1	1	0.500	5	3/16/2022	NA	9/1/2016
MW-19R	Benzene	11/25/2024	<1	1	0.500	5	3/16/2022	NA	9/1/2016

KEY:

SSI

SSL LCL>GWPS

Note: The absence of shading indicates that the condition does not exist.

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

SSI

		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-19	Cloroethane	9/17/2014	<1	1		2800	3/16/2022	NA	9/1/2016
MW-19	Cloroethane	4/28/2015	<1	1		2800	3/16/2022	NA	9/1/2016
MW-19	Cloroethane	10/6/2015	<1	1		2800	3/16/2022	NA	9/1/2016
MW-19	Cloroethane	4/23/2016	<1	1	0.500	2800	3/16/2022	NA	9/1/2016
MW-19	Cloroethane	9/1/2016	<1	1	0.500	2800	3/16/2022	NA	9/1/2016
MW-19	Cloroethane	3/21/2017	<1	1	0.500	2800	3/16/2022	NA	9/1/2016
MW-19	Cloroethane	10/13/2017	<1	1	0.500	2800	3/16/2022	NA	9/1/2016
MW-19	Cloroethane	3/9/2018	<1	1	0.500	2800	3/16/2022	NA	9/1/2016
MW-19	Cloroethane	9/6/2018	<1	1	0.500	2800	3/16/2022	NA	9/1/2016
MW-19	Cloroethane	3/7/2019	<1	1	0.500	2800	3/16/2022	NA	9/1/2016
MW-19	Cloroethane	9/26/2019	<1	1	0.500	2800	3/16/2022	NA	9/1/2016
MW-19	Cloroethane	4/2/2020	<1	1	0.500	2800	3/16/2022	NA	9/1/2016
MW-19	Cloroethane	9/17/2020	<1	1	0.500	2800	3/16/2022	NA	9/1/2016
MW-19	Cloroethane	3/25/2021	<1	1	0.500	2800	3/16/2022	NA	9/1/2016
MW-19	Cloroethane	9/16/2021	<1	1	0.500	2800	3/16/2022	NA	9/1/2016
MW-19	Cloroethane	3/16/2022	1.4	1	0.196	2800	3/16/2022	NA	9/1/2016
MW-19	Cloroethane	9/1/2022	1.2	1	0.348	2800	3/16/2022	NA	9/1/2016
MW-19	Cloroethane	3/24/2023	<1	1	0.348	2800	3/16/2022	NA	9/1/2016
MW-19	Cloroethane	9/7/2023	<1	1	0.348	2800	3/16/2022	NA	9/1/2016
MW-19	Cloroethane	3/18/2024	<1	1	0.381	2800	3/16/2022	NA	9/1/2016
MW-19R	Cloroethane	11/25/2024	<1	1	0.500	2800	3/16/2022	NA	9/1/2016

KEY:

SSI SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

Note: The absence of shading indicates that the condition does not exist
--

							SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-19	cis-1,2-dichloroethylene	9/17/2014	<1	1		70	4/23/2016	NA	9/1/2016
MW-19	cis-1,2-dichloroethylene	4/28/2015	<1	1		70	4/23/2016	NA	9/1/2016
MW-19	cis-1,2-dichloroethylene	10/6/2015	<1	1		70	4/23/2016	NA	9/1/2016
MW-19	cis-1,2-dichloroethylene	4/23/2016	1.3	1	0.354	70	4/23/2016	NA	9/1/2016
MW-19	cis-1,2-dichloroethylene	9/1/2016	1.1	1	0.493	70	4/23/2016	NA	9/1/2016
MW-19	cis-1,2-dichloroethylene	3/21/2017	1.5	1	0.726	70	4/23/2016	NA	9/1/2016
MW-19	cis-1,2-dichloroethylene	10/13/2017	<1	1	0.726	70	4/23/2016	NA	9/1/2016
MW-19	cis-1,2-dichloroethylene	3/9/2018	1.9	1	0.733	70	4/23/2016	NA	9/1/2016
MW-19	cis-1,2-dichloroethylene	9/6/2018	2.6	1	0.865	70	4/23/2016	NA	9/1/2016
MW-19	cis-1,2-dichloroethylene	3/7/2019	<1	1	0.466	70	4/23/2016	NA	9/1/2016
MW-19	cis-1,2-dichloroethylene	9/26/2019	<1	1	0.466	70	4/23/2016	NA	9/1/2016
MW-19	cis-1,2-dichloroethylene	4/2/2020	<1	1	0.116	70	4/23/2016	NA	9/1/2016
MW-19	cis-1,2-dichloroethylene	9/17/2020	1.7	1	0.280	70	4/23/2016	NA	9/1/2016
MW-19	cis-1,2-dichloroethylene	3/25/2021	2.1	1	0.486	70	4/23/2016	NA	9/1/2016
MW-19	cis-1,2-dichloroethylene	9/16/2021	2.6	1	0.949	70	4/23/2016	NA	9/1/2016
MW-19	cis-1,2-dichloroethylene	3/16/2022	4.7	1	1.205	70	4/23/2016	NA	9/1/2016
MW-19	cis-1,2-dichloroethylene	9/1/2022	3.5	1	1.883	70	4/23/2016	NA	9/1/2016
MW-19	cis-1,2-dichloroethylene	3/24/2023	2.2	1	1.945	70	4/23/2016	NA	9/1/2016
MW-19	cis-1,2-dichloroethylene	9/7/2023	1.1	1	1.037	70	4/23/2016	NA	9/1/2016
MW-19	cis-1,2-dichloroethylene	3/18/2024	1.4	1	1.121	70	4/23/2016	NA	9/1/2016
MW-19R	cis-1,2-dichloroethylene	11/25/2024	2.4	1	1.235	70	4/23/2016	NA	9/1/2016

Table 7 KEY: Summary of Ongoing & Newly Identified SSI Note:

Note: The absence of shading indicates that the condition does not exist.

SSL LCL>GWPS

SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

							SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-19	Vinyl Chloride	9/17/2014	<1	1		2	9/6/2018	NA	9/1/2016
MW-19	Vinyl Chloride	4/28/2015	<1	1		2	9/6/2018	NA	9/1/2016
MW-19	Vinyl Chloride	10/6/2015	<1	1		2	9/6/2018	NA	9/1/2016
MW-19	Vinyl Chloride	4/23/2016	<1	1	0.500	2	9/6/2018	NA	9/1/2016
MW-19	Vinyl Chloride	9/1/2016	<1	1	0.500	2	9/6/2018	NA	9/1/2016
MW-19	Vinyl Chloride	3/21/2017	<1	1	0.500	2	9/6/2018	NA	9/1/2016
MW-19	Vinyl Chloride	10/13/2017	<1	1	0.500	2	9/6/2018	NA	9/1/2016
MW-19	Vinyl Chloride	3/9/2018	<1	1	0.500	2	9/6/2018	NA	9/1/2016
MW-19	Vinyl Chloride	9/6/2018	3.2	1	0.006	2	9/6/2018	NA	9/1/2016
MW-19	Vinyl Chloride	3/7/2019	<1	1	0.006	2	9/6/2018	NA	9/1/2016
MW-19	Vinyl Chloride	9/26/2019	<1	1	0.006	2	9/6/2018	NA	9/1/2016
MW-19	Vinyl Chloride	4/2/2020	<1	1	0.006	2	9/6/2018	NA	9/1/2016
MW-19	Vinyl Chloride	9/17/2020	1.4	1	0.335	2	9/6/2018	NA	9/1/2016
MW-19	Vinyl Chloride	3/25/2021	1.2	1	0.494	2	9/6/2018	NA	9/1/2016
MW-19	Vinyl Chloride	9/16/2021	1.9	1	0.788	2	9/6/2018	NA	9/1/2016
MW-19	Vinyl Chloride	3/16/2022	1.9	1	1.181	2	9/6/2018	NA	9/1/2016
MW-19	Vinyl Chloride	9/1/2022	2.1	1	1.311	2	9/6/2018	NA	9/1/2016
MW-19	Vinyl Chloride	3/24/2023	1.0	1	1.146	2	9/6/2018	NA	9/1/2016
MW-19	Vinyl Chloride	9/7/2023	1.2	1	0.924	2	9/6/2018	NA	9/1/2016
MW-19	Vinyl Chloride	3/18/2024	<1	1	0.621	2	9/6/2018	NA	9/1/2016
MW-19R	Vinyl Chloride	11/25/2024	<1	1	0.492	2	9/6/2018	NA	9/1/2016

Table 7 KEY: SSI SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report
Page County Sanitary Landfill
Permit No. 73-SDP-01-75P

Note: The absence of shading indicates that the condition does not exist.

							SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-20	Arsenic	9/18/2014	75.20	5.6		10	9/18/2014	NA	9/1/2016
MW-20	Arsenic	4/28/2015	45.50	5.6		10	9/18/2014	NA	9/1/2016
MW-20	Arsenic	10/6/2015	81.70	5.6		10	9/18/2014	NA	9/1/2016
MW-20	Arsenic	4/23/2016	81.50	5.6	56.037	10	9/18/2014	NA	9/1/2016
MW-20	Arsenic	9/1/2016	77.10	5.6	56.355	10	9/18/2014	NA	9/1/2016
MW-20	Arsenic	3/21/2017	79.10	5.6	77.961	10	9/18/2014	NA	9/1/2016
MW-20	Arsenic	10/13/2017	96.80	5.6	75.861	10	9/18/2014	NA	9/1/2016
MW-20	Arsenic	3/9/2018	83.40	5.6	76.422	10	9/18/2014	NA	9/1/2016
MW-20	Arsenic	9/6/2018	99.60	5.6	81.058	10	9/18/2014	NA	9/1/2016
MW-20	Arsenic	3/7/2019	78.40	5.6	80.666	10	9/18/2014	NA	9/1/2016
MW-20	Arsenic	9/26/2019	83.60	5.6	78.266	10	9/18/2014	NA	9/1/2016
MW-20	Arsenic	4/2/2020	65.20	5.6	69.380	10	9/18/2014	NA	9/1/2016
MW-20	Arsenic	9/17/2020	87.10	5.6	70.256	10	9/18/2014	NA	9/1/2016
MW-20	Arsenic	3/25/2021	106.00	5.6	70.997	10	9/18/2014	NA	9/1/2016
MW-20	Arsenic	9/16/2021	87.80	5.6	72.068	10	9/18/2014	NA	9/1/2016
MW-20	Arsenic	3/16/2022	127.00	5.6	79.816	10	9/18/2014	NA	9/1/2016
MW-20	Arsenic	9/1/2022	133.00	5.6	89.160	10	9/18/2014	NA	9/1/2016
MW-20	Arsenic	3/24/2023	94.60	5.6	83.892	10	9/18/2014	NA	9/1/2016
MW-20	Arsenic	9/7/2023	83.40	5.6	80.995	10	9/18/2014	NA	9/1/2016
MW-20	Arsenic	3/18/2024	112.00	5.6	80.290	10	9/18/2014	NA	9/1/2016
MW-20	Arsenic	9/25/2024	44.10	5.6	49.651	10	9/18/2014	NA	9/1/2016

Table 7 KEY: SSI SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

	1 CHINE 140. 73-351 -01-75	•				SSI				
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background	
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample	
MW-20	Barium	9/18/2014	2370.0	744.8651	744.8651 2000 9/18/2014 NA		NA	9/1/2016		
MW-20	Barium	4/28/2015	2390.0	744.8651		2000	9/18/2014	NA	9/1/2016	
MW-20	Barium	10/6/2015	2490.0	744.8651		2000	9/18/2014	NA	9/1/2016	
MW-20	Barium	4/23/2016	2260.0	744.8651	2295.838	2000	9/18/2014	NA	9/1/2016	
MW-20	Barium	9/1/2016	2140.0	744.8651	2187.902 2000		9/18/2014	NA	9/1/2016	
MW-20	Barium	3/21/2017	2140.0	744.8651	2114.606 2000 9/18/2014		NA	9/1/2016		
MW-20	Barium	10/13/2017	2340.0	744.8651	2135.147	2000	9/18/2014	NA	9/1/2016	
MW-20	Barium	3/9/2018	2010.0	744.8651	2039.522	2000	9/18/2014	NA	9/1/2016	
MW-20	Barium	9/6/2018	2360.0	744.8651	2067.349	2000	9/18/2014	NA	9/1/2016	
MW-20	Barium	3/7/2019	2100.0	744.8651	2051.441	2000	9/18/2014	NA	9/1/2016	
MW-20	Barium	9/26/2019	2350.0	744.8651	2051.621	2000	9/18/2014	NA	9/1/2016	
MW-20	Barium	4/2/2020	2300.0	744.8651	2172.530	2000	9/18/2014	NA	9/1/2016	
MW-20	Barium	9/17/2020	1970.0	744.8651	2026.866	2000	9/18/2014	NA	9/1/2016	
MW-20	Barium	3/25/2021	1970.0	744.8651	1969.122	2000	9/18/2014	NA	9/1/2016	
MW-20	Barium	9/16/2021	2160.0	744.8651	1960.896	2000	9/18/2014	NA	9/1/2016	
MW-20	Barium	3/16/2022	1890.0	744.8651	1862.568	2000	9/18/2014	NA	9/1/2016	
MW-20	Barium	9/1/2022	2020.0	744.8651	1876.572	2000	9/18/2014	NA	9/1/2016	
MW-20	Barium	3/24/2023	2000.0	762.2866	1887.087	2000	9/18/2014	NA	9/1/2016	
MW-20	Barium	9/7/2023	1810.0	754.8120	1814.348	2000	9/18/2014	NA	9/1/2016	
MW-20	Barium	3/18/2024	2110.0	776.0663	1836.676	2000	9/18/2014	NA	9/1/2016	
MW-20	Barium	9/25/2024	1950.0	769.2044	1821.093	2000	9/18/2014	NA	9/1/2016	

Table 7 KEY: SSI SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

	1 CITILL 140. 75-501 -01-75	•							
							SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-20	acetone	9/18/2014	<10	10	5.000	6300	9/18/2014	NA	9/1/2016
MW-20	acetone	4/28/2015	<10	10	5.000	6300	9/18/2014	NA	9/1/2016
MW-20	acetone	10/6/2015	<10	10	5.000	6300	9/18/2014	NA	9/1/2016
MW-20	acetone	4/23/2016	<10	10	5.000	6300	9/18/2014	NA	9/1/2016
MW-20	acetone	9/1/2016	<10	10	5.000	6300	9/18/2014	NA	9/1/2016
MW-20	acetone	3/21/2017	<10	10	5.000	6300	9/18/2014	NA	9/1/2016
MW-20	acetone	10/13/2017	<10	10	5.000	6300	9/18/2014	NA	9/1/2016
MW-20	acetone	3/9/2018	<10	10	5.000	6300	9/18/2014	NA	9/1/2016
MW-20	acetone	9/6/2018	<10	10	5.000	6300	9/18/2014	NA	9/1/2016
MW-20	acetone	3/7/2019	<10	10	5.000	6300	9/18/2014	NA	9/1/2016
MW-20	acetone	9/26/2019	<10	10	5.000	6300	9/18/2014	NA	9/1/2016
MW-20	acetone	4/2/2020	<10	10	5.000	6300	9/18/2014	NA	9/1/2016
MW-20	acetone	9/17/2020	<10	10	5.000	6300	9/18/2014	NA	9/1/2016
MW-20	acetone	3/25/2021	<10	10	5.000	6300	9/18/2014	NA	9/1/2016
MW-20	acetone	9/16/2021	<10	10	5.000	6300	9/18/2014	NA	9/1/2016
MW-20	acetone	3/16/2022	57.2	10	0.000	6300	9/18/2014	NA	9/1/2016
MW-20	acetone	9/1/2022	<10	10	0.000	6300	9/18/2014	NA	9/1/2016
MW-20	acetone	3/24/2023	<10	10	0.000	6300	9/18/2014	NA	9/1/2016
MW-20	acetone	9/7/2023	<10	10	0.000	6300	9/18/2014	NA	9/1/2016
MW-20	acetone	3/18/2024	<10	10	5.000	6300	9/18/2014	NA	9/1/2016
MW-20	acetone	9/25/2024	<10	10	5.000	6300	9/18/2014	NA	9/1/2016

 Table 7
 KEY:
 SSI
 SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P Note: The absence of shading indicates that the condition does not exist.

Sample Each Prediction GWPS Initial Resamples	
Monitoring Well Compound Date Result (ug/L) Limit (ug/L) 95% LCL (ug/L) Limit (ug/L) Exceedance Due MW-20 benzene 9/18/2014 1.9 1 5 9/18/2014 NA MW-20 benzene 4/28/2015 1.9 1 5 9/18/2014 NA MW-20 benzene 10/6/2015 2.0 1 5 9/18/2014 NA MW-20 benzene 4/23/2016 1.5 1 1.633 5 9/18/2014 NA	5th Background
MW-20 benzene 4/28/2015 1.9 1 5 9/18/2014 NA MW-20 benzene 10/6/2015 2.0 1 5 9/18/2014 NA MW-20 benzene 4/23/2016 1.5 1 1.633 5 9/18/2014 NA	Sample
MW-20 benzene 10/6/2015 2.0 1 5 9/18/2014 NA MW-20 benzene 4/23/2016 1.5 1 1.633 5 9/18/2014 NA	9/1/2016
MW-20 benzene 4/23/2016 1.5 1 1.633 5 9/18/2014 NA	9/1/2016
	9/1/2016
MW-20 benzene 9/1/2016 1.9 1 1.633 5 9/18/2014 NA	9/1/2016
	9/1/2016
MW-20 benzene 3/21/2017 2.6 1 1.606 5 9/18/2014 NA	9/1/2016
MW-20 benzene 10/13/2017 2.0 1 1.606 5 9/18/2014 NA	9/1/2016
MW-20 benzene 3/9/2018 2.9 1 1.935 5 9/18/2014 NA	9/1/2016
MW-20 benzene 9/6/2018 3.6 1 2.199 5 9/18/2014 NA	9/1/2016
MW-20 benzene 3/7/2019 2.5 1 2.165 5 9/18/2014 NA	9/1/2016
MW-20 benzene 9/26/2019 3.1 1 2.629 5 9/18/2014 NA	9/1/2016
MW-20 benzene 4/2/2020 2.8 1 2.594 5 9/18/2014 NA	9/1/2016
MW-20 benzene 9/17/2020 <1 1 1.207 5 9/18/2014 NA	9/1/2016
MW-20 benzene 3/25/2021 3.3 1 1.299 5 9/18/2014 NA	9/1/2016
MW-20 benzene 9/16/2021 3.0 1 1.289 5 9/18/2014 NA	9/1/2016
MW-20 benzene 3/16/2022 3.8 1 0.920 5 9/18/2014 NA	9/1/2016
MW-20 benzene 9/1/2022 2.6 1 2.580 5 9/18/2014 NA	9/1/2016
MW-20 benzene 3/24/2023 2.6 1 2.335 5 9/18/2014 NA	9/1/2016
MW-20 benzene 9/7/2023 2.0 1 1.682 5 9/18/2014 NA	9/1/2016
MW-20 benzene 3/18/2024 2.2 1 1.997 5 9/18/2014 NA	9/1/2016
MW-20 benzene 9/25/2024 2.1 1 1.916 5 9/18/2014 NA	9/1/2016

Table 7

KEY:

SSI

SSL LCL>GWPS

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

Note: The absence of shading indicates that the condition does not exist.

	7 6111116 1401 73 021 01 731						SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-20	bis(2-ethylhexyl)phthalate	9/18/2014	NT	6		6	9/16/2021	NA	9/1/2016
MW-20	bis(2-ethylhexyl)phthalate	4/28/2015	NT	6		6	9/16/2021	NA	9/1/2016
MW-20	bis(2-ethylhexyl)phthalate	10/6/2015	NT	6		6	9/16/2021	NA	9/1/2016
MW-20	bis(2-ethylhexyl)phthalate	4/23/2016	NT	6		6	9/16/2021	NA	9/1/2016
MW-20	bis(2-ethylhexyl)phthalate	9/1/2016	<6	6		6	9/16/2021	NA	9/1/2016
MW-20	bis(2-ethylhexyl)phthalate	3/21/2017	NT	6		6	9/16/2021	NA	9/1/2016
MW-20	bis(2-ethylhexyl)phthalate	10/13/2017	NT	6		6	9/16/2021	NA	9/1/2016
MW-20	bis(2-ethylhexyl)phthalate	3/9/2018	NT	6		6	9/16/2021	NA	9/1/2016
MW-20	bis(2-ethylhexyl)phthalate	9/6/2018	NT	6		6	9/16/2021	NA	9/1/2016
MW-20	bis(2-ethylhexyl)phthalate	3/7/2019	NT	6		6	9/16/2021	NA	9/1/2016
MW-20	bis(2-ethylhexyl)phthalate	9/26/2019	NT	6		6	9/16/2021	NA	9/1/2016
MW-20	bis(2-ethylhexyl)phthalate	4/2/2020	NT	6		6	9/16/2021	NA	9/1/2016
MW-20	bis(2-ethylhexyl)phthalate	9/17/2020	NT	6		6	9/16/2021	NA	9/1/2016
MW-20	bis(2-ethylhexyl)phthalate	3/25/2021	NT	6		6	9/16/2021	NA	9/1/2016
MW-20	bis(2-ethylhexyl)phthalate	9/16/2021	8.0	6	2.647	6	9/16/2021	NA	9/1/2016
MW-20	bis(2-ethylhexyl)phthalate	3/16/2022	7.0	6	3.325	6	9/16/2021	NA	9/1/2016
MW-20	bis(2-ethylhexyl)phthalate	9/1/2022	<6	6	3.325	6	9/16/2021	NA	9/1/2016
MW-20	bis(2-ethylhexyl)phthalate	3/24/2023	NT	6	3.325	6	9/16/2021	NA	9/1/2016
MW-20	bis(2-ethylhexyl)phthalate	9/7/2023	NT	6	3.325	6	9/16/2021	NA	9/1/2016
MW-20	bis(2-ethylhexyl)phthalate	3/18/2024	NT	6	3.325	6	9/16/2021	NA	9/1/2016
MW-20	bis(2-ethylhexyl)phthalate	9/25/2024	NT	6	3.325	6	9/16/2021	NA	9/1/2016

Table 7

KEY:

9/25/2024

1.9

SSL LCL>GWPS Note: The absence of shading indicates that the condition does not exist.

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

chlorobenzene

MW-20

							SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-20	chlorobenzene	9/18/2014	<1	1		100	9/6/2018	NA	9/1/2016
MW-20	chlorobenzene	4/28/2015	<1	1		100	9/6/2018	NA	9/1/2016
MW-20	chlorobenzene	10/6/2015	<1	1		100	9/6/2018	NA	9/1/2016
MW-20	chlorobenzene	4/23/2016	<1	1	0.500	100	9/6/2018	NA	9/1/2016
MW-20	chlorobenzene	9/1/2016	<1	1	0.500	100	9/6/2018	NA	9/1/2016
MW-20	chlorobenzene	3/21/2017	<1	1	0.500	100	9/6/2018	NA	9/1/2016
MW-20	chlorobenzene	10/13/2017	<1	1	0.500	100	9/6/2018	NA	9/1/2016
MW-20	chlorobenzene	3/9/2018	<1	1	0.500	100	9/6/2018	NA	9/1/2016
MW-20	chlorobenzene	9/6/2018	1.2	1	0.372	100	9/6/2018	NA	9/1/2016
MW-20	chlorobenzene	3/7/2019	<1	1	0.372	100	9/6/2018	NA	9/1/2016
MW-20	chlorobenzene	9/26/2019	<1	1	0.372	100	9/6/2018	NA	9/1/2016
MW-20	chlorobenzene	4/2/2020	1.0	1	0.492	100	9/6/2018	NA	9/1/2016
MW-20	chlorobenzene	9/17/2020	1.2	1	0.492	100	9/6/2018	NA	9/1/2016
MW-20	chlorobenzene	3/25/2021	1.1	1	0.681	100	9/6/2018	NA	9/1/2016
MW-20	chlorobenzene	9/16/2021	1.1	1	1.029	100	9/6/2018	NA	9/1/2016
MW-20	chlorobenzene	3/16/2022	1.1	1	1.066	100	9/6/2018	NA	9/1/2016
MW-20	chlorobenzene	9/1/2022	1.1	1	1.100	100	9/6/2018	NA	9/1/2016
MW-20	chlorobenzene	3/24/2023	<1	1	0.597	100	9/6/2018	NA	9/1/2016
MW-20	chlorobenzene	9/7/2023	1.0	1	0.587	100	9/6/2018	NA	9/1/2016
MW-20	chlorobenzene	3/18/2024	1.2	1	0.584	100	9/6/2018	NA	9/1/2016

0.467

100

9/6/2018

NA

9/1/2016

Table 7 KEY:

Note: The absence of shading indicates that the condition does not exist.

SSL LCL>GWPS

SSI

Summary of Ongoing & Newly Identified SSI

Annual Water Quality Report

Page County Sanitary Landfill

Permit No. 73-SDP-01-75P

							SSI		
		Sample	Each	Prediction		GWPS	Initial	Resamples	5th Background
Monitoring Well	Compound	Date	Result (ug/L)	Limit (ug/L)	95% LCL (ug/L)	Limit (ug/L)	Exceedance	Due	Sample
MW-20	chloroethane	9/18/2014	2.1	1		2800	9/18/2014	NA	9/1/2016
MW-20	chloroethane	4/28/2015	2.9	1		2800	9/18/2014	NA	9/1/2016
MW-20	chloroethane	10/6/2015	2.3	1		2800	9/18/2014	NA	9/1/2016
MW-20	chloroethane	4/23/2016	1.6	1	1.759	2800	9/18/2014	NA	9/1/2016
MW-20	chloroethane	9/1/2016	<1	1	0.932	2800	9/18/2014	NA	9/1/2016
MW-20	chloroethane	3/21/2017	2.4	1	0.942	2800	9/18/2014	NA	9/1/2016
MW-20	chloroethane	10/13/2017	2.3	1	0.942	2800	9/18/2014	NA	9/1/2016
MW-20	chloroethane	3/9/2018	2.0	1	1.035	2800	9/18/2014	NA	9/1/2016
MW-20	chloroethane	9/6/2018	2.8	1	2.089	2800	9/18/2014	NA	9/1/2016
MW-20	chloroethane	3/7/2019	1.6	1	1.737	2800	9/18/2014	NA	9/1/2016
MW-20	chloroethane	9/26/2019	2.0	1	1.664	2800	9/18/2014	NA	9/1/2016
MW-20	chloroethane	4/2/2020	1.6	1	1.510	2800	9/18/2014	NA	9/1/2016
MW-20	chloroethane	9/17/2020	1.6	1	1.527	2800	9/18/2014	NA	9/1/2016
MW-20	chloroethane	3/25/2021	1.6	1	1.527	2800	9/18/2014	NA	9/1/2016
MW-20	chloroethane	9/16/2021	1.8	1	1.563	2800	9/18/2014	NA	9/1/2016
MW-20	chloroethane	3/16/2022	1.6	1	1.532	2800	9/18/2014	NA	9/1/2016
MW-20	chloroethane	9/1/2022	1.7	1	1.562	2800	9/18/2014	NA	9/1/2016
MW-20	chloroethane	3/24/2023	<1	1	0.688	2800	9/18/2014	NA	9/1/2016
MW-20	chloroethane	9/7/2023	1.5	1	0.671	2800	9/18/2014	NA	9/1/2016
MW-20	chloroethane	3/18/2024	1.2	1	0.607	2800	9/18/2014	NA	9/1/2016
MW-20	chloroethane	9/25/2024	<1	1	0.330	2800	9/18/2014	NA	9/1/2016

Table 8 - Summary of Ongoing and Newly Identified SSL

Table 8 KEY: SSI SSL UCL>GWPS

Summary of Ongoing & Newly Identified SSL

Note: The absence of shading indicates that the condition does not exist.

Annual Water Quality Report Page County Sanitary Landfill Permit No. 73-SDP-01-75P

						CCI	Camalianas Data	Camalianaa Data	Camarillanaa Data
		Sample	Each		GWPS	SSL Initial	Compliance Date 1st	Compliance Date Most	Compliance Date Duration
Monitoring Well	Compound	Date	Result (ug/L)	95% UCL (ug/L)	Limit (ug/L)	Exceedance	Occurrence	Recent	(years)
MW-18	Arsenic	9/17/2014	22.00		10	NA	NA	NA	NA
MW-18	Arsenic	4/28/2015	45.90		10	NA	NA	NA	NA
MW-18	Arsenic	10/6/2015	39.20		10	NA	NA	NA	NA
MW-18	Arsenic	4/23/2016	51.80	50.887	10	NA	NA	NA	NA
MW-18	Arsenic	9/1/2016	81.40	70.691	10	NA	NA	NA	NA
MW-18	Arsenic	3/21/2017	49.70	71.208	10	NA	NA	NA	NA
MW-18	Arsenic	10/13/2017	50.10	71.639	10	NA	NA	NA	NA
MW-18	Arsenic	3/9/2018	46.10	71.099	10	NA	NA	NA	NA
MW-18	Arsenic	9/6/2018	74.40	66.341	10	NA	NA	NA	NA
MW-18	Arsenic	3/7/2019	87.20	81.474	10	NA	NA	NA	NA
MW-18	Arsenic	9/26/2019	99.20	96.462	10	NA	NA	NA	NA
MW-18	Arsenic	4/2/2020	81.70	94.683	10	NA	NA	NA	NA
MW-18	Arsenic	9/17/2020	34.80	100.186	10	NA	NA	NA	NA
MW-18	Arsenic	3/25/2021	9.60	92.132	10	NA	NA	NA	NA
MW-18	Arsenic	9/16/2021	36.00	66.530	10	NA	NA	NA	NA
MW-18	Arsenic	3/16/2022	34.70	43.828	10	NA	NA	NA	NA
MW-18	Arsenic	9/1/2022	24.10	40.478	10	NA	NA	NA	NA
MW-18	Arsenic	3/24/2023	67.40	62.519	10	NA	NA	NA	NA
MW-18	Arsenic	9/7/2023	26.90	61.716	10	NA	NA	NA	NA
MW-18	Arsenic	9/7/2023	23.70	60.577	10	NA	NA	NA	NA
MW-18	Arsenic	9/7/2023	43.60	63.929	10	NA	NA	NA	NA

Bold GWPS = A Site Specific GWPS that is equal to the Prediction Limit. All other GWPS are IAC 567-137 Statewaide Standards for Protected Groundwater.

Table 8

KEY:

SSI

SSL UCL>GWPS

Summary of Ongoing & Newly Identified SSL

Annual Water Quality Report
Page County Sanitary Landfill
Permit No. 73-SDP-01-75P

Note: The absence of shading indicates that the condition does not exist.

						CCI	Camplianas Data	Commission of Data	Commission of Data
		Commis	Cook		CMDC	SSL Initial	Compliance Date	Compliance Date	Compliance Date
		Sample	Each		GWPS		1st	Most	Duration
Monitoring Well	Compound	Date	Result (ug/L)	95% UCL (ug/L)	Limit (ug/L)	Exceedance	Occurrence	Recent	(years)
MW-20	Arsenic	9/18/2014	75.20		10	NA	NA	NA	NA
MW-20	Arsenic	4/28/2015	45.50		10	NA	NA	NA	NA
MW-20	Arsenic	10/6/2015	81.70		10	NA	NA	NA	NA
MW-20	Arsenic	4/23/2016	81.50	85.913	10	NA	NA	NA	NA
MW-20	Arsenic	9/1/2016	77.10	86.545	10	NA	NA	NA	NA
MW-20	Arsenic	3/21/2017	79.10	81.739	10	NA	NA	NA	NA
MW-20	Arsenic	10/13/2017	96.80	91.389	10	NA	NA	NA	NA
MW-20	Arsenic	3/9/2018	83.40	91.788	10	NA	NA	NA	NA
MW-20	Arsenic	9/6/2018	99.60	98.392	10	NA	NA	NA	NA
MW-20	Arsenic	3/7/2019	78.40	98.434	10	NA	NA	NA	NA
MW-20	Arsenic	9/26/2019	83.60	94.234	10	NA	NA	NA	NA
MW-20	Arsenic	4/2/2020	65.20	94.020	10	NA	NA	NA	NA
MW-20	Arsenic	9/17/2020	87.10	86.894	10	NA	NA	NA	NA
MW-20	Arsenic	3/25/2021	106.00	99.953	10	NA	NA	NA	NA
MW-20	Arsenic	9/16/2021	87.80	100.982	10	NA	NA	NA	NA
MW-20	Arsenic	3/16/2022	127.00	124.134	10	NA	NA	NA	NA
MW-20	Arsenic	9/1/2022	133.00	137.740	10	NA	NA	NA	NA
MW-20	Arsenic	3/24/2023	94.60	137.308	10	NA	NA	NA	NA
MW-20	Arsenic	9/7/2023	83.40	138.005	10	NA	NA	NA	NA
MW-20	Arsenic	3/18/2024	112.00	131.210	10	NA	NA	NA	NA
MW-20	Arsenic	9/25/2024	44.10	117.399	10	NA	NA	NA	NA

Table 8

KEY:

SSI

SSL UCL>GWPS

Summary of Ongoing & Newly Identified SSL

Annual Water Quality Report
Page County Sanitary Landfill
Permit No. 73-SDP-01-75P

Note: The absence of	of shadina indicat	es that the condition	n does not exist.

		•				SSL	Compliance Date	Compliance Date	Compliance Date
		Sample	Each		GWPS	Initial	1st	Most	Duration
Monitoring Well	Compound	Date	Result (ug/L)	95% UCL (ug/L)	Limit (ug/L)	Exceedance	Occurrence	Recent	(years)
MW-20	Barium	9/18/2014	2370.0		2000	NA	NA	NA	NA
MW-20	Barium	4/28/2015	2390.0		2000	NA	NA	NA	NA
MW-20	Barium	10/6/2015	2490.0		2000	NA	NA	NA	NA
MW-20	Barium	4/23/2016	2260.0	2459.162	2000	NA	NA	NA	NA
MW-20	Barium	9/1/2016	2140.0	2452.098	2000	NA	NA	NA	NA
MW-20	Barium	3/21/2017	2140.0	2400.394	2000	NA	NA	NA	NA
MW-20	Barium	10/13/2017	2340.0	2304.853	2000	NA	NA	NA	NA
MW-20	Barium	3/9/2018	2010.0	2275.478	2000	NA	NA	NA	NA
MW-20	Barium	9/6/2018	2360.0	2357.651	2000	NA	NA	NA	NA
MW-20	Barium	3/7/2019	2100.0	2353.559	2000	NA	NA	NA	NA
MW-20	Barium	9/26/2019	2350.0	2358.379	2000	NA	NA	NA	NA
MW-20	Barium	4/2/2020	2300.0	2382.470	2000	NA	NA	NA	NA
MW-20	Barium	9/17/2020	1970.0	2333.134	2000	NA	NA	NA	NA
MW-20	Barium	3/25/2021	1970.0	2325.878	2000	NA	NA	NA	NA
MW-20	Barium	9/16/2021	2160.0	2239.104	2000	NA	NA	NA	NA
MW-20	Barium	3/16/2022	1890.0	2132.432	2000	NA	NA	NA	NA
MW-20	Barium	9/1/2022	2020.0	2143.428	2000	NA	NA	NA	NA
MW-20	Barium	3/24/2023	2000.0	2147.913	2000	NA	NA	NA	NA
MW-20	Barium	9/7/2023	1810.0	2045.652	2000	NA	NA	NA	NA
MW-20	Barium	3/18/2024	2110.0	2133.324	2000	NA	NA	NA	NA
MW-20	Barium	9/25/2024	1950.0	2113.907	2000	NA	NA	NA	NA

Table 9 – Analytical Data Summary

Table 9

Analytical Data Summary for GU 3

1,1,1,2-tetrachloroethane	Constituents	Units	8/1/2024	9/25/2024
1,1,1-trichloroethane	1,1,1,2-tetrachloroethane	ug/L	<1	<1
1,1-dichloroethane	1,1,1-trichloroethane	ug/L	<1	<1
1,1-dichloroethane	1,1,2,2-tetrachloroethane	ug/L	<1	<1
1,1-dichloroethylene	1,1,2-trichloroethane	ug/L	<1	<1
1,2,3-trichloropropane	1,1-dichloroethane	ug/L	<1	<1
1,2-dibromo-3-chioropropane	1,1-dichloroethylene	ug/L	<1	<1
1,2-dichlorobenzene	1,2,3-trichloropropane	ug/L		<1
1,2-dichlorobenzene				
1,2-dichloropropane ug/L <1 <1 1,2-dichloropropane ug/L <1 <1 <1 <1 <1 <1 <1 <				
1,2-dichloropropane				
1,4-dichlorobenzene				
2-butanone (mek) ug/L <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1				
2-hexanone (mbk)				
4-methyl-2-pentanone (mibk)				
Acetone				
Acrylonitrile				
Antimony, total		l •		- 1
Arsenic, total ug/L ug/L 287 242 Barium, total ug/L ug/L 287 242 Benzene ug/L ug/L 44 44 Beryllium, total ug/L 41 41 Bromochloromethane ug/L 41 41 Bromodichloromethane ug/L 41 41 Bromoform ug/L 41 41 Bromoform ug/L 41 41 Bromomethane ug/L 41 41 Bromomethane ug/L 41 41 Cadmium, total ug/L 41 41 Cadmoum, total ug/L 41 41 Carbon disulfide ug/L 41 41 Carbon tetrachloride ug/L 41 41 Chlorobenzene ug/L 41 41 Chloroform ug/L 41 41 Chloroform ug/L 41 41 Chloromethane ug/L 41 41 Chloromethane ug/L 41 41 Chloromethane ug/L 41 41 Cis-1,2-dichloroethylene ug/L 41 41 Cis-1,3-dichloropropene ug/L 41 41 Copper, total ug/L 44 44 Copper, total ug/L 44 44 Dibromochloromethane ug/L 41 41 Dibromomethane ug/L 41 41 Dibromomethane ug/L 41 41 Dibromomethane ug/L 41 41 Dibromomethane ug/L 41 41 Dibromochloromethane ug/L 41 41 Dibromomethane ug/L 41 41 Dibromomethane ug/L 41 41 Dibromomethane ug/L 41 41 Dibromochloromethane ug/L 41 41 Dibromochloromethane ug/L 41 41 Dibromochloromethane ug/L 41 41 Dibromochloromethane ug/L 41 41 Carbon disulfide ug/L 41 41 Dibromochloromethane ug/L 41 41 Dibromochloromethane ug/L 41 41 Carbon disulfide ug/L 41 4				- 1
Barium, total Benzene Ug/L C1 C1 C2 C2 C2 C2 C2 C2				
Benzene				
Beryllium, total ug/L c4 c4 Bromochloromethane ug/L c1 c1 c1 c1 c1 c1 c2 c2				
Bromochloromethane ug/L c1 c1 c1 c1 c1 c3 c3 c3				
Bromodichloromethane				
Bromoform ug/L c1 c1 c1 c2 c3 c3 c4 c4 c4 c4 c4 c4				
Bromomethane				
Cadmium, total				• 1
Carbon disulfide		0		
Carbon tetrachloride			<1	
Chlorobenzene ug/L <1	Carbon tetrachloride	0	<1	<1
Chloroform ug/L <1	Chlorobenzene		<1	<1
Chloromethane ug/L <1	Chloroethane	ug/L	<1	<1
Chromium, total ug/L <8	Chloroform	ug/L	<1	<1
Cis-1,2-dichloroethylene ug/L <1	Chloromethane	ug/L		
Cis-1,3-dichloropropene ug/L <1		ug/L		
Cobalt, total ug/L .4 <.4				
Copper, total				
Dibromochloromethane				
Dibromomethane				
Ethylbenzene				
Lead, total ug/L	III	J 0		
Methyl iodide ug/L <1				
Methylene chloride	111			
Nickel, total ug/L 6.1 <4.0 Selenium, total ug/L ug/L <4 4 4 4 Silver, total ug/L <4 <4 <4 <4 <4 <4 <4 <				
Selenium, total ug/L	111			- 1
Silver, total Ug/L				
Styrene				• 1
Tetrachloroethylene		0		
Thallium, total ug/L vg/L vg/				
Toluene				
Trans-1,2-dichloroethylene		0		
Trans-1,3-dichloropropene ug/L <1				• 1
Trans-1,4-dichloro-2-butene				
Trichloroethylene				
Trichlorofluoromethane		I	1 - 1	- 1
Vanadium, total ug/L <20				
Vinyl acetate				
Vinýl chloride ug/L <1 <1 <1 xylenes, total ug/L <2 <2				
Xylenes, total ug/L <2 <2				
Zing total 1.21 172 173 1				<2
ZIIIC, IUIAI Ug/L 1/3 <20	Zinc, total	ug/L	173	<20

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for GU 4

Constituents	Units	8/1/2024	9/25/2024
1,1,1,2-tetrachloroethane	ug/L	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1
1,1-dichloroethane	ug/L	<1	<1
1,1-dichloroethylene	ug/L	<1	<1
1,2,3-trichloropropane	ug/L	<1	<1
1,2-dibromo-3-chloropropane	ug/L	<5	<5
1,2-dibromoethane	ug/L	<1	<1
1,2-dichlorobenzene	ug/L	<1	<1
1,2-dichloroethane	ug/L	<1	<1
1,2-dichloropropane	ug/L	<1	<1
1,4-dichlorobenzene	ug/L	<1 <10	<1 <10
2-butanone (mek)	ug/L	<5	<5
2-hexanone (mbk) 4-methyl-2-pentanone (mibk)	ug/L ug/L	<5 <5	<5
Acetone	ug/L ug/L	<10	<10
Acrylonitrile	ug/L ug/L	<5	<5
Antimony, total	ug/L	<2	<2
Arsenic, total	ug/L ug/L	<4	<4
Barium, total	ug/L	272	289
Benzene	ug/L	<1	<1
Beryllium, total	ug/L	<4	<4
Bromochloromethane	ug/L	<1	<1
Bromodichloromethane	ug/L	<1	<1
Bromoform	ug/L	<1	<1
Bromomethane	ug/L	<1	<1
Cadmium, total	ug/L	<.8	<.8
Carbon disulfide	ug/L	<1	<1
Carbon tetrachloride	ug/L	<1	<1
Chlorobenzene	ug/L	<1	<1
Chloroethane	ug/L	<1	<1
Chloroform	ug/L	<1	<1
Chloromethane	ug/L	<1	<1
Chromium, total	ug/L	<8 <1	<8 <1
Cis-1,2-dichloroethylene Cis-1,3-dichloropropene	ug/L ug/L	<1	<1
Cobalt, total	ug/L ug/L	<.4	<.4
Copper, total	ug/L ug/L	<4	<4
Dibromochloromethane	ug/L	<1	<1
Dibromomethane	ug/L	<1	<1
Ethylbenzene	ug/L	<1	<1
Lead, total	ug/L	<4	<4
Methyl iodide	ug/L	<1	<1
Methylene chloride	ug/L	<5	<5
Nickel, total	ug/L	6.8	<4.0
Selenium, total	ug/L	<4	<4
Silver, total	ug/L	<4	<4
Styrene	ug/L	<1	<1
Tetrachloroethylene	ug/L	<1	<1
Thallium, total	ug/L	<2	<2
Toluene	ug/L	<1	<1
Trans-1,2-dichloroethylene	ug/L	<1 <1	<1 <1
Trans-1,3-dichloropropene	ug/L	<1 <5	<1 <5
Trans-1,4-dichloro-2-butene Trichloroethylene	ug/L ug/L	<1	<5 <1
Trichlorofluoromethane	ug/L ug/L	<1	<1
Vanadium, total	ug/L ug/L	<20	<20
Vinyl acetate	ug/L ug/L	<5	<5
Vinyl decide	ug/L	<1	<1
Xylenes, total	ug/L	<2	<2
Zinc, total	ug/L	67.2	106.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for GWD-1

Constituents	Units	9/18/2014	4/29/2015	10/6/2015	12/17/2015	4/23/2016	9/1/2016	3/22/2017	10/13/2017	3/9/2018
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1 <1	<1 <1	<1 <1		<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,1-dichloroethylene	ug/L ug/L	<1	<1	<1		<1	<1	<1	<1	<1
1,2,3-trichloropropane	ug/L ug/L	<1	<1	<1		<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
1,2-dibromoethane	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
1,2-dichlorobenzene	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
1,4-dichlorobenzene	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
2-butanone (mek)	ug/L	<5	<5	<5		<5	<5	<5	<5	<5
2-hexanone (mbk)	ug/L	<5 <5	<5 <5	<5 <5		<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
4-methyl-2-pentanone (mibk) Acetone	ug/L ug/L	<10.0	<10.0	<10.0		<10.0	<10.0	<10.0	20.2	<10.0
Acrylonitrile	ug/L ug/L	<5	< 10.0 < 5	<5		<5	<5	<5	<5	<5
Aluminum, total	mg/L	10	10	10			10	10	, ,	
Antimony, total	ug/L	<2	<2	<2		<2	<2	<2	<2	<2
Arsenic, total	ug/L	4.1	4.3	528.0	10.1	4.1	5.3	<4.0	<4.0	<4.0
Barium, total	ug/L	422	485	6250	522	335	299	422	264	246
Benzene	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
Beryllium, total	ug/L	<4	<4	<4		<4	<4	<4	<4	<4
Bod (5 day)	mg/L									
Boron, total	mg/L									.
Bromochloromethane	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
Bromodichloromethane	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
Bromoform	ug/L	<1	<1 <1	<1 <1		<1	<1 <1	<1 <1	<1	<1 <1
Bromomethane Cadmium, total	ug/L	<1 <.8	<.8	<.8		<1 <.8	<.8	<.8	<1 <.8	<.8
Carbon disulfide	ug/L ug/L	<.o	<.o	<1		<1	<1	<1	<1	<1
Carbon distillide	ug/L ug/L	<1	<1	<1		<1	<1	<1	<1	<1
Chloride	mg/L	, ,	7.1] ''		, ,	''		''	, ,
Chlorobenzene	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
Chloroethane	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
Chloroform	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
Chromium, total	ug/L	<8	<8	<8		<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	45.0	<1	<1	<1	<1	<1
Cobalt, total	ug/L	7.9	11.2	72.0	15.9	5.4	5.0	4.0	<.8	<.8
Copper, total Dibromochloromethane	ug/L	<4.0 <1	<4.0 <1	6.7 <1		<4.0 <1	<4.0 <1	<4.0 <1	<4.0 <1	<4.0 <1
Dibromomethane	ug/L ug/L	<1	<1	<1		<1	<1	<1	<1	<1
Ethylbenzene	ug/L ug/L	<1	<1	<1		<1	<1	<1	<1	<1
Fluoride	mg/L									
Iron, total	ug/L									
Lead, total	ug/L	<4	<4	<4		<4	<4	<4	<4	<4
Lithium, total	mg/L									
Manganese, total	mg/L									
Methyl iodide	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
Methylene chloride	ug/L	<5	<5	<5		<5	<5	<5	<5	<5
Molybdenum, total	mg/L	40.0	10.0	24 -						
Nickel, total	ug/L	10.6	12.8	61.7		8.6	8.0	6.6	<4.0	<4.0
Nitrogen, ammonia Nitrogen, kjeldahl, total	mg/L mg/L									
Nitrogen, Nitrate+Nitrite	mg/L									
Selenium, total	ug/L	<4	<4	<4		<4	<4	<4	<4	<4
Silica, dissolved	mg/L			""		"				
Silver, total	ug/L	<4	<4	<4		<4	<4	<4	<4	<4
Solids, total suspended	mg/L	6	10	427		2	4	<2	6	
Styrene	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
Sulfate	mg/L									
Tetrachloroethylene	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
Thallium, total	ug/L	<4	<4	<4		<4	<4	<4	<4	<4
Toluene	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	ug/L	<1	<1	<1		<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L	<5 -1	<5 <1	<5 <1		<5	<5 <1	<5	<5	<5 <1
Trichloroethylene Trichlorofluoromethane	ug/L ug/L	<1 <1	<1 <1	<1 <1		<1 <1	<1	<1 <1	<1 <1	<1 <1
Vanadium, total	ug/L ug/L	<20	<20	<20		<20	<20	<20	<20	<20
Vanadium, total Vinyl acetate	ug/L ug/L	<5	<20 <5	<20 <5		<5	<20 <5	<20 <5	<5	<5
Vinyl acetate Vinyl chloride	ug/L ug/L	<1	<1	<1		<1	<1	<1	<1	<1
Xylenes, total	ug/L	<2	<2	<2		<2	<2	<2	<2	<2
Zinc, total	ug/L	<8.0	<20.0	25.7		<20.0				<8.0
Zinc, total		<8.0	<20.0	25.7		<20.0	<8.0	<8.0	<8.0	<8.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for GWD-1

Constituents	9/6/2018	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	3/16/2022	9/1/2022	3/24/2023	9/7/2023
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1
1,1,2-trichloroethane 1,1-dichloroethane	<1	<1	<1	<1	<1 <1	<1 <1	<1	<1	<1 <1	<1 <1
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	- <1	- <1	<1	- <5	<5	- -5	- <5	- <5	<5	<5
1,2-dibromoethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-dichlorobenzene 2-butanone (mek)	<1 <5	<1 <5	<1 <5	<1 <5	<1 <5	<1 <5	<1 <10	<1 <10	<1 <10	<1 <10
2-hexanone (mbk)	<5	<5	<5	<5	<5	<5 <5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Acrylonitrile	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Aluminum, total						.251				
Antimony, total	<2	<2	<2	<2	<2		<2	<2	<2	<2
Arsenic, total	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	6.8
Barium, total	202	266	271	268	270		277	355	222	504
Benzene Beryllium, total	<1 <4	<1 <4	<1 <4	<1 <4	<1 <4	<1 <4	<1 <4	<1 <4	<1 <4	<1 <4
Bod (5 day)		^4	~4	^4	~4	<5	^4		~ 4	\4
Boron, total						<.1				
Bromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Carbon disulfide	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride Chloride	<1	<1	<1	<1	<1	<1 11.6	<1	<1	<1	<1
Chlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	<.8	<.8	<.8	<.8	<.4	<.4	<.4	.6	<.4	2.8
Copper, total	<4.0	<4.0	<4.0	<4.0	<4.0 <1	<4.0 <1	<4.0 <1	<4.0 <1	<4.0 <1	<4.0 <1
Dibromochloromethane Dibromomethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1	<1	<1 <1	<1 <1
Ethylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Fluoride	`'	* '	*1		` '	.5	, , ,	, ,	7.1	* 1
Iron, total						196				
Lead, total	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Lithium, total						<.05				
Manganese, total						.0203				
Methyl iodide	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Molybdenum, total Nickel, total	<4.0	<4.0	<4.0	<4.0	<4.0	<.004 <4.0	<4.0	<4.0	<4.0	7.0
Nitrogen, ammonia	\ 4 .0	\4.0	\4. 0	\4.0	\4.0	<.1	\4.0	\4.0	\4. 0	7.0
Nitrogen, kjeldahl, total						.56				
Nitrogen, Nitrate+Nitrite						6.33				
Selenium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silica, dissolved						12.1				
Silver, total	<8	<4	<4	<4	<4	_	<4	<4	<4	<4
Solids, total suspended					ا م	8				
Styrene	<1	<1	<1	<1	<1	<1 10.0	<1	<1	<1	<1
Sulfate Tetrachloroethylene	<1	<1	<1	<1	<1	10.8 <1	<1	<1	<1	<1
Thallium, total	<1 <4	<1 <2	<2	<1 <2	<1 <2		<2	<2	<2	<2
Toluene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	· <1	<1	- <1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl chloride Xylenes, total	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2
Zinc, total	10.7	<2 <8.0	<2.0 <8.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
Ziric, total	10.7	٦٥.0	٧٥.٥	\2 0.0	\20.0	\20.0	\20.0	٧20.0	₹20.0	٧20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for GWD-1

Constituents	3/18/2024
1,1,1,2-tetrachloroethane	<1
1,1,1-trichloroethane	<1
1,1,2,2-tetrachloroethane	<1
1,1,2-trichloroethane	<1
1,1-dichloroethane	<1
1,1-dichloroethylene	<1 <1
1,2,3-trichloropropane 1,2-dibromo-3-chloropropane	<5
1,2-dibromoethane	<1
1,2-dichlorobenzene	<1
1,2-dichloroethane	<1
1,2-dichloropropane	<1
1,4-dichlorobenzene	<1
2-butanone (mek)	<10
2-hexanone (mbk)	<5
4-methyl-2-pentanone (mibk) Acetone	<5 <10.0
Acrylonitrile	<5
Aluminum, total	"
Antimony, total	<2
Arsenic, total	<4.0
Barium, total	262
Benzene	<1
Beryllium, total	<4
Bod (5 day)	
Boron, total	
Bromochloromethane	<1
Bromodichloromethane	<1
Bromoform Bromomethane	<1 <1
Cadmium, total	<.8
Carbon disulfide	<1
Carbon tetrachloride	<1
Chloride	
Chlorobenzene	<1
Chloroethane	<1
Chloroform	<1
Chloromethane	<1
Chromium, total	<8
Cis-1,2-dichloroethylene	<1
Cis-1,3-dichloropropene	<1 <.4
Cobalt, total Copper, total	<4.0
Dibromochloromethane	<1
Dibromomethane	<1
Ethylbenzene	<1
Fluoride	
Iron, total	
Lead, total	<4
Lithium, total	
Manganese, total	
Methyl iodide	<1
Methylene chloride	<5
Molybdenum, total Nickel, total	<4.0
Nitrogen, ammonia	\4.0
Nitrogen, kjeldahl, total	
Nitrogen, Nitrate+Nitrite	
Selenium, total	<4
Silica, dissolved	
Silver, total	<4
Solids, total suspended	
Styrene	<1
Sulfate	
Tetrachloroethylene	<1
Thallium, total Toluene	<2 <1
Trans-1,2-dichloroethylene	<1
Trans-1,3-dichloropropene	<1
Trans-1,4-dichloro-2-butene	<5
Trichloroethylene	<1
Trichlorofluoromethane	<1
Vanadium, total	<20
Vinyl acetate	<5
Vinyl chloride	<1
	<2
Xylenes, total Zinc, total	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-1

Constituents	Units	9/17/2014	4/28/2015	10/6/2015	4/23/2016	9/1/2016	3/21/2017	10/13/2017	3/9/2018	9/6/2018
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
2-butanone (mek)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	ug/L	11.2	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic, total	ug/L	5.6	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Barium, total	ug/L	684	456	279	306	283	310	455	484	361
Benzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Beryllium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Bromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	ug/L	<.8	<.8	.8	<.8	<.8	<.8	<.8	<.8	<.8
Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	ug/L	1.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	ug/L	8.9	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0
Cis-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	ug/L	30.6	6.0	<.8	<.8	<.8	<.8	<.8	2.5	<.8
Copper, total	ug/L	11.6	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	ug/L	6.9	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	7.4
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Nickel, total	ug/L	60.4	20.6	10.6	<4.0	<4.0	<4.0	13.3	20.1	<4.0
Selenium, total	ug/L	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <4	<4 <8
Silver, total Solids, total suspended	ug/L	226	142	27	11	9	350	187	<u>\4</u>	`
	mg/L	220 <1	142 <1	27 <1	<1 <1	×1	350 <1	107 <1	<1	<1
Styrene	ug/L	<1	<1 <1	<1	<1 <1	<1	<1 <1	<1 <1	<1	<1
Tetrachloroethylene	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Thallium, total Toluene	ug/L ug/L	<4	<4 <1	<4 <1	<4 <1	<4 <1	<4 <1	<4 <1	<4 <1	<4 <1
Trans-1,2-dichloroethylene	ug/L ug/L	<1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1	<1 <1	<1
Trans-1,3-dichloropropene	ug/L ug/L	<1	<1	<1	<1 <1	<1	<1 <1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L ug/L	<5	<5	<5	< 1 < 5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L ug/L	<1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1
Trichloroethylene		<1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20	<20	<1 <20	<20
Vanadium, total Vinyl acetate	ug/L ug/L	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5
Vinyl chloride	ug/L ug/L	<1	<5 <1	<1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1
Xylenes, total	ug/L ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	ug/L ug/L	32.0	12.3	8.8	<20.0	<8.0	<8.0	<8.0	11.5	15.6
Zino, iolai	ug/L	32.0	12.3	0.0	~20.0	\0.0	~ 0.0	<u> </u>	11.3	13.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-1

1,1,1-thiohrorethane	Constituents	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	6/3/2021	9/16/2021	12/8/2021	3/16/2022
1.1.22-tehanbrovethane	1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1		<1		<1
1,1,2-thichorethane	1,1,1-trichloroethane	<1	<1	<1	<1	<1		<1		<1
1,1-dichloroethane	1,1,2,2-tetrachloroethane	<1	<1	<1	<1	<1		<1		<1
1.1-dichioroethylene	1,1,2-trichloroethane	<1	<1	<1	<1	<1		<1		<1
1.1-dichlorotehylene		<1	<1	<1	<1	<1		<1		<1
1,2,3-thiothorpropage		<1	<1	<1	<1	<1		<1		<1
1,2-dibromo-S-inicropropage		<1	<1	<1	<1	<1		<1		<1
1,2-dishoronethane		<1	<1	<5	<5	<5		<5		<5
1,2-dichlorochane		<1	<1	<1	<1	<1		<1		<1
1,2-dichloropropane		<1	<1	<1	<1	<1		<1		<1
1,2-dichloropropane		<1	<1	<1	<1	<1		<1		<1
1.4-dichlorobenzene		<1	<1	<1	<1	<1		<1		<1
2-butanone (mek)		<1	<1	<1	<1	<1		<1		<1
2-hexanone (mbk)										<10
4-methyl-2-pentarione (mibk)			-							<5
Acetone										
Acrylontrile										
Antimony, total										
Assenic, fotal										<2
Barium International A93 A95 A52 A92 775 A97 A97 B487 B488 Benzene C1.0										
Benzene										
Beryllium, total						-	-10			
Bromochloromethane							~1.0			
Bromodichloromethane		• 1								
Bromoform		- 1								
Brommethane				-						
Cadmium, total		- 1								
Carbon disulfide		- 1								
Carbon tetrachloride										
Chlorobenzene	-	• 1								
Chlorosthane		• 1								
Chloroform		- 1					.4.0			
Chloromethane		- 1					<1.0			
Chromium, total		- 1								
Cis-1,2-dichloroethylene										
Cis-1,3-dichloropropene										
Cobalt, total										I I
Copper, total		• 1	•		• 1	•		•		
Dibromochloromethane										
Dibromomethane		- 1								
Ethylbenzene		- 1								<1
Lead, total		- 1								
Methyl iodide <1										I I
Methylene chloride		<4.0	<4.0	<4.0	<4.0	<4.0		<4.0		<4.0
Nickél, total 16.7 9.1 5.1 <4.0 28.1 <4.0 15.5		- 1								<1
Selenium, total Calcada Calcad										<5
Silver, total					-	-				15.5
Solids, total suspended Styrene	Selenium, total	<4	<4			<4		<4		<4
Styrene		<4	<4	<4	<4	<4		<4		<4
Tetrachloroethylene										
Tetrachloroethylene		- 1		-						<1
Thallium, total		<1	<1	<1	<1	<1		<1		<1
Trans-1,2-dichloroethylene <1		<2	<2	<2	<2	<2		<2		<2
Trans-1,3-dichloropropene <1	Toluene	<1	<1	<1	<1	<1		<1		<1
Trans-1,3-dichloropropene <1	Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1		<1		<1
Trans-1,4-dichloro-2-butene <5		<1	<1	<1	<1	<1		<1		<1
Trichloroethylene <1										<5
Trichlorofluoromethane <1									<1	<1
Vanadium, total <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20		- 1						-		<1
Vinyl acetate <5										<20
Vinyl chloride <1										<5
Xylénes, total										<1
										<2
(ZINC TOTAL <8.01 27.71 <20.01 <20.01 <20.01 <20.01 <20.01 <20.01	Zinc, total	<8.0	27.7	<20.0	<20.0	<20.0		<20.0		<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-1

1,1,1,2-tetrachloroethane	Constituents	6/14/2022	9/1/2022	3/24/2023	5/9/2023
1,1,1-trichloroethane			<1	<1	
1,1,2-trichloroethane			<1	<1	
1,1-dichloroethylene	1,1,2,2-tetrachloroethane		<1	<1	
1,1-dichloroethylene	1,1,2-trichloroethane		<1	<1	
1,2-dibromo-3-chloropropane <1	1,1-dichloroethane		<1	<1	
1,2-dibromo-3-chiropropane	1,1-dichloroethylene		<1	<1	
1,2-dichloroethane			<1	<1	
1,2-dichlorobenzene					
1.2-dichloroethane 1,2-dichloropropane 1				I	
1,2-dichloropropane					
1,4-dichlorobenizene					
2-butanone (mek)				I	
2-hexanone (mbk)				• 1	
A-methyl-2-pentanone (mibk)				- 1	
Acetone				- 1	
Acrylonitrile					
Antimony, total				I	
Arsenic, total Sarium, tot					
Benzene	Arsenic, total			<4.0	
Beryllium, total					
Bromochloromethane		<1.0			1.6
Bromofichloromethane				• 1	
Bromoform				- 1	
Bromomethane					
Cadmium, total <,8					
Carbon disulfide <1					
Carbon tetrachloride <1					
Chloroethane <1					
Chloroform				I	
Chloroform <1	-				1.3
Chromium, total Cis-1,2-dichloroethylene Cis-1,2-dichloropropene Cis-1,3-dichloropropene Cis-1,3-dichloropropene Cis-1,3-dichloropropene Cis-1,3-dichloropropene Cis-1,3-dichloropropene Cis-1,3-dichloroethylene Cis-1,3	-				
Cis-1,2-dichloroethylene <1	Chloromethane		<1	<1	
Cis-1,3-dichloropropene	Chromium, total		<8.0	<8.0	
Cobalt, total 9.4 14.1 Copper, total <4.0			<1	<1	
Copper, total Copper, tota				• 1	
Dibromochloromethane				I	
Dibromomethane					
Ethylbenzene				- 1	
Lead, total <4.0				• 1	
Methyl iodide <1					
Methylene chloride <5				- 1	
Nickel, total 12.6 21.5 Selenium, total <4 <4 <4 <4 <4 <4 <4 <				I	
Silver, total			12.6	21.5	
Solids, total suspended Styrene <1 <1 <1 <1 <1 <1 <1 <			<4	<4	
Styrene	Silver, total		<4	<4	
Tetrachloroethylene <1					
Thallium, total					
Toluene					
Trans-1,2-dichloroethylene				I	
Trans-1,3-dichloropropene <1					
Trans-1,4-dichloro-2-butene				I	
Trichloroethylene <1					
Trichlorofluoromethane				- 1	
Vanadium, total <20					
Vinyl acetate <5				I	
Vinyl chloride				- 1	
Xylenes, total <2 <2				I	
			<2	<2	
	Zinc, total		<20.0	<20.0	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-10

(3+4)-methylphenol	<1
1,1,1-trichloroethane	<1
1,1,2,2-tetrachloroethane	<1
1,1,2-trichloroethane	<1
1,1-dichloroethane	<1
1,1-dichloroethylene	<1
1,1-dichloropropene	<1
1,2,3-trichloropropane	<1
1,2,4,5-tetrachlorobenzene	<1 < 1 < < < < < < < < < < < < < < < <
1,2-dibromo-3-chloropropane	<1
1,2-dichlorobenzene	<1
1,2-dichlorobenzene	<1
1,2-dichloroethane	<1
1,2-dichloropropane	<1 <
1,2-dinitrobenzene	<1 <
1,3,5-trinitrobenzene	<1 < < < < < < < < < < < < < < < < < <
1,3-dichloropropane	<1 <
1,3-dinitrobenzene	<1 <
1,4-dichlorobenzene	<1 <
1,4-naphthoquinone	< < < < < < < < < < < < < < < < < < <
1,4-phenylenediamine	<
1-naphthylamine ug/L	<
2.2-dichloropropane	<
2.3.4.6-tetrachlorophenol ug/l	<
	1
2,4,5-t	<.
2,4,5-tp (silvex) ug/L	<.
2,4,5-trichlorophenol ug/L 2,4,6-trichlorophenol ug/L 2,4,6-trichlorop	
2,4-d ug/L	
2,4-dichlorophenol ug/L	<
2,4-dimethylphenol ug/L	<
2,4-dinitrophenol ug/L	<
2,4-dinitrotoluene ug/L	<
2,6-dichlorophenol ug/L	<
2,6-dinitrotoluene ug/L	
2-acetylanimonidoterie ug/L 2-butanone (mek) ug/L	<5
2-chloronaphthalene ug/L	<
2-chlorophenol ug/L	<
2-hexanone (mbk) ug/L <5 <5 <5 <5 <5	<5 <
2-methylnaphthalene ug/L	<
2-methylphenol ug/L	<
2-naphthylamine ug/L 2-nitroaniline ug/L 2-nitroaniline 2-nitroanili	<
2-nitrophenol ug/L	
3,3-dichlorobenzidine ug/L	<
3,3'-dimethylbenzidine ug/L	<
3-methylcholanthrene ug/L	<
3-nitroaniline ug/L	<
4,4'-ddd ug/L	<.0
4,4'-dde	<.0 <.0
4,4 - ddt dg/L	\.\
4-aminobiphenyl ug/L	
4-bromophenyl phenyl ether ug/L	<
4-chloro-3-methylphenol ug/L	<
4-chloroaniline ug/L	<u> </u>
4-chlorophenyl phenyl ether ug/L	<5
4-methyl-2-pentanone (mibk) ug/L <5 <5 <5 <5 <5 <5 <5 <	`
4-nitrophenol ug/L	
5-nitro-o-toluidine ug/L	<
7,12-dimethylbenz(a)anthracene ug/L	<
Acenaphthene ug/L	<
Acenaphthylene ug/L	<
	0.0 11.
Acetonitrile ug/L	<1
Acetophenone ug/L	<1
Acrylonitrile ug/L <5 <5 <5 <5 <5 <5	<5
Aldrin ug/L	<.0
Allyl chloride ug/L	<
Alpha-bhc ug/L	<.0
Anthracene ug/L	<

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-10

Constituents	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022	3/24/2023
(3+4)-methylphenol		<8							
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloropropene		<1							
1,2,3-trichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,4,5-tetrachlorobenzene		<8							
1,2,4-trichlorobenzene		<1							
1,2-dibromo-3-chloropropane	<1	<1	<5	<5	<5	<5	<5	<5	<5
1,2-dibromoethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dinitrobenzene		<8							
1,3,5-trinitrobenzene		<8							
1,3-dichlorobenzene		<1							
1,3-dichloropropane		<1							
1,3-dinitrobenzene	ا ا	<8							
1,4-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-naphthoquinone		<8							
1,4-phenylenediamine		<8 <8							
1-naphthylamine		<8 <1							
2,2-dichloropropane 2,3,4,6-tetrachlorophenol		<8							
2,4,5-t		<.5							
2,4,5-tp (silvex)		<.5 <.5							
2,4,5-trichlorophenol		<8							
2,4,6-trichlorophenol		<8							
2,4-,0-therioropherior		<2							
2,4-dichlorophenol		<8							
2,4-dimethylphenol		<8							
2,4-dinitrophenol		<8							
2,4-dinitrotoluene		<8							
2,6-dichlorophenol		<8							
2,6-dinitrotoluene		<8							
2-acetylaminofluorene		<8							
2-butanone (mek)	<5	<5	<5	<5	<5	<5	<10	<10	<10
2-chloronaphthalene		<8	_						
2-chlorophenol		<8							
2-hexanone (mbk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
2-methylnaphthalene		<8							
2-methylphenol		<8							
2-naphthylamine		<8							
2-nitroaniline		<8>							
2-nitrophenol		<8>							
3,3'-dichlorobenzidine		<8							
3,3'-dimethylbenzidine		<8							
3-methylcholanthrene		<8							
3-nitroaniline		<8							
4,4´-ddd		<.05							
4,4´-dde		<.05							
4,4'-ddt		<.05							
4,6-dinitro-2-methylphenol		<8							
4-aminobiphenyl		<8							
4-bromophenyl phenyl ether 4-chloro-3-methylphenol		<8							
4-chloroaniline		<8 <8							
4-chlorophenyl phenyl ether		<8							
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-nitroaniline		<8	_3	\3		/5		\ \	\
4-nitrophenol		<8							
5-nitro-o-toluidine		<8							
7,12-dimethylbenz(a)anthracene		<8							
Acenaphthene		<8							
Acenaphthylene		<8							
Acetone	<10.0	<10.0	<10.0	<10.0	10.7	<10.0	<10.0	<10.0	<10.0
Acetonie	10.0	<10.0	~10.0	~10.0	10.7	~10.0	10.0	10.0	10.0
Acetophenone		<8							
Acrolein		<10							
Acrylonitrile	<5	<5	<5	<5	<5	<5	<5	<5	<5
Adrin	~3	<.05	\	~5			~3	~3	```
Allyl chloride		<.us							
Alpha-bhc		<.05							
Anthracene		<8							

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-10

Constituents	9/7/2023	3/18/2024	9/25/2024
(3+4)-methylphenol			
1,1,1,2-tetrachloroethane	<1	<1	<1
1,1,1-trichloroethane	<1	<1	<1
1,1,2,2-tetrachloroethane	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1
1,1-dichloroethane	<1	<1	<1
1,1-dichloroethylene	<1	<1	<1
1,1-dichloropropene			<1
1,2,3-trichloropropane	<1	<1	<1
1,2,4,5-tetrachlorobenzene			
1,2,4-trichlorobenzene			<1
1,2-dibromo-3-chloropropane	<5	<5	<1
1,2-dibromoethane	<1	<1	<1
1,2-dichlorobenzene	<1	<1	<1
1,2-dichloroethane	<1	<1	<1
1,2-dichloropropane 1,2-dinitrobenzene	<1	<1	<1
1,3,5-trinitrobenzene 1,3-dichlorobenzene			<1
1,3-dichloropropane			<1
1,3-dinitrobenzene			`'
1,4-dichlorobenzene	<1	<1	<1
1,4-naphthoquinone	`'		`'
1,4-naphilioquilione			
1,4-prierrylerrediamine 1-naphthylamine			
2,2-dichloropropane			<1
2,3,4,6-tetrachlorophenol			`'
2,4,5-t			
2,4,5-tp (silvex)			
2,4,5-trichlorophenol			
2,4,6-trichlorophenol			
2.4-d			
2,4-dichlorophenol			
2,4-dimethylphenol			
2,4-dinitrophenol			
2,4-dinitrotoluene			
2,6-dichlorophenol			
2,6-dinitrotoluene			
2-acetylaminofluorene			
2-butanone (mek)	<10	<10	<5
2-chloronaphthalene			
2-chlorophenol			
2-hexanone (mbk)	<5	<5	<5
2-methylnaphthalene			
2-methylphenol			
2-naphthylamine			
2-nitroaniline			
2-nitrophenol			
3,3'-dichlorobenzidine			
3,3'-dimethylbenzidine			
3-methylcholanthrene			
3-nitroaniline			
4,4´-ddd			
4,4´-dde			
4,4'-ddt			
4,6-dinitro-2-methylphenol			
4-aminobiphenyl			
4-bromophenyl phenyl ether			
4-chloro-3-methylphenol			
4-chloroaniline			
4-chlorophenyl phenyl ether		,-	,-
4-methyl-2-pentanone (mibk)	<5	<5	<5
4-nitrophonel			
4-nitrophenol			
5-nitro-o-toluidine			
7,12-dimethylbenz(a)anthracene			
Acenaphthylone			
Acenaphthylene Acetone	<10.0	-10.0	<10.0
	10.0	<10.0	<10.0 <10
Acetonitrile Acetophenone			<10
Acrolein			<10
	<5	<5	<10 <5
Acrylonitrile Aldrin	^0	^ 3	\oldots
Allyl chloride			<1
Allpha-bhc			`'
Anthracene			
/ ututi doette			

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-10

Constituents	Units	9/17/2014	4/28/2015	10/6/2015	4/23/2016	9/1/2016	3/21/2017	10/13/2017	3/9/2018	9/6/2018
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arochlor 1016	ug/L									<.1
Arochlor 1221	ug/L									<.2 <.2
Arochlor 1232 Arochlor 1242	ug/L ug/L									<.2
Arochlor 1248	ug/L ug/L									<.2
Arochlor 1254	ug/L									<.1
Arochlor 1260	ug/L									<.1
Arsenic, total	ug/L	18.2	6.5	7.1	16.7	9.2	<4.0	18.2	7.7	47.8
Azobenzene	ug/L									<8
Barium, total	ug/L	651	549	481	859	420	370	685	342	761
Benzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.4
Benzo(a)anthracene Benzo(a)pyrene	ug/L									<8 <8
Benzo(a)pyrene Benzo(b)fluoranthene	ug/L ug/L									<8
Benzo(g,h,i)perylene	ug/L									<8
Benzo(k)fluoranthene	ug/L									<8
Benzyl alcohol	ug/L									<8
Beryllium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Beta-bhc	ug/L									<.05
Bis (2-chloroethoxy) methane	ug/L									<8
Bis(2-chloroethyl) ether	ug/L									<8
Bis(2-chloroisopropyl) ether Bis(2-ethylhexyl) phthalate	ug/L ug/L									<8 8
Bromochloromethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1	o <1
Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Butyl benzyl phthalate	ug/L									<8
Cadmium, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride Chlordane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1 <.1
Chlorobenzene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzilate	ug/L	"	`'	`'	` '	` '	` '	` '	` '	<8
Chloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroprene	ug/L									<1
Chromium, total	ug/L	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0
Chrysene	ug/L		-1	-1	-1		-1	-1	-1	<8
Cis-1,2-dichloroethylene Cis-1,3-dichloropropene	ug/L ug/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Cobalt, total	ug/L ug/L	27.8	18.4	6.0	16.3	2.8	3.8	10.7	3.2	13.5
Copper, total	ug/L	7.0	<4.0	<4.0	4.9	<4.0	<4.0	<4.0	<4.0	5.0
Cyanide, total	mg/L									<.005
Delta-bhc	ug/L									<.05
Diallate	ug/L									<8
Dibenzo(a,h)anthracene	ug/L									<8
Dibenzofuran	ug/L									<8
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane Dichlorodifluoromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1 <1
Dieldrin	ug/L									<.05
Diedrin	ug/L ug/L									<8
Dimethoate	ug/L									<.4
Dimethylphthalate	ug/L									<8
Di-n-butyl phthalate	ug/L									<8
Di-n-octyl phthalate	ug/L									<8
Dinoseb	ug/L									<.5
Diphenylamine	ug/L									<8
Disulfoton	ug/L									<.4
Endosulfan i Endosulfan ii	ug/L									<.05 <.05
Endosulfan II Endosulfan sulfate	ug/L ug/L									<.05 <.05
Endosulari sullate	ug/L ug/L									<.05
Endrin aldehyde	ug/L									<.05
Ethyl methacrylate	ug/L									<10
Ethyl methanesulfonate	ug/L									<8
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Famphur	ug/L									<.4
Fluoranthene	ug/L									<8
Fluorene	ug/L									<8
Gamma-bhc (lindane) Heptachlor	ug/L ug/L									<.05 <.05
Heptachlor epoxide	ug/L ug/L									<.05
Hexachlorobenzene	ug/L									<.05

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-10

Benzo(a)pyrene	Constituents	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022	3/24/2023
Acachier 1221 Acachier 1232 Acachier 1232 Acachier 1236 Ac		<2		<2	<2	<2	<2	<2	<2	<2
Arochlor 1232 Arochlor 1242 Arochlor 1242 Arochlor 1243 Arochlor 1254 Arochlor 1254 Arochlor 1256 Ar										
Arochlor 1242 Arochlor 1248 Ar										
Arachlor 1284 Arachlor 1264 Arachlor 1264 Arachlor 1260 Arachlor 1264 Arachlor 1264 Arachlor 1260 Ballarin 1260 Ba										
Archine 1200 Archi	Arochlor 1248									
Arsenic, total										
Azabanzane		44		20.0	-11.0	0.7	-4.0	00.0	-10	-4.0
Barrum, total 661 483 871 550 1070 449 1950 441 524 524 525 525 525 525 525 525 525 525		4.1		38.6	<4.0	8.7	<4.0	26.6	<4.0	<4.0
Benzone		661		871	550	1070	449	1950	441	524
Benzo(phyrene 48										<1.0
Benzo Microamhene										
Benzo(s)(fluorenthene										
Benzy alsohol										
Benzyliar, total Cat										
Bela-bho Bis (2-chlorocthyry) methane Bis (2-chlorocthyry) ether Bis (2-chl										
Bis (2-chioroethoxy) methane		<4		<4	<4	<4	<4	<4	<4	<4
Bis(2-chioroptryl) ether Bis(2-chioroptryl) ether Bis(2-chioroptryl) ether Sis(2-chioroptryl)										
Bis(2-chlorisopropyl) ether Bis(2-chlorisopropyl) phthalate										
Bis(2-thylhexyl) phthalate										
Bromochioromethane	Bis(2-ethylhexyl) phthalate	<6		14	<6	<6	<6			
Bromoform	Bromochloromethane			<1	<1	<1	<1			
Bromomethane										
Butyl benzyl phthalate										
Cadmin, total		`'				``			``	``
Carbon disulfide		<.8		<.8	<.8	<.8	<.8	5.9	<.8	<.8
Chlordane				<1			<1		<1	
Chlorobenzale		<1		<1	<1	<1	<1	<1	<1	<1
Chlorobenzilate		_1		_1	_1	_1	_1	_1	_1	_1
Chloroethane		`					<u> </u>	\ \ \		_ ``
Chloromethane		<1		<1	<1	<1	<1	<1	<1	<1
Chloroprene		<1			<1	<1	<1	<1	<1	
Chromium, total Chromium,		<1		<1	<1	<1	<1	<1	<1	<1
Chrysene		-0.0		-0.0	-0.0	-0.0	-0.0	27.0	-0.0	-0.0
Cis-1,2-dichloroethylene		<0.0		<0.0	<0.0	<0.0	<0.0	37.9	<0.0	<0.0
Cis-1,3-dichloropropene	Cis-1,2-dichloroethylene	<1		<1	<1	<1	<1	<1	<1	<1
Copper, total	Cis-1,3-dichloropropene									
Cyanide, total < 0,05										
Délta-bhc < 0.5		<4.0		<4.0	<4.0	7.0	<4.0	154.0	<4.0	<4.0
Dialalate <8										
Dibornochloromethane										
Dibromochloromethane										
Dibromomethane						_			_	_
Dichlorodifluoromethane			•							
Dieldrin		''				``			``	``
Diethyl phthalate	Dieldrin									
Dimethoate <.4	Diethyl phthalate		<8							
Di-n-butyl phthalate	Dimethoate									
Di-n-octyl phthalate										
Dinoseb S										
Disulfoton			<.5							
Endosulfan i										
Endosulfan ii										
Endosulfan sulfate										
Endrin										
Endrin aldehyde										
Ethyl methanesulfonate <8	Endrin aldehyde		<.05							
Ethylbenzene <1	Ethyl methacrylate									
Famphur <.4										
Fluoranthene <8		<1		<1	<1	<1	<1		<1	<1
Fluorene <8										
Gamma-bhc (lindane) <.05										
Heptachlor epoxide <.05	Gamma-bhc (lindane)		<.05							
merachionopenzene CDS:	Heptachlor epoxide Hexachlorobenzene		<.05 <.05							

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-10

Antimony, total Arochlor 1016 Arochlor 1221 Arochlor 1222 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arsenic, total Azobenzene Barium, total Benzene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Be	<2 5.2 575 <1.0 <4 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Arochlor 1221	575 <1.0
Arochlor 1232	575 <1.0
Arochlor 1242	575 <1.0
Arochlor 1248	575 <1.0
Arochlor 1254	575 <1.0
Arochlor 1260	575 <1.0
Arsenic, total	575 <1.0
Azobenzene Barium, total 553 465 Benzene <1.0 <1.0 Enzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzyl alcohol Beryllium, total 44 <4 44 44 44 44 44 4	575 <1.0
Barium, total 553 465 8enzene 8enzo(a)anthracene 8enzo(a)pyrene 8enzo(b)fluoranthene 8enzo(b)fluoranthene 8enzo(k)fluoranthene 8enzo(k)fluoranthene 8enzo(k)fluoranthene 8enzyl alcohol 8eryllium, total 4 4 4 4 4 8 8eta-bhc 8is (2-chloroethoxy) methane 8is (2-chloroethoxy) methane 8is (2-chloroethoxy) ether 8is (2-chloroethoxy) phthalate 8romochloromethane 41 41 8romodichloromethane 41 41 8romoform 41 41 8romoform 41 41 8romomethane 41 41 41 41 41 41 41 4	<1.0 <4 <1 <1 <1 <1
Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzyl alcohol Beryllium, total Seziolaria Seziolari	<4 <1 <1 <1 <1
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzyl alcohol Beryllium, total Seyllium, total Seyl	<1 <1 <1 <1
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzyl alcohol Berylilium, total Seta-bhc Bis (2-chloroethoxy) methane Bis (2-chloroethoxy) methane Bis (2-chloroisopropyl) ether Bis (2-chloromethane Sis (2-chloroisopropyl) ether Sis (2-chloroisopropyl) ether Bis (2-chloromethane Sis (2-chloroisopropyl) ether Sis	<1 <1 <1 <1
Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzyl alcohol Berylium, total <4 <4 Seta-bhc Bis (2-chloroethoxy) methane Bis(2-chloroethyl) ether Bis(2-chlyl) ether Bis(2-chlyl) phthalate Bromochloromethane <1 <1 Stromochloromethane <1 <1 <1 Stromochloromethane <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1
Benzo(k)fluoranthene Benzyl alcohol Benzyl alcohol Beryllium, total <4 <4 Seta-bhc Bis (2-chloroethoxy) methane Bis (2-chloroethyl) ether Bis (2-chloroethyl) ether Bis (2-chloroethyl) pthelate Bromochloromethane <1 <1 <1 Standard <1 <1 Standard <1 <1 Standard <1 <1 <1 Standard <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1
Benzyl alcohol Beryllium, total Seta-bhc Bis (2-chloroethoxy) methane Bis(2-chloroisopropyl) ether Bis(2-chloroisopropyl) ether Bis(2-ethylhexyl) phthalate Bromochloromethane <1 <1 <1 Stromoform <1 <1 <1 Stromoform <1 <1 <1 Stromoform <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1
Beryllium, total Seta-bhc Bis (2-chloroethoxy) methane Bis (2-chloroethoxy) methane Bis (2-chloroisopropyl) ether Bis (2-ethylhexyl) phthalate Bromochloromethane Standard Stand	<1 <1 <1 <1
Beta-bhc Bis (2-chloroethoxy) methane Bis (2-chloroethoxy) ther Bis (2-chloroethyl) ether Bis (2-chloroisopropyl) ether Bis (2-chloroisopropyl) ether Bis (2-chloroisopropyl) ether Bis (2-chloroisopropyl) ether Bis (2-chloromethane Call Cal	<1 <1 <1 <1
Bis (2-chloroethoxy) methane Bis (2-chloroethyl) ether Bis (2-chloroethyl) ether Bis (2-chloroethyl) ether Bis (2-chlylhexyl) phthalate Bromochloromethane <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1
Bis(2-chloroethyl) ether Bis(2-chloroisopropyl) ether Bis(2-ethylhexyl) phthalate Bromochloromethane <1	<1 <1 <1
Bis(2-ethylhexyl) phthalate Bromochloromethane <1	<1 <1 <1
Bromochloromethane	<1 <1 <1
Bromodichloromethane	<1 <1 <1
Bromoform	<1 <1
Bromomethane	<1
Butyl benzyl phthalate Cadmium, total <.8 <.8 <.8 Carbon disulfide <1 <1 <1 <1 <1 <1 <1 <	
Cadmium, total	
Carbon disulfide	<.8
Carbon tetrachloride <1 <1 Chlordane Chlorobenzene <1 <1 <1	<1
Chlorobenzene <1 <1	<1
Chlorobenzilate	<1
Chloroethane <1 <1	<1
Chloroform <1 <1 <1 Chloromethane <1 <1 <1	<1
Chloromethane <1 <1 <1 Chloroprene	<1 <1
Chromium, total <8.0 <8.0	<8.0
Chrysene	-0.0
Cis-1,2-dichloroethylene	<1
Cis-1,3-dichloropropene <1 <1	<1
Cobalt, total 1.7 <.4	2.4
Copper, total <4.0 <4.0	<4.0
Cyanide, total	
Delta-bhc	
Diallate Dibenzo(a,h)anthracene	
Dibenzofuran	
Dibromochloromethane	<1
Dibromomethane <1 <1	<1
Dichlorodifluoromethane	<1
Dieldrin	
Diethyl phthalate	
Dimethoate	
Dimethylphthalate	
Di-n-butyl phthalate	
Di-n-octyl phthalate Dinoseb	
Dinoseb Diphenylamine	
Disulfoton	
Endosulfan i	
Endosulfan ii	
Endosulfan sulfate	
Endrin	
Endrin aldehyde	
Ethyl methacrylate	<10
Ethyl methanesulfonate Ethylbenzene <1 <1	
Ethylbenzene <1 <1 Famphur	<1
Fluoranthene	
Fluorene	
Gamma-bhc (lindane)	
Heptachlor `	
Heptachlor epoxide	I
Hexachlorobenzene	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-10

Constituents	Units	9/17/2014	4/28/2015	10/6/2015	4/23/2016	9/1/2016	3/21/2017	10/13/2017	3/9/2018	9/6/2018
Hexachlorobutadiene	ug/L									<8
Hexachlorocyclopentadiene	ug/L									<8
Hexachloroethane	ug/L									<8
Hexachloropropene	ug/L									<8
Indeno(1,2,3-cd)pyrene	ug/L									<8
Isobutanol	mg/L									<1
Isodrin	ug/L									<8
Isophorone	ug/L									<8
Isosafrole	ug/L									<8
Kepone	ug/L	-4.0	-4.0	-4.0	-4.0	-4.0	-4.0	-110	-40	<8
Lead, total	ug/L ug/L	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0 <.5
Mercury, total Methacrylonitrile	ug/L ug/L									<.5 <1
Methapyrilene	ug/L ug/L									<8
Methoxychlor	ug/L									<.05
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl methacrylate	ug/L		- '	•		- '				<1
Methyl methanesulfonate	ug/L									- <8
Methyl parathion	ug/L									<.4
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene	ug/L	1		-	-	-	-			<8
Nickel, total	ug/L	30.6	21.5	8.6	23.3	4.5	9.8	15.0	7.6	15.2
Nitrobenzene	ug/L									<8
N-nitrosodiethylamine	ug/L									<8
N-nitrosodimethylamine	ug/L									<8
N-nitrosodi-n-butylamine	ug/L									<8
N-nitroso-di-n-propylamine	ug/L									<8
N-nitrosodiphenylamine	ug/L									<8
N-nitrosomethylethylamine	ug/L									<8
N-nitrosopiperidine	ug/L									<8
N-nitrosopyrrolidine	ug/L									<8
O,o,o-triethyl phosphorothioate	ug/L									<.4
O-toluidine	ug/L									<8
Parathion	ug/L									<.4
P-dimethylaminoazobenzene	ug/L									<8 <8
Pentachlorobenzene	ug/L									<8
Pentachloronitrobenzene (pcnb) Pentachlorophenol	ug/L ug/L									<8
Phenacetin	ug/L ug/L									<8
Phenanthrene	ug/L ug/L									<8
Phenol	ug/L									<8
Phorate	ug/L									<.4
Pronamide	ug/L									<8
Propionitrile	ug/L									<10
Pyrene	ug/L									<8
Safrole	ug/L									<8
Selenium, total	ug/L	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<8
Solids, total suspended	mg/L	97	19	12	21	29	112	66		
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulfide, total	mg/L									<.1
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Thionazin	ug/L									<.4
Tin, total	ug/L									<20
Toluene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toxaphene	ug/L									<.2
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	ug/L	<5	<5 <1	<5	<5	<5	<5	<5	<5	<5
V. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				<1	<1	<1	<1	<1	<1	
Vinyl chloride	ug/L	<1								<1
Vinyl chloride Xylenes, total Zinc, total	ug/L ug/L ug/L	<1 <2 16.4	<2 11.1	<2 19.7	<2 <20.0	<2 <8.0	<2 <8.0	<2 <8.0	<2 <8.0	<2 34.9

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-10

Constituents	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022	3/24/2023
Hexachlorobutadiene		<8							
Hexachlorocyclopentadiene		<8							
Hexachloroethane		<8							
Hexachloropropene		<8							
Indeno(1,2,3-cd)pyrene		<8							
Isobutanol		<1							
Isodrin		<8							
Isophorone		<8							
Isosafrole		<8							
Kepone		<8							
Lead, total	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	65.8	<4.0	<4.0
Mercury, total		<.5							
Methacrylonitrile		<1							
Methapyrilene		<8							
Methoxychlor		<.05							
Methyl iodide	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl methacrylate		<1							
Methyl methanesulfonate		<8							
Methyl parathion		<.4							
Methylene chloride	<5	<5 <0	<5	<5	<5	<5	<5	<5	<5
Naphthalene	6.8	<8 <4.0	8.8	4.7	15.4	<4.0	338.0	<4.0	7.5
Nickel, total Nitrobenzene	0.8	<4.0 <8	0.8	4.7	15.4	~4. 0	330.0	4.0	/.5
N-nitrosodiethylamine		<8							
N-nitrosodimethylamine		<8							
N-nitrosodi-n-butylamine		<8							
N-nitrosodi-n-propylamine		<8							
N-nitrosodiphenylamine		<8							
N-nitrosomethylethylamine		<8							
N-nitrosopiperidine		<8							
N-nitrosopyrrolidine		<8							
O,o,o-triethyl phosphorothioate		<.4							
O-toluidine		<8							
Parathion		<.4							
P-dimethylaminoazobenzene		<8							
Pentachlorobenzene		<8>							
Pentachloronitrobenzene (pcnb)		<8							
Pentachlorophenol		<8							
Phenacetin		<8							
Phenanthrene		<8							
Phenol		<8							
Phorate		<.4							
Pronamide		<8							
Propionitrile		<19							
Pyrene		<8							
Safrole	<4.0	<8 <4.0	-10	<4.0	-10	<4.0	0.4	<4.0	_10
Selenium, total Silver, total	<4.0 <4	<4.0 <4	<4.0 <4	<4.0 <4	<4.0 <4	<4.0 <4	8.4 <4	<4.0 <4	<4.0 <4
Solids, total suspended	\4	\4	\4	~4	\4	\4	~4	~4	
Styrene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulfide, total	`'	<.1	``	`'	``		`'	``'	``
Tetrachloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Thionazin	-2	<.4	-2	-2		٠		`~	
Tin, total		<20							
Toluene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toxaphene	'	<.2	, ,	.	·	·			
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	<20	<20	<20	<20	<20	<20	108	<20	<20
Vinyl acetate	<5	<5	<5	<5	<5	<5	<5	<5	
Vinyl chloride	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes, total	<2	<2	<2	<2	<2	<2	<2	<2	
Zinc, total	<8.0	17.7	<20.0	<20.0	<20.0	<20.0	207.0		

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-10

Constituents	9/7/2023	3/18/2024	9/25/2024
Hexachlorobutadiene	0/1/2020	0/10/2024	0,20,202-1
Hexachlorocyclopentadiene			
Hexachloroethane			
Hexachloropropene			
Indeno(1,2,3-cd)pyrene			
Isobutanol			<1
Isodrin			
Isophorone			
Isosafrole Kepone			
Lead, total	<4.0	<4.0	<4.0
Mercury, total	\4.0	V4.0	<.5
Methacrylonitrile			<1
Methapyrilene			
Methoxychlor			
Methyl iodide	<1	<1	<2
Methyl methacrylate			<1
Methyl methanesulfonate			
Methyl parathion	٠		
Methylene chloride	<5	<5	<5
Naphthalene Nickel, total	<4.0	<4.0	11.7
Nitrobenzene	~4.0	~4.0	11.7
N-nitrosodiethylamine			
N-nitrosodimethylamine			
N-nitrosodi-n-butylamine			
N-nitroso-di-n-propylamine			
N-nitrosodiphenylamine			
N-nitrosomethylethylamine			
N-nitrosopiperidine			
N-nitrosopyrrolidine			
O,o,o-triethyl phosphorothioate			
O-toluidine Parathion			
P-dimethylaminoazobenzene			
Pentachlorobenzene			
Pentachloronitrobenzene (pcnb)			
Pentachlorophenol			
Phenacetin			
Phenanthrene			
Phenol			
Phorate			
Pronamide			-10
Propionitrile Pyrene			<10
Safrole			
Selenium, total	<4.0	<4.0	<4.0
Silver, total	<4	<4	<4
Solids, total suspended			
Styrene	<1	<1	<1
Sulfide, total			<.1
Tetrachloroethylene	<1	<1	<1
Thallium, total	<2	<2	<2
Thionazin			-00
Tin, total	<1	<1	<20 <1
Toluene Toxaphene		<1	<1
Trans-1,2-dichloroethylene	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5
Trichloroethylene	<1	<1	<1
Trichlorofluoromethane	<1	<1	<1
Vanadium, total	<20	<20	<20
Vinyl acetate	<5	<5	<5
Vinyl chloride	<1	<1	<1
Xylenes, total	<2	<2	<2
Zinc, total	<20.0	28.3	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-11

Constituents	Units	9/17/2014	4/28/2015	10/6/2015	4/23/2016	9/1/2016	3/21/2017	10/13/2017	3/9/2018	9/6/2018
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
2-butanone (mek)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	ug/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	12.1	<10.0	<10.0
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Barium, total	ug/L	452	539	379	275	263	453	390	475	314
Benzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Beryllium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Bromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	ug/L	<8	<8	<8	<8	<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	ug/L	<.8	2.0	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Copper, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Nickel, total	ug/L	4.0	7.7	<4.0	<4.0	<4.0	4.5	<4.0	4.3	<4.0
Selenium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<8
Solids, total suspended	mg/L	14	27	18	16	13	113	143		
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Toluene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl chloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	ug/L	<8.0	12.8	<8.0	<20.0	<8.0	<8.0	<8.0	13.9	14.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-11

Constituents	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022	3/24/2023
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	<1	<1	<5	<5	<5	<5	<5	<5	<5
1.2-dibromoethane	<1	- <1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	<1	- <1	<1	<1	<1	· <1	<1	<1	<1
1.2-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-dichlorobenzene	<1	- <1	<1	<1	<1	· <1	<1	<1	<1
2-butanone (mek)	- <5	<5	- <5	<5	- <5	- <5	<10	<10	<10
2-hexanone (mbk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Acrylonitrile	<5	<5	<5	<5	< 10.0 < 5	<5	< 10.0 < 5	<5	<5
Actyloritine Antimony, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Antimony, total	<4	<4	<4	<4	< <u>2</u>	<4	<4	<4	< <u>4</u>
Barium. total	354	234	337	399	292	428	660	402	394
Benzene	354 <1	23 4 <1	33 <i>1</i> <1	399 <1	292 <1	420 <1	660 <1	402 <1	394 <1
		<4	<4	<4	<1 <4	<4	<4	<4	<4
Beryllium, total	<4 <1	<4 <1	<4 <1	<4 <1	<4 <1	<4 <1	<4 <1	<4 <1	<4 <1
Bromochloromethane									
Bromodichloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Carbon disulfide	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	<8	<8	<8	<8	<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	<.8	<.8	<.8	<.4	<.4	<.4	4.3	.5	<.4
Copper, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Dibromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Methyl iodide	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	<5	<5	<5	<5	<5	<5	<5	<5	<5
Nickel, total	<4.0	<4.0	<4.0	4.8	<4.0	4.6	9.8	6.8	<4.0
Selenium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Solids, total suspended									
Styrene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Tetrachloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Toluene	<1	<1	<u>-</u>	<1	<1	<1	- <1	<1	<1
Trans-1,2-dichloroethylene	- <1	- <1	<1	<1	- <1	<1	<1	<1	- <1
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl acetate Vinyl chloride	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	<8.0	27.6	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
Zirio, total	~0.0	21.0	~20.0	~20.0	~20.0	~20.0	~20.0	~20.0	~20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-13

Constituents	Units	9/17/2014	4/28/2015	10/6/2015	4/23/2016	6/13/2016	9/1/2016	3/22/2017	10/13/2017	1/12/2018
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	0.10.2010	<1	<1	<1	
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1		<1	<1	<1	
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1		<1	<1	<1	
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1		<1	<1	<1	
1,1-dichloroethane	ug/L	<1	<1	<1	<1		<1	<1	<1	
1,1-dichloroethylene	ug/L	<1	<1	<1	<1		<1	<1	<1	
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1		<1	<1	<1	
1,2-dibromo-3-chloropropane	ug/L	<1	<1	<1	<1		<1	<1	<1	
1,2-dibromoethane	ug/L	<1	<1	<1	<1		<1	<1	<1	
1,2-dichlorobenzene	ug/L	<1	<1	<1	<1		<1	<1	<1	
1,2-dichloroethane	ug/L	<1	<1	<1	<1		<1	<1	<1	
1,2-dichloropropane	ug/L	<1	<1	<1	<1		<1	<1	<1	
1,4-dichlorobenzene	ug/L	<1	<1	<1	<1		<1	<1	<1	
2-butanone (mek)	ug/L	<5	<5	<5	<5		<5	<5	<5	
2-hexanone (mbk)	ug/L	<5	<5	<5	<5		<5	<5	<5	
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5		<5	<5	<5	
Acetone	ug/L	<10.0	<10.0	<10.0	<10.0		<10.0	<10.0	16.9	
Acrylonitrile	ug/L	<5	<5	<5	<5		<5	<5	<5	
Antimony, total	ug/L	<2	<2	<2	<2		<2	<2	<2	
Arsenic, total	ug/L	<4	<4	<4	<4		<4	<4	<4	
Barium, total	ug/L	42.7	66.1	107.0	50.6		135.0	53.8	52.2	
Benzene	ug/L	<1	<1	<1	<1		<1	<1	<1	
Beryllium, total	ug/L	<4	<4	<4	<4		<4	<4	<4	
Bromochloromethane	ug/L	<1	<1	<1	<1		<1	<1	<1	
Bromodichloromethane	ug/L	<1	<1	<1	<1		<1	<1	<1	
Bromoform Bromomethane	ug/L	<1 <1	<1 <1	<1 <1	<1 <1		<1 <1	<1 <1	<1 <1	
Cadmium, total	ug/L ug/L	<.8	<.8	<.8	<.8		<.8	<.8	<.8	
Carbon disulfide	ug/L ug/L	<1	<.o	<.o	<.o		<.0 <1	<.o	<1	
Carbon tetrachloride	ug/L ug/L	<1	<1	<1	<1		<1	<1	<1	
Chlorobenzene	ug/L ug/L	<1	<1	<1	<1		<1	<1	<1	
Chloroethane	ug/L	<1	<1	<1	<1		<1	<1	<1	
Chloroform	ug/L	<1	<1	<1	<1		<1	<1	<1	
Chloromethane	ug/L	<1	<1	<1	<1		<1	<1	<1	
Chromium, total	ug/L	<8	<8	<8	- <8		<8	- <8	- <8	
Cis-1,2-dichloroethylene	ug/L	<1	<1	<1	<1		<1	<1	<1	
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1		<1	<1	<1	
Cobalt, total	ug/L	1.1	1.3	<.8	<.8		<.8	<.8	<.8	
Copper, total	ug/L	<4.0	<4.0	<4.0	<4.0		<4.0	<4.0	<4.0	
Dibromochloromethane	ug/L	<1	<1	<1	<1		<1	<1	<1	
Dibromomethane	ug/L	<1	<1	<1	<1		<1	<1	<1	
Ethylbenzene	ug/L	<1	<1	<1	<1		<1	<1	<1	
Lead, total	ug/L	<4.0	<4.0	9.6	<4.0		<4.0	<4.0	<4.0	
Methyl iodide	ug/L	<1	<1	<1	<1		<1	<1	<1	
Methylene chloride	ug/L	<5	<5	<5	<5		<5	<5	<5	
Nickel, total	ug/L	5.0	5.1	4.4	4.7		<4.0	<4.0	4.1	
Selenium, total	ug/L	<4.0	<4.0	<4.0	4.8	<4.0	<4.0	4.0	4.1	<4.0
Silver, total	ug/L	<4	<4	<4	<4		<4	<4	<4	
Solids, total suspended	mg/L	12	15	9	2		4	4	44	
Styrene	ug/L	<1	<1	<1	<1		<1	<1	<1	
Tetrachloroethylene	ug/L	<1	<1	<1	<1		<1	<1	<1	
Thallium, total	ug/L	<4	<4	<4	<4		<4	<4	<4	
Toluene	ug/L	<1	<1	<1	<1 <1		<1	<1	<1	
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1			<1	<1	<1	
Trans-1,3-dichloropropene	ug/L	<1 <5	<1 <5	<1 <5	<1 <5		<1	<1	<1	
Trans-1,4-dichloro-2-butene	ug/L	<5 <1	<5 <1	<5 <1	<5 <1		<5 <1	<5 <1	<5 <1	
Trichloroethylene Trichlorofluoromethane	ug/L ug/L	<1 <1	<1 <1	<1 <1	<1 <1		<1 <1	<1 <1	<1	
Vanadium. total		<20	<20	<20	<20		<20	<20	<20	
Vanadium, total Vinyl acetate	ug/L ug/L	<20 <5	<20 <5	<20 <5	<20 <5		<20 <5	<20 <5	<20 <5	
Vinyl acetate Vinyl chloride	ug/L ug/L	<1	<5 <1	<1	<1		<1	<5 <1	<1	
Xylenes, total	ug/L ug/L	<2	<2	<2	<2		<2	<2	<2	
Zinc, total	ug/L ug/L	<8.0	<8.0	12.1	<20.0		<8.0	<8.0	<8.0	
	ı y, -	3.0	3.0	.2.1			5.0	3.0	0.0	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-13

Constituents	3/9/2018	9/6/2018	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	<1	<1	<1	<1	<5	<5	<5	<5	<5	<5
1,2-dibromoethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
2-butanone (mek)	<5	<5	<5	<5	<5	<5	<5	<5	<10	<10
2-hexanone (mbk)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Acrylonitrile	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Antimony, total	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic, total	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Barium, total	48.9	53.7	53.6	56.7	52.4	62.4	60.1	50.1	50.6	80.9
Benzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Beryllium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Bromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	<1	<1	<1	<1	- <1	<1	<1	<1	<1	<1
Bromoform	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Carbon disulfide	<1	<1	<1	<1	<1	-i. <1	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzene	<1	<1	<1	<1	· <1	<1	<1	<1	<1	<1
Chloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	<1	<1	<1	<1	<1	- <1	<1	<1	<1	<1
Cobalt. total	<.8	<.8	<.8	<.8	<.8	<.4	<.4	<.4	<.4	<.4
Copper, total	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	6.8	<4.0	<4.0
Dibromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Methyl iodide	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Nickel, total	4.1	<4.0	4.9	<4.0	<4.0	<4.0	<4.0	7.2	<4.0	9.1
Selenium, total	<4.0	4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Silver, total	<4	<8	<4	<4	<4	<4	<4	<4	<4	<4
Solids, total suspended		.0				"				
Styrene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Tetrachloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	<4	<4	<2	<2	<2	<2	<2	<2	<2	<2
Toluene	<1	<1	<1	<1	<1	<1 <1	<1 <1	<1	<1	<1
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	<1	<1	<1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1
Vanadium. total	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vanadium, total Vinyl acetate	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5
Vinyl acetate Vinyl chloride	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<1	<1
	<1 <2	<1 <2	<1 <2	<2	<1 <2	<2	<1 <2	<2	<1 <2	
Xylenes, total	<2 <8.0	<2.0 <8.0	<2 <8.0	<2.0 <8.0	<20.0	<20.0	<20.0	<20.0	<20.0	<2 <20.0
Zinc, total	<ö.U	<ö.U	<ö.U	<8.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-13

Constituents	3/24/2023	9/7/2023	3/18/2024	9/25/2024
	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	<1	<1	<1 <1	<1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1	<1
1,1-dichloroethane	<1	<1	<1	<1
1,1-dichloroethylene	<1	<1	<1	<1
1,2,3-trichloropropane	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	<5	<5	<5	<5
1,2-dibromoethane	<1	<1	<1	<1
1,2-dichlorobenzene	<1 <1	<1 <1	<1 <1	<1 <1
1,2-dichloroethane 1,2-dichloropropane	<1	<1 <1	<1 <1	<1
1,4-dichlorobenzene	<1	<1	<1	<1
2-butanone (mek)	<10	<10	<10	<10
2-hexanone (mbk)	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5
Acetone	<10.0	<10.0	<10.0	<10.0
Acrylonitrile	<5	<5	<5	<5
Antimony, total	<2	<2	<2	<2
Arsenic, total	<4	<4 50.7	<4	<4
Barium, total Benzene	69.6 <1	50.7 <1	59.0 <1	66.4 <1
Beryllium, total	<4	<4	<4	<4
Bromochloromethane	<1	<1	<1	<1
Bromodichloromethane	<1	<1	<1	<1
Bromoform	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1
Cadmium, total	<.8	<.8	.8	<.8
Carbon disulfide	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1
Chlorobenzene	<1	<1	<1	<1
Chloroethane	<1	<1 <1	<1	<1 <1
Chloroform Chloromethane	<1 <1	<1	<1 <1	<1
Chromium, total	<8	<8	<8	<8
Cis-1,2-dichloroethylene	<1	<1	<1	<1
Cis-1,3-dichloropropene	<1	<1	<1	<1
Cobalt, total	<.4	<.4	<.4	<.4
Copper, total	<4.0	<4.0	<4.0	<4.0
Dibromochloromethane	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1
Ethylbenzene	<1	<1	<1	<1
Lead, total	<4.0	<4.0	<4.0	<4.0
Methyl iodide Methylene chloride	<1 <5	<1 <5	<1 <5	<1 <5
Nickel, total	<4.0	4.5	<4.0	<4.0
Selenium, total	<4.0	<4.0	<4.0	<4.0
Silver, total	<4	<4	<4	<4
Solids, total suspended				
Styrene	<1	<1	<1	<1
Tetrachloroethylene	<1	<1	<1	<1
Thallium, total	<2	<2	<2	<2
Toluene	<1	<1	<1	<1
Trans-1,2-dichloroethylene	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene Trichloroethylene	<5 <1	<5 <1	<5 <1	<5 <1
Trichlorofluoromethane	<1	<1 <1	<1	<1
Vanadium, total	<20	<20	<20	<20
Vinyl acetate	<5	<5	<5	<5
Vinyl chloride	<1	<1	<1	<1
Xylenes, total	<2	<2	<2	<2
Zinc, total	<20.0	<20.0	<20.0	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-14

Constituents	Units	9/18/2014	4/28/2015	10/6/2015	4/23/2016	9/1/2016	3/22/2017	10/13/2017	3/9/2018	9/6/2018
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
2-butanone (mek)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	ug/L	<10	<10	<10	<10	<10	<10	<10	<10	<10
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Barium, total	ug/L	275	246	186	151	129	135	146	137	147
Benzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Beryllium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Bromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	ug/L	<8	<8	<8	<8	<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	ug/L	1.5	1.4	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Copper, total	ug/L	4.6	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	ug/L	<4.0	<4.0	5.6	<4.0	<4.0	<4.0	<4.0	<4.0	11.3
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Nickel, total	ug/L	5.5	6.9	6.5	6.6	5.3	<4.0	<4.0	<4.0	4.5
Selenium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<8
Solids, total suspended	mg/L	67	47	12	10	11	400	120		
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Toluene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl chloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	ug/L	11.0	8.6	<8.0	<20.0	<8.0	<8.0	<8.0	<8.0	8.1

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-14

Constituents	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022	11/29/2022
									11/29/2022
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	
1,1,1-trichloroethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	
1,1,2,2-tetrachloroethane	<1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1	
1,1,2-therioroethane	<1	<1	<1	<1	<1	<1	<1	<1	
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	
1,2,3-trichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	
1,2-dibromo-3-chloropropane	<1	<1	<5	<5	<5	<5	<5	<5	
1,2-dibromoethane	<1	<1	<1	<1	<1	<1	<1	<1	
1,2-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	
1,2-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	
1,2-dichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	
1,4-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	
2-butanone (mek)	<5	<5	<5	<5	<5	<5	<10	<10	
2-hexanone (mbk)	<5	<5	<5	<5	<5	<5	<5	<5	
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5	<5	<5	<5	
Acetone	<10	<10	<10	<10	<10	<10	<10	<10	
Acrylonitrile	<5 <2	<5 <2	<5 <2	<5 <2	<5	<5 <2	<5 <2	<5 <2	
Antimony, total Arsenic, total	<2 <4	<2 <4	<2 <4	<2 <4	<2 <4	<2 <4	<2 <4	<2 <4	
Barium, total	156	172	162	160	159	152	169	149	
Benzene	<1	<1	<1	<1	<1	<1	<1	<1	
Beryllium, total	<4	<4	<4	<4	<4	<4	<4	<4	
Bromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	
Bromodichloromethane	<1	- <1	- <1	<1	<1	- <1	<1	<1	
Bromoform	<1	<1	<1	<1	<1	<1	<1	<1	
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	
Cadmium, total	<.8	<.8	<.8	<.8	<.8	<.8	<.8	3.9	<.8
Carbon disulfide	<1	<1	<1	<1	<1	<1	<1	<1	
Carbon tetrachloride	<1	<1	<1	<1	<1	<1	<1	<1	
Chlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	
Chloroethane	<1	<1	<1	<1	<1	<1	<1	<1	
Chloroform	<1	<1	<1	<1	<1	<1	<1 <1	<1	
Chloromethane Chromium, total	<1 <8	<1 <8	<1 <8	<1 <8	<1 <8	<1 <8	<1 <8	<1 <8	
Cis-1,2-dichloroethylene	<1	<1	<0 <1	<1	<1	<1	<1	<1	
Cis-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	
Cobalt, total	<.8	<.8	<.8	<.4	.5	<.4	.4	.8	
Copper, total	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	
Dibromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	
Dibromomethane	<1	<1	<1	<1	<1	<1	<1	<1	
Ethylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	
Lead, total	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	
Methyl iodide	<1	<1	<1	<1	<1	<1	<1	<1	
Methylene chloride	<5	<5	<5	<5	<5	<5	<5	<5	
Nickel, total	<4.0	<4.0	4.1	7.7	5.4	5.7	6.1	9.8	
Selenium, total	<4	<4	<4	<4	<4	<4	<4	<4	
Silver, total	<4	<4	<4	<4	<4	<4	<4	<4	
Solids, total suspended Styrene	<1	<1	<1	<1	<1	<1	<1	<1	
Styrene Tetrachloroethylene	<1	<1 <1	<1	<1 <1	<1 <1	<1	<1 <1	<1	
Thallium, total	<2	<2	<2	<2	<2	<2	<2	<2	
Toluene	<1	<1	<1 <1	<1	<1	<1	<1 <1	<1 <1	
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5	<5	
Trichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	
Trichlorofluoromethane	<1	<1	<1	<1	<1	<1	<1	<1	
Vanadium, total	<20	<20	<20	<20	<20	<20	<20	<20	
Vinyl acetate	<5	<5	<5	<5	<5	<5	<5	<5	
Vinyl chloride	<1	<1	<1	<1	<1	<1	<1	<1	
Xylenes, total	<2	<2	<2	<2	<2	<2	<2	<2	
Zinc, total	<8.0	<8.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-14

2-hexanone (mbk)	Constituents	3/24/2023	9/7/2023	3/18/2024	9/25/2024
1,1,2,2-terkachloroethane <1	1,1,1,2-tetrachloroethane	<1		<1	<1
1,1,2-trichloroethane	1,1,1-trichloroethane		<1		<1
1,1-dichloroethylene	1,1,2,2-tetrachloroethane	<1	<1	<1	<1
1,1-dichloroethylene	1,1,2-trichloroethane	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	1,1-dichloroethane	<1	<1	<1	<1
1,2-dibromo-3-chloropropane <5	1,1-dichloroethylene	<1	<1		<1
1,2-dibromoethane					<1
1,2-dichlorobenzene	1,2-dibromo-3-chloropropane	-	-	- 1	<5
1,2-dichloroethane					<1
1,2-dichloropropane <1	,				<1
1,4-dichlorobenzene					<1
2-butanone (mek) 2-hexanone (mbk) 4-methyl-2-pentanone (mibk) 4-description (mibk) 4-d					<1
2-hexanone (mbk)					<1
4-methyl-2-pentanone (mibk)		-			<10
Acetoné		-		-	<5
Acrylonitrile					<5
Antimony, total		-			<10
Arsenic, total <4					<5
Barium, total 124 110 137 8enzene 1					<2
Benzene		- 1			<4
Beryllium, total					112
Bromochloromethane					<1
Bromodichloromethane					<4
Bromoform					<1
Bromomethane		• 1			<1
Cadmium, total <.8			•		<1
Carbon disulfide <1					<1
Carbon tetrachloride <1					3.5
Chlorobenzene <1		• 1			<1
Chloroethane <1					<1 <1
Chloroform <1					<1 <1
Chloromethane <1					<1 <1
Chromium, total	-	• 1			<1
Cis-1,2-dichloroethylene <1					<8
Cis-1,3-dichloropropene				-	<1
Cobalt, total					<1
Copper, total					.4
Dibromochloromethane					<4.0
Dibromomethane					<1
Ethylbenzene <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1					<1
Lead, total <4.0					<1
Methyl iodide <1					<4.0
Methylene chloride <5		-			<1
Nickel, total					<5
Selenium, total			•	٠,	4.1
Silver, total					<4
Solids, total suspended Styrene <1 <1 <1 <1 <1 <1 <1 <		<4	<4	<4	<4
Styrene <1 <1 <1 Tetrachloroethylene <1					
Thallium, total <2 <2 <2 <2		<1	<1	<1	<1
Thallium, total <2 <2 <2 <2		<1	<1	<1	<1
		<2	<2	<2	<2
		<1		<1	<1
Trans-1,2-dichloroethylene <1 <1 <1		<1	<1	<1	<1
Trans-1,3-dichloropropene <1 <1 <1		<1	<1	<1	<1
Trans-1,4-dichloro-2-butene <5 <5 <5		<5	<5	<5	<5
Trichloroethylene <1 <1 <1		<1	<1	<1	<1
Trichlorofluoromethane <1 <1 <1	Trichlorofluoromethane	<1	<1	<1	<1
Vanadium, total <20 <20 <20	Vanadium, total	<20	<20	<20	<20
Vinyl acetate <5 <5 <5	Vinyl acetate	<5	<5	<5	<5
Vinyl chloride <1 <1 <1					<1
Xylenes, total <2 <2 <2					<2
Zinc, total	Zinc, total	<20.0	<20.0	<20.0	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-16

Constituents	Units	9/18/2014	4/29/2015	10/6/2015	4/23/2016	9/1/2016	3/22/2017	10/13/2017	1/12/2018
(3+4)-methylphenol	ug/L					<8			
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,1,2-trichloroethane	ug/L	<1 2.0	<1 2.2	<1 1.9	<1 2.5	<1 1.9	<1 1.6	<1 1.8	
1,1-dichloroethylene	ug/L ug/L	2.0 <1	2.2 <1	<1.9	2.5 <1	<1	<1.0	1.0 <1	
1,1-dichloropropene	ug/L	`'	`'	`'	` '	<1	`'	` '	
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,2,4,5-tetrachlorobenzene	ug/L					<8			
1,2,4-trichlorobenzene	ug/L					<1			
1,2-dibromo-3-chloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,2-dichlorobenzene 1,2-dichloroethane	ug/L	<1 <1							
1,2-dichloropropane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	
1,2-dinitrobenzene	ug/L	''		- '	"	<8	, , ,	,,	
1,3,5-trinitrobenzene	ug/L					<8			
1,3-dichlorobenzene	ug/L					<1			
1,3-dichloropropane	ug/L					<1			
1,3-dinitrobenzene	ug/L			2 -	. =	<8			
1,4-dichlorobenzene	ug/L	<1.0	1.5	2.0	1.6	2.1	2.6	2.0	
1,4-naphthoquinone	ug/L					<8 <8			
1,4-phenylenediamine 1-naphthylamine	ug/L ug/L					<8			
2,2-dichloropropane	ug/L ug/L					<1			
2,3,4,6-tetrachlorophenol	ug/L					<8			
2,4,5-t	ug/L					<.5			
2,4,5-tp (silvex)	ug/L					<.5			
2,4,5-trichlorophenol	ug/L					<8			
2,4,6-trichlorophenol	ug/L					<8			
2,4-d 2,4-dichlorophenol	ug/L ug/L					<2 <8			
2,4-dimethylphenol	ug/L ug/L					<8			
2,4-dinitrophenol	ug/L					<8			
2,4-dinitrotoluene	ug/L					<8			
2,6-dichlorophenol	ug/L					<8			
2,6-dinitrotoluene	ug/L					<8			
2-acetylaminofluorene	ug/L				.=	<8			
2-butanone (mek)	ug/L	<5	<5	<5	<5	<5	<5	<5	
2-chloronaphthalene 2-chlorophenol	ug/L ug/L					<8 <8			
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5	<5	
2-methylnaphthalene	ug/L				· ·	<8			
2-methylphenol	ug/L					<8			
2-naphthylamine	ug/L					<8			
2-nitroaniline	ug/L					<8			
2-nitrophenol	ug/L					<8			
3,3'-dichlorobenzidine	ug/L					<8 <8			
3,3'-dimethylbenzidine 3-methylcholanthrene	ug/L ug/L					<8			
3-nitroaniline	ug/L					<8			
4,4'-ddd	ug/L					<.05			
4,4'-dde	ug/L					<.05			
4,4'-ddt	ug/L					<.05			
4,6-dinitro-2-methylphenol	ug/L					<8			
4-aminobiphenyl 4-bromophenyl phenyl ether	ug/L ug/L					<8 <8			
4-chloro-3-methylphenol	ug/L ug/L					<8 <8			
4-chloroaniline	ug/L ug/L					<8			
4-chlorophenyl phenyl ether	ug/L					<8			
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	
4-nitroaniline	ug/L					<8			
4-nitrophenol	ug/L					<8			
5-nitro-o-toluidine	ug/L					<8			
7,12-dimethylbenz(a)anthracene	ug/L					<8			
Acenaphthene Acenaphthylene	ug/L ug/L					<8 <8			
Acetone	ug/L ug/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	13.1	
Acetonitrile	ug/L	10.0	10.0	10.0	710.0	<10.0	10.0	10.1	
Acetophenone	ug/L					<8			
Acrolein	ug/L					<10			
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	
Aldrin	ug/L					<.05			
Allyl chloride	ug/L					<1			
Alpha-bhc	ug/L					<.05			
Anthracene	ug/L					<8			l .

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-16

Constituents	3/9/2018	9/6/2018	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022
(3+4)-methylphenol								<8		
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,1,2,2-tetrachloroethane	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1
1,1,2-thchloroethane	2.4	<1.0	1.7	1.3	<1.0	<1.0	1.2	<1.0	1.9	<1.0
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloropropene		-	-		•		•	<1		
1,2,3-trichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,4,5-tetrachlorobenzene								<8		
1,2,4-trichlorobenzene	-4	-1	-4	-4				<1		
1,2-dibromo-3-chloropropane	<1 <1	<1 <1	<1 <1	<1 <1	<5 <1	<5 <1	<5 <1	<1 <1	<5 <1	<5 <1
1,2-dibromoetriarie	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	1	<1
1,2-dinitrobenzene								<8		
1,3,5-trinitrobenzene								<8		
1,3-dichlorobenzene								<1		
1,3-dichloropropane								<1 <8		
1,4-dichlorobenzene	1.8	2.7	3.8	<1.0	<1.0	1.8	1.8	2.2	2.1	<1.0
1,4-naphthoquinone		2.1	0.0	-1.0	-1.0	1.0		<8		1.0
1,4-phenylenediamine								<8		
1-naphthylamine								<8		
2,2-dichloropropane								<1		
2,3,4,6-tetrachlorophenol								<8		
2,4,5-t 2,4,5-tp (silvex)								<.5 <.5		
2,4,5-trichlorophenol								<8		
2,4,6-trichlorophenol								<8		
2,4-d								<2		
2,4-dichlorophenol								<8>		
2,4-dimethylphenol								<8		
2,4-dinitrophenol								<8		
2,4-dinitrotoluene 2,6-dichlorophenol								<8 <8		
2,6-dinitrotoluene								<8		
2-acetylaminofluorene								<8		
2-butanone (mek)	<5	<5	<5	<5	<5	<5	<5	<5	<10	<10
2-chloronaphthalene								<8		
2-chlorophenol	_	_	_	_	_	_	_1	<8	_	_
2-hexanone (mbk)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
2-methylnaphthalene 2-methylphenol								<8 <8		
2-naphthylamine								<8		
2-nitroaniline								<8		
2-nitrophenol								<8		
3,3'-dichlorobenzidine								<8		
3,3'-dimethylbenzidine								<8		
3-methylcholanthrene 3-nitroaniline								<8 <8		
4,4'-ddd								<.05		
4,4'-dde								<.05		
4,4'-ddt								<.05		
4,6-dinitro-2-methylphenol								<8		
4-aminobiphenyl								<8		
4-bromophenyl phenyl ether								<8		
4-chloro-3-methylphenol 4-chloroaniline								<8 <8		
4-chlorophenyl phenyl ether								<8		
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-nitroaniline			,		•			<8		
4-nitrophenol								<8		
5-nitro-o-toluidine								<8		
7,12-dimethylbenz(a)anthracene								<8		
Acenaphthene Acenaphthylene								<8 <8		
Acetone	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Acetonitrile	10.0	-10.0	-10.0	-10.0	-10.0	-10.0	-10.0	<10.0	10.0	- 10.0
Acetophenone								<8		
Acrolein								<10		
Acrylonitrile	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Aldrin								<.05		
Allyl chloride								<1		
Alpha-bhc Anthracene								<.05 <8		
/ with accide								~0		

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-16

(3+4)-methylphenol 1,1,2-tetrachloroethane <1	\$\\\ \tau_1.0\\\\ \tau_2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1,1,1-trichloroethane	<1 <1 <1 <1.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
1,1,2,-trichloroethane	<1 <1 <1.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
1,1,2-trichloroethane	<1 <1.0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
1,1-dichloroethylene	<1.0 <1 <1 <5 <1 <1 <1 <1
1,1-dichloropropene	<1 <5 <1 <1 <1
1,2,3-trichloropropane	<5 <1 <1 <1 <1
1,2,4,5-tetrachlorobenzene 1,2,4-trichlorobenzene 1,2-dibromo-3-chloropropane <5 <5 <5 <5 <5 <5 <5 <	<5 <1 <1 <1 <1
1,2,4-trichlorobenzene 1,2-dibromo-3-chloropropane <5 <5 <5 <5 <1,2-dibromo-3-chloropropane <1 <1 <1 <1 <1 <1 <1 <	<1 <1 <1 <1
1,2-dibromo-3-chloropropane	<1 <1 <1 <1
1,2-dichlorobenzene	<1 <1 <1 <1
1,2-dichloroethane	<1 <1
1,2-dichloropropane	<1
1,2-dinitrobenzene	
1,3,5-trinitrobenzene	<1.0
1,3-dichlorobenzene 1,3-dichloropropane 1,3-dichloropropane 1,4-dichlorobenzene 1,4-naphthoquinone 1,4-phenylenediamine 1-naphthylamine 2,2-dichloropropane 2,3,4,6-tetrachlorophenol 2,4,5-t 2,4,5-tp (silvex) 2,4,5-trichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dimitrophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrotoluene	<1.0
1,3-dinitrobenzene 1,4-dichlorobenzene 1,4-naphthoquinone 1,4-phenylenediamine 1-naphthylamine 2,2-dichloropropane 2,3,4,6-tetrachlorophenol 2,4,5-t 2,4,5-tp (silvex) 2,4,5-trichlorophenol 2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dimitrophenol 2,4-dinitrophenol 2,4-dinitrotoluene	<1.0
1,4-dichlorobenzene <1.0 <1.0 1.8 1,4-naphthoquinone 1,4-phenylenediamine 1-naphthylamine 2,2-dichloropropane 2,3,4,6-tetrachlorophenol 2,4,5-t 2,4,5-tp (silvex) 2,4,5-trichlorophenol 2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dimitrophenol 2,4-dinitrophenol 2,4-dinitrotoluene	<1.0
1,4-naphthoquinone 1,4-phenylenediamine 1-naphthylamine 2,2-dichloropropane 2,3,4,6-tetrachlorophenol 2,4,5-t 2,4,5-tp (silvex) 2,4,5-trichlorophenol 2,4-dirichlorophenol 2,4-dimethylphenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrotoluene	<1.0
1,4-phenylenediamine 1-naphthylamine 2,2-dichloropropane 2,3,4,6-tetrachlorophenol 2,4,5-t 2,4,5-tp (silvex) 2,4,5-trichlorophenol 2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dimitrophenol 2,4-dinitrophenol 2,4-dinitrotoluene	
1-naphthylamine 2,2-dichloropropane 2,3,4,6-tetrachlorophenol 2,4,5-t 2,4,5-tp (silvex) 2,4,5-trichlorophenol 2,4,6-trichlorophenol 2,4-d 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dimitrophenol 2,4-dinitrophenol 2,4-dinitrotoluene	
2,2-dichloropropane 2,3,4,6-tetrachlorophenol 2,4,5-t 2,4,5-tp (silvex) 2,4,5-trichlorophenol 2,4,6-trichlorophenol 2,4-d 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dimitrophenol 2,4-dinitrophenol 2,4-dinitrotoluene	
2,4,5-t 2,4,5-tp (silvex) 2,4,5-trichlorophenol 2,4,6-trichlorophenol 2,4-d 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrotoluene	
2,4,5-tp (silvex) 2,4,5-trichlorophenol 2,4,6-trichlorophenol 2,4-d 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrotoluene	
2,4,5-trichlorophenol 2,4,6-trichlorophenol 2,4-d 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrotoluene	
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrotoluene	
2,4-d 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrotoluene	
2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrotoluene	
2,4-dinitrophenol 2,4-dinitrotoluene	
2,4-dinitrotoluene	
2,6-dinitrotoluene	
2-acetylaminofluorene	
2-butanone (mek)	<10
2-chloronaphthalene 2-chlorophenol	
2-hexanone (mbk)	<5
2-methylnaphthalene	
2-methylphenol	
2-naphthylamine	
2-nitroaniline 2-nitrophenol	
3,3'-dichlorobenzidine	
3,3'-dimethylbenzidine	
3-methylcholanthrene	
3-nitroaniline	
4,4'-ddd 4,4'-dde	
4,4 - ade 4,4'-ddt	
4,6-dinitro-2-methylphenol	
4-aminobiphenyl	Į.
4-bromophenyl phenyl ether	
4-chloro-3-methylphenol 4-chloroaniline	
4-chlorophenyl phenyl ether	Į.
4-methyl-2-pentanone (mibk) <5 <5 <5	<5
4-nitroaniline	
4-nitrophenol	
5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene	
7,12-dimetriyibenz(a)antirracene Acenaphthene	Į.
Acenaphthylene	Į.
Acetone <10.0 <10.0 <	:10.0
Acetonitrile	
Acetophenone	
Acrolein Acrylonitrile <5 <5 <5	<5
Adyonimie	٠,٥
Allyl chloride	
Alpha-bhc	Į.
Anthracene	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-16

Constituents	Units	9/18/2014	4/29/2015	10/6/2015	4/23/2016	9/1/2016	3/22/2017	10/13/2017	1/12/2018
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	
Arochlor 1016	ug/L					<.1			
Arochlor 1221	ug/L					<.2			
Arochlor 1232	ug/L					<.2			
Arochlor 1242	ug/L					<.2			
Arochlor 1248	ug/L					<.2			
Arochlor 1254	ug/L					<.1			
Arochlor 1260	ug/L					<.1			
Arsenic, total	ug/L	34.3	38.5	<4.0	<4.0	<4.0	9.3	19.0	
Azobenzene	ug/L					<8			
Barium, total	ug/L	1130	1370	790	779	711	867	1020	818
Benzene	ug/L	<1.0	<1.0	1.0	<1.0	1.2	1.3	1.1	
Benzo(a)anthracene	ug/L					<8			
Benzo(a)pyrene	ug/L					<8			
Benzo(b)fluoranthene	ug/L					<8			
Benzo(g,h,i)perylene	ug/L					<8			
Benzo(k)fluoranthene	ug/L					<8			
Benzyl alcohol	ug/L					<8			
Beryllium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	
Beta-bhc	ug/L					<.05			
Bis (2-chloroethoxy) methane	ug/L					<8			
Bis(2-chloroethyl) ether	ug/L					<8			
Bis(2-chloroisopropyl) ether	ug/L					<8			
Bis(2-ethylhexyl) phthalate	ug/L					<8	.		
Bromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
Bromoform	ug/L	<1	<1	<1	<1	<1	<1	<1	
Bromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
Butyl benzyl phthalate	ug/L			_	_	<8	_	_	
Cadmium, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	
Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1	<1	
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	<1	
Chlordane	ug/L					<.1			
Chlorobenzene	ug/L	4.3	4.4	4.9	3.5	6.0	6.4	5.1	
Chlorobenzilate	ug/L					<8			
Chloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
Chloroprene	ug/L					<1			
Chromium, total	ug/L	<8	<8	<8	<8	<8	<8	<8	
Chrysene	ug/L					<8			
Cis-1,2-dichloroethylene	ug/L	<1.0	<1.0	<1.0	<1.0	1.1	<1.0	1.2	
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Cobalt, total	ug/L	2.5	2.2	2.1	1.9	1.6	1.5	1.5	
Copper, total	ug/L	<4	<4	<4	<4	<4	<4	<4	
Cyanide, total	mg/L					<.005			
Delta-bhc	ug/L					<.05			
Diallate	ug/L					<8			
Dibenzo(a,h)anthracene	ug/L					<8			
Dibenzofuran	ug/L					<8			
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
Dichlorodifluoromethane	ug/L	3.6	2.6	2.9	3.2	3.6	2.2	1.6	
Dieldrin	ug/L					<.05			
Diethyl phthalate	ug/L					<8			
Dimethoate	ug/L					<.4			
Dimethylphthalate	ug/L					<8			
Di-n-butyl phthalate	ug/L					<8			
Di-n-octyl phthalate	ug/L					<8			
Dinoseb	ug/L					<.5			
Diphenylamine	ug/L					<8			
Disulfoton	ug/L					<.4			
Endosulfan i	ug/L					<.05			
Endosulfan ii	ug/L					<.05			
Endosulfan sulfate	ug/L					<.05			
Endrin	ug/L					<.05			
Endrin aldehyde	ug/L					<.05			
Ethyl methacrylate	ug/L					<10			
Ethyl methanesulfonate	ug/L					<8			
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Famphur	ug/L					<.4			
Fluoranthene	ug/L					<8			
Fluorene	ug/L					<8			
Gamma-bhc (lindane)	ug/L					<.05			
Heptachlor	ug/L					<.05			
Heptachlor epoxide	ug/L					<.05			
Hexachlorobenzene	ug/L					<.05			

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-16

Constituents	3/9/2018	9/6/2018	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022
Antimony, total	<2	<2		<2	<2	<2	<2	<2	<2	<2
Arochlor 1016								<.1		
Arochlor 1221 Arochlor 1232								<.2 <.2		
Arochlor 1242								<.2		
Arochlor 1248								<.2		
Arochlor 1254								<.1		
Arochlor 1260	-10	-10		6.2	9.3	6.5	21.2	<.1	26.5	4.7
Arsenic, total Azobenzene	<4.0	<4.0		6.3	9.5	6.5	21.2	10.4 <8	26.5	4.7
Barium, total	668	719		796	925	806	1010	798	1010	655
Benzene	<1.0	1.7	2.1	<1.0	1.6	<1.0	1.5	1.3	1.6	<1.0
Benzo(a)anthracene								<8		
Benzo(a)pyrene Benzo(b)fluoranthene								<8 <8		
Benzo(g,h,i)perylene								<8		
Benzo(k)fluoranthene								<8		
Benzyl alcohol								<8		
Beryllium, total	<4	<4		<4	<4	<4	<4	<4	<4	<4
Beta-bhc Bis (2-chloroethoxy) methane								<.05 <8		
Bis(2-chloroethyl) ether								<8		
Bis(2-chloroisopropyl) ether								<8		
Bis(2-ethylhexyl) phthalate								<6		
Bromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane Bromoform	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Butyl benzyl phthalate			·	·	· ·	·	, i	<8	.	.
Cadmium, total	<.8	<.8		<.8	<.8	<.8	.9	<.8	<.8	<.8
Carbon disulfide	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride Chlordane	<1	<1	<1	<1	<1	<1	<1	<1 <.1	<1	<1
Chlorobenzene	4.7	8.1	9.7	4.8	8.8	4.7	5.8	7.3	5.2	2.1
Chlorobenzilate								<8		
Chloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane Chloroprene	<1	<1	<1	<1	<1	<1	<1	<1 <1	<1	<1
Chromium, total	<8	<8		<8	<8	<8	<8	<8	<8	<8
Chrysene								<8		
Cis-1,2-dichloroethylene	<1.0	<1.0	1.4	<1.0	<1.0	<1.0	1.3	<1.0	2.1	<1.0
Cis-1,3-dichloropropene Cobalt, total	<1 1.3	<1 1.2	<1	<1 1.1	<1 1.3	<1 1.2	<1 1.1	<1 1.0	<1 1.6	<1 .7
Copper, total	<4	<4		<4	<4	<4	<4	<4	<4	. <i>r</i> <4
Cyanide, total				_				<.005		
Delta-bhc								<.05		
Diallate								<8		
Dibenzo(a,h)anthracene Dibenzofuran								<8 <8		
Dibromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	3.0	<1.0	4.6	<1.0	<1.0	<1.0		<1.0		
Dieldrin Diethyl phthalate								<.05 <8		
Dimethoate								<.4		
Dimethylphthalate								<8		
Di-n-butyl phthalate								<8		
Di-n-octyl phthalate								<8		
Dinoseb Diphenylamine								<.5 <8		
Disulfoton								<.4		
Endosulfan i								<.05		
Endosulfan ii								<.05		
Endosulfan sulfate								<.05		
Endrin Endrin aldehyde								<.05 <.05		
Ethyl methacrylate								<10		
Ethyl methanesulfonate								<8		
Ethylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Famphur								<.4		
Fluoranthene Fluorene								<8 <8		
Gamma-bhc (lindane)								<.05		
Heptachlor								<.05		
Heptachlor epoxide								<.05		
Hexachlorobenzene								<.05		

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-16

Constituents	3/24/2023	9/7/2023	3/18/2024	9/25/2024
Antimony, total	<2	<2	<2	<2
Arochlor 1016				
Arochlor 1221				
Arochlor 1232 Arochlor 1242				
Arochlor 1242				
Arochlor 1254				
Arochlor 1260				
Arsenic, total	4.3	<4.0	20.4	26.2
Azobenzene	404	244	740	750
Barium, total Benzene	481 <1.0	311 <1.0	713 1.5	756 <1.0
Benzo(a)anthracene	11.0	11.0	1.0	11.0
Benzo(a)pyrene				
Benzo(b)fluoranthene				
Benzo(g,h,i)perylene				
Benzo(k)fluoranthene Benzyl alcohol				
Beryllium, total	<4	<4	<4	<4
Beta-bhc			.	
Bis (2-chloroethoxy) methane				
Bis(2-chloroethyl) ether				
Bis(2-chloroisopropyl) ether				
Bis(2-ethylhexyl) phthalate Bromochloromethane	<1	<1	<1	<1
Bromodichloromethane	<1	<1	<1	<1
Bromoform	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1
Butyl benzyl phthalate				
Cadmium, total Carbon disulfide	<.8 <1	<.8 <1	<.8 <1	<.8 <1
Carbon tetrachloride	<1	<1	<1	<1
Chlordane		.,		•
Chlorobenzene	3.0	<1.0	5.2	2.3
Chlorobenzilate				
Chloroethane Chloroform	<1 <1	<1 <1	<1 <1	<1 <1
Chloromethane	<1	<1	<1	<1
Chloroprene	"	- '	`'	`'
Chromium, total	<8	<8	<8	<8
Chrysene				
Cis-1,2-dichloroethylene	<1.0	<1.0	<1.0	<1.0
Cis-1,3-dichloropropene Cobalt, total	<1 .5	<1 .4	<1 .9	<1 1.7
Copper, total	.5 <4	. 4 <4	.9 <4	<4
Cyanide, total			.	
Delta-bhc				
Diallate				
Dibenzo(a,h)anthracene Dibenzofuran				
Dibromochloromethane	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1
Dichlorodifluoromethane		.	.	.
Dieldrin				
Diethyl phthalate				
Dimethoate Dimethylphthalate				
Dimetryphthalate Di-n-butyl phthalate				
Di-n-octyl phthalate				
Dinoseb				
Diphenylamine				
Disulfoton Endosulfan i				
Endosulfan i				
Endosulfan sulfate				
Endrin				
Endrin aldehyde				
Ethyl methacrylate				
Ethyl methanesulfonate Ethylbenzene	<1	<1	<1	<1
Ethylberizerie Famphur	`'	`1	~1	~1
Fluoranthene				
Fluorene				
Gamma-bhc (lindane)				
Heptachlor Heptachlor epoxide				
Hexachlorobenzene				

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-16

Constituents	Units	9/18/2014	4/29/2015	10/6/2015	4/23/2016	9/1/2016	3/22/2017	10/13/2017	1/12/2018
Hexachlorobutadiene	ug/L	0.1.0.2011				<8			
Hexachlorocyclopentadiene	ug/L					<8			
Hexachloroethane	ug/L					<8			
Hexachloropropene	ug/L					<8			
Indeno(1,2,3-cd)pyrene	ug/L					<8			
Isobutanol	mg/L					<1			
Isodrin	ug/L					<8			
Isophorone	ug/L					<8			
Isosafrole	ug/L					<8			
Kepone	ug/L					<8			
Lead, total	ug/L	<4	<4	<4	<4	<4	<4	<4	
Mercury, total	ug/L					<.5			
Methacrylonitrile	ug/L					<1			
Methapyrilene	ug/L					<8			
Methoxychlor	ug/L					<.05			
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1	<1	
Methyl methacrylate	ug/L					<1			
Methyl methanesulfonate	ug/L					<8			
Methyl parathion	ug/L		_	_	_	<.4	_	_	
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5	<5	
Naphthalene	ug/L					<8			
Nickel, total	ug/L	26.9	29.5	22.9	22.9	18.6	22.4	30.3	
Nitrobenzene	ug/L					<8			
N-nitrosodiethylamine	ug/L					<8			
N-nitrosodimethylamine	ug/L					<8			
N-nitrosodi-n-butylamine	ug/L					<8			
N-nitroso-di-n-propylamine	ug/L					<8			
N-nitrosodiphenylamine	ug/L					<8			
N-nitrosomethylethylamine	ug/L					<8			
N-nitrosopiperidine	ug/L					<8			
N-nitrosopyrrolidine	ug/L					<8			
O,o,o-triethyl phosphorothioate	ug/L					<.4			
O-toluidine	ug/L					<8			
Parathion	ug/L					<.4			
P-dimethylaminoazobenzene	ug/L					<8 <8			
Pentachlorobenzene	ug/L								
Pentachloronitrobenzene (pcnb)	ug/L					<8 <8			
Pentachlorophenol Phenacetin	ug/L					<8			
Phenanthrene	ug/L					<8			
Phenol	ug/L ug/L					<8			
Phorate	ug/L ug/L					<.4			
Pronamide	ug/L ug/L					<8			
Propionitrile	ug/L ug/L					<10			
Pyrene	ug/L ug/L					<8			
Safrole	ug/L					<8			
Selenium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	
Solids, total suspended	mg/L	96	94	15	7	13	20	210	
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Sulfide, total	mg/L	''	•	•	· ·	<.1	· ·		
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Thallium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	
Thionazin	ug/L		•	·	· ·	<.4	·		
Tin, total	ug/L					<20			
Toluene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Toxaphene	ug/L		-			<.2]	
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5	<5	
Trichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Trichlorofluoromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20	<20	
Vinyl acetate	ug/L	<5	<5	<5	<5	<5	<5	<5	
Vinyl chloride	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2	<2	
Zinc, total	ug/L	<8.0	<8.0	<8.0	<20.0		<8.0	<8.0	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-16

Constituents	3/9/2018	9/6/2018	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022
Hexachlorobutadiene								<8		
Hexachlorocyclopentadiene								<8		
Hexachloroethane								<8		
Hexachloropropene								<8		
Indeno(1,2,3-cd)pyrene								<8		
Isobutanol								<1		
Isodrin								<8		
Isophorone								<8		
Isosafrole								<8		
Kepone	-1	4		-1	-1	-1	-1	<8	-1	
Lead, total	<4	4		<4	<4	<4	<4	<4	<4	<4
Mercury, total								<.5 <1		
Methacrylonitrile								<8		
Methapyrilene Methoxychlor								<.05		
Methyl iodide	<1	<1	<1	<1	<1	<1	<1	<.05 <2	<1	<1
Methyl methacrylate	`'	~1	~1	` '	`'	`'	`'	<1	`'	`'
Methyl methanesulfonate								<8		
Methyl parathion								<.4		
Methylene chloride	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene	\3	,5	٦٥	75	\3	\"	٠,5	<8	\3	``
Nickel, total	20.8	25.9		24.7	29.2	25.9	28.8	27.0	28.8	27.5
Nitrobenzene	20.0	20.0		24.1	23.2	20.9	20.0	27.0 <8	20.0	27.5
N-nitrosodiethylamine								<8		
N-nitrosodimethylamine								<8		
N-nitrosodi-n-butylamine								<8		
N-nitroso-di-n-propylamine								<8		
N-nitrosodiphenylamine								<8		
N-nitrosomethylethylamine								<8		
N-nitrosopiperidine								<8		
N-nitrosopyrrolidine								<8		
O,o,o-triethyl phosphorothioate								<.4		
O-toluidine								<8		
Parathion								<.4		
P-dimethylaminoazobenzene								<8		
Pentachlorobenzene								<8		
Pentachloronitrobenzene (pcnb)								<8		
Pentachlorophenol "								<8		
Phenacetin								<8		
Phenanthrene								<8		
Phenol								<8		
Phorate								<.4		
Pronamide								<8		
Propionitrile								<10		
Pyrene								<8		
Safrole								<8		
Selenium, total	<4	<4		<4	<4	<4	<4	<4	<4	<4
Silver, total	<4	<8		<4	<4	<4	<4	<4	<4	<4
Solids, total suspended										
Styrene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulfide, total	_1	-1	-1	-1	_1	_1	-1	<.1	_1	_1
Tetrachloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1 <2	<1
Thallium, total	<4	<4		<2	<2	<2	<2	<2	\ 2	<2
Thionazin Tin. total								<.4 <20		
Toluene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toxaphene	~"	~1	~1		`'		~1	<.2	~1	`'
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<.z	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	<20	<20	11	<20	<20	<20	<20	<20	<20	<20
Vanadium total		-20								
Vanadium, total Vinyl acetate		<5	<5	<5	<5	<5	<5	<5	<5 l	<5
Vinyl acetate	<5	<5 <1.0	<5 2.5	<5 <1.0						
		<5 <1.0 <2	<5 2.5 <2	<5 <1.0 <2						

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-16

Constituents	3/24/2023	9/7/2023	3/18/2024	9/25/2024
Hexachlorobutadiene				
Hexachlorocyclopentadiene				
Hexachloroethane				
Hexachloropropene				
Indeno(1,2,3-cd)pyrene				
Isobutanol				
Isodrin				
Isophorone Isosafrole				
Kepone				
Lead, total	<4	<4	<4	<4
Mercury, total				
Methacrylonitrile				
Methapyrilene				
Methoxychlor				
Methyl iodide	<1	<1	<1	<1
Methyl methacrylate				
Methyl methanesulfonate Methyl parathion				
Methylene chloride	<5	<5	<5	<5
Naphthalene	, ,	10	, ,	10
Nickel, total	24.1	28.7	26.1	36.0
Nitrobenzene				
N-nitrosodiethylamine				
N-nitrosodimethylamine				
N-nitrosodi-n-butylamine				
N-nitroso-di-n-propylamine				
N-nitrosodiphenylamine				
N-nitrosomethylethylamine N-nitrosopiperidine				
N-nitrosopiperidine N-nitrosopyrrolidine				
O,o,o-triethyl phosphorothioate				
O-toluidine				
Parathion				
P-dimethylaminoazobenzene				
Pentachlorobenzene				
Pentachloronitrobenzene (pcnb)				
Pentachlorophenol				
Phenacetin				
Phenanthrene Phenol				
Phorate				
Pronamide				
Propionitrile				
Pyrene				
Safrole				
Selenium, total	<4	<4	<4	<4
Silver, total	<4	<4	<4	<4
Solids, total suspended				
Styrene	<1	<1	<1	<1
Sulfide, total	_1	<1	<1	_1
Tetrachloroethylene Thallium, total	<1 <2	<2	<1 <2	<1 <2
Thionazin	\	~2	\2	~2
Tin, total				
Toluene	<1	<1	<1	<1
Toxaphene				
Trans-1,2-dichloroethylene	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1
Trichlorofluoromethane	<1	<1	<1	<1
Vanadium, total	<20	<20	<20	<20
Vinyl chlorida	<5 <1.0	<5 <1.0	<5 <1.0	<5 <1.0
Vinyl chloride Xylenes, total	<1.0 <2	<1.0 <2	<1.0 <2	<1.0 <2
Zinc, total	<20.0	<20.0	<20.0	<20.0
,		_0.0	_==.0	_0.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-17

Constituents	Units	9/18/2014	4/28/2015	10/6/2015	4/23/2016	9/1/2016	3/21/2017	10/13/2017	3/9/2018	9/6/2018
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
2-butanone (mek)	ug/L	- <5	<5	- <5	- <5	- <5	- <5	- <5	- <5	- <5
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	ug/L	<10	<10	<10	<10	<10	<10	<10	<10	<10
Acrylonitrile	ug/L ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Antimony, total		<2	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic, total	ug/L ug/L	<4	<4	<2 <4	<4	<4	<2 <4	<4	<4	<2 <4
Barium. total	ug/L ug/L	91.4	106.0	85.3	99.2	88.5	93.7	89.5	86.5	83.2
Benzene	ug/L ug/L	91. 4 <1	<1	oo.o <1	99.2	00.5 <1	93.7 <1	69.5 <1	00.5 <1	os.2 <1
Beryllium, total	ug/L	<4 <1	<4	<4	<4	<4 <1	<4 <1	<4 <1	<4 <1	<4
Bromochloromethane	ug/L		<1	<1	<1		- 1			<1
Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	1.4	<.8	<.8
Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	ug/L	<8	<8	<8	<8	<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Copper, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Nickel, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Selenium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<8
Solids, total suspended	mg/L	16	7	2	2	2	59	19		-
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Toluene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1 <1
Vanadium. total		<20	<20	<20	<20	<20	<20	<20	<20	<20
Vanadium, total Vinyl acetate	ug/L ug/L	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5
Vinyl acetate Vinyl chloride		<5 <1	<5 <1	<1	<5 <1	<5 <1	<5 <1	<5 <1	<1	<5 <1
	ug/L		<1 <2	<1 <2	<2	<2	<2	<2		
Xylenes, total	ug/L	<2 8.1	<2 <8.0	<2.0 <8.0	<20.0	<2 <8.0	<2.0	<2.0	<2 <8.0	<2 <8.0
Zinc, total	ug/L	8.1	<8.0	<8.0	<20.0	<u> </u>	<8.0	<ö.U	<ŏ.0	<ö.Ü

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-17

Constituents	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022	3/24/2023	9/7/2023
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-trichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	<1	<1	<5	<5	<5	<5	<5	<5	<5	<5
1,2-dibromoethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
2-butanone (mek)	<5	<5	<5	<5	<5	<5	<10	<10	<10	<10
2-hexanone (mbk)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Acrylonitrile	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Antimony, total	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic, total	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Barium, total	99.9	95.8	102.0	94.6	92.2	89.6	89.9	90.3	84.3	92.4
Benzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Beryllium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Bromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Carbon disulfide	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium, total	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	<.8	<.8	<.8	<.4	<.4	<.4	<.4	<.4	<.4	<.4
Copper, total	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Dibromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Lead, total	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Methyl iodide	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Nickel, total	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Selenium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Solids, total suspended										
Styrene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Tetrachloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Toluene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl chloride	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes, total	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	<8.0	8.5	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-17

Constituents	3/18/2024	9/25/2024
1,1,1,2-tetrachloroethane	3/10/2024 <1	9/25/2024 <1
1,1,1-trichloroethane	<1 <1	<1
1,1,2,2-tetrachloroethane	<1	<1
1,1,2-trichloroethane	<1	<1
1,1-dichloroethane	<1	<1
1,1-dichloroethylene	<1	<1
1,2,3-trichloropropane	<1	<1
1,2-dibromo-3-chloropropane	<5	<5
1,2-dibromoethane	<1	<1
1,2-dichlorobenzene	<1	<1
1,2-dichloroethane	<1	<1
1,2-dichloropropane	<1	<1
1,4-dichlorobenzene	<1	<1
2-butanone (mek)	<10	<10
2-hexanone (mbk)	<5 <5	<5
4-methyl-2-pentanone (mibk) Acetone	<10	<5 <10
Acrylonitrile	<5	<5
Antimony, total	<2	<2
Arsenic, total	<4	<4
Barium, total	96.4	90.1
Benzene	<1	<1
Beryllium, total	<4	<4
Bromochloromethane	<1	<1
Bromodichloromethane	<1	<1
Bromoform	<1	<1
Bromomethane	<1	<1
Cadmium, total	.8	<.8
Carbon disulfide	<1	<1
Carbon tetrachloride Chlorobenzene	<1 <1	<1 <1
Chloroethane	<1	<1
Chloroform	<1	<1
Chloromethane	<1	<1
Chromium, total	- <8	<8
Cis-1,2-dichloroethylene	<1	<1
Cis-1,3-dichloropropene	<1	<1
Cobalt, total	<.4	<.4
Copper, total	<4	<4
Dibromochloromethane	<1	<1
Dibromomethane	<1	<1
Ethylbenzene	<1	<1
Lead, total Methyl iodide	<4 <1	<4 <1
Methylene chloride	<5	<5
Nickel, total	<4	<4
Selenium, total	<4	<4
Silver, total	<4	<4
Solids, total suspended		.
Styrene	<1	<1
Tetrachloroethylene	<1	<1
Thallium, total	<2	<2
Toluene	<1	<1
Trans-1,2-dichloroethylene	<1	<1
Trans-1,3-dichloropropene	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5
Trichloroethylene	<1	<1
Trichlorofluoromethane	<1	<1
Vanadium, total Vinyl acetate	<20 <5	<20 <5
Vinyl acetate Vinyl chloride	<1	<1
Xylenes, total	<2	<2
Zinc, total	<20.0	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-18

Constituents	Units	9/17/2014	4/28/2015	10/6/2015	4/23/2016	9/1/2016	3/21/2017	10/13/2017	1/12/2018
(3+4)-methylphenol	ug/L					<8			
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,1-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,1-dichloropropene	ug/L					<1	٠		
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,2,4,5-tetrachlorobenzene	ug/L					<8 <1			
1,2,4-trichlorobenzene 1,2-dibromo-3-chloropropane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	
1,2-dibromoethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	
1,2-dishorribethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,2-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,2-dichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,2-dinitrobenzene	ug/L					<8			
1,3,5-trinitrobenzene	ug/L					<8			
1,3-dichlorobenzene	ug/L					<1			
1,3-dichloropropane	ug/L					<1			
1,3-dinitrobenzene	ug/L					<8>			
1,4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,4-naphthoquinone	ug/L					<8			
1,4-phenylenediamine	ug/L					<8			
1-naphthylamine	ug/L					<8			
2,2-dichloropropane	ug/L ug/L					<1 <8			
2,3,4,6-tetrachlorophenol	ug/L ug/L					<8 <.5			
2,4,5-t 2,4,5-tp (silvex)	ug/L ug/L					<.5 <.5			
2,4,5-trichlorophenol	ug/L					<8			
2,4,6-trichlorophenol	ug/L					<8			
2,4-d	ug/L					<2			
2,4-dichlorophenol	ug/L					<8			
2,4-dimethylphenol	ug/L					<8			
2,4-dinitrophenol	ug/L					<8			
2,4-dinitrotoluene	ug/L					<8			
2,6-dichlorophenol	ug/L					<8>			
2,6-dinitrotoluene	ug/L					<8			
2-acetylaminofluorene	ug/L	_	_			<8			
2-butanone (mek)	ug/L	<5	<5	<5	<5	<5	<5	<5	
2-chloronaphthalene	ug/L					<8			
2-chlorophenol	ug/L ug/L	<5	<5	<5	<5	<8 <5	<5	<5	
2-hexanone (mbk) 2-methylnaphthalene	ug/L ug/L	\ \ \	\ 5	< 5	< 5	<8	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<2	
2-methylphenol	ug/L ug/L					<8			
2-naphthylamine	ug/L					<8			
2-nitroaniline	ug/L					<8			
2-nitrophenol	ug/L					<8			
3,3'-dichlorobenzidine	ug/L					<8			
3,3'-dimethylbenzidine	ug/L					<8			
3-methylcholanthrene	ug/L					<8			
3-nitroaniline	ug/L					<8			
4,4′-ddd	ug/L					<.05			
4,4'-dde	ug/L					<.05			
4,4'-ddt	ug/L					<.05			
4,6-dinitro-2-methylphenol	ug/L					<8			
4-aminobiphenyl 4-bromophenyl phenyl ether	ug/L ug/L					<8 <8			
4-bromopnenyi pnenyi etner 4-chloro-3-methylphenol	ug/L ug/L					<8 <8			
4-chloroaniline	ug/L ug/L					<8			
4-chlorophenyl phenyl ether	ug/L ug/L					<8			
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	
4-nitroaniline	ug/L	-	•	-		<8		_	
4-nitrophenol	ug/L					<8			
5-nitro-o-toluidine	ug/L					<8			
7,12-dimethylbenz(a)anthracene	ug/L					<8			
Acenaphthene	ug/L					<8			
Acenaphthylene	ug/L					<8			
Acetone	ug/L	<10	<10	<10	<10	<10	<10	18	<10
Acetonitrile	ug/L					<10			
Acetophenone	ug/L					<8			
Acrolein	ug/L	_	_ [_	_	<10	_	_	
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	
Aldrin	ug/L					<.05			
Allyl chloride	ug/L					<1			
Alpha-bhc	ug/L					<.05			
Anthracene	ug/L					<8	<u> </u>		

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-18

Constituents	3/9/2018	9/6/2018	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022
(3+4)-methylphenol								<8		
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	<1 <1	<1	<1	<1 <1	<1	<1	<1 <1	<1 <1	<1 <1	<1 <1
1,1,2,2-tetrachloroethane	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1
1,1-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	- <1	- <1	· <1	· <1	· <1	- <1	<1	- <1	- <1	<1
1,1-dichloropropene								<1		
1,2,3-trichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,4,5-tetrachlorobenzene								<8		
1,2,4-trichlorobenzene 1,2-dibromo-3-chloropropane	<1	<1	<1	<1	<5	<5	<5	<1 <1	<5	<5
1,2-dibromoethane	<1	<1	<1	<1	<1	<1 <1	<1 <1	<1	<1 <1	<1
1,2-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dinitrobenzene								<8 <8		
1,3,5-trinitrobenzene 1,3-dichlorobenzene								<0 <1		
1,3-dichloropropane								<1		
1,3-dinitrobenzene								<8		
1,4-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-naphthoquinone								<8		
1,4-phenylenediamine 1-naphthylamine								<8 <8		
2,2-dichloropropane								<8 <1		
2,3,4,6-tetrachlorophenol								<8		
2,4,5-t								<.5		
2,4,5-tp (silvex)								<.5		
2,4,5-trichlorophenol								<8		
2,4,6-trichlorophenol 2,4-d								<8 <2		
2,4-dichlorophenol								<8		
2,4-dimethylphenol								<8		
2,4-dinitrophenol								<8		
2,4-dinitrotoluene								<8		
2,6-dichlorophenol								<8 <8		
2,6-dinitrotoluene 2-acetylaminofluorene								<8		
2-butanone (mek)	<5	<5	<5	<5	<5	<5	<5	<5	<10	<10
2-chloronaphthalene					_			<8		
2-chlorophenol	_	_	_	_	_	_	_1	<8	_	_
2-hexanone (mbk)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
2-methylnaphthalene 2-methylphenol								<8 <8		
2-metryphenor 2-naphthylamine								<8		
2-nitroaniline								<8		
2-nitrophenol								<8		
3,3´-dichlorobenzidine								<8		
3,3'-dimethylbenzidine 3-methylcholanthrene								<8 <8		
3-nitroaniline								<8		
4,4'-ddd								<.05		
4,4´-dde								<.05		
4,4'-ddt 4,6-dinitro-2-methylphenol								<.05		
4,6-dinitro-z-metnyiphenoi 4-aminobiphenyl								<8 <8		
4-bromophenyl phenyl ether								<8		
4-chloro-3-methylphenol								<8		
4-chloroaniline								<8		
4-chlorophenyl phenyl ether		.F) F	JF	JF	JF.		<8 <5	ے۔	اءر
4-methyl-2-pentanone (mibk) 4-nitroaniline	<5	<5	<5	<5	<5	<5	<5	<5 <8	<5	<5
4-nitrophenol								<8		
5-nitro-o-toluidine								<8		
7,12-dimethylbenz(a)anthracene								<8		
Acenaphthene								<8		
Acenaphthylene Acetone	<10	<10	<10	<10	<10	<10	<10	<8 <10	<10	<10
Acetone	10	< 10	~10	~10	~10	×10	10	<10	×10	\10
Acetophenone								<8		
Acrolein								<10		
Acrylonitrile	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Aldrin								<.05 <1		
Allyl chloride Alpha-bhc								<.05		
Anthracene								<8		

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-18

	3/24/2023	9/7/2023	3/18/2024	9/25/2024
(3+4)-methylphenol				
1,1,1,2-tetrachloroethane	<1	<1	<1	<1
1,1,1-trichloroethane	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1
1,1,2-trichloroethane	<1 <1	<1 <1	<1 <1	<1 <1
1,1-dichloroethylene	<1	<1	<1	<1
1,1-dichloropropene	`'	`'	`'	`'
1,2,3-trichloropropane	<1	<1	<1	<1
1,2,4,5-tetrachlorobenzene		-	-	-
1,2,4-trichlorobenzene				
1,2-dibromo-3-chloropropane	<5	<5	<5	<5
1,2-dibromoethane	<1	<1	<1	<1
1,2-dichlorobenzene	<1	<1	<1	<1
1,2-dichloroethane 1,2-dichloropropane	<1 <1	<1 <1	<1 <1	<1 <1
1,2-dictioroproparie	`'	`'	`'	`'
1,3,5-trinitrobenzene				
1,3-dichlorobenzene				
1,3-dichloropropane				
1,3-dinitrobenzene				
1,4-dichlorobenzene	<1	<1	<1	<1
1,4-naphthoquinone				
1,4-phenylenediamine				
1-naphthylamine 2,2-dichloropropane				
2,3,4,6-tetrachlorophenol				
2,4,5-t				
2,4,5-tp (silvex)				
2,4,5-trichlorophenol				
2,4,6-trichlorophenol				
2,4-d				
2,4-dichlorophenol				
2,4-dimethylphenol				
2,4-dinitrophenol 2,4-dinitrotoluene				
2,6-dichlorophenol				
2,6-dinitrotoluene				
2-acetylaminofluorene				
2-butanone (mek)	<10	<10	<10	<10
2-chloronaphthalene				
2-chlorophenol				
2-hexanone (mbk)	<5	<5	<5	<5
2-methylnaphthalene				
2-methylphenol				
2-naphthylamine 2-nitroaniline				
2-nitrophenol				
3,3'-dichlorobenzidine				
3,3'-dimethylbenzidine				
3-methylcholanthrene				
3-nitroaniline				
4,4´-ddd				
4,4´-dde				
4,4'-ddt				
4,6-dinitro-2-methylphenol				
4-aminobiphenyl 4-bromophenyl phenyl ether				
4-chloro-3-methylphenol				
4-chloroaniline				
4-chlorophenyl phenyl ether				
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5
4-nitroaniline				
4-nitrophenol				
5-nitro-o-toluidine				
7,12-dimethylbenz(a)anthracene				
Acenaphthylone				
Acenaphthylene Acetone	<10	<10	<10	<10
Acetonie	10	`10	10	~10
Acetophenone				
Acrolein				
Acrylonitrile	<5	<5	<5	<5
Aldrin				
Allyl chloride				
Alpha-bhc				
Anthracene				

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-18

Constituents	Units	9/17/2014	4/28/2015	10/6/2015	4/23/2016	9/1/2016	3/21/2017	10/13/2017	1/12/2018
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	
Arochlor 1016	ug/L					<.1			
Arochlor 1221	ug/L					<.2			
Arochlor 1232	ug/L					<.2			
Arochlor 1242	ug/L					<.2			
Arochlor 1248	ug/L					<.2			
Arochlor 1254	ug/L					<.1			
Arochlor 1260	ug/L	00.0	45.0	00.0	54.0	<.1	40.7	50.4	
Arsenic, total	ug/L	22.0	45.9	39.2	51.8	81.4	49.7	50.1	
Azobenzene	ug/L	504	707	707	070	<8	040	04.4	
Barium, total Benzene	ug/L ug/L	531 <1.0	787 <1.0	797 <1.0	873 <1.0	1270 <1.0	646 <1.0	614 1.6	<1.0
Benzo(a)anthracene	ug/L	\ 1.0	\1.0	~1.0	~1.0	<8	\1.0	1.0	~1.0
Benzo(a)pyrene	ug/L					<8			
Benzo(b)fluoranthene	ug/L					<8			
Benzo(g,h,i)perylene	ug/L					<8			
Benzo(k)fluoranthene	ug/L					<8			
Benzyl alcohol	ug/L					<8			
Beryllium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	
Beta-bhc	ug/L		·	•		<.05		·	
Bis (2-chloroethoxy) methane	ug/L					<8			
Bis(2-chloroethyl) ether	ug/L					<8			
Bis(2-chloroisopropyl) ether	ug/L					<8			
Bis(2-ethylhexyl) phthalate	ug/L					<8			
Bromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
Bromoform	ug/L	<1	<1	<1	<1	<1	<1	<1	
Bromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
Butyl benzyl phthalate	ug/L					<8			
Cadmium, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	
Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1	<1	
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	<1	
Chlordane	ug/L					<.1			
Chlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Chlorobenzilate	ug/L					<8			
Chloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.6	<1.0
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
Chloroprene	ug/L					<1			
Chromium, total	ug/L	<8	<8	<8	<8	<8	<8	<8	
Chrysene	ug/L					<8			
Cis-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Cobalt, total	ug/L	23.9	47.6	23.2	22.9	28.4	8.1	13.4	
Copper, total	ug/L	<4	<4	<4	<4	<4	<4	<4	
Cyanide, total	mg/L					<.005			
Delta-bhc	ug/L					<.05			
Diallate	ug/L					<8 <8			
Dibenzo(a,h)anthracene Dibenzofuran	ug/L					<8			
Dibromochloromethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	
Dibromomethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	
Dichlorodifluoromethane		`'	_ `'	\ 1		<1	`'	` '	
Dieldrin	ug/L ug/L					<.05			
Diethyl phthalate	ug/L ug/L					<.us			
Dimethoate	ug/L ug/L					<.4			
Dimethylphthalate	ug/L ug/L					<8			
Di-n-butyl phthalate	ug/L					<8			
Di-n-octyl phthalate	ug/L ug/L					<8			
Dinoseb	ug/L					<.5			
Diphenylamine	ug/L					<8			
Disulfoton	ug/L					<.4			
Endosulfan i	ug/L					<.05			
Endosulfan ii	ug/L					<.05			
Endosulfan sulfate	ug/L					<.05			
Endrin	ug/L					<.05			
Endrin aldehyde	ug/L					<.05			
Ethyl methacrylate	ug/L					<10			
Ethyl methanesulfonate	ug/L					<8			
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Famphur	ug/L					<.4			
Fluoranthene	ug/L					<8			
Fluorene	ug/L					<8			
Gamma-bhc (lindane)	ug/L					<.05			
Heptachlor `	ug/L					<.05			
Heptachlor epoxide	ug/L					<.05			
Hexachlorobenzene	ug/L					<.05			

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-18

	3/9/2018	9/6/2018	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022
Antimony, total	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arochlor 1016								<.1		
Arochlor 1221 Arochlor 1232								<.2 <.2		
Arochlor 1242								<.2		
Arochlor 1248								<.2		
Arochlor 1254								<.1		
Arochlor 1260	46.1	74.4	97.2	00.4	01 7	34.8	9.6	<.1	34.7	24.1
Arsenic, total Azobenzene	40.1	74.4	87.2	99.4	81.7	34.0	9.0	36.0 <8	34.7	24.1
Barium, total	446	915	1260	951	987	603	434	455	466	539
Benzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(a)anthracene								<8		
Benzo(a)pyrene Benzo(b)fluoranthene								<8 <8		
Benzo(g,h,i)perylene								<8		
Benzo(k)fluoranthene								<8		
Benzyl alcohol								<8		
Beryllium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Beta-bhc Bis (2-chloroethoxy) methane								<.05 <8		
Bis(2-chloroethyl) ether								<8		
Bis(2-chloroisopropyl) ether								<8		
Bis(2-ethylhexyl) phthalate								<6		
Bromochloromethane Bromodichloromethane	<1 <1	<1 <1	<1 <1							
Bromoform	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Butyl benzyl phthalate								<8		
Cadmium, total	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Carbon disulfide Carbon tetrachloride	<1 <1	<1 <1	<1 <1							
Chlordane	`'	`'	- 1	~ 1	`'	`'	`'	<.1	`'	~1
Chlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzilate								<8		
Chloroethane Chloroform	<1.0 <1	<1.0 <1	<1.0 <1							
Chloromethane	<1	<1	<1	<1	<1	<1	<1	<1 <1	<1	<1
Chloroprene		•	·	·		·	.	<1		
Chromium, total	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8
Chrysene	<1	<1	<1	<1	<1	<1	<1	<8 <1	<1	<1
Cis-1,2-dichloroethylene Cis-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1 <1	<1	<1
Cobalt, total	3.1	7.5	16.9	6.8	10.4	2.0	6.0	1.3	1.3	1.2
Copper, total	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Cyanide, total								<.005		
Delta-bhc Diallate								<.05 <8		
Dibenzo(a,h)anthracene								<8		
Dibenzofuran								<8		
Dibromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane Dichlorodifluoromethane	<1	<1	<1	<1	<1	<1	<1	<1 <1	<1	<1
Dieldrin								<.05		
Diethyl phthalate								<8		
Dimethoate								<.4		
Dimethylphthalate								<8		
Di-n-butyl phthalate Di-n-octyl phthalate								<8 <8		
Dinoseb								<.5		
Diphenylamine								<8		
Disulfoton								<.4		
Endosulfan i Endosulfan ii								<.05 <.05		
Endosulfan il Endosulfan sulfate								<.05		
Endrin								<.05		
Endrin aldehyde								<.05		
Ethyl methacrylate								<10		
Ethyl methanesulfonate Ethylbenzene	<1	<1	<1	<1	<1	<1	<1	<8 <1	<1	<1
Famphur	~1	~1	~1		1		~'	<.4	"	`1
Fluoranthene								<8		
Fluorene								<8		
Gamma-bhc (lindane)								<.05		
Heptachlor Heptachlor epoxide								<.05 <.05		
								<.05		

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-18

Constituents	3/24/2023	9/7/2023	3/18/2024	9/25/2024
Antimony, total	<2	<2	<2	<2
Arochlor 1016 Arochlor 1221				
Arochlor 1221				
Arochlor 1242				
Arochlor 1248				
Arochlor 1254 Arochlor 1260				
Arsenic, total	67.4	26.9	23.7	43.6
Azobenzene				
Barium, total	861	422	377	416
Benzene Benzo(a)anthracene	<1.0	<1.0	<1.0	<1.0
Benzo(a)pyrene				
Benzo(b)fluoranthene				
Benzo(g,h,i)perylene Benzo(k)fluoranthene				
Benzyl alcohol				
Beryllium, total	<4	<4	<4	<4
Beta-bhc				
Bis (2-chloroethoxy) methane Bis(2-chloroethyl) ether				
Bis(2-chloroisopropyl) ether				
Bis(2-ethylhexyl) phthalate				
Bromochloromethane	<1	<1	<1	<1
Bromodichloromethane Bromoform	<1 <1	<1 <1	<1 <1	<1 <1
Bromomethane	<1	<1	<1	<1
Butyl benzyl phthalate				
Cadmium, total Carbon disulfide	<.8 <1	<.8 <1	<.8 <1	.9 <1
Carbon distillide Carbon tetrachloride	<1	<1 <1	<1	<1
Chlordane		.,		• •
Chlorobenzene	<1	<1	<1	<1
Chlorobenzilate Chloroethane	<1.0	<1.0	<1.0	<1.0
Chloroform	<1.0	<1.0	<1.0	<1.0
Chloromethane	<1	<1	<1	<1
Chloroprene				
Chromium, total Chrysene	<8	<8	<8	<8
Cis-1,2-dichloroethylene	<1	<1	<1	<1
Cis-1,3-dichloropropene	<1	<1	<1	<1
Cobalt, total	5.9 <4	.9 <4	.9 <4	1.0 <4
Copper, total Cyanide, total	\ <u>^</u>	\4	\4	\4
Delta-bhc				
Diallate				
Dibenzo(a,h)anthracene Dibenzofuran				
Dibromochloromethane	<1	<1	<1	<1
Dibromomethane	<1	<1	<1	<1
Dichlorodifluoromethane				
Dieldrin Diethyl phthalate				
Dimethoate				
Dimethylphthalate				
Di-n-butyl phthalate				
Di-n-octyl phthalate Dinoseb				
Diphenylamine				
Disulfoton				
Endosulfan i Endosulfan ii				
Endosulfan sulfate				
Endrin				
Endrin aldehyde				
Ethyl methacrylate Ethyl methanesulfonate				
Ethylbenzene	<1	<1	<1	<1
Famphur				
Fluoranthene				
Fluorene Gamma-bhc (lindane)				
Heptachlor `				
Heptachlor epoxide				
Hexachlorobenzene				

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-18

Constituents	Units	9/17/2014	4/28/2015	10/6/2015	4/23/2016	9/1/2016	3/21/2017	10/13/2017	1/12/2018
Hexachlorobutadiene	ug/L					<8			
Hexachlorocyclopentadiene	ug/L					<8			
Hexachloroethane	ug/L					<8			
Hexachloropropene	ug/L					<8			
Indeno(1,2,3-cd)pyrene	ug/L					<8			
Isobutanol	mg/L					<1			
Isodrin	ug/L					<8			
Isophorone	ug/L					<8			
Isosafrole	ug/L					<8			
Kepone	ug/L					<8			
Lead, total	ug/L	<4.0	<4.0	4.4	<4.0	<4.0	<4.0	<4.0	
Mercury, total	ug/L					<.5			
Methacrylonitrile	ug/L					<1			
Methapyrilene	ug/L					<8			
Methoxychlor	ug/L					<.05			
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1	<1	
Methyl methacrylate	ug/L					<1			
Methyl methanesulfonate	ug/L					<8			
Methyl parathion	ug/L					<.4			
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5	<5	
Naphthalene	ug/L					<8			
Nickel, total	ug/L	46.6	106.0	30.8	34.0	27.0	15.2	13.1	
Nitrobenzene	ug/L					<8			
N-nitrosodiethylamine	ug/L					<8			
N-nitrosodimethylamine	ug/L					<8			
N-nitrosodi-n-butylamine	ug/L					<8			
N-nitroso-di-n-propylamine	ug/L					<8			
N-nitrosodiphenylamine	ug/L					<8			
N-nitrosomethylethylamine	ug/L					<8			
N-nitrosopiperidine	ug/L					<8			
N-nitrosopyrrolidine	ug/L					<8			
O,o,o-triethyl phosphorothioate	ug/L					<.4			
O-toluidine	ug/L					<8			
Parathion	ug/L					<.4			
P-dimethylaminoazobenzene	ug/L					<8			
Pentachlorobenzene	ug/L					<8			
Pentachloronitrobenzene (pcnb)	ug/L					<8			
Pentachlorophenol	ug/L					<8			
Phenacetin	ug/L					<8			
Phenanthrene	ug/L					<8			
Phenol	ug/L					<8			
Phorate	ug/L					<.4			
Pronamide	ug/L					<8			
Propionitrile	ug/L					<10			
Pyrene	ug/L					<8			
Safrole	ug/L					<8			
Selenium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	
Solids, total suspended	mg/L	122	196	143	134	162	150	417	
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Sulfide, total	mg/L					<.1			
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Thallium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	
Thionazin	ug/L					<.4			
Tin, total	ug/L					<20			
Toluene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Toxaphene	ug/L					<.2			
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5	<5	
Trichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Trichlorofluoromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20	<20	
Vinyl acetate	ug/L	<5	<5	<5	<5	<5	<5	<5	
Vinyl chloride	ug/L	<1	<1	<1	<1	<1	<1	<1	
VIII VI CIIOI I CE									
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2	<2	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-18

Constituents	3/9/2018	9/6/2018	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022
Hexachlorobutadiene								<8		
Hexachlorocyclopentadiene								<8		
Hexachloroethane								<8		
Hexachloropropene								<8		
Indeno(1,2,3-cd)pyrene								<8		
Isobutanol								<1		
Isodrin								<8		
Isophorone								<8		
Isosafrole								<8		
Kepone						4.0		<8		
Lead, total	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Mercury, total								<.5		
Methacrylonitrile								<1		
Methapyrilene								<8		
Methoxychlor Method indide		-1	-1	-1	_1	-1	-1	<.05		-1
Methyl iodide	<1	<1	<1	<1	<1	<1	<1	<2 <1	<1	<1
Methyl methacrylate								<8		
Methyl methanesulfonate										
Methyl parathion	<5	<5	<5	<5	, E	.E	<5	<.4 <5	<5	<5
Methylene chloride	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<5	< 5	\ 5	<5	<5	<2		\ \sigma_0	< 5
Naphthalene	7.6	0.0	22.2	10.3	20.4	10.0	E 2	<8 5.4	F 2	-10
Nickel, total	7.6	9.2	22.3	10.3	20.4	10.8	5.3	5.4 <8	5.2	<4.0
Nitrobenzene										
N-nitrosodiethylamine								<8		
N-nitrosodimethylamine								<8		
N-nitrosodi-n-butylamine								<8 <8		
N-nitroso-di-n-propylamine								<8		
N-nitrosodiphenylamine								<8		
N-nitrosomethylethylamine										
N-nitrosopiperidine								<8 <8		
N-nitrosopyrrolidine										
O,o,o-triethyl phosphorothioate O-toluidine								<.4 <8		
Parathion								<.4		
P-dimethylaminoazobenzene								<8		
Pentachlorobenzene								<8		
								<8		
Pentachloronitrobenzene (pcnb)								<8		
Pentachlorophenol Phenacetin								<8		
Phenanthrene								<8		
Phenol								<8		
Phorate								<.4		
Pronamide								<8		
Propionitrile								<10		
Pyrene								<8		
Safrole								<8		
Selenium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	<4	<8	<4	<4	<4	<4	<4	<4	<4	<4
Solids, total suspended	"	-0	***	***	77	***	""	***	, , ,	7-7
Styrene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulfide, total	`'	` '	` '	` ' '	`'	`'	`'	<.1	`'	- 1
Tetrachloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	<4	<4	<2	<2	<2	<2	<2	<2	<2	<2
Thionazin	"	***	٠	٠,٢	٠-	٠	·~	<.4	\ <u>`</u>	٠
Tin, total								<20		
Toluene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toxaphene	'''	*1	-1	7.1	- 1	*1	*'	<.2	"	71
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1 <1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1
Trichlorofluoromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
viiiyi aootato	<1	<1	<1	<1	<1	<1	<1	<1	<1 <1	<1
Vinyl chloride										
Vinyl chloride Xylenes, total	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-18

Hexachlorocytagentadiene Hexachlorocytopentadiene Hexachlorocytopentadiene Hexachlorocytopene Indeno(1,2,3-cd)pyrene Isobutanol Isophorone Isobutanol Isophorone Isobutanol Isophorone Isosafrole Kepone Lead, total	Constituents	3/24/2023	9/7/2023	3/18/2024	9/25/2024
Hexachloropene Hexachloropropene Indeno(1,2,3-cd)pyrene Indeno(1,2,3-cd)pyrene Indeno(1,2,3-cd)pyrene Isobutanol Isodnin Isophorone Isosafrole Kepone Lead, total	Hexachlorobutadiene				
Hexachloropropene Indeno(12,3-cd)pyrene Isobutanol Isodrin	Hexachlorocyclopentadiene				
Indenot/1,2,3-cd)pyrene Isobutanol Isodrin Isophorone Isosafrole Kepone Lead, total	Hexachloroethane				
Isobutanol Isodrin Isophorone Isosafrole Isosaf					
Isodrin Isophorone Isopho	Indeno(1,2,3-cd)pyrene				
Isophorone Isopafrole Kepone Kepone Kepone Kepone Lead, Iotal Kepone Lead, Iotal Kepone Kepone Kepone Kepone Kepone Kepone Kepone Kepone Kepone Kethoxychlor Kethacrylonitrile Kethacrylonitrile Kethacrylonitrile Kethacrylonitrile Kethacrylonitrile Kethyl methacrylate Kethyl methanesulfonate Kethyl methanesulfonate Kethyl methanesulfonate Kethyl methanesulfonate Kethyl methanesulfonate Kethyl methale Kethyl methanesulfonate Kethyl metha	Isobutanol				
Isosaffole Kepone Lead, total C4.0					
Kepone Lead, total					
Lead, total					
Metroury, total Methacytonitrile Methacytonitrile Methacytonitrile Methoxychlor Methyl methacytate Methyl methacytate Methyl methacytate Methyl methacytate Methyl parathion Methylene chloride <5 < 5 < 5 < 5 < 5					
Methacrylonitrile Methapyrilene Methoxychlor Methyl locide <1		<4.0	<4.0	<4.0	<4.0
Methapyrilene Methyl oidide <1					
Methoxychlor Methyl iodide					
Methyl iodide					
Methyl methacrylate Methyl methanesulfonate Methyl parathion Methylene chloride S			-4		-4
Methyl methanesulfonate Methyl parathion Methylene chloride S S S S S S S S S		<1	<1	<1	<1
Methyl parathion Methylene chloride Naphthalene Nickel, total 16.9 4.5 6.3 5.4					
Metrylene chloride					
Naphthalene Nickel, total 16.9 4.5 6.3 5.4		_5	-5	-5	-5
Nickel, total 16.9 4.5 6.3 5.4 Nitrobenzene N-nitrosodiethylamine N-nitrosodiethylamine N-nitrosodi-n-butylamine N-nitrosodi-n-propylamine N-nitrosopiperidine N-nitrosopiperidine N-nitrosopiperidie N-nitrosopiperidie N-nitrosopiperidie N-nitrosopiperidie N		\ \^5	^ 5	\ \5	\5
Nitrobenzene		16.0	15	6.2	5.4
N-nitrosodiethylamine N-nitrosodin-butylamine N-nitrosodi-n-butylamine N-nitrosodi-n-butylamine N-nitrosodi-n-butylamine N-nitrosopiperidine N-nitrosopiperidine N-nitrosopiperidine N-nitrosopyrrolidine O,o,o-triethyl phosphorothioate O-toluidine Parathion P-dimethylaminoazobenzene Pentachlorobenzene Pentachlorobenzene Pentachloroitrobenzene (pcnb) Pentachloroitrobenzene Phenol Phenacetin Phenanthrene Phenol Phorate Pronamide Propionitrile Pyrene Safrole Selenium, total		10.9	4.5	0.3	5.4
N-nitrosodimethylamine N-nitrosodi-n-butylamine N-nitrosodi-n-propylamine N-nitrosodiphenylamine N-nitrosopiperidine N-n					
N-nitrosodi-n-butylamine N-nitrosodi-n-propylamine N-nitrosodi-n-propylamine N-nitrosodi-n-propylamine N-nitrosodi-n-propylamine N-nitrosopi-peridine N-nitrosopy-prolidine O,o,o-triethyl phosphorothioate O-toluidine Parathion P-dimethylaminoazobenzene Pentachlorobenzene Pentachlorobenzene Pentachlorophenol Phenacetin Phenanthrene Phenol Phorate Propionitrile Pyrene Safrole Selenium, total 4 4 4 4 4 4 4 4 4					
N-nitroso-di-n-própylamine N-nitrosomethylethylamine N-nitrosomethylethylamine N-nitrosomethylethylamine N-nitrosomethylethylamine N-nitrosopiperidine N-nitrosopiperidine O.0, o.1-tithyl phosphorothioate O.10					
N-nitrosodiphenylamine N-nitrosopipreidine N-nitrosopipreidi					
N-nitrosomethylethylamine N-nitrosopiperidine N-nitrosopyrolidine O,o,o-triethyl phosphorothioate O-toluidine Parathion P-dimethylaminoazobenzene Pentachlorobenzene Pentachlorophenol Phenacetin Phenanthrene Phenol Phenanthrene Phenol Phorate Propionitrile Pyrene Safrole Selenium, total Styrene					
N-nitrosopiperidine					
N-nitrosopyrrolidine					
O.,o,o-triethyl phosphorothioate O-toluidine Parathion P-dimethylaminoazobenzene Pentachlorobenzene Pentachlorophenol Phenacetin Phenachtrene Phenol Phenarthrene Phenol Phorate Pronamide Propionitrile Pyrene Safrole Selenium, total Styrene					
Parathion					
P-dimethylaminoazobenzene	O-toluidine				
Pentachlorophenol Pentachlorophenol Pentachlorophenol Phenacetin Phenacetin Phenanthrene Phenol Phorate Propionitrile Pyrene Safrole Selenium, total Styrene S	Parathion				
Pentachloronitrobenzene (pcnb)					
Pentachlorophenol Phenacetin Phenacetin Phenacetin Phenanthrene Phenol Phorate Propionitrile Pyrene Safrole Selenium, total Silver, total Solids, total suspended Styrene Safrole Styrene Safrole Styrene Safrole Styrene Safrole Styrene Solids, total Suspended Styrene Suffide, total Suffide, to					
Phenactin Phenanthrene Phenol Phenol Phorate Propionitrile Pyrene Safrole Selenium, total Silver, total Sulfide, total					
Phenanthrene Phenol Phorate Phenol Phorate Propionitrile Propionitrile Pyrene Safrole Selenium, total <4					
Phenol Phorate Propionitrile Propionitrile Pyrene Safrole Selenium, total Silver, total S4 S4 S4 S4 S4 S4 S6 S4 S6 S4 S6 S4 S6 S6					
Phorate Pronamide Propionitrile Pyrene Safrole Selenium, total <4					
Pronamide Propionitrile Pyrene Safrole Selenium, total <4					
Propionitrile Pyrene Safrole Safrole Selenium, total <4 <4 <4 <4 <4 <4 <4 <					
Pyrene Safrole Safrole Selenium, total Selenium, total Selenium, total Silver, total Selenium, total Silver, total Solids, total suspended Styrene Styre					
Safrole Selenium, total <4					
Selenium, total					
Silver, total Solids, total suspended Styrene Silver, total Solids, total suspended Styrene Styrene Sulfide, total Street, Sulfide, total S		<Δ	<Δ	<1	<1
Solids, total suspended Styrene					- 1
Styrene			•		
Sulfide, total Tetrachloroethylene <1		<1	<1	<1	<1
Tetrachloroethylene		· I	,	·	•
Thallium, total <2		<1	<1	<1	<1
Thionazin Tin, total Toluene Toxaphene Trans-1,2-dichloroethylene Trans-1,3-dichloropropene Trans-1,4-dichloro-2-butene Trichloroethylene Trichlorofluoromethane Vanadium, total Vanadium, total Vinyl acetate Vinyl chloride Vinyl chl			<2		I
Toluene					
Toxaphene Trans-1,2-dichloroethylene <1 <1 <1 <1 <1 <1 <1 <	Tin, total				
Trans-1,2-dichloroethylene <1	Toluene	<1	<1	<1	<1
Trans-1,3-dichloropropene <1	Toxaphene				
Trans-1,3-dichloropropene <1	Trans-1,2-dichloroethylene	<1	<1	<1	<1
Trichloroethylene <1	Trans-1,3-dichloropropene				
Trichlorofluoromethane <1				-	
Vanadium, total <20					
Vinyl acetate <5 <5 <5 Vinyl chloride <1			- 1		
Vinyl chloride <1 <1 <1 <1 Xylenes, total <2					
Xylenes, total <2 <2 <2 <2					
					I
177 () 1 00 0 0 00 0 00 0 00 0					
Zinc, total <20.0 <20.0 <20.0 <20.0	∠inc, total	<20.0	<20.0	<20.0	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-19

Constituents	Units	9/17/2014	4/29/2015	10/6/2015	4/23/2016	9/1/2016	3/22/2017	10/13/2017	3/9/2018	9/6/2018
(3+4)-methylphenol	ug/L						<8			,
1,1,1,2-tetrachloroethane	ug/L ug/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,1,1-inchloroethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	ug/L	1.8	<1.0	1.3	2.2	1.6	2.2	1.0	3.1	3.0
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1 <1	<1	<1	<1
1,2,3-trichloropropane 1,2,4,5-tetrachlorobenzene	ug/L ug/L	` '	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<8	<u> </u>		`'
1,2,4-trichlorobenzene	ug/L						<1			
1,2-dibromo-3-chloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane 1,2-dichloropropane	ug/L ug/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,2-dicitioroproparte	ug/L	``	` '	` '	` '	`'	<8	`'	` '	`'
1,3,5-trinitrobenzene	ug/L						<8			
1,3-dichlorobenzene	ug/L						<1			
1,3-dichloropropane	ug/L						<1			
1,3-dinitrobenzene	ug/L		-1	-4	-4	-1	<8	-4	-4	ا ہے ا
1,4-dichlorobenzene 1,4-naphthoquinone	ug/L ug/L	<1	<1	<1	<1	<1	<1 <8	<1	<1	<1
1,4-naphthoquinone 1,4-phenylenediamine	ug/L ug/L						<8			
1-naphthylamine	ug/L						<8			
2,2-dichloropropane	ug/L						<1			
2,3,4,6-tetrachlorophenol	ug/L						<8			
2,4,5-t	ug/L						<.5			
2,4,5-tp (silvex) 2,4,5-trichlorophenol	ug/L ug/L						<.5 <8			
2,4,6-trichlorophenol	ug/L						<8			
2,4-d	ug/L						<2			
2,4-dichlorophenol	ug/L						<8			
2,4-dimethylphenol	ug/L						<8			
2,4-dinitrophenol	ug/L						<8			
2,4-dinitrotoluene 2,6-dichlorophenol	ug/L ug/L						<8 <8			
2,6-dinitrotoluene	ug/L						<8			
2-acetylaminofluorene	ug/L						<8			
2-butanone (mek)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
2-chloronaphthalene	ug/L						<8			
2-chlorophenol 2-hexanone (mbk)	ug/L ug/L	<5	<5	<5	<5	<5	<8 <5	<5	<5	<5
2-methylnaphthalene	ug/L ug/L		\3	\3	\3	\3	<8	\3	\3	```
2-methylphenol	ug/L						<8			
2-naphthylamine	ug/L						<8			
2-nitroaniline	ug/L						<8			
2-nitrophenol	ug/L						<8			
3,3'-dichlorobenzidine 3,3'-dimethylbenzidine	ug/L ug/L						<8 <8			
3-methylcholanthrene	ug/L						<8			
3-nitroaniline	ug/L						<8			
4,4´-ddd	ug/L						<.05			
4,4´-dde	ug/L						<.05			
4,4'-ddt 4,6-dinitro-2-methylphenol	ug/L ug/L						<.05 <8			
4,6-difitro-2-methylphenol 4-aminobiphenyl	ug/L ug/L						<8			
4-bromophenyl phenyl ether	ug/L						<8			
4-chloro-3-methylphenol	ug/L						<8			
4-chloroaniline	ug/L						<8			
4-chlorophenyl phenyl ether	ug/L	<5	<5	<5	<5	<5	<8 <5	<5	<5	<5
4-methyl-2-pentanone (mibk) 4-nitroaniline	ug/L ug/L	^5	^5	\ 5	^5	^ 5	<5 <8	<5	^ 5	^5
4-nitrophenol	ug/L ug/L						<8			
5-nitro-o-toluidine	ug/L						<8			
7,12-dimethylbenz(a)anthracene	ug/L						<8			
Acenaphthene	ug/L						<8			
Acenaphthylene Acetone	ug/L ug/L	<10.0	<10.0	<10.0	<10.0	<10.0	<8 <10.0	19.8	<10.0	15.9
Acetonie	ug/L ug/L	`\10.0	~10.0	~10.0	~10.0	\10.0	<10.0	19.0	~10.0	15.9
Acetophenone	ug/L						<8			
Acrolein	ug/L						<10			
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Aldrin	ug/L						<.05			
Allyl chloride Alpha-bhc	ug/L ug/L						<1 <.05			
Anthracene	ug/L ug/L						<.03 <8			
	<u>, J - </u>									

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-19

Constituents	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022	3/24/2023
(3+4)-methylphenol								<8	
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	<1.0	<1.0	<1.0	2.3	2.6	3.4	4.9	3.8	3.1
1,1-dichloroethylene 1,1-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1 <1	<1
1,1-dichioropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,4,5-tetrachlorobenzene	`'	`1	`'	` ' '	_ ``	~1	`'	<8	`'
1.2.4-trichlorobenzene								<1	
1,2-dibromo-3-chloropropane	<1	<1	<5	<5	<5	<5	<5	<1	<5
1,2-dibromoethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dinitrobenzene								<8	
1,3,5-trinitrobenzene								<8	
1,3-dichlorobenzene								<1	
1,3-dichloropropane								<1	
1,3-dinitrobenzene	<1	<1	<1	<1	<1	<1	<1	<8 <1	<1
1,4-dichlorobenzene 1,4-naphthoquinone	<1	<1	<1	<1	<1	<1		<8	
1,4-naphthoquillone								<8	
1-naphthylamine								<8	
2,2-dichloropropane								<1	
2,3,4,6-tetrachlorophenol								<8	
2,4,5-t								<.5	
2,4,5-tp (silvex)								<.5	
2,4,5-trichlorophenol								<8>	
2,4,6-trichlorophenol								<8	
2,4-d								<2	
2,4-dichlorophenol								<8	
2,4-dimethylphenol								<8 <8	
2,4-dinitrophenol 2,4-dinitrotoluene								<8	
2,6-dichlorophenol								<8	
2,6-dinitrotoluene								<8	
2-acetylaminofluorene								<8	
2-butanone (mek)	<5	<5	<5	<5	<5	<5	<10	<5	<10
2-chloronaphthalene					_			<8	
2-chlorophenol								<8	
2-hexanone (mbk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
2-methylnaphthalene								<8	
2-methylphenol								<8	
2-naphthylamine 2-nitroaniline								<8 <8	
2-nitrophenol								<8	
3,3'-dichlorobenzidine								<8	
3,3'-dimethylbenzidine								<8	
3-methylcholanthrene								<8	
3-nitroaniline								<8	
4,4'-ddd								<.05	
4,4´-dde								<.05	
4,4'-ddt								<.05	
4,6-dinitro-2-methylphenol								<8	
4-aminobiphenyl 4-bromophenyl phenyl ether								<8 <8	
4-bromophenyi phenyi ether 4-chloro-3-methylphenol								<8	
4-chloroaniline								<8	
4-chlorophenyl phenyl ether								<8	
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-nitroaniline								<8	
4-nitrophenol								<8	
5-nitro-o-toluidine								<8>	
7,12-dimethylbenz(a)anthracene								<8	
Acenaphthene								<8	
Acenaphthylene	.40.0	407.0	:40.0	44.0	.40.0	.40.0	.400	<8	.40.0
Acetone	<10.0	107.0	<10.0	11.2	<10.0	<10.0	<10.0	<10.0	<10.0
Acetonitrile								<10	
Acroloin								<8	
Acrolein Acrylonitrile	<5	<5	<5	<5	<5	<5	<5	<10 <5	<5
Adrin	\5	\ 5	\5	\ 5	\5	\5	``	<.05	
Allyl chloride								<1	
Alpha-bhc								<.05	
Anthracene								<8	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-19

Constituents	9/7/2023
(3+4)-methylphenol	
1,1,1,2-tetrachloroethane 1,1,1-trichloroethane	<1 <1
1,1,2,2-tetrachloroethane	<1
1,1,2-trichloroethane	<1
1,1-dichloroethane	2.9
1,1-dichloroethylene	<1
1,1-dichloropropene	<1
1,2,3-trichloropropane 1,2,4,5-tetrachlorobenzene	`'
1,2,4-trichlorobenzene	
1,2-dibromo-3-chloropropane	<5
1,2-dibromoethane	<1
1,2-dichlorobenzene	<1 <1
1,2-dichloroethane 1,2-dichloropropane	<1
1,2-dinitrobenzene	
1,3,5-trinitrobenzene	
1,3-dichlorobenzene	
1,3-dichloropropane	
1,3-dinitrobenzene 1,4-dichlorobenzene	<1
1,4-naphthoquinone	`'
1,4-phenylenediamine	
1-naphthylamine	
2,2-dichloropropane	
2,3,4,6-tetrachlorophenol	
2,4,5-t 2,4,5-tp (silvex)	
2,4,5-trichlorophenol	
2,4,6-trichlorophenol	
2,4-d	
2,4-dichlorophenol	
2,4-dimethylphenol	
2,4-dinitrophenol 2,4-dinitrotoluene	
2,6-dichlorophenol	
2,6-dinitrotoluene	
2-acetylaminofluorene	
2-butanone (mek)	<10
2-chloronaphthalene 2-chlorophenol	
2-hexanone (mbk)	<5
2-methylnaphthalene	
2-methylphenol	
2-naphthylamine	
2-nitroaniline 2-nitrophenol	
3,3'-dichlorobenzidine	
3,3'-dimethylbenzidine	
3-methylcholanthrene	
3-nitroaniline	
4,4´-ddd 4,4´-dde	
4,4'-ddt	
4,6-dinitro-2-methylphenol	
4-aminobiphenyl	
4-bromophenyl phenyl ether	
4-chloro-3-methylphenol 4-chloroaniline	
4-chlorophenyl phenyl ether	
4-methyl-2-pentanone (mibk)	<5
4-nitroaniline	
4-nitrophenol	
5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene	
Acenaphthene	
Acenaphthylene	
Acetone	<10.0
Acetonitrile	
Acetophenone	
Acrylopitrile	<5
Acrylonitrile Aldrin	\ \ \
Allyl chloride	
Alpha-bhc	
Anthracene	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-19

Constituents	Units	9/17/2014	4/29/2015	10/6/2015	4/23/2016	9/1/2016	3/22/2017	10/13/2017	3/9/2018	9/6/2018
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arochlor 1016	ug/L						<.1			
Arochlor 1221	ug/L						<.2			
Arochlor 1232 Arochlor 1242	ug/L ug/L						<.2 <.2			
Arochlor 1242	ug/L ug/L						<.2			
Arochlor 1254	ug/L						<.1			
Arochlor 1260	ug/L						<.1			
Arsenic, total	ug/L	<4.0	7.6	6.6	8.3	13.5	4.1	12.3	4.6	<4.0
Azobenzene	ug/L						<8			
Barium, total	ug/L	182	215	135	172	170	167	286	180	185
Benzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(a)anthracene	ug/L						<8			
Benzo(a)pyrene Benzo(b)fluoranthene	ug/L ug/L						<8 <8			
Benzo(g,h,i)perylene	ug/L ug/L						<8			
Benzo(k)fluoranthene	ug/L						<8			
Benzyl alcohol	ug/L						<8			
Beryllium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Beta-bhc	ug/L						<.05			
Bis (2-chloroethoxy) methane	ug/L						<8			
Bis(2-chloroethyl) ether	ug/L						<8			
Bis(2-chloroisopropyl) ether	ug/L						<8			
Bis(2-ethylhexyl) phthalate Bromochloromethane	ug/L ug/L	<1	<1	<1	<1	<1	<8 <1	<1	<1	<1
Bromocnioromethane	ug/L ug/L	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1
Bromoform	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L	<1	· <1	· <1	<1	<1	<1	<1	- <1	<1
Butyl benzyl phthalate	ug/L						<8			
Cadmium, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlordane	ug/L						<.1			
Chlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzilate Chloroethane	ug/L ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<8 <1.0	<1.0	<1.0	<1.0
Chloroform	ug/L ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane	ug/L	<1.0	<1.0	<1.0	3.6	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroprene	ug/L				***		<1			
Chromium, total	ug/L	<8.0	8.3	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0
Chrysene	ug/L						<8			
Cis-1,2-dichloroethylene	ug/L	<1.0	<1.0	<1.0	1.3	1.1	1.5	<1.0	1.9	2.6
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	ug/L	1.4	5.9	1.8	1.7	2.8	1.6	12.0	1.4	1.0
Copper, total Cyanide, total	ug/L mg/L	<4.0	9.9	<4.0	<4.0	<4.0	<4.0 <.005	<4.0	<4.0	<4.0
Delta-bhc	ug/L						<.05			
Diallate	ug/L						<8			
Dibenzo(a,h)anthracene	ug/L						<8			
Dibenzofuran	ug/L						<8			
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	ug/L	<1					1		<1	<1
Dieldrin	ug/L						<.05			
Diethyl phthalate Dimethoate	ug/L ug/L						<8 <.4			
Dimetholate Dimethylphthalate	ug/L ug/L						<.4 <8			
Di-n-butyl phthalate	ug/L ug/L						<8			
Di-n-octyl phthalate	ua/L						<8			
Dinoseb	ug/L						<.5			
Diphenylamine	ug/L						<8			
Disulfoton	ug/L						<.4			
Endosulfan i	ug/L						<.05			
Endosulfan ii	ug/L						<.05			
Endosulfan sulfate	ug/L						<.05			
Endrin Endrin aldehyde	ug/L ug/L						<.05 <.05			
Ethyl methacrylate	ug/L ug/L						<10			
Ethyl methanesulfonate	ug/L ug/L						<8			
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Famphur	ug/L	'			.	.	<.4	·		.
Fluoranthene	ug/L						<8			
Fluorene	ug/L						<8			
Gamma-bhc (lindane)	ug/L						<.05			
Heptachlor	ug/L						<.05			
Heptachlor epoxide	ug/L						<.05			
Hexachlorobenzene	ug/L						<.05			

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-19

Constituents	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022	3/24/2023
Antimony, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arochlor 1016								<.1	
Arochlor 1221								<.2	
Arochlor 1232 Arochlor 1242								<.2	
Arochlor 1242 Arochlor 1248								<.2 <.2	
Arochlor 1254								<.1	
Arochlor 1260								<.1	
Arsenic, total	<4.0	<4.0	6.2	4.1	9.9	<4.0	<4.0	<4.0	4.9
Azobenzene	470			405		000		<8	
Barium, total Benzene	173 <1.0	175 <1.0	224 <1.0	195 <1.0	228 <1.0	223 <1.0	248 1.2	255 1.0	261 <1.0
Benzo(a)anthracene	\1.0	~1.0	~1.0	~1.0	~1.0	~1.0	1.2	<8	\1.0
Benzo(a)pyrene								<8	
Benzo(b)fluoranthene								<8	
Benzo(g,h,i)perylene								<8	
Benzo(k)fluoranthene								<8 <8	
Benzyl alcohol Beryllium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Beta-bhc	1					17	"	<.05	
Bis (2-chloroethoxy) methane								<8	
Bis(2-chloroethyl) ether								<8	
Bis(2-chloroisopropyl) ether								<8	
Bis(2-ethylhexyl) phthalate Bromochloromethane	<1	<1	<1	<1	<1	<1	<1	<6 <1	<1
Bromocnioromethane Bromodichloromethane	<1	<1 <1	<1	<1	<1	<1 <1	<1	<1	<1
Bromoform	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Butyl benzyl phthalate			_		_	_	_	<8	_
Cadmium, total	<.8	<.8	<.8	<.8	<.8	<.8 <1	<.8	<.8	<.8
Carbon disulfide Carbon tetrachloride	<1 <1	<1 <1	<1 <1						
Chlordane	` '	` '	`	` '	` '	, ,	`'	<.1	`'
Chlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzilate								<8	
Chloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.4	1.2	<1.0
Chloromothano	<1 <1.0	<1 <1.0	<1 <1.0	<1 <1.0	<1	<1 <1.0	<1 <1.0	<1 <1.0	<1 <1.0
Chloromethane Chloroprene	\1.0	~1.0	<1.0	~1.0	<1.0	~1.0	\ 1.0	<1.0	\1.0
Chromium, total	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0
Chrysene								<8	
Cis-1,2-dichloroethylene	<1.0	<1.0	<1.0	1.7	2.1	2.6	4.7	3.5	2.2
Cis-1,3-dichloropropene Cobalt, total	<1 .9	<1 1.5	<1 3.1	<1 2.0	<1 4.9	<1 1.1	<1 1.9	<1 1.5	<1 1.2
Copper, total	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	4.8	5.4
Cyanide, total	1.0	11.0	11.0	11.0	11.0	11.0	1.0	<.005	0.1
Delta-bhc								<.05	
Diallate								<8	
Dibenzo(a,h)anthracene Dibenzofuran								<8	
Diberizoidian Dibromochloromethane	<1	<1	<1	<1	<1	<1	<1	<8 <1	<1
Dibromomethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane								<1	
Dieldrin								<.05	
Diethyl phthalate								<8	
Dimethoate Dimethylphthalate								<.4 <8	
Dimethylphthalate Di-n-butyl phthalate								<8 <8	
Di-n-octyl phthalate								<8	
Dinoseb								<.5	
Diphenylamine								<8	
Disulfoton								<.4	
Endosulfan i Endosulfan ii								<.05 <.05	
Endosulfan sulfate								<.05	
Endrin								<.05	
Endrin aldehyde								<.05	
Ethyl methacrylate								<10	
Ethyl methanesulfonate		ا در		ا مر		ا مر		<8	ا م
Ethylbenzene Famphur	<1	<1	<1	<1	<1	<1	<1	<1 <.4	<1
Famphul Fluoranthene								<8	
Fluorene								<8	
Gamma-bhc (lindane)								<.05	
Heptachlor								<.05	
Heptachlor epoxide								<.05	
Hexachlorobenzene								<.05	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-19

Constituents	9/7/2023
Antimony, total	<2
Arochlor 1016	
Arochlor 1221	
Arochlor 1232	
Arochlor 1242	
Arochlor 1248 Arochlor 1254	
Arochlor 1254	
Arsenic, total	<4.0
Azobenzene	
Barium, total	231
Benzene	<1.0
Benzo(a)anthracene	
Benzo(a)pyrene Benzo(b)fluoranthene	
Benzo(g,h,i)perylene	
Benzo(k)fluoranthene	
Benzyl alcohol	
Beryllium, total	<4
Beta-bhc	
Bis (2-chloroethoxy) methane	
Bis(2-chloroethyl) ether Bis(2-chloroisopropyl) ether	
Bis(2-chlorolsopropyl) ether Bis(2-ethylhexyl) phthalate	
Bromochloromethane	<1
Bromodichloromethane	<1
Bromoform	<1
Bromomethane	<1
Butyl benzyl phthalate	
Cadmium, total	<.8
Carbon disulfide Carbon tetrachloride	<1 <1
Carbon tetrachionde	`
Chlorobenzene	<1
Chlorobenzilate	
Chloroethane	<1.0
Chloroform	<1
Chloromethane	<1.0
Chloroprene	
Chromium, total Chrysene	<8.0
Ciryserie Cis-1,2-dichloroethylene	1.1
Cis-1,3-dichloropropene	<1
Cobalt, total	1.1
Copper, total	<4.0
Cyanide, total	
Delta-bhc	
Diallate	
Dibenzo(a,h)anthracene Dibenzofuran	
Dibromochloromethane	<1
Dibromomethane	<1
Dichlorodifluoromethane	
Dieldrin	
Diethyl phthalate	
Dimethoate	
Dimethylphthalate	
Di-n-butyl phthalate	
Di-n-octyl phthalate Dinoseb	
Diphenylamine	
Disulfoton	
Endosulfan i	
Endosulfan ii	
Endosulfan sulfate	
Endrin	
Endrin aldehyde	
Ethyl methacrylate Ethyl methanesulfonate	
Ethylbenzene	<1
Famphur	"
Fluoranthene	
Fluorene	
Gamma-bhc (lindane)	
Heptachlor	
Heptachlor epoxide Hexachlorobenzene	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-19

Constituents	Units	9/17/2014	4/29/2015	10/6/2015	4/23/2016	9/1/2016	3/22/2017	10/13/2017	3/9/2018	9/6/2018
Hexachlorobutadiene	ug/L						<8			
Hexachlorocyclopentadiene	ug/L						<8			
Hexachloroethane	ug/L						<8			
Hexachloropropene	ug/L						<8			
Indeno(1,2,3-cd)pyrene	ug/L						<8			
Isobutanol	mg/L						<1			
Isodrin	ug/L						<8			
Isophorone	ug/L						<8			
Isosafrole	ug/L						<8			
Kepone	ug/L						<8			
Lead, total	ug/L	<4.0	5.4	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Mercury, total	ug/L						<.5			
Methacrylonitrile	ug/L						<1			
Methapyrilene	ug/L						<8			
Methoxychlor Method india	ug/L	_1		-1	-1	-1	<.05	-1		_1
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl methacrylate	ug/L						<1			
Methyl methanesulfonate	ug/L						<8			
Methyl parathion	ug/L			-E	.E	. F	<.4	.E		-E
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene Nickel, total	ug/L ug/L	7.9	20.0	8.7	8.9	8.1	<8 8.8	47.8	8.2	6.2
		7.9	20.0	0.7	0.9	0.1		47.0	0.2	0.2
Nitrobenzene	ug/L ug/L						<8 <8			
N-nitrosodiethylamine							<8			
N-nitrosodimethylamine	ug/L									
N-nitrosodi-n-butylamine N-nitroso-di-n-propylamine	ug/L ug/L						<8 <8			
							<8			
N-nitrosodiphenylamine	ug/L ug/L						<8			
N-nitrosomethylethylamine N-nitrosopiperidine	ug/L ug/L						<8			
N-nitrosopyrrolidine	ug/L ug/L						<8			
O,o,o-triethyl phosphorothioate	ug/L						<.4			
O-toluidine	ug/L						<8			
Parathion	ug/L						<.4			
P-dimethylaminoazobenzene	ug/L ug/L						<8			
Pentachlorobenzene	ug/L						<8			
Pentachloronitrobenzene (pcnb)	ug/L						<8			
Pentachlorophenol	ug/L						<8			
Phenacetin	ug/L						<8			
Phenanthrene	ug/L						<8			
Phenol	ug/L						<8			
Phorate	ug/L						<.4			
Pronamide	ug/L						<8			
Propionitrile	ug/L						<10			
Pyrene	ug/L						<8			
Safrole	ug/L						<8			
Selenium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<8
Solids, total suspended	mg/L	74	429	21	17	46	70	570		_
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulfide, total	mg/L						<.1			
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Thionazin	ug/L						<.4			
Tin, total	ug/L						<20			
Toluene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toxaphene	ug/L	[-		.	<.2	•		
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	ug/L	<1	<1	- <1	- <1	- <1	<1	<1	<1	· <1
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	- <5
Trichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane					<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
Trichlorofluoromethane Vanadium, total		<20.0	20.91	~2 0,01	720.01					
	ug/L	<20.0 <5	20.9 <5	<20.0 <5	<5	<5	<5	<5	<5	<5
Vanadium, total Vinyl acetate	ug/L ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vanadium, total	ug/L									

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-19

Constituents	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022	3/24/2023
Hexachlorobutadiene								<8	
Hexachlorocyclopentadiene								<8	
Hexachloroethane								<8	
Hexachloropropene								<8	
Indeno(1,2,3-cd)pyrene								<8	
Isobutanol								<1	
Isodrin								<8	
Isophorone								<8	
Isosafrole								<8	
Kepone								<8	
Lead, total	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Mercury, total								<.5	
Methacrylonitrile								<1	
Methapyrilene								<8	
Methoxychlor								<.05	
Methyl iodide	<1	<1	<1	<1	<1	<1	<1	<2	<1
Methyl methacrylate								<1	
Methyl methanesulfonate								<8	
Methyl parathion								<.4	
Methylene chloride	<5	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene		· ·		· ·			ľ	<8	
Nickel, total	5.6	6.3	9.7	7.8	27.3	5.8	8.3	9.1	6.5
Nitrobenzene	0.0	0.0	5.7	7.0	27.0	0.0	0.0	<8	0.0
N-nitrosodiethylamine								<8	
N-nitrosodimethylamine								<8	
N-nitrosodi-n-butylamine								<8	
N-nitroso-di-n-propylamine								<8	
N-nitrosodiphenylamine								<8	
N-nitrosomethylethylamine								<8	
N-nitrosopiperidine								<8	
								<8	
N-nitrosopyrrolidine									
O,o,o-triethyl phosphorothioate O-toluidine								<.4	
								<8	
Parathion								<.4	
P-dimethylaminoazobenzene								<8	
Pentachlorobenzene								<8	
Pentachloronitrobenzene (pcnb)								<8	
Pentachlorophenol								<8	
Phenacetin								<8	
Phenanthrene								<8	
Phenol								<8	
Phorate								<.4	
Pronamide								<8	
Propionitrile								<10	
Pyrene								<8	
Safrole								<8	
Selenium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Solids, total suspended									
Styrene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulfide, total								.3	
Tetrachloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Thionazin								<.4	
Tin, total								<20	
Toluene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toxaphene								<.2	
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1.3-dichloropropene	<1	<1	- <1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
Vinyl acetate	<5	<20.0 <5	<20.0 <5	<5	<5	<5	<20.0 <5	<5	<5
Vinyl acetate Vinyl chloride	<1.0	<1.0	<1.0						
				1.4	1.2	1.9	1.9	2.1	1.0
Xylenes, total Zinc, total	<2 <8.0	<2 <8.0	<2	<2	<2	<2	<2	<2	<2 <20.0
	- <× ()	<× ()	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<->//

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-19

Constituents	9/7/2023
Hexachlorobutadiene	3/1/2023
Hexachlorocyclopentadiene	
Hexachloroethane	
Hexachloropropene	
Indeno(1,2,3-cd)pyrene	
Isobutanol	
Isodrin	
Isophorone	
Isosafrole Kepone	
Lead, total	<4.0
Mercury, total	11.0
Methacrylonitrile	
Methapyrilene	
Methoxychlor	
Methyl iodide	<1
Methyl methacrylate	
Methyl methanesulfonate Methyl parathion	
Methylene chloride	<5
Naphthalene	.0
Nickel, total	6.2
Nitrobenzene	
N-nitrosodiethylamine	
N-nitrosodimethylamine	
N-nitrosodi-n-butylamine	
N-nitroso-di-n-propylamine N-nitrosodiphenylamine	
N-nitrosomethylethylamine	
N-nitrosopiperidine	
N-nitrosopyrrolidine	
O,o,o-triethyl phosphorothioate	
O-toluidine	
Parathion	
P-dimethylaminoazobenzene	
Pentachlorobenzene Pentachloronitrobenzene (pcnb)	
Pentachlorophenol	
Phenacetin	
Phenanthrene	
Phenol	
Phorate	
Pronamide	
Propionitrile	
Pyrene Safrole	
Selenium, total	<4
Silver, total	<4
Solids, total suspended	
Styrene	<1
Sulfide, total	
Tetrachloroethylene	<1
Thallium, total	<2
Thionazin	
Tin, total Toluene	<1
Toxaphene	~1
Trans-1,2-dichloroethylene	<1
Trans-1,3-dichloropropene	<1
Trans-1,4-dichloro-2-butene	<5
Trichloroethylene	<1
Trichlorofluoromethane	<1
Vanadium, total	<20.0
Vinyl acetate Vinyl chloride	<5 1.2
Xylenes, total	<2
Zinc, total	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-1D

Constituents	Units	9/7/2023	3/18/2024	9/25/2024
(3+4)-methylphenol	ug/L	<8		
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1
1,1-dichloroethane	ug/L	<1	<1	<1
1,1-dichloroethylene	ug/L	<1	<1	<1
1,1-dichloropropene	ug/L	<1	-4	-4
1,2,3-trichloropropane	ug/L	<1 <8	<1	<1
1,2,4,5-tetrachlorobenzene	ug/L ug/L	<1		
1,2-dibromo-3-chloropropane	ug/L ug/L	<1	<5	<5
1,2-dibromoethane	ug/L	<1	<1	<1
1,2-dichlorobenzene	ug/L	<i< td=""><td><1</td><td><1</td></i<>	<1	<1
1,2-dichloroethane	ug/L	<1	<1	<1
1,2-dichloropropane	ug/L	<1	<1	<1
1,2-dinitrobenzene	ug/L	<8		
1,3,5-trinitrobenzene	ug/L	<8		
1,3-dichlorobenzene	ug/L	<1		
1,3-dichloropropane	ug/L	<1		
1,3-dinitrobenzene	ug/L	<8		
1,4-dichlorobenzene	ug/L	<1	<1	<1
1,4-naphthoquinone	ug/L	<8		
1,4-phenylenediamine	ug/L	<8		
1-naphthylamine	ug/L	<8		
2,2-dichloropropane	ug/L	<1 <8		
2,3,4,6-tetrachlorophenol 2,4,5-t	ug/L ug/L	<.5		
2,4,5-t 2,4,5-tp (silvex)	ug/L ug/L	<.5		
2,4,5-trichlorophenol	ug/L	<8		
2,4,6-trichlorophenol	ug/L	<8		
2,4-d	ug/L	<2		
2,4-dichlorophenol	ug/L	<8		
2,4-dimethylphenol	ug/L	<8		
2,4-dinitrophenol	ug/L	<8		
2,4-dinitrotoluene	ug/L	<8		
2,6-dichlorophenol	ug/L	<8		
2,6-dinitrotoluene	ug/L	8>		
2-acetylaminofluorene	ug/L	<8		
2-butanone (mek)	ug/L	<5	<10	<10
2-chloronaphthalene	ug/L	<8		
2-chlorophenol	ug/L	<8 <5	<5	<5
2-hexanone (mbk) 2-methylnaphthalene	ug/L	<8	<5	<5
2-methylphenol	ug/L ug/L	<8		
2-netryphenor	ug/L ug/L	<8		
2-nitroaniline	ug/L	<8		
2-nitrophenol	ug/L	<8		
3,3'-dichlorobenzidine	ug/L	<8		
3,3'-dimethylbenzidine	ug/L	<8		
3-methylcholanthrene	ug/L	<8		
3-nitroaniline	ug/L	<8		
4,4´-ddd	ug/L	<.05		
4,4´-dde	ug/L	<.05		
4,4'-ddt	ug/L	<.05		
4,6-dinitro-2-methylphenol	ug/L	<8		
4-aminobiphenyl	ug/L	<8		
4-bromophenyl phenyl ether	ug/L	<8		
4-chloro-3-methylphenol 4-chloroaniline	ug/L	<8		
	ug/L	<8 <8		
4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk)	ug/L ug/L	<8 <5	<5	<5
4-nitroaniline	ug/L ug/L	<8	~5	~5
4-nitrophenol	ug/L ug/L	<8		
5-nitro-o-toluidine	ug/L ug/L	<8		
7,12-dimethylbenz(a)anthracene	ug/L	<8		
Acenaphthene	ug/L	<8		
Acenaphthylene	ug/L	<8		
Acetone	ug/L	<10	<10	<10
Acetonitrile	ug/L	<10		
Acetophenone	ug/L	<8		
Acrolein	ug/L	<10		
Acrylonitrile	ug/L	<5	<5	<5
Aldrin	ug/L	<.05		
Allyl chloride	ug/L	<1		
Apha-bhc	ug/L	<.05		
Anthracene	ug/L	<8		

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-1D

Constituents	Units	9/7/2023	3/18/2024	9/25/2024
Antimony, total	ug/L	<2	<2	<2
Arochlor 1016	ug/L	<.2		
Arochlor 1221	ug/L	<.2		
Arochlor 1232	ug/L	<.2		
Arochlor 1242	ug/L	<.2		
Arochlor 1248	ug/L	<.2		
Arochlor 1254	ug/L	<.2		
Arochlor 1260	ug/L	<.2		
Arsenic, total	ug/L	<4	<4	<4
Azobenzene	ug/L	<8	704	
Barium, total	ug/L	660	784	637
Benzene	ug/L	1.1	1.3	<1.0
Benzo(a)anthracene	ug/L	<8		
Benzo(a)pyrene	ug/L	<8		
Benzo(b)fluoranthene	ug/L	<8 <8		
Benzo(g,h,i)perylene	ug/L	<8		
Benzo(k)fluoranthene Benzyl alcohol	ug/L	<8		
Beryllium, total	ug/L ug/L	<4	<4	<4
Beta-bhc		<.05	\4	\4
Bis (2-chloroethoxy) methane	ug/L ug/L	<8		
Bis(2-chloroethyl) ether		<8		
Bis(2-chloroisopropyl) ether	ug/L ug/L	<8		
Bis(2-ethylhexyl) phthalate		<6		
Bromochloromethane	ug/L ug/L	<1	<1	<1
Bromodichloromethane		<1	<1	<1 <1
Bromoform	ug/L ug/L	<1	<1	<1 <1
Bromomethane	ug/L	<1	<1	<1
Butyl benzyl phthalate	ug/L	<8	`'	`'
Cadmium, total	ug/L	<.8	<.8	<.8
Carbon disulfide	ug/L	<1	<1 <1	<1 <1
Carbon tetrachloride	ug/L	<1	<1	<1
Chlordane	ug/L	<.1	71	"
Chlorobenzene	ug/L	1.0	1.5	<1.0
Chlorobenzilate	ug/L	<8	1.0	1.0
Chloroethane	ug/L	<1.0	1.1	<1.0
Chloroform	ug/L	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1
Chloroprene	ug/L	<1	-	-
Chromium, total	ug/L	<8	<8	<8
Chrysene	ug/L	<8		
Cis-1,2-dichloroethylene	ug/L	<1	<1	<1
Cis-1,3-dichloropropene	ug/L	<1	<1	<1
Cobalt, total	ug/L	11.9	14.0	2.4
Copper, total	ug/L	<4	<4	<4
Cyanide, total	mg/L	<.005		
Delta-bhc	ug/L	<.05		
Diallate	ug/L	<8		
Dibenzo(a,h)anthracene	ug/L	<8		
Dibenzofuran	ug/L	<8		
Dibromochloromethane	ug/L	<1	<1	<1
Dibromomethane	ug/L	<1	<1	<1
Dichlorodifluoromethane	ug/L	<1		
Dieldrin	ug/L	<.05		
Diethyl phthalate	ug/L	<8		
Dimethoate	ug/L	<.4		
Dimethylphthalate	ug/L	<8		
Di-n-butyl phthalate	ug/L	<8		
Di-n-octyl phthalate	ug/L	<8		
Dinoseb	ug/L	<.5		
Diphenylamine	ug/L	<8		
Disulfoton	ug/L	<.4		
Endosulfan i	ug/L	<.05		
Endosulfan ii	ug/L	<.05		
Endosulfan sulfate	ug/L	<.05		
Endrin	ug/L	<.05 <.05		
Endrin aldehyde Ethyl methacrylate	ug/L	<.05		
Ethyl methanesulfonate	ug/L ug/L	<8		
Ethyl methanesulionate		<1	<1	<1
Ethylberizerie Famphur	ug/L	<.4	~1	~1
Famphur Fluoranthene	ug/L	<8		
Fluoranthene Fluorene	ug/L ug/L	<8		
Gamma-bhc (lindane)	ug/L ug/L	<.05		
Heptachlor	ug/L ug/L	<.05		
Heptachlor epoxide	ug/L ug/L	<.05		
Hexachlorobenzene	ug/L	<.05		
	, g, -			

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Page County [GWHIST]

Table 9

Analytical Data Summary for MW-1D

Constituents	Units	9/7/2023	3/18/2024	9/25/2024
Hexachlorobutadiene	ug/L	<8	3/10/2024	9/23/2024
Hexachlorocyclopentadiene	ug/L ug/L	<8		
Hexachloroethane	ug/L	<8		
Hexachloropropene	ug/L	<8		
Indeno(1,2,3-cd)pyrene	ug/L	<8		
Isobutanol	mg/L	<1		
Isodrin	ug/L	<8		
Isophorone	ug/L	<8		
Isosafrole	ug/L	<8		
Kepone	ug/L	<8 <4	<4	<4
Lead, total Mercury, total	ug/L ug/L	<.5	\4	< 4
Methacrylonitrile	ug/L ug/L	<1		
Methapyrilene	ug/L	<8		
Methoxychlor	ug/L	<.05		
Methyl iodide	ug/L	<2	<1	<1
Methyl methacrylate	ug/L	<1		
Methyl methanesulfonate	ug/L	<8		
Methyl parathion	ug/L	<.4	_	_
Methylene chloride	ug/L	<5	<5	<5
Naphthalene Nickel, total	ug/L	<8	19.0	11.3
Nitrobenzene	ug/L ug/L	29.3 <8	19.0	11.3
N-nitrosodiethylamine	ug/L ug/L	<8		
N-nitrosodimethylamine	ug/L	<8		
N-nitrosodi-n-butylamine	ug/L	<8		
N-nitroso-di-n-propylamine	ug/L	<8		
N-nitrosodiphenylamine	ug/L	<8		
N-nitrosomethylethylamine	ug/L	8>		
N-nitrosopiperidine	ug/L	<8		
N-nitrosopyrrolidine	ug/L	<8		
O,o,o-triethyl phosphorothioate O-toluidine	ug/L	<.4 <8		
Parathion	ug/L ug/L	<.4		
P-dimethylaminoazobenzene	ug/L	<8		
Pentachlorobenzene	ug/L	<8		
Pentachloronitrobenzene (pcnb)	ug/L	<8		
Pentachlorophenol	ug/L	<8		
Phenacetin	ug/L	<8		
Phenanthrene	ug/L	8>		
Phenol	ug/L	<8		
Phorate	ug/L	<.4		
Pronamide Propionitrile	ug/L	<8 <10		
Pyrene	ug/L ug/L	<8		
Safrole	ug/L ug/L	<8		
Selenium, total	ug/L	<4	<4	<4
Silver, total	ug/L	<4	<4	<4
Styrene	ug/L	<1	<1	<1
Sulfide, total	mg/L	.15		
Tetrachloroethylene	ug/L	<1	<1	<1
Thallium, total	ug/L	<2	<2	<2
Thionazin	ug/L	<.4		
Tin, total	ug/L	<20 <1	<1	<1
Toluene Toxaphene	ug/L ug/L	<.2	~ 1	<1
Trans-1,2-dichloroethylene	ug/L ug/L	<1	<1	<1
Trans-1,3-dichloropropene	ug/L ug/L	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5
Trichloroethylene	ug/L	<1	<1	<1
Trichlorofluoromethane	ug/L	<1	<1	<1
Vanadium, total	ug/L	<20	<20	<20
Vinyl acetate	ug/L	<5	<5	<5
Vinyl chloride	ug/L	<1	<1	<1
Xylenes, total	ug/L	<2	<2	<2
Zinc, total	ug/L	<20	<20	<20

 $[\]mbox{\ensuremath{^{\star}}}$ - The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-20

1,1,1-tirchloroethane	11
1,1,1-trichloroethane	1
1,1,2,2-telrachloroethane	1
1.1.2-trichloroethane	1
1,1-dichloroethylene ug/L <1 <1 <1 <1 <1 <1 <1 <	1
1,1-dichloropropene	1
1,2,3-trichloropropane	11
1,2,4-trichlorobenzene	11
1,2,4-trichlorobenzene	1
1,2-dibromo-3-chloropropane ug/L <1 <1 <1 <1 <1 <1 <1 <	1
1,2-dichlorobenzene	:1 <1 :1 <1 :1 <1
1,2-dichloroethane	:1 <1 :1 <1
1,2-dichloropropane	<1 <1
1,2-dinitrobenzene ug/L ug/L ug/L	
1,3,5-trinitrobenzene	:1 <1
1,3-dichlorobenzene	:1 <1
1,3-dinitrobenzene	:1 <1
1,4-dichlorobenzene	:1 <1
1,4-naphthoquinone ug/L 1,4-phenylenediamine ug/L 1-naphthylamine ug/L 2,2-dichloropropane ug/L 2,3,4,6-tetrachlorophenol ug/L 2,4,5-t ug/L 2,4,5-ty (silvex) ug/L 2,4,5-trichlorophenol ug/L 2,4,5-trichlorophenol ug/L 2,4,6-trichlorophenol ug/L 2,4-dinidrophenol ug/L 2,4-dimethylphenol ug/L 2,4-dimitrophenol ug/L 2,4-dinitrotoluene ug/L 2,4-dinitrotoluene ug/L 2,6-dinitrotoluene ug/L 2-acetylaminofluorene ug/L	
1,4-phenylenediamine	
1-naphthylamine	
2,2-dichloropropane	
2,4,5-t ug/L vg/L	
2,4,5-tp (silvex)	1
2,4,5-trichlorophenol	
2,4,6-trichlorophenol	
2,4-d	
2,4-dimethylphenol	
2,4-dinitrophenol	
2,4-dinitrotoluene	
2,6-dichlorophenol ug/L	
2,6-dinitrotoluene ug/L <8 2-acetylaminofluorene ug/L <8	
2-acetylaminofluorene ug/L <8 <8	
2-butanone (mek) ug/L <5 <5 <5 <5 <5 <5	
	<5 <5
2-chloronaphthalene ug/L <8 <8 <8 color="block">< 8 color="block">	
	<5 <5
2-methylnaphthalene ug/L <8	
2-methylphenol ug/L <8	
2-naphthylamine ug/L <8	
2-nitroaniline ug/L <8	
2-nitrophenol ug/L	
3,3-dimethylbenzidine ug/L -8	
3-methylcholanthrene ug/L <8	
3-nitroaniline ug/L <8 <8	
4,4 ⁻ -ddd	
4,4'-dde	
4,4 -ddt ug/L <.05 4,6-dinitro-2-methylphenol ug/L <8	
4-aminobiphenyl ug/L	
4-bromophenyl phenyl ether ug/L	
4-chloro-3-methylphenol ug/L <8	
4-chloroaniline ug/L <8 <8	
	<5 <5
4-nitroaniline ug/L <8	-
4-nitrophenol ug/L	
5-nitro-o-toluidine ug/L <8	
7,12-dimethylbenz(a)anthracene ug/L	
Acenaphthene ug/L <8 <8 kg/L Acenaphthylene ug/L <8 kg/L <8 kg/L <8 kg/L <8 kg/L kg/L kg/L kg/L kg/L kg/L kg/L kg/L	
Acetaphiniyiene ug/L	.0 <10.0
Acetonitrile ug/L <10	
Acetophenone ug/L	
Acrolein ug/L <10	
Acrylonitrile	<5 <5
Aldrif ug/L \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Alpha-bhc ug/L <05	
Anthracene ug/L <8	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-20

Constituents	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022	3/24/2023
(3+4)-methylphenol						<8			
1,1,1,2-tetrachloroethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloropropene	<1	<1	<1	<1	<1	<1 <1	<1	<1	<1
1,2,3-trichloropropane 1,2,4,5-tetrachlorobenzene	_ '		~ 1	`'	\ 1	<8	~1		` '
1,2,4-trichlorobenzene						<1			
1,2-dibromo-3-chloropropane	<1	<1	<5	<5	<5	<1	<5	<5	<5
1,2-dibromoethane	<1	<1	<1	<1 <1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,2-dichloropropane	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dinitrobenzene						<8			
1,3,5-trinitrobenzene						<8			
1,3-dichlorobenzene						<1 <1			
1,3-dichloropropane						<8			
1,4-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-naphthoquinone						<8			
1,4-phenylenediamine						<8			
1-naphthylamine 2,2-dichloropropane						<8 <1			
2,3,4,6-tetrachlorophenol						<8			
2,4,5-t						<.5			
2,4,5-tp (silvex)						<.5			
2,4,5-trichlorophenol						<8			
2,4,6-trichlorophenol 2,4-d						<8 <2			
2,4-dichlorophenol						<8			
2,4-dimethylphenol						<8			
2,4-dinitrophenol						<8			
2,4-dinitrotoluene						<8 <8			
2,6-dichlorophenol 2,6-dinitrotoluene						<8			
2-acetylaminofluorene						<8			
2-butanone (mek)	<5	<5	<5	<5	<5	<5	<10	<10	<10
2-chloronaphthalene						<8			
2-chlorophenol 2-hexanone (mbk)	<5	<5	<5	<5	<5	<8 <5	<5	<5	<5
2-methylnaphthalene	\ \	-3	\3	\3	10	<8	10	\	\
2-methylphenol						<8			
2-naphthylamine						<8			
2-nitroaniline 2-nitrophenol						<8 <8			
3,3'-dichlorobenzidine						<8			
3,3'-dimethylbenzidine						<8			
3-methylcholanthrene						<8			
3-nitroaniline						<8			
4,4'-ddd 4,4'-dde						<.05 <.05			
4,4'-ddt						<.05			
4,6-dinitro-2-methylphenol						<8			
4-aminobiphenyl						<8			
4-bromophenyl phenyl ether 4-chloro-3-methylphenol						<8 <8			
4-chloroaniline						<8			
4-chlorophenyl phenyl ether						<8			
4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-nitroaniline 4-nitrophenol						<8 <8			
5-nitro-o-toluidine						<8			
7,12-dimethylbenz(a)anthracene						<8			
Acenaphthene						<8			
Acetana	-40.0	-40.0	-40.0	-40.0	-40.0	<8	57 0	-40.0	-40.0
Acetone Acetonitrile	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0 <10	57.2	<10.0	<10.0
Acetophenone						<8			
Acrolein						<10			
Acrylonitrile	<5	<5	<5	<5	<5	<5	<5	<5	<5
Allylablarida						<.05			
Allyl chloride Alpha-bhc						<1 <.05			
Anthracene						<8			

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-20

Constituents	9/7/2023	3/18/2024	9/25/2024
(3+4)-methylphenol			
1,1,1,2-tetrachloroethane	<1	<1	<1
1,1,1-trichloroethane	<1	<1	<1
1,1,2,2-tetrachloroethane	<1	<1	<1
1,1,2-trichloroethane	<1 <1	<1 <1	<1 <1
1,1-dichloroethane 1,1-dichloroethylene	<1	<1	<1
1,1-dichloropropene	`'	` '	`'
1,2,3-trichloropropane	<1	<1	<1
1,2,4,5-tetrachlorobenzene			•
1,2,4-trichlorobenzene			
1,2-dibromo-3-chloropropane	<5	<5	<5
1,2-dibromoethane	<1	<1	<1
1,2-dichlorobenzene	<1	<1	<1
1,2-dichloroethane	<1	<1	<1
1,2-dichloropropane	<1	<1	<1
1,2-dinitrobenzene 1,3,5-trinitrobenzene			
1,3-dichlorobenzene			
1,3-dichloropropane			
1,3-dinitrobenzene			
1,4-dichlorobenzene	<1	<1	<1
1,4-naphthoquinone		.	.
1,4-phenylenediamine			
1-naphthylamine			
2,2-dichloropropane			
2,3,4,6-tetrachlorophenol			
2,4,5-t			
2,4,5-tp (silvex)			
2,4,5-trichlorophenol 2,4,6-trichlorophenol			
2,4-d			
2,4-dichlorophenol			
2,4-dimethylphenol			
2,4-dinitrophenol			
2,4-dinitrotoluene			
2,6-dichlorophenol			
2,6-dinitrotoluene			
2-acetylaminofluorene			
2-butanone (mek)	<10	<10	<10
2-chloronaphthalene			
2-chlorophenol		_E	, E
2-hexanone (mbk) 2-methylnaphthalene	<5	<5	<5
2-methylphenol			
2-naphthylamine			
2-nitroaniline			
2-nitrophenol			
3,3'-dichlorobenzidine			
3,3'-dimethylbenzidine			
3-methylcholanthrene			
3-nitroaniline			
4,4'-ddd			
4,4'-dde			
4,4'-ddt 4,6-dinitro-2-methylphenol			
4-aminobiphenyl			
4-bromophenyl phenyl ether			
4-chloro-3-methylphenol			
4-chloroaniline			
4-chlorophenyl phenyl ether			
4-methyl-2-pentanone (mibk)	<5	<5	<5
4-nitroaniline			
4-nitrophenol			
5-nitro-o-toluidine			
7,12-dimethylbenz(a)anthracene			
Acenaphthylone			
Acenaphthylene Acetone	<10.0	<10.0	<10.0
Acetonie	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~10.0	~10.0
Acetophenone			
Acrolein			
Acrylonitrile	<5	<5	<5
Aldrin			-
Allyl chloride			
Alpha-bhc			
Anthracene			

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-20

Constituents	Units	9/18/2014	4/28/2015	10/6/2015	4/23/2016	9/1/2016	3/21/2017	10/13/2017	3/9/2018	9/6/2018
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arochlor 1016	ug/L					<.1				
Arochlor 1221	ug/L					<.2				
Arochlor 1232	ug/L					<.2				
Arochlor 1242	ug/L					<.2				
Arochlor 1248 Arochlor 1254	ug/L ug/L					<.2 <.1				
Arochlor 1260	ug/L ug/L					<.1				
Arsenic, total	ug/L	75.2	45.5	81.7	81.5	77.1	79.1	96.8	83.4	99.6
Azobenzene	ug/L			0	0	<8		00.0		00.0
Barium, total	ug/L	2370	2390	2490	2260	2140	2140	2340	2010	2360
Benzene	ug/L	1.9	1.9	2.0	1.5	1.8	2.6	2.0	2.9	3.6
Benzo(a)anthracene	ug/L					<8				
Benzo(a)pyrene	ug/L ug/L					<8 <8				
Benzo(b)fluoranthene Benzo(g,h,i)perylene	ug/L ug/L					<8				
Benzo(k)fluoranthene	ug/L					<8				
Benzyl alcohol	ug/L					<8				
Beryllium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Beta-bhc	ug/L					<.05				
Bis (2-chloroethoxy) methane	ug/L					<8				
Bis(2-chloroethyl) ether	ug/L					<8				
Bis(2-chloroisopropyl) ether	ug/L					<8 <8				
Bis(2-ethylhexyl) phthalate Bromochloromethane	ug/L ug/L	<1	<1	<1	<1	<0 <1	<1	<1	<1	<1
Bromodichloromethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Butyl benzyl phthalate	ug/L					<8				
Cadmium, total	ug/L	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorehanne	ug/L	<1.0	<1.0	-10	-10	<.1 <1.0	<1.0	-10	-10	1.0
Chlorobenzene Chlorobenzilate	ug/L ug/L	<1.0	<1.0	<1.0	<1.0	<1.0 <8	<1.0	<1.0	<1.0	1.2
Chloroethane	ug/L	2.1	2.9	2.3	1.6	<1.0	2.4	2.3	2.0	2.8
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroprene	ug/L					<1				
Chromium, total	ug/L	<8	<8	<8	<8	<8	<8	<8	<8	<8
Chrysene	ug/L		-4	-4	-4	<8	-1	-4	-4	
Cis-1,2-dichloroethylene Cis-1,3-dichloropropene	ug/L ug/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Cobalt, total	ug/L ug/L	21.0	15.4	16.7	14.4	12.3	13.4	14.5	12.2	12.8
Copper, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Cyanide, total	mg/L		_			<.005	-	·	•	
Delta-bhc	ug/L					<.05				
Diallate	ug/L					<8				
Dibenzo(a,h)anthracene	ug/L					<8				
Dibenzofuran	ug/L		-4	-4	-4	<8	-4	-4	-4	
Dibromochloromethane Dibromomethane	ug/L ug/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Dichlorodifluoromethane	ug/L ug/L	"	~1	~1		<1	`'	~1		_ ` '
Dieldrin	ug/L					<.05				
Diethyl phthalate	ug/L					<8				
Dimethoate	ug/L					<.4				
Dimethylphthalate	ug/L					<8				
Di-n-butyl phthalate	ug/L					<8				
Di-n-octyl phthalate	ug/L					<8				
Dinoseb Diphenylamine	ug/L ug/L					<.5 <8				
Disulfoton	ug/L ug/L					<.4				
Endosulfan i	ug/L					<.05				
Endosulfan ii	ug/L					<.05				
Endosulfan sulfate	ug/L					<.05				
Endrin	ug/L					<.05				
Endrin aldehyde	ug/L					<.05				
Ethyl methacrylate	ug/L					<10				
Ethyl methanesulfonate	ug/L	<1	<1	<1	<1	<8 <1	<1	<1	<1	<1
Ethylbenzene Famphur	ug/L ug/L	<1	<1	<1		<1 <.4	<1	<1	<1	<1
Famphul Fluoranthene	ug/L ug/L					<.4 <8				
Fluorene	ug/L ug/L					<8				
Gamma-bhc (lindane)	ug/L					<.05				
Heptachlor `	ug/L					<.05				
Heptachlor epoxide	ug/L					<.05				
Hexachlorobenzene	ug/L					<.05				

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-20

Constituents	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022	3/24/2023
Antimony, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arochlor 1016 Arochlor 1221						<.1 <.2			
Arochlor 1232						<.2			
Arochlor 1242						<.2			
Arochlor 1248						<.2			
Arochlor 1254						<.1			
Arochlor 1260 Arsenic, total	78.4	83.6	65.2	87.1	106.0	<.1 87.8	127.0	133.0	94.6
Azobenzene	70.4	03.0	05.2	07.1	100.0	<8	127.0	133.0	94.0
Barium, total	2100	2350	2300	1970	1970	2160	1890	2020	2000
Benzene	2.5	3.1	2.8	<1.0	3.3	3.0	3.8	2.6	2.6
Benzo(a)anthracene						<8 <8			
Benzo(a)pyrene Benzo(b)fluoranthene						<8			
Benzo(g,h,i)perylene						<8			
Benzo(k)fluoranthene						<8			
Benzyl alcohol						<8>			
Beryllium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Beta-bhc Bis (2-chloroethoxy) methane						<.05 <8			
Bis(2-chloroethyl) ether						<8			
Bis(2-chloroisopropyl) ether						<8			
Bis(2-ethylhexyl) phthalate						8	7	<6	
Bromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	<1	<1 <1	<1 <1	<1	<1	<1	<1	<1	<1 <1
Bromoform Bromomethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1
Butyl benzyl phthalate	''	*1	`'	, ,		<8	, ,		, ,
Cadmium, total	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Carbon disulfide	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlordane Chlorobenzene	<1.0	<1.0	1.0	1.2	1.1	<.1 1.1	1.1	1.1	<1.0
Chlorobenzilate	\ \1.0	\1.0	1.0	1.2	1.1	<8	'.'	1.1	\1.0
Chloroethane	1.6	2.0	1.6	1.6	1.6	1.8	1.6	1.7	<1.0
Chloroform	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroprene Chromium, total	<8	<8	<8	<8	<8	<1 <8	<8	<8	<8
Chrysene	\ \	~0	\"	~0	_0	<8			
Cis-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt, total	12.3	10.7	10.1	9.9	12.0	10.6	10.4	11.1	11.1
Copper, total Cyanide, total	<4	<4	<4	<4	<4	<4 <.005	<4	<4	<4
Delta-bhc						<.05			
Diallate						<8			
Dibenzo(a,h)anthracene						<8>			
Dibenzofuran		.4				<8			
Dibromochloromethane Dibromomethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Dichlorodifluoromethane	`'	- 1	`'	` '	` '	<1	`'		``
Dieldrin						<.05			
Diethyl phthalate						<8			
Dimethoate						<.4			
Dimethylphthalate Di-n-butyl phthalate						<8 <8			
Di-n-octyl phthalate						<8			
Dinoseb						<.5			
Diphenylamine						<8			
Disulfoton						<.4			
Endosulfan i Endosulfan ii						<.05 <.05			
Endosulfan il Endosulfan sulfate						<.05			
Endrin						<.05			
Endrin aldehyde						<.05			
Ethyl methacrylate						<10			
Ethyl methanesulfonate				ا مر	ه ب	<8	ا مر		ي .
Ethylbenzene Famphur	<1	<1	<1	<1	<1	<1 <.4	<1	<1	<1
Famphul Fluoranthene						<8			
Fluorene						<8			
Gamma-bhc (lindane)						<.05			
Heptachlor						<.05			
Heptachlor epoxide						<.05			
Hexachlorobenzene						<.05			

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-20

0	0/7/0000	0/40/0004	0/05/0004
Constituents	9/7/2023	3/18/2024	9/25/2024
Antimony, total Arochlor 1016	<2	<2	<2
Arochlor 1221			
Arochlor 1232			
Arochlor 1242 Arochlor 1248			
Arochlor 1254			
Arochlor 1260			
Arsenic, total	83.4	112.0	44.1
Azobenzene Barium, total	1810	2110	1950
Benzene	2.0	2.2	2.1
Benzo(a)anthracene			
Benzo(a)pyrene			
Benzo(b)fluoranthene Benzo(g,h,i)perylene			
Benzo(k)fluoranthene			
Benzyl alcohol			
Beryllium, total Beta-bhc	<4	<4	<4
Bis (2-chloroethoxy) methane			
Bis(2-chloroethyl) ether			
Bis(2-chloroisopropyl) ether			
Bis(2-ethylhexyl) phthalate Bromochloromethane	<1	<1	<1
Bromodichloromethane	<1	<1	<1
Bromoform	<1	<1	<1
Bromomethane Butyl benzyl phthalate	<1	<1	<1
Cadmium, total	<.8	<.8	<.8
Carbon disulfide	<1	<1	<1
Carbon tetrachloride	<1	<1	<1
Chlordane Chlorobenzene	1.0	1.2	1.9
Chlorobenzilate	1.0	1.2	1.9
Chloroethane	1.5	1.2	<1.0
Chloroform	<1	<1	<1
Chloromethane Chloroprene	<1	<1	<1
Chromium, total	<8	<8	<8
Chrysene			
Cis-1,2-dichloroethylene	<1 <1	<1 <1	<1 <1
Cis-1,3-dichloropropene Cobalt, total	9.1	9.7	6.4
Copper, total	<4	<4	<4
Cyanide, total			
Delta-bhc Diallate			
Dibenzo(a,h)anthracene			
Dibenzofuran			
Dibromochloromethane	<1	<1	<1
Dibromomethane Dichlorodifluoromethane	<1	<1	<1
Dieldrin			
Diethyl phthalate			
Dimethoate			
Dimethylphthalate Di-n-butyl phthalate			
Di-n-octyl phthalate			
Dinoseb			
Diphenylamine Disulfoton			
Endosulfan i			
Endosulfan ii			
Endosulfan sulfate			
Endrin Endrin aldehyde			
Endrin alderlyde Ethyl methacrylate			
Ethyl methanesulfonate			
Ethylbenzene	<1	<1	<1
Famphur Fluoranthene			
Fluorantinene Fluorene			
Gamma-bhc (lindane)			
Heptachlor			
Heptachlor epoxide Hexachlorobenzene			
1 10/2011010001120116			

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-20

Constituents	Units	9/18/2014	4/28/2015	10/6/2015	4/23/2016	9/1/2016	3/21/2017	10/13/2017	3/9/2018	9/6/2018
Hexachlorobutadiene	ug/L					<8				
Hexachlorocyclopentadiene	ug/L					<8				
Hexachloroethane	ug/L					<8				
Hexachloropropene	ug/L					<8				
Indeno(1,2,3-cd)pyrene	ug/L					<8				
Isobutanol	mg/L					<1				
Isodrin	ug/L					<8				
Isophorone	ug/L					<8				
Isosafrole	ug/L					<8				
Kepone	ug/L					<8				
Lead, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Mercury, total	ug/L					<.5				
Methacrylonitrile	ug/L					<1				
Methapyrilene	ug/L					<8				
Methoxychlor	ug/L					<.05				
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl methacrylate	ug/L					<1				
Methyl methanesulfonate	ug/L					<8				
Methyl parathion	ug/L					<.4				
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene	ug/L					<8				
Nickel, total	ug/L	42.2	28.4	41.6	36.5	34.2	37.6	42.7	37.0	39.0
Nitrobenzene	ug/L					<8				
N-nitrosodiethylamine	ug/L					<8				
N-nitrosodimethylamine	ug/L					<8				
N-nitrosodi-n-butylamine	ug/L					<8				
N-nitroso-di-n-propylamine	ug/L					<8				
N-nitrosodiphenylamine	ug/L					<8				
N-nitrosomethylethylamine	ug/L					<8				
N-nitrosopiperidine	ug/L					<8				
N-nitrosopyrrolidine	ug/L					<8				
O,o,o-triethyl phosphorothioate	ug/L					<.4				
O-toluidine	ug/L					<8				
Parathion	ug/L					<.4				
P-dimethylaminoazobenzene	ug/L					<8				
Pentachlorobenzene	ug/L					<8				
Pentachloronitrobenzene (pcnb)	ug/L					<8				
Pentachlorophenol	ug/L					<8				
Phenacetin	ug/L					<8				
Phenanthrene	ug/L					<8				
Phenol	ug/L					<8				
Phorate	ug/L					<.4				
Pronamide	ug/L					<8				
Propionitrile	ug/L					<10				
Pyrene	ug/L					<8				
Safrole Selenium, total	ug/L ug/L	<4	<4	<4	<4	<8 <4	<4	-1	<4	<4
Silver, total	ug/L ug/L	<4	<4	<4	<4	<4	<4	<4 <4	<4	<8
Solids, total suspended	mg/L	375	177	156	165	108	1270	1200	\4	
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulfide, total	mg/L	`'	_ `'	~1	`'	<.10	`'		_ `'	`'
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	ug/L ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Thionazin	ug/L ug/L	\4	\4	~4	~4	<.4	~4	\ 4	\4	\ <u>`</u>
Tin, total						<20				
Toluene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toxaphene	ug/L ug/L	`'	``'	~1	"	<.2	~1	``	``'	`'
Trans-1,2-dichloroethylene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L ug/L	<1	<1	<1	<1	<1	<1 <1	<1	<1	<1
	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethana	Lua/I									
Trichlorofluoromethane	ug/L		-20	~2n					/'n	/\n^
Vanadium, total	ug/L	<20	<20	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5	<20 <5
Vanadium, total Vinyl acetate	ug/L ug/L	<20 <5	<5	<5	<5	<5	<5	<5	<5	<5
Vanadium, total Vinyl acetate Vinyl chloride	ug/L ug/L ug/L	<20 <5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1
Vanadium, total Vinyl acetate	ug/L ug/L	<20 <5	<5 <1 <2	<5	<5	<5	<5	<5	<5	<5

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-20

Constituents	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022	3/24/2023
Hexachlorobutadiene						<8			
Hexachlorocyclopentadiene						<8			
Hexachloroethane						<8			
Hexachloropropene						<8			
Indeno(1,2,3-cd)pyrene						<8			
Isobutanol						<1			
Isodrin						<8			
Isophorone						<8			
Isosafrole						<8			
Kepone						<8			
Lead, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Mercury, total					· ·	<.5			''
Methacrylonitrile						<1			
Methapyrilene						<8			
Methoxychlor						<.05			
Methyl iodide	<1	<1	<1	<1	<1	<2	<1	<1	<1
	`'	~1	`'	`'		<1	`'	`'	`'
Methyl methacrylate						<8			
Methyl methanesulfonate									
Methyl parathion						<.4			
Methylene chloride	<5	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene		20 -	22.5			<8			
Nickel, total	37.5	33.2	30.9	33.4	35.0	35.0	34.5	38.2	31.9
Nitrobenzene						<8			
N-nitrosodiethylamine						<8			
N-nitrosodimethylamine						<8			
N-nitrosodi-n-butylamine						<8>			
N-nitroso-di-n-propylamine						<8>			
N-nitrosodiphenylamine						<8			
N-nitrosomethylethylamine						<8			
N-nitrosopiperidine						<8			
N-nitrosopyrrolidine						<8			
O,o,o-triethyl phosphorothioate						<.4			
O-toluidine						<8			
Parathion						<.4			
P-dimethylaminoazobenzene						<8			
Pentachlorobenzene						<8			
Pentachloronitrobenzene (pcnb)						<8			
Pentachlorophenol						<8			
Phenacetin						<8			
Phenanthrene						<8			
Phenol						<8			
Phorate						<.4			
Pronamide						<8			
Propionitrile						<10			
Pyrene						<8			
Safrole						<8			
Selenium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	<4	<4	<4	<4	<4	<4	<4	<4	<4
	^4	\4	\4	\4	\4	\4	^4	\4	~4
Solids, total suspended	ا ہر ا	-4	<1	<1	_4	<1		<1	
Styrene	<1	<1	<u> </u>	<u> </u>	<1		<1	`1	<1
Sulfide, total	ا ہے ا	ا الدر			يه در	.14			
Tetrachloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	<2	<2	<2	<2	<2	<2	<2	<2	<2
Thionazin						<.4			
Tin, total						<20			
Toluene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toxaphene						<.2			
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	<1	<1	- <1	<1	<1	<1	<1	<1	<1
Vanadium, total	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	<5	<5	<5	<5	<5	<5	<5	<5	<5
	<5 <1	<5 <1	<5 <1	<5 <1	<1	<5 <1	<5 <1	<1	<1
Vinyl chloride									
Xylenes, total	<2	<2 33.8	<2 <20.0	<2 <20.0	<2 <20.0	<2 <20.0	<2 <20.0	<2 <20.0	
Zinc, total	<8.0								<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-20

O-makit t-	0/7/0000	0/40/0004	0/05/0004
Constituents	9/7/2023	3/18/2024	9/25/2024
Hexachlorobutadiene Hexachlorocyclopentadiene			
Hexachloroethane			
Hexachloropropene			
Indeno(1,2,3-cd)pyrene			
Isobutanol			
Isodrin			
Isophorone Isosafrole			
Kepone			
Lead, total	<4	<4	<4
Mercury, total			
Methacrylonitrile			
Methapyrilene Methoxychlor			
Methyl iodide	<1	<1	<1
Methyl methacrylate		.	.
Methyl methanesulfonate			
Methyl parathion	_	_	_
Methylene chloride	<5	<5	<5
Naphthalene Nickel, total	33.7	31.4	18.0
Nitrobenzene	00.7	01.4	10.0
N-nitrosodiethylamine			
N-nitrosodimethylamine			
N-nitrosodi-n-butylamine			
N-nitroso-di-n-propylamine N-nitrosodiphenylamine			
N-nitrosomethylethylamine			
N-nitrosopiperidine			
N-nitrosopyrrolidine			
O,o,o-triethyl phosphorothioate			
O-toluidine Parathion			
P-dimethylaminoazobenzene			
Pentachlorobenzene			
Pentachloronitrobenzene (pcnb)			
Pentachlorophenol			
Phenacetin			
Phenanthrene Phenol			
Phorate			
Pronamide			
Propionitrile			
Pyrene			
Safrole Selenium, total	<4	<4	<4
Silver, total	<4	<4	<4
Solids, total suspended			.,
Styrene	<1	<1	<1
Sulfide, total			
Tetrachloroethylene	<1	<1	<1
Thallium, total Thionazin	<2	<2	<2
Tin, total			
Toluene	<1	<1	<1
Toxaphene			
Trans-1,2-dichloroethylene	<1	<1	<1
Trans-1,3-dichloropropene	<1 <5	<1 <5	<1 <5
Trans-1,4-dichloro-2-butene Trichloroethylene	<5 <1	<5 <1	<5 <1
Trichlorofluoromethane	<1	<1	<1
Vanadium, total	<20	<20	<20
Vinyl acetate	<5	<5	<5
Vinyl chloride	<1	<1	<1
Xylenes, total Zinc, total	<2 <20.0	<2 <20.0	<2 <20.0
Zino, total	~20.0	~20.0	~20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-3

Constituents	Units	9/17/2014	4/28/2015	10/6/2015	4/23/2016	9/1/2016	3/21/2017	10/13/2017	1/12/2018
(3+4)-methylphenol	ug/L					<8			
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,1,2-trichloroethane	ug/L	<1 1.3	<1 <1.0	<1 <1.0	<1.0	<1 1.5	<1 <1.0	<1 <1.0	
1,1-dichloroethane 1,1-dichloroethylene	ug/L ug/L	1.3 <1	<1.0 <1	<1.0 <1	<1.0 <1	1.5 <1	<1.0 <1	<1.0 <1	
1,1-dichloropropene	ug/L ug/L	`'	`'	`'	` '	<1	`'		
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,2,4,5-tetrachlorobenzene	ug/L					<8			
1,2,4-trichlorobenzene	ug/L					<1			
1,2-dibromo-3-chloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,2-dichlorobenzene	ug/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	
1,2-dichloroethane 1,2-dichloropropane	ug/L ug/L	<1	<1 <1	<1	<1 <1	<1	<1	<1	
1,2-dinitrobenzene	ug/L ug/L	`'	` '	`'	` '	<8	``		
1,3,5-trinitrobenzene	ug/L					<8			
1,3-dichlorobenzene	ug/L					<1			
1,3-dichloropropane	ug/L					<1			
1,3-dinitrobenzene	ug/L					<8			
1,4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	
1,4-naphthoquinone	ug/L					<8			
1,4-phenylenediamine	ug/L					<8 <0			
1-naphthylamine 2,2-dichloropropane	ug/L ug/L					<8 <1			
2,2-dichioropropane 2,3,4,6-tetrachlorophenol	ug/L ug/L					<1 <8			
2,4,5-t	ug/L					<.5			
2,4,5-tp (silvex)	ug/L					<.5			
2,4,5-trichlorophenol	ug/L					<8			
2,4,6-trichlorophenol	ug/L					<8			
2,4-d	ug/L					<2			
2,4-dichlorophenol	ug/L					<8			
2,4-dimethylphenol	ug/L					<8			
2,4-dinitrophenol 2,4-dinitrotoluene	ug/L					<8 <8			
2,6-dichlorophenol	ug/L ug/L					<8			
2,6-dinitrotoluene	ug/L ug/L					<8			
2-acetylaminofluorene	ug/L					<8			
2-butanone (mek)	ug/L	<5	<5	<5	<5	<5	<5	<5	
2-chloronaphthalene	ug/L					<8			
2-chlorophenol	ug/L	_				<8	_	_	
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5	<5	
2-methylnaphthalene	ug/L					<8			
2-methylphenol 2-naphthylamine	ug/L					<8 <8			
2-napritrylariline 2-nitroaniline	ug/L ug/L					<8			
2-nitrophenol	ug/L					<8			
3,3'-dichlorobenzidine	ug/L					<8			
3,3'-dimethylbenzidine	ug/L					<8			
3-methylcholanthrene	ug/L					<8			
3-nitroaniline	ug/L					<8			
4,4´-ddd	ug/L					<.05			
4,4´-dde	ug/L					<.05			
4,4'-ddt	ug/L					<.05			
4,6-dinitro-2-methylphenol 4-aminobiphenyl	ug/L ug/L					<8 <8			
4-aminobiphenyl 4-bromophenyl phenyl ether	ug/L ug/L					<8			
4-chloro-3-methylphenol	ug/L ug/L					<8			
4-chloroaniline	ug/L					<8			
4-chlorophenyl phenyl ether	ug/L					<8			
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	
4-nitroaniline	ug/L					<8			
4-nitrophenol	ug/L					<8			
5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene	ug/L					<8			
7,12-dimethylbenz(a)anthracene Acenaphthene	ug/L ug/L					<8 <8			
Acenaphthylene	ug/L ug/L					<8			
Acetone	ug/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	15.4	
Acetonic	ug/L ug/L	10.0	10.0	10.0	710.0	<10.0	10.0	10.4	
Acetophenone	ug/L					<8			
Acrolein	ug/L					<10			
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	
Aldrin	ug/L					<.05			
Allyl chloride	ug/L					<1			
Alpha-bhc	ug/L					<.05			
Anthracene	ug/L					<8			

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-3

Constituents	3/9/2018	9/6/2018	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022
(3+4)-methylphenol								<8		
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-dichloroethylene 1,1-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1 <1	<1	<1
1,1-dictiloroproperie	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,4,5-tetrachlorobenzene	, ,	* 1	- 1		`''	, ,	71	<8	`'	`'
1,2,4-trichlorobenzene								<1		
1,2-dibromo-3-chloropropane	<1	<1	<1	<1	<5	<5	<5	<1	<5	<5
1,2-dibromoethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,2-dichloropropane 1,2-dinitrobenzene	` '	~1	~1	~1	~1			<8		`'
1,3,5-trinitrobenzene								<8		
1,3-dichlorobenzene								<1		
1,3-dichloropropane								<1		
1,3-dinitrobenzene								<8>		
1,4-dichlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-naphthoquinone								<8		
1,4-phenylenediamine								<8		
1-naphthylamine 2,2-dichloropropane								<8 <1		
2,3,4,6-tetrachlorophenol								<8		
2,4,5-t								<.5		
2,4,5-tp (silvex)								<.5		
2,4,5-trichlorophenol								<8		
2,4,6-trichlorophenol								<8		
2,4-d								<2		
2,4-dichlorophenol								<8		
2,4-dimethylphenol 2,4-dinitrophenol								<8 <8		
2,4-dinitrophenor								<8		
2,6-dichlorophenol								<8		
2,6-dinitrotoluene								<8		
2-acetylaminofluorene								<8		
2-butanone (mek)	<5	<5	<5	<5	<5	<5	<5	<5	<10	<10
2-chloronaphthalene								<8		
2-chlorophenol	45	45			45		45	<8		
2-hexanone (mbk) 2-methylnaphthalene	<5	<5	<5	<5	<5	<5	<5	<5 <8	<5	<5
2-methylphenol								<8		
2-naphthylamine								<8		
2-nitroaniline								<8		
2-nitrophenol								<8		
3,3´-dichlorobenzidine								<8		
3,3'-dimethylbenzidine								<8		
3-methylcholanthrene								<8 <8		
3-nitroaniline 4,4'-ddd								<.05		
4,4'-dde								<.05		
4,4'-ddt								<.05		
4,6-dinitro-2-methylphenol								<8		
4-aminobiphenyl								<8		
4-bromophenyl phenyl ether								<8		
4-chloro-3-methylphenol								<8		
4-chloroaniline 4-chlorophenyl phenyl ether								<8 <8		
4-cnioropnenyi pnenyi etner 4-methyl-2-pentanone (mibk)	<5	<5	<5	<5	<5	<5	<5	<8 <5	<5	<5
4-nitroaniline	```	~5	~5	~5	\"	```	```	<8	```	~5
4-nitrophenol								<8		
5-nitro-o-toluidine								<8		
7,12-dimethylbenz(a)anthracene								<8		
Acenaphthene								<8		
Acenaphthylene		.40.0	.40.0	:40.0	.40.0	.400		<8		.40.0
Acetone	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Acetonitrile Acetophenone								<10 <8		
Acetophenone Acrolein								<10		
Acrylonitrile	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Aldrin		.5	.5	.5				<.05		
Allyl chloride								<1		
Alpha-bhc								<.05		
Anthracene								<8		

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-3

(3+4)-methylphenol	Constituents	3/24/2023	9/7/2023	3/18/2024	9/25/2024
1.1.1-tirchloroethane					
1,1,22-letrachloroethane					
1.1.2-tichloroethane					
1.1-dichloroethylene					
1.1-dichloropropene				<1.0	<1.0
1,2,4,5-tertachloropenzene		<1	<1	<1	<1
1,2,4-steriothorobenzene			-4	-4	-4
1.2.4-irichlorobenzene		<1	<1	<1	<1
1.2-dibromo-3-chloropropane					
1.2-dichlorobenzene		<5	<5	<5	<5
1.2-dichloropropane					
1.2-dintrobenzene	1 '				
1,2-dinitrobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,4-phthoquinone 1,4-phenylenediamine 1-naphthylamine 2,2-dichloropropane 2,3,4,6-tertachlorophenol 2,4-5-t 2,4-5-t 2,4-5-t; (slivex) 2,4-5-trichlorophenol 2,4-di-trichlorophenol 2,4-di-trichlorophenol 2,4-di-trichlorophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,5-dinitrooluene 2-acetylaminofluorene 2-acetylaminofluorene 2-acetylaminofluorene 2-butanone (mek) 2-chioronaphthalene 2-chiorophenol 2-hexanone (mbk) 5 < 5 < 5 < 5 2-methylphenol 2-naphthylamine 2-nitrophenol 3,3-dichlorobenzidine 3,3-dimethylbenzidine 3,3-dimethylbenzidine 3,3-dimethylbenzidine 3-nitroaniline 4,4-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddd 4-dinoro-3-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-aninobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-mitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acetophenone Acerolein Acetophenone Acrolein Acytolnitrile Acetophenone Acetophenone Acrolein Alydichloride Alyha-bhc					
1.3.3-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.3-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-phenylenediamine 1-naphthydamine 2.2-dichloropropane 2.3.4.6-tetrachlorophenol 2.4.5-tp (silvex) 2.4.5-tp (silvex) 2.4.5-tp (silvex) 2.4.5-tp (silvex) 2.4-dichlorophenol 2.4-dimethylphenol 2.4-dimethylphenol 2.4-dimitrotoluene 2.3-dichlorophenol 2.4-dimitrotoluene 2.3-dichlorophenol 2.5-dichlorophenol 2.5-dichlorobenzidine 2-methylphenol 2-naphtylphenol 2-naphtylphenol 2-naphtylphenol 2-naphtylphenol 2-nitroaniline 2-nitroaniline 3.3-dichlorobenzidine 3.3-dichlorobenzidine 3.3-dichlorobenzidine 3.3-dichlorobenzidine 3-methylcholanthrene 3-nitroaniline 4-4-ddt 4,4-ddt 4,4-d		` '	`'	~1	`'
1.3-dichloropropane 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-dichlorobenzene 1.4-phenylenediamine 1-naphthydmine 2.2-dichloropropane 2.3.4.6-tetrachlorophenol 2.4.5-tp 2.4.5-tp 2.4.5-tp (silvex) 2.4.5-trichlorophenol 2.4-dimethylphenol 2.4-dimethylphenol 2.4-dimethylphenol 2.4-dimethylphenol 2.4-dimethylphenol 2.4-dimethylphenol 2.4-dimethylphenol 2.4-dimethylphenol 2.5-dichlorophenol 2.5-dichlorophenol 2.6-dimitrodluene 2-acetylaminofluorene 2-butanone (mek) 2-chloronaphthalene 2-chlorophenol 2-hexanone (mbk) 3.7-dimethylphenol 2-naphthylamine 2-nitrophenol 3.3-dichlorobenzidine 3.3-dichlorobenzidine 3.3-dichlorobenzidine 3-methylphenol 2-methylphenol 2-naphtylphenol 4-4-ddd 4.4-ddd 4.4-ddd 4.4-ddd 4.4-ddd 4.4-ddd 4.4-ddd 4.4-ddd 4.4-ddd 4.5-dinitro-2-methylphenol 4-chloro-3-methylphenol 4-chloro-amethylphenol 4-chloro-amethylphenol 4-chloro-amethylphenol 4-chloro-amethylphenol 4-chloro-amethylphenol 5-nitro-o-toluidine 7-12-dimethylbenz(a)anthracene Acenaphthyle Acetophenone Acetone Acetone Acetone Acetone Acetone Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Alpha-bhc					
1.3-dinitrobenzene 1.4-dichlorobenzene 1.4-naphthoquinone 1.4-phenylenediamine 1-naphthylamine 2.2-dichloropropane 2.3.4,6-letrachlorophenol 2.4,5-t 2.4,5-t; (slivex) 2.4,5-trichlorophenol 2.4,5-trichlorophenol 2.4-di-trichlorophenol 2.4-di-trichlorophenol 2.4-dinitrophenol 2.4-dinitrophenol 2.4-dinitrobluene 2.6-dichlorophenol 2.6-dinitrobluene 2.6-dichlorophenol 2.6-dinitrobluene 2-acetylaminofluorene 2-butanone (mek) 2-butanone (mek) 2-methylnaphthalene 2-chloronaphthalene 2-chlorophenol 2-hexanone (mbk) 3.7-dichlorobenzidine 3.3-dichlorobenzidine 3.3-dichlorobenzidine 3-methylcholanthrene 3-nitroaniline 4-4-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-dde 4-dintro-3-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 5-nitro-o-toluidine 7-nitrophenol 5-nitro-o-toluidine 7-nitrophenol 5-nitro-o-toluidine 7-nitrophenol 5-nitro-o-toluidine 7-nitrophenol 5-nitro-o-toluidine 7-nitrophenol 5-nitro-o-toluidine 7-nitrophenol 6-nitro-o-toluidine 7-nitrophenol 7-nitrop					
1,4-dichlorobenzene 1,4-naphthoquinone 1,4-phenylenediamine 1-naphthylamine 2,2-dichloropropane 2,3,4,6-tetrachlorophenol 2,4,5-trichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dimethylphenol 2,4-dimitrotoluene 2,6-dinitrotoluene 2-acetylaminofluorene 2-butanone (mek) 2-chlorophenol 2-hexanone (mbk) 2-methylnaphthalene 2-nethylnaphthalene 2-nethylphenol 3,3-dichlorobenzidine 3,3-dimethylbenzidine 3-methylcholanthrene 3-mitroaniline 4,4-ddd 4,4-ddd 4,4-ddd 4,4-ddd 4,4-ddd 4,4-ddd 4,5-dinitro-2-methylphenol 4-chlorophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-mitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acenaphthylene Acetophenone Acrolonirile Acetophenone Acrolonirile Acetophenone Acrolonirile Acrylonitrile Acrylonitrile Alpha-bhc					
1.4-aphthoquinone 1.4-phenylenediamine 1aphthylamine 2.2-dichloropropane 2.3.4.6-tetrachlorophenol 2.4.5-t 2.4.5-t; (silvex) 2.4.5-trichlorophenol 2.4-di-trichlorophenol 2.4-di-trichlorophenol 2.4-dinitrophenol 2.4-dinitrophenol 2.4-dinitrophenol 2.4-dinitrophenol 2.4-dinitrotoluene 2.6-dichlorophenol 2.6-dichlorophenol 2.6-dichlorophenol 2.6-dinitrotoluene 2-acetylaminofluorene 2-butanone (mek) 2-chlorophenol 2-hexanone (mbk) 3-chlorophenol 2-hexanone (mbk) 4-chlorophenol 2-naphtylamine 2-nitroaniline 2-nitroaniline 2-nitrophenol 3.3'-dichlorobenzidine 3.3'-dichlorobenzidine 3.3'-dimethylbenzidine 3-methylcholanthrene 3-nitroaniline 4,4'-ddt 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acetophenol 6-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acetophenone Acroloinitile Acetophenone Acroloinitile Acrolonitile Acrolonitile Acrolonitile Acrolonitile Acrolonitile Acrolonitile Acrolonitile Acrolonitile Aldrin Allyl chloride Alpha-bhc				-1	-1
1.4-phenylenediamine 1.naphthylamine 2.2-dichloropropane 2.3.4,6-tetrachlorophenol 2.4,5-trichlorophenol 2.4.5-trichlorophenol 2.4-dichlorophenol 2.4-dirichlorophenol 2.4-dinitrotoluene 2.4-dinitrotoluene 2.4-dinitrotoluene 2.4-dinitrotoluene 2.4-dinitrotoluene 2.4-dinitrotoluene 2.5-dichlorophenol 2.5-dinitrotoluene 2dichlorophenol 2.5-dinitrotoluene 2desplaminofluorene 2-butanone (mek) 2-chlorophenol 2-hutanone (mek) 3dinitrotoluene 2-methylnaphthalene 2-methylnaphthalene 2-methylnaphthalene 2-methylphenol 2-naphthylamine 2-nitroaniline 3.3-dichlorobenzidine 3.3-dichlorobenzidine 3.3-dichlorobenzidine 3.3-dichlorobenzidine 3.3-dichlorobenzidine 3.3-dichlorobenzidine 3.3-dichlorobenzidine 3-methylcholanthraen 3-methylcholanthraen 3-methylcholanthraen 3-methylcholanthraen 3-methylcholanthraen 4-ddd 4,4-ddd 4,4-ddd 4,4-ddd 4,6-dnitro-2-methylphenol 4-chlorop-amethylphenol 4-chlorop-amethylphenol 4-chlorop-amethylphenol 4-chlorop-amethylphenol 4-chlorop-amethylphenol 4-chlorop-amethylphenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acetophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acetophenone Acetone Acetonitrile Acetophenone Acroloinitile Acrylonitile Alyd-chloride Alpha-bhc		_ ` '	` '	<u> </u>	<u> </u>
1-naphthylamine 2.2-dichloropropane 2.3.4,6-tetrachlorophenol 2.4,5-t 2.4.5-tp (silvex) 2.4.5-trichlorophenol 2.4.5-tp (silvex) 2.4-5-trichlorophenol 2.4-dirichlorophenol 2.4-dintrophenol 2.4-dintrophenol 2.4-dinitrotoluene 2.6-dichlorophenol 2.6-dinitrotoluene 2.6-dichlorophenol 2.6-dinitrotoluene 2-acetylaminofluorene 2-butanone (mek) 2-chloronaphthalene 2-chlorophenol 2-hexanone (mbk) 3-bremthylaphthalene 2-methylphenol 2-naphthylamine 2-nitrophenol 3.3'-dichlorobenzidine 3.3'-dimethylbenzidine 3-methylcholanthrene 3-nitroaniline 4.4'-ddt 4.4'-ddt 4.4'-ddd 4.4'-ddt 4.6-dintro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chlorop-3-methylphenol 4-chlorophenyl phenyl ether 4-chlorop-benyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-0-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acetone Acetone Acetone Acetone Acetone Acetonitrile Acetophenone Acroloirile Accylonitrile Acylonitrile Aldrin Allyl chloride Alpha-bhc					
2,3,4,5-terrachlorophenol 2,4,5-trichlorophenol 2,4-frichlorophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrotoluene 2,6-dichlorophenol 2,6-dinitrotoluene 2,6-dichlorophenol 2,6-dinitrotoluene 2-acetylaminofluorene 2-butanone (mek) 2-chlorophenol 2-hexanone (mbk) 3-chlorophenol 2-hexanone (mbk) 3-methylphenol 2-nethylphenol 2-nethylphenol 2-nethylphenol 3,3'-dichlorobenzidine 3,3'-direhylbenzidine 3-methylcholanthrene 3-mitroaniline 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,6'-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloroaniline 4-chlorophenyl phenyl ether 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Aceanaphthylene Acetophenone Acroloirile Acetophenone Acroloirile Acetophenone Acroloirile Acetophenone Acroloirile Acetophenone Acroloirile Acpylonitile Aldrin Allyl chloride Alpha-bhc					
2.4.5-tp (silvex) 2.4.5-trichlorophenol 2.4.6-trichlorophenol 2.4.6-trichlorophenol 2.4-dintrophenol 2.4-dintrotoluene 2.6-dichlorophenol 2.4-dinitrotoluene 2.6-dichlorophenol 2.6-dinitrotoluene 2.6-dichlorophenol 2.6-dinitrotoluene 2-acetylaminofluorene 2-butanone (mek) 2-butanone (mek) 2-butanone (mek) 2-chloronaphthalene 2-chlorophenol 2-hexanone (mbk) 2-methylphenol 2-naphthylamine 2-nitrophenol 3,3-dichlorobenzidine 3,3-dimethylbenzidine 3-methylcholanthrene 3-nitroaniline 4-d'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloro-3-methylphenol 4-chloronaliine 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Aceanpaththene Aceanphthylene Acetophenone Acrolein Acrylonitrile Acetophenone Acrolein Acrylonitrile Aclylonitrile Aldrin Allyl chloride Alpha-bhc					
2.4.5-tp (silvex) 2.4.5-trichlorophenol 2.4.5-trichlorophenol 2.4.6-trichlorophenol 2.4-di					
2,4-5-trichlorophenol 2,4-6-trichlorophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrophenol 2,4-dinitrotoluene 2,6-dichlorophenol 2,6-dinitrotoluene 2-acetylaminofluorene 2-butanone (mek) 2-butanone (mek) 2-blutanone (mek) 3-chloronaphthalene 2-chloronaphthalene 2-netrylnaphthalene 2-metrylphenol 2-naphthylamine 2-nitrophenol 3,3'-dichlorobenzidine 3,3'-dimethylbenzidine 3-metrylcholanthrene 3-nitroaniline 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddd 4-dinto-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-netryl-2-pentanone (mibk) 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acetone Acetonitrile Acetophenone Acrolein Accylonitrile Acetophenone Acrolein Acrylonitrile Aldrin Allyl chloride Alpha-bhc	1 / /-				
2,4-dichlorophenol 2,4-dimethylphenol 2,4-dimethylphenol 2,4-dimitrobluene 2,6-dinitrotoluene 2,6-dinitrotoluene 2-acetylaminofluorene 2-acetylaminofluorene 2-butanone (mek)					
2,4-dichlorophenol 2,4-dimethylphenol 2,4-dimitrophenol 2,4-dinitrotoluene 2,6-dinitrotoluene 2-acetylaminofluorene 2-butanone (mek) 2-chloronaphthalene 2-chlorophenol 2-hexanone (mbk) 2-methylnaphthalene 2-methylnaphthalene 2-methylphenol 2-naphthylamine 2-nitrophenol 3,3'-dichlorobenzidine 3,3'-dimethylbenzidine 3-methylcholanthrene 3-methylcholanthrene 3-mitroaniline 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chlorophenyl phenyl ether 4-chloroaniline 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acetone Acetonitrile Acetophenone Acrolein Acylonitrile Actorinitrile Actorinitrile Actorinitrile Actorinitrile Actorinitrile Actorinitrile Actorinitrile Aldrin Allyl chloride Alpha-bhc					
2.4-dimethylphenol					
2,4-dinitroblenol 2,4-dinitrotoluene 2,6-dichlorophenol 2,6-dinitrotoluene 2-acetylaminofluorene 2-butanone (mek) 2-chloronaphthalene 2-chlorophenol 2-hexanone (mbk) 3-chexanone (mbk) 3-methylamine 2-nitroaniline 2-nitrophenol 3,3-dichlorobenzidine 3,3-dichlorobenzidine 3,3-didinethylbenzidine 3-methylcholanthrene 3-methylcholanthrene 3-methylcholanthrene 3-methylcholanthrene 3-mitroaniline 4,4'-ddd 4,4'-ddd 4,4'-ddt 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acenaphthylene Acetone Acetone Acetone Acetone Acrolein Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Aldrin Allyl chloride Alpha-bhc					
2,4-dinitrotoluene 2,6-dinitrotoluene 2,6-dinitrotoluene 2-acetylaminofluorene 2-butanone (mek)					
2,6-dichlorophenol 2,6-dinitrotoluene 2-acetylaminofluorene 2-butanone (mek)					
2-acetylaminofluorene 2-butanone (mek)					
2-butanone (mek)	2,6-dinitrotoluene				
2-chloronaphthalene 2-chlorophenol 2-hexanone (mbk) 3-methylpaphthalene 2-methylphenol 2-naphthylamine 2-nitroaniline 2-nitrophenol 3,3'-dichlorobenzidine 3,3'-dimethylbenzidine 3-methylcholanthrene 3-nitroaniline 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloroa-methylphenol 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acetone Acetone Acetone Acetone Acetone Acrylonitrile Actoloride Alply chloride Alply a-bhc					
2-chlorophenol 2-hexanone (mbk) 2-methylnaphthalene 2-methylphenol 2-naphthylamine 2-nitrophenol 3,3'-dichlorobenzidine 3,3'-dimethylbenzidine 3-methylcholanthrene 3-methylcholanthrene 3-methylcholanthrene 3-methylcholanthrene 3-methylcholanthrene 3-methylcholanthrene 3-methylcholanthrene 3-methylcholanthrene 4-d'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddt 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloro-3-methylphenol 4-chloroaniline 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acenaphthylene Acetone Acetone Acetone Acetone Acrolein Acrylonitrile Acrylonitrile Allyl chloride Alpha-bhc		<10	<10	<10	<10
2-hexanone (mbk)					
2-methylnaphthalene 2-methylphenol 2-naphthylamine 2-nitroaniline 2-nitrophenol 3,3'-dichlorobenzidine 3,3'-dimethylbenzidine 3-methylcholanthrene 3-nitroaniline 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,4'-ddt 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloroaniline 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acenaphthylene Acetone Acetone Acetone Acetone Acrolein Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Aldrin Allyl chloride Alpha-bhc		<5	<5	<5	<5
2-naphthylamine 2-nitrophenol 3,3'-dichlorobenzidine 3,3'-dimethylbenzidine 3-methylcholanthrene 3-nitroaniline 4,4'-dde 4,4'-dde 4,4'-dde 4,4'-dde 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloroaniline 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-nethyl-2-pentanone (mibk) 5-nitro-aniline 4-nitrophenol 5-nitro-otoluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acetone Acetone Acetone Acetonitrile Acetophenone Acrolein Acrylonitrile Acylonitrile Acylonitrile Aldrin Allyl chloride Alpha-bhc			_	-	
2-nitroaniline 2-nitrophenol 3,3'-dichlorobenzidine 3,3'-dimethylbenzidine 3-methylcholanthrene 3-nitroaniline 4,4'-ddd 4,4'-ddd 4,4'-ddd 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloroaniline 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acetone Acetone Acetone Acetonitrile Acetophenone Acrolein Acrylonitrile Acrylonitrile Acrylonitrile Aldrin Allyl chloride Alpha-bhc					
2-nitrophenol 3,3'-dichlorobenzidine 3,3'-dimethylbenzidine 3-methylcholanthrene 3-nitroaniline 4,4'-ddd 4,4'-ddd 4,4'-ddt 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloroaniline 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acenaphthylene Acetone Acenaphthylene Acetone Acetone Acetone Acrolein Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Aldrin Allyl chloride Alpha-bhc					
3,3'-dichlorobenzidine 3,3'-dimethylbenzidine 3-methylcholanthrene 3-methylcholanthrene 4,4'-ddd 4,4'-ddd 4,4'-ddt 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acetone Acetone Acetonitrile Acetophenone Acrolein Acrylonitrile Acrylonitrile Aldrin Allyl chloride Alpha-bhc					
3,3'-dimethylbenzidine 3-methylcholanthrene 3-nitroaniline 4,4'-ddd 4,4'-ddd 4,4'-ddt 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-nethyl-2-pentanone (mibk) 5-nitro-ortoluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acenaphthene Acetone Acetone Acetone Acetonitrile Acetophenone Acrolein Acrylonitrile Acylonitrile Aldrin Allyl chloride Alpha-bhc					
3-methylcholanthrene 3-nitroaniline 4,4'-ddd 4,4'-dde 4,4'-dde 4,4'-ddt 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 5-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acetone Acetone Acetone Acetonitrile Acetophenone Acrolein Acrylonitrile Acylonitrile Acylonitrile Aldrin Allyl chloride Alpha-bhc					
4,4'-ddd 4,4'-ddt 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) <5	3-methylcholanthrene				
4,4'-dde 4,4'-ddt 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acenaphthene Acetone Acetone Acetonitrile Acetophenone Acrolein Acrylonitrile Acrylonitrile Aldrin Allyl chloride Alpha-bhc					
4,4'-ddt 4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 5-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acetone Acetone Acetone Acetonitrile Acetophenone Acrolein Acrylonitrile Acylonitrile Acylonitrile Aldrin Allyl chloride Alpha-bhc					
4,6-dinitro-2-methylphenol 4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthylene Acetone Acetone Acetone Acetone Acetonitrile Acetophenone Acrolein Acrylonitrile Acrylonitrile Aldrin Allyl chloride Alpha-bhc					
4-aminobiphenyl 4-bromophenyl phenyl ether 4-chloro-3-methylphenol 4-chloroaniline 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acetone Acetone Acetonitrile Acetophenone Acrolein Acrylonitrile Aldrin Allyl chloride Alpha-bhc					
4-chloro-3-methylphenol 4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acetone Acetone Acetonetrile Acetophenone Acrolein Acrylonitrile Acrylonitrile Aldrin Allyl chloride Alpha-bhc	4-aminobiphenyl				
4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk)	4-bromophenyl phenyl ether				
4-chlorophenyl phenyl ether 4-methyl-2-pentanone (mibk) 4-nitrophenol 5-nitro-0-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acetone Acetone Acetonitrile Acetophenone Acrolein Acrylonitrile Acrylonitrile Aldriin Allyl chloride Alpha-bhc					
4-methyl-2-pentanone (mibk) 4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acenaphthylene Acetone Acetonitrile Acetophenone Acrolein Acrylonitrile Acrylonitrile Aldrin Allyl chloride Alpha-bhc					
4-nitroaniline 4-nitrophenol 5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acetone		<5	<5	<5	<5
5-nitro-o-toluidine 7,12-dimethylbenz(a)anthracene Acenaphthene Acetone <10.0 <10.0 <10.0 <10.0 Acetonitrile Acetophenone Acrolein Acrylonitrile <5 <5 <5 <5 Aldrin Allyl chloride Alpha-bhc					Ĭ
7,12-dimethylbenz(a)anthracene Acenaphthene Acetone					
Acenaphthene					
Acenaphthylene 40.0 <10.0					
Acetone <10.0					
Acetonitrile Acetophenone Acrolein Acrylonitrile Acldrin Aldrin Allyl chloride Alpha-bhc		<10.0	<10.0	<10.0	<10.0
Acrolein Acrylonitrile Acrylonitrile Aldrin Allyl chloride Alpha-bhc		.5.0	.5.0		
Acrylonitrile <5 <5 <5 <5 Aldrin Allyl chloride Alpha-bhc					
Aldrin Allyl chloride Alpha-bhc					
Allyl chloride Alpha-bhc		<5	<5	<5	<5
Alpha-bhc					
	Anthracene				

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-3

Constituents	Units	9/17/2014	4/28/2015	10/6/2015	4/23/2016	9/1/2016	3/21/2017	10/13/2017	1/12/2018
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	
Arochlor 1016	ug/L					<.1			
Arochlor 1221	ug/L					<.2			
Arochlor 1232 Arochlor 1242	ug/L ug/L					<.2 <.2			
Arochlor 1248	ug/L ug/L					<.2			
Arochlor 1254	ug/L					<.1			
Arochlor 1260	ug/L					<.1			
Arsenic, total	ug/L	<4	<4	<4	<4	<4	<4	<4	
Azobenzene	ug/L	707	604	427	240	<8	204	200	
Barium, total Benzene	ug/L ug/L	727 <1	624 <1	437 <1	318 <1	376 <1	284 <1	288 <1	
Benzo(a)anthracene	ug/L	''	- 1	- 1	*1	<8	- 1	* 1	
Benzo(a)pyrene	ug/L					<8			
Benzo(b)fluoranthene	ug/L					<8			
Benzo(g,h,i)perylene	ug/L					<8 <8			
Benzo(k)fluoranthene Benzyl alcohol	ug/L ug/L					<8			
Beryllium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	
Beta-bhc	ug/L					<.05			
Bis (2-chloroethoxy) methane	ug/L					<8			
Bis(2-chloroethyl) ether	ug/L					<8			
Bis(2-chloroisopropyl) ether Bis(2-ethylhexyl) phthalate	ug/L ug/L					<8 <8			
Bromochloromethane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	
Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
Bromoform	ug/L	<1	<1	<1	<1	<1	<1	<1	
Bromomethane	ug/L	<1	<1	<1	<1	<1 <8	<1	<1	
Butyl benzyl phthalate Cadmium, total	ug/L ug/L	<.8	<.8	<.8	<.8	<8 <.8	<.8	<.8	
Carbon disulfide	ug/L	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1	
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	<1	
Chlordane	ug/L					<.1			
Chlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Chlorobenzilate Chloroethane	ug/L ug/L	<1	<1	<1	<1	<8 <1	<1	<1	
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
Chloroprene	ug/L	_				<1	_		
Chromium, total	ug/L	<8	<8	<8	<8	<8	<8	<8	
Chrysene Cis-1,2-dichloroethylene	ug/L ug/L	2.0	<1.0	<1.0	<1.0	<8 2.3	<1.0	<1.0	
Cis-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Cobalt, total	ug/L	2.3	1.9	<.8	<.8	<.8	<.8	<.8	
Copper, total	ug/L	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	
Cyanide, total Delta-bhc	mg/L					<.005 <.05			
Diallate	ug/L ug/L					<8			
Dibenzo(a,h)anthracene	ug/L					<8			
Dibenzofuran	ug/L					<8			
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
Dibromomethane Dichlorodifluoromethane	ug/L ug/L	<1 <1	<1	<1	<1	<1 <1	<1	<1	
Dieldrin	ug/L ug/L	`'				<.05			
Diethyl phthalate	ug/L					<8			
Dimethoate	ug/L					<.4			
Dimethylphthalate	ug/L					<8			
Di-n-butyl phthalate Di-n-octyl phthalate	ug/L ug/L					<8 <8			
Dinoseb	ug/L ug/L					<.5			
Diphenylamine	ug/L					<8			
Disulfoton	ug/L					<.4			
Endosulfan i	ug/L					<.05			
Endosulfan ii Endosulfan sulfate	ug/L ug/L					<.05 <.05			
Endrin	ug/L ug/L					<.05			
Endrin aldehyde	ug/L					<.05			
Ethyl methacrylate	ug/L					<10			
Ethyl methanesulfonate	ug/L		ا من	ا م		<8			
Ethylbenzene Famphur	ug/L	<1	<1	<1	<1	<1 <.4	<1	<1	
Fampnur Fluoranthene	ug/L ug/L					<.4 <8			
Fluorene	ug/L					<8			
Gamma-bhc (lindane)	ug/L					<.05			
Heptachlor	ug/L					<.05			
Heptachlor epoxide	ug/L					<.05			
Hexachlorobenzene	ug/L					<.05			

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-3

Constituents	3/9/2018	9/6/2018	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022
Antimony, total	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arochlor 1016								<.1		
Arochlor 1221 Arochlor 1232								<.2 <.2		
Arochlor 1232								<.2		
Arochlor 1248								<.2		
Arochlor 1254								<.1		
Arochlor 1260 Arsenic, total	<4	<4	<4	<4	<4	<4	<4	<.1 <4	<4	<4
Azobenzene	\4	\4	\4	~ 4	~ 4	\ 4	`4	<8	~4	`4
Barium, total	337	337	619	375	343	358	318	352	363	388
Benzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Benzo(a)anthracene Benzo(a)pyrene								<8 <8		
Benzo(b)fluoranthene								<8		
Benzo(g,h,i)perylene								<8		
Benzo(k)fluoranthene								<8 <8		
Benzyl alcohol Beryllium, total	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Beta-bhc	•	·	·	·	·		.	<.05		•
Bis (2-chloroethoxy) methane								<8		
Bis(2-chloroethyl) ether Bis(2-chloroisopropyl) ether								<8 <8		
Bis(2-ethylhexyl) phthalate								8	<6	
Bromochloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform Bromomethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Butyl benzyl phthalate	~1	` '	~1	` ' '	` '	``	`'	<8	``'	`
Cadmium, total	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8	<.8
Carbon disulfide	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride Chlordane	<1	<1	<1	<1	<1	<1	<1	<1 <.1	<1	<1
Chlorobenzene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzilate								<8		
Chloroethane	<1	<1	<1 <1	<1	<1	<1	<1	<1	<1	<1
Chloroform Chloromethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Chloroprene	''	,,,	*1	- 1	,,,	, ,		<1	- 1	, ,
Chromium, total	<8	<8	<8	<8>	<8	<8	<8	<8	<8	<8
Chrysene Cis-1,2-dichloroethylene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<8 <1.0	<1.0	<1.0
Cis-1,2-dichloropropene	<1.0	<1.0	<1.0	<1.0 <1	<1.0	<1.0 <1	<1.0	<1.0 <1	<1.0 <1	<1.0
Cobalt, total	<.8	<.8	<.8	<.8	<.8	<.4	<.4	<.4	<.4	<.4
Copper, total	<4.0	<4.0	<4.0	<4.0	<4.0	4.4	<4.0	<4.0	12.0	<4.0
Cyanide, total Delta-bhc								<.005 <.05		
Diallate								<8		
Dibenzo(a,h)anthracene								<8		
Dibenzofuran	-1	-4	-4	-4	-4	-4	-4	<8	-4	-4
Dibromochloromethane Dibromomethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Dichlorodifluoromethane	.,		.,		.,	.,	- '	<1	.,	.,
Dieldrin								<.05		
Diethyl phthalate								<8		
Dimethoate Dimethylphthalate								<.4 <8		
Di-n-butyl phthalate								<8		
Di-n-octyl phthalate								<8		
Dinoseb Diphenylamine								<.5 <8		
Disulfoton								<.4		
Endosulfan i								<.05		
Endosulfan ii								<.05		
Endosulfan sulfate Endrin								<.05 <.05		
Endrin								<.05		
Ethyl methacrylate								<10		
Ethyl methanesulfonate					. ند .			<8		
Ethylbenzene Famphur	<1	<1	<1	<1	<1	<1	<1	<1 <.4	<1	<1
Fluoranthene								<8		
Fluorene								<8		
Gamma-bhc (lindane)								<.05		
Heptachlor Heptachlor epoxide								<.05 <.05		
Hexachlorobenzene								<.05		
								.50		

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-3

Antimony, total	Constituents	3/24/2023	9/7/2023	3/18/2024	9/25/2024
Arochlor 1232 Arochlor 1248 Arochlor 1248 Arochlor 1254 Arochlor 12560 Arsenic, Iotal Arochlor 1260 Arsenic, Iotal Benzo(a) Allipevine Benzo(a) Benz	Antimony, total	<2	<2	<2	<2
Arochlor 1232 Arochlor 1242 Arochlor 1254 Arochlor 1254 Arochlor 12554 Arochlor 1256 Arochlor 1260 Arsenic, total					
Arochlor 1248 Arochlor 1258 Arochlor 1258 Arochlor 1250 Arsenic, Iotal Arochlor 1260 Arsenic, Iotal Arochlor 1260 Arsenic, Iotal Arochlor 1260 Arsenic, Iotal Arochlor 1260 Barium, Iotal Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(g)fluoranthene Ben					
Arochlor 1254 Arochlor 1254 Arochlor 1260 Arochlor 1260 Arsenic, total Arsenic, total Assenic, total Assenic, total Benzzene Benza(palmtracene Benza(palmtracene) Benza(palmtracene Benza(palmtracene) Benza(p					
Arochlor 1250					
Arcohlor 1260					
Assenic, total					
Azobenzene Barium, total Safi 271 360 295 Benzzene 1 <1 <1 <1 <1 <1 <1 <1		<4	<4	<4	<4
Benzo(a)anthracene Senzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Sis(2-chloroethoxy) methane Sis(2-chloroethoxy) methane Sis(2-chloroethoxy) pethalate Sis(2-chloroethoxy) ether Bis(2-chloroethoxy) ether Bis(2-chloroethoxy) ether Sis(2-chloroethoxy) ether					
Benzo(a)anthracene Benzo(b)fluoranthene Bis(2-chlorostrox)proteine Bis(2-chlorostrox)proteine Bis(2-chlorostrox)proteine Bis(2-chlorostrox)proteine Colorostrox C	Barium, total				295
Benzz(a)pyrene Bis(a)pyrene		<1	<1	<1	<1
Benzo(g), hipperylene Bis(g-chlorosthoxy) methane Continuation Continuati					
Benzo(s,h.i)perylene Benzo(shluoranthene Bis(2-chloroethy)) ether Bis(2-chloroethy)) ether Bis(2-chlorospropy)) ether Bis(2-c					
Benzy alcohol Berylium, total September Septem	Benzo(a h i)pordono				
Benzyl alcohol Seryllium, total C4 C4 C4 Seta-bhc Sis (2-chloroethoxy) methane Sis(2-chloroethyl) ether Sis(2-chloroethyl) ether Sis(2-chloroethyl) ether Sis(2-chloroethyl) ether Sis(2-chloromethane C1 C1 C1 C1 C1 C1 C1 C	Benzo(k)fluoranthene				
Beryllium, total Seta-bhc Bis (2-chloroethoxy) methane Bis (2-chloroethyl) ether Bis (2-chlorosethyl) ether Bis (2-chlorosethyl) ether Bis (2-chlorosethyl) ether Bis (2-chloromethane Sis (
Bis (2-chloroethoxy) methane Bis(2-chloroethy)) ether Bis(2-chloroethy)) ether Bis(2-chloroethy)) ether Bis(2-chloroethy)) ether Bis(2-chloroethy)) ether Bis(2-chloroethy)) Bis(2-chloroethy)) Bis(2-chloroethy)) Bis(2-chloroethy)) Bis(2-chloroethane) Cambromothane Cambromothane Cambromothane Cambromothane Cambromothane Cadmium, total Cambromothane Cadmium, total Cambromothane Cadmium, total Cambromothane Cambromot		<4	<4	<4	<4
Bis(2-chloroethyl) ether Bis(2-chloroethyl) ether Bis(2-chloroisopropyl) ether Bis(2-					
Bis(2-chloroisopropyl) ether Bis(2-chloroisopropyl) ether Bromochloromethane Commontation Commontatio					
Bis(2-ethylhexyl) phthalate Stromochromethane <1					
Bromochioromethane					
Bromotichloromethane			_1	_1	_1
Bromoform					
Bromomethane				- 1	- 1
Butyl benzyl phthalate Cadmium, total < .8		·			
Cadmium, fotal				-	- 1
Carbon tetrachloride					<.8
Chlordane Chlorobenzilate Chlorobenzilate Chlorobenzilate Chlorobenzilate Chlorobenzilate Chloroform Chloroform Chloroform Chloroform Chloroform Chloromethane Chloroform Chloromethane Chloromethane Chloromethane Chloromium, total Chloroprene Chromium, total Chromium, total Chloroprene Chromium, total Chromi					
Chlorobenzene		<1	<1	<1	<1
Chlorobenzilate			-1	-1	-1
Chloroethane	T =	\ \ \	<u> </u>	<u> </u>	<u> </u>
Chloroform		<1	<1	<1	<1
Chloroprene Chromium, total Chromium, total Chrysene Cis-1,2-dichloroethylene C1.0 C1.0 C1.0 C1.0 C1.0 C3-1,3-dichloropropene C1 C1 C1 C1 C1 C1 C1 C					
Chromium, total	T =			<1	
Chrysene	Chloroprene				
Cis-1,2-dichloroethylene		<8	<8	<8	<8
Cis-1,3-dichloropropene		.4.0	.4.0	.4.0	.4.0
Cobalt, total					
Copper, total Cyanide, total Delta-bhc Diallate Dibenzo(a,h)anthracene Dibenzofuran Dibromochloromethane Dichlorodifluoromethane Dieldrin Diethyl phthalate Dimethoate Dimethoylphthalate Din-butyl phthalate Din-octyl phthalate Dinoseb Diphenylamine Disulfoton Endosulfan i Endosulfan ii Endosulfan sulfate Endrin Endrin aldehyde Ethyl methacrylate Ethyl methanesulfonate Ethylbenzene Famphur Fluoranthene Fluorene Gamma-bbc (lindane) Heptachlor Heptachlor Heptachlor poxide					- 1
Cyanide, total Delta-bhc Diallate Dibenzo(a,h)anthracene Dibenzofuran Dibromochloromethane Dichlorodifluoromethane Dieldrin Diethyl phthalate Dimethoyl phthalate Dimethyl phthalate Din-butyl phthalate Din-butyl phthalate Din-octyl phthalate Disulfoton Endosulfan i Endosulfan i Endosulfan is Endosulfan sulfate Ethyl methacrylate Ethyl methacrylate Ethyl methanesulfonate Ethylbenzene Fluorene Gamma-bhc (lindane) Heptachlor Heptachlor Heptachlor poxide					
Delta-bhc Diallate Dibenzo(a,h)anthracene Dibenzofuran Dibromochloromethane Dibromomethane Dichlorodifluoromethane Dieldrin Diethyl phthalate Dimethyl phthalate Din-butyl phthalate Din-butyl phthalate Din-butyl phthalate Din-octyl phthalate Dinseb Diphenylamine Disulfoton Endosulfan i Endosulfan ii Endosulfan sulfate Ethyl methacrylate Ethyl methacrylate Ethyl methanesulfonate Ethyl methanesulfonate Ethylbenzene Famphur Fluoranthene Fluorene Gamma-bhc (lindane) Heptachlor Heptachlor Heptachlor poxide					
Dibenzo(a,h)anthracene Dibenzofuran Dibromochloromethane Dibromomethane Dibromomethane Dichlorodifluoromethane Dieldrin Diethyl phthalate Dimethylphthalate Dimethylphthalate Din-butyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Dinoseb Diphenylamine Disulfoton Endosulfan i Endosulfan ii Endosulfan sulfate Endrin Endrin aldehyde Ethyl methacrylate Ethyl methacrylate Ethyl methanesulfonate Ethylbenzene Fluorene Gamma-bhc (lindane) Heptachlor Heptachlor epoxide					
Dibenzofuran Dibromochloromethane Dibromochloromethane Dichlorodifluoromethane Dieldrin Diethyl phthalate Dimethoate Dimethylphthalate Din-butyl phthalate Di-n-octyl phthalate Diphenylamine Disulfoton Endosulfan i Endosulfan ii Endosulfan sulfate Endrin Endrin aldehyde Ethyl methacrylate Ethyl methacrylate Ethyl methanesulfonate Ethylbenzene Fluorene Gamma-bhc (lindane) Heptachlor Heptachlor Heptachlor loss and so the state of the	Diallate				
Dibromochloromethane < 1 < 1 < 1 < 1 < 1 Dibromomethane < 1 Dichlorodifluoromethane < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <					
Dibromomethane Dichlorodifluoromethane Dieldrin Diethyl phthalate Dimethylphthalate Din-butyl phthalate Di-n-butyl phthalate Din-butyl phthalate Dinoseb Diphenylamine Disulfoton Endosulfan i Endosulfan i Endosulfan sulfate Endrin Endrin aldehyde Ethyl methacrylate Ethyl methacrylate Ethyl methanesulfonate Ethyl methanesulfonate Ethyl methanesulfonate Ethyloenzene Fluoranthene Fluoranthene Fluoranthene Fluorantelor Heptachlor Heptachlor epoxide					
Dichlorodifluoromethane Dieldrin Diethyl phthalate Dimethoate Dimethylphthalate Di-n-butyl phthalate Di-n-octyl phthalate Dinoseb Diphenylamine Disulfoton Endosulfan i Endosulfan ii Endosulfan sulfate Endrin Endrin aldehyde Ethyl methacrylate Ethyl methacrylate Ethyl methanesulfonate Ethylbenzene Fluorene Gamma-bhc (lindane) Heptachlor Heptachlor epoxide					
Dieldrin Diethyl phthalate Dimethoate Dimethoate Dimethylphthalate Di-n-butyl phthalate Di-n-octyl phthalate Diphenylamine Diphenylamine Disulfoton Endosulfan i Endosulfan ii Endosulfan sulfate Endrin Endrin aldehyde Ethyl methacrylate Ethyl methacrylate Ethyl methanesulfonate Ethylbenzene Fluorene Gamma-bhc (lindane) Heptachlor Heptachlor epoxide			<1	<1	<1
Diethyl phthalate Dimethoate Dimethylphthalate Di-n-butyl phthalate Di-n-octyl phthalate Dinoseb Diphenylamine Disulfoton Endosulfan i Endosulfan ii Endosulfan gender eine eine eine eine eine eine eine ei					
Dimethoate Dimethylphthalate Din-butyl phthalate Din-butyl phthalate Din-octyl phthalate Dinoseb Diphenylamine Disulfoton Endosulfan i Endosulfan ii Endosulfan sulfate Endrin Endrin aldehyde Ethyl methacrylate Ethyl methacrylate Ethyl methanesulfonate Ethyl methanesulfonate Ethylbenzene Fluoranthene Fluoranthene Fluoranthene Fluoranthelor Heptachlor Heptachlor epoxide					
Dimethylphthalate Di-n-butyl phthalate Di-n-octyl phthalate Di-n-octyl phthalate Dinoseb Diphenylamine Disulfoton Endosulfan i Endosulfan ii Endosulfan sulfate Endrin Endrin aldehyde Ethyl methacrylate Ethyl methacylate Ethyl methanesulfonate Ethylbenzene Famphur Fluoranthene Fluorene Gamma-bhc (lindane) Heptachlor Heptachlor epoxide					
Di-n-butyl phthalate Di-n-octyl phthalate Dinoseb Diphenylamine Disulfoton Endosulfan i Endosulfan ii Endosulfan sulfate Endrin Endrin aldehyde Ethyl methacrylate Ethyl methacrylate Ethyl methanesulfonate Ethylbenzene < 1 <1 <1 <1 <1 Famphur Fluoranthene Fluorene Gamma-bhc (lindane) Heptachlor Heptachlor epoxide	Dimethylphthalate				
Dinoseb Diphenylamine Diphenylamine Disulfoton Endosulfan i Endosulfan ii Endosulfan sulfate Endrin Endrin aldehyde Ethyl methacrylate Ethyl methanesulfonate Ethyl methanesulfonate Ethylbenzene <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Di-n-butyl phthalate				
Diphenylamine Disulfoton Endosulfan i Endosulfan ii Endosulfan sulfate Endrin Endrin aldehyde Ethyl methacrylate Ethyl methacsulfonate Ethylbenzene < 1 <1 <1 <1 <1 Famphur Fluoranthene Fluorene Gamma-bhc (lindane) Heptachlor Heptachlor epoxide					
Disulfoton Endosulfan i Endosulfan ii Endosulfan sulfate Endrin Endrin aldehyde Ethyl methacrylate Ethyl methacsulfonate Ethylbenzene <1 <1 <1 <1 <1 Famphur Fluoranthene Fluorene Gamma-bhc (lindane) Heptachlor Heptachlor epoxide					
Endosulfan i Endosulfan ii Endosulfan ii Endosulfan sulfate Endrin Endrin aldehyde Ethyl methacrylate Ethyl methanesulfonate Ethylbenzene <1 <1 <1 <1 <1 Famphur Fluoranthene Fluorene Gamma-bhc (lindane) Heptachlor Heptachlor epoxide					
Endosulfan ii Endosulfan sulfate Endrin Endrin aldehyde Ethyl methacrylate Ethyl methanesulfonate Ethylbenzene <1 <1 <1 <1 <1 <1 Famphur Fluoranthene Fluorene Gamma-bhc (lindane) Heptachlor Heptachlor epoxide					
Endosulfan sulfate Endrin Endrin aldehyde Ethyl methacrylate Ethyl methanesulfonate Ethylbenzene <1 <1 <1 <1 <1 Famphur Fluoranthene Fluorene Gamma-bhc (lindane) Heptachlor Heptachlor epoxide					
Endrin Endrin aldehyde Ethyl methacrylate Ethyl methanesulfonate Ethylbenzene < 1 <1 <1 <1 <1 Famphur Fluoranthene Fluorene Gamma-bhc (lindane) Heptachlor Heptachlor epoxide					
Endrin aldehyde Ethyl methacrylate Ethyl methanesulfonate Ethylbenzene < 1 <1 <1 <1 Famphur Fluoranthene Fluorene Gamma-bhc (lindane) Heptachlor Heptachlor epoxide					
Ethyl methanesulfonate Ethylbenzene <1 <1 <1 <1 <1 Famphur Fluoranthene Fluorene Gamma-bhc (lindane) Heptachlor Heptachlor epoxide					
Ethylbenzene <1 <1 <1 <1 Famphur Fluoranthene Fluorene Gamma-bhc (lindane) Heptachlor Heptachlor epoxide					
Famphur Fluoranthene Fluorene Gamma-bhc (lindane) Heptachlor Heptachlor epoxide					
Fluoranthene Fluorene Gamma-bhc (lindane) Heptachlor Heptachlor epoxide		<1	<1	<1	<1
Fluorene Gamma-bhc (lindane) Heptachlor Heptachlor epoxide					
Gamma-bhc (lindane) Heptachlor Heptachlor epoxide					
Heptachlor Heptachlor epoxide					
Heptachlor epoxide					
nexaciliorobenzene	Hexachlorobenzene				

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-3

Constituents	Units	9/17/2014	4/28/2015	10/6/2015	4/23/2016	9/1/2016	3/21/2017	10/13/2017	1/12/2018
Hexachlorobutadiene	ug/L					<8			
Hexachlorocyclopentadiene	ug/L					<8			
Hexachloroethane	ug/L					<8			
Hexachloropropene	ug/L					<8			
Indeno(1,2,3-cd)pyrene	ug/L					<8			
Isobutanol	mg/L					<1			
Isodrin	ug/L					<8			
Isophorone	ug/L					<8			
Isosafrole	ug/L					<8			
Kepone	ug/L					<8			
Lead, total	ug/L	<4	<4	<4	<4	<4	<4	<4	
Mercury, total	ug/L					<.5			
Methacrylonitrile	ug/L					<1			
Methapyrilene	ug/L					<8			
Methoxychlor	ug/L					<.05			
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1	<1	
Methyl methacrylate	ug/L					<1			
Methyl methanesulfonate	ug/L					<8			
Methyl parathion	ug/L					<.4	_		
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5	<5	
Naphthalene	ug/L					<8			
Nickel, total	ug/L	7.5	5.9	<4.0	<4.0	<4.0	<4.0	<4.0	
Nitrobenzene	ug/L					<8			
N-nitrosodiethylamine	ug/L					<8			
N-nitrosodimethylamine	ug/L					<8			
N-nitrosodi-n-butylamine	ug/L					<8			
N-nitroso-di-n-propylamine	ug/L					<8			
N-nitrosodiphenylamine	ug/L					<8			
N-nitrosomethylethylamine	ug/L					<8			
N-nitrosopiperidine	ug/L					<8			
N-nitrosopyrrolidine	ug/L					<8			
O,o,o-triethyl phosphorothioate	ug/L					<.4			
O-toluidine	ug/L					<8			
Parathion	ug/L					<.4			
P-dimethylaminoazobenzene	ug/L					<8			
Pentachlorobenzene	ug/L					<8			
Pentachloronitrobenzene (pcnb)	ug/L					<8			
Pentachlorophenol	ug/L					<8			
Phenacetin	ug/L					<8			
Phenanthrene	ug/L					<8			
Phenol	ug/L					<8			
Phorate	ug/L					<.4			
Pronamide	ug/L					<8			
Propionitrile	ug/L					<10			
Pyrene	ug/L					<8			
Safrole	ug/L					<8			
Selenium, total	ug/L	<4.0	5.8	<4.0	4.6	4.2	4.0	4.2	6.1
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	
Solids, total suspended	mg/L	108	34	46	43	4	781	334	
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Sulfide, total	mg/L					<.1			
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Thallium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	
Thionazin	ug/L					<.4			
Tin, total	ug/L					<20			
Toluene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Toxaphene	ug/L					<.2			
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5	<5	
Trichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	
Trichlorofluoromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20	<20	
Vinyl acetate	ug/L	<5	<5	<5	<5	<5	<5	<5	
Vinyl chloride	ug/L	<1	<1	<1	<1	<1	<1	<1	
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2	<2	
	ug/L	13.2	11.7	8.8	<20.0	<8.0	<8.0	<8.0	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-3

Constituents	3/9/2018	9/6/2018	3/7/2019	9/26/2019	4/2/2020	9/17/2020	3/25/2021	9/16/2021	3/16/2022	9/1/2022
Hexachlorobutadiene								<8		
Hexachlorocyclopentadiene								<8		
Hexachloroethane								<8		
Hexachloropropene								<8		
Indeno(1,2,3-cd)pyrene								<8		
Isobutanol								<1		
Isodrin								<8		
Isophorone								<8		
Isosafrole								<8		
Kepone								<8		
Lead, total	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Mercury, total								<.5		
Methacrylonitrile								<1		
Methapyrilene								<8		
Methoxychlor								<.05		
Methyl iodide	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1
Methyl methacrylate								<1		
Methyl methanesulfonate								- <8		
Methyl parathion								<.4		
Methylene chloride	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Naphthalene	"	,5	٦٥	-5	\ \	-5	٠,5	<8	-3	``
Nickel, total	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
	\4.0	\4.0	\4.0	\4.0	\4.0	\4.0	\4.0	<4.0 <8	\4.0	\4.0
Nitrobenzene										
N-nitrosodiethylamine								<8		
N-nitrosodimethylamine								<8		
N-nitrosodi-n-butylamine								<8		
N-nitroso-di-n-propylamine								<8		
N-nitrosodiphenylamine								<8		
N-nitrosomethylethylamine								<8		
N-nitrosopiperidine								<8		
N-nitrosopyrrolidine								<8		
O,o,o-triethyl phosphorothioate								<.4		
O-toluidine								<8		
Parathion								<.4		
P-dimethylaminoazobenzene								<8		
Pentachlorobenzene								<8		
Pentachloronitrobenzene (pcnb)								<8		
Pentachlorophenol								<8		
Phenacetin								<8		
Phenanthrene								<8		
Phenol								<8		
Phorate								<.4		
Pronamide								<8		
Propionitrile								<10		
Pyrene								<8		
Safrole								<8		
Selenium, total	4.5	4.2	7.5	9.8	<4.0	5.0	<4.0	<4.0	<4.0	5.0
Silver, total	<4	<8	<4	<4	<4	<4	<4	<4	<4	<4
Solids, total suspended	''	.0	• •	• •						
Styrene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulfide, total	`'	` '	71	~1	`'	`'	`'	<.1	71	`'
Tetrachloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	<4	<4	<2	<2	<2	<2	<2	<2	<2	<2
	\4	\4	\ 2	\ 2	\	~2	^2		~2	^2
Thionazin								<.4 <20		
Tin, total		-4	-1	-4		-4	-4		-4	-4
Toluene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toxaphene		ا م ا						<.2		
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl chloride	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
		<2	<2	<2	<2	<2	<2	<2	<2	<2
Xylenes, total Zinc, total	<2 <8.0	14.7	<8.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-3

Constituents	3/24/2023	9/7/2023	3/18/2024	9/25/2024
Hexachlorobutadiene				
Hexachlorocyclopentadiene				
Hexachloroethane				
Hexachloropropene				
Indeno(1,2,3-cd)pyrene				
Isobutanol				
Isodrin				
Isophorone Isosafrole				
Kepone				
Lead, total	<4	<4	<4	<4
Mercury, total				
Methacrylonitrile				
Methapyrilene				
Methoxychlor				
Methyl iodide	<1	<1	<1	<1
Methyl methacrylate				
Methyl methanesulfonate				
Methyl parathion		45		45
Methylene chloride	<5	<5	<5	<5
Naphthalene Nickel, total	<4.0	<4.0	<4.0	<4.0
Nitrobenzene	\4.0	\4.0	\4.0	\4.0
N-nitrosodiethylamine				
N-nitrosodimethylamine				
N-nitrosodi-n-butylamine				
N-nitroso-di-n-propylamine				
N-nitrosodiphenylamine				
N-nitrosomethylethylamine				
N-nitrosopiperidine				
N-nitrosopyrrolidine				
O,o,o-triethyl phosphorothioate				
O-toluidine				
Parathion P-dimethylaminoazobenzene				
Pentachlorobenzene				
Pentachloronitrobenzene (pcnb)				
Pentachlorophenol				
Phenacetin				
Phenanthrene				
Phenol				
Phorate				
Pronamide				
Propionitrile				
Pyrene				
Safrole Selenium, total	4.8	<4.0	<4.0	<4.0
Silver, total	<4.0	<4.0 <4	<4.0 <4	<4.0 <4
Solids, total suspended	"	17	77	7-7
Styrene	<1	<1	<1	<1
Sulfide, total				
Tetrachloroethylene	<1	<1	<1	<1
Thallium, total	<2	<2	<2	<2
Thionazin				
Tin, total				
Toluene	<1	<1	<1	<1
Toxaphene				
Trans-1,2-dichloroethylene	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1 <5	<1 <5	<1 <5	<1 <5
Trans-1,4-dichloro-2-butene Trichloroethylene	<5 <1	<5 <1	<5 <1	<5 <1
Trichlorofluoromethane	<1	<1	<1	<1
Vanadium, total	<20	<20	<20	<20
Vinyl acetate	<5	<5	<5	<5
Vinyl chloride	<1	<1	<1	<1
Xylenes, total	<2	<2	<2	<2
Zinc, total	<20.0	<20.0	<20.0	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-44

O-matitus mts	I I miles	2/40/2022	44/42/2022	2/40/2024
Constituents	Units	3/16/2022	11/13/2023	3/18/2024
1,1,1,2-tetrachloroethane	ug/L		<1	<1
1,1,1-trichloroethane	ug/L		<1	<1
1,1,2,2-tetrachloroethane	ug/L		<1	<1
1,1,2-trichloroethane	ug/L		<1	<1
1,1-dichloroethane	ug/L		<1	<1
1,1-dichloroethylene	ug/L		<1	<1
1,2,3-trichloropropane	ug/L		<1	<1
1,2-dibromo-3-chloropropane	ug/L		<5	<5
1,2-dibromoethane	ug/L		<1	<1
1,2-dichlorobenzene	ug/L		<1	<1
1,2-dichloroethane	ug/L		<1	<1
1,2-dichloropropane	ug/L		<1	<1
1,4-dichlorobenzene	ug/L		<1	<1
2-butanone (mek)	ug/L		<10	<10
2-hexanone (mbk)	ug/L		<5	<5
4-methyl-2-pentanone (mibk)	ug/L		<5	<5
Acetone	ug/L		<10	<10
Acrylonitrile	ug/L		<5	<5
Antimony, total	ug/L	<2	<2	<2
Arsenic, total	ug/L	<4	<4	<4
Barium, total	ug/L	124	137	154
Benzene	ug/L		<1	<1
Beryllium, total	ug/L	<4	<4	<4
Bromochloromethane	ug/L		<1	<1
Bromodichloromethane	ug/L		<1	<1
Bromoform	ug/L		<1	<1
Bromomethane	ug/L		<1	<1
Cadmium, total	ug/L	<.8	<.8	<.8
Carbon disulfide	ug/L		<1	<1
Carbon tetrachloride	ug/L		<1	<1
Chlorobenzene	ug/L		<1	<1
Chloroethane	ug/L		<1	<1
Chloroform	ug/L		<1	<1
Chloromethane	ug/L		<1	<1
Chromium, total	ug/L	<8	<8	<8
Cis-1,2-dichloroethylene	ug/L		<1	<1
Cis-1,3-dichloropropene	ug/L		<1	<1
Cobalt, total	ug/L	<.4	<.4	<.4
Copper, total	ug/L	4.3	<4.0	<4.0
Dibromochloromethane	ug/L		<1	<1
Dibromomethane	ug/L		<1	<1
Ethylbenzene	ug/L		<1	<1
Lead, total	ug/L	6.1	<4.0	<4.0
Methyl iodide	ug/L		<1	<1
Methylene chloride	ug/L		<5	<5
Nickel, total	ug/L	<4	<4	<4
Selenium, total	ug/L	<4	<4	<4
Silver, total	ug/L	<4	<4	<4
Styrene	ug/L		<1	<1
Tetrachloroethylene	ug/L		<1	<1
Thallium, total	ug/L	<2	<2	<2
Toluene	ug/L		<1	<1
Trans-1,2-dichloroethylene	ug/L		<1	<1
Trans-1,3-dichloropropene	ug/L		<1	<1
Trans-1,4-dichloro-2-butene	ug/L		<5	<5
Trichloroethylene	ug/L		<1	<1
Trichlorofluoromethane	ug/L		<1	<1
Vanadium, total	ug/L	<20	<20	<20
Vinyl acetate	ug/L	"	<5	<5
Vinyl chloride	ug/L		<1	<1
Xylenes, total	ug/L		<2	<2
Zinc, total	ug/L	69.2	<20.0	<20.0

 $[\]ensuremath{^{\star}}$ - The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-53

Constituents	Units	8/1/2024	9/25/2024
1,1,1,2-tetrachloroethane	ug/L	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1
1,1-dichloroethane	ug/L	<1	<1
1,1-dichloroethylene	ug/L	<1	<1
1,2,3-trichloropropane	ug/L	<1	<1
1,2,3-therhoroproparte	ug/L ug/L	<5	<5
1,2-dibromoethane	ug/L ug/L	<1	<1 <1
1,2-dibromoetriarie	ug/L ug/L	<1	<1
1,2-dichloroethane	ug/L ug/L	<1	<1
1,2-dichloropropane	ug/L ug/L	<1	<1
1,4-dichlorobenzene	ug/L ug/L	<1	<1
2-butanone (mek)	ug/L	<10	<10
2-hexanone (mbk)	ug/L ug/L	<5	<5
4-methyl-2-pentanone (mibk)	ug/L ug/L	<5	<5 <5
Acetone		<10	<10
	ug/L		
Acrylonitrile	ug/L	<5	<5
Antimony, total	ug/L	<2 <4	<2 <4
Arsenic, total	ug/L		58.9
Barium, total	ug/L	46.2	
Benzene Benzilium total	ug/L	<1	<1
Beryllium, total	ug/L	<4	<4
Bromochloromethane	ug/L	<1	<1
Bromodichloromethane	ug/L	<1	<1
Bromoform	ug/L	<1	<1
Bromomethane	ug/L	<1	<1
Cadmium, total	ug/L	<.8	<.8
Carbon disulfide	ug/L	<1	<1
Carbon tetrachloride	ug/L	<1	<1
Chlorobenzene	ug/L	<1	<1
Chloroethane	ug/L	<1	<1
Chloroform	ug/L	<1	<1
Chloromethane	ug/L	<1	<1
Chromium, total	ug/L	<8	<8
Cis-1,2-dichloroethylene	ug/L	<1	<1
Cis-1,3-dichloropropene	ug/L	<1	<1
Cobalt, total	ug/L	<.4	<.4
Copper, total	ug/L	<4	<4
Dibromochloromethane	ug/L	<1	<1
Dibromomethane	ug/L	<1	<1
Ethylbenzene	ug/L	<1	<1
Lead, total	ug/L	<4	<4
Methyl iodide	ug/L	<1	<1
Methylene chloride	ug/L	<5	<5
Nickel, total	ug/L	<4	<4
Selenium, total	ug/L	<4	<4
Silver, total	ug/L	<4	<4
Styrene	ug/L	<1	<1
Tetrachloroethylene	ug/L	<1	<1
Thallium, total	ug/L	<2	<2
Toluene	ug/L	<1	<1
Trans-1,2-dichloroethylene	ug/L	<1	<1
Trans-1,3-dichloropropene	ug/L	<1	<1
Trans-1,4-dichloro-2-butene	ug/L	<5	<5
Trichloroethylene	ug/L	<1	<1
Trichlorofluoromethane	ug/L	<1	<1
Vanadium, total	ug/L	<20	<20
Vinyl acetate	ug/L	<5	<5
Vinyl chloride	ug/L	<1	<1
Xylenes, total	ug/L	<2	<2
Zinc, total	ug/L	<20	<20

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-7

Constituents	Units	9/17/2014	4/28/2015	10/6/2015	4/23/2016	9/1/2016	3/22/2017	10/13/2017	3/9/2018	9/6/2018
(3+4)-methylphenol	ug/L		.4	.4						
1,1,1,2-tetrachloroethane	ug/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,1,1-trichloroethane 1,1,2,2-tetrachloroethane	ug/L ug/L	<1	<1 <1	<1 <1	<1 <1	<1	<1	<1	<1	<1
1,1,2,2-tetracificioetrialie	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1.1-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	ug/L	<1	- <1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloropropene	ug/L									
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,4,5-tetrachlorobenzene	ug/L									
1,2,4-trichlorobenzene	ug/L									ا ہ.
1,2-dibromo-3-chloropropane 1,2-dibromoethane	ug/L ug/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1.2-dibromoetriane	ug/L ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dinitrobenzene	ug/L									
1,3,5-trinitrobenzene	ug/L									
1,3-dichlorobenzene	ug/L									
1,3-dichloropropane	ug/L									
1,3-dinitrobenzene	ug/L	<1	<1	<1	<1	<1	<1	-1	<1	<1
1,4-dichlorobenzene 1,4-naphthoquinone	ug/L ug/L		<1	~ 1	<1			<1		``
1,4-naphthoquinone	ug/L ug/L									
1-naphthylamine	ug/L									
2,2-dichloropropane	ug/L									
2,3,4,6-tetrachlorophenol	ug/L									
2,4,5-t	ug/L									
2,4,5-tp (silvex)	ug/L									
2,4,5-trichlorophenol	ug/L ug/L									
2,4,6-trichlorophenol 2,4-d	ug/L ug/L									
2,4-dichlorophenol	ug/L									
2,4-dimethylphenol	ug/L									
2,4-dinitrophenol	ug/L									
2,4-dinitrotoluene	ug/L									
2,6-dichlorophenol	ug/L									
2,6-dinitrotoluene	ug/L									
2-acetylaminofluorene 2-butanone (mek)	ug/L ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
2-chloronaphthalene	ug/L ug/L	\ \	\ 5	\ 5	\3	\ \	\3	~ 5	\ \	\ \ \
2-chlorophenol	ug/L									
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
2-methylnaphthalene	ug/L									
2-methylphenol	ug/L									
2-naphthylamine	ug/L									
2-nitroaniline	ug/L									
2-nitrophenol 3,3´-dichlorobenzidine	ug/L ug/L									
3,3'-dimethylbenzidine	ug/L ug/L									
3-methylcholanthrene	ug/L									
3-nitroaniline	ug/L									
4,4'-ddd	ug/L									
4,4´-dde	ug/L									
4,4'-ddt	ug/L									
4,6-dinitro-2-methylphenol	ug/L									
4-aminobiphenyl 4-bromophenyl phenyl ether	ug/L ug/L									
4-chloro-3-methylphenol	ua/L									
4-chloroaniline	ug/L									
4-chlorophenyl phenyl ether	ug/L									
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-nitroaniline	ug/L									
4-nitrophenol	ug/L									
5-nitro-o-toluidine	ug/L									
7,12-dimethylbenz(a)anthracene Acenaphthene	ug/L ug/L									
Acenaphthylene	ug/L ug/L									
Acetone	ug/L	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	12.4	<10.0	<10.0
Acetonitrile	ug/L									
Acetophenone	ug/L									
Acrolein	ug/L									
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Alldrin	ug/L									
Allyl chloride Alpha-bhc	ug/L									
Alpha-bhc Anthracene	ug/L ug/L									
Altillacence	Tug/L									

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-7

Constituents	3/7/2019	9/26/2019	12/17/2019	4/2/2020	9/17/2020	12/3/2020	3/25/2021	6/3/2021	9/16/2021
(3+4)-methylphenol			· · · · · · · · · · · · · · · · · · ·				<8		· · · · · · · · · · · · · · · · · · ·
1,1,1,2-tetrachloroethane	<1	<1		<1	<1		<1		<1
1,1,1-trichloroethane	<1	<1		<1	<1		<1		<1
1,1,2,2-tetrachloroethane	<1	<1		<1	<1		<1		<1
1,1,2-trichloroethane	<1	<1		<1	<1		<1		<1
1,1-dichloroethane	<1	<1		<1	<1		<1		<1
1,1-dichloroethylene	<1	<1		<1	<1		<1		<1
1,1-dichloropropene							3.7	<1.0	
1,2,3-trichloropropane	<1	<1		<1	<1		<1		<1
1,2,4,5-tetrachlorobenzene							<8		
1,2,4-trichlorobenzene							<1		
1,2-dibromo-3-chloropropane	<1	<1		<5	<5		<1		<5
1,2-dibromoethane	<1	<1		<1	<1		<1		<1
1,2-dichlorobenzene	<1	<1		<1	<1		<1		<1
1,2-dichloroethane	<1	<1		<1	<1		<1		<1
1,2-dichloropropane	<1	<1		<1	<1		<1		<1
1,2-dinitrobenzene							<8		
1,3,5-trinitrobenzene							<8		
1,3-dichlorobenzene							<1		
1,3-dichloropropane							<1		
1,3-dinitrobenzene							<8		
1,4-dichlorobenzene	<1	<1		<1	<1		<1		<1
1,4-naphthoquinone							<8		
1,4-phenylenediamine							<8		
1-naphthylamine							<8		
2,2-dichloropropane							<1		
2,3,4,6-tetrachlorophenol							<8		
2,4,5-t							2.0	<.5	
2,4,5-tp (silvex)							<.5		
2,4,5-trichlorophenol							<8		
2,4,6-trichlorophenol							<8		
2,4-d							<2		
2,4-dichlorophenol							<8		
2,4-dimethylphenol							<8		
2,4-dinitrophenol							<8		
2,4-dinitrotoluene							<8		
2,6-dichlorophenol							<8		
2,6-dinitrotoluene							<8		
2-acetylaminofluorene	_	_		_	_		<8		_
2-butanone (mek)	<5	<5		<5	<5		<5		<5
2-chloronaphthalene							<8		
2-chlorophenol		<5			-E		<8 <5		<5
2-hexanone (mbk)	<5	<5		<5	<5				<5
2-methylnaphthalene							<8		
2-methylphenol							<8 <8		
2-naphthylamine 2-nitroaniline							<8		
2-nitrophenol							<8		
3,3´-dichlorobenzidine							<8		
3,3'-dimethylbenzidine							<8		
3-methylcholanthrene							<8		
3-nitroaniline							<8		
4,4´-ddd							<.05		
4,4´-ddd 4,4´-dde							<.05		
4,4´-ddt							<.05		
4,6-dinitro-2-methylphenol							<8		
4-aminobiphenyl							<8		
4-bromophenyl phenyl ether							<8		
4-chloro-3-methylphenol							<8		
4-chloroaniline							<8		
4-chlorophenyl phenyl ether							<8		
4-methyl-2-pentanone (mibk)	<5	<5		<5	<5		<5		<5
4-nitroaniline		ا					<8		· ·
4-nitrophenol							<8		
5-nitro-o-toluidine							<8		
7,12-dimethylbenz(a)anthracene							<8		
Acenaphthene							<8		
Acenaphthylene							<8		
Acetone	<10.0	<10.0		<10.0	<10.0		<10.0		<10.0
Acetonitrile		10.0		10.0	10.0		<10		-10.0
Acetophenone							<8		
Acrolein							<10		
				ı .	_				_
Acrylonitrile	<5	<5		<51	<5		<h< td=""><td></td><td><5</td></h<>		<5
Acrylonitrile Aldrin	<5	<5		<5	<5		< 05 < 05		<5
Aldrin	<5	<5		<5	<5		<.05		<5
	<5	<5		<5	<5				<5

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-7

Constituents	3/16/2022	9/1/2022	3/24/2023	9/7/2023	3/18/2024	9/25/2024
(3+4)-methylphenol		<8				
1,1,1,2-tetrachloroethane	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane 1,1,2,2-tetrachloroethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
1,1,2-trichloroethane	<1	<1	<1	<1	<1	<1
1,1-dichloroethane	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	<1	<1	<1	<1	<1	<1
1,1-dichloropropene		<1.0				
1,2,3-trichloropropane	<1	<1 <8	<1	<1	<1	<1
1,2,4,5-tetrachlorobenzene		<0 <1				
1,2-dibromo-3-chloropropane	<5	<1	<5	<5	<5	<5
1,2-dibromoethane	<1	<1	<1	<1	<1	<1
1,2-dichlorobenzene	<1	<1	<1	<1	<1	<1
1,2-dichloroethane	<1	<1	<1	<1	<1	<1
1,2-dichloropropane 1,2-dinitrobenzene	<1	<1 <8	<1	<1	<1	<1
1,3,5-trinitrobenzene		<8				
1,3-dichlorobenzene		<1				
1,3-dichloropropane		<1				
1,3-dinitrobenzene		<8				
1,4-dichlorobenzene	<1	<1	<1	<1	<1	<1
1,4-naphthoquinone 1,4-phenylenediamine		<8 <8				
1,4-phenylenediamine 1-naphthylamine		<8				
2,2-dichloropropane		<1				
2,3,4,6-tetrachlorophenol		<8				
2,4,5-t		<.5				
2,4,5-tp (silvex)		<.5				
2,4,5-trichlorophenol 2,4,6-trichlorophenol		<8 <8				
2,4-d		<2				
2,4-dichlorophenol		<8				
2,4-dimethylphenol		<8				
2,4-dinitrophenol		<8				
2,4-dinitrotoluene		<8 <8				
2,6-dichlorophenol 2,6-dinitrotoluene		<8				
2-acetylaminofluorene		<8				
2-butanone (mek)	<10	<5	<10	<10	<10	<10
2-chloronaphthalene		<8				
2-chlorophenol		<8				.=
2-hexanone (mbk) 2-methylnaphthalene	<5	<5 <8	<5	<5	<5	<5
2-methylphenol		<8				
2-naphthylamine		<8				
2-nitroaniline		<8				
2-nitrophenol		<8				
3,3'-dichlorobenzidine		<8 <8				
3,3'-dimethylbenzidine 3-methylcholanthrene		<8				
3-nitroaniline		<8				
4,4'-ddd		<.05				
4,4´-dde		<.05				
4,4'-ddt		<.05				
4,6-dinitro-2-methylphenol 4-aminobiphenyl		<8 <8				
4-aminobiphenyl 4-bromophenyl phenyl ether		<8				
4-chloro-3-methylphenol		<8				
4-chloroaniline		<8				
4-chlorophenyl phenyl ether	_	<8	_	_	_	_
4-methyl-2-pentanone (mibk)	<5	<5 <8	<5	<5	<5	<5
4-nitroaniline 4-nitrophenol		<8 <8				
5-nitro-o-toluidine		<8				
7,12-dimethylbenz(a)anthracene		<8				
Acenaphthene		<8				
Acenaphthylene		<8				
Acetone	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Acetonitrile Acetophenone		<10 <8				
Acrolein		<10				
Acrylonitrile	<5	<5	<5	<5	<5	<5
Aldrin		<.05	ا			
Allyl chloride		<1				
Alpha-bhc		<.05				
Anthracene		<8				

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-7

Alternory, Islaid	Constituents	Units	9/17/2014	4/28/2015	10/6/2015	4/23/2016	9/1/2016	3/22/2017	10/13/2017	3/9/2018	9/6/2018
Arachior 17166 Arachior 1727 Arachior 1727 Arachior 1728 A	Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2
Accolor 1232 Accolor 1242 Accolor 1254 Accolor 1250 ugl. Afrance, Edit Ugl. Afrance, Ed											
Accordin 1242 Accordin 1248 Up 1. Accordin 124	Arochlor 1221	ug/L									
Acachine 1248	Arochlor 1232	ug/L									
Acordin 1204 Upil. Acordin 1206		ug/L									
Acontino 1260											
Assents, (olat Ugit C4,0											
Azobenzene											
Barrum, total UgiL 186 265 314 265 304 281 310 303 278			<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Benzoene			400	225	244	205	004	20.4	0.40		
Benzo(a)aphranee											
Benzo(a) prome		ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(gh/pit/oranthene Ug/L											
Banzo(ght,)perylene ught Benzo(ght,)perylene ught Benzo(ght,)perylene ught Benzo(ght,)perylene ught Benzo(ght,)perylene ught ug											
Benzo(a)(filtoranthene ug)L											
Benzyla i acisochol											
Beryllium, total Septiment											
Bela-bhc			<4	<4	<4	<4	<4	<4	<4	<4	<4
Bis (2-chioroshoxy) methane Bis (2-chioroshoxy) to ther Bis (2-chioroshoxy) to ther Bis (2-chioroshoxy) to ther Bis (2-chioroshoxy)) to ther Bis (2-chioroshoxy) phribatise Ugil. Ugil				·	·	· l		· I	•		
Bis(2-chioroptry)) ether Bis(2-chioroptry)) ether Bis(2-chioroptry)) ether Bis(2-chioroptry)) ether Bis(2-chioroptry)) ether Bis(2-chioroptry)) ether Ug/L Sister Sister Ug/L Sister Siste											
Bis(2-chi)noisopropy) pither Bis(2-chi)noisopropy) pither Bis(2-chi)noisopropy) pither Ug/L											
Bis/2-thylhexyly phthalate	Bis(2-chloroisopropyl) ether	ug/L									
Bromochloromethane											
Bromoform Ug/L 1 1 1 1 1 1 1 1 1	Bromochloromethane	ug/L									
Bromomethane Ug/L Carl											
Buty hency phthalate ug/L											
Cadmin, total Ug/L < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8 < 8			<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon disulfide				_	_				_		_
Carbon tetrachloride											
Chlordane									·		
Chlorobenzale			<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzilate				-1	-1	-1	_1	-1	-1		
Chloroethane			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	\ \	`'
Chlorofrom				-1	-1	_1	_1	-1	_1	_1	_1
Chloromethane											
Chloroprene									·		
Chromium, total			1 1	71	7.1	"	, ,	*1	- 1	,,,	'''
Chrysene			<8	<8	<8	<8	<8	<8	<8	<8	<8
Cis-1,2-dichloroethylene		ug/L			Ţ	,	_	•			
Cis-1,3-dichloropropene		ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Copper, total			<1	<1	<1	<1	<1	<1	<1	<1	<1
Cyanide, total	Cobalt, total	ug/L	2.0	3.1	9.2	6.9	8.4	6.3	8.4	11.6	6.9
Delta-bhc Ug/L Ug	Copper, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Dialate											
Dibenzo(a,h)anthracene	I .										
Diberzofuran Ug/L		ug/L									
Dibromochloromethane		ug/L									
Dibromomethane											ا ا
Dichlorodifluoromethane											
Dieldrin				<1	<1	<1	<1	<1	<1		
Diethyl phthalate											
Dimetholate		ug/L ug/l									
Dimethylphthalate	Dimethoate	ug/L									
Di-n-butyl phthalate											
Di-n-octyl phthalate											
Dinoseb Ug/L											
Diphenylamine		ug/L									
Disulfoton Ug/L U											
Endosulfan ii	Disulfoton	ug/L									
Endosulfan sulfate											
Endrin Ug/L											
Endrin aldehyde											
Ethyl methacrylate											
Ethyl methanesulfonate	Endrin aldehyde										
Ethýlbenzene ug/L <1 <1 <1 <1 <1 <1 <1 <	Ethyl methacrylate										
Famphur ug/L Fluoranthene ug/L Fluorene ug/L Gamma-bhc (lindane) Heptachlor ug/L Heptachlor epoxide											
Fluoranthene ug/L Fluorene ug/L Gamma-bhc (lindane) ug/L Heptachlor ug/L Heptachlor epoxide ug/L			<1	<1	<1	<1	<1	<1	<1	<1	<1
Fluorene ug/L Gamma-bhc (lindane) ug/L Heptachlor ug/L Heptachlor epoxide ug/L											
Gamma-bhc (lindane) ug/L Heptachlor ug/L Heptachlor epoxide ug/L											
Heptachlor ug/L ug/L leptachlor epoxide ug/L leptachlor epoxide leptac											
Heptachlor epoxide ug/L ug/L ug/L ug/L											
		ug/L									
	Hexachlorobenzene	ug/L ug/L									

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-7

Constituents	3/7/2019	9/26/2019	12/17/2019	4/2/2020	9/17/2020	12/3/2020	3/25/2021	6/3/2021	9/16/2021
Antimony, total	<2	<2		<2	<2		<2		<2
Arochlor 1016							<.1		
Arochlor 1221							<.2		
Arochlor 1232							<.2		
Arochlor 1242 Arochlor 1248							<.2 <.2		
Arochlor 1254							<.1		
Arochlor 1260							<.1		
Arsenic, total	<4.0	8.2	4.7	<4.0	6.9	7.2	<4.0		<4.0
Azobenzene							<8		
Barium, total	352	327		320	332		348		280
Benzene	<1.0	<1.0		<1.0	<1.0		<1.0		1.4
Benzo(a)anthracene							<8		
Benzo(a)pyrene Benzo(b)fluoranthene							<8 <8		
Benzo(g,h,i)perylene							<8		
Benzo(k)fluoranthene							<8		
Benzyl alcohol							<8		
Beryllium, total	<4	<4		<4	<4		<4		<4
Beta-bhc							<.05		
Bis (2-chloroethoxy) methane							<8>		
Bis(2-chloroethyl) ether							<8		
Bis(2-chloroisopropyl) ether							<8		
Bis(2-ethylhexyl) phthalate		_1		_1	_1		<6 <1		_1
Bromochloromethane Bromodichloromethane	<1 <1	<1 <1		<1 <1	<1 <1		<1		<1 <1
Bromoform	<1	<1		<1	<1		<1		<1
Bromomethane	<1	<1		- <1	<1		<1		<1
Butyl benzyl phthalate							<8		
Cadmium, total	<.8	<.8		<.8	<.8		<.8		<.8
Carbon disulfide	<1	<1		<1	<1		<1		<1
Carbon tetrachloride	<1	<1		<1	<1		<1		<1
Chlordane		-4		-4	-4		<.1		-4
Chlorobenzene Chlorobenzilate	<1	<1		<1	<1		<1 <8		<1
Chloroethane	<1	<1		<1	<1		<1		<1
Chloroform	<1	<1		<1	<1		<1		<1
Chloromethane	<1	<1		<1	<1		<1		<1
Chloroprene							<1		
Chromium, total	<8	<8		<8	<8		<8		<8>
Chrysene							<8		
Cis-1,2-dichloroethylene	<1	<1		<1	<1 <1		<1		<1
Cis-1,3-dichloropropene Cobalt, total	<1 14.0	<1 13.8		<1 12.2	16.2		<1 15.7		<1 9.1
Copper, total	<4	<4		<4	<4		<4		<4
Cyanide, total							<.005		
Delta-bhc							<.05		
Diallate							<8		
Dibenzo(a,h)anthracene							<8		
Dibenzofuran							<8		
Dibromochloromethane	<1	<1		<1	<1		<1		<1
Dibromomethane Dichlorodifluoromethane	<1	<1		<1	<1		<1 <1		<1
Dieldrin							<.05		
Diethyl phthalate							<8		
Dimethoate							<.4		
Dimethylphthalate							<8		
Di-n-butyl phthalate							<8		
Di-n-octyl phthalate							<8		
Dinoseb							<.5		
Diphenylamine Disulfoton							<8 <.4		
Endosulfan i							<.05		
Endosulfan ii							<.05		
Endosulfan sulfate							<.05		
Endrin							<.05		
Endrin aldehyde							<.05		
Ethyl methacrylate							<10		
Ethyl methanesulfonate		.					<8		
Ethylbenzene	<1	<1		<1	<1		<1		<1
Famphur							<.4		
Fluoranthene Fluorene							<8 <8		
Gamma-bhc (lindane)							<.05		
Heptachlor							<.05		
Heptachlor epoxide							<.05		
Hexachlorobenzene							<.05		

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-7

Constituents	3/16/2022	9/1/2022	3/24/2023	9/7/2023	3/18/2024	9/25/2024
Antimony, total	<2	<2	<2	<2	<2	<2
Arochlor 1016		<.1				
Arochlor 1221		<.2				
Arochlor 1232		<.2				
Arochlor 1242		<.2				
Arochlor 1248 Arochlor 1254		<.2 <.1				
Arochlor 1260		<.1 <.1				
Arsenic, total	4.3	5.7	<4.0	8.8	5.4	9.0
Azobenzene		<8		0.0	0	0.0
Barium, total	320	339	293	306	310	321
Benzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(a)anthracene		<8				
Benzo(a)pyrene		<8				
Benzo(b)fluoranthene Benzo(g,h,i)perylene		<8 <8				
Benzo(g,n,n)perylene Benzo(k)fluoranthene		<8				
Benzyl alcohol		<8				
Beryllium, total	<4	<4	<4	<4	<4	<4
Beta-bhc		<.05				
Bis (2-chloroethoxy) methane		<8				
Bis(2-chloroethyl) ether		<8				
Bis(2-chloroisopropyl) ether		<8				
Bis(2-ethylhexyl) phthalate		9	<6 <1		24	
Bromochloromethane Bromodichloromethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Bromoform	<1	<1 <1	<1 <1	<1	<1 <1	<1
Bromomethane	<1	<1	<1	<1	<1	<1
Butyl benzyl phthalate		<8	•	-	-	-
Cadmium, total	<.8	<.8	<.8	<.8	<.8	<.8
Carbon disulfide	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1	<1	<1
Chlordane		<.1	-4		-4	-11
Chlorobenzene Chlorobenzilate	<1	<1 <8	<1	<1	<1	<1
Chloroethane	<1	<1	<1	<1	<1	<1
Chloroform	<1	<1	<1	<1	<1	<1
Chloromethane	<1	<1	<1	<1	<1	<1
Chloroprene		<1				
Chromium, total	<8	<8	<8	<8	<8	<8
Chrysene		<8				
Cis-1,2-dichloroethylene	<1 <1	<1	<1 <1	<1 <1	<1	<1 <1
Cis-1,3-dichloropropene Cobalt, total	15.6	<1 10.9	9.2	9.4	<1 8.7	10.1
Copper, total	<4	<4	<4	<4	<4	<4
Cyanide, total		<.005		- '		.,
Delta-bhc		<.05				
Diallate		<8				
Dibenzo(a,h)anthracene		<8				
Dibenzofuran		<8	-4		-4	-11
Dibromochloromethane Dibromomethane	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Dibromomethane	` '	<1		`'	~1	`'
Dieldrin		<.05				
Diethyl phthalate		<8				
Dimethoate		<.4				
Dimethylphthalate		<8				
Di-n-butyl phthalate		<8				
Di-n-octyl phthalate Dinoseb		<8				
Dinoseb Diphenylamine		<.5 <8				
Disulfoton		<.4				
Endosulfan i		<.05				
Endosulfan ii		<.05				
Endosulfan sulfate		<.05				
Endrin		<.05				
Endrin aldehyde		<.05				
Ethyl methacrylate		<10				
Ethyl methanesulfonate	<1	<8 <1	<1	<1	<1	<1
Ethylbenzene Famphur	<1	<1 <.4	<1	<1	<1	<1
Famphul Fluoranthene		<.4 <8				
Fluorene		<8				
Gamma-bhc (lindane)		<.05				
Heptachlor `		<.05				
Heptachlor epoxide		<.05				
Hexachlorobenzene		<.05				

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-7

Constituents	Units	9/17/2014	4/28/2015	10/6/2015	4/23/2016	9/1/2016	3/22/2017	10/13/2017	3/9/2018	9/6/2018
Hexachlorobutadiene	ug/L									
Hexachlorocyclopentadiene	ug/L									
Hexachloroethane	ug/L									
Hexachloropropene	ug/L									
Indeno(1,2,3-cd)pyrene	ug/L									
Isobutanol	mg/L									
Isodrin	ug/L									
Isophorone	ug/L									
Isosafrole	ug/L									
Kepone	ug/L									
Lead, total	ug/L	<4.0	<4.0	4.5	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Mercury, total	ug/L	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Methacrylonitrile	ug/L									
Methapyrilene	ug/L									
Methoxychlor	ug/L									
Methyl iodide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl methacrylate	ug/L	''	``	~1	71	` '	`'		`'	`'
Methyl methanesulfonate	ug/L									
Methyl parathion	ug/L ug/L									
		_5	-5	-5	-5	-5	-5	-5		
Methylene chloride Naphthalene	ug/L ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
		12.2	16.0	17.4	10.7	16.0	16.0	16.0	24.4	16.0
Nickel, total	ug/L	13.3	16.2	17.4	19.7	16.8	16.2	16.9	24.4	10.0
Nitrobenzene	ug/L									
N-nitrosodiethylamine	ug/L									
N-nitrosodimethylamine	ug/L									
N-nitrosodi-n-butylamine	ug/L									
N-nitroso-di-n-propylamine	ug/L									
N-nitrosodiphenylamine	ug/L									
N-nitrosomethylethylamine	ug/L									
N-nitrosopiperidine	ug/L									
N-nitrosopyrrolidine	ug/L									
O,o,o-triethyl phosphorothioate	ug/L									
O-toluidine	ug/L									
Parathion	ug/L									
P-dimethylaminoazobenzene	ug/L									
Pentachlorobenzene	ug/L									
Pentachloronitrobenzene (pcnb)	ug/L									
Pentachlorophenol	ug/L									
Phenacetin	ug/L									
Phenanthrene	ug/L									
Phenol	ug/L									
Phorate	ug/L									
Pronamide	ug/L									
Propionitrile	ug/L									
Pyrene	ug/L									
Safrole	ug/L									
Selenium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<8
Solids, total suspended	mg/L	7	19	5	6	11	9	103		
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulfide, total	mg/L									
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4
Thionazin	ug/L									
Tin, total	ug/L									
Toluene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toxaphene	ug/L	"	*1	*1	*1	- 1		`'		"
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L	<1	<1	<1	<1	<1	<1 <1	<1	<1	<1 <1
Trichlorofluoromethane	ug/L ug/L	<1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1	<1	<1
Vanadium, total	ug/L ug/L	<20	<20	<20	<20	<20	<20	<20		<20
Vinyl acetate		<20 <5	<20 <5	<20 <5		<20 <5	<20 <5		<20	
	ug/L				<5			<5	<5	<5
Vinyl chloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes, total	ug/L	<2 <8.0	<2 <8.0	<2 8.4	<2 <20.0	<2 <8.0	<2 <8.0	<2 <8.0	<2 <8.0	<2 20.8
Zinc, total	ug/L									

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-7

Constituents	3/7/2019	9/26/2019	12/17/2019	4/2/2020	9/17/2020	12/3/2020	3/25/2021	6/3/2021	9/16/2021
Hexachlorobutadiene							<8		
Hexachlorocyclopentadiene							<8		
Hexachloroethane							<8		
Hexachloropropene							<8		
Indeno(1,2,3-cd)pyrene							<8		
Isobutanol							<1		
Isodrin							<8		
Isophorone							<8		
Isosafrole							<8		
Kepone							<8		
Lead, total	<4.0	<4.0		<4.0	<4.0		<4.0		<4.0
Mercury, total	\4.0	\ - 4.0		\4.0	٧4.0		<.5		V4.0
Methacrylonitrile							<1		
Methacryfornune							<8		
Methoxychlor							<.05		
	<1	<1		<1	<1		<2		<1
Methyl iodide				`	<u> </u>				
Methyl methacrylate							<1		
Methyl methanesulfonate							<8		
Methyl parathion	_	_		_	_		<.4		_
Methylene chloride	<5	<5		<5	<5		<5		<5
Naphthalene		. <u>. </u>					<8		
Nickel, total	23.2	17.0		19.8	20.8		23.9		19.7
Nitrobenzene							<8		
N-nitrosodiethylamine							<8		
N-nitrosodimethylamine							<8		
N-nitrosodi-n-butylamine							<8		
N-nitroso-di-n-propylamine							<8		
N-nitrosodiphenylamine							<8		
N-nitrosomethylethylamine							<8		
N-nitrosopiperidine							<8		
N-nitrosopyrrolidine							<8		
O,o,o-triethyl phosphorothioate							<.4		
O-toluidine							<8		
Parathion							<.4		
P-dimethylaminoazobenzene							<8		
Pentachlorobenzene							<8		
Pentachloronitrobenzene (pcnb)							<8		
Pentachlorophenol							<8		
Phenacetin							<8		
Phenanthrene							<8		
Phenol							<8		
Phorate							<.4		
Pronamide							<8		
Propionitrile							<10		
Pyrene							<8		
Safrole							<8		
Selenium, total	<4	<4		<4	<4		<4		<4
Silver, total	<4	<4		<4	<4		<4		<4
	\4	\4		^4	\4		\4		
Solids, total suspended				ا ہے ا	24				
Styrene Sulfide total	<1	<1		<1	<1		<1		<1
Sulfide, total				ا ہے ا	الدر		<.1		
Tetrachloroethylene	<1	<1		<1	<1		<1		<1
Thallium, total	<2	<2		<2	<2		<2		<2
Thionazin							<.4		
Tin, total							<20		
Toluene	<1	<1		<1	<1		<1		<1
Toxaphene							<.2		
Trans-1,2-dichloroethylene	<1	<1		<1	<1		<1		<1
Trans-1,3-dichloropropene	<1	<1		<1	<1		<1		<1
Trans-1,4-dichloro-2-butene	<5	<5		<5	<5		<5		<5
Trichloroethylene	<1	<1		<1	<1		<1		<1
Trichlorofluoromethane	<1	<1		<1	<1		<1		<1
Vanadium, total	<20	<20		<20	<20		<20		<20
	<5	<5		<5	<5		<5		<5
Vinvi acetate	\ \S\							1	
Vinyl acetate Vinyl chloride	<5 <1			<1	<1		<1		<1
Vinyl acetate Vinyl chloride Xylenes, total		<1 <2		<1 <2	<1 <2		<1 <2		<1 <2

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 9

Analytical Data Summary for MW-7

Constituents	3/16/2022	9/1/2022	3/24/2023	9/7/2023	3/18/2024	9/25/2024
Hexachlorobutadiene		<8				
Hexachlorocyclopentadiene		<8				
Hexachloroethane		<8				
Hexachloropropene		<8				
Indeno(1,2,3-cd)pyrene		<8				
Isobutanol		<1				
Isodrin		<8				
Isophorone		<8				
Isosafrole		<8				
Kepone		<8				
Lead, total	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Mercury, total		<.5				
Methacrylonitrile		<1				
Methapyrilene		<8				
Methoxychlor		<.05				
Methyl iodide	<1	<2	<1	<1	<1	<1
Methyl methacrylate		<1	·	•	•	•
Methyl methanesulfonate		- <8				
Methyl parathion		<.4				
Methylene chloride	<5	<5	<5	<5	<5	<5
Naphthalene	``	<8	\3		\3	~5
Nickel, total	22.1	19.3	15.4	17.0	14.2	16.6
	22.1		15.4	17.0	14.2	10.0
Nitrobenzene N-nitrosodiethylamine		<8 <8				
		_				
N-nitrosodimethylamine		<8 -0				
N-nitrosodi-n-butylamine		<8 -0				
N-nitroso-di-n-propylamine		<8				
N-nitrosodiphenylamine		<8				
N-nitrosomethylethylamine		<8				
N-nitrosopiperidine		<8				
N-nitrosopyrrolidine		<8				
O,o,o-triethyl phosphorothioate		<.4				
O-toluidine		<8				
Parathion		<.4				
P-dimethylaminoazobenzene		<8				
Pentachlorobenzene		<8				
Pentachloronitrobenzene (pcnb)		<8				
Pentachlorophenol		<8				
Phenacetin		<8				
Phenanthrene		<8				
Phenol		<8				
Phorate		<.4				
Pronamide		<8				
Propionitrile		<10				
Pyrene		<8				
Safrole		<8				
Selenium, total	<4	<4	<4	<4	<4	<4
Silver, total	<4	<4	<4	<4	<4	<4
Solids, total suspended	*4	~ 4	~4	_ ~4	~4	\4
Styrene	<1	<1	<1	<1	<1	<1
			\$1	[<u> </u>	<1
Sulfide, total		<.1	ا در	ایر		-4
Tetrachloroethylene	<1	<1	<1	<1	<1	<1
Thallium, total	<2	<2	<2	<2	<2	<2
Thionazin		<.4				
Tin, total	.	<20				
Toluene	<1	<1	<1	<1	<1	<1
Toxaphene		<.2				
Trans-1,2-dichloroethylene	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	<5	<5	<5	<5	<5	<5
Trichloroethylene	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	<1	<1	<1	<1	<1	<1
Vanadium, total	<20	<20	<20	<20	<20	<20
Vinyl acetate	<5	<5	<5	<5	<5	<5
Vinyl chloride	<1	<1 <1	<1	<1	<1 <1	<1
			<2	<2	<2	
	/ // /					
Xylenes, total Zinc, total	<2 <20.0	<2 <20.0	<20.0	<20.0	<20.0	<2 <20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 10 – Historic SSI and SSL

Table 10
Historic SSI & SSL
Annual Water Quality Report
Page County Sanitary Landfill
Permit No. 73-SDP-01-75P

KEY: SSI	SSL LCL>GWPS	SSL UCL>GWPS
----------	--------------	--------------

Note: The absence of shading indicates that the condition does not exist.

		Sample	Each			GWPS
Monitoring Well	Compound	Date	Result (ug/L)	95% LCL (ug/L)	95% UCL (ug/L)	Limit (ug/L)
MW-18	Arsenic	9/17/2014	22.00			10
MW-18	Arsenic	4/28/2015	45.90			10
MW-18	Arsenic	10/6/2015	39.20			10
MW-18	Arsenic	4/23/2016	51.80	28.563	50.887	10
MW-18	Arsenic	9/1/2016	81.40	38.459	70.691	10
MW-18	Arsenic	3/21/2017	49.70	39.842	71.208	10
MW-18	Arsenic	10/13/2017	50.10	44.861	71.639	10
MW-18	Arsenic	3/9/2018	46.10	42.551	71.099	10
MW-18	Arsenic	9/6/2018	74.40	43.809	66.341	10
MW-18	Arsenic	3/7/2019	87.20	47.426	81.474	10
MW-18	Arsenic	9/26/2019	99.20	56.988	96.462	10
MW-18	Arsenic	4/2/2020	81.70	76.567	94.683	10
MW-18	Arsenic	9/17/2020	34.80	51.264	100.186	10
MW-18	Arsenic	3/25/2021	9.60	20.518	92.132	10
MW-18	Arsenic	9/16/2021	36.00	14.520	66.530	10
MW-18	Arsenic	3/16/2022	34.70	13.722	43.828	10
MW-18	Arsenic	9/1/2022	24.10	11.722	40.478	10
MW-18	Arsenic	3/24/2023	67.40	18.581	62.519	10
MW-18	Arsenic	9/7/2023	26.90	14.834	61.716	10
MW-18	Arsenic	9/7/2023	23.70	10.473	60.577	10
MW-18	Arsenic	9/7/2023	43.60	16.871	63.929	10

Bold GWPS = A Site Specific GWPS that is equal to the Prediction Limit. All other GWPS are IAC 567-137 Statewaide Standards for Protected Groundwater.

Table 10
Historic SSI & SSL
Annual Water Quality Report
Page County Sanitary Landfill
Permit No. 73-SDP-01-75P

KEY: SSI SSL LCL>GWPS SSL UCL>GWPS

Note: The absence of shading indicates that the condition does not exist.

		Sample	Each			GWPS
Monitoring Well	Compound	Date	Result (ug/L)	95% LCL (ug/L)	95% UCL (ug/L)	Limit (ug/L)
MW-20	Arsenic	9/18/2014	75.20			10
MW-20	Arsenic	4/28/2015	45.50			10
MW-20	Arsenic	10/6/2015	81.70			10
MW-20	Arsenic	4/23/2016	81.50	56.037	85.913	10
MW-20	Arsenic	9/1/2016	77.10	56.355	86.545	10
MW-20	Arsenic	3/21/2017	79.10	77.961	81.739	10
MW-20	Arsenic	10/13/2017	96.80	75.861	91.389	10
MW-20	Arsenic	3/9/2018	83.40	76.422	91.788	10
MW-20	Arsenic	9/6/2018	99.60	81.058	98.392	10
MW-20	Arsenic	3/7/2019	78.40	80.666	98.434	10
MW-20	Arsenic	9/26/2019	83.60	78.266	94.234	10
MW-20	Arsenic	4/2/2020	65.20	69.380	94.020	10
MW-20	Arsenic	9/17/2020	87.10	70.256	86.894	10
MW-20	Arsenic	3/25/2021	106.00	70.997	99.953	10
MW-20	Arsenic	9/16/2021	87.80	72.068	100.982	10
MW-20	Arsenic	3/16/2022	127.00	79.816	124.134	10
MW-20	Arsenic	9/1/2022	133.00	89.160	137.740	10
MW-20	Arsenic	3/24/2023	94.60	83.892	137.308	10
MW-20	Arsenic	9/7/2023	83.40	80.995	138.005	10
MW-20	Arsenic	3/18/2024	112.00	80.290	131.210	10
MW-20	Arsenic	9/25/2024	44.10	49.651	117.399	10

Table 10
Historic SSI & SSL
Annual Water Quality Report
Page County Sanitary Landfill
Permit No. 73-SDP-01-75P

KEY:

SSI SSL LCL>GWPS SSL UCL>GWPS

Note: The absence of shading indicates that the condition does not exist.

		Sample	Each			GWPS
Monitoring Well	Compound	Date	Result (ug/L)	95% LCL (ug/L)	95% UCL (ug/L)	Limit (ug/L)
MW-20	Barium	9/18/2014	2370.0			2000
MW-20	Barium	4/28/2015	2390.0			2000
MW-20	Barium	10/6/2015	2490.0			2000
MW-20	Barium	4/23/2016	2260.0	2295.838	2459.162	2000
MW-20	Barium	9/1/2016	2140.0	2187.902	2452.098	2000
MW-20	Barium	3/21/2017	2140.0	2114.606	2400.394	2000
MW-20	Barium	10/13/2017	2340.0	2135.147	2304.853	2000
MW-20	Barium	3/9/2018	2010.0	2039.522	2275.478	2000
MW-20	Barium	9/6/2018	2360.0	2067.349	2357.651	2000
MW-20	Barium	3/7/2019	2100.0	2051.441	2353.559	2000
MW-20	Barium	9/26/2019	2350.0	2051.621	2358.379	2000
MW-20	Barium	4/2/2020	2300.0	2172.530	2382.470	2000
MW-20	Barium	9/17/2020	1970.0	2026.866	2333.134	2000
MW-20	Barium	3/25/2021	1970.0	1969.122	2325.878	2000
MW-20	Barium	9/16/2021	2160.0	1960.896	2239.104	2000
MW-20	Barium	3/16/2022	1890.0	1862.568	2132.432	2000
MW-20	Barium	9/1/2022	2020.0	1876.572	2143.428	2000
MW-20	Barium	3/24/2023	2000.0	1887.087	2147.913	2000
MW-20	Barium	9/7/2023	1810.0	1814.348	2045.652	2000
MW-20	Barium	3/18/2024	2110.0	1836.676	2133.324	2000
MW-20	Barium	9/25/2024	1950.0	1821.093	2113.907	2000

Table 11 – Corrective Action Trend Analysis

Table 11
Corrective Action Trend Analysis
Annual Water Quality Report
Page County Sanitary Landfill
Permit No. 73-SDP-01-75P

		Sample	Current			Projected Year to Completion
Monitoring Well	Compound	Date	Condition	Trend	N	(IAC 113.10(9)"e"
MW-18	Arsenic	9/17/2014	SSI	increasing	NA	NA
MW-18	Arsenic	4/28/2015	SSI	increasing	NA	NA
MW-18	Arsenic	10/6/2015	SSI	increasing	NA	NA
MW-18	Arsenic	4/23/2016	SSL	increasing	1	NA
MW-18	Arsenic	9/1/2016	SSL	increasing	2	NA
MW-18	Arsenic	3/21/2017	SSL	increasing	3	NA
MW-18	Arsenic	10/13/2017	SSL	increasing	4	NA
MW-18	Arsenic	3/9/2018	SSL	increasing	5	NA
MW-18	Arsenic	9/6/2018	SSL	increasing	6	NA
MW-18	Arsenic	3/7/2019	SSL	increasing	7	NA
MW-18	Arsenic	9/26/2019	SSL	increasing	8	NA
MW-18	Arsenic	4/2/2020	SSL	increasing	9	NA
MW-18	Arsenic	9/17/2020	SSL	decreasing	10	NA
MW-18	Arsenic	3/25/2021	SSL	decreasing	11	NA
MW-18	Arsenic	9/16/2021	SSL	decreasing	12	NA
MW-18	Arsenic	3/16/2022	SSL	decreasing	13	NA
MW-18	Arsenic	9/1/2022	SSL	decreasing	14	NA
MW-18	Arsenic	3/24/2023	SSL	decreasing	15	NA
MW-18	Arsenic	9/7/2023	SSL	decreasing	16	NA
MW-18	Arsenic	9/7/2023	SSL	decreasing	17	NA
MW-18	Arsenic	9/7/2023	SSL	decreasing	18	NA

Bold GWPS = A Site Specific GWPS that is equal to the Prediction Limit. All other GWPS are IAC 567-137 Statewaide Standards for Protected Groundwater.

Table 11
Corrective Action Trend Analysis
Annual Water Quality Report
Page County Sanitary Landfill
Permit No. 73-SDP-01-75P

		Sample	Current		Pr	ojected Year to Completion
Monitoring Well	Compound	Date	Condition	Trend	N	(IAC 113.10(9)"e"
MW-20	Arsenic	9/18/2014	SSI	NA	NA	NA
MW-20	Arsenic	4/28/2015	SSI	NA	NA	NA
MW-20	Arsenic	10/6/2015	SSI	NA	NA	NA
MW-20	Arsenic	4/23/2016	SSL	Static	1	NA
MW-20	Arsenic	9/1/2016	SSL	Static	2	NA
MW-20	Arsenic	3/21/2017	SSL	Static	3	NA
MW-20	Arsenic	10/13/2017	SSL	Static	4	NA
MW-20	Arsenic	3/9/2018	SSL	Static	5	NA
MW-20	Arsenic	9/6/2018	SSL	Static	6	NA
MW-20	Arsenic	3/7/2019	SSL	Static	7	NA
MW-20	Arsenic	9/26/2019	SSL	Static	8	NA
MW-20	Arsenic	4/2/2020	SSL	Static	9	NA
MW-20	Arsenic	9/17/2020	SSL	Static	10	NA
MW-20	Arsenic	3/25/2021	SSL	Static	11	NA
MW-20	Arsenic	9/16/2021	SSL	Static	12	NA
MW-20	Arsenic	3/16/2022	SSL	Static	13	NA
MW-20	Arsenic	9/1/2022	SSL	Static	14	NA
MW-20	Arsenic	3/24/2023	SSL	Static	15	NA
MW-20	Arsenic	9/7/2023	SSL	Static	16	NA
MW-20	Arsenic	3/18/2024	SSL	Static	17	NA
MW-20	Arsenic	9/25/2024	SSL	Static	18	NA

Table 11
Corrective Action Trend Analysis
Annual Water Quality Report
Page County Sanitary Landfill
Permit No. 73-SDP-01-75P

		Sample	Current		Pr	ojected Year to Completion
Monitoring Well	Compound	Date	Condition	Trend	N	(IAC 113.10(9)"e"
MW-20	Barium	9/18/2014	SSI	NA	NA	NA
MW-20	Barium	4/28/2015	SSI	NA	NA	NA
MW-20	Barium	10/6/2015	SSI	NA	NA	NA
MW-20	Barium	4/23/2016	SSL	decreasing	1	NA
MW-20	Barium	9/1/2016	SSL	decreasing	2	NA
MW-20	Barium	3/21/2017	SSL	decreasing	3	NA
MW-20	Barium	10/13/2017	SSL	decreasing	4	NA
MW-20	Barium	3/9/2018	SSL	decreasing	5	NA
MW-20	Barium	9/6/2018	SSL	decreasing	6	NA
MW-20	Barium	3/7/2019	SSL	decreasing	7	NA
MW-20	Barium	9/26/2019	SSL	decreasing	8	NA
MW-20	Barium	4/2/2020	SSL	decreasing	9	NA
MW-20	Barium	9/17/2020	SSL	decreasing	10	NA
MW-20	Barium	3/25/2021	SSL	decreasing	11	NA
MW-20	Barium	9/16/2021	SSL	decreasing	12	NA
MW-20	Barium	3/16/2022	SSL	decreasing	13	NA
MW-20	Barium	9/1/2022	SSL	decreasing	14	NA
MW-20	Barium	3/24/2023	SSL	decreasing	15	NA
MW-20	Barium	9/7/2023	SSL	decreasing	16	NA
MW-20	Barium	3/18/2024	SSL	decreasing	17	NA
MW-20	Barium	9/25/2024	SSL	decreasing	18	NA

Table 12 – Gas Monitoring Summary

Table 12
Page County Sanitary Landfill
73-SDP-01-75P
EXPLOSIVE GAS MONITORING

	3/18/2024	6/5/2024	9/25/2024	11/25/2024
	% LEL	% LEL	% LEL	% LEL
Office	0	0	0	0
Recycling Building	0	0	0	0
Equipment Building	0	0	0	0
Shop Building	0	0	0	0
GP-1	0	0	0	0
GP-2	0	0	0	0
GP-3	0	0	0	0
GP-4	0	0	0	0
GP-5	95.1	0	72	0
GP-5A	0	0	0	0
GWD-1	0	0	0	0
GWD-2	buried	buried	buried	buried
GWD-3	DNE	DNE	0	NM
GWD-4	DNE	DNE	0	NM

DNE - Did not exist NM - Not measured

Elevated levels of gas in GP-5 addressed with installation of GP-5A

Appendix A Field Sampling Forms

PAGE COUNTY SANITARY LANDFILL PERMIT # 73-SDP-01-75P

3/18/2024 Sampled by: Glenn Hunter Weather Conditions: cloudy to sunny, 21-39 degrees

IDNR Form 542-1322

Monitoring Well: MW-1D

Primary Sampling Method: Secondary Sampling Method: No-Purge for Appendix I

Purge & Sample for all analytes beyond Appendix I

Date

3/18/2024

Time

8:26

Water Level Water Elevation

1163.769

21.72

Notes

GENERAL INFORMATION

TOC	1185.49		
Well Depth	34.55		
Capped	YES		
Standing Water	NO		
Litter	NO		
Level Tape	Solinst 101		
NTU Meter	Hach 2100P		
No-Purge Equipment -	Solinst 429		
Purge Equipment -	Waterra		

NO PURGE METHOD

	~ _			
TOC	1185.49			
Well Depth	34.55			
Top Screen	1160.94			
Bottom Screen	1150.94			
Bottom Well	1150.94			
Sampler Length (ft)	4.00			
Sampler Volume (mL)	440.00			
Feet cordage	28.00			
Top sample	1157.49			
Bottom sample	1153.49			
Turbidity(NTU)	4.21			

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		4.21
Appendix I	Metals	250	250		4.21
Appendix I	VOC	120	120		4.21
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

URGE & SAMPLE METHOD - Purge by Waterra Inertial Lift Pump, then well rest, then sample collection									
TOC	1185.49	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry
Well Depth	34.55	Before purging	3/18/2024	8:26	21.72	1163.77	2.5	1.2	no
		After purging				1185.49			
		Top of Screen Janu	ıary 1990			1160.94			
						24.55	feet above (+) o	r below (-) top sci	reen
		Bottom of Well Jan	uary 1990			1150.94			
		Bottom of Well	3/18/2024		34.55	1150.94			
						0.00	feet sedimentati	ion	
		Before Sampling				1185.49			
		Recovery	3/18/2024	8:31	31.70	1153.79			
		Recovery	3/18/2024	15:36	25.85	1159.64			
		Recovery				1185.49			
		Recovery				1185.49		<u> </u>	_

GENERAL INFORMATION

TOC	1145.59
Well Depth	39.75
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

HO I OILOZ MIZIII	
TOC	1145.59
Well Depth	39.75
Top Screen	1115.84
Bottom Screen	1105.84
Bottom Well	1105.84
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	33.00
Top sample	1112.59
Bottom sample	1108.59
Turbidity(NTU)	6.40

Water Level Water Elevation Date Time Notes 3/18/2024 22.05 1123.54

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		6.40
Appendix I	Metals	250	250		6.40
Appendix I	VOC	120	120		6.40
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

PURGE & SAMPLE METHOD - Purge by Waterra Inertial Lift Pump, then well rest, then sample collection									
TOC	1145.59	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	39.75	Before purging	3/18/2024	9:27	22.05	1123.54	2.5	0.9	no
		After purging				1145.59			
		Top of Screen Janu	uary 1990			1115.84			
						7.70	feet above (+) o	r below (-) top sci	reen
		Bottom of Well Jan	uary 1990			1105.84			
		Bottom of Well	3/18/2024		39.75	1105.84			
						0.00	feet sedimentati	on	
		Before Sampling				1145.59			
		Recovery	3/18/2024	9:32	31.07	1114.52			
		Recovery	3/18/2024	15:45	22.00	1123.59			
		Recovery				1145.59			
		Recovery				1145.59			

GENERAL INFORMATION

TOC	1118.81
Well Depth	31.82
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I

Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

NO I OROL MEIT	00
TOC	1118.81
Well Depth	31.82
Top Screen	1097.01
Bottom Screen	1087.01
Bottom Well	1086.99
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	25.00
Top sample	1093.81
Bottom sample	1089.81
Turbidity(NTU)	3.13

 Date
 Time
 Water Level
 Water Elevation
 Notes

 3/18/2024
 11:44
 20.00
 1098.81

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		3.13
Appendix I	Metals	250	250		3.13
Appendix I	VOC	120	120		3.13
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

TOC	1118.81	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	31.82	Before purging	3/18/2024	11:44	20.00	1098.81	2.5	1.3	no
		After purging				1118.81			
		Top of Screen Janu	ary 1990			1097.01			
						1.80	feet above (+) o	r below (-) top sci	reen
		Bottom of Well Jan	uary 1990			1087.01			
		Bottom of Well	3/18/2024		31.82	1086.99			
						-0.02	feet sedimentati	on	
		Before Sampling				1118.81			
		Recovery	3/18/2024	11:52	25.32	1093.49			
		Recovery	3/18/2024	16:15	19.98	1098.83			•
		Recovery				1118.81			
		Recovery				1118.81			

Background Well GENERAL INFORMATION

OLIVEINAL IIVI OIVI	OLIVERAL IIII ORIIIATION					
TOC	1151.88					
Well Depth	35.40					
Capped	YES					
Standing Water	NO					
Litter	NO					
Level Tape	Solinst 101					
NTU Meter	Hach 2100P					
No-Purge Equipment -	Solinst 429					
Purge Equipment -	Waterra					

Primary Sampling Method: Secondary Sampling Method: No-Purge for Appendix I

Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

	
TOC	1151.88
Well Depth	35.40
Top Screen	1126.48
Bottom Screen	1116.48
Bottom Well	1116.48
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	31.00
Top sample	1120.88
Bottom sample	1116.88
Turbidity(NTU)	7.01

Date	Time	Water Level	Water Elevation	Notes
3/18/2024	12:25	32.70	1119.18	

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		7.01
Appendix I	Metals	250	250		7.01
Appendix I	VOC	120	120		7.01
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

TOC	1151.88	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	35.40	Before purging	3/18/2024	12:25	32.70	1119.18	1	2.3	no
		After purging				1151.88			
		Top of Screen Janu	ary 1990			1126.48			
						-7.30	feet above (+) or	below (-) top scr	een
		Bottom of Well Jan	uary 1990			1116.48			
		Bottom of Well	3/18/2024		35.40	1116.48			
						0.00	feet sedimentation	on	
		Before Sampling				1151.88			
		Recovery	3/18/2024	12:30	33.70	1118.18			
		Recovery	3/18/2024	16:18	33.00	1118.88			
		Recovery				1151.88			
		Recovery				1151.88			

Background Well

GENERAL INFORMATION

<u> </u>	<u> </u>					
TOC	1166.36					
Well Depth	47.18					
Capped	YES					
Standing Water	NO					
Litter	NO					
Level Tape	Solinst 101					
NTU Meter	Hach 2100P					
No-Purge Equipment -	Solinst 429					
Purge Equipment -	Waterra					

Primary Sampling Method: Secondary Sampling Method: No-Purge for Appendix I

Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

NO I DIVOL MILITI	OD
TOC	1166.36
Well Depth	47.18
Top Screen	1129.18
Bottom Screen	1119.18
Bottom Well	1119.18
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	41.00
Top sample	1125.36
Bottom sample	1121.36
Turbidity(NTU)	4.26

Date	Time	Water Level	Water Elevation	Notes
3/18/2024	8:47	15.95	1150.41	

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		4.26
Appendix I	Metals	250	250		4.26
Appendix I	VOC	120	120		4.26
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

TOC	1166.36	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	47.18	Before purging	3/18/2024	8:47	15.95	1150.41	3	0.6	no
		After purging				1166.36			
		Top of Screen Janu	ary 1990			1129.18			
						21.23	feet above (+) or	r below (-) top sci	reen
		Bottom of Well Jan	uary 1990			1119.18			
		Bottom of Well	3/18/2024		47.18	1119.18			
						0.00	feet sedimentation	on	
		Before Sampling				1166.36			
		Recovery	3/18/2024	8:52	34.39	1131.97			
		Recovery	3/18/2024	15:40	17.79	1148.57			
		Recovery				1166.36			
		Recovery				1166.36			

GENERAL INFORMATION

TOC	1127.99					
Well Depth	42.88					
Capped	YES					
Standing Water	NO					
Litter	NO					
Level Tape	Solinst 101					
NTU Meter	Hach 2100P					
No-Purge Equipment -	Solinst 429					
Purge Equipment -	Waterra					

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

NO I ONOL MILIT	UD			
TOC	1127.99			
Well Depth	42.88			
Top Screen	1095.11			
Bottom Screen	1085.11			
Bottom Well	1085.11			
Sampler Length (ft)	4.00			
Sampler Volume (mL)	440.00			
Feet cordage	36.00			
Top sample	1091.99			
Bottom sample	1087.99			
Turbidity(NTU)	1.33			

Date	Time	Water Level	Water Elevation	Notes
3/18/2024	11:08	18.30	1109.69	

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		1.33
Appendix I	Metals	250	250		1.33
Appendix I	VOC	120	120		1.33
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

PURGE & SAMPLE METHOD - Purge by Waterra Inertial Lift Pump, then well rest, then sample collection									
TOC	1127.99	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	42.88	Before purging	3/18/2024	11:08	18.30	1109.69	2.5	0.6	no
		After purging				1127.99			
		Top of Screen Janu	uary 1990			1095.11			
						14.58	feet above (+) o	r below (-) top sci	reen
		Bottom of Well Jan	uary 1990			1085.11			
		Bottom of Well	3/18/2024		42.88	1085.11			
						0.00	feet sedimentati	on	
		Before Sampling				1127.99			
		Recovery	3/18/2024	11:13	33.80	1094.19			
		Recovery	3/18/2024	16:09	33.23	1094.76			
		Recovery				1127.99			
		Recovery				1127.99			

GENERAL INFORMATION

<u> </u>	
TOC	1095.66
Well Depth	22.75
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

NO I DIVOL MILITI	00			
TOC	1095.66			
Well Depth	22.75			
Top Screen	1082.91			
Bottom Screen	1072.91			
Bottom Well	1072.91			
Sampler Length (ft)	4.00			
Sampler Volume (mL)	440.00			
Feet cordage	16.00			
Top sample	1079.66			
Bottom sample	1075.66			
Turbidity(NTU)	2.11			

Date	Time	Water Level	Water Elevation	Notes
3/18/2024	10:51	12.00	1083.66	

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		2.11
Appendix I	Metals	250	250		2.11
Appendix I	VOC	120	120		2.11
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

PURGE & SAMPLE METHOD - Purge by Waterra Inertial Lift Pump, then well rest, then sample collection									
TOC	1095.66	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	22.75	Before purging	3/18/2024	10:51	12.00	1083.66	3	1.7	no
		After purging				1095.66			
		Top of Screen Janu	uary 1990			1082.91			
						0.75	feet above (+) o	r below (-) top sc	reen
		Bottom of Well Jan	uary 1990			1072.91			
		Bottom of Well	3/18/2024		22.75	1072.91			
						0.00	feet sedimentati	on	
		Before Sampling				1095.66			
		Recovery	3/18/2024	10:55	14.95	1080.71			
		Recovery	3/18/2024	15:56	15.56	1080.10			
		Recovery				1095.66			
		Recovery				1095.66			<u> </u>

GENERAL INFORMATION

TOC	1099.36
Well Depth	40.00
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

TOC	1099.36
Well Depth	40.00
Top Screen	1069.36
Bottom Screen	1059.66
Bottom Well	1059.36
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	34.00
Top sample	1065.36
Bottom sample	1061.36
Turbidity(NTU)	10.60

Water Level Water Elevation Date Time Notes 3/18/2024 11.95 1087.41

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		10.60
Appendix I	Metals	250	250		10.60
Appendix I	VOC	120	120		10.60
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

RGE & SAMPLE	METHOD - Purge	e by Waterra Inerti	al Lift Pump, then v	vell rest, then sam	ple collection				
TOC	1099.36	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	40.00	Before purging	3/18/2024	10:14	11.95	1087.41	3	0.7	no
		After purging				1099.36			
		Top of Screen Janu	uary 1990			1069.36			
						18.05	feet above (+) o	r below (-) top sc	reen
		Bottom of Well Jan	uary 1990			1059.66			
		Bottom of Well	3/18/2024		40.00	1059.36			
						-0.30	feet sedimentati	ion	
		Before Sampling				1099.36			
		Recovery	3/18/2024	10:18	16.20	1083.16			
		Recovery	3/18/2024	15:53	11.78	1087.58			
		Recovery				1099.36			
		Recovery				1099.36			

GENERAL INFORMATION

TOC	1159.5
Well Depth	47.50
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

NO I ONCE METH	OD
TOC	1159.5
Well Depth	47.50
Top Screen	1122.00
Bottom Screen	1112.00
Bottom Well	1112.00
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	40.00
Top sample	1119.50
Bottom sample	1115.50
Turbidity(NTU)	6.00

Date	Time	Water Level	Water Elevation	Notes
3/18/2024	9:08	18.28	1141.22	

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		6.00
Appendix I	Metals	250	250		6.00
Appendix I	VOC	120	120		6.00
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

JRGE & SAMPL	LE METHOD - Purge	e by Waterra Inerti	ial Lift Pump, then w	vell rest, then sam	ole collection				
TOC	1159.5	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	47.50	Before purging	3/18/2024	9:08	18.28	1141.22	2.5	0.5	no
		After purging				1159.50			
		Top of Screen Janu	uary 1990			1122.00			
						19.22	feet above (+) o	r below (-) top sci	reen
		Bottom of Well Jan	uary 1990			1112.00			
		Bottom of Well	3/18/2024		47.50	1112.00			
						0.00	feet sedimentati	on	
		Before Sampling				1159.50			
		Recovery	3/18/2024	9:13	31.51	1127.99			
		Recovery	3/18/2024	15:43	18.53	1140.97			
		Recovery				1159.50			
		Recovery				1159.50			

GENERAL INFORMATION

TOC	1130.69					
Well Depth	27.60					
Capped	YES					
Standing Water	NO					
Litter	NO					
Level Tape	Solinst 101					
NTU Meter	Hach 2100P					
No-Purge Equipment -	Solinst 429					
Purge Equipment -	Waterra					

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

NO I ONCE MEIN	
TOC	1130.69
Well Depth	27.60
Top Screen	1118.09
Bottom Screen	1103.09
Bottom Well	1103.09
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	21.00
Top sample	1109.69
Bottom sample	1105.69
Turbidity(NTU)	4.10

Date	Time	Water Level	Water Elevation	Notes
3/18/2024	9:52	19.34	1111.35	

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		4.10
Appendix I	Metals	250	250		4.10
Appendix I	VOC	120	120		4.10
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

TOC	1130.69	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	27.60	Before purging	3/18/2024	9:52	19.34	1111.35	2	1.5	no
		After purging				1130.69			
		Top of Screen Janu	ary 1990			1118.09			
						-6.74	feet above (+) or below (-) top screen		een
		Bottom of Well Janu	uary 1990			1103.09			
		Bottom of Well	3/18/2024		27.60	1103.09			
						0.00	feet sedimentati	on	
		Before Sampling				1130.69			
		Recovery	3/18/2024	9:57	24.74	1105.95			
		Recovery	3/18/2024	15:50	19.37	1111.32			
		Recovery				1130.69			
		Recovery				1130.69			•

GENERAL INFORMATION

TOC	1127.7
Well Depth	24.75
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

TOC	1127.7				
Well Depth	24.75				
Top Screen	1112.95				
Bottom Screen	1102.95				
Bottom Well	1102.95				
Sampler Length (ft)	4.00				
Sampler Volume (mL)	440.00				
Feet cordage	19.00				
Top sample	1108.70				
Bottom sample	1104.70				
Turbidity(NTU)	42.10				

Date	Time	Water Level	Water Elevation	Notes
3/18/2024	11:27	19.27	1108.43	

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		42.10
Appendix I	Metals	250	250		42.10
Appendix I	VOC	120	120		42.10
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

TOC	1127.7	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	24.75	Before purging	3/18/2024	11:27	19.27	1108.43	1	1.1	no
		After purging				1127.70			
		Top of Screen Janu	ary 1990			1112.95			
						-4.52	feet above (+) o	feet above (+) or below (-) top screen	
		Bottom of Well Jan	uary 1990			1102.95			
		Bottom of Well	3/18/2024		24.75	1102.95			
						0.00	feet sedimentati	on	
		Before Sampling				1127.70			
		Recovery	3/18/2024	11:32	21.60	1106.10			
		Recovery	3/18/2024	16:11	19.25	1108.45			
		Recovery				1127.70			
		Recovery				1127.70			

GENERAL INFORMATION

TOC	1122.96
Well Depth	25.30
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

NO PURGE METH	עט				
TOC	1122.96				
Well Depth	25.30				
Top Screen	1107.66				
Bottom Screen	1097.66				
Bottom Well	1097.66				
Sampler Length (ft)	4.00				
Sampler Volume (mL)	440.00				
Feet cordage	19.00				
Top sample	1103.96				
Bottom sample	1099.96				
Turbidity(NTU)	13.30				

Date	Time	Water Level	Water Elevation	Notes
3/18/2024	12:07	18.64	1104.32	

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		13.30
Appendix I	Metals	250	250		13.30
Appendix I	VOC	120	120		13.30
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

TOC	1122.96	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	25.30	Before purging	3/18/2024	12:07	18.64	1104.32	1.5	1.4	no
		After purging				1122.96			
		Top of Screen Janu	uary 1990			1107.66			
						-3.34	feet above (+) o	feet above (+) or below (-) top screen	
		Bottom of Well Jan	uary 1990			1097.66			
		Bottom of Well	3/18/2024		25.30	1097.66			
						0.00	feet sedimentati	on	
		Before Sampling				1122.96			
		Recovery	3/18/2024	12:11	23.18	1099.78			
		Recovery	3/18/2024	16:16	18.65	1104.31			
		Recovery				1122.96			•
		Recovery				1122.96			

IDNR Form 542-1324

	Date	Time	Туре	Flowing	Quantity		Discolored	Odor	Litter
GWD-1	3/18/2024	10:34	Underdrain tile outlet	yes	250 mL/10 sec		No	No	No
									Turbidity (NTU)
									6.34

PAGE COUNTY SANITARY LANDFILL PERMIT # 73-SDP-01-75P

8/1/2024 Sampled by: Todd Whipple Weather Conditions: Sunny, calm, 80 degrees

IDNR Form 542-1322

Monitoring Well: MW-53

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I

Purge & Sample for all analytes beyond Appendix I

Date

8/1/2024

Time

12:19

GENERAL INFORMATION

TOC	1107.26
Well Depth	30.40
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

NO	PU	IR(ЭE	ME	TH	IOD
----	----	-----	----	----	----	-----

TOC	1107.26
Well Depth	30.40
Top Screen	1087.31
Bottom Screen	1077.31
Bottom Well	1076.86
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	24.00
Top sample	1083.26
Bottom sample	1079.26
Turbidity(NTU)	4.29

Sample before waste placement in Phase W-1

12.12

Water Level Water Elevation

1095.14

Notes

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		4.29
Appendix I	Metals	250	250		4.29
Appendix I	VOC	120	120		4.29
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

TOC	1107.26	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	30.40	Before purging	8/1/2024	12:19	12.12	1095.14		0.0	
		After purging				1107.26			
		Top of Screen Janua	ary 1990			1087.31			
						7.83	feet above (+) o	r below (-) top scr	een
		Bottom of Well Janu	ary 1990			1077.31			
		Bottom of Well	8/1/2024		30.40	1076.86			
						-0.45	feet sedimentati	on	
		Before Sampling				1107.26			
		Recovery				1107.26			
		Recovery				1107.26			
		Recovery				1107.26			
		Recovery				1107.26			

IDNR Form 542-1324

	Date	Time	Туре	Flowing	Quantity		Discolored	Odor	Litter
GWD-3	8/1/2024	12:42	Underdrain tile outlet	yes	250 mL/20 sec		No	No	No
									Turbidity (NTU)
	Sample before waste	placement in Ph	ase W-1						2.13
									•
	Date	Time	Туре	Flowing	Quantity		Discolored	Odor	Litter
GWD-4	Date 8/1/2024			Flowing yes	Quantity 250 mL/10 sec		Discolored No	Odor No	Litter No
GWD-4			, , , , , , , , , , , , , , , , , , ,	T T					+
GWD-4		12:52	Underdrain tile outlet	T T					No

PAGE COUNTY SANITARY LANDFILL PERMIT # 73-SDP-01-75P

9/25/2024 Sampled by: Todd Whipple Weather Conditions: Sunny, calm, 80 degrees

IDNR Form 542-1322

Monitoring Well: MW-1D

Primary Sampling Method: Secondary Sampling Method: No-Purge for Appendix I

Purge & Sample for all analytes beyond Appendix I

Date

9/25/2024

Time

17:13

Water Level Water Elevation

1165.3

20.19

Notes

GENERAL INFORMATION

TOC	1185.49
Well Depth	34.55
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

NO PURGE METHOD

NO FUNGE MILIT	שט
TOC	1185.49
Well Depth	34.55
Top Screen	1160.94
Bottom Screen	1150.94
Bottom Well	1150.94
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	28.00
Top sample	1157.49
Bottom sample	1153.49
Turbidity(NTU)	2.37

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		2.37
Appendix I	Metals	250	250		2.37
Appendix I	VOC	120	120		2.37
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

RGE & SAMPLE	METHOD - Purg	e by Waterra Inertia	al Lift Pump, then w	ell rest, then samı/	ole collection				
TOC	1185.49	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry
Well Depth	34.55	Before purging	9/25/2024	17:13	20.19	1165.30		0.0	
		After purging				1185.49			
		Top of Screen Janua	ary 1990			1160.94			
						24.55	feet above (+) o	r below (-) top scr	een
		Bottom of Well January 1990				1150.94			
		Bottom of Well	9/25/2024		34.55	1150.94			
						0.00	feet sedimentati	on	
		Before Sampling				1185.49			
		Recovery				1185.49			
		Recovery				1185.49			
		Recovery				1185.49			
		Recovery				1185.49		<u> </u>	

GENERAL INFORMATION

TOC	1145.59
Well Depth	39.75
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

NO PURGE METH	עט			
TOC	1145.59			
Well Depth	39.75			
Top Screen	1115.84			
Bottom Screen	1105.84			
Bottom Well	1105.84			
Sampler Length (ft)	4.00			
Sampler Volume (mL)	440.00			
Feet cordage	33.00			
Top sample	1112.59			
Bottom sample	1108.59			
Turbidity(NTU)	1.67			

Date	Time	Water Level	Water Elevation	Notes
9/25/2024	16:45	21.51	1124.08	

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		1.67
Appendix I	Metals	250	250		1.67
Appendix I	VOC	120	120		1.67
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

TOC	1145.59	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	39.75	Before purging	9/25/2024	16:45	21.51	1124.08		0.0	
		After purging				1145.59			
		Top of Screen Janu	ary 1990			1115.84			
						8.24	feet above (+) or	below (-) top scr	reen
		Bottom of Well January 1990				1105.84			
		Bottom of Well	9/25/2024		39.75	1105.84			
						0.00	feet sedimentation	on	
		Before Sampling				1145.59			
		Recovery				1145.59			
		Recovery				1145.59			
		Recovery				1145.59			
		Recovery				1145.59			

GENERAL INFORMATION

TOC	1118.81
Well Depth	31.82
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

NO PURGE METH	עט		
TOC	1118.81		
Well Depth	31.82		
Top Screen	1097.01		
Bottom Screen	1087.01		
Bottom Well	1086.99		
Sampler Length (ft)	4.00		
Sampler Volume (mL)	440.00		
Feet cordage	26.00		
Top sample	1092.81		
Bottom sample	1088.81		
Turbidity(NTU)	17.88		

Date	Time	Water Level	Water Elevation	Notes
9/25/2024	14:59	20.29	1098.52	

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		17.88
Appendix I	Metals	250	250		17.88
Appendix I	VOC	120	120		17.88
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

JRGE & SAMPL	E METHOD - Purge	e by Waterra Inerti	al Lift Pump, then w	ell rest, then samp	le collection				
TOC	1118.81	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	31.82	Before purging	9/25/2024	14:59	20.29	1098.52		0.0	
		After purging				1118.81			
		Top of Screen Janu	ary 1990			1097.01			
						1.51	feet above (+) o	r below (-) top sci	reen
		Bottom of Well Janu	Bottom of Well January 1990			1087.01			
		Bottom of Well	9/25/2024		31.82	1086.99			
						-0.02	feet sedimentati	on	
		Before Sampling				1118.81			
		Recovery				1118.81			
		Recovery				1118.81			
		Recovery				1118.81			
		Recovery		<u> </u>		1118.81			

Background Well

GENERAL INFORMATION

<u> </u>						
TOC	1151.88					
Well Depth	35.40					
Capped	YES					
Standing Water	NO					
Litter	NO					
Level Tape	Solinst 101					
NTU Meter	Hach 2100P					
No-Purge Equipment -	Solinst 429					
Purge Equipment -	Waterra					

Primary Sampling Method: Secondary Sampling Method: No-Purge for Appendix I

Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

NO PURGE METH	עט
TOC	1151.88
Well Depth	35.40
Top Screen	1126.48
Bottom Screen	1116.48
Bottom Well	1116.48
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	33.00
Top sample	1118.88
Bottom sample	1114.88
Turbidity(NTU)	2.73

Date	Time	Water Level	Water Elevation	Notes
9/25/2024	18:20	32 09	1119 79	<u> </u>

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		2.73
Appendix I	Metals	250	250		2.73
Appendix I	VOC	120	120		2.73
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

TOC	1151.88	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	35.40	Before purging	9/25/2024	18:20	32.09	1119.79		0.0	
		After purging				1151.88			
		Top of Screen Janua	ary 1990			1126.48			
						-6.69	feet above (+) o	r below (-) top scr	reen
		Bottom of Well Janu	ary 1990			1116.48			
		Bottom of Well	9/25/2024		35.40	1116.48			
						0.00	feet sedimentati	on	
		Before Sampling				1151.88			
		Recovery				1151.88			
		Recovery				1151.88			
		Recovery				1151.88			
		Recovery				1151.88			

Monitoring Well: MW-44 Background Well GENERAL INFORMATION

<u> </u>	
TOC	1166.36
Well Depth	47.18
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

TOC	1166.36
Well Depth	47.18
Top Screen	1129.18
Bottom Screen	1119.18
Bottom Well	1119.18
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	
Top sample	1166.36
Bottom sample	1162.36
Turbidity(NTU)	

Water Level Water Elevation Date Time Notes 9/25/2024 1166.36 see 11-25-24

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		0.00
Appendix I	Metals	250	250		0.00
Appendix I	VOC	120	120		0.00
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

JRGE & SAMPL	E METHOD - Purge	by Waterra Inerti	al Lift Pump, then w	ell rest, then samp	le collection				
TOC	1166.36	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	47.18	Before purging	9/25/2024	0:00	0.00	1166.36		0.0	
		After purging				1166.36			
		Top of Screen Janu	ary 1990			1129.18			
						37.18	feet above (+) o	r below (-) top sci	reen
		Bottom of Well Janu	ıary 1990			1119.18			
		Bottom of Well	9/25/2024		47.18	1119.18			
						0.00	feet sedimentati	on	
		Before Sampling				1166.36			
		Recovery				1166.36			
		Recovery				1166.36			
		Recovery				1166.36			
		Recovery				1166.36			

GENERAL INFORMATION

<u> </u>	
TOC	1127.99
Well Depth	42.88
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

INO I OIXOL MILITI	00			
TOC	1127.99			
Well Depth	42.88			
Top Screen	1095.11			
Bottom Screen	1085.11			
Bottom Well	1085.11			
Sampler Length (ft)	4.00			
Sampler Volume (mL)	440.00			
Feet cordage	37.00			
Top sample	1090.99			
Bottom sample	1086.99			
Turbidity(NTU)	2.46			

Date	Time	Water Level	Water Elevation	Notes
9/25/2024	15:15	17.72	1110.27	

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		2.46
Appendix I	Metals	250	250		2.46
Appendix I	VOC	120	120		2.46
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

JRGE & SAMPL	.E METHOD - Purge	by Waterra Inerti	al Lift Pump, then w	ell rest, then samp	le collection				
TOC	1127.99	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	42.88	Before purging	9/25/2024	15:15	17.72	1110.27		0.0	
		After purging				1127.99			
		Top of Screen Janu	ary 1990			1095.11			
						15.16	feet above (+) o	r below (-) top sci	reen
		Bottom of Well Janu	uary 1990			1085.11			
		Bottom of Well	9/25/2024		42.88	1085.11			
						0.00	feet sedimentati	on	
		Before Sampling				1127.99			
		Recovery				1127.99			
		Recovery				1127.99			
		Recovery				1127.99			
		Recovery				1127.99			

GENERAL INFORMATION

TOC	1095.66
Well Depth	22.75
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

ING I GINGE INCLINE	<u> </u>			
TOC	1095.66			
Well Depth	22.75			
Top Screen	1082.91			
Bottom Screen	1072.91			
Bottom Well	1072.91			
Sampler Length (ft)	4.00			
Sampler Volume (mL)	440.00			
Feet cordage	17.00			
Top sample	1078.66			
Bottom sample	1074.66			
Turbidity(NTU)	4.24			

Date	Time	Water Level	Water Elevation	Notes
9/25/2024	15:30	15.11	1080.55	

Analyte		Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		4.24
Appendix I	Metals	250	250		4.24
Appendix I	VOC	120	120		4.24
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

JRGE & SAMPL	E METHOD - Purge	by Waterra Inertia	al Lift Pump, then w	ell rest, then sam	ole collection				
TOC	1095.66	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	22.75	Before purging	9/25/2024	15:30	15.11	1080.55		0.0	
		After purging				1095.66			
		Top of Screen Janu	ary 1990			1082.91			
						-2.36	feet above (+) o	r below (-) top sc	reen
		Bottom of Well Janu	Bottom of Well January 1990			1072.91			
		Bottom of Well	9/25/2024		22.75	1072.91			
						0.00	feet sedimentati	on	
		Before Sampling				1095.66			
		Recovery				1095.66			
		Recovery				1095.66			
		Recovery				1095.66			
		Recovery				1095.66			

GENERAL INFORMATION

TOC	1099.36					
Well Depth	40.00					
Capped	YES					
Standing Water	NO					
Litter	NO					
Level Tape	Solinst 101					
NTU Meter	Hach 2100P					
No-Purge Equipment -	Solinst 429					
Purge Equipment -	Waterra					

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

NO I DIVOL MILITI	OD
TOC	1099.36
Well Depth	40.00
Top Screen	1069.36
Bottom Screen	1059.66
Bottom Well	1059.36
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	35.00
Top sample	1064.36
Bottom sample	1060.36
Turbidity(NTU)	10.14

Date	Time	Water Level	Water Elevation	Notes
9/25/2024	15:53	13.68	1085.68	

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		10.14
Appendix I	Metals	250	250		10.14
Appendix I	VOC	120	120		10.14
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

IRGE & SAMPL	E METHOD - Purge	by Waterra Inerti	al Lift Pump, then w	ell rest, then sam	ple collection				
TOC	1099.36	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	40.00	Before purging	9/25/2024	15:53	13.68	1085.68		0.0	
		After purging				1099.36			
		Top of Screen Janu	ary 1990			1069.36			
						16.32	feet above (+) or	r below (-) top sci	reen
		Bottom of Well Janu	ıary 1990			1059.66			
		Bottom of Well	9/25/2024		40.00	1059.36			
						-0.30	feet sedimentation	on	
		Before Sampling				1099.36			
		Recovery				1099.36			
		Recovery				1099.36			
		Recovery				1099.36			
		Recovery				1099.36			

GENERAL INFORMATION

TOC	1159.5					
Well Depth	47.50					
Capped	YES					
Standing Water	NO					
Litter	NO					
Level Tape	Solinst 101					
NTU Meter	Hach 2100P					
No-Purge Equipment -	Solinst 429					
Purge Equipment -	Waterra					

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

NO I ONCE MEIN	00		
TOC	1159.5		
Well Depth	47.50		
Top Screen	1122.00		
Bottom Screen	1112.00		
Bottom Well	1112.00		
Sampler Length (ft)	4.00		
Sampler Volume (mL)	440.00		
Feet cordage	42.00		
Top sample	1117.50		
Bottom sample	1113.50		
Turbidity(NTU)	2.41		

Date	Time	Water Level	Water Elevation	Notes
9/25/2024	16:57	18.27	1141.23	

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		2.41
Appendix I	Metals	250	250		2.41
Appendix I	VOC	120	120		2.41
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

PURGE & SAMPLE METHOD - Purge by Waterra Inertial Lift Pump, then well rest, then sample collection									
TOC	1159.5	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	47.50	Before purging	9/25/2024	16:57	18.27	1141.23		0.0	
		After purging				1159.50			
		Top of Screen Janu	ary 1990			1122.00			
						19.23	feet above (+) o	r below (-) top sci	reen
		Bottom of Well Janu	uary 1990			1112.00			
		Bottom of Well	9/25/2024		47.50	1112.00			
						0.00	feet sedimentati	on	
		Before Sampling				1159.50			
		Recovery				1159.50			
		Recovery				1159.50			
		Recovery				1159.50			
		Recovery				1159.50			

GENERAL INFORMATION

TOC	1130.69
Well Depth	27.60
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

	NO PUNGE MIETHOD						
	TOC	1130.69					
	Well Depth	27.60					
	Top Screen	1118.09					
	Bottom Screen	1103.09					
	Bottom Well	1103.09					
	Sampler Length (ft)	4.00					
	Sampler Volume (mL)	440.00					
	Feet cordage	22.00					
	Top sample	1108.69					
	Bottom sample	1104.69					
ſ	Turbidity(NTU)	2.28					

Date	Time	Water Level	Water Elevation	Notes
9/25/2024	16:30	17.97	1112.72	

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		2.28
Appendix I	Metals	250	250		2.28
Appendix I	VOC	120	120		2.28
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

TOC	1130.69	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	27.60	Before purging	9/25/2024	16:30	17.97	1112.72		0.0	
		After purging				1130.69			
		Top of Screen Janu	ary 1990			1118.09			
						-5.37	feet above (+) o	r below (-) top scr	reen
		Bottom of Well Janu	uary 1990			1103.09			
		Bottom of Well	9/25/2024		27.60	1103.09			
						0.00	feet sedimentati	on	
		Before Sampling				1130.69			
		Recovery				1130.69			
		Recovery				1130.69			
		Recovery				1130.69			
		Recovery				1130.69			

GENERAL INFORMATION

TOC	1131.46
Well Depth	29.65
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

NO PUNGE METH	סט
TOC	1131.46
Well Depth	29.65
Top Screen	1112.26
Bottom Screen	1102.26
Bottom Well	1101.81
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	
Top sample	1131.46
Bottom sample	1127.46
Turbidity(NTU)	

Date	Time	Water Level	Water Elevation	Notes
9/25/2024		20.25	1111.21	see 11-25-24

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		0.00
Appendix I	Metals	250	250		0.00
Appendix I	VOC	120	120		0.00
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

PURGE & SAMPLE METHOD - Purge by Waterra Inertial Lift Pump, then well rest, then sample collection									
TOC	1131.46	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	29.65	Before purging	9/25/2024	0:00	20.25	1111.21		0.0	
		After purging				1131.46			
		Top of Screen Janu	ary 1990			1112.26			
						-1.05	feet above (+) o	r below (-) top sci	reen
		Bottom of Well Janu	iary 1990			1102.26			
		Bottom of Well	9/25/2024		24.75	1106.71			
						4.45	feet sedimentati	on	
		Before Sampling				1131.46			
		Recovery				1131.46			
		Recovery				1131.46			
		Recovery				1131.46			
		Recovery				1131.46			

GENERAL INFORMATION

TOC	1122.96
Well Depth	25.30
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

NO I DIVOL MILITI	00
TOC	1122.96
Well Depth	25.30
Top Screen	1107.66
Bottom Screen	1097.66
Bottom Well	1097.66
Sampler Length (ft)	4.00
Sampler Volume (mL)	440.00
Feet cordage	19.00
Top sample	1103.96
Bottom sample	1099.96
Turbidity(NTU)	2.88

Date	Time	Water Level	Water Elevation	Notes
9/25/2024	14:45	18.61	1104.35	

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		2.88
Appendix I	Metals	250	250		2.88
Appendix I	VOC	120	120		2.88
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

JRGE & SAMPL	E METHOD - Purge	by Waterra Inerti	al Lift Pump, then w	ell rest, then sam	ole collection				
TOC	1122.96	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	25.30	Before purging	9/25/2024	14:45	18.61	1104.35		0.0	
		After purging				1122.96			
		Top of Screen Janu	ary 1990			1107.66			
						-3.31	feet above (+) or below (-) top screen		reen
		Bottom of Well Janu	uary 1990			1097.66			
		Bottom of Well	9/25/2024		25.30	1097.66			
						0.00	feet sedimentati	on	
		Before Sampling				1122.96			
		Recovery				1122.96			
		Recovery				1122.96			
		Recovery				1122.96			
		Recovery				1122.96			

GENERAL INFORMATION

TOC	1107.26
Well Depth	30.40
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

1107.26
30.40
1087.31
1077.31
1076.86
4.00
440.00
25.00
1082.26
1078.26
2.08

Water Level Water Elevation Date Time Notes 9/25/2024 17:30 11.85 1095.41

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		2.08
Appendix I	Metals	250	250		2.08
Appendix I	VOC	120	120		2.08
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

RGE & SAMPLE	: METHOD - Purge	by Waterra Inerti	al Lift Pump, then w	ell rest, then sam	ole collection				
TOC	1107.26	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	30.40	Before purging	9/25/2024	17:30	11.85	1095.41		0.0	
		After purging				1107.26			
		Top of Screen Janu	ary 1990			1087.31			
						8.10	feet above (+) or below (-) top screen		reen
		Bottom of Well January 1990				1077.31			
		Bottom of Well	9/25/2024		30.40	1076.86			
						-0.45	feet sedimentation	on	
		Before Sampling				1107.26			
		Recovery				1107.26			
		Recovery				1107.26			
		Recovery				1107.26			
		Recovery				1107.26			

IDNR Form 542-1324

	Date	Time	Туре	Flowing	Quantity		Discolored	Odor	Litter
GWD-1	9/25/2024		Underdrain tile outlet	not found			No	No	No
									Turbidity (NTU)
		_		_					
	Date	Time	Туре	Flowing	Quantity	_	Discolored	Odor	Litter
GWD-2	9/25/2024		Underdrain tile outlet	dry	dry		No	No	No
									Turbidity (NTU)
	<u> </u>								
	Date	Time	Туре	Flowing	Quantity		Discolored	Odor	Litter
GWD-3	9/25/2024	18:06	Underdrain tile outlet	yes	250 mL/9 sec		No	No	No
									Turbidity (NTU)
									2.03
	Date	Time	Туре	Flowing	Quantity		Discolored	Odor	Litter
GWD-4	9/25/2024	17:59	Underdrain tile outlet	yes	250 mL/30 sec		No	No	No
									Turbidity (NTU)
									2.38

PAGE COUNTY SANITARY LANDFILL PERMIT # 73-SDP-01-75P

11/25/2024 Sampled by: Glenn Hunter Weather Conditions: Sunny, windy, 29 degrees

IDNR Form 542-1322

Monitoring Well: MW-44

Background Well

GENERAL INFORMATION

TOC	1166.36
Well Depth	47.18
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method: No-Purge for Appendix I

Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

NO FUNGE MILIT	שט		
TOC	1166.36		
Well Depth	47.18		
Top Screen	1129.18		
Bottom Screen	1119.18		
Bottom Well	1119.18		
Sampler Length (ft)	4.00		
Sampler Volume (mL)	440.00		
Feet cordage	41.00		
Top sample	1125.36		
Bottom sample	1121.36		
Turbidity(NTU)	2.53		

Date	Time	Water Level	Water Elevation	Notes
11/25/2024	10.54	13 93	1152 43	-

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		2.53
Appendix I	Metals	250	250		2.53
Appendix I	VOC	120	120		2.53
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

PURGE & SAMPLE METHOD - Purge by Waterra Inertial Lift Pump, then well rest, then sample collection

PURGE & SAMPLE	FORGE & SAMPLE METHOD - Purge by Waterra mertial Lift Pump, then wen rest, then sample conection								
TOC	1166.36	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	47.18	Before purging	11/25/2024	10:54	13.93	1152.43		0.0	
		After purging				1166.36			
		Top of Screen Janua	ary 1990			1129.18			
						23.25	feet above (+) o	r below (-) top scr	een
		Bottom of Well Janu	ary 1990			1119.18			
		Bottom of Well	11/25/2024		47.18	1119.18			
						0.00	feet sedimentati	on	
		Before Sampling				1166.36			
		Recovery				1166.36			
		Recovery				1166.36			
		Recovery				1166.36			
		Recovery				1166.36			

Monitoring Well: MW-14

GENERAL INFORMATION

TOC	1095.66
Well Depth	22.75
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

TOC	1095.66			
Well Depth	22.75			
Top Screen	1082.91			
Bottom Screen	1072.91			
Bottom Well	1072.91			
Sampler Length (ft)	4.00			
Sampler Volume (mL)	440.00			
Feet cordage	16.00			
Top sample	1079.66			
Bottom sample	1075.66			
Turbidity(NTU)	1.09			

Water Level Water Elevation Date Time Notes 11/25/2024 11:45 11.34 1084.32

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		1.09
Appendix I	Metals	250	250		1.09
Appendix I	VOC	120	120		1.09
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

JRGE & SAMPLI	E METHOD - Purge	by Waterra Inertia	al Lift Pump, then w	ell rest, then samp	le collection				
TOC	1095.66	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	22.75	Before purging	11/25/2024	11:45	11.34	1084.32		0.0	
		After purging				1095.66			
		Top of Screen Janu	ary 1990			1082.91			
						1.41	feet above (+) o	r below (-) top sc	reen
		Bottom of Well Janu	ıary 1990			1072.91			
		Bottom of Well	11/25/2024		22.75	1072.91			
						0.00	feet sedimentati	on	
		Before Sampling				1095.66			
		Recovery				1095.66			
		Recovery				1095.66			
		Recovery				1095.66			•
		Recovery		<u> </u>		1095.66			

Monitoring Well: MW-19R

GENERAL INFORMATION

TOC	1131.46
Well Depth	29.65
Capped	YES
Standing Water	NO
Litter	NO
Level Tape	Solinst 101
NTU Meter	Hach 2100P
No-Purge Equipment -	Solinst 429
Purge Equipment -	Waterra

Primary Sampling Method: Secondary Sampling Method:

No-Purge for Appendix I
Purge & Sample for all analytes beyond Appendix I

NO PURGE METHOD

TOC	1131.46		
Well Depth	29.65		
Top Screen	1112.26		
Bottom Screen	1102.26		
Bottom Well	1101.81		
Sampler Length (ft)	4.00		
Sampler Volume (mL)	440.00		
Feet cordage	20.00		
Top sample	1111.46		
Bottom sample	1107.46		
Turbidity(NTU)	0.79		

Water Level Water Elevation Date Time Notes 11/25/2024 12:02 19.87 1111.59

ANALYTES, CONTAINERS, AND VOLUMES

	Analyte	Required Volume (mL)	Volume Collected No-Purge (mL)	Volume Collected Purge & Sample (mL)	Turbidity this Container (NTU)
All	Field NTU	10	10		0.79
Appendix I	Metals	250	250		0.79
Appendix I	VOC	120	120		0.79
Full Appendix II	10 more containers	5620			
Bis(2-EHP)	1 quart	946			
Sulfide	Sulfide	250			
Supplemental	Minerals	750	0		
Total			380	0	

JRGE & SAMPL	E METHOD - Purge	e by Waterra Inerti	al Lift Pump, then w	ell rest, then sam	ple collection				
TOC	1131.46	2" dia.	Date	Time	Depth	Elevation	Gallons	# of Vol.	Purged Dry?
Well Depth	29.65	Before purging	11/25/2024	12:02	19.87	1111.59		0.0	
		After purging				1131.46			
		Top of Screen Janu	ary 1990			1112.26			
						-0.67	feet above (+) o	r below (-) top sc	reen
	Bottom of Well Janua Bottom of Well	Bottom of Well Janu	uary 1990			1102.26			
		11/25/2024		24.75	1106.71				
						4.45	feet sedimentati	on	
		Before Sampling				1131.46			
		Recovery				1131.46			
		Recovery				1131.46			
		Recovery				1131.46			
		Recovery				1131.46			

IDNR Form 542-1324

	Date	Time	Туре	Flowing	Quantity		Discolored	Odor	Litter
GWD-1	11/25/2024	11:33	Underdrain tile outlet	yes	1 gal/min		No	No	No
									Turbidity (NTU)
									15.3
						•			,

	Date	Time	Туре	Flowing	Quantity		Discolored	Odor	Litter
GWD-4	11/25/2024	12:37	Underdrain tile outlet	yes	250 mL/00 sec		No	No	No
									Turbidity (NTU)
									1.83

Appendix B Statistical Report

Appendix B.1 –1st Statistical Evaluation

GROUND WATER STATISTICS FOR THE

PAGE COUNTY SANITARY LANDFILL

First Semi-Annual Monitoring Event in 2024

Prepared for:
Page County Landfill Association
2032 N Avenue
Clarinda, Page County, IA

Prepared by:
Jeffrey A. Holmgren
Otter Creek Environmental Services, LLC
40W565 Foxwick Court
Elgin, IL 60124
(847) 464-1355

April 2024

INTRODUCTION

This report summarizes the results of the statistical analysis used to evaluate the ground water quality data obtained during the first semi-annual monitoring event in 2024 at the Page County Sanitary Landfill near Clarinda in Page County, Iowa. The statistical plan was designed to detect a release from the facility at the earliest indication so that it is protective of human health and the environment. Interwell statistics were used for comparison of the current data to background data at Page County Sanitary Landfill. The statistical plan conforms with IAC 567, Chapter 113.10, and the USEPA statistical guidance document ("Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance", March 2009).

Ground Water Monitoring Program

The groundwater monitoring network for Page County Sanitary Landfill (PCSL) includes upgradient wells MW-1 and MW-17 and downgradient wells MW-3, MW-7, MW-10, MW-11, MW-13, MW-14, MW-16, MW-18, MW-19, MW-20 and GWD-1. Each of the groundwater monitoring wells is to be sampled at least semiannually and analyzed for the detection monitoring parameters listed in 113.10(5), which includes 15 inorganic constituents and 47 organic compounds, summarized in Table 1 below.

Table 1: Detection monitoring constituents listed in Appendix I of IAC 567, Chapter 113.

Organic Compounds:

Cadmium, Total

Acetone	trans-1,4-Dichloro-2-butene	Iodomethane
Acrylonitrile	1,1-Dichloroethane	4-Methyl-2-pentanone
Benzene	1,2-Dichloroethane	Styrene
Bromochloromethane	1,1-Dichloroethene	1,1,1,2-Tetrachloroethane
Bromodichloromethane	cis-1,2-Dichloroethene	1,1,2,2-Tetrachloroethane
Bromoform	trans-1,2-Dichloroethene	Tetrachloroethene
Carbon disulfide	,	Toluene
	1,2-Dichloropropane	
Carbon tetrachloride	cis-1,3-Dichloropropene	1,1,1-Trichloroethane
Chlorobenzene	trans-1,3-Dichloropropene	1,1,2-Trichloroethane
Chloroethane	Ethylbenzene	Trichloroethene
Chloroform	2-Hexanone	Trichlorofluoromethane
Dibromochloromethane	Bromomethane	1,2,3-Trichloropropane
1,2-Dibromo-3-chloropropane	Chloromethane	Vinyl acetate
1,2-Dibromoethane	Dibromomethane	Vinyl chloride
1,2-Dichlorobenzene	Methylene chloride	Xylenes (Total)
1,4-Dichlorobenzene	2-Butanone	• • • • • • • • • • • • • • • • • • • •
Inorganic constituents:		
Antimony, Total	Chromium, Total	Selenium, Total
Arsenic, Total	Cobalt, Total	Silver, Total
Barium, Total	Copper, Total	Thallium, Total
Beryllium, Total	Lead, Total	Vanadium, Total
,, 10001	_ 200, 2000	

Nickel, Total

The ground water data obtained during the first semi-annual monitoring events in 2024 are summarized in Attachment A.

Zinc, Total

STATISTICAL METHODOLOGIES FOR DETECTION MONITORING

IAC 567, Chapter 113.10(4) provides several options for statistically evaluating the ground water data at those wells that monitor the open cells or contiguous MSWLF units. The preferred methods for comparing ground water data are using either prediction limits or using control charts. The interwell method was applied to the Page County Landfill data using the DUMPStat® statistical program. DUMPStat® is a program for the statistical analysis of groundwater monitoring data using methods described in "Statistical Methods for Groundwater Monitoring" by Dr. Robert D. Gibbons. DUMPStat is completely consistent with all USEPA regulations and guidance and the ASTM D6312-98 guidance.

Ground water statistics are to be done on the inorganic constituents listed. The organic constituents are compared to maximum contaminant levels (MCLs) or practical quantitation limits (PQLs), in lieu of statistical comparisons to historical concentrations.

Interwell Statistics: Upgradient versus Downgradient Comparisons

Interwell statistics are appropriate when the upgradient and downgradient wells monitor the same ground water formation and there is similar variability in the upgradient and downgradient zones. Site prediction limits are determined by pooling the historical ground water data from hydraulically upgradient wells. This statistical method compares the current downgradient determinations to site prediction limits and checks for exceedances. The type of prediction limit utilized (e.g., parametric or nonparametric) is based on the detection frequency and the data distribution of each parameter in the background data. The distribution of the background data is tested for normality using the Shapiro-Wilk test (Gibbons, 1994 and USEPA 1992). If the constituent is normally distributed, a normal prediction limit is used. If normality is rejected by the Shapiro-Wilk test, the background data is transformed by taking the natural logarithm. The Shapiro-Wilk test is then reapplied on the transformed data. If it is not rejected, lognormal prediction limits are used. If after transforming the data, normality is still rejected, nonparametric prediction limits are used for that analyte. The nonparametric prediction limit is the largest determination in the background measurements. For constituents where the background detection frequency is greater than 0% but less than 50%, nonparametric prediction limits can be used. If the detection frequency is 0% after thirteen samples have been collected, the practical quantitation limit (PQL) becomes the nonparametric prediction limit.

Results of the Interwell Statistics

The background data used in this statistical analysis includes the ground water data collected from ground water wells MW-1, MW-17, and MW-44 during the period from September 2014, when the sampling protocol changed, through the current data. Monitoring well MW-44 was recently added as an upgradient sample point. A summary of the background data from monitoring wells MW-1, MW-17, and MW-44, used to determine the site prediction limits, is listed in Attachment B, Table 1 "Upgradient Data". This statistical method compares the current downgradient determinations to site prediction limits and checks for exceedances.

Table 2 "Most Current Downgradient Monitoring Data", summarizes the current data from downgradient wells MW-1D, MW-3, MW-7, MW-10, MW-13, MW-14, MW-16, MW-18, MW-20, and GWD-1 compared to the site prediction limits. Prediction limit exceedances are flagged with asterisks. For the

most current data, the site prediction limit exceedances detected are summarized in the table below.

Trace Metal Prediction Limit Exceedances during the First Semi-Annual Monitoring Event in 2024

Well	Trace Metal Detected	Result, μg/L	Prediction Limit, µg/L	Prediction Limit Type	Verified/ Awaiting verification
MW-16	Arsenic	20.4	5.6000	Nonparametric	Awaiting verification
MW-18	Arsenic	23.7	5.6000	Nonparametric	Verified
MW-1D	Barium	784	776.0663	Normal	Awaiting verification
MW 20	Arsenic	112	5.6000	Nonparametric	Verified
MW-20	Barium	2110	776.0663	Normal	Verified

The detection frequencies of the parameters in the up and down gradient monitoring wells are summarized in Table 3. Table 4 summarizes the results of the Shapiro-Wilk test. Table 5 is a summary of the statistics and prediction limits determined for the metals. Time series graphs of each of the parameters at each well with the corresponding prediction limits are attached.

A statistical power curve indicates the expected false assessments for the site as a whole. The false positive rate for interwell analyses is the percentage of failures when the upgradient versus downgradient true mean difference equals zero. False negative rate indicates the chance of missing contamination at a single well for a single constituent. The statistical power is a function of the number of wells included, the number of constituents compared, the detection frequencies, and the data distributions involved. For interwell analysis, the site-wide false positive rate is 3% and the test becomes sensitive to 3 standard deviation unit increases over background.

The past and current metals exceedances were evaluated against the ground water protection standards (GWPS) using confidence limits calculated in accordance with the Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance, USEPA, March 2009 (Attachment C). The analysis was conducted to evaluate whether verified concentrations are significantly above the water quality standard. The 95% lower confidence limit (LCL) for the mean of the historical data was used to evaluate whether the regulated unit is in compliance with the ground-water protection standards under 40 CFR 264 (e.g. whether the verified constituent is detected at a significant level above the GWPS). An exceedance is verified if the LCL is above the Regulatory GWPS.

The 95% LCL for arsenic at MW-18 (10.473 μ g/L) exceeds the USEPA MCL of 10 μ g/L.

The 95% LCL for arsenic at MW-20 (80.290 μg/L) exceeds the USEPA MCL of 10 μg/L.

The 95% LCL for cobalt at MW-20 (9.060 μ g/L) exceeds the Iowa Statewide Standard of 2.1 μ g/L, though the current concentration (9.7 μ g/L) is below the site prediction limit of 30.6 μ g/L.

The 95% LCL for cobalt at MW-7 (8.436 $\mu g/L$) exceeds the Iowa Statewide Standard of 2.1 $\mu g/L$, though the current concentration (8.7 $\mu g/L$) is below the site prediction limit of 30.6 $\mu g/L$.

The remainder of the calculated 95% LCLs are below the respective GWPS.

Volatile Organic Compounds

Volatile Organic Compounds (VOCs) are generally man-made compounds not present in ambient ground water. If VOCs are detected above their statistical limit (i.e., the laboratory PQL or reporting limit), a verification resample will be conducted at the next scheduled sampling event. A statistical exceedance will be indicated if the VOC detection is confirmed by the subsequent monitoring.

The 47 volatile organic compounds (VOCs) included in Appendix A were compared to site-specific limits in lieu of statistical comparisons. VOCs detected in the ground water at Page County Sanitary Landfill during the first semi-annual monitoring event in 2024 are summarized in the table below.

VOCs detected at Page C	County I andf	ill during the first semi	-annual manitaring as	vant in 2024
VOCS utitelled at 1 age C	Junty Lanui	m during the mist semi	-annual monitoring C	Vent in 2024

Well	VOC Detected	Result, μg/L	Reporting Limit, µg/L	Verified/ Awaiting Verification	Groundwater Standard, µg/L
	1,1-Dichloroethane	1.0	1	Awaiting Verification	140 ^b
NOW 16	1,4-Dichlorobenzene	1.8	1	Awaiting Verification	75ª
MW-16	Benzene	1.5	1	Awaiting Verification	5ª
	Chlorobenzene	5.2	1	Awaiting Verification	100ª
	Benzene	1.3	1	Verified	5ª
MW-1D	Chlorobenzene	1.5	1	Awaiting Verification	100ª
	Chloroethane	1.1	1	Awaiting Verification	2800 ^b
	Benzene	2.2	1	Verified	5ª
MW-20	Chlorobenzene	1.2	1	Verified	100ª
	Chloroethane	1.2	1	Verified	2800 ^b

a - USEPA MCL

Many of the VOCs detected have been detected previously, but some not since 2022 monitoring. Because many of these VOCs were detected at these wells during the previous monitoring event at similar concentrations, these current detections are statistically significant.

The VOCs detected are typically associated with landfill gas migration. The detections are low-level and do not exceed ground water quality standards. Historical VOC detections in the ground water are summarized in Attachment D. The verified VOC detections were evaluated against the GWPS using confidence limits. The results are shown in Attachment E. The 95% LCLs for each of the verified VOC detections are below ground water quality standards.

b – Iowa Statewide Standard

Attachment A

Summary of the Data obtained during the First Semi-Annual Monitoring event in 2024

Table 1

Analytical Data Summary for 3/18/2024

1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	Constituents	Units	GWD-1	MW-10	MW-13	MW-14	MW-16	MW-17	MW-18	MW-1D	MW-20	MW-3	MW-44	MW-7
1,1,2,2-betrachoroethane ug/L <1														
1.1,2-Inchioroethane ug L														
1.1-dichloroethane	1,1,2,2-tetrachloroethane		-				<1			<1				
1.1-dichiorotehylene	1,1,2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
12.3-birchicorpopane	1,1-dichloroethane	ug/L	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	<1	<1
1,2-dibrome-Si-chiropropage	1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromo-Schioropropage ygl, c1 c1 c1 c1 c1 c1 c1 c	1.2.3-trichloropropane	ua/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dibromoethane			<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-dichlorobenzene			<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
1.2-dichloropropane			<1	<1	<1	<1	<1	<1	<1	<1	<1		<1	
1,2-dichloropropane														
1.4-dichlorobenizene ug/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	II '									-				
2-butanone (mek)			-											
2-hexanone (mbk)										-				
4-methyl-2-pentanone (mibk) ug/L c5 c5 c5 c5 c5 c5 c5 c										_				
Acetone														
Acrylonitrile										_				
Anfimony, total														
Arsenic, total														
Barlum, total Barlum, total Barlum, total Barlum, total Barlum, total Bernzene Ug/L C1,0														
Benzene														
Beryllium, total Deryllium,	'													
Bromochioromethane ug/L c1 c1 c1 c1 c1 c1 c1 c	III									_		-		
Bromodichloromethane Ug/L C1 C1 C1 C1 C1 C1 C1 C														
Bromoform Ug/L C1 C1 C1 C1 C1 C1 C1 C	Bromochloromethane		-		<1		<1			<1				
Bromomethane	Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total ug/L <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8	Bromoform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon disulfide Ug/L <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Bromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon disulfide ug/L <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Cadmium, total		<.8	<.8	.8	<.8	<.8	.8	<.8	<.8	<.8	<.8	<.8	<.8
Carbon tetrachloride	Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobethane	Carbon tetrachloride		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroethane	Chlorobenzene		<1.0	<1.0	<1.0	<1.0	5.2	<1.0	<1.0	1.5	1.2	<1.0	<1.0	<1.0
Chloroform										_				
Chloromethane	III =											-		
Chromium, total Ug/L Chromium, total Cis-1,2-dichloroethylene Ug/L Chromium, total Cis-1,2-dichloroethylene Ug/L Chromium, total Chromium, total Ug/L Chromium, total Chromium, total	III =									-	-			
Cis-1,2-dichloroethylene Ug/L C1 C1 C1 C1 C1 C1 C1 C														
Cis-1,3-dichloropropene										-				
Cobalt, total ug/L										• 1				
Copper, total ug/L <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4			-							• 1				
Dibromochloromethane Ug/L C1 C1 C1 C1 C1 C1 C1 C														
Dibromomethane Ug/L C1 C1 C1 C1 C1 C1 C1 C														
Ethylbenzene	III									-				
Lead, total ug/L														
Methyl iodide ug/L ug/L ug/L <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1			-							•	•			
Methylene chloride ug/L <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <td></td> <td></td> <td></td> <td>-</td> <td></td>				-										
Nickél, total ug/L <4.0 <4.0 <4.0 <4.0 26.1 <4.0 6.3 19.0 31.4 <4.0 <4.0 14.2 Selenium, total ug/L <4														
Selenium, total ug/L <4				-		_				-				
Silver, total ug/L <4	Nickel, total		<4.0	<4.0	<4.0	<4.0	26.1	<4.0		19.0	31.4	<4.0		
Silver, total ug/L <4	Selenium, total	ug/L	<4	<4	<4	<4	<4	<4		<4	<4	<4	<4	<4
Styrene ug/L <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Silver, total		<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Tetrachloroethylene ug/L <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 </td <td>Styrene</td> <td></td> <td><1</td>	Styrene		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
			<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Trans-1,2-dichloroethylene ug/L <1 <1 <1 <1 <1 <1 <1 <							l							
	III		-							-				
	Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 1

Analytical Data Summary for 3/18/2024

Constituents	Units	GWD-1	MW-10	MW-13	MW-14	MW-16	MW-17	MW-18	MW-1D	MW-20	MW-3	MW-44	MW-7
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl chloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	ug/L	<20.0	28.3	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Attachment B

Summary Tables and Graphs for the Interwell Comparisons

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Antimony, total	ug/L	MW-1	09/17/2014	ND	2.0000		
Antimony, total	ug/L	MW-1	04/28/2015	ND	2.0000		
Antimony, total	ug/L	MW-1	10/06/2015	ND	2.0000		
Antimony, total	ug/L	MW-1	04/23/2016	ND	2.0000		
Antimony, total	ug/L	MW-1	09/01/2016	ND	2.0000		
Antimony, total	ug/L	MW-1	03/21/2017	ND	2.0000		
Antimony, total	ug/L	MW-1	10/13/2017	ND	2.0000		
Antimony, total	ug/L	MW-1	03/09/2018	ND	2.0000		
Antimony, total	ug/L	MW-1	09/06/2018	ND	2.0000		
Antimony, total	ug/L	MW-1	03/07/2019	ND	2.0000		
Antimony, total	ug/L	MW-1	09/26/2019	ND	2.0000		
Antimony, total	ug/L	MW-1	04/02/2020	ND	2.0000		
Antimony, total	ug/L	MW-1	09/17/2020	ND	2.0000		
Antimony, total	ug/L	MW-1	03/25/2021	ND	2.0000		
Antimony, total	ug/L	MW-1	09/16/2021	ND	2.0000		
Antimony, total	ug/L	MW-1	03/16/2022	ND	2.0000		
Antimony, total	ug/L	MW-1	09/01/2022	ND	2.0000		
Antimony, total	ug/L	MW-1	03/24/2023	ND	2.0000		
Arsenic, total	ug/L	MW-1	09/17/2014	ND	5.6000		
Arsenic, total	ug/L	MW-1	04/28/2015	ND	4.0000		
Arsenic, total	ug/L	MW-1	10/06/2015	ND	4.0000		
Arsenic, total	ug/L	MW-1	04/23/2016	ND	4.0000		
Arsenic, total	ug/L	MW-1 MW-1	09/01/2016	ND ND	4.0000		
Arsenic, total Arsenic, total	ug/L ug/L	MW-1	03/21/2017 10/13/2017	ND	4.0000 4.0000		
Arsenic, total	ug/L ug/L	MW-1	03/09/2018	ND	4.0000		
Arsenic, total	ug/L ug/L	MW-1	09/06/2018	ND	4.0000		
Arsenic, total	ug/L	MW-1	03/07/2019	ND	4.0000		
Arsenic, total	ug/L	MW-1	09/26/2019	ND	4.0000		
Arsenic, total	ug/L	MW-1	04/02/2020	ND	4.0000		
Arsenic, total	ug/L	MW-1	09/17/2020	ND	4.0000		
Arsenic, total	ug/L	MW-1	03/25/2021	ND	4.0000		
Arsenic, total	ug/L	MW-1	09/16/2021	ND	4.0000		
Arsenic, total	ug/L	MW-1	03/16/2022	ND	4.0000		
Arsenic, total	ug/L	MW-1	09/01/2022	ND	4.0000		
Arsenic, total	ug/L	MW-1	03/24/2023	ND	4.0000		
Barium, total	ug/L	MW-1	09/17/2014		684.0000		
Barium, total	ug/L	MW-1	04/28/2015		456.0000		
Barium, total	ug/L	MW-1	10/06/2015		279.0000		
Barium, total	ug/L	MW-1	04/23/2016		306.0000		
Barium, total	ug/L	MW-1	09/01/2016		283.0000		
Barium, total	ug/L	MW-1	03/21/2017		310.0000		
Barium, total	ug/L	MW-1	10/13/2017		455.0000		
Barium, total	ug/L	MW-1	03/09/2018		484.0000		
Barium, total	ug/L	MW-1	09/06/2018		361.0000		
Barium, total	ug/L	MW-1	03/07/2019		493.0000		
Barium, total	ug/L	MW-1	09/26/2019		405.0000		
Barium, total	ug/L	MW-1	04/02/2020		452.0000		
Barium, total	ug/L	MW-1	09/17/2020		492.0000		
Barium, total	ug/L	MW-1	03/25/2021		715.0000		
Barium, total	ug/L	MW-1	09/16/2021		467.0000		
Barium, total	ug/L	MW-1	03/16/2022		642.0000		
Barium, total	ug/L	MW-1	09/01/2022		580.0000		
Barium, total	ug/L	MW-1	03/24/2023	NID	657.0000		
Beryllium, total	ug/L	MW-1	09/17/2014	ND	4.0000		
Beryllium, total	ug/L	MW-1	04/28/2015	ND	4.0000		
Beryllium, total	ug/L	MW-1	10/06/2015	ND	4.0000		
Beryllium, total	ug/L	MW-1	04/23/2016	ND	4.0000		
Beryllium, total	ug/L	MW-1	09/01/2016	ND	4.0000		
Beryllium, total	ug/L	MW-1 MW-1	03/21/2017	ND	4.0000		
Beryllium, total Beryllium, total	ug/L		10/13/2017	ND ND	4.0000		
Beryllium, total	ug/L ug/L	MW-1 MW-1	03/09/2018 09/06/2018	ND	4.0000 4.0000		
Beryllium, total	ug/L ug/L	MW-1	03/07/2019	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-1	09/26/2019	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-1	04/02/2020	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-1	09/17/2020	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-1	03/25/2021	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-1	09/16/2021	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-1	03/16/2022	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-1	09/01/2022	ND	4.0000		
	ug/L	MW-1	03/24/2023	ND	4.0000		
Bervillum total							1
Beryllium, total Cadmium, total	ug/L	MW-1	09/17/2014	ND	0.8000		

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Cadmium, total ug/L MW-1 10/06/2015 N.D 0.8000 Cadmium, total ug/L MW-1 09/01/2016 N.D 0.8000 N.D 0.8000 Cadmium, total ug/L MW-1 09/01/2016 N.D 0.8000 N.D 0.8000 Cadmium, total ug/L MW-1 10/13/2017 N.D 0.8000 N.D 0.8000 Cadmium, total ug/L MW-1 09/06/2018 N.D 0.8000 Cadmium, total ug/L MW-1 09/06/2019 N.D 0.8000 Cadmium, total ug/L MW-1 09/06/2019 N.D 0.8000 Cadmium, total ug/L MW-1 09/17/2020 N.D 0.8000 Cadmium, total ug/L MW-1 09/17/2020 N.D 0.8000 Cadmium, total ug/L MW-1 09/16/2021 N.D 0.8000 Cadmium, total ug/L MW-1 09/16/2021 N.D 0.8000 Cadmium, total ug/L MW-1 09/16/2021 N.D 0.8000 Cadmium, total ug/L WW-1 09/06/2014 N.D 0.8000 Cadmium, total ug/L WW-1 09/06/2014 N.D 0.8000 Cadmium, total ug/L WW-1 09/06/2014 N.D 0.8000 Cadmium, total ug/L WW-1 09/07/2014 N.D 0.8000 Cadmium, total ug/L WW-1 09/07/2014 N.D 0.8000 Chromium, total ug/L WW-1 09/07/2015 N.D 0.8000 Chromium, total ug/L WW-1 09/07/2016 N.D 0.8000 Chromium, total ug/L WW-1 09/07/2	Constituent	Units	Well	Date		Result	Adjusted	
Cadmium, total ug/L WW-1 09801/2016 ND 0.8000 Cadmium, total ug/L WW-1 101/3/2017 ND 0.8000 Cadmium, total ug/L WW-1 09906/2018 ND 0.8000 Cadmium, total ug/L WW-1 09926/2019 ND 0.8000 Cadmium, total ug/L WW-1 09926/2019 ND 0.8000 Cadmium, total ug/L WW-1 09926/2019 ND 0.8000 Cadmium, total ug/L WW-1 09917/2020 ND 0.8000 Cadmium, total ug/L WW-1 09916/2021 ND 0.8000 Cadmium, total ug/L WW-1 09916/2022 ND 0.8000 Cadmium, total ug/L WW-1 09916/2022 ND 0.8000 Cadmium, total ug/L WW-1 09917/2014 ND 0.8000 Chromium, total ug/L WW-1 0.921/2015 ND 0.8000 Chromium, total ug/L WW-1 0.921/2016 ND 0.8000 Chromium, total ug/L WW-1 0.921/2017 ND 0.8000 Chromium, total ug/L WW-1 0.926/2019 ND 0.800	Cadmium, total	ug/L		10/06/2015		0.8000		
Cadmium, total ug/L WW-1 03/21/2017 ND 0.8000 Cadmium, total ug/L WW-1 03/09/2018 ND 0.8000 Cadmium, total ug/L WW-1 03/09/2018 ND 0.8000 Cadmium, total ug/L WW-1 03/07/2019 ND 0.8000 Cadmium, total ug/L WW-1 03/07/2019 ND 0.8000 Cadmium, total ug/L WW-1 09/02/2020 ND 0.8000 Cadmium, total ug/L WW-1 09/02/2020 ND 0.8000 Cadmium, total ug/L WW-1 09/17/2020 ND 0.8000 Cadmium, total ug/L WW-1 09/17/2020 ND 0.8000 Cadmium, total ug/L WW-1 03/16/2022 ND 0.8000 Cadmium, total ug/L WW-1 03/16/2025 ND 0.8000 Chromium, total ug/L WW-1 09/16/2021 ND 0.8000 Chromium, total ug/L WW-1 09/16/2015 ND 0.8000 Chromium, total ug/L WW-1 03/12/2016 ND 0.8000 Chromium, total ug/L WW-1 03/12/2017 ND 0.8000						0.8000		
Cadmium, total ug/L MW-1 0,13/2017 ND 0,8000 Cadmium, total ug/L MW-1 0,906/2018 ND 0,8000 Cadmium, total ug/L MW-1 0,906/2018 ND 0,8000 Cadmium, total ug/L MW-1 0,906/2019 ND 0,8000 Cadmium, total ug/L MW-1 0,906/2019 ND 0,8000 Cadmium, total ug/L MW-1 0,916/2020 ND 0,8000 Cadmium, total ug/L MW-1 0,916/2020 ND 0,8000 Cadmium, total ug/L MW-1 0,916/2020 ND 0,8000 Cadmium, total ug/L MW-1 0,916/2021 ND 0,8000 Cadmium, total ug/L MW-1 0,916/2022 ND 0,8000 Cadmium, total ug/L MW-1 0,916/2022 ND 0,8000 Cadmium, total ug/L MW-1 0,916/2021 ND 0,8000 Chromium, total ug/L MW-1 0,916/2021 ND 0,8000 Chromium, total ug/L MW-1 0,916/2021 ND 0,8000 Chromium, total ug/L MW-1 0,916/2015 ND 8,0000 Chromium, total ug/L MW-1 0,906/2015 ND 8,0000 Chromium, total ug/L MW-1 0,906/2015 ND 8,0000 Chromium, total ug/L MW-1 0,906/2016 ND 8,0000 Chromium, total ug/L MW-1 0,906/2018 ND 8,0000 Chromium	Cadmium, total	ug/L		09/01/2016	ND	0.8000		
Cadmium, total ug/L MW-1 03/09/2018 ND 0.8000 Cadmium, total ug/L MW-1 03/07/2019 ND 0.8000 Cadmium, total ug/L MW-1 03/07/2019 ND 0.8000 Cadmium, total ug/L MW-1 03/07/2020 ND 0.8000 Cadmium, total ug/L MW-1 03/07/2020 ND 0.8000 Cadmium, total ug/L MW-1 03/25/2021 ND 0.8000 Cadmium, total ug/L MW-1 03/25/2021 ND 0.8000 Cadmium, total ug/L MW-1 03/25/2021 ND 0.8000 Cadmium, total ug/L MW-1 03/16/2022 ND 0.8000 Cadmium, total ug/L MW-1 03/16/2023 ND 0.8000 Chromium, total ug/L MW-1 04/28/2015 ND 8.0000 Chromium, total ug/L MW-1 04/23/2016 ND 8.0000 Chromium, total ug/L MW-1 04/23/2016 ND 8.0000 Chromium, total ug/L MW-1 03/21/2017 ND 8.0000 Chromium, total ug/L MW-1 03/09/2018 ND 8.0000 Chromium, total ug/L MW-1 03/25/2021 ND 8.0000 Chromium, total ug/L MW-1 03/26/2021 ND 8.0000 Chromium, total ug/L MW-1 03/26/2021 ND 8.0000 Chromi	Cadmium, total	ug/L	MW-1	03/21/2017	ND	0.8000		
Cadmium, total	Cadmium, total	ug/L	MW-1	10/13/2017	ND	0.8000		
Cadmium, total ug/L MW-1 03/07/2019 ND 0.8000 Cadmium, total ug/L MW-1 04/02/2020 ND 0.8000 Cadmium, total ug/L MW-1 04/02/2020 ND 0.8000 Cadmium, total ug/L MW-1 03/16/2021 ND 0.8000 Cadmium, total ug/L MW-1 03/16/2022 ND 0.8000 Chromium, total ug/L MW-1 09/17/2014 Chromium, total ug/L MW-1 04/28/2015 ND 8.0000 Chromium, total ug/L MW-1 04/28/2015 ND 8.0000 Chromium, total ug/L MW-1 03/21/2017 ND 8.0000 Chromium, total ug/L MW-1 03/21/2017 ND 8.0000 Chromium, total ug/L MW-1 03/21/2017 ND 8.0000 Chromium, total ug/L MW-1 03/08/2018 ND 8.0000 Chromium, total ug/L MW-1 03/26/2021 ND 8.0000 Chromium, total u	Cadmium, total	ug/L	MW-1	03/09/2018	ND	0.8000		
Cadmium, total ug/L MW-1 09/26/2019 ND 0.8000 Cadmium, total ug/L MW-1 09/17/2020 ND 0.8000 Cadmium, total ug/L MW-1 09/17/2020 ND 0.8000 Cadmium, total ug/L MW-1 03/25/2021 ND 0.8000 Cadmium, total ug/L MW-1 03/25/2021 ND 0.8000 Cadmium, total ug/L MW-1 03/16/2022 ND 0.8000 Cadmium, total ug/L MW-1 03/12/2023 ND 0.8000 Cadmium, total ug/L MW-1 09/17/2014 8.9000 Chromium, total ug/L MW-1 09/17/2015 ND 8.0000 Chromium, total ug/L MW-1 04/23/2016 ND 8.0000 Chromium, total ug/L MW-1 03/21/2017 ND 8.0000 Chromium, total ug/L MW-1 03/21/2017 ND 8.0000 Chromium, total ug/L MW-1 03/21/2017 ND 8.0000 Chromium, total ug/L MW-1 03/20/2018 ND 8.0000 Chromium, total ug/L MW-1 03/20/2018 ND 8.0000 Chromium, total ug/L MW-1 03/20/2018 ND 8.0000 Chromium, total ug/L MW-1 03/20/2019 ND 8.0000 Chromium, total ug/L MW-1 03/20/2020 ND 8.0000 Chromium, total ug/L MW-1 03/20/2020 ND 8.0000 Chromium, total ug/L MW-1 03/25/2021 ND 8.0000 Chromium	Cadmium, total	ug/L	MW-1	09/06/2018	ND	0.8000		
Cadmium, total ug/L MW-1 04/02/2020 ND 0.8000 Cadmium, total ug/L MW-1 03/25/2021 ND 0.8000 Cadmium, total ug/L MW-1 03/25/2021 ND 0.8000 Cadmium, total ug/L MW-1 03/16/2022 ND 0.8000 Cadmium, total ug/L MW-1 03/16/2022 ND 0.8000 Cadmium, total ug/L MW-1 03/16/2022 ND 0.8000 Chromium, total ug/L MW-1 03/24/2023 ND 0.8000 Chromium, total ug/L MW-1 04/28/2015 ND 8.0000 Chromium, total ug/L MW-1 03/21/2017 ND 8.0000 Chromium, total ug/L MW-1 03/21/2017 ND 8.0000 Chromium, total ug/L MW-1 03/21/2017 ND 8.0000 Chromium, total ug/L MW-1 03/09/2018 ND 8.0000 Chromium, total ug/L MW-1 03/25/2021 ND 8.0000 Chromium, total ug/L WW-1 03/25/2021	Cadmium, total	ug/L	MW-1	03/07/2019	ND	0.8000		
Cadmium, total ug/L MW-1 09/17/2020 ND 0.8000 Cadmium, total ug/L MW-1 03/25/2021 ND 0.8000 Cadmium, total ug/L MW-1 03/16/2022 ND 0.8000 Cadmium, total ug/L MW-1 03/24/2023 ND 0.8000 Chromium, total ug/L MW-1 09/17/2014 8.9000 Chromium, total ug/L MW-1 04/28/2015 ND 8.0000 Chromium, total ug/L MW-1 04/28/2016 ND 8.0000 Chromium, total ug/L MW-1 03/21/2017 ND 8.0000 Chromium, total ug/L MW-1 03/21/2017 ND 8.0000 Chromium, total ug/L MW-1 03/21/2017 ND 8.0000 Chromium, total ug/L MW-1 03/20/2018 ND 8.0000 Chromium, total ug/L MW-1 03/20/2018 ND 8.0000 Chromium, total ug/L MW-1 03/20/2019 ND 8.0000 Chromium, total ug/L MW-1 03/20/2019 ND 8.0000 Chromium, total ug/L MW-1 03/20/2020 ND 8.0000 Chromium, total ug/L MW-1 03/20/2020 ND 8.0000 Chromium, total ug/L MW-1 03/25/2021 ND 8.0000 Chromium, total ug/L WW-1 03/25/2021 ND	Cadmium, total	ug/L	MW-1	09/26/2019	ND	0.8000		
Cadmium, total ug/L WW-1 03/25/2021 ND 0.8000 Cadmium, total ug/L WW-1 03/16/2022 ND 0.8000 Cadmium, total ug/L WW-1 03/16/2023 ND 0.8000 Chromium, total ug/L WW-1 04/28/2015 ND 8.0000 Chromium, total ug/L WW-1 04/28/2016 ND 8.0000 Chromium, total ug/L WW-1 04/28/2016 ND 8.0000 Chromium, total ug/L WW-1 03/21/2017 ND 8.0000 Chromium, total ug/L WW-1 03/21/2017 ND 8.0000 Chromium, total ug/L WW-1 03/09/2018 ND 8.0000 Chromium, total ug/L WW-1 03/09/2018 ND 8.0000 Chromium, total ug/L WW-1 03/09/2018 ND 8.0000 Chromium, total ug/L WW-1 03/09/2019 ND 8.0000 Chromium, total ug/L WW-1 03/09/2019 ND 8.0000 Chromium, total ug/L WW-1 03/09/2019 ND 8.0000 Chromium, total ug/L WW-1 03/25/2021	Cadmium, total	ug/L	MW-1	04/02/2020	ND	0.8000		
Cadmium, total ug/L WW-1 09/16/2021 ND 0.8000 Cadmium, total ug/L WW-1 09/17/2022 ND 0.8000 Cadmium, total ug/L WW-1 09/17/2023 ND 0.8000 Chromium, total ug/L WW-1 09/17/2014 8.9000 Chromium, total ug/L WW-1 09/17/2014 8.9000 Chromium, total ug/L WW-1 09/17/2014 8.9000 Chromium, total ug/L WW-1 09/17/2014 ND 8.0000 Chromium, total ug/L WW-1 0/06/2015 ND 8.0000 Chromium, total ug/L WW-1 0/06/2016 ND 8.0000 Chromium, total ug/L WW-1 0/06/2016 ND 8.0000 Chromium, total ug/L WW-1 03/21/2017 ND 8.0000 Chromium, total ug/L WW-1 03/21/2017 ND 8.0000 Chromium, total ug/L WW-1 03/20/2018 ND 8.0000 Chromium, total ug/L WW-1 03/20/2018 ND 8.0000 Chromium, total ug/L WW-1 03/20/2018 ND 8.0000 Chromium, total ug/L WW-1 09/26/2019 ND 8.0000 Chromium, total ug/L WW-1 09/26/2019 ND 8.0000 Chromium, total ug/L WW-1 09/26/2019 ND 8.0000 Chromium, total ug/L WW-1 03/25/2021 ND 8.0000 Chromium, total ug/L WW-1 03/26/2023 ND 8.0000	Cadmium, total	ug/L	MW-1	09/17/2020	ND	0.8000		
Cadmium, total ug/L MW-1 03/16/2022 ND 0.8000 Cadmium, total ug/L MW-1 03/42/2023 ND 0.8000 Chromium, total ug/L MW-1 09/17/2014 8.9000 Chromium, total ug/L MW-1 09/17/2014 8.9000 Chromium, total ug/L MW-1 01/2012015 ND 8.0000 Chromium, total ug/L MW-1 01/06/2015 ND 8.0000 Chromium, total ug/L MW-1 01/06/2015 ND 8.0000 Chromium, total ug/L MW-1 09/17/2014 ND 8.0000 Chromium, total ug/L MW-1 09/12/2016 ND 8.0000 Chromium, total ug/L MW-1 03/21/2017 ND 8.0000 Chromium, total ug/L MW-1 03/21/2017 ND 8.0000 Chromium, total ug/L MW-1 03/09/2018 ND 8.0000 Chromium, total ug/L MW-1 03/09/2018 ND 8.0000 Chromium, total ug/L MW-1 09/06/2018 ND 8.0000 Chromium, total ug/L MW-1 09/26/2019 ND 8.0000 Chromium, total ug/L MW-1 09/17/2020 ND 8.0000 Chromium, total ug/L MW-1 03/25/2021 ND 8.0000 Chromium, total ug/L MW-1 03/26/2022 ND 8.0000 Chromium, total ug/L WW-1 03/26/2023 ND				03/25/2021		0.8000		
Cadmium, total ug/L MW-1 09/01/2022 ND 0.8000 Cadmium, total ug/L MW-1 09/17/2014 8.9000 Chromium, total ug/L MW-1 09/17/2014 8.9000 Chromium, total ug/L MW-1 09/17/2014 ND 8.0000 Chromium, total ug/L MW-1 09/17/2016 ND 8.0000 Chromium, total ug/L MW-1 09/01/2016 ND 8.0000 Chromium, total ug/L MW-1 09/01/2016 ND 8.0000 Chromium, total ug/L MW-1 03/21/2017 ND 8.0000 Chromium, total ug/L MW-1 03/21/2017 ND 8.0000 Chromium, total ug/L MW-1 03/21/2017 ND 8.0000 Chromium, total ug/L MW-1 03/09/2018 ND 8.0000 Chromium, total ug/L MW-1 03/09/2018 ND 8.0000 Chromium, total ug/L MW-1 03/09/2019 ND 8.0000 Chromium, total ug/L MW-1 03/09/2019 ND 8.0000 Chromium, total ug/L MW-1 03/25/2019 ND 8.0000 Chromium, total ug/L MW-1 09/17/2020 ND 8.0000 Chromium, total ug/L MW-1 09/18/2021 ND 8.0000 Chromium, total ug/L MW-1 09/18/2021 ND 8.0000 Chromium, total ug/L MW-1 09/18/2022 ND 8.0000 Chromium, total ug/L MW-1 09/18/2023 ND 8.0000 Chromium, total ug/L MW-1 09/18/2023 ND 8.0000 Chromium, total ug/L MW-1 09/18/2023 ND 8.0000 Chromium, total ug/L WW-1 09/18/2021 ND 8.0000 Chromium, total ug/L WW-1 09/18/2022 ND 8.0000 Chromium, total ug/L WW-1 09/18/2023 ND	Cadmium, total	ug/L	MW-1		ND	0.8000		
Cadmium, total ug/L MW-1 03/24/2023 ND 0.8000	Cadmium, total	ug/L	MW-1	03/16/2022	ND	0.8000		
Chromium, total ug/L WW-1 09/17/2014 8.9000 Chromium, total ug/L WW-1 04/28/2015 ND 8.0000 Chromium, total ug/L WW-1 04/28/2016 ND 8.0000 Chromium, total ug/L WW-1 04/28/2016 ND 8.0000 Chromium, total ug/L WW-1 03/21/2017 ND 8.0000 Chromium, total ug/L WW-1 03/09/2018 ND 8.0000 Chromium, total ug/L WW-1 03/09/2018 ND 8.0000 Chromium, total ug/L WW-1 03/09/2018 ND 8.0000 Chromium, total ug/L WW-1 09/26/2019 ND 8.0000 Chromium, total ug/L WW-1 09/26/2019 ND 8.0000 Chromium, total ug/L WW-1 09/26/2019 ND 8.0000 Chromium, total ug/L WW-1 09/17/2020 ND 8.0000 Chromium, total ug/L WW-1 09/18/2021 ND 8.0000 Chromium, total ug/L WW-1 09/18/2022 ND 8.0000 Chromium, total ug/L WW-1 09/18/2022 ND 8.0000 Chromium, total ug/L WW-1 09/18/2023 ND 8.0000 Chromium, total ug/L WW-1 09/18/2023 ND 8.0000 Choalt, total ug/L WW-1 09/18/2023 ND 8.0000 Chromium, total ug/L WW-1 09/18/2023	Cadmium, total	ug/L	MW-1		ND	0.8000		
Chromium, total Ug/L MW-1 04/28/2015 ND 8.0000	Cadmium, total	ug/L	MW-1	03/24/2023	ND	0.8000		
Chromium, total Ug/L MW-1 04/23/2016 ND 8.0000 ND 8.0000 ND ND	Chromium, total	ug/L	MW-1	09/17/2014		8.9000		
Chromium, total Ug/L MW-1 09/01/2016 ND 8.0000		ug/L	MW-1	04/28/2015	ND	8.0000		
Chromium, total cyl. MW-1 09/01/2016 ND 8.0000 ND 8.0000 ND	Chromium, total	ug/L	MW-1	10/06/2015	ND	8.0000		
Chromium, total Chromium, total Chromium, total Ug/L WW-1 10/13/2017 ND 8.0000 ND 8.0000 ND 10/13/2018 ND 8.0000 ND 8.0000 ND 10/13/2018 ND 8.0000 ND 10/13/2018 ND 8.0000 ND 10/13/2018 ND 8.0000 ND 8.0000 ND 10/13/2018 ND 8.0000 ND 8.0000 ND 10	Chromium, total	ug/L	MW-1	04/23/2016	ND	8.0000		
Chromium, total	Chromium, total	ug/L	MW-1	09/01/2016	ND	8.0000		
Chromium, total Chromium, total Chromium, total Chromium, total Ug/L WW-1 03/09/2018 ND 8.0000	Chromium, total		MW-1	03/21/2017	ND	8.0000		
Chromium, total Ug/L WW-1 03/07/2019 ND 8.0000 N	Chromium, total	ug/L						
Chromium, total Chromium, total Chromium, total ug/L WV-1 09/26/2019 ND 8.0000 ND 8.	Chromium, total		MW-1	03/09/2018	ND	8.0000		
Chromium, total chromium, to	Chromium, total	ug/L	MW-1	09/06/2018	ND	8.0000		
Chromium, total chromium, to	Chromium, total	ug/L	MW-1	03/07/2019	ND	8.0000		
Chromium, total Chromium, total Chromium, total ug/L WW-1 09/17/2020 ND 8.0000 Chromium, total ug/L WW-1 09/16/2021 ND 8.0000 Chromium, total ug/L WW-1 09/16/2021 ND 8.0000 Chromium, total ug/L WW-1 09/16/2021 ND 8.0000 Chromium, total ug/L WW-1 09/16/2022 ND 8.0000 Chromium, total ug/L WW-1 09/16/2022 ND 8.0000 Chromium, total ug/L WW-1 09/01/2022 ND 8.0000 Chromium, total ug/L WW-1 09/01/2022 ND 8.0000 Cobalt, total ug/L WW-1 09/01/2021 ND 8.0000 Cobalt, total ug/L WW-1 04/28/2015 Cobalt, total ug/L WW-1 04/28/2015 Cobalt, total ug/L WW-1 04/28/2015 Cobalt, total ug/L WW-1 04/28/2016 ND 0.8000 Cobalt, total ug/L WW-1 09/01/2016 ND 0.8000 Cobalt, total ug/L WW-1 09/01/2016 ND 0.8000 Cobalt, total ug/L WW-1 09/01/2016 ND 0.8000 Cobalt, total ug/L WW-1 03/09/2018 Cobalt, total ug/L WW-1 09/06/2018 ND 0.8000 Cobalt, total ug/L WW-1 09/06/2019 11.2000 Cobalt, total ug/L WW-1 09/06/2019 11.2000 Cobalt, total ug/L WW-1 09/06/2019 11.2000 Cobalt, total ug/L WW-1 09/06/2019 0.4000 0.8000 *** Cobalt, total ug/L WW-1 09/06/2021 0.4000 0.8000 *** Cobalt, total ug/L WW-1 09/06/2021 0.4000 0.8000 *** Cobalt, total ug/L WW-1 09/06/2021 0.4000 0.8000 *** Cobalt, total ug/L WW-1 09/06/2015 ND 0.4000 0.8000 Cobalt, total ug/L WW-1 09/06/2018 ND 0.4000 0.8000 Cobalt, total ug/L WW-1 09/06/2018 ND 0.4000 0.8000			MW-1	09/26/2019	ND	8.0000		
Chromium, total Chromium, total Chromium, total ug/L WW-1 09/16/2021 ND 8.0000 Chromium, total ug/L WW-1 09/16/2021 ND 8.0000 Chromium, total ug/L WW-1 09/01/2022 ND 8.0000 Chromium, total ug/L WW-1 09/01/2014 30.6000 Chromium, total ug/L WW-1 09/01/2015 Ghromium, total ug/L WW-1 04/28/2015 Ghromium, total ug/L WW-1 10/06/2015 ND 0.8000 Chromium, total ug/L WW-1 04/23/2016 ND 0.8000 Chromium, total ug/L WW-1 09/01/2016 ND 0.8000 Chromium, total ug/L WW-1 09/01/2016 ND 0.8000 Chromium, total ug/L WW-1 09/01/2016 ND 0.8000 Chromium, total ug/L WW-1 03/09/2018 Chromium, total ug/L WW-1 03/09/2018 Chromium, total ug/L WW-1 09/06/2018 ND 0.8000 Chromium, total ug/L WW-1 09/06/2018 ND 0.8000 Chromium, total ug/L WW-1 09/06/2018 ND 0.8000 Chromium, total ug/L WW-1 09/06/2019 ND 0.8000 Chromium, total ug/L WW-1 09/17/2020 ND 0.4000 0.8000 ND 0.8000 Chromium, total ug/L WW-1 09/17/2020 ND 0.4000 0.8000 ND 0.800	Chromium, total	ug/L	MW-1	04/02/2020	ND	8.0000		
Chromium, total	Chromium, total	ug/L	MW-1	09/17/2020	ND	8.0000		
Chromium, total	Chromium, total	ug/L	MW-1	03/25/2021	ND	8.0000		
Chromium, total	Chromium, total		MW-1	09/16/2021	ND	8.0000		
Chromium, total	Chromium, total		MW-1	03/16/2022	ND	8.0000		
Cobalt, total	Chromium, total	ug/L	MW-1	09/01/2022	ND	8.0000		
Cobalt, total	Chromium, total		MW-1	03/24/2023	ND	8.0000		
Cobalt, total			MW-1	09/17/2014		30.6000		
Cobalt, total			MW-1					
Cobalt, total	Cobalt, total	ug/L	MW-1	10/06/2015	ND	0.8000		
Cobalt, total			MW-1	04/23/2016	ND	0.8000		
Cobalt, total			MW-1	09/01/2016	ND			
Cobalt, total			MW-1	03/21/2017	ND	0.8000		
Cobalt, total	Cobalt, total		MW-1	10/13/2017	ND	0.8000		
Cobalt, total	Cobalt, total	ug/L	MW-1	03/09/2018		2.5000		
Cobalt, total	Cobalt, total	ug/L	MW-1	09/06/2018	ND	0.8000		
Cobalt, total Ug/L WW-1 09/17/2020 ND 0.4000 0.8000 **	Cobalt, total	ug/L	MW-1	03/07/2019		4.7000		
Cobalt, total	Cobalt, total	ug/L	MW-1	09/26/2019		11.2000		
Cobalt, total ug/L MW-1 03/25/2021 11.8000 0.8000 Cobalt, total ug/L MW-1 09/16/2021 0.4000 Cobalt, total ug/L MW-1 09/16/2022 2.1000 Cobalt, total ug/L MW-1 09/01/2022 9.4000 Cobalt, total ug/L MW-1 03/24/2023 14.1000 Copper, total ug/L MW-1 03/24/2023 14.1000 Copper, total ug/L MW-1 09/17/2014 11.6000 Copper, total ug/L MW-1 04/28/2015 ND 4.0000 Copper, total ug/L MW-1 10/06/2015 ND 4.0000 Copper, total ug/L MW-1 04/23/2016 ND 4.0000 Copper, total ug/L MW-1 09/01/2016 ND 4.0000 Copper, total ug/L MW-1 09/01/2016 ND 4.0000 Copper, total ug/L MW-1 03/21/2017 ND 4.0000 Copper, total ug/L MW-1 10/13/2017 ND 4.0000 Copper, total ug/L MW-1 10/13/2017 ND 4.0000 Copper, total ug/L MW-1 03/09/2018 ND 4.0000 Copper, total ug/L MW-1 03/07/2019 ND 4.0000 Copper, total ug/L MW-1 09/26/2019 ND 4.0000 Copper, total ug/L MW-1 09/17/2020 ND 4.0000 Copper, total ug/L MW-1 09/16/2021 ND 4.0000 Copper, total ug/L MW-1 09/16/2021 ND 4.0000 Copper, total ug/L MW-1 03/25/2021 ND 4.0000 Copper, total ug/L MW-1 03/24/2023 ND 4.0000 Copper, total ug/L MW-1 03/24/2023 ND 4.0000 Copper, total ug/L MW-1 09/17/2014 Lead, total ug/L MW-1 04/28/2015 ND 4.0000 Lead, total ug/L MW-1 10/06/2015 ND 4.0000 Lead, total ug/L MW-1 10/06/2015 ND 4.0000 Lead, total ug/L MW-1 10	Cobalt, total	ug/L	MW-1	04/02/2020		2.7000		
Cobalt, total	Cobalt, total	ug/L	MW-1	09/17/2020	ND	0.4000	0.8000	**
Cobalt, total			MW-1					
Cobalt, total								
Cobalt, total								
Cobalt, total Ug/L MW-1 03/24/2023 14.1000			MW-1	09/01/2022				
Copper, total			MW-1	03/24/2023				
Copper, total				09/17/2014				
Copper, total	Copper, total	ug/L		04/28/2015				
Copper, total								
Copper, total ug/L MW-1 10/13/2017 ND 4.0000	Copper, total			04/23/2016				
Copper, total Ug/L MW-1 03/21/2017 ND 4.0000				09/01/2016				
Copper, total ug/L MW-1 03/09/2018 ND 4.0000 Copper, total ug/L MW-1 09/06/2018 ND 4.0000 Copper, total ug/L MW-1 03/07/2019 ND 4.0000 Copper, total ug/L MW-1 09/26/2019 ND 4.0000 Copper, total ug/L MW-1 09/26/2019 ND 4.0000 Copper, total ug/L MW-1 09/17/2020 ND 4.0000 Copper, total ug/L MW-1 09/17/2020 ND 4.0000 Copper, total ug/L MW-1 03/25/2021 ND 4.0000 Copper, total ug/L MW-1 09/16/2021 ND 4.0000 Copper, total ug/L MW-1 03/16/2022 ND 4.0000 Copper, total ug/L MW-1 03/16/2022 ND 4.0000 Copper, total ug/L MW-1 09/01/2022 ND 4.0000 Copper, total ug/L MW-1 03/24/2023 ND 4.0000 Copper, total ug/L MW-1 09/17/2014 Copper, total ug/L MW-1 09/17/2014 Copper, total ug/L MW-1 04/28/2015 ND 4.0000 Copper, total ug/L	Copper, total		MW-1	03/21/2017	ND			
Copper, total	Copper, total	ug/L	MW-1	10/13/2017	ND	4.0000		
Copper, total			MW-1		ND			
Copper, total ug/L MW-1 03/07/2019 ND 4.0000 Copper, total ug/L MW-1 09/26/2019 ND 4.0000 Copper, total ug/L MW-1 04/02/2020 ND 4.0000 Copper, total ug/L MW-1 09/17/2020 ND 4.0000 Copper, total ug/L MW-1 03/25/2021 ND 4.0000 Copper, total ug/L MW-1 09/16/2021 ND 4.0000 Copper, total ug/L MW-1 03/16/2022 ND 4.0000 Copper, total ug/L MW-1 09/01/2022 ND 4.0000 Copper, total ug/L MW-1 03/24/2023 ND 4.0000 Copper, total ug/L MW-1 09/17/2014 6.9000 Lead, total ug/L MW-1 04/28/2015 ND 4.0000 Lead, total ug/L MW-1 10/06/2015 ND 4.0000			MW-1	09/06/2018	ND			
Copper, total ug/L MW-1 09/26/2019 ND 4.0000 Copper, total ug/L MW-1 04/02/2020 ND 4.0000 Copper, total ug/L MW-1 09/17/2020 ND 4.0000 Copper, total ug/L MW-1 09/18/2021 ND 4.0000 Copper, total ug/L MW-1 09/16/2021 ND 4.0000 Copper, total ug/L MW-1 03/16/2022 ND 4.0000 Copper, total ug/L MW-1 03/16/2022 ND 4.0000 Copper, total ug/L MW-1 09/01/2022 ND 4.0000 Copper, total ug/L MW-1 03/24/2023 ND 4.0000 Copper, total ug/L MW-1 09/17/2014 Copper, total ug/L MW-1 09/17/2014 Copper, total ug/L MW-1 04/28/2015 ND 4.0000 Copper, total ug/L			MW-1		ND	4.0000		
Copper, total ug/L MW-1 04/02/2020 ND 4.0000 Copper, total ug/L MW-1 09/17/2020 ND 4.0000 Copper, total ug/L MW-1 03/25/2021 ND 4.0000 Copper, total ug/L MW-1 09/16/2021 ND 4.0000 Copper, total ug/L MW-1 03/16/2022 ND 4.0000 Copper, total ug/L MW-1 09/01/2022 ND 4.0000 Copper, total ug/L MW-1 09/24/2023 ND 4.0000 Lead, total ug/L MW-1 04/28/2015 ND 4.0000 Lead, total ug/L MW-1 04/28/2015 ND 4.0000 Lead, total ug/L MW-1 10/06/2015 ND 4.0000			MW-1		ND			
Copper, total ug/L MW-1 09/17/2020 ND 4.0000 Copper, total ug/L MW-1 03/25/2021 ND 4.0000 Copper, total ug/L MW-1 09/16/2021 ND 4.0000 Copper, total ug/L MW-1 03/16/2022 ND 4.0000 Copper, total ug/L MW-1 09/01/2022 ND 4.0000 Copper, total ug/L MW-1 03/24/2023 ND 4.0000 Lead, total ug/L MW-1 04/28/2015 ND 4.0000 Lead, total ug/L MW-1 10/06/2015 ND 4.0000	Copper, total	ug/L	MW-1	04/02/2020	ND	4.0000		
Copper, total ug/L MW-1 03/25/2021 ND 4.0000 Copper, total ug/L MW-1 09/16/2021 ND 4.0000 Copper, total ug/L MW-1 03/16/2022 ND 4.0000 Copper, total ug/L MW-1 09/01/2022 ND 4.0000 Copper, total ug/L MW-1 03/24/2023 ND 4.0000 Lead, total ug/L MW-1 09/17/2014 6.9000 Lead, total ug/L MW-1 04/28/2015 ND 4.0000 Lead, total ug/L MW-1 10/06/2015 ND 4.0000			MW-1	09/17/2020	ND	4.0000		
Copper, total ug/L MW-1 09/16/2021 ND 4.0000 Copper, total ug/L MW-1 03/16/2022 ND 4.0000 Copper, total ug/L MW-1 09/01/2022 ND 4.0000 Copper, total ug/L MW-1 03/24/2023 ND 4.0000 Lead, total ug/L MW-1 09/17/2014 6.9000 Lead, total ug/L MW-1 04/28/2015 ND 4.0000 Lead, total ug/L MW-1 10/06/2015 ND 4.0000								
Copper, total ug/L MW-1 03/16/2022 ND 4.0000 Copper, total ug/L MW-1 09/01/2022 ND 4.0000 Copper, total ug/L MW-1 03/24/2023 ND 4.0000 Lead, total ug/L MW-1 09/17/2014 6.9000 Lead, total ug/L MW-1 04/28/2015 ND 4.0000 Lead, total ug/L MW-1 10/06/2015 ND 4.0000								
Copper, total ug/L MW-1 09/01/2022 ND 4.0000 Copper, total ug/L MW-1 03/24/2023 ND 4.0000 Lead, total ug/L MW-1 09/17/2014 6.9000 Lead, total ug/L MW-1 04/28/2015 ND 4.0000 Lead, total ug/L MW-1 10/06/2015 ND 4.0000								
Copper, total ug/L MW-1 03/24/2023 ND 4.0000 Lead, total ug/L MW-1 09/17/2014 6.9000 Lead, total ug/L MW-1 04/28/2015 ND 4.0000 Lead, total ug/L MW-1 10/06/2015 ND 4.0000								
Lead, total ug/L MW-1 09/17/2014 6.9000 Lead, total ug/L MW-1 04/28/2015 ND 4.0000 Lead, total ug/L MW-1 10/06/2015 ND 4.0000								
Lead, total ug/L MW-1 04/28/2015 ND 4.0000 Lead, total ug/L MW-1 10/06/2015 ND 4.0000								\Box
Lead, total ug/L MW-1 10/06/2015 ND 4.0000					ND			
LEGU. LULA	Lead, total	ug/L	MW-1	04/23/2016	ND	4.0000		

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Lead, total	ug/L	MW-1	09/01/2016	ND	4.0000		
Lead, total	ug/L	MW-1	03/21/2017	ND	4.0000		
Lead, total	ug/L	MW-1	10/13/2017	ND	4.0000		
Lead, total	ug/L	MW-1	03/09/2018	ND	4.0000		
Lead, total	ug/L	MW-1	09/06/2018		7.4000		
Lead, total	ug/L	MW-1	03/07/2019	ND	4.0000		
Lead, total	ug/L	MW-1	09/26/2019	ND	4.0000		
Lead, total	ug/L	MW-1	04/02/2020	ND	4.0000		
Lead, total	ug/L	MW-1	09/17/2020	ND	4.0000		
Lead, total	ug/L	MW-1	03/25/2021	ND	4.0000		
Lead, total	ug/L	MW-1	09/16/2021	ND	4.0000		
Lead, total	ug/L	MW-1	03/16/2022	ND	4.0000		
Lead, total	ug/L ug/L	MW-1	09/01/2022	ND	4.0000		
		MW-1	03/24/2023	ND			
Lead, total Nickel, total	ug/L ug/L	MW-1	09/17/2014	טאו	4.0000		
· '		MW-1			60.4000		
Nickel, total	ug/L		04/28/2015		20.6000		
Nickel, total	ug/L	MW-1	10/06/2015	ND	10.6000		
Nickel, total	ug/L	MW-1	04/23/2016	ND	4.0000		
Nickel, total	ug/L	MW-1	09/01/2016	ND	4.0000		
Nickel, total	ug/L	MW-1	03/21/2017	ND	4.0000		
Nickel, total	ug/L	MW-1	10/13/2017		13.3000		
Nickel, total	ug/L	MW-1	03/09/2018		20.1000		
Nickel, total	ug/L	MW-1	09/06/2018	ND	4.0000		
Nickel, total	ug/L	MW-1	03/07/2019		16.7000		
Nickel, total	ug/L	MW-1	09/26/2019		9.1000		
Nickel, total	ug/L	MW-1	04/02/2020		5.1000		
Nickel, total	ug/L	MW-1	09/17/2020	ND	4.0000		
Nickel, total	ug/L	MW-1	03/25/2021		28.1000		
Nickel, total	ug/L	MW-1	09/16/2021	ND	4.0000		
Nickel, total	ug/L	MW-1	03/16/2022		15.5000		
Nickel, total	ug/L	MW-1	09/01/2022		12.6000		
Nickel, total	ug/L	MW-1	03/24/2023		21.5000		
Selenium, total	ug/L	MW-1	09/17/2014	ND	4.0000		
Selenium, total	ug/L	MW-1	04/28/2015	ND	4.0000		
Selenium, total	ug/L	MW-1	10/06/2015	ND	4.0000		
Selenium, total	ug/L	MW-1	04/23/2016	ND	4.0000		
Selenium, total	ug/L	MW-1	09/01/2016	ND	4.0000		
Selenium, total	ug/L	MW-1	03/21/2017	ND	4.0000		
Selenium, total	ug/L	MW-1	10/13/2017	ND	4.0000		
Selenium, total	ug/L	MW-1	03/09/2018	ND	4.0000		
Selenium, total	ug/L	MW-1	09/06/2018	ND	4.0000		
Selenium, total	ug/L	MW-1	03/07/2019	ND	4.0000		
Selenium, total	ug/L	MW-1	09/26/2019	ND	4.0000		
Selenium, total	ug/L	MW-1	04/02/2020	ND	4.0000		
Selenium, total	ug/L	MW-1	09/17/2020	ND	4.0000		
Selenium, total	ug/L	MW-1	03/25/2021	ND	4.0000		
Selenium, total	ug/L	MW-1	09/16/2021	ND	4.0000		
Selenium, total	ug/L	MW-1	03/16/2022	ND	4.0000		
Selenium, total	ug/L	MW-1	09/01/2022	ND	4.0000		
Selenium, total	ug/L	MW-1	03/24/2023	ND	4.0000		
Silver, total	ug/L	MW-1	09/17/2014	ND	4.0000		
Silver, total	ug/L	MW-1	04/28/2015	ND	4.0000		
Silver, total	ug/L	MW-1	10/06/2015	ND	4.0000		
Silver, total	ug/L	MW-1	04/23/2016	ND	4.0000		
Silver, total	ug/L	MW-1	09/01/2016	ND	4.0000		
Silver, total	ug/L	MW-1	03/21/2017	ND	4.0000		
Silver, total	ug/L	MW-1	10/13/2017	ND	4.0000		
Silver, total	ug/L	MW-1	03/09/2018	ND	4.0000		
Silver, total	ug/L	MW-1	09/06/2018	ND	8.0000	4.0000	**
Silver, total	ug/L	MW-1	03/07/2019	ND	4.0000		
Silver, total	ug/L	MW-1	09/26/2019	ND	4.0000		
Silver, total	ug/L	MW-1	04/02/2020	ND	4.0000		
Silver, total	ug/L	MW-1	09/17/2020	ND	4.0000		
Silver, total	ug/L	MW-1	03/25/2021	ND	4.0000		
Silver, total	ug/L	MW-1	09/16/2021	ND	4.0000		
Silver, total	ug/L	MW-1	03/16/2022	ND	4.0000		
Silver, total	ug/L	MW-1	09/01/2022	ND	4.0000		
Silver, total	ug/L	MW-1	03/24/2023	ND	4.0000		
Thallium, total	ug/L	MW-1	09/17/2014	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-1	04/28/2015	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-1	10/06/2015	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-1	04/23/2016	ND	4.0000	2.0000	**
			09/01/2016				**
Thallium, total	ug/L	MW-1	09/01/2010	ND	4.0000	2.0000	

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Thallium, total	ug/L	MW-1	10/13/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-1	03/09/2018	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-1	09/06/2018	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-1	03/07/2019	ND	2.0000		
Thallium, total	ug/L	MW-1	09/26/2019	ND	2.0000		
Thallium, total	ug/L	MW-1	04/02/2020	ND	2.0000		
Thallium, total	ug/L	MW-1	09/17/2020	ND	2.0000		
Thallium, total	ug/L	MW-1	03/25/2021	ND	2.0000		
Thallium, total	ug/L	MW-1	09/16/2021	ND	2.0000		
Thallium, total	ug/L	MW-1	03/16/2022	ND	2.0000		
Thallium, total	ug/L	MW-1	09/01/2022	ND	2.0000		
Thallium, total	ug/L	MW-1	03/24/2023	ND	2.0000		
Vanadium, total	ug/L	MW-1	09/17/2014	ND	20.0000		
Vanadium, total	ug/L	MW-1	04/28/2015	ND	20.0000		
Vanadium, total	ug/L	MW-1	10/06/2015	ND	20.0000		
Vanadium, total	ug/L	MW-1	04/23/2016	ND	20.0000		
Vanadium, total	ug/L	MW-1	09/01/2016	ND	20.0000		
Vanadium, total	ug/L	MW-1	03/21/2017	ND	20.0000		
Vanadium, total	ug/L	MW-1	10/13/2017	ND	20.0000		
Vanadium, total	ug/L	MW-1	03/09/2018	ND	20.0000		
Vanadium, total	ug/L	MW-1	09/06/2018	ND	20.0000		
Vanadium, total	ug/L	MW-1	03/07/2019	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-1	09/26/2019	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-1	04/02/2020	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-1	09/17/2020	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-1	03/25/2021	ND	20.0000		
Vanadium, total		MW-1	09/16/2021	ND	20.0000		
	ug/L	MW-1		1 1			
Vanadium, total	ug/L	MW-1	03/16/2022	ND	20.0000		
Vanadium, total	ug/L		09/01/2022	ND	20.0000		
Vanadium, total	ug/L	MW-1	03/24/2023	ND	20.0000		
Zinc, total	ug/L	MW-1	09/17/2014		32.0000		
Zinc, total	ug/L	MW-1	04/28/2015		12.3000		
Zinc, total	ug/L	MW-1	10/06/2015		8.8000		
Zinc, total	ug/L	MW-1	04/23/2016	ND	20.0000		**
Zinc, total	ug/L	MW-1	09/01/2016	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-1	03/21/2017	ND	8.0000	20.0000	
Zinc, total	ug/L	MW-1	10/13/2017	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-1	03/09/2018		11.5000		
Zinc, total	ug/L	MW-1	09/06/2018		15.6000		**
Zinc, total	ug/L	MW-1	03/07/2019	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-1	09/26/2019		27.7000		
Zinc, total	ug/L	MW-1	04/02/2020	ND	20.0000		
Zinc, total	ug/L	MW-1	09/17/2020	ND	20.0000		
Zinc, total	ug/L	MW-1	03/25/2021	ND	20.0000		
Zinc, total	ug/L	MW-1	09/16/2021	ND	20.0000		
Zinc, total	ug/L	MW-1	03/16/2022	ND	20.0000		
Zinc, total	ug/L	MW-1	09/01/2022	ND	20.0000		
Zinc, total	ug/L	MW-1	03/24/2023	ND	20.0000		
Antimony, total	ug/L	MW-17	09/18/2014	ND	2.0000		
Antimony, total	ug/L	MW-17	04/28/2015	ND	2.0000		
Antimony, total	ug/L	MW-17	10/06/2015	ND	2.0000		
Antimony, total	ug/L	MW-17	04/23/2016	ND	2.0000		
Antimony, total	ug/L	MW-17	09/01/2016	ND	2.0000		
Antimony, total	ug/L	MW-17	03/21/2017	ND	2.0000		
Antimony, total	ug/L	MW-17	10/13/2017	ND	2.0000		
Antimony, total	ug/L	MW-17	03/09/2018	ND	2.0000		
Antimony, total	ug/L	MW-17	09/06/2018	ND	2.0000		
Antimony, total	ug/L	MW-17	03/07/2019	ND	2.0000		
Antimony, total	ug/L	MW-17	09/26/2019	ND	2.0000		
Antimony, total	ug/L	MW-17	04/02/2020	ND	2.0000		
Antimony, total	ug/L	MW-17	09/17/2020	ND	2.0000		
Antimony, total	ug/L	MW-17	03/25/2021	ND	2.0000		
Antimony, total	ug/L	MW-17	09/16/2021	ND	2.0000		
Antimony, total	ug/L	MW-17	03/16/2022	ND	2.0000		
Antimony, total	ug/L	MW-17	09/01/2022	ND	2.0000		
Antimony, total	ug/L	MW-17	03/24/2023	ND	2.0000		
Antimony, total	ug/L	MW-17	09/07/2023	ND	2.0000		
Antimony, total	ug/L ug/L	MW-17	03/18/2024	ND	2.0000		
Arsenic, total		MW-17	09/18/2014	ND	4.0000		
Arsenic, total	ug/L ug/L	MW-17	04/28/2015	ND	4.0000		
Arsenic, total							
	ug/L	MW-17	10/06/2015	ND	4.0000		
Arsenic, total	ug/L	MW-17	04/23/2016	ND	4.0000		
	/!						
Arsenic, total Arsenic, total	ug/L ug/L	MW-17 MW-17	09/01/2016 03/21/2017	ND ND	4.0000 4.0000		

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Arsenic, total	ug/L	MW-17	10/13/2017	ND	4.0000		
Arsenic, total	ug/L	MW-17	03/09/2018	ND	4.0000		
Arsenic, total	ug/L	MW-17	09/06/2018	ND	4.0000		
Arsenic, total	ug/L	MW-17	03/07/2019	ND	4.0000		
Arsenic, total Arsenic, total	ug/L	MW-17 MW-17	09/26/2019	ND ND	4.0000 4.0000		
Arsenic, total	ug/L ug/L	MW-17	04/02/2020 09/17/2020	ND	4.0000		
Arsenic, total	ug/L	MW-17	03/25/2021	ND	4.0000		
Arsenic, total	ug/L	MW-17	09/16/2021	ND	4.0000		
Arsenic, total	ug/L	MW-17	03/16/2022	ND	4.0000		
Arsenic, total	ug/L	MW-17	09/01/2022	ND	4.0000		
Arsenic, total	ug/L	MW-17	03/24/2023	ND	4.0000		
Arsenic, total	ug/L	MW-17	09/07/2023	ND	4.0000		
Arsenic, total	ug/L	MW-17	03/18/2024	ND	4.0000		
Barium, total	ug/L	MW-17	09/18/2014		91.4000		
Barium, total	ug/L	MW-17	04/28/2015		106.0000		
Barium, total Barium, total	ug/L ug/L	MW-17 MW-17	10/06/2015 04/23/2016		85.3000 99.2000		
Barium, total	ug/L ug/L	MW-17	09/01/2016		88.5000		
Barium, total	ug/L	MW-17	03/21/2017		93.7000		
Barium, total	ug/L	MW-17	10/13/2017		89.5000		
Barium, total	ug/L	MW-17	03/09/2018		86.5000		
Barium, total	ug/L	MW-17	09/06/2018		83.2000		
Barium, total	ug/L	MW-17	03/07/2019		99.9000		
Barium, total	ug/L	MW-17	09/26/2019		95.8000		
Barium, total	ug/L	MW-17	04/02/2020		102.0000		
Barium, total	ug/L	MW-17	09/17/2020		94.6000		
Barium, total	ug/L	MW-17	03/25/2021		92.2000		
Barium, total	ug/L	MW-17	09/16/2021		89.6000		
Barium, total	ug/L	MW-17	03/16/2022		89.9000		
Barium, total Barium, total	ug/L ug/L	MW-17 MW-17	09/01/2022 03/24/2023		90.3000 84.3000		
Barium, total	ug/L	MW-17	09/07/2023		92.4000		
Barium, total	ug/L	MW-17	03/18/2024		96.4000		
Beryllium, total	ug/L	MW-17	09/18/2014	ND	4.0000		
Beryllium, total	ug/L	MW-17	04/28/2015	ND	4.0000		
Beryllium, total	ug/L	MW-17	10/06/2015	ND	4.0000		
Beryllium, total	ug/L	MW-17	04/23/2016	ND	4.0000		
Beryllium, total	ug/L	MW-17	09/01/2016	ND	4.0000		
Beryllium, total	ug/L	MW-17	03/21/2017	ND	4.0000		
Beryllium, total	ug/L	MW-17	10/13/2017	ND	4.0000		
Beryllium, total Beryllium, total	ug/L ug/L	MW-17 MW-17	03/09/2018 09/06/2018	ND ND	4.0000 4.0000		
Beryllium, total	ug/L ug/L	MW-17	03/07/2019	ND	4.0000		
Beryllium, total	ug/L	MW-17	09/26/2019	ND	4.0000		
Beryllium, total	ug/L	MW-17	04/02/2020	ND	4.0000		
Beryllium, total	ug/L	MW-17	09/17/2020	ND	4.0000		
Beryllium, total	ug/L	MW-17	03/25/2021	ND	4.0000		
Beryllium, total	ug/L	MW-17	09/16/2021	ND	4.0000		
Beryllium, total	ug/L	MW-17	03/16/2022	ND	4.0000		
Beryllium, total	ug/L	MW-17	09/01/2022	ND	4.0000		
Beryllium, total	ug/L	MW-17	03/24/2023	ND	4.0000		
Beryllium, total	ug/L	MW-17 MW-17	09/07/2023 03/18/2024	ND ND	4.0000 4.0000		
Beryllium, total Cadmium, total	ug/L ug/l	MW-17	09/18/2024	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-17	04/28/2015	ND	0.8000		
Cadmium, total	ug/L	MW-17	10/06/2015	ND	0.8000		
Cadmium, total	ug/L	MW-17	04/23/2016	ND	0.8000		
Cadmium, total	ug/L	MW-17	09/01/2016	ND	0.8000		
Cadmium, total	ug/L	MW-17	03/21/2017	ND	0.8000		
Cadmium, total	ug/L	MW-17	10/13/2017		1.4000		
Cadmium, total	ug/L	MW-17	03/09/2018	ND	0.8000		
Cadmium, total	ug/L	MW-17	09/06/2018	ND	0.8000		
Cadmium, total	ug/L	MW-17	03/07/2019	ND	0.8000		
Cadmium, total Cadmium, total	ug/L	MW-17 MW-17	09/26/2019	ND ND	0.8000 0.8000		
Cadmium, total	ug/L ug/L	MW-17	04/02/2020 09/17/2020	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-17	03/25/2021	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-17	09/16/2021	ND	0.8000		
Cadmium, total	ug/L	MW-17	03/16/2022	ND	0.8000		
Cadmium, total	ug/L	MW-17	09/01/2022	ND	0.8000		
Cadmium, total	ug/L	MW-17	03/24/2023	ND	0.8000		
Cadmium, total	ug/L	MW-17	09/07/2023	ND	0.8000		
Cadmium, total	ug/L	MW-17	03/18/2024	1	0.8000		1

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Chromium, total	ug/L	MW-17	09/18/2014	ND	8.0000	•	\vdash
Chromium, total	ug/L ug/L	MW-17	04/28/2015	ND	8.0000		
Chromium, total	ug/L ug/L	MW-17	10/06/2015	ND	8.0000		
Chromium, total	ug/L	MW-17	04/23/2016	ND	8.0000		
Chromium, total	ug/L ug/L	MW-17	09/01/2016	ND	8.0000		
Chromium, total	ug/L ug/L	MW-17	03/21/2017	ND	8.0000		
Chromium, total	ug/L ug/L	MW-17	10/13/2017	ND	8.0000		
Chromium, total	ug/L ug/L	MW-17	03/09/2018	ND	8.0000		
Chromium, total	ug/L ug/L	MW-17	09/06/2018	ND	8.0000		
Chromium, total	ug/L ug/L	MW-17	03/07/2019	ND	8.0000		
Chromium, total	ug/L ug/L	MW-17	09/26/2019	ND	8.0000		
Chromium, total	ug/L	MW-17	04/02/2020	ND	8.0000		
Chromium, total	ug/L	MW-17	09/17/2020	ND	8.0000		
Chromium, total	ug/L	MW-17	03/25/2021	ND	8.0000		
Chromium, total	ug/L ug/L	MW-17	09/16/2021	ND	8.0000		
Chromium, total	ug/L ug/L	MW-17	03/16/2022	ND	8.0000		
Chromium, total	ug/L	MW-17	09/01/2022	ND	8.0000		
Chromium, total	ug/L ug/L	MW-17	03/24/2023	ND	8.0000		
Chromium, total	ug/L ug/L	MW-17	09/07/2023	ND	8.0000		
Chromium, total	ug/L ug/L	MW-17	03/18/2024	ND	8.0000		
Cobalt, total		MW-17	09/18/2014	ND	0.8000		
Cobalt, total	ug/L ug/L	MW-17	04/28/2015	ND	0.8000		
Cobalt, total	ug/L ug/L	MW-17	10/06/2015	ND	0.8000		
Cobalt, total	ug/L ug/L	MW-17	04/23/2016	ND	0.8000		
Cobalt, total	ug/L ug/L	MW-17	09/01/2016	ND	0.8000		
II =		MW-17		ND	0.8000		
Cobalt, total Cobalt, total	ug/L ug/L	MW-17	03/21/2017 10/13/2017	ND	0.8000		
		MW-17		ND			
Cobalt, total	ug/L	MW-17	03/09/2018	ND	0.8000		
Cobalt, total	ug/L	1	09/06/2018	ND	0.8000		
Cobalt, total	ug/L	MW-17 MW-17	03/07/2019		0.8000		
Cobalt, total	ug/L	1	09/26/2019	ND	0.8000		
Cobalt, total	ug/L	MW-17	04/02/2020	ND	0.8000	0.0000	**
Cobalt, total	ug/L	MW-17	09/17/2020	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-17	03/25/2021	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-17	09/16/2021	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-17	03/16/2022	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-17	09/01/2022	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-17	03/24/2023	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-17	09/07/2023	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-17 MW-17	03/18/2024	ND ND	0.4000	0.8000	
Copper, total	ug/L	MW-17	09/18/2014 04/28/2015	ND	4.0000		
Copper, total	ug/L	MW-17	10/06/2015	ND	4.0000 4.0000		
Copper, total	ug/L	MW-17		ND			
Copper, total	ug/L	MW-17	04/23/2016	ND	4.0000		
Copper, total	ug/L	MW-17	09/01/2016 03/21/2017	ND	4.0000 4.0000		
Copper, total	ug/L	MW-17	10/13/2017	ND	4.0000		
Copper, total	ug/L ug/L	MW-17		ND	4.0000		
Copper, total		1	03/09/2018				
Copper, total	ug/L	MW-17 MW-17	09/06/2018	ND ND	4.0000		
Copper, total	ug/L		03/07/2019		4.0000		
Copper, total	ug/L	MW-17	09/26/2019	ND	4.0000		
Copper, total	ug/L	MW-17	04/02/2020	ND ND	4.0000		
Copper, total	ug/L	MW-17 MW-17	09/17/2020	ND	4.0000		
Copper, total	ug/L	MW-17	03/25/2021 09/16/2021	ND	4.0000 4.0000		
Copper, total	ug/L ug/L	MW-17	03/16/2022	ND	4.0000		
Copper, total		1	09/01/2022				
Copper, total	ug/L	MW-17		ND ND	4.0000		
Copper, total	ug/L	MW-17 MW-17	03/24/2023	ND ND	4.0000		
Copper, total	ug/L		09/07/2023		4.0000		
Copper, total Lead, total	ug/L	MW-17	03/18/2024	ND	4.0000		\vdash
II '	ug/L	MW-17	09/18/2014	ND	4.0000		
Lead, total	ug/L	MW-17	04/28/2015	ND	4.0000		
Lead, total	ug/L	MW-17	10/06/2015	ND	4.0000		
Lead, total	ug/L	MW-17	04/23/2016	ND	4.0000		
Lead, total	ug/L	MW-17	09/01/2016	ND	4.0000		
Lead, total	ug/L	MW-17	03/21/2017	ND	4.0000		
Lead, total	ug/L	MW-17	10/13/2017	ND	4.0000		
Lead, total	ug/L	MW-17	03/09/2018	ND	4.0000		
Lead, total	ug/L	MW-17	09/06/2018	ND	4.0000		
Lead, total	ug/L	MW-17	03/07/2019	ND	4.0000		
Lead, total	ug/L	MW-17	09/26/2019	ND	4.0000		
Lead, total	ug/L	MW-17	04/02/2020	ND	4.0000		
		1 N N N I 17	ロロバイフバンハつハ		4 0000		
Lead, total Lead, total	ug/L ug/L	MW-17 MW-17	09/17/2020 03/25/2021	ND ND	4.0000 4.0000		

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Lead, total	ug/L	MW-17	09/16/2021	ND	4.0000		
Lead, total	ug/L	MW-17	03/16/2022	ND	4.0000		
∟ead, total	ug/L	MW-17	09/01/2022	ND	4.0000		
₋ead, total	ug/L	MW-17	03/24/2023	ND	4.0000		
₋ead, total	ug/L	MW-17	09/07/2023	ND	4.0000		
₋ead, total	ug/L	MW-17	03/18/2024	ND	4.0000		
Nickel, total	ug/L	MW-17	09/18/2014	ND	4.0000		
Nickel, total	ug/L	MW-17	04/28/2015	ND	4.0000		
Nickel, total	ug/L	MW-17	10/06/2015	ND	4.0000		
Nickel, total	ug/L	MW-17	04/23/2016	ND	4.0000		
Nickel, total	ug/L	MW-17	09/01/2016	ND	4.0000		
Nickel, total	ug/L	MW-17	03/21/2017	ND	4.0000		
Nickel, total	ug/L	MW-17	10/13/2017	ND	4.0000		
Nickel, total	ug/L	MW-17	03/09/2018	ND	4.0000		
Nickel, total	ug/L	MW-17	09/06/2018	ND	4.0000		
Nickel, total	ug/L	MW-17	03/07/2019	ND	4.0000		
Nickel, total	ug/L	MW-17	09/26/2019	ND	4.0000		
Nickel, total	ug/L	MW-17	04/02/2020	ND	4.0000		
Nickel, total	ug/L	MW-17	09/17/2020	ND	4.0000		
Nickel, total	ug/L	MW-17	03/25/2021	ND	4.0000		
Nickel, total	ug/L	MW-17	09/16/2021	ND	4.0000		
Nickel, total	ug/L	MW-17	03/16/2022	ND	4.0000		
Nickel, total	ug/L	MW-17	09/01/2022	ND	4.0000		
Nickel, total	ug/L	MW-17	03/24/2023	ND	4.0000		
Nickel, total	ug/L	MW-17	09/07/2023	ND	4.0000		
Nickel, total	ug/L	MW-17	03/18/2024	ND	4.0000		
Selenium, total	ug/L	MW-17	09/18/2014	ND	4.0000		
Selenium, total	ug/L	MW-17	04/28/2015	ND	4.0000		
Selenium, total	ug/L	MW-17	10/06/2015	ND	4.0000		
Selenium, total	ug/L	MW-17	04/23/2016	ND	4.0000		
Selenium, total	ug/L	MW-17	09/01/2016	ND	4.0000		
Selenium, total	ug/L	MW-17	03/21/2017	ND	4.0000		
Selenium, total	ug/L	MW-17	10/13/2017	ND	4.0000		
Selenium, total	ug/L	MW-17	03/09/2018	ND	4.0000		
Selenium, total	ug/L	MW-17	09/06/2018	ND	4.0000		
Selenium, total	ug/L	MW-17	03/07/2019	ND	4.0000		
Selenium, total	ug/L	MW-17	09/26/2019	ND	4.0000		
Selenium, total	ug/L	MW-17	04/02/2020	ND	4.0000		
Selenium, total	ug/L	MW-17	09/17/2020	ND	4.0000		
Selenium, total	ug/L	MW-17	03/25/2021	ND	4.0000		
Selenium, total	ug/L	MW-17	09/16/2021	ND	4.0000		
Selenium, total	ug/L	MW-17	03/16/2022	ND	4.0000		
Selenium, total	ug/L	MW-17	09/01/2022	ND	4.0000		
Selenium, total	ug/L	MW-17	03/24/2023	ND	4.0000		
Selenium, total	ug/L	MW-17	09/07/2023	ND	4.0000		
Selenium, total	ug/L	MW-17	03/18/2024	ND	4.0000		
Silver, total	ug/L	MW-17	09/18/2014	ND	4.0000		
Silver, total	ug/L	MW-17	04/28/2015	ND	4.0000		
Silver, total	ug/L	MW-17	10/06/2015	ND	4.0000		
Silver, total	ug/L	MW-17	04/23/2016	ND	4.0000		
Silver, total	ug/L	MW-17	09/01/2016	ND	4.0000		
Silver, total	ug/L	MW-17	03/21/2017	ND	4.0000		
Silver, total	ug/L	MW-17	10/13/2017	ND	4.0000		
Silver, total	ug/L	MW-17	03/09/2018	ND	4.0000		
Silver, total	ug/L	MW-17	09/06/2018	ND	8.0000	4.0000	**
Silver, total	ug/L	MW-17	03/07/2019	ND	4.0000		
Silver, total	ug/L	MW-17	09/26/2019	ND	4.0000		
Silver, total	ug/L	MW-17	04/02/2020	ND	4.0000		
Silver, total	ug/L	MW-17	09/17/2020	ND	4.0000		
Silver, total	ug/L	MW-17	03/25/2021	ND	4.0000		
Silver, total	ug/L	MW-17	09/16/2021	ND	4.0000		
Silver, total	ug/L	MW-17	03/16/2022	ND	4.0000		
Silver, total	ug/L	MW-17	09/01/2022	ND	4.0000		
Silver, total	ug/L	MW-17	03/24/2023	ND	4.0000		
Silver, total	ug/L	MW-17	09/07/2023	ND	4.0000		
Silver, total	ug/L	MW-17	03/18/2024	ND	4.0000		
Thallium, total	ug/L ug/L	MW-17	09/18/2014	ND	4.0000	2.0000	**
Thallium, total	ug/L ug/L	MW-17	04/28/2015	ND	4.0000	2.0000	**
,				ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-17	10/06/2015 04/23/2016				**
Thallium, total	ug/L	MW-17		ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-17	09/01/2016	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-17	03/21/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L ug/L	MW-17 MW-17	10/13/2017 03/09/2018	ND ND	4.0000 4.0000	2.0000 2.0000	**
Thallium, total							

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Thallium, total	ug/L	MW-17	09/06/2018	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-17	03/07/2019	ND	2.0000		
Thallium, total	ug/L	MW-17	09/26/2019	ND	2.0000		
Thallium, total	ug/L	MW-17	04/02/2020	ND	2.0000		
Thallium, total	ug/L	MW-17	09/17/2020	ND	2.0000		
Thallium, total	ug/L	MW-17	03/25/2021	ND	2.0000		
Thallium, total	ug/L	MW-17	09/16/2021	ND	2.0000		
Thallium, total	ug/L	MW-17	03/16/2022	ND	2.0000		
Thallium, total	ug/L	MW-17	09/01/2022	ND	2.0000		
Thallium, total	ug/L	MW-17	03/24/2023	ND	2.0000		
Thallium, total	ug/L	MW-17	09/07/2023	ND	2.0000		
Thallium, total	ug/L	MW-17	03/18/2024	ND	2.0000		
Vanadium, total	ug/L	MW-17	09/18/2014	ND	20.0000		
Vanadium, total	ug/L	MW-17	04/28/2015	ND	20.0000		
Vanadium, total	ug/L	MW-17	10/06/2015	ND	20.0000		
Vanadium, total	ug/L	MW-17	04/23/2016	ND	20.0000		
Vanadium, total	ug/L	MW-17	09/01/2016	ND	20.0000		
Vanadium, total	ug/L	MW-17	03/21/2017	ND	20.0000		
Vanadium, total	ug/L	MW-17	10/13/2017	ND	20.0000		
Vanadium, total	ug/L	MW-17	03/09/2018	ND	20.0000		
Vanadium, total	ug/L	MW-17	09/06/2018	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-17	03/07/2019	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-17	09/26/2019	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-17	04/02/2020	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-17	09/17/2020	ND	20.0000		
Vanadium, total		MW-17	03/25/2021	ND			
Vanadium, total	ug/L ug/L	MW-17	09/16/2021	ND	20.0000 20.0000		
Vanadium, total		MW-17		ND			
	ug/L	MW-17	03/16/2022		20.0000		
Vanadium, total	ug/L		09/01/2022	ND	20.0000		
Vanadium, total	ug/L	MW-17	03/24/2023	ND	20.0000		
Vanadium, total	ug/L	MW-17	09/07/2023	ND	20.0000		
Vanadium, total	ug/L	MW-17	03/18/2024	ND	20.0000		
Zinc, total	ug/L	MW-17	09/18/2014	ND	8.1000	00 0000	**
Zinc, total	ug/L	MW-17	04/28/2015	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-17	10/06/2015	ND	8.0000	20.0000	
Zinc, total	ug/L	MW-17	04/23/2016	ND	20.0000	00 0000	**
Zinc, total	ug/L	MW-17	09/01/2016	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-17	03/21/2017	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-17	10/13/2017	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-17	03/09/2018	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-17	09/06/2018	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-17	03/07/2019	ND	8.0000	20.0000	
Zinc, total	ug/L	MW-17	09/26/2019	NID	8.5000		
Zinc, total	ug/L	MW-17	04/02/2020	ND	20.0000		
Zinc, total	ug/L	MW-17	09/17/2020	ND	20.0000		
Zinc, total	ug/L	MW-17	03/25/2021	ND	20.0000		
Zinc, total	ug/L	MW-17	09/16/2021	ND	20.0000		
Zinc, total	ug/L	MW-17	03/16/2022	ND	20.0000		
Zinc, total	ug/L	MW-17	09/01/2022	ND	20.0000		
Zinc, total	ug/L	MW-17	03/24/2023	ND	20.0000		
Zinc, total	ug/L	MW-17	09/07/2023	ND	20.0000		
Zinc, total	ug/L	MW-17	03/18/2024	ND	20.0000		
Antimony, total	ug/L	MW-44	03/16/2022	ND	2.0000		
Antimony, total	ug/L	MW-44	11/13/2023	ND	2.0000		
Antimony, total	ug/L	MW-44	03/18/2024	ND	2.0000		
Arsenic, total	ug/L	MW-44	03/16/2022	ND	4.0000		
Arsenic, total	ug/L	MW-44	11/13/2023	ND	4.0000		
Arsenic, total	ug/L	MW-44	03/18/2024	ND	4.0000		
Barium, total	ug/L	MW-44	03/16/2022		124.0000		
Barium, total	ug/L	MW-44	11/13/2023		137.0000		
Barium, total	ug/L	MW-44	03/18/2024		154.0000		
Beryllium, total	ug/L	MW-44	03/16/2022	ND	4.0000		
Beryllium, total	ug/L	MW-44	11/13/2023	ND	4.0000		
Beryllium, total	ug/L	MW-44	03/18/2024	ND	4.0000		
Cadmium, total	ug/L	MW-44	03/16/2022	ND	0.8000		
Cadmium, total	ug/L	MW-44	11/13/2023	ND	0.8000		
Cadmium, total	ug/L	MW-44	03/18/2024	ND	0.8000		<u></u>
Chromium, total	ug/L	MW-44	03/16/2022	ND	8.0000		
Chromium, total	ug/L	MW-44	11/13/2023	ND	8.0000		
Chromium, total	ug/L	MW-44	03/18/2024	ND	8.0000		
Cobalt, total	ug/L	MW-44	03/16/2022	ND	0.4000	0.8000	**
	ug/L	MW-44	11/13/2023	ND	0.4000	0.8000	**
Cobalt, total							
Cobalt, total Cobalt, total	ug/L	MW-44	03/18/2024	ND	0.4000	0.8000	**

^{* -} Outlier for that well and constituent.

** - ND value replaced with median RL.

*** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Copper, total	ug/L	MW-44	11/13/2023	ND	4.0000		
Copper, total	ug/L	MW-44	03/18/2024	ND	4.0000		
Lead, total	ug/L	MW-44	03/16/2022		6.1000		
Lead, total	ug/L	MW-44	11/13/2023	ND	4.0000		
Lead, total	ug/L	MW-44	03/18/2024	ND	4.0000		
Nickel, total	ug/L	MW-44	03/16/2022	ND	4.0000		
Nickel, total	ug/L	MW-44	11/13/2023	ND	4.0000		
Nickel, total	ug/L	MW-44	03/18/2024	ND	4.0000		
Selenium, total	ug/L	MW-44	03/16/2022	ND	4.0000		
Selenium, total	ug/L	MW-44	11/13/2023	ND	4.0000		
Selenium, total	ug/L	MW-44	03/18/2024	ND	4.0000		
Silver, total	ug/L	MW-44	03/16/2022	ND	4.0000		
Silver, total	ug/L	MW-44	11/13/2023	ND	4.0000		
Silver, total	ug/L	MW-44	03/18/2024	ND	4.0000		
Thallium, total	ug/L	MW-44	03/16/2022	ND	2.0000		
Thallium, total	ug/L	MW-44	11/13/2023	ND	2.0000		
Thallium, total	ug/L	MW-44	03/18/2024	ND	2.0000		
Vanadium, total	ug/L	MW-44	03/16/2022	ND	20.0000		
Vanadium, total	ug/L	MW-44	11/13/2023	ND	20.0000		
Vanadium, total	ug/L	MW-44	03/18/2024	ND	20.0000		
Zinc, total	ug/L	MW-44	03/16/2022		69.2000		
Zinc, total	ug/L	MW-44	11/13/2023	ND	20.0000		
Zinc, total	ug/L	MW-44	03/18/2024	ND	20.0000		

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 2 **Most Current Downgradient Monitoring Data**

Constituent	Units	Well	Date		Result		Pred. Limit
Antimony, total	ug/L	GWD-1	03/18/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	GWD-1	03/18/2024	ND	4.0000	**	5.6000
Barium, total	ug/L	GWD-1	03/18/2024		262.0000		776.0663
Beryllium, total	ug/L	GWD-1	03/18/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	GWD-1	03/18/2024	ND	0.8000		1.4000
Chromium, total	ug/L	GWD-1	03/18/2024	ND	8.0000		8.9000
Cobalt, total	ug/L	GWD-1	03/18/2024	ND	0.4000		30.6000
Copper, total	ug/L	GWD-1	03/18/2024	ND	4.0000		11.6000
		GWD-1		ND	4.0000		
Lead, total	ug/L		03/18/2024				7.4000
Nickel, total	ug/L	GWD-1	03/18/2024	ND	4.0000		60.4000
Selenium, total	ug/L	GWD-1	03/18/2024	ND	4.0000		4.0000
Silver, total	ug/L	GWD-1	03/18/2024	ND	4.0000		4.0000
Thallium, total	ug/L	GWD-1	03/18/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	GWD-1	03/18/2024	ND	20.0000		20.0000
Zinc, total	ug/L	GWD-1	03/18/2024	ND	20.0000		69.2000
Antimony, total	ug/L	MW-10	03/18/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-10	03/18/2024	ND	4.0000		5.6000
Barium, total	ug/L	MW-10	03/18/2024		465.0000		776.0663
Beryllium, total	ug/L	MW-10	03/18/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-10	03/18/2024	ND	0.8000		1.4000
Chromium, total	ug/L	MW-10	03/18/2024	ND	8.0000		8.9000
Cobalt, total	ug/L	MW-10	03/18/2024	ND	0.4000		30.6000
Copper, total	ug/L	MW-10	03/18/2024	ND	4.0000		11.6000
Lead, total	ug/L	MW-10	03/18/2024	ND	4.0000		7.4000
Nickel, total	ug/L	MW-10	03/18/2024	ND	4.0000		60.4000
Selenium, total	ug/L	MW-10	03/18/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-10	03/18/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-10	03/18/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-10	03/18/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-10	03/18/2024	.,,,	28.3000		69.2000
Antimony, total	ug/L	MW-13	03/18/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-13	03/18/2024	ND	4.0000		5.6000
				ושאו			
Barium, total	ug/L	MW-13	03/18/2024		59.0000		776.0663
Beryllium, total	ug/L	MW-13	03/18/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-13	03/18/2024		0.8000		1.4000
Chromium, total	ug/L	MW-13	03/18/2024	ND	8.0000		8.9000
Cobalt, total	ug/L	MW-13	03/18/2024	ND	0.4000		30.6000
Copper, total	ug/L	MW-13	03/18/2024	ND	4.0000		11.6000
Lead, total	ug/L	MW-13	03/18/2024	ND	4.0000		7.4000
Nickel, total	ug/L	MW-13	03/18/2024	ND	4.0000		60.4000
Selenium, total	ug/L	MW-13	03/18/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-13	03/18/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-13	03/18/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-13	03/18/2024	ND	20.0000		20.0000
		MW-13		ND			
Zinc, total	ug/L		03/18/2024		20.0000		69.2000
Antimony, total	ug/L	MW-14	03/18/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-14	03/18/2024	ND	4.0000		5.6000
Barium, total	ug/L	MW-14	03/18/2024		137.0000		776.0663
Beryllium, total	ug/L	MW-14	03/18/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-14	03/18/2024	ND	0.8000		1.4000
Chromium, total	ug/L	MW-14	03/18/2024	ND	8.0000		8.9000
Cobalt, total	ug/L	MW-14	03/18/2024	ND	0.4000		30.6000
Copper, total	ug/L	MW-14	03/18/2024	ND	4.0000		11.6000
Lead, total	ug/L	MW-14	03/18/2024	ND	4.0000		7.4000
Nickel, total	ug/L	MW-14	03/18/2024	ND	4.0000		60.4000
Selenium, total	ug/L	MW-14	03/18/2024	ND	4.0000		4.0000
Silver, total	ug/L ug/L	MW-14	03/18/2024	ND	4.0000		4.0000
		MW-14			2.0000		
Thallium, total	ug/L		03/18/2024	ND			2.0000
Vanadium, total	ug/L	MW-14	03/18/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-14	03/18/2024	ND	20.0000		69.2000
Antimony, total	ug/L	MW-16	03/18/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-16	03/18/2024		20.4000	*	5.6000
Barium, total	ug/L	MW-16	03/18/2024		713.0000		776.0663
Beryllium, total	ug/L	MW-16	03/18/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-16	03/18/2024	ND	0.8000		1.4000
Chromium, total	ug/L	MW-16	03/18/2024	ND	8.0000		8.9000
Cobalt, total	ug/L	MW-16	03/18/2024		0.9000		30.6000
Copper, total	ug/L	MW-16	03/18/2024	ND	4.0000		11.6000
Lead, total	ug/L	MW-16	03/18/2024	ND	4.0000		7.4000
Nickel, total	ug/L	MW-16	03/18/2024	,	26.1000		60.4000
Solonium total	ug/L	MW-16	03/18/2024	ND	4.0000	1	4.0000
Selenium, total Silver, total	ug/L	MW-16	03/18/2024	ND	4.0000		4.0000

 ⁻ Current value failed - awaiting verification.
 - Current value passed - previous exceedance not verified.
 - Current value failed - exceedance verified.
 - Current value passed - awaiting one more verification.
 - Insufficient background data to compute prediction limit.
 ND = Not Detected, Result = detection limit.

Table 2 **Most Current Downgradient Monitoring Data**

Constituent	Units	Well	Date		Result		Pred. Limit
Thallium, total	ug/L	MW-16	03/18/2024	ND	2.0000		2.0000
Vanadium, total		MW-16		ND			
	ug/L		03/18/2024		20.0000		20.0000
Zinc, total	ug/L	MW-16	03/18/2024	ND ND	20.0000		69.2000
Antimony, total	ug/L	MW-18	03/18/2024	ן טאו	2.0000	***	2.0000
Arsenic, total	ug/L	MW-18	03/18/2024		23.7000		5.6000
Barium, total	ug/L	MW-18	03/18/2024		377.0000		776.0663
Beryllium, total	ug/L	MW-18	03/18/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-18	03/18/2024	ND	0.8000		1.4000
Chromium, total	ug/L	MW-18	03/18/2024	ND	8.0000		8.9000
Cobalt, total	ug/L	MW-18	03/18/2024		0.9000		30.6000
Copper, total	ug/L	MW-18	03/18/2024	ND	4.0000		11.6000
Lead, total	ug/L	MW-18	03/18/2024	ND	4.0000		7.4000
Nickel, total	ug/L	MW-18	03/18/2024		6.3000		60.4000
Selenium, total	ug/L	MW-18	03/18/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-18	03/18/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-18	03/18/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-18	03/18/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-18	03/18/2024	ND	20.0000		69.2000
Antimony, total	ug/L	MW-1D	03/18/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-1D	03/18/2024	ND	4.0000	_	5.6000
Barium, total	ug/L	MW-1D	03/18/2024		784.0000	*	776.0663
Beryllium, total	ug/L	MW-1D	03/18/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-1D	03/18/2024	ND	0.8000		1.4000
Chromium, total	ug/L	MW-1D	03/18/2024	ND	8.0000		8.9000
Cobalt, total	ug/L	MW-1D	03/18/2024		14.0000		30.6000
Copper, total	ug/L	MW-1D	03/18/2024	ND	4.0000		11.6000
Lead, total	ug/L	MW-1D	03/18/2024	ND	4.0000		7.4000
Nickel, total	ug/L	MW-1D	03/18/2024		19.0000		60.4000
Selenium, total	ug/L	MW-1D	03/18/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-1D	03/18/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-1D	03/18/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-1D	03/18/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-1D	03/18/2024	ND	20.0000		69.2000
Antimony, total	ug/L	MW-20	03/18/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-20	03/18/2024		112.0000	***	5.6000
Barium, total	ug/L	MW-20	03/18/2024		2110.0000	***	776.0663
Beryllium, total	ug/L	MW-20	03/18/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-20	03/18/2024	ND	0.8000		1.4000
Chromium, total	ug/L	MW-20	03/18/2024	ND	8.0000		8.9000
Cobalt, total	ug/L	MW-20	03/18/2024		9.7000		30.6000
Copper, total	ug/L	MW-20	03/18/2024	ND	4.0000		11.6000
Lead, total	ug/L	MW-20	03/18/2024	ND	4.0000		7.4000
Nickel, total	ug/L	MW-20	03/18/2024		31.4000		60.4000
Selenium, total	ug/L	MW-20	03/18/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-20	03/18/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-20	03/18/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-20	03/18/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-20	03/18/2024	ND	20.0000		69.2000
Antimony, total	ug/L	MW-3	03/18/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-3	03/18/2024	ND	4.0000		5.6000
Barium, total	ug/L	MW-3	03/18/2024		360.0000		776.0663
Beryllium, total	ug/L	MW-3	03/18/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-3	03/18/2024	ND	0.8000		1.4000
Chromium, total	ug/L	MW-3	03/18/2024	ND	8.0000		8.9000
Cobalt, total	ug/L	MW-3	03/18/2024	ND	0.4000		30.6000
Copper, total	ug/L	MW-3	03/18/2024	ND	4.0000		11.6000
Lead, total	ug/L	MW-3	03/18/2024	ND	4.0000		7.4000
Nickel, total	ug/L	MW-3	03/18/2024	ND	4.0000		60.4000
Selenium, total	ug/L	MW-3	03/18/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-3	03/18/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-3	03/18/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-3	03/18/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-3	03/18/2024	ND	20.0000		69.2000
Antimony, total	ug/L	MW-7	03/18/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-7	03/18/2024		5.4000	**	5.6000
Barium, total	ug/L	MW-7	03/18/2024		310.0000		776.0663
Beryllium, total	ug/L	MW-7	03/18/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-7	03/18/2024	ND	0.8000		1.4000
Chromium, total	ug/L	MW-7	03/18/2024	ND	8.0000		8.9000
Cobalt, total	ug/L	MW-7	03/18/2024		8.7000		30.6000
Copper, total	ug/L	MW-7	03/18/2024	ND	4.0000		11.6000
						l	
Lead, total	ug/L	MW-7	03/18/2024	ND	4.0000		7.4000

 ⁻ Current value failed - awaiting verification.

 - Current value passed - previous exceedance not verified.

 - Current value failed - exceedance verified.

 - Current value passed - awaiting one more verification.

 - Insufficient background data to compute prediction limit.

 ND = Not Detected, Result = detection limit.

Table 2 **Most Current Downgradient Monitoring Data**

Constituent	Units	Well	Date		Result	Pred. Limit
Nickel, total	ug/L	MW-7	03/18/2024		14.2000	60.4000
Selenium, total	ug/L	MW-7	03/18/2024	ND	4.0000	4.0000
Silver, total	ug/L	MW-7	03/18/2024	ND	4.0000	4.0000
Thallium, total	ug/L	MW-7	03/18/2024	ND	2.0000	2.0000
Vanadium, total	ug/L	MW-7	03/18/2024	ND	20.0000	20.0000
Zinc, total	ug/L	MW-7	03/18/2024	ND	20.0000	69.2000

 ⁻ Current value failed - awaiting verification.
 - Current value passed - previous exceedance not verified.
 - Current value failed - exceedance verified.
 - Current value passed - awaiting one more verification.
 - Insufficient background data to compute prediction limit.
 ND = Not Detected, Result = detection limit.

Table 3

Detection Frequencies in Upgradient and Downgradient Wells

Constituent	Detect	Upgradient N	Proportion	Detect	Downgradient N	Proportion
Antimony, total	0	41	0.000	7	314	0.022
Arsenic, total	1	41	0.024	149	318	0.469
Barium, total	41	41	1.000	316	316	1.000
Beryllium, total	0	41	0.000	4	315	0.013
Cadmium, total	3	41	0.073	21	316	0.066
Chromium, total	1	41	0.024	29	315	0.092
Cobalt, total	11	41	0.268	175	316	0.554
Copper, total	2	41	0.049	68	315	0.216
Lead, total	3	41	0.073	45	315	0.143
Nickel, total	12	41	0.293	257	315	0.816
Selenium, total	0	41	0.000	37	318	0.116
Silver, total	0	41	0.000	0	314	0.000
Thallium, total	0	41	0.000	1	314	0.003
Vanadium, total	0	41	0.000	28	315	0.089
Zinc, total	9	41	0.220	99	315	0.314

N = Total number of measurements in all wells. Detect = Total number of detections in all wells. Proportion = Detect/N.

Table 4 **Shapiro-Wilk Multiple Group Test of Normality**

Constituent	Detect	N	Detect Freq	G raw	G log	G cbrt	G sqrt	G sqr	G cub	Crit Value	Dist Form	Model Type
Antimony, total	0	41	0.000									nonpar
Arsenic, total	1	41	0.024									nonpar
Barium, total	41	41	1.000	0.568	1.064					2.326	normal	normal
Beryllium, total	0	41	0.000									nonpar
Cadmium, total	3	41	0.073									nonpar
Chromium, total	1	41	0.024									nonpar
Cobalt, total	11	41	0.268	2.030	0.246					2.326	normal	nonpar
Copper, total	2	41	0.049									nonpar
Lead, total	3	41	0.073									nonpar
Nickel, total	12	41	0.293	2.926	1.116					2.326	lognor	nonpar
Selenium, total	0	41	0.000									nonpar
Silver, total	0	41	0.000									nonpar
Thallium, total	0	41	0.000									nonpar
Vanadium, total	0	41	0.000									nonpar
Zinc, total	9	41	0.220	0.938	0.094					2.326	normal	nonpar

 * - Distribution override for that constituent. Fit to distribution is confirmed if G <= critical value. Model type may not match distributional form when detection frequency < 50%.

Table 5 **Summary Statistics and Prediction Limits**

Constituent	Units	Detect	N	Mean	SD	alpha	Factor	Pred Limit	Type		Conf
Antimony, total	ug/L	0	41					2.0000	nonpar	***	0.99
Arsenic, total	ug/L	1	41					5.6000	nonpar		0.99
Barium, total	ug/L	41	41	263.0902	209.1627	0.0100	2.4525	776.0663	normal		
Beryllium, total	ug/L	0	41					4.0000	nonpar	***	0.99
Cadmium, total	ug/L	3	41					1.4000	nonpar		0.99
Chromium, total	ug/L	1	41					8.9000	nonpar		0.99
Cobalt, total	ug/L	11	41					30.6000	nonpar		0.99
Copper, total	ug/L	2	41					11.6000	nonpar		0.99
Lead, total	ug/L	3	41					7.4000	nonpar		0.99
Nickel, total	ug/L	12	41					60.4000	nonpar		0.99
Selenium, total	ug/L	0	41					4.0000	nonpar	***	0.99
Silver, total	ug/L	0	41					4.0000	nonpar	***	0.99
Thallium, total	ug/L	0	41					2.0000	nonpar	***	0.99
Vanadium, total	ug/L	0	41					20.0000	nonpar	***	0.99
Zinc, total	ug/L	9	41					69.2000	nonpar		0.99

Conf = confidence level for passing initial test or one verification resample at all downgradient wells for a single constituent Conf = confidence level for passing initial test or one verification resample at all downgraulerit wells (nonparametric test only).

* - Insufficient Data.

** - Calculated limit raised to Manual Reporting Limit.

**** - Nonparametric limit based on ND value.

For transformed data, mean and SD in transformed units and prediction limit in original units.

All sample sizes and statistics are based on outlier free data.

For nonparametric limits, median reporting limits are substituted for extreme reporting limit values.

Table 6

Dixon's Test Outliers 1% Significance Level

onstituent Units Well Date	Result ND Qualifier	Date Range N	Critical Value
----------------------------	---------------------	--------------	----------------

N = Total number of independent measurements in background at each well.

Date Range = Dates of the first and last measurements included in background at each well.

Critical Value depends on the significance level and on N-1 when the two most extreme values are tested or N for the most extreme value.

Table 8 Historical Downgradient Data for Constituent-Well Combinations that Failed the Current Statistical Evaluation or are in Verification Resampling Mode

Arsenic, total ug/L GWD-1 06/17/2008 0,0000 5,6000 Arsenic, total ug/L GWD-1 09/20/2008 0,0000 5,6000 Arsenic, total ug/L GWD-1 09/20/2008 0,0000 5,6000 Arsenic, total ug/L GWD-1 09/24/2009 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 09/24/2009 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 09/24/2009 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 09/29/2010 M 4,0000 5,6000 Arsenic, total ug/L GWD-1 09/29/2012 M 4,0000 5,6000 Arsenic, total ug/L GWD-1 09/11/2012 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 09/11/2012 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 09/11/2012 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 09/11/2013 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 09/18/2014 M 4,0000 5,6000 Arsenic, total ug/L GWD-1 09/18/2014 M 4,0000 5,6000 Arsenic, total ug/L GWD-1 09/18/2014 M 4,0000 5,6000 Arsenic, total ug/L GWD-1 09/18/2015 4,3000 5,6000 Arsenic, total ug/L GWD-1 09/18/2015 4,3000 5,6000 Arsenic, total ug/L GWD-1 09/18/2015 10,1000 5,6000 Arsenic, total ug/L GWD-1 09/18/2015 10,1000 5,6000 Arsenic, total ug/L GWD-1 09/18/2016 5,3000 5,6000 Arsenic, total ug/L GWD-1 09/18/2016 5,3000 5,6000 Arsenic, total ug/L GWD-1 09/18/2016 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 09/18/2018 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 09/18/2018 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 09/18/2019 ND 4,000	Constituent	Units	Well	Date		Result		Pred. Limit
Arsenic, total ug/L GWD-1 08/20/2008 ND 4.0000 \$.00000 \$.00000 \$.00000 \$.00000 \$.0000 \$.00000 \$.0000 \$.0000 \$.0000 \$.0000 \$.0000	Arsenic, total	ug/L	GWD-1	04/16/2008	ND	5.0000		5.6000
Assenic, total Ug/L GWD-1 03/2/2009 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 03/16/2009 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 03/16/2009 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 03/24/2009 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 03/24/2009 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 05/03/2011 5.0000 5.6000 Arsenic, total Ug/L GWD-1 05/03/2011 5.0000 5.6000 Arsenic, total Ug/L GWD-1 04/04/2012 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 04/04/2012 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 04/04/2013 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 04/04/2013 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 04/23/2014 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 04/23/2014 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 04/29/2015 A.3000 5.6000 Arsenic, total Ug/L GWD-1 04/29/2015 5.28,0000 5.6000 Arsenic, total Ug/L GWD-1 04/23/2016 4.1000 5.6000 Arsenic, total Ug/L GWD-1 04/23/2016 4.1000 5.6000 Arsenic, total Ug/L GWD-1 09/12/2016 4.1000 5.6000 Arsenic, total Ug/L GWD-1 09/12/2016 4.1000 5.6000 Arsenic, total Ug/L GWD-1 09/01/2016 5.28,0000 5.6000 Arsenic, total Ug/L GWD-1 09/01/2016 4.1000 5.6000 4.00	Arsenic, total	ug/L	GWD-1	06/17/2008		6.0000		5.6000
Arsenic, total ug/L GWD-1 09/4/2009 ND 4,0000 5,6000	Arsenic, total	ug/L	GWD-1	08/20/2008		9.0000	*	5.6000
Arsenic, total ug/L GWD-1 09/24/2009 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 09/29/2010 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 09/29/2010 6,1000 5,6000 5,6000 Arsenic, total ug/L GWD-1 09/29/2011 6,1000 5,6000 Arsenic, total ug/L GWD-1 09/11/2011 6,1000 5,6000 Arsenic, total ug/L GWD-1 09/11/2012 0,000 5,6000 Arsenic, total ug/L GWD-1 09/11/2012 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 04/04/2013 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 04/04/2013 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 04/04/2013 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 04/23/2014 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 04/23/2015 4,3000 5,6000 Arsenic, total ug/L GWD-1 04/29/2015 528,0000 5,6000 Arsenic, total ug/L GWD-1 04/29/2015 528,0000 5,6000 Arsenic, total ug/L GWD-1 09/01/2016 4,1000 5,6000 Arsenic, total ug/L GWD-1 09/06/2018 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 09/06/2018 ND 4,								5.6000
Arsenic, total ug/L GWD-1 04/19/2010 ND 4,0000 5,5000 Arsenic, total ug/L GWD-1 05/03/2011 5,0000 5,5000 Arsenic, total ug/L GWD-1 05/03/2011 5,0000 5,5000 Arsenic, total ug/L GWD-1 04/03/2012 ND 4,0000 5,5000 Arsenic, total ug/L GWD-1 04/03/2012 ND 4,0000 5,5000 Arsenic, total ug/L GWD-1 04/04/2013 ND 4,0000 5,5000 Arsenic, total ug/L GWD-1 09/18/2014 ND 4,0000 5,5000 Arsenic, total ug/L GWD-1 09/18/2014 MD 4,0000 5,5000 Arsenic, total ug/L GWD-1 09/18/2014 MD 4,0000 5,5000 Arsenic, total ug/L GWD-1 04/29/2015 528,0000 5,5000 Arsenic, total ug/L GWD-1 04/29/2016 5,3000 5,5000 Arsenic, total ug/L GWD-1 04/23/2016 5,3000 5,5000 Arsenic, total ug/L GWD-1 03/22/2017 ND 4,0000 5,5000 Arsenic, total ug/L GWD-1 03/22/2017 ND 4,0000 5,5000 Arsenic, total ug/L GWD-1 03/09/2018 ND 4,0000 5,5000 Arsenic, total ug/L GWD-1 03/09/2018 ND 4,0000 5,5000 Arsenic, total ug/L GWD-1 03/09/2018 ND 4,0000 5,5000 Arsenic, total ug/L GWD-1 03/09/2019 ND 4,0000 5,5000 Arsenic, total ug/L GWD								5.6000
Arsenic, total ug/L GWD-1 09/29/2010 4.2000 5.6000 Arsenic, total ug/L GWD-1 10/11/2011 5.0000 5.6000 Arsenic, total ug/L GWD-1 04/23/2012 4.7000 5.6000 Arsenic, total ug/L GWD-1 04/23/2012 4.7000 5.6000 Arsenic, total ug/L GWD-1 04/23/2012 4.7000 5.6000 Arsenic, total ug/L GWD-1 04/23/2013 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 04/23/2014 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 04/23/2014 4.0000 5.6000 Arsenic, total ug/L GWD-1 04/23/2014 4.0000 5.6000 Arsenic, total ug/L GWD-1 04/23/2015 528.0000 5.6000 Arsenic, total ug/L GWD-1 04/29/2015 528.0000 5.6000 Arsenic, total ug/L GWD-1 04/29/2015 528.0000 5.6000 Arsenic, total ug/L GWD-1 04/29/2016 4.1000 5.6000 Arsenic, total ug/L GWD-1 03/22/2016 4.1000 5.6000 Arsenic, total ug/L GWD-1 03/22/2017 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/22/2017 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/22/2017 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/09/2018 ND 4.0000								
Arsenic, total ug/L GWD-1 05/03/2011 5.0000 5.6000 Arsenic, total ug/L GWD-1 04/23/2012 4.7000 5.6000 Arsenic, total ug/L GWD-1 04/04/2013 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 04/03/2014 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 04/23/2015 4.3000 5.6000 Arsenic, total ug/L GWD-1 04/28/2015 4.3000 5.6000 Arsenic, total ug/L GWD-1 01/06/2015 528.0000 5.6000 Arsenic, total ug/L GWD-1 01/06/2015 528.0000 5.6000 Arsenic, total ug/L GWD-1 04/23/2016 4.1000 5.6000 Arsenic, total ug/L GWD-1 03/22/2017 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/22/2017 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/22/2017 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/09/2018 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/16/2022 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/16/2022 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/16/2022 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/16/2020 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/16/2020 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/					ND			
Arsenic, total ug/L GWD-1 10/11/2011 D							.	
Arsenic, total ug/L GWD-1 04/23/2012 04/000 5.6000 Arsenic, total ug/L GWD-1 04/04/2013 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 04/04/2013 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 04/23/2014 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 04/23/2014 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 04/23/2015 4.1000 5.6000 Arsenic, total ug/L GWD-1 07/29/2015 4.3000 5.6000 Arsenic, total ug/L GWD-1 10/06/2015 528.0000 5.6000 Arsenic, total ug/L GWD-1 10/06/2015 528.0000 5.6000 Arsenic, total ug/L GWD-1 04/23/2016 4.1000 5.6000 Arsenic, total ug/L GWD-1 04/23/2016 4.1000 5.6000 Arsenic, total ug/L GWD-1 03/22/2017 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/22/2017 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/22/2017 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/09/2018 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/26/2019 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/26/2019 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/26/2019 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/16/2022 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/16/2020 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/16/2020 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/							"	
Arsenic, total ug/L GWD-1 09/11/2012 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 04/04/2013 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 04/02/2014 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 09/18/2014 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 09/18/2015 528,0000 5,6000 Arsenic, total ug/L GWD-1 04/29/2015 528,0000 5,6000 Arsenic, total ug/L GWD-1 04/29/2015 528,0000 5,6000 Arsenic, total ug/L GWD-1 01/06/2015 528,0000 5,6000 Arsenic, total ug/L GWD-1 02/23/2016 4,1000 5,6000 Arsenic, total ug/L GWD-1 03/12/2016 4,1000 5,6000 Arsenic, total ug/L GWD-1 03/22/2017 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/22/2017 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/09/2018 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/37/2019 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/37/2019 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/37/2020 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/37/2020 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/37/2022 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/37/2020 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/37/2020 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/37/2020 ND 4,0000 5,6000 Arsenic, total ug/L MW-16 04/02/2020 ND 4,0000 5,6000 Arsenic, total ug/L MW								
Arsenic, total ug/L GWD-1 04/04/2013 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 04/23/2014 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 04/23/2015 4,3000 5,6000 Arsenic, total ug/L GWD-1 04/23/2015 4,3000 5,6000 5,6000 Arsenic, total ug/L GWD-1 04/23/2015 4,3000 5,6000 5,6000 Arsenic, total ug/L GWD-1 01/06/2015 528,0000 5,6000 Arsenic, total ug/L GWD-1 01/06/2015 528,0000 5,6000 Arsenic, total ug/L GWD-1 04/23/2016 4,1000 5,6000 Arsenic, total ug/L GWD-1 04/23/2016 4,1000 5,6000 Arsenic, total ug/L GWD-1 03/22/2017 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/22/2017 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/09/2018 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/09/2019 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/09/2019 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/09/2019 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/25/2021 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/25/2022 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/25/2022 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/25/2021 ND 4,0000 5,6000 Arsenic, total ug/L WW-16 04/23/2009 33,0000 5,6000 5,6000 Arsenic, tot					ND			
Arsenic, total Arsenic, total Arsenic, total Arsenic, total Ug/L GWD-1 04/23/2014 ND 4,0000 5,6000 5,6000 Arsenic, total Ug/L GWD-1 04/29/2015 4,3000 5,6000 7,56000 4,5								
Arsenic, total ug/L GWD-1 09/18/2015 4.3000 5.6000 5.6000 Arsenic, total ug/L GWD-1 04/29/2015 4.3000 5.6000 5.6000 Arsenic, total ug/L GWD-1 10/06/2015 528.0000 5.6000 5.6000 Arsenic, total ug/L GWD-1 12/17/2015 10.1000 5.6000 5.6000 Arsenic, total ug/L GWD-1 09/12/2016 4.1000 5.6000 5.6000 Arsenic, total ug/L GWD-1 09/12/2016 5.3000 5.6000 5.6000 Arsenic, total ug/L GWD-1 03/22/2017 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/22/2017 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/09/2018 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/09/2018 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/26/2019 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/26/2019 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/26/2019 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/17/2020 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/17/2023 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/17/2023 ND 4.0000 5.6000 5.6000 Arsenic, total ug/L GWD-1 09/17/2023 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/17/2020 ND 4.0000 5.6000 5.6000 Arsenic, total ug/L WW-16 09/18/2010 33.8000 5.6000 5.6000 Arsenic, total ug/L WW-16 09/18/2010 33.8000 5.6000 5.6000 Arsenic, total ug/L WW-16 09/18/2010 33.8000 5.6000 5.6000 Arsenic, tot								
Arsenic, total ug/L GWD-1 10/06/2015 528.0000 * 5.6000 Arsenic, total ug/L GWD-1 12/17/2015 10.1000 * 5.6000 Arsenic, total ug/L GWD-1 04/23/2016 4.1000 * 5.6000 5.6000 Arsenic, total ug/L GWD-1 03/22/2017 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/22/2017 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/22/2017 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/07/2019 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/26/2019 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/17/2020 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/17/2020 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/17/2020 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/16/2022 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/16/2028 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/16/2029 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/16/2029 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/16/2008 33.0000 5.6000 5.6000 Arsenic, total ug/L GWD-1 03/16/2008 33.0000 5.6000 5.6000 Arsenic, total ug/L WW-16 06/17/2008 33.0000 5.6000 5.6000 Arsenic, total ug/L WW-16 06/17/2008 33.0000 5.6000 5.6000 Arsenic, total ug/L WW-16 03/16/2009 37.8000 5.6000 5.6000 Arsenic, total ug/L WW-16 03/16/2015 ND 4.0000 5.6000 5.6000 Arsenic, total ug/L WW-16 03/			GWD-1					5.6000
Arsenic, total Arsenic, total Arsenic, total Arsenic, total Ug/L GWD-1 04/23/2016 10.1000 5.6000 5.6000 Arsenic, total Ug/L GWD-1 04/23/2016 5.3000 5.6000 5.6000 Arsenic, total Ug/L GWD-1 03/22/2017 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 03/22/2017 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 03/30/2018 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 03/30/2018 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 03/30/2018 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 09/06/2018 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 09/26/2019 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 03/25/2021 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 03/25/2021 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 03/26/2022 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 03/26/2023 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 03/26/2023 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 03/26/2028 ND 4.0000 5.6000 Arsenic, total Ug/L GWD-1 03/26/2008 35.0000 * 5.6000 Arsenic, total Ug/L GWD-1 03/26/2008 35.0000 * 5.6000 Arsenic, total Ug/L WW-16 06/17/2008 35.0000 * 5.6000 Arsenic, total Ug/L WW-16 06/17/2008 35.0000 * 5.6000 Arsenic, total Ug/L WW-16 09/26/2008 33.0000 * 5.6000 Arsenic, total Ug/L WW-16 09/26/2008 33.0000 * 5.6000 Arsenic, total Ug/L WW-16 09/26/2010 33.0000 * 5.6000 Arsenic, total Ug/L WW-16 09/26/2019 33.0000 * 5.6000 Arsenic, total Ug/L WW-1	Arsenic, total	ug/L	GWD-1	09/18/2014		4.1000		5.6000
Arsenic, total ug/L GWD-1 12/17/2015 10.1000 5.6000 5.6000 Arsenic, total ug/L GWD-1 09/01/2016 5.3000 5.6000 5.6000 Arsenic, total ug/L GWD-1 09/01/2016 7.3000 5.6000 5.6000 Arsenic, total ug/L GWD-1 03/02/2017 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/09/2018 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/06/2019 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/06/2019 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/06/2019 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/17/2020 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/17/2020 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/17/2020 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/01/2022 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/01/2022 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/01/2022 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/01/2023 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/18/2024 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 04/16/2008 39.0000 5.6000 Arsenic, total ug/L MW-16 08/20/2008 35.0000 5.6000 Arsenic, total ug/L MW-16 08/20/2008 35.0000 5.6000 Arsenic, total ug/L MW-16 08/20/2008 35.0000 5.6000 Arsenic, total ug/L MW-16 09/24/2009 37.8000 5.6000 Arsenic, total ug/L MW-16 09/24/2009 37.8000 5.6000 Arsenic, total ug/L MW-16 09/24/2009 33.0000 5.6000 5.6000 Arsenic, total ug/L MW-16 09/24/2009 33.0000 5.6000 5.6000 Arsenic, total ug/L MW-16 09/26/2019 Arsenic, total ug/L MW-1	Arsenic, total	ug/L	GWD-1	04/29/2015		4.3000		5.6000
Arsenic, total ug/L GWD-1 09/01/2016 5.3000 5.6000 5.6000 Arsenic, total ug/L GWD-1 03/02/2017 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/02/2018 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/09/2018 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/09/2018 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/09/2018 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/09/2019 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/07/2019 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/26/2019 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/17/2020 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/16/2021 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/16/2022 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/16/2023 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/16/2023 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/18/2024 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/18/2024 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/18/2024 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 04/16/2008 28.0000 5.6000 Arsenic, total ug/L MW-16 04/16/2008 28.0000 5.6000 5.6000 Arsenic, total ug/L MW-16 08/20/2008 33.0000 5.6000 5.6000 Arsenic, total ug/L MW-16 08/20/2008 33.0000 5.6000 5.6000 Arsenic, total ug/L MW-16 08/20/2008 33.0000 5.6000 5.6000 Arsenic, total ug/L MW-16 09/24/2009 33.0000 5.6000 5.6000 Arsenic, total ug/L MW-16							*	5.6000
Arsenic, total ug/L GWD-1 09/01/2016 ND 4.0000 5.6000			-				*	5.6000
Arsenic, total ug/L GWD-1 03/22/2017 ND 4,0000 5,6000								
Arsenic, total ug/L GWD-1 03/03/2018 ND 4.0000 5.6000			-		ND			
Arsenic, total ug/L								
Arsenic, total ug/L GWD-1 03/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/26/2019 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/26/2019 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/17/2020 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/17/2020 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/25/2021 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/16/2022 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/24/2023 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/18/2024 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/18/2024 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 04/16/2008 39.0000 5.6000 Arsenic, total ug/L MW-16 06/17/2008 35.0000 5.6000 Arsenic, total ug/L MW-16 08/20/2008 35.0000 5.6000 Arsenic, total ug/L MW-16 08/20/2008 36.8000 5.6000 Arsenic, total ug/L MW-16 03/16/2009 37.8000 5.6000 Arsenic, total ug/L MW-16 03/16/2009 37.8000 5.6000 Arsenic, total ug/L MW-16 03/16/2009 33.9000 5.6000 Arsenic, total ug/L MW-16 04/19/2010 33.9000 5.6000 Arsenic, total ug/L MW-16 04/19/2010 33.9000 5.6000 Arsenic, total ug/L MW-16 04/19/2010 33.9000 5.6000 Arsenic, total ug/L MW-16 04/23/2011 33.8000 5.6000 Arsenic, total ug/L MW-16 04/23/2011 33.8000 5.6000 Arsenic, total ug/L MW-16 04/23/2012 42.4000 5.6000 Arsenic, total ug/L MW-16 09/10/2012 42.4000 5.6000 Arsenic, total ug/L MW-16 09/10/2012 42.4000 5.6000 Arsenic, total ug/L MW-16 09/10/2012 Arsenic, total ug/L MW-16 09/10/2012 Arsenic, total ug/L MW-16 09/10/2015 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2018								
Arsenic, total ug/L GWD-1 03/07/2019 ND 4.0000 5.6000	II '							
Arsenic, total ug/L GWD-1 09/26/2019 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/17/2020 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/17/2020 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/25/2021 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/25/2021 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/01/2022 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/01/2022 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/01/2023 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/01/2023 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/01/2023 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/18/2024 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 06/11/2008 39.0000 5.6000 Arsenic, total ug/L MW-16 06/11/2008 36.6000 5.6000 Arsenic, total ug/L MW-16 06/11/2008 36.6000 5.6000 Arsenic, total ug/L MW-16 10/16/2008 36.6000 5.6000 Arsenic, total ug/L MW-16 10/16/2008 36.6000 5.6000 Arsenic, total ug/L MW-16 09/24/2009 37.8000 5.6000 Arsenic, total ug/L MW-16 09/29/2010 33.0000 5.6000 Arsenic, total ug/L MW-16 09/10/2012 42.4000 5.6000 5.6000 Arsenic, total ug/L MW-16 09/10/2015 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000								
Arsenic, total ug/L GWD-1 09/17/2020 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/25/2021 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/25/2021 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/16/2022 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/16/2022 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/24/2023 ND 4,0000 5,6000 Arsenic, total ug/L GWD-1 03/18/2024 ND 4,0000 5,6000 Arsenic, total ug/L MW-16 04/16/2008 39,0000 5,6000 Arsenic, total ug/L MW-16 06/17/2008 28,0000 5,6000 Arsenic, total ug/L MW-16 08/20/2008 35,0000 5,6000 Arsenic, total ug/L MW-16 08/20/2008 36,8000 5,6000 Arsenic, total ug/L MW-16 03/16/2009 37,8000 5,6000 Arsenic, total ug/L MW-16 03/16/2009 33,0000 5,6000 Arsenic, total ug/L MW-16 09/24/2009 33,0000 5,6000 Arsenic, total ug/L MW-16 09/24/2009 33,0000 5,6000 Arsenic, total ug/L MW-16 09/29/2010 32,0000 5,6000 Arsenic, total ug/L MW-16 09/29/2010 32,0000 5,6000 Arsenic, total ug/L MW-16 09/10/2012 39,5000 5,6000 5,6000 Arsenic, total ug/L MW-16 09/10/2012 39,5000 5,6000 5,6000 Arsenic, total ug/L MW-16 09/10/2016 ND 4,0000 5,6000 Arsenic, total ug/L MW-16 09/26/2019 ND 4,0000 5,6000 Arsenic, total ug/L MW-16 09/26/2019 0,3000 5,60	II '							
Arsenic, total								5.6000
Arsenic, total ug/L GWD-1 03/16/2022 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 09/01/2023 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/24/2023 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/24/2023 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/18/2024 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/18/2024 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 04/16/2008 39.0000 5.6000 Arsenic, total ug/L MW-16 06/17/2008 39.0000 5.6000 Arsenic, total ug/L MW-16 06/17/2008 35.0000 5.6000 Arsenic, total ug/L MW-16 08/20/2008 35.0000 5.6000 Arsenic, total ug/L MW-16 03/16/2009 37.8000 5.6000 Arsenic, total ug/L MW-16 03/16/2009 37.8000 5.6000 Arsenic, total ug/L MW-16 04/19/2010 33.0000 5.6000 Arsenic, total ug/L MW-16 09/29/2010 33.0000 5.6000 Arsenic, total ug/L MW-16 09/29/2010 33.0000 5.6000 Arsenic, total ug/L MW-16 09/29/2010 32.0000 5.6000 Arsenic, total ug/L MW-16 04/13/2012 42.4000 5.6000 Arsenic, total ug/L MW-16 04/23/2012 42.4000 5.6000 Arsenic, total ug/L MW-16 04/23/2012 42.4000 5.6000 Arsenic, total ug/L MW-16 04/04/2013 23.1000 5.6000 Arsenic, total ug/L MW-16 04/04/2013 23.1000 5.6000 Arsenic, total ug/L MW-16 04/04/2013 35.1000 5.6000 Arsenic, total ug/L MW-16 04/23/2014 37.2000 5.6000 Arsenic, total ug/L MW-16 04/23/2014 37.2000 5.6000 Arsenic, total ug/L MW-16 04/23/2015 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 04/23/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 04/02/2020 Arsenic, total ug/L MW-16 04/02/2020 Arsenic, total ug/L MW-16 04/02/2020 Arsenic,			GWD-1	09/17/2020	ND	4.0000		5.6000
Arsenic, total ug/L GWD-1 03/01/2022 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/24/2023 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/18/2024 ND 4.0000 5.6000 Arsenic, total ug/L GWD-1 03/18/2024 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 04/16/2008 39.0000 5.6000 Arsenic, total ug/L MW-16 06/17/2008 35.0000 5.6000 Arsenic, total ug/L MW-16 06/17/2008 35.0000 5.6000 Arsenic, total ug/L MW-16 10/16/2008 35.0000 5.6000 Arsenic, total ug/L MW-16 10/16/2008 36.8000 5.6000 Arsenic, total ug/L MW-16 12/04/2008 40.1000 5.6000 Arsenic, total ug/L MW-16 09/24/2009 33.0000 5.6000 Arsenic, total ug/L MW-16 09/24/2009 33.0000 5.6000 Arsenic, total ug/L MW-16 09/24/2009 33.0000 5.6000 Arsenic, total ug/L MW-16 09/29/2010 32.0000 5.6000 Arsenic, total ug/L MW-16 09/29/2010 32.0000 5.6000 Arsenic, total ug/L MW-16 09/29/2010 33.0000 5.6000 Arsenic, total ug/L MW-16 09/29/2011 33.8000 5.6000 Arsenic, total ug/L MW-16 09/10/2012 42.4000 5.6000 Arsenic, total ug/L MW-16 09/10/2012 39.5000 5.6000 Arsenic, total ug/L MW-16 09/10/2012 39.5000 5.6000 Arsenic, total ug/L MW-16 04/23/2014 37.2000 5.6000 Arsenic, total ug/L MW-16 04/23/2014 37.2000 5.6000 Arsenic, total ug/L MW-16 04/23/2014 37.2000 5.6000 Arsenic, total ug/L MW-16 04/23/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 04/23/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2020 4.7000 5.6000 Arsenic, total ug/L MW-16 09/01/2020 4.7000 5.6000 Arsenic, total ug/L MW-16 09/01/2020 4.7000 5.6000 Arsenic, total ug/L MW-	Arsenic, total		GWD-1	03/25/2021	ND	4.0000		5.6000
Arsenic, total		ug/L						5.6000
Arsenic, total								5.6000
Arsenic, total ug/L MW-16 04/16/2008 39,0000 \$ 5,6000 Arsenic, total ug/L MW-16 06/17/2008 28,0000 \$ 5,6000 Arsenic, total ug/L MW-16 06/17/2008 35,0000 \$ 5,6000 Arsenic, total ug/L MW-16 08/20/2008 35,0000 \$ 5,6000 Arsenic, total ug/L MW-16 10/16/2008 36,8000 \$ 5,6000 Arsenic, total ug/L MW-16 12/04/2008 40,1000 \$ 5,6000 Arsenic, total ug/L MW-16 12/04/2008 40,1000 \$ 5,6000 Arsenic, total ug/L MW-16 03/16/2009 37,8000 \$ 5,6000 Arsenic, total ug/L MW-16 09/24/2009 33,0000 \$ 5,6000 Arsenic, total ug/L MW-16 09/24/2009 33,0000 \$ 5,6000 Arsenic, total ug/L MW-16 09/29/2010 32,0000 \$ 5,6000 Arsenic, total ug/L MW-16 05/03/2011 33,8000 \$ 5,6000 Arsenic, total ug/L MW-16 05/03/2011 33,8000 \$ 5,6000 Arsenic, total ug/L MW-16 05/03/2011 39,0000 \$ 5,6000 Arsenic, total ug/L MW-16 09/10/2012 42,4000 \$ 5,6000 Arsenic, total ug/L MW-16 09/10/2012 42,4000 \$ 5,6000 Arsenic, total ug/L MW-16 09/10/2012 39,5000 \$ 5,6000 Arsenic, total ug/L MW-16 09/10/2012 39,5000 \$ 5,6000 Arsenic, total ug/L MW-16 09/18/2014 37,2000 \$ 5,6000 Arsenic, total ug/L MW-16 09/18/2014 37,2000 \$ 5,6000 Arsenic, total ug/L MW-16 09/18/2014 37,2000 \$ 5,6000 Arsenic, total ug/L MW-16 09/18/2015 ND 4,0000 5,6000 Arsenic, total ug/L MW-16 09/20/2015 ND 4,0000 5,6000 Arsenic, total ug/L MW-16 09/01/2016 ND 4,0000 5,6000 Arsenic, total ug/L MW-16 09/01/2016 ND 4,0000 5,6000 Arsenic, total ug/L MW-16 09/01/2018 ND 4,0000 5,6000 Arsenic, total ug/L MW-16 09/01/2020 0,3000 \$ 5,6000 Arsenic, total ug/L MW-16 09/01/2020 0,3000 \$ 5,6000 Arsenic, total ug/L MW-16 09/01/2020 0,3000 \$ 5,6000 Arsenic, total ug/L MW-16 09/01/2022 0,3000 \$ 5,6000 Arsenic, total ug/L MW-16 09/01/2022 0,3000 \$ 5,					ND		.	
Arsenic, total					ND		ļ ^	
Arsenic, total	l — '				ND		*	
Arsenic, total							*	
Arsenic, total ug/L MW-16 10/16/2008 36.8000 * 5.6000 Arsenic, total ug/L MW-16 12/04/2008 40.1000 * 5.6000 Arsenic, total ug/L MW-16 03/16/2009 37.8000 * 5.6000 Arsenic, total ug/L MW-16 09/24/2009 33.0000 * 5.6000 Arsenic, total ug/L MW-16 09/24/2009 33.0000 * 5.6000 Arsenic, total ug/L MW-16 09/29/2010 32.0000 * 5.6000 Arsenic, total ug/L MW-16 05/03/2011 33.8000 * 5.6000 Arsenic, total ug/L MW-16 05/03/2011 33.8000 * 5.6000 Arsenic, total ug/L MW-16 01/11/2011 39.0000 * 5.6000 Arsenic, total ug/L MW-16 09/10/2012 39.5000 * 5.6000 Arsenic, total ug/L MW-16 09/10/2012 39.5000 * 5.6000 Arsenic, total ug/L MW-16 04/04/2013 23.1000 * 5.6000 Arsenic, total ug/L MW-16 04/04/2013 35.1000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2014 37.2000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2014 37.2000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2014 37.2000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2014 34.3000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 04/23/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 04/23/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/02/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 03/09/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2020 4.7000 5.6000 Arsenic, total ug/L MW-16 09/06/2021 4.7000 5.6000 Arsenic, total ug/L MW-16 09/06/2021 4.7000 5.6000 4.7senic, total ug/L MW-16 09/06/2022 4.7000							*	
Arsenic, total ug/L MW-16 03/16/2009 37.8000 * 5.6000 Arsenic, total ug/L MW-16 09/24/2009 33.0000 * 5.6000 Arsenic, total ug/L MW-16 09/24/2010 33.0000 * 5.6000 Arsenic, total ug/L MW-16 09/29/2010 32.0000 * 5.6000 Arsenic, total ug/L MW-16 05/03/2011 33.8000 * 5.6000 Arsenic, total ug/L MW-16 07/11/2011 39.0000 * 5.6000 Arsenic, total ug/L MW-16 07/11/2011 39.0000 * 5.6000 Arsenic, total ug/L MW-16 09/10/2012 42.4000 * 5.6000 Arsenic, total ug/L MW-16 09/10/2012 39.5000 * 5.6000 Arsenic, total ug/L MW-16 09/10/2012 39.5000 * 5.6000 Arsenic, total ug/L MW-16 09/10/2013 23.1000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2014 37.2000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2014 37.2000 * 5.6000 Arsenic, total ug/L MW-16 09/18/2014 34.3000 * 5.6000 Arsenic, total ug/L MW-16 09/18/2015 38.5000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2015 MD 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/22/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 03/22/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 03/22/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2019 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/06/2019 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/06/2012 20.2000 * 5.6000 5.6000 Arsenic, total ug/L MW-16 09/06/2012 20.2000 * 5.6000 5.6000 Arsenic, total ug/L MW-16							*	5.6000
Arsenic, total ug/L MW-16 09/24/2009 33.0000 * 5.6000 Arsenic, total ug/L MW-16 09/29/2010 33.9000 * 5.6000 Arsenic, total ug/L MW-16 09/29/2010 32.0000 * 5.6000 Arsenic, total ug/L MW-16 09/29/2011 33.8000 * 5.6000 Arsenic, total ug/L MW-16 10/11/2011 39.0000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2012 42.4000 * 5.6000 Arsenic, total ug/L MW-16 09/10/2012 39.5000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2012 42.4000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2012 39.5000 * 5.6000 Arsenic, total ug/L MW-16 10/11/2013 35.1000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2014 37.2000 * 5.6000 Arsenic, total ug/L MW-16 09/18/2014 34.3000 * 5.6000 Arsenic, total ug/L MW-16 09/18/2015 38.5000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2015 38.5000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/22/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 03/09/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/17/2020 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000	Arsenic, total	ug/L	MW-16	12/04/2008		40.1000	*	5.6000
Arsenic, total ug/L MW-16 04/19/2010 33.9000 * 5.6000 Arsenic, total ug/L MW-16 09/29/2010 32.0000 * 5.6000 Arsenic, total ug/L MW-16 05/03/2011 33.8000 * 5.6000 Arsenic, total ug/L MW-16 05/03/2012 42.4000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2012 42.4000 * 5.6000 Arsenic, total ug/L MW-16 09/10/2012 39.5000 * 5.6000 Arsenic, total ug/L MW-16 09/10/2012 39.5000 * 5.6000 Arsenic, total ug/L MW-16 04/04/2013 23.1000 * 5.6000 Arsenic, total ug/L MW-16 04/04/2013 35.1000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2014 37.2000 * 5.6000 Arsenic, total ug/L MW-16 09/18/2014 34.3000 * 5.6000 Arsenic, total ug/L MW-16 04/29/2015 38.5000 * 5.6000 Arsenic, total ug/L MW-16 04/29/2015 MD 4.0000 5.6000 Arsenic, total ug/L MW-16 04/23/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/22/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 03/22/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 03/09/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/06/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 03/04/2023 Arsenic, total ug/L MW-16 0							*	5.6000
Arsenic, total ug/L MW-16 09/29/2010 32.0000 * 5.6000 Arsenic, total ug/L MW-16 05/03/2011 33.8000 * 5.6000 Arsenic, total ug/L MW-16 10/11/2011 39.0000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2012 42.4000 * 5.6000 Arsenic, total ug/L MW-16 09/10/2012 39.5000 * 5.6000 Arsenic, total ug/L MW-16 04/04/2013 23.1000 * 5.6000 Arsenic, total ug/L MW-16 04/04/2013 23.1000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2014 37.2000 * 5.6000 Arsenic, total ug/L MW-16 09/18/2014 37.2000 * 5.6000 Arsenic, total ug/L MW-16 09/18/2014 34.3000 * 5.6000 Arsenic, total ug/L MW-16 04/29/2015 38.5000 * 5.6000 Arsenic, total ug/L MW-16 04/29/2015 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 03/22/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/06/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/06/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2020 0.5000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2020 0.5000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2022 26.5000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 03/04/2023 Arsenic, total ug/L MW-16							*	5.6000
Arsenic, total ug/L MW-16 05/03/2011 33.8000 * 5.6000 Arsenic, total ug/L MW-16 10/11/2011 39.0000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2012 42.4000 * 5.6000 Arsenic, total ug/L MW-16 09/10/2012 39.5000 * 5.6000 Arsenic, total ug/L MW-16 09/10/2013 23.1000 * 5.6000 Arsenic, total ug/L MW-16 10/11/2013 35.1000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2014 37.2000 * 5.6000 Arsenic, total ug/L MW-16 09/18/2014 37.2000 * 5.6000 Arsenic, total ug/L MW-16 09/18/2015 38.5000 * 5.6000 Arsenic, total ug/L MW-16 09/18/2015 MD 4.0000 5.6000 Arsenic, total ug/L MW-16 04/23/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/22/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 03/22/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 03/09/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/06/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/06/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2022 26.5000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 4.7000							_	
Arsenic, total ug/L MW-16 10/11/2011 39.0000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2012 42.4000 * 5.6000 Arsenic, total ug/L MW-16 09/10/2012 39.5000 * 5.6000 Arsenic, total ug/L MW-16 09/10/2013 23.1000 * 5.6000 Arsenic, total ug/L MW-16 10/11/2013 35.1000 * 5.6000 Arsenic, total ug/L MW-16 10/11/2013 35.1000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2014 37.2000 * 5.6000 Arsenic, total ug/L MW-16 04/29/2015 38.5000 * 5.6000 Arsenic, total ug/L MW-16 04/29/2015 38.5000 * 5.6000 Arsenic, total ug/L MW-16 04/29/2015 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 04/23/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 10/13/2017 19.0000 * 5.6000 Arsenic, total ug/L MW-16 03/22/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 09/01/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/18/2024 20.4000 * 5.6000 Arsenic, total ug/L MW-16 03/18/2024 20.4000 * 5							*	
Arsenic, total							*	
Arsenic, total ug/L MW-16 09/10/2012 39.5000 * 5.6000 Arsenic, total ug/L MW-16 04/04/2013 23.1000 * 5.6000 Arsenic, total ug/L MW-16 10/11/2013 35.1000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2014 37.2000 * 5.6000 Arsenic, total ug/L MW-16 09/18/2014 34.3000 * 5.6000 Arsenic, total ug/L MW-16 04/29/2015 38.5000 * 5.6000 Arsenic, total ug/L MW-16 04/29/2015 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 04/23/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/22/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 03/22/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 03/09/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2019 Arsenic, total ug/L MW-16 09/06/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/26/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 4.7000 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 09/01/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/24/2023 4.3000 5.6000 Arsenic, total ug/L MW-16 03/24/2023 4.3000 5.6000 Arsenic, total ug/L MW-16 03/24/2023 4.3000 5.6000 Arsenic, total ug/L MW-16 03/24/20							*	
Arsenic, total ug/L MW-16 04/04/2013 23.1000 * 5.6000 Arsenic, total ug/L MW-16 10/11/2013 35.1000 * 5.6000 Arsenic, total ug/L MW-16 04/23/2014 37.2000 * 5.6000 Arsenic, total ug/L MW-16 09/18/2014 34.3000 * 5.6000 Arsenic, total ug/L MW-16 09/18/2015 38.5000 * 5.6000 Arsenic, total ug/L MW-16 04/29/2015 MD 4.0000 5.6000 Arsenic, total ug/L MW-16 04/23/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/22/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 03/22/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 03/09/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/09/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/06/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/06/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2022 26.5000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 09/01/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2023 ND							*	
Arsenic, total ug/L MW-16 04/23/2014 37.2000 * 5.6000 Arsenic, total ug/L MW-16 09/18/2014 34.3000 * 5.6000 Arsenic, total ug/L MW-16 09/18/2015 38.5000 * 5.6000 Arsenic, total ug/L MW-16 04/29/2015 38.5000 * 5.6000 Arsenic, total ug/L MW-16 10/06/2015 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 04/23/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/22/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 03/22/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 03/309/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/309/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 20.5000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2022 26.5000 * 5.6000 Arsenic, total ug/L MW-16 03/24/2023 Arsenic, total ug/L MW-16 03/24/2023 Arsenic, total ug/L MW-16 03/24/2023 Arsenic, total ug/L MW-16 03/18/2024 20.4000 * 5.6000 Arsenic, total ug/L MW-16							*	5.6000
Arsenic, total ug/L MW-16 09/18/2014 34.3000 * 5.6000 Arsenic, total ug/L MW-16 04/29/2015 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 04/23/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 04/23/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/01/2016 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/22/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 03/22/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 03/09/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/09/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/26/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/26/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 9.3000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 10.4000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2022 26.5000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 09/01/2023 Alsenic, total ug/L MW-16 03/24/2023 Alsenic, total ug/L MW-16 03/24/2023 Alsenic, total ug/L MW-16 09/01/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/18/2024 20.4000 * 5.6			MW-16				*	5.6000
Arsenic, total ug/L MW-16 04/29/2015 ND 4.0000 5.6000	Arsenic, total	ug/L	MW-16	04/23/2014		37.2000	*	5.6000
Arsenic, total ug/L MW-16 04/23/2016 ND 4.0000 5.6000	Arsenic, total	ug/L	MW-16				*	5.6000
Arsenic, total ug/L MW-16 04/23/2016 ND 4.0000 5.6000	II '						*	5.6000
Arsenic, total ug/L MW-16 09/01/2016 ND 4.0000 5.6000								
Arsenic, total ug/L MW-16 03/22/2017 9.3000 * 5.6000 Arsenic, total ug/L MW-16 10/13/2017 19.0000 * 5.6000 Arsenic, total ug/L MW-16 03/09/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/26/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/26/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 9.3000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 10.4000 * 5.6000 Arsenic, total ug/L MW-16 03/16/2022 26.5000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 03/24/2023 4.3000 5.6000 Arsenic, total ug/L MW-16 09/07/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/07/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/18/2024 20.4000 * 5.6000	II							
Arsenic, total ug/L MW-16 03/09/2018 ND 4.0000 * 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 * 5.6000 Arsenic, total ug/L MW-16 09/26/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/26/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/26/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 9.3000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 12.2000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 10.4000 * 5.6000 Arsenic, total ug/L MW-16 03/16/2022 26.5000 * 5.6000 Arsenic, total ug/L MW-16 03/16/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 09/01/2023 A.3000 5.6000 Arsenic, total ug/L MW-16 09/07/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/07/2023 ND 4.0000 \$ 5.6000 Arsenic, total ug/L MW-16 09/07/2023 ND 4.0000 \$ 5.6000 Arsenic, total ug/L MW-16 03/18/2024 20.4000 * 5.6000					ND			
Arsenic, total ug/L MW-16 03/09/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/26/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 04/02/2020 9.3000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 10.4000 * 5.6000 Arsenic, total ug/L MW-16 03/16/2022 26.5000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 03/24/2023 4.3000 5.6000 Arsenic, total ug/L MW-16 09/07/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/18/2024 20.4000 * 5.6000 A							*	
Arsenic, total ug/L MW-16 09/06/2018 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/26/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 09/12020 9.3000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 10.4000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2022 26.5000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 09/01/2023 4.3000 5.6000 Arsenic, total ug/L MW-16 09/07/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/07/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/18/2024 20.4000 * 5.6000 Ars					ND			
Arsenic, total ug/L MW-16 09/26/2019 6.3000 * 5.6000 Arsenic, total ug/L MW-16 04/02/2020 9.3000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 10.4000 * 5.6000 Arsenic, total ug/L MW-16 03/16/2022 26.5000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 03/24/2023 4.3000 5.6000 Arsenic, total ug/L MW-16 09/07/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 09/07/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/18/2024 20.4000 * 5.6000 A								
Arsenic, total ug/L MW-16 04/02/2020 9.3000 * 5.6000 Arsenic, total ug/L MW-16 09/17/2020 6.5000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 10.4000 * 5.6000 Arsenic, total ug/L MW-16 03/16/2022 26.5000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 03/24/2023 4.3000 5.6000 Arsenic, total ug/L MW-16 09/07/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/18/2024 20.4000 * 5.6000 Arse					.,5		*	5.6000
Arsenic, total ug/L MW-16 09/17/2020 6.5000 * 5.6000 Arsenic, total ug/L MW-16 03/25/2021 21.2000 * 5.6000 Arsenic, total ug/L MW-16 09/16/2021 10.4000 * 5.6000 Arsenic, total ug/L MW-16 03/16/2022 26.5000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 03/24/2023 4.3000 5.6000 Arsenic, total ug/L MW-16 09/07/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/18/2024 20.4000 * 5.6000 Ars							*	5.6000
Arsenic, total ug/L MW-16 09/16/2021 10.4000 * 5.6000 Arsenic, total ug/L MW-16 03/16/2022 26.5000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 03/24/2023 4.3000 5.6000 Arsenic, total ug/L MW-16 09/07/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/18/2024 20.4000 * 5.6000 Arsenic, total ug/L Arsenic, total ug/L Arsenic, total ug/L		ug/L				6.5000	*	5.6000
Arsenic, total ug/L MW-16 03/16/2022 26.5000 * 5.6000 Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 03/24/2023 4.3000 5.6000 Arsenic, total ug/L MW-16 03/18/2024 09/07/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/18/2024 20.4000 * 5.6000 Arsenic, total ug/L Arsenic, tota							*	5.6000
Arsenic, total ug/L MW-16 09/01/2022 4.7000 5.6000 Arsenic, total ug/L MW-16 03/24/2023 4.3000 5.6000 Arsenic, total ug/L MW-16 09/07/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/18/2024 20.4000 * 5.6000							*	5.6000
Arsenic, total ug/L MW-16 03/24/2023 4.3000 5.6000 Arsenic, total ug/L MW-16 09/07/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/18/2024 20.4000 * 5.6000							*	
Arsenic, total ug/L MW-16 09/07/2023 ND 4.0000 5.6000 Arsenic, total ug/L MW-16 03/18/2024 20.4000 * 5.6000								
Arsenic, total ug/L MW-16 03/18/2024 20.4000 * 5.6000					ND			
					טויי		*	
/ 11 3 5 11 10 , total ug/L 10 10 U=/ 13/20 10 U=.0000 3.0000	Arsenic, total	ug/L	MW-18	04/19/2010		64.6000	*	5.6000

^{* -} Significantly increased over background.
** - Detect at limit for 100% NDs in background (NPPL only).
*** - Manual exclusion.
ND = Not Detected, Result = detection limit.

Table 8 Historical Downgradient Data for Constituent-Well Combinations that Failed the Current Statistical Evaluation or are in Verification Resampling Mode

Constituent	Units	Well	Date		esult		Pred. Limit
Arsenic, total	ug/L	MW-18	05/27/2010		19.9000	*	5.6000
Arsenic, total	ug/L	MW-18	07/28/2010		29.0000	*	5.6000
Arsenic, total	ug/L	MW-18	09/29/2010		73.0000	 *	5.6000
Arsenic, total	ug/L	MW-18	11/03/2010		25.0000	*	5.6000
Arsenic, total	ug/L	MW-18	05/04/2011		11.4000	*	5.6000
Arsenic, total	ug/L	MW-18	10/11/2011		8.9000	*	5.6000
Arsenic, total	ug/L	MW-18	04/23/2012	I	29.0000	*	5.6000
Arsenic, total	ug/L	MW-18	09/11/2012		15.0000	*	5.6000
Arsenic, total	ug/L	MW-18	04/04/2013		9.6000	*	5.6000
Arsenic, total	ug/L	MW-18	10/11/2013		17.7000	*	5.6000
Arsenic, total	ug/L	MW-18	04/23/2014		9.0000	*	5.6000
Arsenic, total	ug/L	MW-18	09/17/2014		22.0000	*	5.6000
Arsenic, total	ug/L	MW-18	04/28/2015		45.9000	*	5.6000
Arsenic, total	ug/L	MW-18	10/06/2015		39.2000	*	5.6000
Arsenic, total	ug/L	MW-18	04/23/2016		51.8000	*	5.6000
Arsenic, total	ug/L	MW-18	09/01/2016		81.4000	*	5.6000
Arsenic, total	ug/L	MW-18	03/21/2017		49.7000	*	5.6000
Arsenic, total	ug/L	MW-18	10/13/2017		50.1000	*	5.6000
Arsenic, total	ug/L	MW-18	03/09/2018	.	46.1000	*	5.6000
Arsenic, total	ug/L	MW-18	09/06/2018		74.4000	*	5.6000
Arsenic, total	ug/L	MW-18	03/07/2019		87.2000	*	5.6000
Arsenic, total	ug/L	MW-18	09/26/2019		99.4000		5.6000
Arsenic, total	ug/L	MW-18	04/02/2020		81.7000		5.6000
Arsenic, total	ug/L	MW-18	09/17/2020		34.8000		5.6000
Arsenic, total	ug/L	MW-18	03/25/2021		9.6000		5.6000
Arsenic, total	ug/L	MW-18	09/16/2021		36.0000		5.6000
Arsenic, total	ug/L	MW-18	03/16/2022		34.7000		5.6000
Arsenic, total	ug/L	MW-18	09/01/2022		24.1000	*	5.6000
Arsenic, total	ug/L	MW-18	03/24/2023	I	67.4000	*	5.6000
Arsenic, total	ug/L ug/L	MW-18	09/07/2023		26.9000	*	5.6000
Arsenic, total	ug/L ug/L	MW-18	03/18/2024		23.7000	*	5.6000
Barium, total	ug/L ug/L	MW-1D	09/07/2023		60.0000		776.0663
Barium, total	ug/L ug/L	MW-1D	03/18/2024		84.0000	*	776.0663
Arsenic, total	ug/L ug/L	MW-20	04/19/2010		65.0000	*	5.6000
Arsenic, total	ug/L	MW-20	05/27/2010		44.0000	*	5.6000
Arsenic, total	ug/L ug/L	MW-20	07/28/2010		65.0000	*	5.6000
		MW-20	09/29/2010	I		*	
Arsenic, total	ug/L	MW-20			86.8000	*	5.6000
Arsenic, total	ug/L		11/03/2010		64.3000		5.6000
Arsenic, total	ug/L	MW-20	05/04/2011		47.4000	*	5.6000
Arsenic, total	ug/L	MW-20	10/11/2011		60.7000	*	5.6000
Arsenic, total	ug/L	MW-20	04/24/2012	I	44.9000		5.6000
Arsenic, total	ug/L	MW-20	09/11/2012		59.8000	*	5.6000
Arsenic, total	ug/L	MW-20	04/05/2013		37.7000		5.6000
Arsenic, total	ug/L	MW-20	10/11/2013	I	61.7000	ļ.,	5.6000
Arsenic, total	ug/L	MW-20	04/23/2014		55.2000	Ļ	5.6000
Arsenic, total	ug/L	MW-20	09/18/2014		75.2000	Ļ	5.6000
Arsenic, total	ug/L	MW-20	04/28/2015		45.5000	Ĺ	5.6000
Arsenic, total	ug/L	MW-20	10/06/2015		81.7000	1.	5.6000
Arsenic, total	ug/L	MW-20	04/23/2016		81.5000		5.6000
Arsenic, total	ug/L	MW-20	09/01/2016		77.1000	l.	5.6000
Arsenic, total	ug/L	MW-20	03/21/2017		79.1000	1.	5.6000
Arsenic, total	ug/L	MW-20	10/13/2017		96.8000	 *	5.6000
Arsenic, total	ug/L	MW-20	03/09/2018		83.4000	 *	5.6000
Arsenic, total	ug/L	MW-20	09/06/2018	I	99.6000	*	5.6000
Arsenic, total	ug/L	MW-20	03/07/2019		78.4000		5.6000
Arsenic, total	ug/L	MW-20	09/26/2019		83.6000		5.6000
Arsenic, total	ug/L	MW-20	04/02/2020		65.2000		5.6000
Arsenic, total	ug/L	MW-20	09/17/2020		87.1000		5.6000
Arsenic, total	ug/L	MW-20	03/25/2021		06.0000		5.6000
Arsenic, total	ug/L	MW-20	09/16/2021		87.8000	*	5.6000
Arsenic, total	ug/L	MW-20	03/16/2022	1:	27.0000	*	5.6000
Arsenic, total	ug/L	MW-20	09/01/2022	1:	33.0000	*	5.6000
Arsenic, total	ug/L	MW-20	03/24/2023		94.6000	*	5.6000
Arsenic, total	ug/L	MW-20	09/07/2023		83.4000	*	5.6000
Arsenic, total	ug/L	MW-20	03/18/2024		12.0000		5.6000
Barium, total	ug/L	MW-20	04/19/2010		90.0000	*	776.0663
Barium, total	ug/L	MW-20	05/27/2010		00.000	*	776.0663
Barium, total	ug/L	MW-20	07/28/2010		10.0000		776.0663
Barium, total	ug/L	MW-20	09/29/2010		00.000	*	776.0663
Barium, total	ug/L	MW-20	11/03/2010		00.000	*	776.0663
Barium, total	ug/L	MW-20	05/04/2011		90.0000		776.0663
	1 49, L	1 20	00/01/2011	1 23			

^{* -} Significantly increased over background.
** - Detect at limit for 100% NDs in background (NPPL only).
*** - Manual exclusion.
ND = Not Detected, Result = detection limit.

April 2024 Page County [GW]

Table 8 Historical Downgradient Data for Constituent-Well Combinations that Failed the Current Statistical Evaluation or are in Verification Resampling Mode

Constituent	Units	Well	Date		Result		Pred. Limit
Barium, total	ug/L	MW-20	10/11/2011		3010.0000	*	776.0663
Barium, total	ug/L	MW-20	04/24/2012		1850.0000	*	776.0663
Barium, total	ug/L	MW-20	09/11/2012		2060.0000	*	776.0663
Barium, total	ug/L	MW-20	04/05/2013		2910.0000	*	776.0663
Barium, total	ug/L	MW-20	10/11/2013		2470.0000	*	776.0663
Barium, total	ug/L	MW-20	04/23/2014		1830.0000	*	776.0663
Barium, total	ug/L	MW-20	09/18/2014		2370.0000	*	776.0663
Barium, total	ug/L	MW-20	04/28/2015		2390.0000	*	776.0663
Barium, total	ug/L	MW-20	10/06/2015		2490.0000	*	776.0663
Barium, total	ug/L	MW-20	04/23/2016		2260.0000	*	776.0663
Barium, total	ug/L	MW-20	09/01/2016		2140.0000	*	776.0663
Barium, total	ug/L	MW-20	03/21/2017		2140.0000	*	776.0663
Barium, total	ug/L	MW-20	10/13/2017		2340.0000	*	776.0663
Barium, total	ug/L	MW-20	03/09/2018		2010.0000	*	776.0663
Barium, total	ug/L	MW-20	09/06/2018		2360.0000	*	776.0663
Barium, total	ug/L	MW-20	03/07/2019		2100.0000	*	776.0663
Barium, total	ug/L	MW-20	09/26/2019		2350.0000	*	776.0663
Barium, total	ug/L	MW-20	04/02/2020		2300.0000	*	776.0663
Barium, total	ug/L	MW-20	09/17/2020		1970.0000	*	776.0663
Barium, total	ug/L	MW-20	03/25/2021		1970.0000	*	776.0663
Barium, total	ug/L	MW-20	09/16/2021		2160.0000	*	776.0663
Barium, total	ug/L	MW-20	03/16/2022		1890.0000	*	776.0663
Barium, total	ug/L	MW-20	09/01/2022		2020.0000	*	776.0663
Barium, total	ug/L	MW-20	03/24/2023		2000.0000	*	776.0663
Barium, total	ug/L	MW-20	09/07/2023		1810.0000	*	776.0663
Barium, total	ug/L	MW-20	03/18/2024		2110.0000	*	776.0663
Arsenic, total	ug/L	MW-7	04/16/2008	ND	5.0000		5.6000
Arsenic, total	ug/L	MW-7	06/17/2008	ND	5.0000		5.6000
Arsenic, total	ug/L	MW-7	08/20/2008	ND	5.0000		5.6000
Arsenic, total	ug/L	MW-7	10/16/2008	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	12/04/2008	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	03/16/2009	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	09/24/2009	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	04/19/2010	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	09/29/2010	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	05/03/2011		4.3000		5.6000
Arsenic, total	ug/L	MW-7	10/10/2011	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	04/23/2012		4.9000		5.6000
Arsenic, total	ug/L	MW-7	09/10/2012	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	04/04/2013	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	10/10/2013	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	04/22/2014	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	09/17/2014	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	04/28/2015	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	10/06/2015	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	04/23/2016	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	09/01/2016	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	03/22/2017	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	10/13/2017	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	03/09/2018	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	09/06/2018	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	03/07/2019	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	09/26/2019		8.2000	*	5.6000
Arsenic, total	ug/L	MW-7	12/17/2019		4.7000		5.6000
Arsenic, total	ug/L	MW-7	04/02/2020	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	09/17/2020		6.9000	*	5.6000
Arsenic, total	ug/L	MW-7	12/03/2020		7.2000	*	5.6000
Arsenic, total	ug/L	MW-7	03/25/2021	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	09/16/2021	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	03/16/2022		4.3000		5.6000
Arsenic, total	ug/L	MW-7	09/01/2022		5.7000	*	5.6000
Arsenic, total	ug/L	MW-7	03/24/2023	ND	4.0000		5.6000
	ug/L	MW-7	09/07/2023		8.8000	*	5.6000
Arsenic, total	uq/L						

 ^{* -} Significantly increased over background.
 ** - Detect at limit for 100% NDs in background (NPPL only).
 *** - Manual exclusion.
 ND = Not Detected, Result = detection limit.

Page County [GW]

False Positive and False Negative Rates for Current Upgradient vs. Downgradient Monitoring Program

S. D. Units

Attachment C

Assessment Statistics for Trace Metals

pageco2024s1 April 2024

Page County [GW] April 2024

Table 1 Confidence Intervals for Comparing the Mean of the Last 4 Measurements to an Assessment Monitoring Standard

Constituent	Units	Well	N	Mean	SD	Factor	95% LCL	95% UCL	Standard	Trend	
Arsenic, total	ug/L	GWD-1	4	3.200	2.400	1.176	0.377	6.023	10.000		+-
		-	1 1			-					
Barium, total	ug/L	GWD-1	4	335.750	125.242	1.176	188.429	483.071	2000.000		
Cobalt, total	ug/L	GWD-1	4	1.050	1.170	1.176	0.000	2.427	2.100		
Arsenic, total	ug/L	MW-10	4	2.000	0.000	1.176	2.000	2.000	10.000		
Barium, total	ug/L	MW-10	4	495.750	51.700	1.176	434.936	556.564	2000.000	inc	
Cobalt, total	ug/L	MW-10	4	2.100	0.616	1.176	1.375	2.825	2.100		
Arsenic, total	ug/L	MW-16	4	7.850	8.451	1.176	0.000	17.791	10.000	dec	
Barium, total	ug/L	MW-16	4	540.000	181.729	1.176	326.235	753.765	2000.000	dec	
Cobalt, total	ug/L	MW-16	4	0.625	0.222	1.176	0.364	0.886	2.100	dec	
Arsenic, total	ug/L	MW-18	4	35.525	21.298	1.176	10.473	60.577	10.000		**
Barium, total	ug/L	MW-18	4	549.750	218.445	1.176	292.796	806.704	2000.000		
Cobalt, total	ug/L	MW-18	4	2.225	2.454	1.176	0.000	5.112	2.100	dec	
Arsenic, total	ug/L	MW-20	4	105.750	21.645	1.176	80.290	131.210	10.000		**
Barium, total	ug/L	MW-20	4	1985.000	126.095	1.176	1836.676	2133.324	2000.000	dec	
Cobalt, total	ug/L	MW-20	4	10.250	1.012	1.176	9.060	11.440	2.100	dec	**
Arsenic, total	ug/L	MW-7	4	5.475	2.780	1.176	2.205	8.745	10.000		
Barium, total	ug/L	MW-7	4	312.000	19.408	1.176	289.171	334.829	2000.000	inc	
Cobalt, total	ug/L	MW-7	4	9.550	0.947	1.176	8.436	10.664	2.100	inc	**

^{* -} Insufficient Data ** - Significant Exceedance LCL = Lower Confidence Limit UCL = Upper Confidence Limit

Attachment D

Historical VOC Detections

pageco2024s1 April 2024

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Acetone	GWD-1	9/24/2009		76.0	10.0	ug/L
Acetone	GWD-1	10/13/2017		20.2	10.0	ug/L
Benzene Chloroethane	GWD-1 GWD-1	4/23/2012 4/23/2012		1.2 3.4	1.0 1.0	ug/L ug/L
Acetone	MW-1	9/17/2014		11.2	10.0	ug/L ug/L
Benzene	MW-1	3/25/2021		1.5	1.0	ug/L
Benzene	MW-1	3/16/2022		1.0	1.0	ug/L
Benzene	MW-1	3/24/2023		1.7	1.0	ug/L
Benzene	MW-1	5/09/2023		1.6	1.0	ug/L
Chloroethane	MW-1	9/17/2014		1.4	1.0	ug/L
Chloroethane	MW-1	3/25/2021		1.6	1.0	ug/L
Chloroethane	MW-1	3/24/2023		1.3	1.0	ug/L
Chloroethane	MW-1	5/09/2023		1.3	1.0	ug/L
Trichloroethylene	MW-1	9/16/2021		3	1	ug/L
Acetone	MW-10	10/10/2011		13.5	10.0	ug/L
Acetone	MW-10	9/17/2014		18.8	10.0	ug/L
Acetone	MW-10	10/13/2017		18.7	10.0	ug/L
Acetone	MW-10	9/06/2018		11.3	10.0	ug/L
Acetone	MW-10	3/25/2021		10.7	10.0	ug/L
Benzene	MW-10	9/06/2018		1.4	1.0	ug/L
Bis(2-ethylhexyl) phthalate	MW-10	9/06/2018		8	6	ug/L
Bis(2-ethylhexyl) phthalate	MW-10	4/02/2020		14	10.0	ug/L
Acetone Acetone	MW-11	10/13/2017		12.1	10.0 10.0	ug/L
	MW-13 MW-16	10/13/2017		16.9 1.8		ug/L ug/L
1,1-dichloroethane 1,1-dichloroethane	MW-16	4/16/2008		1.8 2.2	1.0	
	MW-16	6/17/2008 8/20/2008			1.0	ug/L
1,1-dichloroethane 1,1-dichloroethane	MW-16	10/16/2008		1.9 2.0	1.0 1.0	ug/L ug/L
1,1-dichloroethane	MW-16	12/04/2008		1.4	1.0	ug/L ug/L
1,1-dichloroethane	MW-16	3/16/2009		1.4	1.0	ug/L ug/L
1,1-dichloroethane	MW-16	9/24/2009		1.6	1.0	ug/L
1,1-dichloroethane	MW-16	4/19/2010		1.8	1.0	ug/L
1,1-dichloroethane	MW-16	5/03/2011		1.7	1.0	ug/L
1,1-dichloroethane	MW-16	10/11/2011		1.8	1.0	ug/L
1,1-dichloroethane	MW-16	4/23/2012		1.9	1.0	ug/L
1,1-dichloroethane	MW-16	9/10/2012		1.6	1.0	ug/L
1,1-dichloroethane	MW-16	4/04/2013		2.2	1.0	ug/L
1,1-dichloroethane	MW-16	10/11/2013		2.1	1.0	ug/L
1,1-dichloroethane	MW-16	4/23/2014		2.4	1.0	ug/L
1,1-dichloroethane	MW-16	9/18/2014		2.0	1.0	ug/L
1,1-dichloroethane	MW-16	4/29/2015		2.2	1.0	ug/L
1,1-dichloroethane	MW-16	10/06/2015		1.9	1.0	ug/L
1,1-dichloroethane	MW-16	4/23/2016		2.5	1.0	ug/L
1,1-dichloroethane	MW-16	9/01/2016		1.9	1.0	ug/L
1,1-dichloroethane	MW-16	3/22/2017		1.6	1.0	ug/L
1,1-dichloroethane	MW-16	10/13/2017		1.8	1.0	ug/L
1,1-dichloroethane	MW-16	3/09/2018		2.4	1.0	ug/L
1,1-dichloroethane	MW-16	3/07/2019		1.7	1.0	ug/L
1,1-dichloroethane	MW-16	9/26/2019		1.3	1.0	ug/L
1,1-dichloroethane	MW-16	3/25/2021		1.2	1.0	ug/L
1,1-dichloroethane	MW-16	3/16/2022		1.9	1.0	ug/L
1,1-dichloroethane	MW-16	3/18/2024		1.0	1.0	ug/L
1,2-dichloropropane 1.4-dichlorobenzene	MW-16	3/16/2022		1 2.6	1 1.0	ug/L
1,4-dichlorobenzene 1.4-dichlorobenzene	MW-16 MW-16	3/10/1994 6/09/1994		2.6		ug/L
1,4-dichlorobenzene	MW-16	4/28/2007		3.8	1.0 1.0	ug/L ug/L
1,4-dichlorobenzene	MW-16	9/27/2007		3.0	1.0	ug/L ug/L
1,4-dichlorobenzene	MW-16	4/16/2008		3.5	1.0	ug/L ug/L
1,4-dichlorobenzene	MW-16	6/17/2008		4.1	1.0	ug/L ug/L
1,4-dichlorobenzene	MW-16	8/20/2008		4.1	1.0	ug/L ug/L
1,4-dichlorobenzene	MW-16	10/16/2008		3.2	1.0	ug/L
1,4-dichlorobenzene	MW-16	12/04/2008		4.9	1.0	ug/L
1,4-dichlorobenzene	MW-16	3/16/2009		4.2	1.0	ug/L
1,4-dichlorobenzene	MW-16	9/24/2009		3.0	1.0	ug/L
1,4-dichlorobenzene	MW-16	4/19/2010		3.6	1.0	ug/L
1,4-dichlorobenzene	MW-16	9/29/2010		4.2	1.0	ug/L
1,4-dichlorobenzene	MW-16	5/03/2011		3.6	1.0	ug/L
1,4-dichlorobenzene	MW-16	10/11/2011		3.4	1.0	ug/L
1,4-dichlorobenzene	MW-16	4/23/2012		2.5	1.0	ug/L
1,4-dichlorobenzene	MW-16	9/10/2012		2.7	1.0	ug/L
1,4-dichlorobenzene	MW-16	4/04/2013		2.3	1.0	ug/L
1,4-dichlorobenzene	MW-16	10/11/2013		2.0	1.0	ug/L
1,4-dichlorobenzene	MW-16	4/23/2014		1.7	1.0	ug/L
1,4-dichlorobenzene	MW-16	4/29/2015		1.5	1.0	ug/L
1,4-dichlorobenzene	MW-16	10/06/2015		2.0	1.0	ug/L
	MW-16			1.6	1.0	

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
1,4-dichlorobenzene	MW-16	9/01/2016		2.1	1.0	ug/L
1,4-dichlorobenzene	MW-16	3/22/2017		2.6	1.0	ug/L
1,4-dichlorobenzene	MW-16	10/13/2017		2.0	1.0	ug/L
1,4-dichlorobenzene	MW-16	3/09/2018		1.8	1.0	ug/L
1,4-dichlorobenzene	MW-16	9/06/2018		2.7	1.0	ug/L
1,4-dichlorobenzene	MW-16	3/07/2019		3.8	1.0	ug/L
1,4-dichlorobenzene	MW-16	9/17/2020		1.8	1.0	ug/L
1,4-dichlorobenzene	MW-16	3/25/2021		1.8	1.0	ug/L
1,4-dichlorobenzene	MW-16	9/16/2021		2.2	1.0	ug/L
1,4-dichlorobenzene	MW-16	3/16/2022		2.1	1.0	ug/L
1,4-dichlorobenzene	MW-16	3/18/2024		1.8	1.0	ug/L
Acetone	MW-16	10/13/2017		13.1	10.0	ug/L
Benzene	MW-16	9/23/1993		2.4	2.0	ug/L
Benzene	MW-16	3/10/1994		2.1	2.0	ug/L
Benzene	MW-16	4/07/1995		1.3	1.0	ug/L
Benzene	MW-16	10/04/1995		1.3	1.0	ug/L
Benzene	MW-16	9/17/1996		1.6	1.0	ug/L
Benzene	MW-16	3/20/1997		2.1	2.0	ug/L
Benzene	MW-16	9/11/1997		2.8	2.0	ug/L
Benzene	MW-16	3/18/1999		1.6	1.0	ug/L
Benzene	MW-16	9/01/1999		2.3	2.0	ug/L
Benzene	MW-16	4/04/2000		1.7	1.0	ug/L
Benzene	MW-16	9/28/2000		1.5	1.0	ug/L
Benzene	MW-16	3/30/2001		1.8	1.0	ug/L
Benzene	MW-16	10/08/2001		1.6	1.0	ug/L
Benzene	MW-16	4/04/2002		1.6	1.0	ug/L
Benzene	MW-16	9/16/2002		1.5	1.0	ug/L
Benzene	MW-16	4/02/2003		1.2	1.0	ug/L
Benzene	MW-16	9/23/2003		1.6	1.0	ug/L
Benzene	MW-16	9/09/2004		1.1	1.0	ug/L
Benzene	MW-16	4/14/2005		1.6	1.0	ug/L
Benzene	MW-16	9/30/2005		1.8	1.0	ug/L
Benzene	MW-16	4/05/2006		1.5	1.0	ug/L
Benzene	MW-16	4/28/2007		1.2	1.0	ug/L
Benzene	MW-16	9/27/2007		1.2	1.0	ug/L
Benzene	MW-16	4/16/2008		1.4	1.0	ug/L
Benzene	MW-16	6/17/2008		1.4	1.0	ug/L
Benzene	MW-16	8/20/2008		1.5	1.0	ug/L
Benzene	MW-16	10/16/2008		1.4	1.0	ug/L
Benzene	MW-16	12/04/2008		1.9	1.0	ug/L
Benzene	MW-16	3/16/2009		1.7	1.0	ug/L
Benzene	MW-16	9/24/2009		1.2	1.0	ug/L
Benzene	MW-16	4/19/2010		1.2	1.0	ug/L
Benzene	MW-16	9/29/2010		1.7	1.0	ug/L
Benzene	MW-16	5/03/2011		1.3	1.0	ug/L
Benzene	MW-16	10/11/2011		1.3	1.0	ug/L
Benzene	MW-16	4/23/2012		1.0	1.0	ug/L
Benzene	MW-16	9/10/2012		1.2	1.0	ug/L
Benzene	MW-16	10/11/2013		1.1	1.0	ug/L
Benzene	MW-16	10/06/2015		1.0	1.0	ug/L
Benzene	MW-16	9/01/2016		1.2	1.0	ug/L
Benzene	MW-16	3/22/2017		1.3	1.0	ug/L
Benzene	MW-16	10/13/2017		1.1	1.0	ug/L
Benzene Benzene	MW-16	9/06/2018		1.7	1.0	ug/L
	MW-16	3/07/2019 4/02/2020		2.1		ug/L
Benzene	MW-16 MW-16	3/25/2021		1.6		ug/L
Benzene Benzene	MW-16	9/16/2021		1.5 1.3	1.0 1.0	ug/L
Benzene	MW-16	3/16/2022		1.6	1.0	ug/L
Benzene	MW-16			1.5	1.0	ug/L ug/L
Chlorobenzene	MW-16	3/18/2024 4/16/2008		9.1	1.0	
Chlorobenzene	MW-16	6/17/2008		9.1	1.0	ug/L ug/L
Chlorobenzene	MW-16	8/20/2008		10.4	1.0	ug/L ug/L
Chlorobenzene	MW-16	10/16/2008		9.2	1.0	
Chlorobenzene	MW-16	12/04/2008		9.2 14.5	1.0	ug/L ug/L
Chlorobenzene	MW-16	3/16/2009		12.3	1.0	ug/L ug/L
Chlorobenzene	MW-16	9/24/2009		8.7	1.0	ug/L ug/L
Chlorobenzene	MW-16	4/19/2010		9.2	1.0	ug/L ug/L
Chlorobenzene	MW-16			11.3		
Chlorobenzene		9/29/2010			1.0	ug/L
Chlorobenzene	MW-16 MW-16	5/03/2011		9.6 8.7	1.0 1.0	ug/L
Chlorobenzene	MW-16	10/11/2011		8.7 6.6	1.0	ug/L
Chlorobenzene	I	4/23/2012		7.5		ug/L
Chlorobenzene	MW-16 MW-16	9/10/2012 4/04/2013		7.5 5.8	1.0 1.0	ug/L
Chlorobenzene	MW-16	10/11/2013		6.0	1.0	ug/L ug/L
Chlorobenzene	MW-16	4/23/2014		4.6		ug/L ug/L
CHIOLODELIZELIE	14144-10	4/23/2014		4.0	1.0	uy/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Chlorobenzene	MW-16	9/18/2014		4.3	1.0	ug/L
Chlorobenzene	MW-16	4/29/2015		4.4	1.0	ug/L
Chlorobenzene	MW-16	10/06/2015		4.9	1.0	ug/L
Chlorobenzene	MW-16	4/23/2016		3.5	1.0	ug/L
Chlorobenzene	MW-16	9/01/2016		6.0	1.0	ug/L
Chlorobenzene	MW-16	3/22/2017		6.4	1.0	ug/L
Chlorobenzene	MW-16	10/13/2017		5.1	1.0	ug/L
Chlorobenzene	MW-16 MW-16	3/09/2018 9/06/2018		4.7 8.1	1.0 1.0	ug/L
Chlorobenzene Chlorobenzene	MW-16	3/07/2019		9.7	1.0	ug/L
Chlorobenzene	MW-16	9/26/2019		4.8	1.0	ug/L ug/L
Chlorobenzene	MW-16	4/02/2020		8.8	1.0	ug/L
Chlorobenzene	MW-16	9/17/2020		4.7	1.0	ug/L
Chlorobenzene	MW-16	3/25/2021		5.8	1.0	ug/L
Chlorobenzene	MW-16	9/16/2021		7.3	1.0	ug/L
Chlorobenzene	MW-16	3/16/2022		5.2	1.0	ug/L
Chlorobenzene	MW-16	9/01/2022		2.1	1.0	ug/L
Chlorobenzene	MW-16	3/24/2023		3.0	1.0	ug/L
Chlorobenzene	MW-16	3/18/2024		5.2	1.0	ug/L
Cis-1,2-dichloroethylene	MW-16	9/01/2016		1.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-16	10/13/2017		1.2	1.0	ug/L
Cis-1,2-dichloroethylene	MW-16	3/07/2019		1.4	1.0	ug/L
Cis-1,2-dichloroethylene	MW-16	3/25/2021		1.3	1.0	ug/L
Cis-1,2-dichloroethylene	MW-16	3/16/2022		2.1	1.0	ug/L
Dichlorodifluoromethane	MW-16	10/11/2011		4.0	1.0	ug/L
Dichlorodifluoromethane	MW-16	4/23/2012		5.0	1.0	ug/L
Dichlorodifluoromethane	MW-16	9/10/2012		3.6	1.0	ug/L
Dichlorodifluoromethane	MW-16	4/04/2013		4.3	1.0	ug/L
Dichlorodifluoromethane	MW-16	10/11/2013		2.9	1.0	ug/L
Dichlorodifluoromethane	MW-16	4/23/2014		4.3	1.0	ug/L
Dichlorodifluoromethane	MW-16	9/18/2014		3.6	1.0	ug/L
Dichlorodifluoromethane	MW-16	4/29/2015		2.6	1.0	ug/L
Dichlorodifluoromethane	MW-16	10/06/2015		2.9	1.0	ug/L
Dichlorodifluoromethane	MW-16	4/23/2016		3.2	1.0	ug/L
Dichlorodifluoromethane	MW-16	9/01/2016		3.6	1.0	ug/L
Dichlorodifluoromethane	MW-16	3/22/2017		2.2	1.0	ug/L
Dichlorodifluoromethane	MW-16	10/13/2017		1.6 3.0	1.0	ug/L
Dichlorodifluoromethane Dichlorodifluoromethane	MW-16 MW-16	3/09/2018 3/07/2019		4.6	1.0 1.0	ug/L
Trichloroethylene	MW-16	9/23/1993		1.8	1.0	ug/L
Vinyl chloride	MW-16	6/17/2008		1.0	1.0	ug/L ug/L
Vinyl chloride	MW-16	9/24/2009		1.6	1.0	ug/L ug/L
Vinyl chloride	MW-16	3/07/2019		2.5	1.0	ug/L
1,1-dichloroethane	MW-18	4/23/2012		1.3	1.0	ug/L
Acetone	MW-18	10/13/2017		18	10	ug/L
Benzene	MW-18	10/13/2017		1.6	1.0	ug/L
Bromomethane	MW-18	10/11/2013		1.6	1.0	ug/L
Chloroethane	MW-18	10/13/2017		1.6	1.0	ug/L
Methyl iodide	MW-18	10/11/2013		1.5	1.0	ug/L
1,1-dichloroethane	MW-19	5/04/2011		1.3	1.0	ug/L
1,1-dichloroethane	MW-19	10/10/2011		1.7	1.0	ug/L
1,1-dichloroethane	MW-19	9/11/2012		1.6	1.0	ug/L
1,1-dichloroethane	MW-19	4/05/2013		1.8	1.0	ug/L
1,1-dichloroethane	MW-19	10/11/2013		2.9	1.0	ug/L
1,1-dichloroethane	MW-19	4/22/2014		2.5	1.0	ug/L
1,1-dichloroethane	MW-19	9/17/2014		1.8		ug/L
1,1-dichloroethane	MW-19	10/06/2015		1.3	1.0	ug/L
1,1-dichloroethane	MW-19	4/23/2016		2.2	1.0	ug/L
1,1-dichloroethane	MW-19	9/01/2016		1.6	1.0	ug/L
1,1-dichloroethane	MW-19	3/22/2017		2.2	1.0	ug/L
1,1-dichloroethane	MW-19	10/13/2017		1.0	1.0	ug/L
1,1-dichloroethane	MW-19	3/09/2018		3.1	1.0	ug/L
1,1-dichloroethane	MW-19	9/06/2018		3.0	1.0	ug/L
1,1-dichloroethane	MW-19	9/17/2020		2.3	1.0	ug/L
1,1-dichloroethane	MW-19	3/25/2021		2.6	1.0	ug/L
1,1-dichloroethane	MW-19	9/16/2021		3.4	1.0	ug/L
1,1-dichloroethane	MW-19	3/16/2022		4.9	1.0	ug/L
1,1-dichloroethane	MW-19	9/01/2022		3.8	1.0	ug/L
1,1-dichloroethane	MW-19	3/24/2023		3.1	1.0	ug/L
1,1-dichloroethane	MW-19	9/07/2023		2.9	1.0	ug/L
Acetone	MW-19	10/13/2017		19.8 15.9	10.0	ug/L
Acetone Acetone	MW-19	9/06/2018			10.0	ug/L
	MW-19 MW-19	9/26/2019		107.0 11.2	10.0 10.0	ug/L
Acetone Benzene	MW-19	9/17/2020 3/16/2022		11.2	1.0	ug/L ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Bis(2-ethylhexyl) phthalate	MW-19	4/24/2012		33	8	ug/L
Chloroethane	MW-19	3/16/2022		1.4	1.0	ug/L
Chloroethane	MW-19	9/01/2022		1.2	1.0	ug/L
Chloromethane	MW-19	4/23/2016		3.6	1.0	ug/L
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-19 MW-19	10/11/2013 4/22/2014		1.5 1.2	1.0 1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-19	4/23/2016		1.2	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-19	9/01/2016		1.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-19	3/22/2017		1.5	1.0	ug/L
Cis-1,2-dichloroethylene	MW-19	3/09/2018		1.9	1.0	ug/L
Cis-1,2-dichloroethylene	MW-19	9/06/2018		2.6	1.0	ug/L
Cis-1,2-dichloroethylene	MW-19	9/17/2020		1.7	1.0	ug/L
Cis-1,2-dichloroethylene	MW-19	3/25/2021		2.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-19	9/16/2021		2.6	1.0	ug/L
Cis-1,2-dichloroethylene	MW-19	3/16/2022		4.7	1.0	ug/L
Cis-1,2-dichloroethylene	MW-19	9/01/2022		3.5	1.0	ug/L
Cis-1,2-dichloroethylene	MW-19	3/24/2023		2.2	1.0	ug/L
Cis-1,2-dichloroethylene	MW-19	9/07/2023		1.1	1.0	ug/L
Dichlorodifluoromethane	MW-19	4/24/2012		1	1	ug/L
Dichlorodifluoromethane	MW-19	3/22/2017		1	. 1	ug/L
Vinyl chloride	MW-19	9/06/2018		3.2	1.0	ug/L
Vinyl chloride	MW-19	9/17/2020		1.4	1.0	ug/L
Vinyl chloride	MW-19	3/25/2021		1.2	1.0	ug/L
Vinyl chloride	MW-19	9/16/2021		1.9	1.0	ug/L
Vinyl chloride	MW-19	3/16/2022		1.9	1.0	ug/L
Vinyl chloride	MW-19	9/01/2022		2.1	1.0	ug/L
Vinyl chloride Vinyl chloride	MW-19	3/24/2023		1.0	1.0	ug/L
Benzene	MW-19 MW-1D	9/07/2023 9/07/2023		1.2	1.0	ug/L ug/L
Benzene	MW-1D	3/18/2024		1.1	1.0	ug/L ug/L
Chlorobenzene	MW-1D	9/07/2023		1.0	1.0	ug/L ug/L
Chlorobenzene	MW-1D	3/18/2024		1.5	1.0	ug/L ug/L
Chloroethane	MW-1D	3/18/2024		1.1	1.0	ug/L
Acetone	MW-20	10/11/2013		13.0	10.0	ug/L
Acetone	MW-20	4/23/2014		18.8	10.0	ug/L
Acetone	MW-20	3/16/2022		57.2	10.0	ug/L
Benzene	MW-20	9/29/2010		1.0	1.0	ug/L
Benzene	MW-20	5/04/2011		1.1	1.0	ug/L
Benzene	MW-20	10/11/2011		1.4	1.0	ug/L
Benzene	MW-20	9/11/2012		2.3	1.0	ug/L
Benzene	MW-20	4/05/2013		1.8	1.0	ug/L
Benzene	MW-20	10/11/2013		1.5	1.0	ug/L
Benzene	MW-20	4/23/2014		1.6	1.0	ug/L
Benzene	MW-20	9/18/2014		1.9	1.0	ug/L
Benzene	MW-20	4/28/2015		1.9	1.0	ug/L
Benzene	MW-20	10/06/2015		2.0	1.0	ug/L
Benzene	MW-20	4/23/2016		1.5	1.0	ug/L
Benzene	MW-20	9/01/2016		1.8	1.0	ug/L
Benzene	MW-20	3/21/2017		2.6	1.0	ug/L
Benzene	MW-20	10/13/2017		2.0	1.0	ug/L
Benzene	MW-20	3/09/2018		2.9	1.0	ug/L
Benzene	MW-20	9/06/2018		3.6	1.0	ug/L
Benzene Benzene	MW-20	3/07/2019		2.5 3.1	1.0	ug/L
Benzene Benzene	MW-20 MW-20	9/26/2019 4/02/2020		2.8	1.0	ug/L
Benzene	MW-20	3/25/2021		3.3	1.0	ug/L ug/L
Benzene	MW-20	9/16/2021		3.0	1.0	ug/L ug/L
Benzene	MW-20	3/16/2022		3.8	1.0	ug/L ug/L
Benzene	MW-20	9/01/2022		2.6	1.0	ug/L ug/L
Benzene	MW-20	3/24/2023		2.6	1.0	ug/L ug/L
Benzene	MW-20	9/07/2023		2.0	1.0	ug/L ug/L
Benzene	MW-20	3/18/2024		2.2	1.0	ug/L
Bis(2-ethylhexyl) phthalate	MW-20	9/16/2021		8	6	ug/L
Bis(2-ethylhexyl) phthalate	MW-20	3/16/2022		7	6	ug/L
Chlorobenzene	MW-20	9/06/2018		1.2	1.0	ug/L
Chlorobenzene	MW-20	4/02/2020		1.0	1.0	ug/L
Chlorobenzene	MW-20	9/17/2020		1.2	1.0	ug/L
Chlorobenzene	MW-20	3/25/2021		1.1	1.0	ug/L
Chlorobenzene	MW-20	9/16/2021		1.1	1.0	ug/L
Chlorobenzene	MW-20	3/16/2022		1.1	1.0	ug/L
Chlorobenzene	MW-20	9/01/2022		1.1	1.0	ug/L
Chlorobenzene	MW-20	9/07/2023		1.0	1.0	ug/L
Chlorobenzene	MW-20	3/18/2024		1.2	1.0	ug/L
Chloroethane	MW-20	4/19/2010		1.9	1.0	ug/L
Chloroethane	MW-20	5/27/2010		3.0	1.0	ug/L
Chloroethane	MW-20	7/28/2010		3.1	1 0	ug/L

Page County [GW] April 2024

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Chloroethane	MW-20	9/29/2010		4.0	1.0	ug/L
Chloroethane	MW-20	11/03/2010		3.0	1.0	ug/L
Chloroethane	MW-20	5/04/2011		4.0	1.0	ug/L
Chloroethane	MW-20	10/11/2011		4.3	1.0	ug/L
Chloroethane	MW-20	9/11/2012		4.5	1.0	ug/L
Chloroethane	MW-20	4/05/2013		2.3	1.0	ug/L
Chloroethane	MW-20	10/11/2013		3.8	1.0	ug/L
Chloroethane	MW-20	4/23/2014		3.0	1.0	ug/L
Chloroethane	MW-20	9/18/2014		2.1	1.0	ug/L
Chloroethane	MW-20	4/28/2015		2.9	1.0	ug/L
Chloroethane	MW-20	10/06/2015		2.3	1.0	
Chloroethane	MW-20	4/23/2016		1.6	1.0	
Chloroethane	MW-20	3/21/2017		2.4	1.0	
Chloroethane	MW-20	10/13/2017		2.3	1.0	ug/L
Chloroethane	MW-20	3/09/2018		2.0	1.0	ug/L
Chloroethane	MW-20	9/06/2018		2.8	1.0	
Chloroethane	MW-20	3/07/2019		1.6	1.0	ug/L
Chloroethane	MW-20	9/26/2019		2.0	1.0	
Chloroethane	MW-20	4/02/2020		1.6	1.0	ug/L
Chloroethane	MW-20	9/17/2020		1.6	1.0	ug/L
Chloroethane	MW-20	3/25/2021		1.6	1.0	
Chloroethane	MW-20	9/16/2021		1.8	1.0	ug/L
Chloroethane	MW-20	3/16/2022		1.6	1.0	ug/L
Chloroethane	MW-20	9/01/2022		1.7	1.0	
Chloroethane	MW-20	9/07/2023		1.5	1.0	ug/L
Chloroethane	MW-20	3/18/2024		1.2	1.0	
1,1,1-trichloroethane	MW-3	9/23/1993		1.1	1.0	ug/L
1,1-dichloroethane	MW-3	4/16/2008		1.8	1.0	ug/L
1,1-dichloroethane	MW-3	6/17/2008		1.4	1.0	ug/L
1,1-dichloroethane	MW-3 MW-3	4/19/2010		3.1	1.0	ug/L
1,1-dichloroethane	MW-3	5/03/2011		1.7	1.0	J -
1,1-dichloroethane	MW-3	4/23/2012		1.6	1.0	ug/L
1,1-dichloroethane 1.1-dichloroethane	MW-3	9/17/2014 9/01/2016		1.3 1.5	1.0 1.0	ug/L
Acetone	MW-3	10/13/2017		15.4	10.0	
	MW-3	9/16/2021			10.0	ug/L
Bis(2-ethylhexyl) phthalate Chloromethane	MW-3			8 1	1	ug/L
	MW-3	4/19/2010		4.0		ug/L
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-3	4/16/2008		2.6	1.0	ug/L
Cis-1,2-dichloroethylene	MW-3	6/17/2008 9/24/2009		1.0	1.0 1.0	ug/L
Cis-1,2-dichloroethylene	MW-3	4/19/2010		6.6	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-3	9/29/2010		1.3	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-3	5/03/2011		2.8	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-3	10/11/2011		1.4	1.0	
Cis-1,2-dichloroethylene	MW-3	4/23/2012		2.8	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-3	9/17/2014		2.0	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-3	9/01/2016		2.0	1.0	
Dichlorodifluoromethane	MW-3	4/19/2010		1.2	1.0	
Trichloroethylene	MW-3	9/23/1993		1.4	1.0	
1,1-dichloropropene	MW-7	3/25/2021		3.7	1.0	ug/L ug/L
2,4,5-t	MW-7	3/25/2021		2.0	.5	ug/L ug/L
Acetone	MW-7	10/13/2017		12.4	10.0	
Benzene	MW-7	9/16/2021		1.4	1.0	ug/L ug/L
Bis(2-ethylhexyl) phthalate	MW-7	9/01/2022		9	6	
Bio(2-curyinoxyr) priuralate	1.010.0.1	5/0/1/2022		9	<u> </u>	1 49/L

Attachment E

Assessment Statistics for VOCs

pageco2024s1 April 2024

Page County [VOC] April 2024

Table 1 Confidence Intervals for Comparing the Mean of the Last 4 Measurements to an Assessment Monitoring Standard

Constituent	Units	Well	N	Mean	SD	Factor	95% LCL	95% UCL	Standard	Trend	
1,1-dichloroethane	ug/L	MW-1	4	0.500	0.000	1.176	0.500	0.500	140.000		
1,4-dichlorobenzene	ug/L	MW-1	4	0.500	0.000	1.176	0.500	0.500	75.000		
Benzene	ug/L	MW-1	4	1.075	0.665	1.176	0.293	1.857	5.000		
Bis(2-ethylhexyl) phthalate	ug/L	MW-1	0								*
Chlorobenzene	ug/L	MW-1	4	0.500	0.000	1.176	0.500	0.500	100.000		
Chloroethane	ug/L	MW-1	4	0.900	0.462	1.176	0.357	1.443	2800.000		
Cis-1,2-dichloroethylene	ug/L	MW-1	4	0.500	0.000	1.176	0.500	0.500	70.000		
Vinyl chloride	ug/L	MW-1	4	0.500	0.000	1.176	0.500	0.500	2.000		
1,1-dichloroethane	ug/L	MW-10	4	0.500	0.000	1.176	0.500	0.500	140.000		
1,4-dichlorobenzene	ug/L	MW-10	4	0.500	0.000	1.176	0.500	0.500	75.000		
Benzene	ug/L	MW-10	4	0.500	0.000	1.176	0.500	0.500	5.000		
Bis(2-ethylhexyl) phthalate	ug/L	MW-10	4	5.750	5.500	1.176	0.000	12.220	6.000		
Chlorobenzene	ug/L	MW-10	4	0.500	0.000	1.176	0.500	0.500	100.000		
Chloroethane	ug/L	MW-10	4	0.500	0.000	1.176	0.500	0.500	2800.000		
Cis-1,2-dichloroethylene	ug/L	MW-10	4	0.500	0.000	1.176	0.500	0.500	70.000		
Vinyl chloride	ug/L	MW-10	4	0.500	0.000	1.176	0.500	0.500	2.000		
1,1-dichloroethane	ug/L	MW-16	4	0.625	0.250	1.176	0.331	0.919	140.000		+
1.4-dichlorobenzene	ug/L	MW-16	4	0.825	0.650	1.176	0.060	1.590	75.000		
Benzene	ug/L	MW-16	4	0.750	0.500	1.176	0.162	1.338	5.000		
Bis(2-ethylhexyl) phthalate	ug/L	MW-16	4	4.000	0.000	1.176	4.000	4.000	6.000		
Chlorobenzene	ug/L	MW-16	4	2.700	1.961	1.176	0.393	5.007	100.000	dec	
Chloroethane	ug/L	MW-16	4	0.500	0.000	1.176	0.500	0.500	2800.000	uec	
Cis-1,2-dichloroethylene	ug/L	MW-16	4	0.500	0.000	1.176	0.500	0.500	70.000		
Vinyl chloride	ug/L	MW-16	4	0.500	0.000	1.176	0.500	0.500	2.000		
1,1-dichloroethane	ug/L	MW-19	4	3.675	0.903	1.176	2.613	4.737	140.000	inc	+
1.4-dichlorobenzene	ug/L	MW-19	4	0.500	0.000	1.176	0.500	0.500	75.000	IIIC	
Benzene	ug/L ug/L	MW-19	4	0.800	0.000	1.176	0.381	1.219	5.000		
Bis(2-ethylhexyl) phthalate		MW-19	4	11.250	14.500	1.176	0.000	28.306	6.000		
Chlorobenzene	ug/L	MW-19	4	0.500	0.000	1.176	0.500	0.500	100.000		
	ug/L	MW-19	4	0.500	0.000	1.176	0.348	1.452	2800.000		
Chloroethane	ug/L		4 4	2.875	1.563		1.037	4.713	70.000		
Cis-1,2-dichloroethylene	ug/L	MW-19				1.176					
Vinyl chloride	ug/L	MW-19	4	1.550	0.532	1.176	0.924	2.176	2.000		*
1,1-dichloroethane	ug/L	MW-1D	2								^
1,4-dichlorobenzene	ug/L	MW-1D	2								
Benzene	ug/L	MW-1D	2								1
Bis(2-ethylhexyl) phthalate	ug/L	MW-1D	1								*
Chlorobenzene	ug/L	MW-1D	2								*
Chloroethane	ug/L	MW-1D	2								*
Cis-1,2-dichloroethylene	ug/L	MW-1D	2								*
Vinyl chloride	ug/L	MW-1D	2								*
1,1-dichloroethane	ug/L	MW-20	4	0.500	0.000	1.176	0.500	0.500	140.000		
1,4-dichlorobenzene	ug/L	MW-20	4	0.500	0.000	1.176	0.500	0.500	75.000		
Benzene	ug/L	MW-20	4	2.350	0.300	1.176	1.997	2.703	5.000	inc	
Bis(2-ethylhexyl) phthalate	ug/L	MW-20	4	5.750	2.062	1.176	3.325	8.175	6.000		
Chlorobenzene	ug/L	MW-20	4	0.950	0.311	1.176	0.584	1.316	100.000		
Chloroethane	ug/L	MW-20	4	1.225	0.525	1.176	0.607	1.843	2800.000	dec	
Cis-1,2-dichloroethylene	ug/L	MW-20	4	0.500	0.000	1.176	0.500	0.500	70.000		
Vinyl chloride	ug/L	MW-20	4	0.500	0.000	1.176	0.500	0.500	2.000		
1,1-dichloroethane	ug/L	MW-3	4	0.500	0.000	1.176	0.500	0.500	140.000		

^{* -} Insufficient Data ** - Significant Exceedance LCL = Lower Confidence Limit UCL = Upper Confidence Limit

Page County [VOC] April 2024

Table 1 Confidence Intervals for Comparing the Mean of the Last 4 Measurements to an Assessment Monitoring Standard

Constituent	Units	Well	N	Mean	SD	Factor	95% LCL	95% UCL	Standard	Trend	
1,4-dichlorobenzene	ug/L	MW-3	4	0.500	0.000	1.176	0.500	0.500	75.000		
Benzene	ug/L	MW-3	4	0.500	0.000	1.176	0.500	0.500	5.000		
Bis(2-ethylhexyl) phthalate	ug/L	MW-3	4	5.000	2.000	1.176	2.647	7.353	6.000		
Chlorobenzene	ug/L	MW-3	4	0.500	0.000	1.176	0.500	0.500	100.000		
Chloroethane	ug/L	MW-3	4	0.500	0.000	1.176	0.500	0.500	2800.000		
Cis-1,2-dichloroethylene	ug/L	MW-3	4	0.500	0.000	1.176	0.500	0.500	70.000		
Vinyl chloride	ug/L	MW-3	4	0.500	0.000	1.176	0.500	0.500	2.000		
1,1-dichloroethane	ug/L	MW-7	4	0.500	0.000	1.176	0.500	0.500	140.000		
1,4-dichlorobenzene	ug/L	MW-7	4	0.500	0.000	1.176	0.500	0.500	75.000		
Benzene	ug/L	MW-7	4	0.500	0.000	1.176	0.500	0.500	5.000		
Bis(2-ethylhexyl) phthalate	ug/L	MW-7	3								*
Chlorobenzene	ug/L	MW-7	4	0.500	0.000	1.176	0.500	0.500	100.000		
Chloroethane	ug/L	MW-7	4	0.500	0.000	1.176	0.500	0.500	2800.000		
Cis-1,2-dichloroethylene	ug/L	MW-7	4	0.500	0.000	1.176	0.500	0.500	70.000		
Vinyl chloride	ug/L	MW-7	4	0.500	0.000	1.176	0.500	0.500	2.000		

* - Insufficient Data ** - Significant Exceedance LCL = Lower Confidence Limit UCL = Upper Confidence Limit

Appendix B.2 –2nd Statistical Evaluation

GROUND WATER STATISTICS FOR THE

PAGE COUNTY SANITARY LANDFILL

Second Semi-Annual Monitoring Event in 2024

Prepared for:
Page County Landfill Association
2032 N Avenue
Clarinda, Page County, IA

Prepared by:
Jeffrey A. Holmgren
Otter Creek Environmental Services, LLC
40W565 Foxwick Court
Elgin, IL 60124
(847) 464-1355

October 2024

Thallium, Total

Zinc, Total

Vanadium, Total

INTRODUCTION

This report summarizes the results of the statistical analysis used to evaluate the ground water quality data obtained during the second semi-annual monitoring event in 2024 at the Page County Sanitary Landfill near Clarinda in Page County, Iowa. The statistical plan was designed to detect a release from the facility at the earliest indication so that it is protective of human health and the environment. Interwell statistics were used for comparison of the current data to background data at Page County Sanitary Landfill. The statistical plan conforms with IAC 567, Chapter 113.10, and the USEPA statistical guidance document ("Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance", March 2009).

Ground Water Monitoring Program

The groundwater monitoring network for Page County Sanitary Landfill (PCSL) includes upgradient wells MW-1 and MW-17 and downgradient wells MW-3, MW-7, MW-10, MW-11, MW-13, MW-14, MW-16, MW-18, MW-19, MW-20 and GWD-1. Each of the groundwater monitoring wells is to be sampled at least semiannually and analyzed for the detection monitoring parameters listed in 113.10(5), which includes 15 inorganic constituents and 47 organic compounds, summarized in Table 1 below.

Table 1: Detection monitoring constituents listed in Appendix I of IAC 567, Chapter 113.

Organic Compounds:

Barium, Total

Beryllium, Total

Cadmium, Total

Acetone	trans-1,4-Dichloro-2-butene	Iodomethane
Acrylonitrile	1,1-Dichloroethane	4-Methyl-2-pentanone
Benzene	1,2-Dichloroethane	Styrene
Bromochloromethane	1,1-Dichloroethene	1,1,1,2-Tetrachloroethane
Bromodichloromethane	cis-1,2-Dichloroethene	1,1,2,2-Tetrachloroethane
Bromoform	trans-1,2-Dichloroethene	Tetrachloroethene
Carbon disulfide	1,2-Dichloropropane	Toluene
Carbon tetrachloride	cis-1,3-Dichloropropene	1,1,1-Trichloroethane
Chlorobenzene	trans-1,3-Dichloropropene	1,1,2-Trichloroethane
Chloroethane	Ethylbenzene	Trichloroethene
Chloroform	2-Hexanone	Trichlorofluoromethane
Dibromochloromethane	Bromomethane	1,2,3-Trichloropropane
1,2-Dibromo-3-chloropropane	Chloromethane	Vinyl acetate
1,2-Dibromoethane	Dibromomethane	Vinyl chloride
1,2-Dichlorobenzene	Methylene chloride	Xylenes (Total)
1,4-Dichlorobenzene	2-Butanone	
Inorganic constituents:		
Antimony, Total	Chromium, Total	Selenium, Total
Arsenic, Total	Cobalt, Total	Silver, Total

Copper, Total

Lead, Total

Nickel, Total

The ground water data obtained during the second semi-annual monitoring events in 2024 are summarized in Attachment A.

pageco2024s2 October 2024

STATISTICAL METHODOLOGIES FOR DETECTION MONITORING

IAC 567, Chapter 113.10(4) provides several options for statistically evaluating the ground water data at those wells that monitor the open cells or contiguous MSWLF units. The preferred methods for comparing ground water data are using either prediction limits or using control charts. The interwell method was applied to the Page County Landfill data using the DUMPStat® statistical program. DUMPStat® is a program for the statistical analysis of groundwater monitoring data using methods described in "Statistical Methods for Groundwater Monitoring" by Dr. Robert D. Gibbons. DUMPStat is completely consistent with all USEPA regulations and guidance and the ASTM D6312-98 guidance.

Ground water statistics are to be done on the inorganic constituents listed. The organic constituents are compared to maximum contaminant levels (MCLs) or practical quantitation limits (PQLs), in lieu of statistical comparisons to historical concentrations.

Interwell Statistics: Upgradient versus Downgradient Comparisons

Interwell statistics are appropriate when the upgradient and downgradient wells monitor the same ground water formation and there is similar variability in the upgradient and downgradient zones. Site prediction limits are determined by pooling the historical ground water data from hydraulically upgradient wells. This statistical method compares the current downgradient determinations to site prediction limits and checks for exceedances. The type of prediction limit utilized (e.g., parametric or nonparametric) is based on the detection frequency and the data distribution of each parameter in the background data. The distribution of the background data is tested for normality using the Shapiro-Wilk test (Gibbons, 1994 and USEPA 1992). If the constituent is normally distributed, a normal prediction limit is used. If normality is rejected by the Shapiro-Wilk test, the background data is transformed by taking the natural logarithm. The Shapiro-Wilk test is then reapplied on the transformed data. If it is not rejected, lognormal prediction limits are used. If after transforming the data, normality is still rejected, nonparametric prediction limits are used for that analyte. The nonparametric prediction limit is the largest determination in the background measurements. For constituents where the background detection frequency is greater than 0% but less than 50%, nonparametric prediction limits can be used. If the detection frequency is 0% after thirteen samples have been collected, the practical quantitation limit (PQL) becomes the nonparametric prediction limit.

Results of the Interwell Statistics

The background data used in this statistical analysis includes the ground water data collected from ground water wells MW-1, MW-17, and MW-44 during the period from September 2014, when the sampling protocol changed, through the current data. Monitoring well MW-44 was recently added as an upgradient sample point. A summary of the background data from monitoring wells MW-1, MW-17, and MW-44, used to determine the site prediction limits, is listed in Attachment B, Table 1 "Upgradient Data". This statistical method compares the current downgradient determinations to site prediction limits and checks for exceedances.

Table 2 "Most Current Downgradient Monitoring Data", summarizes the current data from downgradient wells GU-3, GU-4, MW-1D, MW-3, MW-7, MW-10, MW-13, MW-14, MW-16, MW-18, MW-20, and MW-53 compared to the site prediction limits. Prediction limit exceedances are flagged with asterisks. For

pageco2024s2 October 2024

the most current data, the site prediction limit exceedances detected are summarized in the table below.

Trace Metal Prediction Limit Exceedances during the Second Semi-Annual Monitoring Event in 2024

Well	Trace Metal Detected	Result, μg/L	Prediction Limit, µg/L	Prediction Limit Type	Verified/ Awaiting verification
GU 4	Zinc	106	69.2000	Nonparametric	Awaiting verification
MW-14	Cadmium	3.5	1.4000	Nonparametric	Awaiting verification
MW-16	Arsenic	26.2	5.6000	Nonparametric	Verified
MW-18	Arsenic	43.6	5.6000	Nonparametric	Verified
MW 20	Arsenic	44.1	5.6000	Nonparametric	Verified
MW-20	Barium	1950	769.2044	Normal	Verified
MW-7	Arsenic	9.0	5.6000	Nonparametric	Awaiting verification

The detection frequencies of the parameters in the up and down gradient monitoring wells are summarized in Table 3. Table 4 summarizes the results of the Shapiro-Wilk test. Table 5 is a summary of the statistics and prediction limits determined for the metals. Time series graphs of each of the parameters at each well with the corresponding prediction limits are attached.

A statistical power curve indicates the expected false assessments for the site as a whole. The false positive rate for interwell analyses is the percentage of failures when the upgradient versus downgradient true mean difference equals zero. False negative rate indicates the chance of missing contamination at a single well for a single constituent. The statistical power is a function of the number of wells included, the number of constituents compared, the detection frequencies, and the data distributions involved. For interwell analysis, the site-wide false positive rate is 4% and the test becomes sensitive to 3 standard deviation unit increases over background.

The past and current metals exceedances were evaluated against the ground water protection standards (GWPS) using confidence limits calculated in accordance with the Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance, USEPA, March 2009 (Attachment C). The analysis was conducted to evaluate whether verified concentrations are significantly above the water quality standard. The 95% lower confidence limit (LCL) for the mean of the historical data was used to evaluate whether the regulated unit is in compliance with the ground-water protection standards under 40 CFR 264 (e.g. whether the verified constituent is detected at a significant level above the GWPS). An exceedance is verified if the LCL is above the Regulatory GWPS.

The 95% LCL for arsenic at MW-18 (16.871 μ g/L) exceeds the USEPA MCL of 10 μ g/L.

The 95% LCL for arsenic at MW-20 (49.651 μ g/L) exceeds the USEPA MCL of 10 μ g/L.

The 95% LCL for cobalt at MW-20 (6.757 μ g/L) exceeds the Iowa Statewide Standard of 2.1 μ g/L, though the current concentration (6.4 μ g/L) is below the site prediction limit of 30.6 μ g/L.

pageco2024s2 October 2024

The 95% LCL for cobalt at MW-7 (8.667 μ g/L) exceeds the Iowa Statewide Standard of 2.1 μ g/L, though the current concentration (10.1 μ g/L) is below the site prediction limit of 30.6 μ g/L.

The remainder of the calculated 95% LCLs are below the respective GWPS.

Volatile Organic Compounds

Volatile Organic Compounds (VOCs) are generally man-made compounds not present in ambient ground water. If VOCs are detected above their statistical limit (i.e., the laboratory PQL or reporting limit), a verification resample will be conducted at the next scheduled sampling event. A statistical exceedance will be indicated if the VOC detection is confirmed by the subsequent monitoring.

The 47 volatile organic compounds (VOCs) included in Appendix A were compared to site-specific limits in lieu of statistical comparisons. VOCs detected in the ground water at Page County Sanitary Landfill during the second semi-annual monitoring event in 2024 are summarized in the table below.

VOCs detected at Page County Landfill during the second semi-annual monitoring event in 2024

Well	VOC Detected	Result, μg/L	Reporting Limit, µg/L	Verified/ Awaiting Verification	Groundwater Standard, µg/L
MW-16	Chlorobenzene	2.3	1	Verified	100ª
MW 20	Benzene	2.1	1	Verified	5ª
MW-20	Chlorobenzene	1.9	1	Verified	100ª

a - USEPA MCL

Many of the VOCs detected have been detected previously, but some not since 2022 monitoring. Because many of these VOCs were detected at these wells during the previous monitoring event at similar concentrations, these current detections are statistically significant.

The VOCs detected are typically associated with landfill gas migration. The detections are low-level and do not exceed ground water quality standards. Historical VOC detections in the ground water are summarized in Attachment D. The verified VOC detections were evaluated against the GWPS using confidence limits. The results are shown in Attachment E. The 95% LCLs for each of the verified VOC detections are below ground water quality standards.

b - Iowa Statewide Standard

Attachment A

Summary of the Data obtained during the Second Semi-Annual Monitoring event in 2024

pageco2024s2 October 2024

Table 1

Analytical Data Summary for 8/1/2024

Constituents	Units	GU 3	GU 4	MW-53
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	<1
1,1,2-trichloroethane	ug/L	<1	<1	<1
1,1-dichloroethane	ug/L	<1	<1	<1
1,1-dichloroethylene	ug/L	<1	<1	<1
1,2,3-trichloropropane	ug/L	<1	<1	<1
1,2-dibromo-3-chloropropane	ug/L	<5	<5	<5
1,2-dibromoethane	ug/L	<1	<1	<1
1.2-dichlorobenzene	ug/L	<1	<1	<1
1,2-dichloroethane	ug/L	<1	<1	<1
1,2-dichloropropane	ug/L	<1	<1	<1
1,4-dichlorobenzene	ug/L	<1	<1	<1
2-butanone (mek)	ug/L	<10	<10	<10
2-hexanone (mbk)	ug/L	<5	<5	<5
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5
Acetone	ug/L	<10	<10	<10
Acrylonitrile	ug/L	<5	<5	<5
Antimony, total	ug/L	<2	<2	<2
Arsenic, total	ug/L	<4	<4	<4
Barium, total	ug/L	287.0	272.0	46.2
Benzene	ug/L	<1	<1	<1
Beryllium, total	ug/L	<4	<4	<4
Bromochloromethane	ug/L	<1	<1	<1
Bromodichloromethane	ug/L	<1	<1	<1
Bromoform	ug/L	<1	<1	<1
Bromomethane	ug/L	<1	<1	<1
Cadmium, total	ug/L	<.8	<.8	<.8
Carbon disulfide	ug/L	<1	<1	<1
Carbon tetrachloride	ug/L	<1	<1	<1
Chlorobenzene	ug/L	<1	<1	<1
Chloroethane	ug/L	<1	<1	<1
Chloroform	ug/L	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1
Chromium, total	ug/L	<8	<8	<8
Cis-1,2-dichloroethylene	ug/L	<1	<1	<1
Cis-1,3-dichloropropene	ug/L	<1	<1	<1
Cobalt, total	ug/L	.4	<.4	<.4
Copper, total	ug/L	<4	<4	<4
Dibromochloromethane	ug/L	<1	<1	<1
Dibromomethane	ug/L	<1	<1	<1
Ethylbenzene	ug/L	<i< td=""><td><1</td><td><1</td></i<>	<1	<1
Lead, total	ug/L	<4	<4	<4
Methyl iodide	ug/L	<1	<1	<1
Methylene chloride	ug/L	<5	<5	<5
Nickel, total	ug/L	6.1	6.8	<4.0
Selenium, total	ug/L	<4	<4	<4
Silver, total	ug/L	<4	<4	<4
Styrene	ug/L	<1	<1	<1
Tetrachloroethylene	ug/L	<1	<1	<1
Thallium, total	ug/L	<2	<2	<2
Toluene	ug/L	<1	<1	<1
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1
Trans-1,3-dichloropropene	ug/L	<1	<1	<1
Trans-1,0-diomoroproperie	ug/L		۱۱ -	- 1

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 1

Analytical Data Summary for 8/1/2024

Constituents	Units	GU 3	GU 4	MW-53
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5
Trichloroethylene	ug/L	<1	<1	<1
Trichlorofluoromethane	ug/L	<1	<1	<1
Vanadium, total	ug/L	<20	<20	<20
Vinyl acetate	ug/L	<5	<5	<5
Vinyl chloride	ug/L	<1	<1	<1
Xylenes, total	ug/L	<2	<2	<2
Zinc, total	ug/L	173.0	67.2	<20.0

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 2

Analytical Data Summary for 9/25/2024

Constituents	Units	GU 3	GU 4	MW-10	MW-13	MW-14	MW-16	MW-17	MW-18	MW-1D	MW-20	MW-3	MW-53	MW-7
1,1,1,2-tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,1-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	ug/L	<1	<1	- <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1.1.2-trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	- <1	<1	<1	<1
1.1-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-dichloropropene	ug/L	''	''	<1	, ,	''	''	, , ,	''	''		, ,,	, , ,	١ '' ا
1,2,3-trichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	ug/L	''	''	<1	, ,	''	''	, , ,	''	''		, ,,	, , ,	١ '' ا
1,2-dibromo-3-chloropropane	ug/L	<5	<5	<1	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1.2-dibromoethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1.2-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1.2-dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-dichloropropane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,3-dichlorobenzene	ug/L ug/L	` '	\ \	<1	_ `'	`'	_ `'	_ ` '	`1	`'	~1		_ ` '	`'
				<1										
1,3-dichloropropane	ug/L				-4			-4	-4	-4	-1	-4	-4	
1,4-dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
2,2-dichloropropane	ug/L	4.0		<1	4.0			4.0	4.0				4.0	
2-butanone (mek)	ug/L	<10	<10	<5	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2-hexanone (mbk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-methyl-2-pentanone (mibk)	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	ug/L	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Acetonitrile	ug/L			<10										
Acrolein	ug/L			<10										
Acrylonitrile	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Allyl chloride	ug/L			<1										
Antimony, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic, total	ug/L	<4.0	<4.0	5.2	<4.0	<4.0	26.2	<4.0	43.6	<4.0	44.1	<4.0	<4.0	9.0
Barium, total	ug/L	242.0	289.0	575.0	66.4	112.0	756.0	90.1	416.0	637.0	1950.0	295.0	58.9	321.0
Benzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.1	<1.0	<1.0	<1.0
Beryllium, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Bromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium, total	ug/L	<.8	<.8	<.8	<.8	3.5	<.8	<.8	.9	<.8	<.8	<.8	<.8	<.8
Carbon disulfide	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	2.3	<1.0	<1.0	<1.0	1.9	<1.0	<1.0	<1.0
Chloroethane	ug/L	<1	<1	<1.0	<1.0	<1	<1	<1	<1.0	<1	<1	<1	<1.0	<1
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroprene	ug/L	`'	`'	<1	_ `'	`'	`'		` '	`'	~1			`'
Chromium, total	ug/L	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8
	ug/L	<1	<1	<0 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cis-1,2-dichloroethylene	ug/L				<1					- 1	-		<1	<1
Cis-1,3-dichloropropene	ug/L	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1		
Cobalt, total	ug/L	<.4	<.4	2.4	<.4	.4	1.7	<.4	1.0	2.4	6.4	<.4	<.4	10.1
Copper, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromomethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	ug/L			<1										
Ethyl methacrylate	ug/L			<10										
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Isobutanol	ma/L			<1										

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 2

Analytical Data Summary for 9/25/2024

	_													
Constituents	Units	GU 3	GU 4	MW-10	MW-13	MW-14	MW-16	MW-17	MW-18	MW-1D	MW-20	MW-3	MW-53	MW-7
Lead, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Mercury, total	ug/L			<.5										
Methacrylonitrile	ug/L			<1										
Methyl iodide	ug/L	<1	<1	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl methacrylate	ug/L			<1										
Methylene chloride	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Nickel, total	ug/L	<4.0	<4.0	11.7	<4.0	4.1	36.0	<4.0	5.4	11.3	18.0	<4.0	<4.0	16.6
Propionitrile	ug/L			<10										
Selenium, total	ug/L	4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Silver, total	ug/L	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Styrene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Sulfide, total	mg/L			<.1										
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Thallium, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Tin, total	ug/L			<20										
Toluene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,2-dichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,3-dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trans-1,4-dichloro-2-butene	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vanadium, total	ug/L	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl acetate	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl chloride	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes, total	ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Zinc, total	ug/L	<20	106	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Attachment B

Summary Tables and Graphs for the Interwell Comparisons

pageco2024s2 October 2024

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Antimony, total	ug/L	MW-1	09/17/2014	ND	2.0000		
Antimony, total	ug/L	MW-1	04/28/2015	ND	2.0000		
Antimony, total	ug/L	MW-1	10/06/2015	ND	2.0000		
Antimony, total	ug/L	MW-1	04/23/2016	ND	2.0000		
Antimony, total	ug/L	MW-1	09/01/2016	ND	2.0000		
Antimony, total	ug/L	MW-1	03/21/2017	ND	2.0000		
Antimony, total	ug/L	MW-1	10/13/2017	ND	2.0000		
Antimony, total	ug/L	MW-1	03/09/2018	ND	2.0000		
Antimony, total	ug/L	MW-1	09/06/2018	ND	2.0000		
Antimony, total	ug/L	MW-1	03/07/2019	ND	2.0000		
Antimony, total	ug/L	MW-1	09/26/2019	ND	2.0000		
Antimony, total	ug/L	MW-1	04/02/2020	ND	2.0000		
Antimony, total	ug/L	MW-1	09/17/2020	ND	2.0000		
Antimony, total	ug/L	MW-1	03/25/2021	ND	2.0000		
Antimony, total	ug/L	MW-1	09/16/2021	ND	2.0000		
Antimony, total	ug/L	MW-1	03/16/2022	ND	2.0000		
Antimony, total	ug/L	MW-1	09/01/2022	ND	2.0000		
Antimony, total	ug/L	MW-1	03/24/2023	ND	2.0000		
Arsenic, total	ug/L	MW-1	09/17/2014	ND	5.6000		
Arsenic, total	ug/L	MW-1	04/28/2015	ND	4.0000		
Arsenic, total	ug/L	MW-1	10/06/2015	ND	4.0000		
Arsenic, total	ug/L	MW-1	04/23/2016	ND	4.0000		
Arsenic, total	ug/L	MW-1 MW-1	09/01/2016	ND ND	4.0000		
Arsenic, total Arsenic, total	ug/L ug/L	MW-1	03/21/2017 10/13/2017	ND	4.0000 4.0000		
Arsenic, total	ug/L ug/L	MW-1	03/09/2018	ND	4.0000		
Arsenic, total	ug/L ug/L	MW-1	09/06/2018	ND	4.0000		
Arsenic, total	ug/L	MW-1	03/07/2019	ND	4.0000		
Arsenic, total	ug/L	MW-1	09/26/2019	ND	4.0000		
Arsenic, total	ug/L	MW-1	04/02/2020	ND	4.0000		
Arsenic, total	ug/L	MW-1	09/17/2020	ND	4.0000		
Arsenic, total	ug/L	MW-1	03/25/2021	ND	4.0000		
Arsenic, total	ug/L	MW-1	09/16/2021	ND	4.0000		
Arsenic, total	ug/L	MW-1	03/16/2022	ND	4.0000		
Arsenic, total	ug/L	MW-1	09/01/2022	ND	4.0000		
Arsenic, total	ug/L	MW-1	03/24/2023	ND	4.0000		
Barium, total	ug/L	MW-1	09/17/2014		684.0000		
Barium, total	ug/L	MW-1	04/28/2015		456.0000		
Barium, total	ug/L	MW-1	10/06/2015		279.0000		
Barium, total	ug/L	MW-1	04/23/2016		306.0000		
Barium, total	ug/L	MW-1	09/01/2016		283.0000		
Barium, total	ug/L	MW-1	03/21/2017		310.0000		
Barium, total	ug/L	MW-1	10/13/2017		455.0000		
Barium, total	ug/L	MW-1	03/09/2018		484.0000		
Barium, total	ug/L	MW-1	09/06/2018		361.0000		
Barium, total	ug/L	MW-1	03/07/2019		493.0000		
Barium, total	ug/L	MW-1	09/26/2019		405.0000		
Barium, total	ug/L	MW-1	04/02/2020		452.0000		
Barium, total	ug/L	MW-1	09/17/2020		492.0000		
Barium, total	ug/L	MW-1	03/25/2021		715.0000		
Barium, total	ug/L	MW-1	09/16/2021		467.0000		
Barium, total	ug/L	MW-1	03/16/2022		642.0000		
Barium, total	ug/L	MW-1	09/01/2022		580.0000		
Barium, total	ug/L	MW-1	03/24/2023	NID	657.0000		
Beryllium, total	ug/L	MW-1	09/17/2014	ND	4.0000		
Beryllium, total	ug/L	MW-1	04/28/2015	ND	4.0000		
Beryllium, total	ug/L	MW-1	10/06/2015	ND	4.0000		
Beryllium, total	ug/L	MW-1	04/23/2016	ND	4.0000		
Beryllium, total	ug/L	MW-1	09/01/2016	ND	4.0000		
Beryllium, total	ug/L	MW-1 MW-1	03/21/2017	ND	4.0000		
Beryllium, total Beryllium, total	ug/L		10/13/2017	ND ND	4.0000		
Beryllium, total	ug/L ug/L	MW-1 MW-1	03/09/2018 09/06/2018	ND	4.0000 4.0000		
Beryllium, total	ug/L ug/L	MW-1	03/07/2019	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-1	09/26/2019	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-1	04/02/2020	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-1	09/17/2020	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-1	03/25/2021	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-1	09/16/2021	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-1	03/16/2022	ND	4.0000		
Beryllium, total	ug/L ug/L	MW-1	09/01/2022	ND	4.0000		
	ug/L	MW-1	03/24/2023	ND	4.0000		
Bervillum total							1
Beryllium, total Cadmium, total	ug/L	MW-1	09/17/2014	ND	0.8000		

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Cadmium, total	ug/L	MW-1	10/06/2015		0.8000		
Cadmium, total	ug/L	MW-1	04/23/2016	ND	0.8000		
Cadmium, total	ug/L	MW-1	09/01/2016	ND	0.8000		
Cadmium, total	ug/L	MW-1	03/21/2017	ND	0.8000		
Cadmium, total	ug/L	MW-1	10/13/2017	ND	0.8000		
Cadmium, total	ug/L	MW-1	03/09/2018	ND	0.8000		
Cadmium, total	ug/L	MW-1	09/06/2018	ND	0.8000		
Cadmium, total	ug/L	MW-1	03/07/2019	ND	0.8000		
Cadmium, total	ug/L	MW-1	09/26/2019	ND	0.8000		
Cadmium, total	ug/L	MW-1	04/02/2020	ND	0.8000		
Cadmium, total	ug/L	MW-1	09/17/2020	ND	0.8000		
Cadmium, total	ug/L	MW-1	03/25/2021	ND	0.8000		
Cadmium, total	ug/L	MW-1	09/16/2021	ND	0.8000		
Cadmium, total	ug/L	MW-1	03/16/2022	ND	0.8000		
Cadmium, total	ug/L	MW-1 MW-1	09/01/2022	ND ND	0.8000 0.8000		
Cadmium, total Chromium, total	ug/L ug/L	MW-1	03/24/2023 09/17/2014	ND	8.9000		
Chromium, total	ug/L	MW-1	04/28/2015	ND	8.0000		
Chromium, total	ug/L	MW-1	10/06/2015	ND	8.0000		
Chromium, total	ug/L	MW-1	04/23/2016	ND	8.0000		
Chromium, total	ug/L	MW-1	09/01/2016	ND	8.0000		
Chromium, total	ug/L	MW-1	03/21/2017	ND	8.0000		
Chromium, total	ug/L	MW-1	10/13/2017	ND	8.0000		
Chromium, total	ug/L	MW-1	03/09/2018	ND	8.0000		
Chromium, total	ug/L	MW-1	09/06/2018	ND	8.0000		
Chromium, total	ug/L	MW-1	03/07/2019	ND	8.0000		
Chromium, total	ug/L	MW-1	09/26/2019	ND	8.0000		
Chromium, total	ug/L	MW-1	04/02/2020	ND	8.0000		
Chromium, total	ug/L	MW-1	09/17/2020	ND	8.0000		
Chromium, total	ug/L	MW-1	03/25/2021	ND	8.0000		
Chromium, total	ug/L	MW-1	09/16/2021	ND	8.0000		
Chromium, total	ug/L	MW-1	03/16/2022	ND	8.0000		
Chromium, total	ug/L	MW-1	09/01/2022	ND	8.0000		
Chromium, total	ug/L	MW-1	03/24/2023	ND	8.0000		
Cobalt, total	ug/L	MW-1	09/17/2014		30.6000		
Cobalt, total	ug/L	MW-1	04/28/2015	ND	6.0000		
Cobalt, total	ug/L	MW-1	10/06/2015	ND	0.8000		
Cobalt, total	ug/L	MW-1 MW-1	04/23/2016	ND	0.8000		
Cobalt, total	ug/L ug/L	MW-1	09/01/2016 03/21/2017	ND ND	0.8000 0.8000		
Cobalt, total	ug/L ug/L	MW-1	10/13/2017	ND	0.8000		
Cobalt, total	ug/L	MW-1	03/09/2018	140	2.5000		
Cobalt, total	ug/L	MW-1	09/06/2018	ND	0.8000		
Cobalt, total	ug/L	MW-1	03/07/2019		4.7000		
Cobalt, total	ug/L	MW-1	09/26/2019		11.2000		
Cobalt, total	ug/L	MW-1	04/02/2020		2.7000		
Cobalt, total	ug/L	MW-1	09/17/2020	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-1	03/25/2021		11.8000		
Cobalt, total	ug/L	MW-1	09/16/2021		0.4000		
Cobalt, total	ug/L	MW-1	03/16/2022		2.1000		
Cobalt, total	ug/L	MW-1	09/01/2022		9.4000		
Cobalt, total	ug/L	MW-1	03/24/2023		14.1000		
Copper, total	ug/L	MW-1	09/17/2014	NID	11.6000		
Copper, total	ug/L	MW-1	04/28/2015	ND	4.0000		
Copper, total	ug/L	MW-1	10/06/2015	ND	4.0000		
Copper, total	ug/L	MW-1 MW-1	04/23/2016	ND ND	4.0000		
Copper, total Copper, total	ug/L ug/L	MW-1	09/01/2016 03/21/2017	ND	4.0000 4.0000		
Copper, total	ug/L ug/L	MW-1	10/13/2017	ND	4.0000		
Copper, total	ug/L ug/L	MW-1	03/09/2018	ND	4.0000		
Copper, total	ug/L	MW-1	09/06/2018	ND	4.0000		
Copper, total	ug/L	MW-1	03/07/2019	ND	4.0000		
Copper, total	ug/L	MW-1	09/26/2019	ND	4.0000		
Copper, total	ug/L	MW-1	04/02/2020	ND	4.0000		
Copper, total	ug/L	MW-1	09/17/2020	ND	4.0000		
Copper, total	ug/L	MW-1	03/25/2021	ND	4.0000		
Copper, total	ug/L	MW-1	09/16/2021	ND	4.0000		
Copper, total	ug/L	MW-1	03/16/2022	ND	4.0000		
Copper, total	ug/L	MW-1	09/01/2022	ND	4.0000		
Copper, total	ug/L	MW-1	03/24/2023	ND	4.0000		
Lead, total	ug/L	MW-1	09/17/2014		6.9000		
Lead, total	ug/L	MW-1	04/28/2015	ND	4.0000		
Lead, total Lead, total	ug/L ug/L	MW-1 MW-1	10/06/2015	ND	4.0000		
			04/23/2016	ND	4.0000		1

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Lead, total	ug/L	MW-1	09/01/2016	ND	4.0000		
Lead, total	ug/L	MW-1	03/21/2017	ND	4.0000		
Lead, total	ug/L	MW-1	10/13/2017	ND	4.0000		
Lead, total	ug/L	MW-1	03/09/2018	ND	4.0000		
Lead, total	ug/L	MW-1	09/06/2018		7.4000		
Lead, total	ug/L	MW-1	03/07/2019	ND	4.0000		
Lead, total	ug/L	MW-1	09/26/2019	ND	4.0000		
Lead, total	ug/L	MW-1	04/02/2020	ND	4.0000		
Lead, total	ug/L	MW-1	09/17/2020	ND	4.0000		
Lead, total	ug/L	MW-1	03/25/2021	ND	4.0000		
Lead, total	ug/L	MW-1	09/16/2021	ND	4.0000		
Lead, total	ug/L	MW-1	03/16/2022	ND	4.0000		
Lead, total	ug/L ug/L	MW-1	09/01/2022	ND	4.0000		
		MW-1	03/24/2023	ND			
Lead, total Nickel, total	ug/L ug/L	MW-1	09/17/2014	טאו	4.0000		
· '		MW-1			60.4000		
Nickel, total	ug/L		04/28/2015		20.6000		
Nickel, total	ug/L	MW-1	10/06/2015	ND	10.6000		
Nickel, total	ug/L	MW-1	04/23/2016	ND	4.0000		
Nickel, total	ug/L	MW-1	09/01/2016	ND	4.0000		
Nickel, total	ug/L	MW-1	03/21/2017	ND	4.0000		
Nickel, total	ug/L	MW-1	10/13/2017		13.3000		
Nickel, total	ug/L	MW-1	03/09/2018		20.1000		
Nickel, total	ug/L	MW-1	09/06/2018	ND	4.0000		
Nickel, total	ug/L	MW-1	03/07/2019		16.7000		
Nickel, total	ug/L	MW-1	09/26/2019		9.1000		
Nickel, total	ug/L	MW-1	04/02/2020		5.1000		
Nickel, total	ug/L	MW-1	09/17/2020	ND	4.0000		
Nickel, total	ug/L	MW-1	03/25/2021		28.1000		
Nickel, total	ug/L	MW-1	09/16/2021	ND	4.0000		
Nickel, total	ug/L	MW-1	03/16/2022		15.5000		
Nickel, total	ug/L	MW-1	09/01/2022		12.6000		
Nickel, total	ug/L	MW-1	03/24/2023		21.5000		
Selenium, total	ug/L	MW-1	09/17/2014	ND	4.0000		
Selenium, total	ug/L	MW-1	04/28/2015	ND	4.0000		
Selenium, total	ug/L	MW-1	10/06/2015	ND	4.0000		
Selenium, total	ug/L	MW-1	04/23/2016	ND	4.0000		
Selenium, total	ug/L	MW-1	09/01/2016	ND	4.0000		
Selenium, total	ug/L	MW-1	03/21/2017	ND	4.0000		
Selenium, total	ug/L	MW-1	10/13/2017	ND	4.0000		
Selenium, total	ug/L	MW-1	03/09/2018	ND	4.0000		
Selenium, total	ug/L	MW-1	09/06/2018	ND	4.0000		
Selenium, total	ug/L	MW-1	03/07/2019	ND	4.0000		
Selenium, total	ug/L	MW-1	09/26/2019	ND	4.0000		
Selenium, total	ug/L	MW-1	04/02/2020	ND	4.0000		
Selenium, total	ug/L	MW-1	09/17/2020	ND	4.0000		
Selenium, total	ug/L	MW-1	03/25/2021	ND	4.0000		
Selenium, total	ug/L	MW-1	09/16/2021	ND	4.0000		
Selenium, total	ug/L	MW-1	03/16/2022	ND	4.0000		
Selenium, total	ug/L	MW-1	09/01/2022	ND	4.0000		
Selenium, total	ug/L	MW-1	03/24/2023	ND	4.0000		
Silver, total	ug/L	MW-1	09/17/2014	ND	4.0000		
Silver, total	ug/L	MW-1	04/28/2015	ND	4.0000		
Silver, total	ug/L	MW-1	10/06/2015	ND	4.0000		
Silver, total	ug/L	MW-1	04/23/2016	ND	4.0000		
Silver, total	ug/L	MW-1	09/01/2016	ND	4.0000		
Silver, total	ug/L	MW-1	03/21/2017	ND	4.0000		
Silver, total	ug/L	MW-1	10/13/2017	ND	4.0000		
Silver, total	ug/L	MW-1	03/09/2018	ND	4.0000		
Silver, total	ug/L	MW-1	09/06/2018	ND	8.0000	4.0000	**
Silver, total	ug/L	MW-1	03/07/2019	ND	4.0000		
Silver, total	ug/L	MW-1	09/26/2019	ND	4.0000		
Silver, total	ug/L	MW-1	04/02/2020	ND	4.0000		
Silver, total	ug/L	MW-1	09/17/2020	ND	4.0000		
Silver, total	ug/L	MW-1	03/25/2021	ND	4.0000		
Silver, total	ug/L	MW-1	09/16/2021	ND	4.0000		
Silver, total	ug/L	MW-1	03/16/2022	ND	4.0000		
Silver, total	ug/L	MW-1	09/01/2022	ND	4.0000		
Silver, total	ug/L	MW-1	03/24/2023	ND	4.0000		
Thallium, total	ug/L	MW-1	09/17/2014	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-1	04/28/2015	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-1	10/06/2015	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-1	04/23/2016	ND	4.0000	2.0000	**
			09/01/2016				**
Thallium, total	ug/L	MW-1	09/01/2010	ND	4.0000	2.0000	

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Thallium, total	ug/L	MW-1	10/13/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-1	03/09/2018	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-1	09/06/2018	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-1	03/07/2019	ND	2.0000		
Thallium, total	ug/L	MW-1	09/26/2019	ND	2.0000		
Thallium, total	ug/L	MW-1	04/02/2020	ND	2.0000		
Thallium, total	ug/L	MW-1	09/17/2020	ND	2.0000		
Thallium, total	ug/L	MW-1	03/25/2021	ND	2.0000		
Thallium, total	ug/L	MW-1	09/16/2021	ND	2.0000		
Thallium, total	ug/L	MW-1	03/16/2022	ND	2.0000		
Thallium, total	ug/L	MW-1	09/01/2022	ND	2.0000		
Thallium, total	ug/L	MW-1	03/24/2023	ND	2.0000		
Vanadium, total	ug/L	MW-1	09/17/2014	ND	20.0000		
Vanadium, total	ug/L	MW-1	04/28/2015	ND	20.0000		
Vanadium, total	ug/L	MW-1	10/06/2015	ND	20.0000		
Vanadium, total	ug/L	MW-1	04/23/2016	ND	20.0000		
Vanadium, total	ug/L	MW-1	09/01/2016	ND	20.0000		
Vanadium, total	ug/L	MW-1	03/21/2017	ND	20.0000		
Vanadium, total	ug/L	MW-1	10/13/2017	ND	20.0000		
Vanadium, total	ug/L	MW-1	03/09/2018	ND	20.0000		
Vanadium, total	ug/L	MW-1	09/06/2018	ND	20.0000		
Vanadium, total	ug/L	MW-1	03/07/2019	ND	20.0000		
Vanadium, total	ug/L	MW-1	09/26/2019	ND	20.0000		
Vanadium, total	ug/L	MW-1	04/02/2020	ND	20.0000		
Vanadium, total	ug/L	MW-1	09/17/2020	ND	20.0000		
Vanadium, total	ug/L	MW-1	03/25/2021	ND	20.0000		
Vanadium, total	ug/L	MW-1	09/16/2021	ND	20.0000		
Vanadium, total	ug/L	MW-1	03/16/2022	ND	20.0000		
Vanadium, total	ug/L	MW-1	09/01/2022	ND	20.0000		
Vanadium, total	ug/L	MW-1	03/24/2023	ND	20.0000		
Zinc, total	ug/L	MW-1	09/17/2014		32.0000		
Zinc, total	ug/L	MW-1	04/28/2015		12.3000		
Zinc, total	ug/L	MW-1	10/06/2015		8.8000		
Zinc, total	ug/L	MW-1	04/23/2016	ND	20.0000		
Zinc, total	ug/L	MW-1	09/01/2016	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-1	03/21/2017	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-1	10/13/2017	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-1	03/09/2018	IND	11.5000	20.0000	
Zinc, total	ug/L	MW-1	09/06/2018		15.6000		
Zinc, total	ug/L ug/L	MW-1	03/07/2019	ND	8.0000	20.0000	**
Zinc, total	ug/L ug/L	MW-1	09/26/2019	ND	27.7000	20.0000	
Zinc, total	ug/L	MW-1	04/02/2020	ND	20.0000		
Zinc, total		MW-1	09/17/2020	ND	20.0000		
Zinc, total	ug/L	MW-1	03/25/2021	ND	20.0000		
	ug/L			1 1			
Zinc, total	ug/L	MW-1	09/16/2021	ND	20.0000		
Zinc, total	ug/L	MW-1 MW-1	03/16/2022	ND ND	20.0000		
Zinc, total	ug/L		09/01/2022		20.0000		
Zinc, total	ug/L	MW-1	03/24/2023	ND	20.0000		
Antimony, total	ug/L	MW-17	09/18/2014	ND	2.0000		
Antimony, total	ug/L	MW-17	04/28/2015	ND	2.0000		
Antimony, total	ug/L	MW-17	10/06/2015	ND	2.0000		
Antimony, total	ug/L	MW-17	04/23/2016	ND	2.0000		
Antimony, total	ug/L	MW-17	09/01/2016	ND	2.0000		
Antimony, total	ug/L	MW-17	03/21/2017	ND	2.0000		
Antimony, total	ug/L	MW-17	10/13/2017	ND	2.0000		
Antimony, total	ug/L	MW-17	03/09/2018	ND	2.0000		
Antimony, total	ug/L	MW-17	09/06/2018	ND	2.0000		
Antimony, total	ug/L	MW-17	03/07/2019	ND	2.0000		
Antimony, total	ug/L	MW-17	09/26/2019	ND	2.0000		
Antimony, total	ug/L	MW-17	04/02/2020	ND	2.0000		
Antimony, total	ug/L	MW-17	09/17/2020	ND	2.0000		
Antimony, total	ug/L	MW-17	03/25/2021	ND	2.0000		
Antimony, total	ug/L	MW-17	09/16/2021	ND	2.0000		
Antimony, total	ug/L	MW-17	03/16/2022	ND	2.0000		
Antimony, total	ug/L	MW-17	09/01/2022	ND	2.0000		
Antimony, total	ug/L	MW-17	03/24/2023	ND	2.0000		
Antimony, total	ug/L	MW-17	09/07/2023	ND	2.0000		
Antimony, total	ug/L	MW-17	03/18/2024	ND	2.0000		
Antimony, total	ug/L	MW-17	09/25/2024	ND	2.0000		
Arsenic, total	ug/L	MW-17	09/18/2014	ND	4.0000		
			04/00/0045	NID.	4 0000		1
Arsenic, total	ug/L	MW-17	04/28/2015	ND	4.0000		
Arsenic, total Arsenic, total	ug/L	MW-17	10/06/2015	ND	4.0000		
Arsenic, total							

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Arsenic, total	ug/L	MW-17	03/21/2017	ND	4.0000		
Arsenic, total	ug/L	MW-17	10/13/2017	ND	4.0000		
Arsenic, total	ug/L	MW-17	03/09/2018	ND	4.0000		
Arsenic, total	ug/L	MW-17	09/06/2018	ND	4.0000		
Arsenic, total	ug/L	MW-17	03/07/2019	ND	4.0000		
Arsenic, total	ug/L	MW-17	09/26/2019	ND	4.0000		
Arsenic, total	ug/L	MW-17	04/02/2020	ND	4.0000		
Arsenic, total	ug/L	MW-17	09/17/2020	ND	4.0000		
Arsenic, total	ug/L	MW-17	03/25/2021	ND	4.0000		
Arsenic, total	ug/L	MW-17	09/16/2021	ND	4.0000		
Arsenic, total	ug/L	MW-17	03/16/2022	ND	4.0000		
Arsenic, total	ug/L	MW-17	09/01/2022	ND	4.0000		
Arsenic, total	ug/L	MW-17	03/24/2023	ND	4.0000		
Arsenic, total	ug/L	MW-17	09/07/2023	ND	4.0000		
Arsenic, total	ug/L	MW-17	03/18/2024	ND	4.0000		
Arsenic, total	ug/L	MW-17	09/25/2024	ND	4.0000		
Barium, total	ug/L	MW-17	09/18/2014		91.4000		
Barium, total	ug/L	MW-17	04/28/2015		106.0000		
Barium, total	ug/L	MW-17	10/06/2015		85.3000		
Barium, total	ug/L	MW-17 MW-17	04/23/2016		99.2000		
Barium, total	ug/L	MW-17	09/01/2016		88.5000		
Barium, total Barium, total	ug/L ug/L	MW-17	03/21/2017 10/13/2017		93.7000 89.5000		
Barium, total	ug/L ug/L	MW-17	03/09/2018		86.5000		
Barium, total	ug/L ug/L	MW-17	09/06/2018		83.2000		
Barium, total	ug/L ug/L	MW-17	03/07/2019		99.9000		
Barium, total	ug/L ug/L	MW-17	09/26/2019		95.8000		
Barium, total	ug/L ug/L	MW-17	04/02/2020		102.0000		
Barium, total	ug/L	MW-17	09/17/2020		94.6000		
Barium, total	ug/L	MW-17	03/25/2021		92.2000		
Barium, total	ug/L	MW-17	09/16/2021		89.6000		
Barium, total	ug/L	MW-17	03/16/2022		89.9000		
Barium, total	ug/L	MW-17	09/01/2022		90.3000		
Barium, total	ug/L	MW-17	03/24/2023		84.3000		
Barium, total	ug/L	MW-17	09/07/2023		92.4000		
Barium, total	ug/L	MW-17	03/18/2024		96.4000		
Barium, total	ug/L	MW-17	09/25/2024		90.1000		
Beryllium, total	ug/L	MW-17	09/18/2014	ND	4.0000		
Beryllium, total	ug/L	MW-17	04/28/2015	ND	4.0000		
Beryllium, total	ug/L	MW-17	10/06/2015	ND	4.0000		
Beryllium, total	ug/L	MW-17	04/23/2016	ND	4.0000		
Beryllium, total	ug/L	MW-17	09/01/2016	ND	4.0000		
Beryllium, total	ug/L	MW-17	03/21/2017	ND	4.0000		
Beryllium, total	ug/L	MW-17	10/13/2017	ND	4.0000		
Beryllium, total	ug/L	MW-17	03/09/2018	ND	4.0000		
Beryllium, total	ug/L	MW-17	09/06/2018	ND	4.0000		
Beryllium, total	ug/L	MW-17	03/07/2019	ND	4.0000		
Beryllium, total	ug/L	MW-17	09/26/2019	ND	4.0000		
Beryllium, total	ug/L	MW-17	04/02/2020	ND	4.0000		
Beryllium, total	ug/L	MW-17	09/17/2020	ND	4.0000		
Beryllium, total	ug/L	MW-17	03/25/2021	ND	4.0000		
Beryllium, total	ug/L	MW-17	09/16/2021	ND	4.0000		
Beryllium, total	ug/L	MW-17	03/16/2022	ND	4.0000		
Beryllium, total	ug/L	MW-17	09/01/2022	ND	4.0000		
Beryllium, total	ug/L	MW-17	03/24/2023	ND	4.0000		
Beryllium, total Beryllium, total	ug/L	MW-17 MW-17	09/07/2023 03/18/2024	ND	4.0000 4.0000		
Beryllium, total	ug/L ug/L	MW-17		ND ND	4.0000		
Cadmium, total	ug/L ug/L	MW-17	09/25/2024 09/18/2014	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-17	04/28/2015	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-17	10/06/2015	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-17	04/23/2016	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-17	09/01/2016	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-17	03/21/2017	ND	0.8000		
Cadmium, total	ug/L	MW-17	10/13/2017		1.4000		
Cadmium, total	ug/L	MW-17	03/09/2018	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-17	09/06/2018	ND	0.8000		
Cadmium, total	ug/L	MW-17	03/07/2019	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-17	09/26/2019	ND	0.8000		
Cadmium, total	ug/L ug/L	MW-17	04/02/2020	ND	0.8000		
Jaannan, total	ug/L ug/L	MW-17	09/17/2020	ND	0.8000		
Cadmium, total					0.0000		
Cadmium, total Cadmium, total			03/25/2021	ND	0.8000		
Cadmium, total Cadmium, total Cadmium, total	ug/L ug/L	MW-17 MW-17	03/25/2021 09/16/2021	ND ND	0.8000 0.8000		

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Cadmium, total	ug/L	MW-17	09/01/2022	ND	0.8000		
Cadmium, total	ug/L	MW-17	03/24/2023	ND	0.8000		
Cadmium, total	ug/L	MW-17	09/07/2023	ND	0.8000		
Cadmium, total	ug/L	MW-17	03/18/2024		0.8000		
Cadmium, total	ug/L	MW-17	09/25/2024	ND	0.8000		
Chromium, total	ug/L	MW-17	09/18/2014	ND	8.0000		
Chromium, total	ug/L	MW-17	04/28/2015	ND	8.0000		
Chromium, total	ug/L	MW-17	10/06/2015	ND	8.0000		
Chromium, total	ug/L	MW-17	04/23/2016	ND	8.0000		
Chromium, total	ug/L	MW-17	09/01/2016	ND	8.0000		
Chromium, total	ug/L	MW-17	03/21/2017	ND	8.0000		
Chromium, total	ug/L	MW-17	10/13/2017	ND	8.0000		
Chromium, total	ug/L	MW-17	03/09/2018	ND	8.0000		
Chromium, total	ug/L	MW-17	09/06/2018	ND	8.0000		
Chromium, total	ug/L	MW-17	03/07/2019	ND	8.0000		
Chromium, total	ug/L	MW-17	09/26/2019	ND	8.0000		
Chromium, total	ug/L	MW-17	04/02/2020	ND	8.0000		
Chromium, total	ug/L	MW-17	09/17/2020	ND	8.0000		
Chromium, total	ug/L	MW-17	03/25/2021	ND	8.0000		
Chromium, total	ug/L	MW-17	09/16/2021	ND	8.0000		
Chromium, total	ug/L	MW-17	03/16/2022	ND	8.0000		
Chromium, total	ug/L	MW-17 MW-17	09/01/2022 03/24/2023	ND ND	8.0000 8.0000		
Chromium, total Chromium, total	ug/L ug/L	MW-17	09/07/2023	ND	8.0000		
Chromium, total	ug/L ug/L	MW-17	03/18/2024	ND	8.0000		
Chromium, total	ug/L ug/L	MW-17	09/25/2024	ND	8.0000		
Cobalt, total	ug/L	MW-17	09/18/2014	ND	0.8000		
Cobalt, total	ug/L	MW-17	04/28/2015	ND	0.8000		
Cobalt, total	ug/L	MW-17	10/06/2015	ND	0.8000		
Cobalt, total	ug/L	MW-17	04/23/2016	ND	0.8000		
Cobalt, total	ug/L	MW-17	09/01/2016	ND	0.8000		
Cobalt, total	ug/L	MW-17	03/21/2017	ND	0.8000		
Cobalt, total	ug/L	MW-17	10/13/2017	ND	0.8000		
Cobalt, total	ug/L	MW-17	03/09/2018	ND	0.8000		
Cobalt, total	ug/L	MW-17	09/06/2018	ND	0.8000		
Cobalt, total	ug/L	MW-17	03/07/2019	ND	0.8000		
Cobalt, total	ug/L	MW-17	09/26/2019	ND	0.8000		
Cobalt, total	ug/L	MW-17	04/02/2020	ND	0.8000	0.0000	
Cobalt, total	ug/L	MW-17	09/17/2020	ND	0.4000	0.8000	**
Cobalt, total Cobalt, total	ug/L ug/L	MW-17 MW-17	03/25/2021 09/16/2021	ND ND	0.4000 0.4000	0.8000 0.8000	**
Cobalt, total	ug/L ug/L	MW-17	03/16/2022	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-17	09/01/2022	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-17	03/24/2023	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-17	09/07/2023	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-17	03/18/2024	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-17	09/25/2024	ND	0.4000	0.8000	**
Copper, total	ug/L	MW-17	09/18/2014	ND	4.0000		
Copper, total	ug/L	MW-17	04/28/2015	ND	4.0000		
Copper, total	ug/L	MW-17	10/06/2015	ND	4.0000		
Copper, total	ug/L	MW-17	04/23/2016	ND	4.0000		
Copper, total	ug/L	MW-17	09/01/2016	ND	4.0000		
Copper, total	ug/L	MW-17	03/21/2017	ND	4.0000		
Copper, total	ug/L	MW-17	10/13/2017	ND	4.0000		
Copper, total	ug/L	MW-17	03/09/2018	ND	4.0000		
Copper, total Copper, total	ug/L	MW-17 MW-17	09/06/2018	ND ND	4.0000		
Copper, total	ug/L ug/L	MW-17	03/07/2019 09/26/2019	ND ND	4.0000 4.0000		
Copper, total	ug/L ug/L	MW-17	04/02/2020	ND	4.0000		
Copper, total	ug/L ug/L	MW-17	09/17/2020	ND	4.0000		
Copper, total	ug/L ug/L	MW-17	03/25/2021	ND	4.0000		
Copper, total	ug/L	MW-17	09/16/2021	ND	4.0000		
Copper, total	ug/L	MW-17	03/16/2022	ND	4.0000		
Copper, total	ug/L	MW-17	09/01/2022	ND	4.0000		
Copper, total	ug/L	MW-17	03/24/2023	ND	4.0000		
Copper, total	ug/L	MW-17	09/07/2023	ND	4.0000		
Copper, total	ug/L	MW-17	03/18/2024	ND	4.0000		
Copper, total	ug/L	MW-17	09/25/2024	ND	4.0000		
Lead, total	ug/L	MW-17	09/18/2014	ND	4.0000		
Lead, total	ug/L	MW-17	04/28/2015	ND	4.0000		
Lead, total	ug/L	MW-17	10/06/2015	ND	4.0000		
Lead, total	ug/L	MW-17	04/23/2016	ND	4.0000		
Lead, total Lead, total	ug/L ug/L	MW-17 MW-17	09/01/2016 03/21/2017	ND ND	4.0000 4.0000		

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Lead, total	ug/L	MW-17	10/13/2017	ND	4.0000		
Lead, total	ug/L	MW-17	03/09/2018	ND	4.0000		
Lead, total	ug/L	MW-17	09/06/2018	ND	4.0000		
Lead, total	ug/L	MW-17	03/07/2019	ND	4.0000		
Lead, total	ug/L	MW-17	09/26/2019	ND	4.0000		
Lead, total	ug/L	MW-17	04/02/2020	ND	4.0000		
Lead, total	ug/L	MW-17	09/17/2020	ND	4.0000		
Lead, total	ug/L	MW-17	03/25/2021	ND	4.0000		
Lead, total	ug/L	MW-17	09/16/2021	ND	4.0000		
Lead, total	ug/L	MW-17	03/16/2022	ND	4.0000		
Lead, total	ug/L	MW-17	09/01/2022	ND	4.0000		
Lead, total	ug/L	MW-17	03/24/2023	ND	4.0000		
Lead, total	ug/L	MW-17	09/07/2023	ND	4.0000		
Lead, total	ug/L	MW-17	03/18/2024	ND	4.0000		
Lead, total	ug/L	MW-17	09/25/2024	ND	4.0000		
Nickel, total	ug/L	MW-17	09/18/2014	ND	4.0000		
Nickel, total	ug/L	MW-17	04/28/2015	ND	4.0000		
Nickel, total	ug/L	MW-17	10/06/2015	ND	4.0000		
Nickel, total	ug/L	MW-17	04/23/2016	ND	4.0000		
Nickel, total	ug/L	MW-17	09/01/2016	ND	4.0000		
Nickel, total	ug/L	MW-17	03/21/2017	ND	4.0000		
Nickel, total	ug/L	MW-17	10/13/2017	ND	4.0000		
Nickel, total	ug/L	MW-17	03/09/2018	ND	4.0000		
Nickel, total	ug/L	MW-17	09/06/2018	ND	4.0000		
Nickel, total	ug/L	MW-17	03/07/2019	ND	4.0000		
Nickel, total	ug/L	MW-17	09/26/2019	ND	4.0000		
Nickel, total	ug/L	MW-17	04/02/2020	ND	4.0000		
Nickel, total	ug/L	MW-17	09/17/2020	ND	4.0000		
Nickel, total	ug/L	MW-17	03/25/2021	ND	4.0000		
Nickel, total	ug/L	MW-17	09/16/2021	ND	4.0000		
Nickel, total	ug/L	MW-17	03/16/2022	ND	4.0000		
Nickel, total	ug/L	MW-17	09/01/2022	ND	4.0000		
Nickel, total	ug/L	MW-17	03/24/2023	ND	4.0000		
Nickel, total	ug/L	MW-17	09/07/2023	ND	4.0000		
Nickel, total	ug/L	MW-17	03/18/2024	ND	4.0000		
Nickel, total	ug/L	MW-17	09/25/2024	ND	4.0000		
Selenium, total	ug/L	MW-17	09/18/2014	ND	4.0000		
Selenium, total	ug/L ug/L	MW-17	04/28/2015	ND	4.0000		
Selenium, total	ug/L	MW-17	10/06/2015	ND	4.0000		
Selenium, total	ug/L ug/L	MW-17	04/23/2016	ND	4.0000		
Selenium, total	ug/L ug/L	MW-17	09/01/2016	ND	4.0000		
Selenium, total	ug/L	MW-17	03/21/2017	ND	4.0000		
1	l •	MW-17		ND			
Selenium, total	ug/L ug/L	MW-17	10/13/2017 03/09/2018	ND	4.0000 4.0000		
Selenium, total		MW-17	09/06/2018	ND			
Selenium, total	ug/L	MW-17			4.0000		
Selenium, total	ug/L	1	03/07/2019	ND	4.0000		
Selenium, total	ug/L	MW-17	09/26/2019	ND	4.0000		
Selenium, total	ug/L	MW-17	04/02/2020	ND	4.0000		
Selenium, total	ug/L	MW-17	09/17/2020	ND	4.0000		
Selenium, total	ug/L	MW-17	03/25/2021	ND	4.0000		
Selenium, total	ug/L	MW-17	09/16/2021	ND	4.0000		
Selenium, total	ug/L	MW-17	03/16/2022	ND	4.0000		
Selenium, total	ug/L	MW-17	09/01/2022	ND	4.0000		
Selenium, total	ug/L	MW-17	03/24/2023	ND	4.0000		
Selenium, total	ug/L	MW-17	09/07/2023	ND	4.0000		
Selenium, total	ug/L	MW-17	03/18/2024	ND	4.0000		
Selenium, total	ug/L	MW-17	09/25/2024	ND	4.0000		
Silver, total	ug/L	MW-17	09/18/2014	ND	4.0000		
Silver, total	ug/L	MW-17	04/28/2015	ND	4.0000		
Silver, total	ug/L	MW-17	10/06/2015	ND	4.0000		
Silver, total	ug/L	MW-17	04/23/2016	ND	4.0000		
Silver, total	ug/L	MW-17	09/01/2016	ND	4.0000		
Silver, total	ug/L	MW-17	03/21/2017	ND	4.0000		
Silver, total	ug/L	MW-17	10/13/2017	ND	4.0000		
Silver, total	ug/L	MW-17	03/09/2018	ND	4.0000		l
Silver, total	ug/L	MW-17	09/06/2018	ND	8.0000	4.0000	**
Silver, total	ug/L	MW-17	03/07/2019	ND	4.0000		
Silver, total	ug/L	MW-17	09/26/2019	ND	4.0000		
Silver, total	ug/L	MW-17	04/02/2020	ND	4.0000		
Silver, total	ug/L	MW-17	09/17/2020	ND	4.0000		
Silver, total	ug/L	MW-17	03/25/2021	ND	4.0000		
1 '							
Silver, total	ug/L	MW-17	09/16/2021	ND	4.0000		
1 '			09/16/2021 03/16/2022 09/01/2022	ND ND ND	4.0000 4.0000 4.0000		

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Silver, total	ug/L	MW-17	03/24/2023	ND	4.0000		
Silver, total	ug/L	MW-17	09/07/2023	ND	4.0000		
Silver, total	ug/L	MW-17	03/18/2024	ND	4.0000		
Silver, total	ug/L	MW-17	09/25/2024	ND	4.0000	2,0000	**
Thallium, total	ug/L	MW-17	09/18/2014	ND	4.0000	2.0000	**
Thallium, total Thallium, total	ug/L ug/L	MW-17 MW-17	04/28/2015 10/06/2015	ND ND	4.0000 4.0000	2.0000 2.0000	**
Thallium, total	ug/L	MW-17	04/23/2016	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-17	09/01/2016	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-17	03/21/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-17	10/13/2017	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-17	03/09/2018	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-17	09/06/2018	ND	4.0000	2.0000	**
Thallium, total	ug/L	MW-17	03/07/2019	ND	2.0000		
Thallium, total	ug/L	MW-17	09/26/2019	ND	2.0000		
Thallium, total	ug/L	MW-17	04/02/2020	ND	2.0000		
Thallium, total	ug/L	MW-17 MW-17	09/17/2020 03/25/2021	ND ND	2.0000 2.0000		
Thallium, total Thallium, total	ug/L ug/L	MW-17	09/16/2021	ND	2.0000		
Thallium, total	ug/L	MW-17	03/16/2022	ND	2.0000		
Thallium, total	ug/L	MW-17	09/01/2022	ND	2.0000		
Thallium, total	ug/L	MW-17	03/24/2023	ND	2.0000		
Thallium, total	ug/L	MW-17	09/07/2023	ND	2.0000		
Thallium, total	ug/L	MW-17	03/18/2024	ND	2.0000		
Thallium, total	ug/L	MW-17	09/25/2024	ND	2.0000		
Vanadium, total	ug/L	MW-17	09/18/2014	ND	20.0000		
Vanadium, total	ug/L	MW-17	04/28/2015	ND	20.0000		
Vanadium, total	ug/L	MW-17	10/06/2015	ND	20.0000		
Vanadium, total	ug/L	MW-17	04/23/2016	ND	20.0000		
Vanadium, total Vanadium, total	ug/L ug/L	MW-17 MW-17	09/01/2016 03/21/2017	ND ND	20.0000 20.0000		
Vanadium, total	ug/L ug/L	MW-17	10/13/2017	ND	20.0000		
Vanadium, total	ug/L	MW-17	03/09/2018	ND	20.0000		
Vanadium, total	ug/L	MW-17	09/06/2018	ND	20.0000		
Vanadium, total	ug/L	MW-17	03/07/2019	ND	20.0000		
Vanadium, total	ug/L	MW-17	09/26/2019	ND	20.0000		
Vanadium, total	ug/L	MW-17	04/02/2020	ND	20.0000		
Vanadium, total	ug/L	MW-17	09/17/2020	ND	20.0000		
Vanadium, total	ug/L	MW-17	03/25/2021	ND	20.0000		
Vanadium, total	ug/L	MW-17	09/16/2021	ND	20.0000		
Vanadium, total	ug/L ug/L	MW-17 MW-17	03/16/2022 09/01/2022	ND ND	20.0000 20.0000		
Vanadium, total	ug/L ug/L	MW-17	03/24/2023	ND	20.0000		
Vanadium, total	ug/L	MW-17	09/07/2023	ND	20.0000		
Vanadium, total	ug/L	MW-17	03/18/2024	ND	20.0000		
Vanadium, total	ug/L	MW-17	09/25/2024	ND	20.0000		
Zinc, total	ug/L	MW-17	09/18/2014		8.1000		
Zinc, total	ug/L	MW-17	04/28/2015	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-17	10/06/2015	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-17	04/23/2016	ND	20.0000	00.000	**
Zinc, total	ug/L	MW-17	09/01/2016	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-17 MW-17	03/21/2017	ND ND	8.0000	20.0000	**
Zinc, total Zinc, total	ug/L ug/L	MW-17	10/13/2017 03/09/2018	ND ND	8.0000 8.0000	20.0000	**
Zinc, total	ug/L ug/L	MW-17	09/06/2018	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-17	03/07/2019	ND	8.0000	20.0000	**
Zinc, total	ug/L	MW-17	09/26/2019	-	8.5000		
Zinc, total	ug/L	MW-17	04/02/2020	ND	20.0000		
Zinc, total	ug/L	MW-17	09/17/2020	ND	20.0000		
Zinc, total	ug/L	MW-17	03/25/2021	ND	20.0000		
Zinc, total	ug/L	MW-17	09/16/2021	ND	20.0000		
Zinc, total	ug/L	MW-17	03/16/2022	ND	20.0000		
Zinc, total	ug/L	MW-17	09/01/2022	ND	20.0000		
Zinc, total	ug/L	MW-17	03/24/2023	ND	20.0000		
Zinc, total Zinc, total	ug/L ug/L	MW-17 MW-17	09/07/2023 03/18/2024	ND ND	20.0000 20.0000		
Zinc, total	ug/L ug/L	MW-17	09/25/2024	ND	20.0000		
Antimony, total	ug/L	MW-44	03/16/2022	ND	2.0000		
Antimony, total	ug/L	MW-44	11/13/2023	ND	2.0000		
Antimony, total	ug/L	MW-44	03/18/2024	ND	2.0000		
Arsenic, total	ug/L	MW-44	03/16/2022	ND	4.0000		
	1 /1	BANAL AA	11/12/2022	ND	4.0000		
Arsenic, total	ug/L	MW-44	11/13/2023				
Arsenic, total Arsenic, total Barium, total	ug/L ug/L ug/L	MW-44 MW-44	03/18/2024 03/16/2022	ND	4.0000 4.0000 124.0000		

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 1 **Upgradient Data**

Constituent	Units	Well	Date		Result	Adjusted	
Barium, total	ug/L	MW-44	11/13/2023		137.0000		
Barium, total	ug/L	MW-44	03/18/2024		154.0000		
Beryllium, total	ug/L	MW-44	03/16/2022	ND	4.0000		
Beryllium, total	ug/L	MW-44	11/13/2023	ND	4.0000		
Beryllium, total	ug/L	MW-44	03/18/2024	ND	4.0000		
Cadmium, total	ug/L	MW-44	03/16/2022	ND	0.8000		
Cadmium, total	ug/L	MW-44	11/13/2023	ND	0.8000		
Cadmium, total	ug/L	MW-44	03/18/2024	ND	0.8000		
Chromium, total	ug/L	MW-44	03/16/2022	ND	8.0000		
Chromium, total	ug/L	MW-44	11/13/2023	ND	8.0000		
Chromium, total	ug/L	MW-44	03/18/2024	ND	8.0000		
Cobalt, total	ug/L	MW-44	03/16/2022	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-44	11/13/2023	ND	0.4000	0.8000	**
Cobalt, total	ug/L	MW-44	03/18/2024	ND	0.4000	0.8000	**
Copper, total	ug/L	MW-44	03/16/2022		4.3000		
Copper, total	ug/L	MW-44	11/13/2023	ND	4.0000		
Copper, total	ug/L	MW-44	03/18/2024	ND	4.0000		
Lead, total	ug/L	MW-44	03/16/2022		6.1000		
Lead, total	ug/L	MW-44	11/13/2023	ND	4.0000		
Lead, total	ug/L	MW-44	03/18/2024	ND	4.0000		
Nickel, total	ug/L	MW-44	03/16/2022	ND	4.0000		
Nickel, total	ug/L	MW-44	11/13/2023	ND	4.0000		
Nickel, total	ug/L	MW-44	03/18/2024	ND	4.0000		
Selenium, total	ug/L	MW-44	03/16/2022	ND	4.0000		
Selenium, total	ug/L	MW-44	11/13/2023	ND	4.0000		
Selenium, total	ug/L	MW-44	03/18/2024	ND	4.0000		
Silver, total	ug/L	MW-44	03/16/2022	ND	4.0000		
Silver, total	ug/L	MW-44	11/13/2023	ND	4.0000		
Silver, total	ug/L	MW-44	03/18/2024	ND	4.0000		
Thallium, total	ug/L	MW-44	03/16/2022	ND	2.0000		
Thallium, total	ug/L	MW-44	11/13/2023	ND	2.0000		
Thallium, total	ug/L	MW-44	03/18/2024	ND	2.0000		
Vanadium, total	ug/L	MW-44	03/16/2022	ND	20.0000		
Vanadium, total	ug/L	MW-44	11/13/2023	ND	20.0000		
Vanadium, total	ug/L	MW-44	03/18/2024	ND	20.0000		
Zinc, total	ug/L	MW-44	03/16/2022		69.2000		
Zinc, total	ug/L	MW-44	11/13/2023	ND	20.0000		
Zinc, total	ug/L	MW-44	03/18/2024	ND	20.0000		

^{* -} Outlier for that well and constituent.
** - ND value replaced with median RL.
*** - ND value replaced with manual RL.
ND = Not detected, Result = detection limit.

Table 2 **Most Current Downgradient Monitoring Data**

0	I I i t	VA/+II	D-4-		Daniel		Dun el Linnia
Constituent	Units	Well	Date		Result		Pred. Limit
Antimony, total	ug/L	GU 3	09/25/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	GU 3	09/25/2024	ND	4.0000		5.6000
Barium, total	ug/L	GU 3	09/25/2024		242.0000		769.2044
Beryllium, total	ug/L	GU 3	09/25/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	GU 3	09/25/2024	ND	0.8000		1.4000
Chromium, total	ug/L	GU 3	09/25/2024	ND	8.0000		8.9000
Cobalt, total	ug/L	GU 3	09/25/2024	ND	0.4000		30.6000
Copper, total	ug/L	GU 3	09/25/2024	ND	4.0000		11.6000
Lead, total	ug/L	GU 3	09/25/2024	ND	4.0000		7.4000
Nickel, total	ug/L	GU 3	09/25/2024	ND	4.0000		60.4000
Selenium, total	ug/L	GU 3	09/25/2024		4.0000	*	4.0000
Silver, total	ug/L	GU 3	09/25/2024	ND	4.0000		4.0000
Thallium, total	ug/L	GU 3	09/25/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	GU 3	09/25/2024	ND	20.0000		20.0000
Zinc, total	ug/L	GU 3	09/25/2024	ND	20.0000	**	69.2000
Antimony, total	ug/L	GU 4	09/25/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	GU 4	09/25/2024	ND	4.0000		5.6000
Barium, total	ug/L	GU 4	09/25/2024		289.0000		769.2044
Beryllium, total	ug/L	GU 4	09/25/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	GU 4	09/25/2024	ND	0.8000		1.4000
Chromium, total	ug/L	GU 4	09/25/2024	ND	8.0000		8.9000
Cobalt, total	ug/L	GU 4	09/25/2024	ND	0.4000		30.6000
Copper, total	ug/L	GU 4	09/25/2024	ND	4.0000		11.6000
Lead, total	ug/L	GU 4	09/25/2024	ND	4.0000		7.4000
Nickel, total	ug/L	GU 4	09/25/2024	ND	4.0000		60.4000
Selenium, total	ug/L	GU 4	09/25/2024	ND	4.0000		4.0000
Silver, total	ug/L	GU 4	09/25/2024	ND	4.0000		4.0000
Thallium, total	ug/L	GU 4	09/25/2024	ND	2.0000		2.0000
Vanadium, total	ug/L ug/L	GU 4	09/25/2024	ND	20.0000		20.0000
		GU 4		טאו		*	
Zinc, total	ug/L		09/25/2024	NID	106.0000		69.2000
Antimony, total	ug/L	MW-10	09/25/2024 09/25/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-10			5.2000		5.6000
Barium, total	ug/L	MW-10	09/25/2024		575.0000		769.2044
Beryllium, total	ug/L	MW-10	09/25/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-10	09/25/2024	ND	0.8000		1.4000
Chromium, total	ug/L	MW-10	09/25/2024	ND	8.0000		8.9000
Cobalt, total	ug/L	MW-10	09/25/2024		2.4000		30.6000
Copper, total	ug/L	MW-10	09/25/2024	ND	4.0000		11.6000
Lead, total	ug/L	MW-10	09/25/2024	ND	4.0000		7.4000
Nickel, total	ug/L	MW-10	09/25/2024		11.7000		60.4000
Selenium, total	ug/L	MW-10	09/25/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-10	09/25/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-10	09/25/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-10	09/25/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-10	09/25/2024	ND	20.0000		69.2000
Antimony, total	ug/L	MW-13	09/25/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-13	09/25/2024	ND	4.0000		5.6000
Barium, total	ug/L	MW-13	09/25/2024		66.4000		769.2044
Beryllium, total	ug/L	MW-13	09/25/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-13	09/25/2024	ND	0.8000		1.4000
Chromium, total	ug/L	MW-13	09/25/2024	ND	8.0000		8.9000
Cobalt, total	ug/L	MW-13	09/25/2024	ND	0.4000		30.6000
Copper, total	ug/L	MW-13	09/25/2024	ND	4.0000		11.6000
Lead, total	ug/L	MW-13	09/25/2024	ND	4.0000		7.4000
Nickel, total	ug/L	MW-13	09/25/2024	ND	4.0000		60.4000
Selenium, total	ug/L	MW-13	09/25/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-13	09/25/2024	ND	4.0000		4.0000
Thallium, total		MW-13	09/25/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-13	09/25/2024	ND			20.0000
	ug/L		09/25/2024		20.0000		l .
Zinc, total	ug/L	MW-13		ND	20.0000		69.2000
Antimony, total	ug/L	MW-14	09/25/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-14	09/25/2024	ND	4.0000		5.6000
Barium, total	ug/L	MW-14	09/25/2024	NID.	112.0000		769.2044
Beryllium, total	ug/L	MW-14	09/25/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-14	09/25/2024	<u>,</u>	3.5000	*	1.4000
Chromium, total	ug/L	MW-14	09/25/2024	ND	8.0000		8.9000
Cobalt, total	ug/L	MW-14	09/25/2024		0.4000		30.6000
Copper, total	ug/L	MW-14	09/25/2024	ND	4.0000		11.6000
Lead, total	ug/L	MW-14	09/25/2024	ND	4.0000		7.4000
Nickel, total	ug/L	MW-14	09/25/2024		4.1000		60.4000
	/1	MW-14	09/25/2024	ND	4.0000	1	4.0000
Selenium, total	ug/L						
Selenium, total Silver, total	ug/L ug/L	MW-14	09/25/2024	ND	4.0000		4.0000

^{* -} Current value failed - awaiting verification.

** - Current value passed - previous exceedance not verified.

*** - Current value failed - exceedance verified.

**** - Current value passed - awaiting one more verification.

***** - Insufficient background data to compute prediction limit.

ND = Not Detected, Result = detection limit.

Table 2 **Most Current Downgradient Monitoring Data**

Constituent	Units	Well	Date		Result		Pred. Limit
Thallium, total	ug/L	MW-14	09/25/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-14	09/25/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-14	09/25/2024	ND	20.0000		69.2000
Antimony, total	ug/L	MW-16	09/25/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-16	09/25/2024		26.2000	***	5.6000
Barium, total	ug/L	MW-16	09/25/2024		756.0000		769.2044
Beryllium, total	ug/L	MW-16	09/25/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-16	09/25/2024	ND	0.8000		1.4000
Chromium, total	ug/L	MW-16	09/25/2024	ND	8.0000		8.9000
Cobalt, total	ug/L	MW-16	09/25/2024		1.7000		30.6000
Copper, total	ug/L	MW-16	09/25/2024	ND	4.0000		11.6000
Lead, total	ug/L	MW-16	09/25/2024	ND	4.0000		7.4000
Nickel, total	ug/L	MW-16	09/25/2024		36.0000		60.4000
Selenium, total	ug/L	MW-16	09/25/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-16	09/25/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-16	09/25/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-16	09/25/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-16	09/25/2024	ND	20.0000		69.2000
Antimony, total	ug/L	MW-18	09/25/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-18	09/25/2024		43.6000	***	5.6000
Barium, total	ug/L	MW-18	09/25/2024		416.0000		769.2044
Beryllium, total	ug/L	MW-18	09/25/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-18	09/25/2024		0.9000		1.4000
Chromium, total	ug/L	MW-18	09/25/2024	ND	8.0000		8.9000
Cobalt, total	ug/L	MW-18	09/25/2024		1.0000		30.6000
Copper, total	ug/L	MW-18	09/25/2024	ND	4.0000		11.6000
Lead, total	ug/L	MW-18	09/25/2024	ND	4.0000		7.4000
Nickel, total	ug/L	MW-18	09/25/2024		5.4000		60.4000
Selenium, total	ug/L	MW-18	09/25/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-18	09/25/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-18	09/25/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-18	09/25/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-18	09/25/2024	ND	20.0000		69.2000
Antimony, total	ug/L	MW-1D	09/25/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-1D	09/25/2024	ND	4.0000		5.6000
Barium, total	ug/L	MW-1D	09/25/2024		637.0000	**	769.2044
Beryllium, total	ug/L	MW-1D	09/25/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-1D	09/25/2024	ND	0.8000		1.4000
Chromium, total	ug/L	MW-1D	09/25/2024	ND	8.0000		8.9000
Cobalt, total	ug/L	MW-1D	09/25/2024		2.4000		30.6000
Copper, total	ug/L	MW-1D	09/25/2024	ND	4.0000		11.6000
Lead, total	ug/L	MW-1D	09/25/2024	ND	4.0000		7.4000
Nickel, total	ug/L	MW-1D	09/25/2024		11.3000		60.4000
Selenium, total	ug/L	MW-1D	09/25/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-1D	09/25/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-1D	09/25/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-1D	09/25/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-1D	09/25/2024	ND	20.0000		69.2000
Antimony, total	ug/L	MW-20	09/25/2024	ND	2.0000	***	2.0000
Arsenic, total	ug/L	MW-20	09/25/2024		44.1000	***	5.6000
Barium, total	ug/L	MW-20	09/25/2024	""	1950.0000	'	769.2044
Beryllium, total	ug/L	MW-20	09/25/2024	ND	4.0000		4.0000
Cadmium, total Chromium, total	ug/L	MW-20 MW-20	09/25/2024	ND ND	0.8000		1.4000
	ug/L		09/25/2024	ן אט	8.0000		8.9000
Cobalt, total	ug/L	MW-20	09/25/2024		6.4000		30.6000
Copper, total	ug/L	MW-20	09/25/2024	ND	4.0000		11.6000 7.4000
Lead, total	ug/L	MW-20	09/25/2024	ND	4.0000		
Nickel, total	ug/L	MW-20 MW-20	09/25/2024		18.0000		60.4000
Selenium, total	ug/L		09/25/2024 09/25/2024	ND ND	4.0000 4.0000		4.0000
Silver, total	ug/L	MW-20					4.0000
Thallium, total	ug/L	MW-20	09/25/2024 09/25/2024	ND ND	2.0000		2.0000
Vanadium, total	ug/L	MW-20		ND ND	20.0000 20.0000		20.0000
Zinc, total Antimony, total	ug/L	MW-20	09/25/2024	ND			69.2000 2.0000
	ug/L	MW-3	09/25/2024		2.0000		
Arsenic, total Barium, total	ug/L	MW-3	09/25/2024	ND	4.0000		5.6000
Beryllium, total	ug/L ug/L	MW-3 MW-3	09/25/2024 09/25/2024	ND	295.0000		769.2044
Cadmium, total	ug/L ug/L	MW-3	09/25/2024	ND ND	4.0000 0.8000		4.0000 1.4000
Chromium, total		MW-3		ND ND	8.0000		8.9000
Cobalt, total	ug/L ug/L	MW-3	09/25/2024 09/25/2024	ND ND	0.4000		30.6000
Copper, total	ug/L ug/L	MW-3	09/25/2024	ND ND	4.0000		11.6000
Lead, total	ug/L ug/L	MW-3	09/25/2024	ND	4.0000		7.4000
	1 49, L	1	1 00/20/2024	ַ יייי	7.0000		1.7000

^{* -} Current value failed - awaiting verification.

** - Current value passed - previous exceedance not verified.

*** - Current value failed - exceedance verified.

**** - Current value passed - awaiting one more verification.

***** - Insufficient background data to compute prediction limit.

ND = Not Detected, Result = detection limit.

Table 2 **Most Current Downgradient Monitoring Data**

Constituent	Units	Well	Date		Result		Pred. Limit
Nickel, total	ug/L	MW-3	09/25/2024	ND	4.0000		60.4000
Selenium, total	ug/L	MW-3	09/25/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-3	09/25/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-3	09/25/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-3	09/25/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-3	09/25/2024	ND	20.0000		69.2000
Antimony, total	ug/L	MW-53	09/25/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-53	09/25/2024	ND	4.0000		5.6000
Barium, total	ug/L	MW-53	09/25/2024		58.9000		769.2044
Beryllium, total	ug/L	MW-53	09/25/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-53	09/25/2024	ND	0.8000		1.4000
Chromium, total	ug/L	MW-53	09/25/2024	ND	8.0000		8.9000
Cobalt, total	ug/L	MW-53	09/25/2024	ND	0.4000		30.6000
Copper, total	ug/L	MW-53	09/25/2024	ND	4.0000		11.6000
Lead, total	ug/L	MW-53	09/25/2024	ND	4.0000		7.4000
Nickel, total	ug/L	MW-53	09/25/2024	ND	4.0000		60.4000
Selenium, total	ug/L	MW-53	09/25/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-53	09/25/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-53	09/25/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-53	09/25/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-53	09/25/2024	ND	20.0000		69.2000
Antimony, total	ug/L	MW-7	09/25/2024	ND	2.0000		2.0000
Arsenic, total	ug/L	MW-7	09/25/2024		9.0000	*	5.6000
Barium, total	ug/L	MW-7	09/25/2024		321.0000		769.2044
Beryllium, total	ug/L	MW-7	09/25/2024	ND	4.0000		4.0000
Cadmium, total	ug/L	MW-7	09/25/2024	ND	0.8000		1.4000
Chromium, total	ug/L	MW-7	09/25/2024	ND	8.0000		8.9000
Cobalt, total	ug/L	MW-7	09/25/2024		10.1000		30.6000
Copper, total	ug/L	MW-7	09/25/2024	ND	4.0000		11.6000
Lead, total	ug/L	MW-7	09/25/2024	ND	4.0000		7.4000
Nickel, total	ug/L	MW-7	09/25/2024		16.6000		60.4000
Selenium, total	ug/L	MW-7	09/25/2024	ND	4.0000		4.0000
Silver, total	ug/L	MW-7	09/25/2024	ND	4.0000		4.0000
Thallium, total	ug/L	MW-7	09/25/2024	ND	2.0000		2.0000
Vanadium, total	ug/L	MW-7	09/25/2024	ND	20.0000		20.0000
Zinc, total	ug/L	MW-7	09/25/2024	ND	20.0000		69.2000

 ⁻ Current value failed - awaiting verification.
 - Current value passed - previous exceedance not verified.
 - Current value failed - exceedance verified.
 - Current value passed - awaiting one more verification.
 - Insufficient background data to compute prediction limit.
 ND = Not Detected, Result = detection limit.

Table 3

Detection Frequencies in Upgradient and Downgradient Wells

Constituent	Detect	Upgradient N	Proportion	Detect	Downgradient N	Proportion
Antimony, total	0	42	0.000	7	296	0.024
Arsenic, total	1	42	0.024	141	298	0.473
Barium, total	42	42	1.000	297	297	1.000
Beryllium, total	0	42	0.000	4	296	0.014
Cadmium, total	3	42	0.071	23	297	0.077
Chromium, total	1	42	0.024	28	296	0.095
Cobalt, total	11	42	0.262	167	296	0.564
Copper, total	2	42	0.048	66	296	0.223
Lead, total	3	42	0.071	44	296	0.149
Nickel, total	12	42	0.286	246	296	0.831
Selenium, total	0	42	0.000	38	299	0.127
Silver, total	0	42	0.000	0	296	0.000
Thallium, total	0	42	0.000	1	296	0.003
Vanadium, total	0	42	0.000	28	296	0.095
Zinc, total	9	42	0.214	97	296	0.328

N = Total number of measurements in all wells. Detect = Total number of detections in all wells. Proportion = Detect/N.

Table 4 **Shapiro-Wilk Multiple Group Test of Normality**

Constituent	Detect	N	Detect Freq	G raw	G log	G cbrt	G sqrt	G sqr	G cub	Crit Value	Dist Form	Model Type
Antimony, total	0	42	0.000									nonpar
Arsenic, total	1	42	0.024									nonpar
Barium, total	42	42	1.000	0.352	0.848					2.326	normal	normal
Beryllium, total	0	42	0.000									nonpar
Cadmium, total	3	42	0.071									nonpar
Chromium, total	1	42	0.024									nonpar
Cobalt, total	11	42	0.262	2.030	0.246					2.326	normal	nonpar
Copper, total	2	42	0.048									nonpar
Lead, total	3	42	0.071									nonpar
Nickel, total	12	42	0.286	2.926	1.116					2.326	lognor	nonpar
Selenium, total	0	42	0.000									nonpar
Silver, total	0	42	0.000									nonpar
Thallium, total	0	42	0.000									nonpar
Vanadium, total	0	42	0.000									nonpar
Zinc, total	9	42	0.214	0.938	0.094					2.326	normal	nonpar

 * - Distribution override for that constituent. Fit to distribution is confirmed if G <= critical value. Model type may not match distributional form when detection frequency < 50%.

Table 5 **Summary Statistics and Prediction Limits**

Constituent	Units	Detect	N	Mean	SD	alpha	Factor	Pred Limit	Type		Conf
Antimony, total	ug/L	0	42					2.0000	nonpar	***	0.99
Arsenic, total	ug/L	1	42					5.6000	nonpar		0.99
Barium, total	ug/L	42	42	258.9714	208.3134	0.0100	2.4494	769.2044	normal		
Beryllium, total	ug/L	0	42					4.0000	nonpar	***	0.99
Cadmium, total	ug/L	3	42					1.4000	nonpar		0.99
Chromium, total	ug/L	1	42					8.9000	nonpar		0.99
Cobalt, total	ug/L	11	42					30.6000	nonpar		0.99
Copper, total	ug/L	2	42					11.6000	nonpar		0.99
Lead, total	ug/L	3	42					7.4000	nonpar		0.99
Nickel, total	ug/L	12	42					60.4000	nonpar		0.99
Selenium, total	ug/L	0	42					4.0000	nonpar	***	0.99
Silver, total	ug/L	0	42					4.0000	nonpar	***	0.99
Thallium, total	ug/L	0	42					2.0000	nonpar	***	0.99
Vanadium, total	ug/L	0	42					20.0000		***	0.99
Zinc, total	ug/L	9	42					69.2000	nonpar		0.99

Conf = confidence level for passing initial test or one verification resample at all downgradient wells for a single constituent cont = confidence level for passing initial test or one verification resample at all downgradient wells (nonparametric test only).

* - Insufficient Data.

** - Calculated limit raised to Manual Reporting Limit.

**** - Nonparametric limit based on ND value.

For transformed data, mean and SD in transformed units and prediction limit in original units.

All sample sizes and statistics are based on outlier free data.

For nonparametric limits, median reporting limits are substituted for extreme reporting limit values.

Table 6

Dixon's Test Outliers 1% Significance Level

	Constituent	Units	Well	Date	Result	ND Qualifier	Date Range	N	Critical Value	
--	-------------	-------	------	------	--------	--------------	------------	---	----------------	--

N = Total number of independent measurements in background at each well.

Date Range = Dates of the first and last measurements included in background at each well.

Critical Value depends on the significance level and on N-1 when the two most extreme values are tested or N for the most extreme value.

Table 8 Historical Downgradient Data for Constituent-Well Combinations that Failed the Current Statistical Evaluation or are in Verification Resampling Mode

Constituent	Units	Well	Date		Result		Pred. Limit
Selenium, total	ug/L	GU 3	08/01/2024	ND	4.0000		4.0000
Selenium, total	ug/L	GU 3	09/25/2024		4.0000	**	4.0000
Zinc, total	ug/L	GU 3	08/01/2024		173.0000	*	69.2000
Zinc, total	ug/L	GU 3	09/25/2024	ND	20.0000		69.2000
Zinc, total	ug/L	GU 4	08/01/2024		67.2000	*	69.2000
Zinc, total	ug/L	GU 4	09/25/2024	ND	106.0000	_	69.2000
Cadmium, total	ug/L	MW-14 MW-14	04/16/2008	ND	1.0000		1.4000
Cadmium, total Cadmium, total	ug/L ug/L	MW-14	06/17/2008 08/20/2008	ND	1.0000 1.0000		1.4000 1.4000
Cadmium, total	ug/L ug/L	MW-14	10/16/2008	ND	1.0000		1.4000
Cadmium, total	ug/L	MW-14	12/04/2008	ND	1.0000		1.4000
Cadmium, total	ug/L	MW-14	03/16/2009	.,,	1.1000		1.4000
Cadmium, total	ug/L	MW-14	09/24/2009		1.3000		1.4000
Cadmium, total	ug/L	MW-14	04/19/2010	ND	1.0000		1.4000
Cadmium, total	ug/L	MW-14	09/29/2010		1.2000		1.4000
Cadmium, total	ug/L	MW-14	05/04/2011	ND	0.8000		1.4000
Cadmium, total	ug/L	MW-14	10/10/2011		1.1000		1.4000
Cadmium, total	ug/L	MW-14	04/24/2012	ND	0.8000		1.4000
Cadmium, total	ug/L	MW-14	09/10/2012	ND	0.8000		1.4000
Cadmium, total Cadmium, total	ug/L ug/L	MW-14 MW-14	04/04/2013 10/10/2013	ND ND	0.8000 0.8000		1.4000 1.4000
Cadmium, total	ug/L	MW-14	04/22/2014	ND	0.8000		1.4000
Cadmium, total	ug/L	MW-14	09/18/2014	ND	0.8000		1.4000
Cadmium, total	ug/L	MW-14	04/28/2015	ND	0.8000		1.4000
Cadmium, total	ug/L	MW-14	10/06/2015	ND	0.8000		1.4000
Cadmium, total	ug/L	MW-14	04/23/2016	ND	0.8000		1.4000
Cadmium, total	ug/L	MW-14	09/01/2016	ND	0.8000		1.4000
Cadmium, total	ug/L	MW-14	03/22/2017	ND	0.8000		1.4000
Cadmium, total	ug/L	MW-14	10/13/2017	ND	0.8000		1.4000
Cadmium, total	ug/L	MW-14	03/09/2018	ND	0.8000		1.4000
Cadmium, total Cadmium, total	ug/L ug/L	MW-14 MW-14	09/06/2018 03/07/2019	ND ND	0.8000		1.4000 1.4000
Cadmium, total	ug/L	MW-14	09/26/2019	ND	0.8000		1.4000
Cadmium, total	ug/L	MW-14	04/02/2020	ND	0.8000		1.4000
Cadmium, total	ug/L	MW-14	09/17/2020	ND	0.8000		1.4000
Cadmium, total	ug/L	MW-14	03/25/2021	ND	0.8000		1.4000
Cadmium, total	ug/L	MW-14	09/16/2021	ND	0.8000		1.4000
Cadmium, total	ug/L	MW-14	03/16/2022	ND	0.8000		1.4000
Cadmium, total Cadmium, total	ug/L ug/L	MW-14 MW-14	09/01/2022 11/29/2022	ND	3.9000 0.8000		1.4000 1.4000
Cadmium, total	ug/L ug/L	MW-14	03/24/2023	ND	0.8000		1.4000
Cadmium, total	ug/L	MW-14	09/07/2023	ND	0.8000		1.4000
Cadmium, total	ug/L	MW-14	03/18/2024	ND	0.8000		1.4000
Cadmium, total	ug/L	MW-14	09/25/2024		3.5000	*	1.4000
Arsenic, total	ug/L	MW-16	04/16/2008		39.0000	*	5.6000
Arsenic, total	ug/L	MW-16	06/17/2008		28.0000	*	5.6000
Arsenic, total	ug/L	MW-16	08/20/2008		35.0000	*	5.6000
Arsenic, total Arsenic, total	ug/L ug/L	MW-16 MW-16	10/16/2008 12/04/2008		36.8000 40.1000	*	5.6000 5.6000
Arsenic, total	ug/L ug/L	MW-16	03/16/2009		37.8000	*	5.6000
Arsenic, total	ug/L	MW-16	09/24/2009		33.0000	*	5.6000
Arsenic, total	ug/L	MW-16	04/19/2010		33.9000	*	5.6000
Arsenic, total	ug/L	MW-16	09/29/2010		32.0000	*	5.6000
Arsenic, total	ug/L	MW-16	05/03/2011		33.8000	*	5.6000
Arsenic, total	ug/L	MW-16	10/11/2011		39.0000	*	5.6000
Arsenic, total	ug/L	MW-16	04/23/2012		42.4000	*	5.6000
Arsenic, total Arsenic, total	ug/L ug/L	MW-16 MW-16	09/10/2012 04/04/2013		39.5000 23.1000	*	5.6000 5.6000
Arsenic, total	ug/L	MW-16	10/11/2013		35.1000	*	5.6000
Arsenic, total	ug/L	MW-16	04/23/2014		37.2000	*	5.6000
Arsenic, total	ug/L	MW-16	09/18/2014		34.3000	*	5.6000
Arsenic, total	ug/L	MW-16	04/29/2015		38.5000	*	5.6000
Arsenic, total	ug/L	MW-16	10/06/2015	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-16	04/23/2016	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-16 MW-16	09/01/2016	ND	4.0000	*	5.6000
Arsenic, total Arsenic, total	ug/L ug/L	MW-16	03/22/2017 10/13/2017		9.3000 19.0000	*	5.6000 5.6000
Arsenic, total	ug/L ug/L	MW-16	03/09/2018	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-16	09/06/2018	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-16	09/26/2019		6.3000	*	5.6000
Arsenic, total		MW-16			9.3000		

^{* -} Significantly increased over background.
** - Detect at limit for 100% NDs in background (NPPL only).
*** - Manual exclusion.
ND = Not Detected, Result = detection limit.

Table 8 Historical Downgradient Data for Constituent-Well Combinations that Failed the Current Statistical Evaluation or are in Verification Resampling Mode

Arsenic, total ug/L MW-16 03/25/2021 21,2000 5.5.	Constituent	Units	Well	Date		Result		Pred. Limit
Arsenic, total ug/L MW-16 09/16/2021 10,4000 5,54 Arsenic, total ug/L MW-16 09/10/2022 26,5000 5,54 Arsenic, total ug/L MW-16 09/10/2023 M, 4,0000 5,54 Arsenic, total ug/L MW-16 09/25/2024 26,2000 5,54 Arsenic, total ug/L MW-16 09/25/2024 26,2000 5,54 Arsenic, total ug/L MW-18 09/25/2010 19,9000 5,54 Arsenic, total ug/L MW-18 09/25/2010 19,9000 5,54 Arsenic, total ug/L MW-18 07/28/2010 19,9000 5,54 Arsenic, total ug/L MW-18 07/28/2010 17,30000 5,54 Arsenic, total ug/L MW-18 07/28/2010 17,30000 5,54 Arsenic, total ug/L MW-18 05/04/2011 11,4000 5,54 Arsenic, total ug/L MW-18 05/04/2011 11,4000 5,54 Arsenic, total ug/L MW-18 09/11/2011 18,9000 5,54 Arsenic, total ug/L MW-18 09/11/2012 29,0000 5,54 Arsenic, total ug/L MW-18 09/11/2012 15,0000 5,54 Arsenic, total ug/L MW-18 09/11/2013 9,6000 5,54 Arsenic, total ug/L MW-18 09/11/2013 17,7000 5,54 Arsenic, total ug/L MW-18 09/11/2013 9,6000 5,54 Arsenic, total ug/L MW-18 09/11/2013 9,6000 5,54 Arsenic, total ug/L MW-18 09/11/2016 81,4000 5,54 Arsenic, total ug/L MW-18 09/11/2010 81,7000 5,54 Arsenic, total ug/L MW-18 09/11/2010 81,7000							*	5.6000
Arsenic, total ug/L MW-16 03/16/2022 26,5000 5,54 Arsenic, total ug/L MW-16 03/24/2023 ND 4,0000 5,54 Arsenic, total ug/L MW-16 03/24/2023 ND 4,0000 5,54 Arsenic, total ug/L MW-16 03/24/2023 ND 4,0000 5,54 Arsenic, total ug/L MW-16 03/24/2024 20,4000 5,54 Arsenic, total ug/L MW-16 03/24/2024 26,2000 5,54 Arsenic, total ug/L MW-16 03/25/2024 26,2000 5,54 Arsenic, total ug/L MW-18 05/27/2010 29,0000 5,54 Arsenic, total ug/L MW-18 05/27/2010 29,0000 5,54 Arsenic, total ug/L MW-18 05/27/2010 29,0000 5,54 Arsenic, total ug/L MW-18 05/24/2011 11,4000 5,54 Arsenic, total ug/L MW-18 05/04/2011 11,4000 5,54 Arsenic, total ug/L MW-18 05/04/2011 11,4000 5,54 Arsenic, total ug/L MW-18 05/04/2011 11,4000 5,54 Arsenic, total ug/L MW-18 04/23/2012 29,0000 5,54 Arsenic, total ug/L MW-18 04/23/2012 29,0000 5,54 Arsenic, total ug/L MW-18 04/23/2012 29,0000 5,54 Arsenic, total ug/L MW-18 04/23/2014 9,0000 5,54 Arsenic, total ug/L MW-18 04/23/2016 5,18000 5,54 Arsenic, total ug/L MW-18 03/25/2021 9,9000 5,54 Arsenic, total ug/L MW-18 03/25/2021 9,9000 5,54 Arsenic, total ug/L MW-18 03/25/2021 9,9000 5,54							*	5.6000
Arsenic, total ug/L MW-16 09/01/2022 4,7000 5,5	· · · · · · · · · · · · · · · · · · ·							5.6000
Arsenic, total ug/L MW-16 03/24/2023 MD 4.0000 S.1							*	5.6000
Arsenic, total ug/L MW-16 0.9/07/2023 ND 4.0000 5.6	· · · · · · · · · · · · · · · · · · ·							5.6000
Arsenic, total ug/L MW-16 03/18/2024 20.4000 5.64					ND			5.6000
Arsenic, total ug/L MW-18 04/19/2010 46.6000 5.5.6 Arsenic, total ug/L MW-18 05/27/2010 19.9000 5.5.6 Arsenic, total ug/L MW-18 05/27/2010 29.0000 5.5.6 Arsenic, total ug/L MW-18 19/29/2010 173.0000 5.5.6 Arsenic, total ug/L MW-18 19/29/2010 173.0000 5.5.6 Arsenic, total ug/L MW-18 11/03/2010 225.0000 5.5.6 Arsenic, total ug/L MW-18 11/03/2010 225.0000 5.5.6 Arsenic, total ug/L MW-18 10/11/2011 8.9000 5.5.6 Arsenic, total ug/L MW-18 10/11/2011 8.9000 5.5.6 Arsenic, total ug/L MW-18 10/11/2011 8.9000 5.5.6 Arsenic, total ug/L MW-18 04/23/2012 29.0000 5.5.6 Arsenic, total ug/L MW-18 04/23/2012 15.0000 5.5.6 Arsenic, total ug/L MW-18 04/23/2012 15.0000 5.5.6 Arsenic, total ug/L MW-18 09/11/2012 15.0000 5.5.6 Arsenic, total ug/L MW-18 04/11/2013 9.6000 5.5.6 Arsenic, total ug/L MW-18 10/11/2013 17.7000 5.5.6 Arsenic, total ug/L MW-18 04/23/2014 9.0000 5.5.6 Arsenic, total ug/L MW-18 04/23/2014 9.0000 5.5.6 Arsenic, total ug/L MW-18 09/17/2014 22.0000 5.5.6 Arsenic, total ug/L MW-18 09/17/2014 22.0000 5.5.6 Arsenic, total ug/L MW-18 10/106/2015 39.2000 5.5.6 Arsenic, total ug/L MW-18 10/106/2015 39.2000 5.5.6 Arsenic, total ug/L MW-18 10/106/2015 39.2000 5.5.6 Arsenic, total ug/L MW-18 03/12/2016 51.8000 5.5.6 Arsenic, total ug/L MW-18 03/12/2016 51.8000 5.5.6 Arsenic, total ug/L MW-18 03/12/2017 49.7000 5.5.6 Arsenic, total ug/L MW-18 03/06/2018 74.4000 5.5.6 Arsenic, total ug/L MW-18 03/06/2019 99.4000 5.5.6 Arsenic, total ug/L MW-19 09/07/2023 660.0000 5.5.6 Arsenic, total ug/L MW-19 09/07/2023 660.0000 5.5.6 Ars			1		ND		*	5.6000
Arsenic, total ug/L MW-18 04/19/2010 19,9000 5.54							*	5.6000
Arsenic, total ug/L MW-18 05/27/2010 09.0000 5.64							*	5.6000 5.6000
Arsenic, total ug/L MW-18 09/29/2010 173.0000 5.6.4 Arsenic, total ug/L MW-18 09/29/2010 173.0000 5.6.4 Arsenic, total ug/L MW-18 10/13/2011 173.0000 5.6.4 Arsenic, total ug/L MW-18 10/13/2011 11.4000 5.6.4 Arsenic, total ug/L MW-18 10/11/2011 8.9000 5.6.4 Arsenic, total ug/L MW-18 10/11/2011 8.9000 5.6.4 Arsenic, total ug/L MW-18 10/11/2011 8.9000 5.6.4 Arsenic, total ug/L MW-18 10/11/2012 15.0000 5.6.4 Arsenic, total ug/L MW-18 10/11/2012 15.0000 5.6.4 Arsenic, total ug/L MW-18 10/11/2013 17.7000 5.6.4 Arsenic, total ug/L MW-18 10/11/2013 17.7000 5.6.4 Arsenic, total ug/L MW-18 10/11/2013 17.7000 5.6.4 Arsenic, total ug/L MW-18 09/17/2014 22.0000 5.6.4 Arsenic, total ug/L MW-18 09/17/2014 22.0000 5.6.4 Arsenic, total ug/L MW-18 09/17/2014 22.0000 5.6.4 Arsenic, total ug/L MW-18 09/17/2016 19.0000 5.6.4 Arsenic, total ug/L MW-18 09/17/2017 49.7000 5.6.4 Arsenic, total ug/L MW-18 09/17/2017 49.7000 5.6.4 Arsenic, total ug/L MW-18 09/17/2017 99.7000 5.6.4 Arsenic, total ug/L MW-18 09/16/2017 99.7000 5.6.4 Arsenic, total ug/L MW-18 09/16/2018 74.4000 5.6.4 Arsenic, total ug/L MW-18 09/16/2019 99.4000 5.6.4 Arsenic, total ug/L MW-18 09/16/2021 96.0000 5.6.4 Arsenic, total ug/L MW-19 09/16/			1				*	5.6000
Arsenic, total ug/L MW-18 11/03/2010 225.0000 5.64							*	5.6000
Arsenic, total ug/L MW-18 11/03/2010 225.0000 5.64 Arsenic, total ug/L MW-18 05/04/2011 11.4000 5.64 Arsenic, total ug/L MW-18 05/04/2011 29.0000 5.64 Arsenic, total ug/L MW-18 09/11/2012 29.0000 5.64 Arsenic, total ug/L MW-18 09/11/2012 15.0000 5.64 Arsenic, total ug/L MW-18 09/11/2013 9.6000 5.64 Arsenic, total ug/L MW-18 10/11/2013 17.7000 5.64 Arsenic, total ug/L MW-18 10/11/2013 17.7000 5.64 Arsenic, total ug/L MW-18 10/11/2013 17.7000 5.64 Arsenic, total ug/L MW-18 04/23/2014 9.0000 5.64 Arsenic, total ug/L MW-18 04/23/2014 9.0000 5.64 Arsenic, total ug/L MW-18 04/23/2015 39.2000 5.64 Arsenic, total ug/L MW-18 04/23/2016 51.8000 5.64 Arsenic, total ug/L MW-18 04/23/2016 81.4000 5.64 Arsenic, total ug/L MW-18 03/21/2017 49.7000 5.64 Arsenic, total ug/L MW-18 03/21/2017 49.7000 5.64 Arsenic, total ug/L MW-18 03/21/2017 49.7000 5.64 Arsenic, total ug/L MW-18 03/09/2018 46.1000 5.64 Arsenic, total ug/L MW-18 03/09/2018 46.1000 5.64 Arsenic, total ug/L MW-18 09/06/2018 74.4000 5.64 Arsenic, total ug/L MW-18 09/07/2020 34.8000 5.64 Arsenic, total ug/L MW-18 09/07/2023 26.9000 5.64 Arsenic, total ug/L MW-20 09/07/2023 26.9000 5.64 Arsenic, total ug/L MW-20 09/07/2023 26.9000 5.64	· · · · · · · · · · · · · · · · · · ·						*	5.6000
Arsenic, total ug/L MW-18 05/04/2011 11.4000 5.64							*	5.6000
Arsenic, total ug/L MW-18 04/23/2012 29.0000 5.64							*	5.6000
Arsenic, total ug/L MW-18 09/11/2012 29,0000 5.64	1 '		1				*	5.6000
Arsenic, total ug/L WW-18 09/11/2012 15.0000 5.64 Arsenic, total ug/L WW-18 04/04/2013 9.6000 5.64 Arsenic, total ug/L WW-18 10/11/2013 17.7000 5.64 Arsenic, total ug/L WW-18 04/23/2014 9.0000 5.64 Arsenic, total ug/L WW-18 09/17/2014 22.0000 5.64 Arsenic, total ug/L WW-18 09/17/2015 45.9000 5.64 Arsenic, total ug/L WW-18 10/06/2015 39.2000 5.64 Arsenic, total ug/L WW-18 10/06/2015 39.2000 5.64 Arsenic, total ug/L WW-18 10/06/2016 51.8000 5.64 Arsenic, total ug/L WW-18 09/01/2016 81.4000 5.64 Arsenic, total ug/L WW-18 03/21/2017 49.7000 5.64 Arsenic, total ug/L WW-18 03/29/2018 46.1000 5.64 Arsenic, total ug/L WW-18 03/09/2018 46.1000 5.64 Arsenic, total ug/L WW-18 09/06/2018 74.4000 5.64 Arsenic, total ug/L WW-18 09/06/2018 74.4000 5.64 Arsenic, total ug/L WW-18 09/06/2019 87.2000 5.64 Arsenic, total ug/L WW-18 09/17/2020 81.7000 5.64 Arsenic, total ug/L WW-18 09/17/2020 34.8000 5.64 Arsenic, total ug/L WW-18 09/17/2020 34.8000 5.64 Arsenic, total ug/L WW-18 09/17/2021 36.0000 5.64 Arsenic, total ug/L WW-18 09/17/2022 24.1000 5.64 Arsenic, total ug/L WW-18 09/17/2023 67.4000 5.64 Arsenic, total ug/L WW-18 09/07/2023 660.0000 5.64 Arsenic, total ug/L WW-18 09/07/2023 660.0000 5.64 Arsenic, total ug/L WW-19 09/25/2024 784.0000 5.64 Arsenic, total ug/L WW-20 09/26/2010 165.0000 5.64 Arsenic, total ug/L WW-20 09/26/2010 165.0000 5.64 Arsenic, total ug/L WW-20 09/26/2010 165.0000 5							*	5.6000
Arsenic, total ug/L MW-18 10/11/2013 17.7000 5.64			MW-18	09/11/2012		15.0000	*	5.6000
Arsenic, total ug/L MW-18 04/23/2014 22.0000 5.64	Arsenic, total	ug/L	MW-18	04/04/2013		9.6000	*	5.6000
Arsenic, total ug/L MW-18 09/17/2014 45.9000 5.64 Arsenic, total ug/L MW-18 04/28/2015 45.9000 5.64 Arsenic, total ug/L MW-18 04/28/2016 51.8000 5.64 Arsenic, total ug/L MW-18 04/23/2016 51.8000 5.64 Arsenic, total ug/L MW-18 09/01/2016 81.4000 5.64 Arsenic, total ug/L MW-18 03/21/2017 49.7000 5.64 Arsenic, total ug/L MW-18 03/21/2017 50.1000 5.64 Arsenic, total ug/L MW-18 03/21/2017 50.1000 5.64 Arsenic, total ug/L MW-18 03/09/2018 74.4000 5.64 Arsenic, total ug/L MW-18 03/09/2018 74.4000 5.64 Arsenic, total ug/L MW-18 09/06/2018 74.4000 5.64 Arsenic, total ug/L MW-18 09/06/2019 87.2000 5.64 Arsenic, total ug/L MW-18 09/16/2019 87.2000 5.64 Arsenic, total ug/L MW-18 09/16/2019 34.8000 5.64 Arsenic, total ug/L MW-18 09/17/2020 34.8000 5.64 Arsenic, total ug/L MW-18 09/17/2020 34.8000 5.64 Arsenic, total ug/L MW-18 09/16/2021 9.6000 5.64 Arsenic, total ug/L MW-18 09/16/2021 36.0000 5.64 Arsenic, total ug/L MW-18 09/16/2021 36.0000 5.64 Arsenic, total ug/L MW-18 09/16/2022 34.7000 5.64 Arsenic, total ug/L MW-18 09/16/2022 34.7000 5.64 Arsenic, total ug/L MW-18 09/16/2023 67.4000 5.64 Arsenic, total ug/L MW-18 09/16/2023 67.4000 5.64 Arsenic, total ug/L MW-18 09/25/2024 36.0000 5.64 Arsenic, total ug/L MW-18 09/25/2024 36.0000 5.64 Arsenic, total ug/L MW-18 09/25/2024 36.0000 5.64 Arsenic, total ug/L MW-19 09/25/2024 67.4000 5.64 Arsenic, total ug/L MW-10 09/25/2024 67.4000 5.64 Arsenic, total ug/L MW-20 09/25/2024 67.4000 5.64	Arsenic, total	ug/L	MW-18	10/11/2013		17.7000	*	5.6000
Arsenic, total ug/L MW-18 04/28/2015 39.2000 5.6.	Arsenic, total	ug/L		04/23/2014			*	5.6000
Arsenic, total ug/L MW-18 04/23/2016 51.8000 * 5.64							*	5.6000
Arsenic, total ug/L MW-18 04/23/2016 51,8000 * 5,60 Arsenic, total ug/L MW-18 03/01/2016 31,4000 * 5,60 Arsenic, total ug/L MW-18 03/21/2017 49,7000 * 5,60 Arsenic, total ug/L MW-18 03/09/2018 74,4000 * 5,60 Arsenic, total ug/L MW-18 03/09/2018 74,4000 * 5,60 Arsenic, total ug/L MW-18 03/09/2018 74,4000 * 5,60 Arsenic, total ug/L MW-18 03/07/2019 87,2000 * 5,60 Arsenic, total ug/L MW-18 03/07/2019 87,2000 * 5,60 Arsenic, total ug/L MW-18 04/02/2020 81,7000 * 5,60 Arsenic, total ug/L MW-18 04/02/2020 81,7000 * 5,60 Arsenic, total ug/L MW-18 09/17/2020 34,8000 * 5,60 Arsenic, total ug/L MW-18 09/17/2020 34,8000 * 5,60 Arsenic, total ug/L MW-18 09/16/2021 36,0000 * 5,60 Arsenic, total ug/L MW-18 09/16/2021 36,0000 * 5,60 Arsenic, total ug/L MW-18 03/16/2022 34,7000 * 5,60 Arsenic, total ug/L MW-18 03/16/2022 36,7000 * 5,60 Arsenic, total ug/L MW-18 03/16/2022 36,7000 * 5,60 Arsenic, total ug/L MW-18 03/16/2024 43,6000 * 5,60 Arsenic, total ug/L MW-10 03/07/2023 660,0000 * 5,60 Arsenic, total ug/L MW-10 03/07/2023 660,0000 * 5,60 Arsenic, total ug/L MW-20 04/19/2010 165,0000 * 5,60 Arsenic, total ug/L MW-20 04/19/2010 165,0000 * 5,60 Arsenic, total ug/L MW-20 04/28/2014 47,4000 * 5,60 Arsenic, total ug/L MW-20 04/28/2014 47,4000 * 5,60 Arsenic, total ug/L MW-20 04/28/2015 47,5000 * 5			1				*	5.6000
Arsenic, total ug/L MW-18 09/01/2016 81.4000 * 5.64							*	5.6000
Arsenic, total								5.6000
Arsenic, total ug/L MW-18 03/09/2018 46.1000 * 5.6 Arsenic, total ug/L MW-18 03/09/2018 46.1000 * 5.6 Arsenic, total ug/L MW-18 03/09/2018 74.4000 * 5.6 Arsenic, total ug/L MW-18 03/07/2019 87.2000 * 5.6 Arsenic, total ug/L MW-18 03/07/2019 87.2000 * 5.6 Arsenic, total ug/L MW-18 03/07/2019 87.2000 * 5.6 Arsenic, total ug/L MW-18 04/02/2020 81.7000 * 5.6 Arsenic, total ug/L MW-18 04/02/2020 81.7000 * 5.6 Arsenic, total ug/L MW-18 03/17/2020 34.8000 * 5.6 Arsenic, total ug/L MW-18 09/17/2020 34.8000 * 5.6 Arsenic, total ug/L MW-18 09/16/2021 9.6000 * 5.6 Arsenic, total ug/L MW-18 09/16/2021 36.0000 * 5.6 Arsenic, total ug/L MW-18 03/16/2022 34.7000 * 5.6 Arsenic, total ug/L MW-18 03/16/2022 34.7000 * 5.6 Arsenic, total ug/L MW-18 03/24/2023 67.4000 * 5.6 Arsenic, total ug/L MW-18 03/24/2023 67.4000 * 5.6 Arsenic, total ug/L MW-18 03/18/2024 23.7000 * 5.6 Arsenic, total ug/L MW-18 03/18/2024 23.7000 * 5.6 Arsenic, total ug/L MW-18 09/07/2023 26.60000 * 5.6 Arsenic, total ug/L MW-10 09/07/2023 66.0000 * 5.6 Arsenic, total ug/L MW-1D 09/07/2023 66.0000 * 769.2 Barium, total ug/L MW-1D 09/07/2023 66.0000 * 769.2 Barium, total ug/L MW-1D 09/25/2024 637.0000 * 769.2 Barium, total ug/L MW-20 05/27/2010 165.0000 * 5.6 Arsenic, total ug/L MW-20 07/28/2010 165.0000 * 5.6 Arsenic, total ug/L MW-20 09/17/2013 37.7000 * 5.6 Arsenic, total ug/L MW-20 09/16/2015 81.7000 * 5.6 Arsenic, total ug/L MW-20 09/06/2015 81.7000 * 5.6 Arsenic, total ug/L MW-20 09/06/2018 99.6000 * 5							*	5.6000
Arsenic, total ug/L MW-18 03/09/2018 46.1000 * 5.6 Arsenic, total ug/L MW-18 03/09/2019 87.2000 * 5.6 Arsenic, total ug/L MW-18 03/07/2019 87.2000 * 5.6 Arsenic, total ug/L MW-18 03/07/2019 87.2000 * 5.6 Arsenic, total ug/L MW-18 09/26/2019 99.4000 * 5.6 Arsenic, total ug/L MW-18 09/26/2020 81.7000 * 5.6 Arsenic, total ug/L MW-18 09/17/2020 34.8000 * 5.6 Arsenic, total ug/L MW-18 09/17/2020 34.8000 * 5.6 Arsenic, total ug/L MW-18 09/17/2020 34.8000 * 5.6 Arsenic, total ug/L MW-18 09/17/2021 9.6000 * 5.6 Arsenic, total ug/L MW-18 09/16/2021 36.0000 * 5.6 Arsenic, total ug/L MW-18 03/16/2022 34.7000 * 5.6 Arsenic, total ug/L MW-18 03/16/2022 34.7000 * 5.6 Arsenic, total ug/L MW-18 03/16/2022 34.7000 * 5.6 Arsenic, total ug/L MW-18 03/24/2023 67.4000 * 5.6 Arsenic, total ug/L MW-18 09/07/2023 26.9000 * 5.6 Arsenic, total ug/L MW-18 09/07/2023 26.9000 * 5.6 Arsenic, total ug/L MW-18 09/25/2024 33.6000 * 5.6 Arsenic, total ug/L MW-18 09/25/2024 33.6000 * 5.6 Arsenic, total ug/L MW-1D 09/07/2023 660.0000 * 5.6 Arsenic, total ug/L MW-1D 09/07/2023 660.0000 * 769.2 Barium, total ug/L MW-1D 09/25/2024 637.0000 * 769.2 Barium, total ug/L MW-20 04/19/2010 165.0000 * 769.2 Arsenic, total ug/L MW-20 04/19/2010 165.0000 * 5.6 Arsenic, total ug/L MW-20 05/27/2010 144.0000 * 5.6 Arsenic, total ug/L MW-20 07/28/2010 165.0000 * 5.6 Arsenic, total ug/L MW-20 09/29/2010 86.8000 * 5.6 Arsenic, total ug/L MW-20 09/29/2010 86.8000 * 5.6 Arsenic, total ug/L MW-20 09/18/2011 47.4000 * 5.6 Arsenic, total ug/L MW-20 09/18/2011 47.4000 * 5.6 Arsenic, total ug/L MW-20 09/18/2011 47.4000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 55.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 09/18/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 09/06/2018 99.6000 *								5.6000
Arsenic, total	· · · · · · · · · · · · · · · · · · ·		1				*	5.6000
Arsenic, total							*	5.6000 5.6000
Arsenic, total							*	5.6000
Arsenic, total	· · · · · · · · · · · · · · · · · · ·						*	5.6000
Arsenic, total							*	5.6000
Arsenic, total			1				*	5.6000
Arsenic, total ug/L MW-18 09/16/2021 36.0000 * 5.6 Arsenic, total ug/L MW-18 03/16/2022 34.7000 * 5.6 Arsenic, total ug/L MW-18 03/24/2023 67.4000 * 5.6 Arsenic, total ug/L MW-18 09/01/2022 24.1000 * 5.6 Arsenic, total ug/L MW-18 09/07/2023 26.9000 * 5.6 Arsenic, total ug/L MW-18 09/07/2023 26.9000 * 5.6 Arsenic, total ug/L MW-18 09/25/2024 23.7000 * 5.6 Arsenic, total ug/L MW-18 09/25/2024 23.7000 * 5.6 Arsenic, total ug/L MW-18 09/25/2024 43.6000 * 5.6 Barium, total ug/L MW-1D 09/07/2023 660.0000 * 769.2 Barium, total ug/L MW-1D 09/25/2024 637.0000 * 769.2 Arsenic, total ug/L MW-1D 09/25/2024 637.0000 * 5.6 Arsenic, total ug/L MW-20 04/19/2010 165.0000 * 5.6 Arsenic, total ug/L MW-20 05/27/2010 144.0000 * 5.6 Arsenic, total ug/L MW-20 05/27/2010 144.0000 * 5.6 Arsenic, total ug/L MW-20 09/29/2010 86.8000 * 5.6 Arsenic, total ug/L MW-20 11/03/2010 64.3000 * 5.6 Arsenic, total ug/L MW-20 09/11/2011 60.7000 * 5.6 Arsenic, total ug/L MW-20 09/11/2011 60.7000 * 5.6 Arsenic, total ug/L MW-20 09/11/2012 44.9000 * 5.6 Arsenic, total ug/L MW-20 09/11/2012 59.8000 * 5.6 Arsenic, total ug/L MW-20 09/11/2012 59.8000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 55.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 55.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 75.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 75.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 09/01/2016 77.1000 * 5.6 Arsenic, total ug/L MW-20 09/01/2016 77.1000 * 5.6 Arsenic, total ug/L MW-20 09/01/2016 77.1000 * 5.6 Arsenic, total ug/L MW-20 09/06/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 09/06/2018 83.6000 * 5.	· · · · · · · · · · · · · · · · · · ·						*	5.6000
Arsenic, total ug/L MW-18 09/01/2022 24.1000 * 5.6 Arsenic, total ug/L MW-18 03/24/2023 67.4000 * 5.6 Arsenic, total ug/L MW-18 09/07/2023 26.9000 * 5.6 Arsenic, total ug/L MW-18 09/07/2023 26.9000 * 5.6 Arsenic, total ug/L MW-18 09/07/2023 26.9000 * 5.6 Arsenic, total ug/L MW-18 09/25/2024 43.6000 * 5.6 Arsenic, total ug/L MW-1D 09/07/2023 660.0000 * 769.2 Barium, total ug/L MW-1D 09/07/2023 660.0000 * 769.2 Barium, total ug/L MW-1D 09/25/2024 637.0000 * 769.2 Arsenic, total ug/L MW-20 04/19/2010 165.0000 * 5.6 Arsenic, total ug/L MW-20 05/27/2010 144.0000 * 5.6 Arsenic, total ug/L MW-20 05/27/2010 165.0000 * 5.6 Arsenic, total ug/L MW-20 09/29/2010 86.8000 * 5.6 Arsenic, total ug/L MW-20 11/03/2010 64.3000 * 5.6 Arsenic, total ug/L MW-20 05/04/2011 47.4000 * 5.6 Arsenic, total ug/L MW-20 05/04/2011 47.4000 * 5.6 Arsenic, total ug/L MW-20 01/11/2011 60.7000 * 5.6 Arsenic, total ug/L MW-20 09/29/2010 37.7000 * 5.6 Arsenic, total ug/L MW-20 09/11/2012 44.9000 * 5.6 Arsenic, total ug/L MW-20 09/11/2012 59.8000 * 5.6 Arsenic, total ug/L MW-20 09/11/2012 59.8000 * 5.6 Arsenic, total ug/L MW-20 09/11/2013 61.7000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 75.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2015 45.5000 * 5.6 Arsenic, total ug/L MW-20 09/18/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 09/06/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 09/06/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 09/06/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 09/06/2019 83.6000 * 5.6 Arsenic, total ug/L MW-20 09/06/2018 83.6000 *			MW-18	09/16/2021			*	5.6000
Arsenic, total ug/L MW-18 09/01/2022 24.1000 * 5.6			MW-18	03/16/2022			*	5.6000
Arsenic, total ug/L MW-18 09/07/2023 26.9000 * 5.6 Arsenic, total ug/L MW-18 09/25/2024 23.7000 * 5.6 Barium, total ug/L MW-18 09/25/2024 43.6000 * 5.6 Barium, total ug/L MW-1D 09/07/2023 660.0000 * 769.2 Barium, total ug/L MW-1D 09/07/2024 637.0000 * 769.2 Arsenic, total ug/L MW-2D 04/19/2010 165.0000 * 5.6 Arsenic, total ug/L MW-20 05/27/2010 144.0000 * 5.6 Arsenic, total ug/L MW-20 07/28/2010 165.0000 * 5.6 Arsenic, total ug/L MW-20 09/29/2010 86.8000 * 5.6 Arsenic, total ug/L MW-20 09/29/2010 86.8000 * 5.6 Arsenic, total ug/L MW-20 09/29/2010 86.8000 * 5.6 Arsenic, total ug/L MW-20 10/11/2011 60.7000 * 5.6 Arsenic, total ug/L MW-20 05/04/2011 47.4000 * 5.6 Arsenic, total ug/L MW-20 09/04/2012 44.9000 * 5.6 Arsenic, total ug/L MW-20 09/11/2011 60.7000 * 5.6 Arsenic, total ug/L MW-20 09/11/2011 60.7000 * 5.6 Arsenic, total ug/L MW-20 09/11/2012 59.8000 * 5.6 Arsenic, total ug/L MW-20 09/11/2012 59.8000 * 5.6 Arsenic, total ug/L MW-20 09/11/2012 59.8000 * 5.6 Arsenic, total ug/L MW-20 09/13/2014 55.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 55.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 55.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 75.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 75.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 75.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2015 81.7000 * 5.6 Arsenic, total ug/L MW-20 09/18/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 09/23/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 09/23/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 09/26/2018 99.6000 * 5.6 Arsenic, total ug/L MW-20 09/26/2019 83.6000 * 5.6	Arsenic, total		MW-18	09/01/2022		24.1000	*	5.6000
Arsenic, total ug/L MW-18 09/07/2023 23.7000 * 5.6 Arsenic, total ug/L MW-18 09/25/2024 43.6000 * 5.6 Barium, total ug/L MW-1D 09/07/2023 660.0000 769.2 Barium, total ug/L MW-1D 09/07/2023 660.0000 * 769.2 Barium, total ug/L MW-1D 09/25/2024 637.0000 * 769.2 Arsenic, total ug/L MW-1D 09/25/2024 637.0000 * 5.6 Arsenic, total ug/L MW-20 04/19/2010 165.0000 * 5.6 Arsenic, total ug/L MW-20 05/27/2010 144.0000 * 5.6 Arsenic, total ug/L MW-20 07/28/2010 165.0000 * 5.6 Arsenic, total ug/L MW-20 09/29/2010 86.8000 * 5.6 Arsenic, total ug/L MW-20 11/03/2010 64.3000 * 5.6 Arsenic, total ug/L MW-20 05/04/2011 47.4000 * 5.6 Arsenic, total ug/L MW-20 11/03/2010 64.3000 * 5.6 Arsenic, total ug/L MW-20 05/04/2011 47.4000 * 5.6 Arsenic, total ug/L MW-20 01/11/2011 60.7000 * 5.6 Arsenic, total ug/L MW-20 04/24/2012 44.9000 * 5.6 Arsenic, total ug/L MW-20 09/11/2012 59.8000 * 5.6 Arsenic, total ug/L MW-20 09/11/2012 59.8000 * 5.6 Arsenic, total ug/L MW-20 10/11/2013 61.7000 * 5.6 Arsenic, total ug/L MW-20 10/11/2013 61.7000 * 5.6 Arsenic, total ug/L MW-20 04/05/2013 37.7000 * 5.6 Arsenic, total ug/L MW-20 04/23/2014 55.2000 * 5.6 Arsenic, total ug/L MW-20 04/23/2014 55.2000 * 5.6 Arsenic, total ug/L MW-20 04/23/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 04/23/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 04/23/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 09/18/2017 79.1000 * 5.6 Arsenic, total ug/L MW-20 09/18/2017 79.1000 * 5.6 Arsenic, total ug/L MW-20 09/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 09/26/2019 83.6000 * 5.6 Arsenic, total u	Arsenic, total	ug/L					*	5.6000
Arsenic, total ug/L MW-18 09/25/2024 43.6000 * 5.6 Barium, total ug/L MW-1D 09/07/2023 660.0000 * 769.2 Barium, total ug/L MW-1D 09/18/2024 784.0000 * 769.2 Barium, total ug/L MW-1D 09/25/2024 637.0000 * 769.2 Arsenic, total ug/L MW-2D 09/25/2024 637.0000 * 5.6 Arsenic, total ug/L MW-20 05/27/2010 165.0000 * 5.6 Arsenic, total ug/L MW-20 05/27/2010 144.0000 * 5.6 Arsenic, total ug/L MW-20 07/28/2010 165.0000 * 5.6 Arsenic, total ug/L MW-20 09/29/2010 86.8000 * 5.6 Arsenic, total ug/L MW-20 11/03/2010 64.3000 * 5.6 Arsenic, total ug/L MW-20 05/04/2011 47.4000 * 5.6 Arsenic, total ug/L MW-20 10/11/2011 60.7000 * 5.6 Arsenic, total ug/L MW-20 10/11/2011 60.7000 * 5.6 Arsenic, total ug/L MW-20 09/11/2012 59.8000 * 5.6 Arsenic, total ug/L MW-20 09/11/2012 59.8000 * 5.6 Arsenic, total ug/L MW-20 10/11/2013 61.7000 * 5.6 Arsenic, total ug/L MW-20 10/11/2013 61.7000 * 5.6 Arsenic, total ug/L MW-20 04/23/2014 55.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 75.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2015 45.5000 * 5.6 Arsenic, total ug/L MW-20 04/23/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 04/23/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 09/18/2016 77.1000 * 5.6 Arsenic, total ug/L MW-20 09/12/2017 79.1000 * 5.6 Arsenic, total ug/L MW-20 09/06/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 09/06/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 09/06/2018 99.6000 * 5.6 Arsenic, total ug/L MW-20 09/06/2019 83.6000 * 5.6								5.6000
Barium, total ug/L MW-1D 09/07/2023 660.0000 769.2			1				*	5.6000
Barium, total ug/L MW-1D 03/18/2024 784.0000 * 769.2 769							*	5.6000
Barium, total ug/L MW-1D 09/25/2024 637.0000 769.2 Arsenic, total ug/L MW-20 04/19/2010 165.0000 * 5.6 Arsenic, total ug/L MW-20 05/27/2010 144.0000 * 5.6 Arsenic, total ug/L MW-20 07/28/2010 165.0000 * 5.6 Arsenic, total ug/L MW-20 09/29/2010 86.8000 * 5.6 Arsenic, total ug/L MW-20 11/03/2010 64.3000 * 5.6 Arsenic, total ug/L MW-20 05/04/2011 47.4000 * 5.6 Arsenic, total ug/L MW-20 10/11/2011 60.7000 * 5.6 Arsenic, total ug/L MW-20 04/24/2012 44.9000 * 5.6 Arsenic, total ug/L MW-20 09/11/2012 59.8000 * 5.6 Arsenic, total ug/L MW-20 09/11/2012 59.8000 * 5.6 Arsenic, total ug/L MW-20 10/11/2013 61.7000 * 5.6 Arsenic, total ug/L MW-20 10/11/2013 61.7000 * 5.6 Arsenic, total ug/L MW-20 04/23/2014 55.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 75.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2015 45.5000 * 5.6 Arsenic, total ug/L MW-20 10/06/2015 81.7000 * 5.6 Arsenic, total ug/L MW-20 09/18/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 09/12/2017 79.1000 * 5.6 Arsenic, total ug/L MW-20 09/12/2017 79.1000 * 5.6 Arsenic, total ug/L MW-20 03/21/2017 79.1000 * 5.6 Arsenic, total ug/L MW-20 03/21/2017 79.1000 * 5.6 Arsenic, total ug/L MW-20 03/21/2017 79.1000 * 5.6 Arsenic, total ug/L MW-20 03/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 03/2018 99.6000 * 5.6 Arsenic, total ug/L MW-20 03/09/2018 99.6000 * 5.6 Arsenic, total ug/L MW-20 03/09/2019 83.6000 * 5.6							_	769.2044
Arsenic, total ug/L MW-20 04/19/2010 165.0000 * 5.6 Arsenic, total ug/L MW-20 05/27/2010 144.0000 * 5.6 Arsenic, total ug/L MW-20 07/28/2010 165.0000 * 5.6 Arsenic, total ug/L MW-20 09/29/2010 86.8000 * 5.6 Arsenic, total ug/L MW-20 11/03/2010 64.3000 * 5.6 Arsenic, total ug/L MW-20 05/04/2011 47.4000 * 5.6 Arsenic, total ug/L MW-20 05/04/2011 47.4000 * 5.6 Arsenic, total ug/L MW-20 10/11/2011 60.7000 * 5.6 Arsenic, total ug/L MW-20 04/24/2012 44.9000 * 5.6 Arsenic, total ug/L MW-20 09/11/2012 59.8000 * 5.6 Arsenic, total ug/L MW-20 09/11/2013 37.7000 * 5.6 Arsenic, total ug/L MW-20 10/11/2013 61.7000 * 5.6 Arsenic, total ug/L MW-20 10/11/2013 61.7000 * 5.6 Arsenic, total ug/L MW-20 04/23/2014 55.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 75.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2015 45.5000 * 5.6 Arsenic, total ug/L MW-20 10/06/2015 81.7000 * 5.6 Arsenic, total ug/L MW-20 10/06/2015 81.7000 * 5.6 Arsenic, total ug/L MW-20 04/23/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 09/18/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 09/12016 77.1000 * 5.6 Arsenic, total ug/L MW-20 09/12016 77.1000 * 5.6 Arsenic, total ug/L MW-20 03/21/2017 79.1000 * 5.6 Arsenic, total ug/L MW-20 03/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 03/2018 99.6000 * 5.6 Arsenic, total ug/L MW-20 03/2018 99.6000 * 5.6 Arsenic, total ug/L MW-20 03/09/2018 99.6000 * 5.6 Arsenic, total ug/L MW-20 03/09/2019 83.6000 * 5.6 Arsenic, total u							^	769.2044
Arsenic, total ug/L MW-20 05/27/2010 144.0000 * 5.6 Arsenic, total ug/L MW-20 07/28/2010 165.0000 * 5.6 Arsenic, total ug/L MW-20 11/03/2010 86.8000 * 5.6 Arsenic, total ug/L MW-20 05/04/2011 47.4000 * 5.6 Arsenic, total ug/L MW-20 05/04/2011 47.4000 * 5.6 Arsenic, total ug/L MW-20 10/11/2011 60.7000 * 5.6 Arsenic, total ug/L MW-20 04/24/2012 44.9000 * 5.6 Arsenic, total ug/L MW-20 09/11/2012 59.8000 * 5.6 Arsenic, total ug/L MW-20 04/25/2013 37.7000 * 5.6 Arsenic, total ug/L MW-20 10/11/2013 61.7000 * 5.6 Arsenic, total ug/L MW-20 10/11/2013 61.7000 * 5.6 Arsenic, total ug/L MW-20 04/23/2014 55.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 75.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 75.2000 * 5.6 Arsenic, total ug/L MW-20 04/28/2015 45.5000 * 5.6 Arsenic, total ug/L MW-20 04/28/2015 81.7000 * 5.6 Arsenic, total ug/L MW-20 04/23/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 09/18/2016 77.1000 * 5.6 Arsenic, total ug/L MW-20 09/01/2016 77.1000 * 5.6 Arsenic, total ug/L MW-20 09/01/2016 77.1000 * 5.6 Arsenic, total ug/L MW-20 03/21/2017 79.1000 * 5.6 Arsenic, total ug/L MW-20 03/21/2017 79.1000 * 5.6 Arsenic, total ug/L MW-20 03/21/2017 79.1000 * 5.6 Arsenic, total ug/L MW-20 03/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 03/09/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 03/09/2018 99.6000 * 5.6 Arsenic, total ug/L MW-20 03/09/2019 83.6000 * 5.6 Arsenic							*	769.2044
Arsenic, total ug/L MW-20 07/28/2010 165.0000 * 5.6 Arsenic, total ug/L MW-20 11/03/2010 64.3000 * 5.6 Arsenic, total ug/L MW-20 11/03/2011 47.4000 * 5.6 Arsenic, total ug/L MW-20 10/11/2011 60.7000 * 5.6 Arsenic, total ug/L MW-20 05/04/2012 44.9000 * 5.6 Arsenic, total ug/L MW-20 09/11/2012 59.8000 * 5.6 Arsenic, total ug/L MW-20 09/11/2012 59.8000 * 5.6 Arsenic, total ug/L MW-20 04/25/2013 37.7000 * 5.6 Arsenic, total ug/L MW-20 10/11/2013 61.7000 * 5.6 Arsenic, total ug/L MW-20 04/23/2014 55.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 75.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 75.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 75.2000 * 5.6 Arsenic, total ug/L MW-20 04/23/2014 75.2000 * 5.6 Arsenic, total ug/L MW-20 04/23/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 04/23/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 04/23/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 09/01/2016 77.1000 * 5.6 Arsenic, total ug/L MW-20 03/21/2017 79.1000 * 5.6 Arsenic, total ug/L MW-20 03/21/2017 96.8000 * 5.6 Arsenic, total ug/L MW-20 03/21/2017 96.8000 * 5.6 Arsenic, total ug/L MW-20 03/09/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 03/09/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 03/09/2018 99.6000 * 5.6 Arsenic, total ug/L MW-20 03/09/2019 83.6000 * 5.6 Arsen							*	5.6000
Arsenic, total ug/L MW-20 09/29/2010 86.8000 * 5.6 Arsenic, total ug/L MW-20 11/03/2010 64.3000 * 5.6 Arsenic, total ug/L MW-20 05/04/2011 47.4000 * 5.6 Arsenic, total ug/L MW-20 04/24/2012 44.9000 * 5.6 Arsenic, total ug/L MW-20 09/11/2011 59.8000 * 5.6 Arsenic, total ug/L MW-20 09/11/2012 59.8000 * 5.6 Arsenic, total ug/L MW-20 04/05/2013 37.7000 * 5.6 Arsenic, total ug/L MW-20 04/05/2013 37.7000 * 5.6 Arsenic, total ug/L MW-20 10/11/2013 61.7000 * 5.6 Arsenic, total ug/L MW-20 04/23/2014 55.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 75.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2015 45.5000 * 5.6 Arsenic, total ug/L MW-20 04/28/2015 45.5000 * 5.6 Arsenic, total ug/L MW-20 04/23/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 09/06/2015 81.7000 * 5.6 Arsenic, total ug/L MW-20 09/01/2016 77.1000 * 5.6 Arsenic, total ug/L MW-20 09/01/2016 77.1000 * 5.6 Arsenic, total ug/L MW-20 03/21/2017 79.1000 * 5.6 Arsenic, total ug/L MW-20 03/21/2017 79.1000 * 5.6 Arsenic, total ug/L MW-20 03/09/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 03/09/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 09/06/2018 99.6000 * 5.6 Arsenic, total ug/L MW-20 03/09/2018 99.6000 * 5.6 Arsenic, total ug/L MW-20 09/06/2018 99.6000 * 5.6 Arsenic, total ug/L MW-20 03/09/2019 83.6000 * 5.6 Arsenic, total ug/L MW-20 09/06/2019 83.6000 * 5.6 Arseni							*	5.6000 5.6000
Arsenic, total ug/L MW-20 11/03/2010 64.3000 * 5.6	· · · · · · · · · · · · · · · · · · ·						*	5.6000
Arsenic, total							*	5.6000
Arsenic, total ug/L MW-20 04/24/2012 44,9000 * 5.6 Arsenic, total ug/L MW-20 09/11/2013 59.8000 * 5.6 Arsenic, total ug/L MW-20 04/23/2013 37.7000 * 5.6 Arsenic, total ug/L MW-20 10/11/2013 61.7000 * 5.6 Arsenic, total ug/L MW-20 04/23/2014 55.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 55.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 75.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2015 45.5000 * 5.6 Arsenic, total ug/L MW-20 04/23/2016 81.7000 * 5.6 Arsenic, total ug/L MW-20 04/23/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 04/23/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 09/01/2016 77.1000 * 5.6 Arsenic, total ug/L MW-20 09/01/2016 77.1000 * 5.6 Arsenic, total ug/L MW-20 03/21/2017 79.1000 * 5.6 Arsenic, total ug/L MW-20 03/21/2017 96.8000 * 5.6 Arsenic, total ug/L MW-20 03/09/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 03/09/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 03/09/2018 99.6000 * 5.6 Arsenic, total ug/L MW-20 03/07/2019 78.4000 * 5.6 Arsenic, total ug/L MW-20 03/07/2019 78.4000 * 5.6 Arsenic, total ug/L MW-20 09/26/2019 83.6000 * 5.6 Arseni							*	5.6000
Arsenic, total ug/L MW-20 04/24/2012 44.9000 * 5.6 Arsenic, total ug/L MW-20 09/11/2013 37.7000 * 5.6 Arsenic, total ug/L MW-20 10/11/2013 61.7000 * 5.6 Arsenic, total ug/L MW-20 04/05/2013 37.7000 * 5.6 Arsenic, total ug/L MW-20 04/23/2014 55.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 75.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2015 45.5000 * 5.6 Arsenic, total ug/L MW-20 04/28/2015 45.5000 * 5.6 Arsenic, total ug/L MW-20 10/06/2015 81.7000 * 5.6 Arsenic, total ug/L MW-20 04/23/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 09/12/016 77.1000 * 5.6 Arsenic, total ug/L MW-20 09/01/2016 77.1000 * 5.6 Arsenic, total ug/L MW-20 03/21/2017 79.1000 * 5.6 Arsenic, total ug/L MW-20 10/13/2017 96.8000 * 5.6 Arsenic, total ug/L MW-20 03/09/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 03/09/2018 99.6000 * 5.6 Arsenic, total ug/L MW-20 03/07/2019 78.4000 * 5.6 Arsenic, total ug/L MW-20 09/06/2018 83.6000 * 5.6 Arsenic, total ug/L MW-20 03/07/2019 78.4000 * 5.6 Arsenic, total ug/L MW-20 09/06/2019 83.6000 * 5.6 Arsenic, total ug/L MW-20 09/26/2019 83.6000 * 5.6 Arsenic							*	5.6000
Arsenic, total ug/L MW-20 09/11/2012 59.8000 * 5.6 Arsenic, total ug/L MW-20 04/05/2013 37.7000 * 5.6 Arsenic, total ug/L MW-20 10/11/2013 61.7000 * 5.6 Arsenic, total ug/L MW-20 04/23/2014 55.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 75.2000 * 5.6 Arsenic, total ug/L MW-20 04/28/2015 45.5000 * 5.6 Arsenic, total ug/L MW-20 10/06/2015 81.7000 * 5.6 Arsenic, total ug/L MW-20 04/28/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 04/23/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 09/01/2016 77.1000 * 5.6 Arsenic, total ug/L MW-20 03/21/2017 79.1000 * 5.6 Arsenic, total ug/L MW-20 03/21/2017 79.1000 * 5.6 Arsenic, total ug/L MW-20 03/09/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 03/09/2018 99.6000 * 5.6 Arsenic, total ug/L MW-20 09/06/2018 99.6000 * 5.6 Arsenic, total ug/L MW-20 03/07/2019 78.4000 * 5.6 Arsenic, total ug/L MW-20 03/07/2019 78.4000 * 5.6 Arsenic, total ug/L MW-20 03/07/2019 78.4000 * 5.6 Arsenic, total ug/L MW-20 09/06/2019 83.6000 * 5.6 Arsenic, total ug/L MW-20 09/26/2019	1 '						*	5.6000
Arsenic, total ug/L MW-20 04/05/2013 37.7000 * 5.6				09/11/2012				5.6000
Arsenic, total ug/L MW-20 10/11/2013 61.7000 * 5.6 Arsenic, total ug/L MW-20 04/23/2014 55.2000 * 5.6 Arsenic, total ug/L MW-20 09/18/2014 75.2000 * 5.6 Arsenic, total ug/L MW-20 04/28/2015 45.5000 * 5.6 Arsenic, total ug/L MW-20 10/06/2015 81.7000 * 5.6 Arsenic, total ug/L MW-20 04/23/2016 81.5000 * 5.6 Arsenic, total ug/L MW-20 09/01/2016 77.1000 * 5.6 Arsenic, total ug/L MW-20 03/21/2017 79.1000 * 5.6 Arsenic, total ug/L MW-20 03/09/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 03/09/2018 83.4000 * 5.6 Arsenic, total ug/L MW-20 09/06/2018 99.6000 * 5.6 Arsenic, total ug/L MW-20 03/07/2019 78.4000 * 5.6 Arsenic, total ug/L MW-20 09/26/2019 83.6000 * 5.6 Arsenic, total ug/L W-20 09/26			MW-20	04/05/2013				5.6000
Arsenic, total ug/L MW-20 09/18/2014 75.2000 * 5.6	Arsenic, total	ug/L	MW-20					5.6000
Arsenic, total ug/L MW-20 04/28/2015 45.5000 * 5.6							*	5.6000
Arsenic, total ug/L MW-20 10/06/2015 81.7000 * 5.6							*	5.6000
Arsenic, total ug/L MW-20 04/23/2016 81.5000 * 5.6							*	5.6000
Arsenic, total ug/L MW-20 09/01/2016 77.1000 * 5.6							*	5.6000
Arsenic, total ug/L MW-20 03/21/2017 79.1000 * 5.6							1.	5.6000
Arsenic, total ug/L MW-20 10/13/2017 96.8000 * 5.6							*	5.6000
Arsenic, total ug/L							*	5.6000 5.6000
Arsenic, total ug/L MW-20 09/06/2018 99.6000 * 5.6 Arsenic, total ug/L MW-20 03/07/2019 78.4000 * 5.6 Arsenic, total ug/L MW-20 09/26/2019 83.6000 * 5.6							*	5.6000
Arsenic, total ug/L MW-20 03/07/2019 78.4000 * 5.6 Arsenic, total ug/L MW-20 09/26/2019 83.6000 * 5.6							*	5.6000
Arsenic, total ug/L MW-20 09/26/2019 83.6000 * 5.6							*	5.6000
							*	5.6000
, , , , , , , , , , , , , , , , , , , ,							*	5.6000
							*	5.6000
							*	5.6000

^{* -} Significantly increased over background.
** - Detect at limit for 100% NDs in background (NPPL only).
*** - Manual exclusion.
ND = Not Detected, Result = detection limit.

Table 8 Historical Downgradient Data for Constituent-Well Combinations that Failed the Current Statistical Evaluation or are in Verification Resampling Mode

Constituent	Units	Well	Date		Result		Pred. Limit
Arsenic, total	ug/L	MW-20	09/16/2021		87.8000	*	5.6000
Arsenic, total	ug/L	MW-20 MW-20	03/16/2022 09/01/2022		127.0000	*	5.6000
Arsenic, total Arsenic, total	ug/L ug/L	MW-20	03/24/2023		133.0000 94.6000	*	5.6000 5.6000
Arsenic, total	ug/L	MW-20	09/07/2023		83.4000	*	5.6000
Arsenic, total	ug/L	MW-20	03/18/2024		112.0000	*	5.6000
Arsenic, total	ug/L	MW-20	09/25/2024		44.1000	*	5.6000
Barium, total	ug/L	MW-20	04/19/2010		3790.0000	*	769.2044
Barium, total	ug/L	MW-20	05/27/2010		4800.0000	*	769.2044
Barium, total	ug/L	MW-20	07/28/2010		4410.0000	*	769.2044
Barium, total	ug/L	MW-20 MW-20	09/29/2010 11/03/2010		3800.0000	*	769.2044 769.2044
Barium, total Barium, total	ug/L ug/L	MW-20	05/04/2011		3500.0000 2990.0000	*	769.2044
Barium, total	ug/L	MW-20	10/11/2011		3010.0000	*	769.2044
Barium, total	ug/L	MW-20	04/24/2012		1850.0000	*	769.2044
Barium, total	ug/L	MW-20	09/11/2012		2060.0000	*	769.2044
Barium, total	ug/L	MW-20	04/05/2013		2910.0000	*	769.2044
Barium, total	ug/L	MW-20	10/11/2013		2470.0000	*	769.2044
Barium, total	ug/L	MW-20	04/23/2014		1830.0000	*	769.2044
Barium, total Barium, total	ug/L ug/L	MW-20 MW-20	09/18/2014 04/28/2015		2370.0000 2390.0000	*	769.2044 769.2044
Barium, total	ug/L ug/L	MW-20	10/06/2015		2490.0000	*	769.2044
Barium, total	ug/L	MW-20	04/23/2016		2260.0000	*	769.2044
Barium, total	ug/L	MW-20	09/01/2016		2140.0000	*	769.2044
Barium, total	ug/L	MW-20	03/21/2017		2140.0000	*	769.2044
Barium, total	ug/L	MW-20	10/13/2017		2340.0000	*	769.2044
Barium, total	ug/L	MW-20	03/09/2018		2010.0000	*	769.2044
Barium, total	ug/L	MW-20	09/06/2018		2360.0000	*	769.2044
Barium, total Barium, total	ug/L ug/L	MW-20 MW-20	03/07/2019 09/26/2019		2100.0000 2350.0000	*	769.2044 769.2044
Barium, total	ug/L ug/L	MW-20	04/02/2020		2300.0000	*	769.2044
Barium, total	ug/L	MW-20	09/17/2020		1970.0000	*	769.2044
Barium, total	ug/L	MW-20	03/25/2021		1970.0000	*	769.2044
Barium, total	ug/L	MW-20	09/16/2021		2160.0000	*	769.2044
Barium, total	ug/L	MW-20	03/16/2022		1890.0000	*	769.2044
Barium, total	ug/L	MW-20	09/01/2022		2020.0000	*	769.2044
Barium, total Barium, total	ug/L ug/L	MW-20 MW-20	03/24/2023 09/07/2023		2000.0000 1810.0000	*	769.2044 769.2044
Barium, total	ug/L ug/L	MW-20	03/18/2024		2110.0000	*	769.2044
Barium, total	ug/L	MW-20	09/25/2024		1950.0000	*	769.2044
Arsenic, total	ug/L	MW-7	04/16/2008	ND	5.0000		5.6000
Arsenic, total	ug/L	MW-7	06/17/2008	ND	5.0000		5.6000
Arsenic, total	ug/L	MW-7	08/20/2008	ND	5.0000		5.6000
Arsenic, total	ug/L	MW-7	10/16/2008	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	12/04/2008	ND	4.0000		5.6000
Arsenic, total Arsenic, total	ug/L ug/L	MW-7 MW-7	03/16/2009 09/24/2009	ND ND	4.0000 4.0000		5.6000 5.6000
Arsenic, total	ug/L	MW-7	04/19/2010	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	09/29/2010	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	05/03/2011		4.3000		5.6000
Arsenic, total	ug/L	MW-7	10/10/2011	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	04/23/2012	, LIE	4.9000		5.6000
Arsenic, total	ug/L	MW-7	09/10/2012	ND ND	4.0000		5.6000
Arsenic, total Arsenic, total	ug/L ug/L	MW-7 MW-7	04/04/2013 10/10/2013	ND ND	4.0000 4.0000		5.6000 5.6000
Arsenic, total	ug/L ug/L	MW-7	04/22/2014	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	09/17/2014	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	04/28/2015	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	10/06/2015	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	04/23/2016	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	09/01/2016	ND	4.0000		5.6000
Arsenic, total Arsenic, total	ug/L ug/L	MW-7 MW-7	03/22/2017 10/13/2017	ND ND	4.0000 4.0000		5.6000 5.6000
Arsenic, total	ug/L ug/L	MW-7	03/09/2018	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	09/06/2018	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	03/07/2019	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	09/26/2019		8.2000	*	5.6000
Arsenic, total	ug/L	MW-7	12/17/2019		4.7000		5.6000
Arsenic, total	ug/L	MW-7	04/02/2020	ND	4.0000	_	5.6000
Arsenic, total	ug/L	MW-7	09/17/2020		6.9000	<u>*</u>	5.6000
Arsenic, total	ug/L	MW-7	12/03/2020		7.2000		5.6000

^{* -} Significantly increased over background.
** - Detect at limit for 100% NDs in background (NPPL only).
*** - Manual exclusion.
ND = Not Detected, Result = detection limit.

Table 8 Historical Downgradient Data for Constituent-Well Combinations that Failed the Current Statistical Evaluation or are in Verification Resampling Mode

Constituent	Units	Well	Date		Result		Pred. Limit
Arsenic, total	ug/L	MW-7	03/25/2021	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	09/16/2021	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	03/16/2022		4.3000		5.6000
Arsenic, total	ug/L	MW-7	09/01/2022		5.7000	*	5.6000
Arsenic, total	ug/L	MW-7	03/24/2023	ND	4.0000		5.6000
Arsenic, total	ug/L	MW-7	09/07/2023		8.8000	*	5.6000
Arsenic, total	ug/L	MW-7	03/18/2024		5.4000		5.6000
Arsenic, total	ug/L	MW-7	09/25/2024		9.0000	*	5.6000

^{* -} Significantly increased over background.
** - Detect at limit for 100% NDs in background (NPPL only).
*** - Manual exclusion.

ND = Not Detected, Result = detection limit.

Prepared by: Otter Creek Environmental

Page County [GW]

False Positive and False Negative Rates for Current Upgradient vs. Downgradient Monitoring Program

S. D. Units

Worksheet 1 - Upgradient vs. Downgradient Comparisons Antimony, total (ug/L) **Nonparametric Prediction Limit**

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	PL = median(X)	Compute nonparametric prediction limit as median reporting limit in background.
	= 2.0	
2	Conf = 0.988	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).

Worksheet 1 - Upgradient vs. Downgradient Comparisons Arsenic, total (ug/L)

Nonparametric Prediction Limit

Worksheet 1 - Upgradient vs. Downgradient Comparisons Barium, total (ug/L) **Normal Prediction Limit**

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute upgradient mean.
	= 10876.8 / 42	
	= 258.971	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{\frac{1}{2}}$	Compute upgradient sd.
	= $((4.60 \times 10^6 - 1.18 \times 10^8 / 42) / (42 - 1))^{1/2}$	
	= 208.313	
3	alpha = min[$(195^{1/\mathbf{K}})^{\frac{1}{2}}$, .01]	Adjusted per comparison false positive rate. Pass
	$= \min[(195^{1/180})^{1/2}, .01]$	initial or 1 resample.
	= 0.01	
4	$PL = \overline{X} + tS(1+1/N)^{1/2}$	One-sided normal prediction limit (t is Student's t on
	= 258.971	N-1 degrees of freedom and 1-alpha confidence level).
	+ (2.421*208.313)(1+1/42) ^{1/2}	
	= 769.204	

Worksheet 1 - Upgradient vs. Downgradient Comparisons Beryllium, total (ug/L) Nonparametric Prediction Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	PL = median(X) = 4.0	Compute nonparametric prediction limit as median reporting limit in background.
2	Conf = 0.988	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).
		Worksheet 1 - Upgradient vs. Downgradient Comparisons
		Cadmium, total (ug/L) Nonparametric Prediction Limit
Step	<u>Equation</u>	<u>Description</u>
1	PL = max(X) = 1.4	Compute nonparametric prediction limit as largest background measurement.
2	Conf = 0.988	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).
		Worksheet 1 - Upgradient vs. Downgradient Comparisons Chromium, total (ug/L)
		Nonparametric Prediction Limit
<u>Step</u>	Equation	<u>Description</u>
1	PL = max(X)	Compute nonparametric prediction limit as largest background measurement.
	= 8.9	
2	Conf = 0.988	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).
		Worksheet 1 - Upgradient vs. Downgradient Comparisons Cobalt, total (ug/L)
		Nonparametric Prediction Limit
<u>Step</u>	Equation	<u>Description</u>
1	PL = max(X)	Compute nonparametric prediction limit as largest background measurement.
	= 30.6	
2	Conf = 0.988	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).

Worksheet 1 - Upgradient vs. Downgradient Comparisons Copper, total (ug/L) Nonparametric Prediction Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>			
1	PL = max(X) = 11.6	Compute nonparametric prediction limit as largest background measurement.			
2	Conf = 0.988	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).			
		Worksheet 1 - Upgradient vs. Downgradient Comparisons Lead, total (ug/L) Nonparametric Prediction Limit			
<u>Step</u>	<u>Equation</u>	<u>Description</u>			
1	PL = max(X) = 7.4	Compute nonparametric prediction limit as largest background measurement.			
2	Conf = 0.988	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).			
		Worksheet 1 - Upgradient vs. Downgradient Comparisons Nickel, total (ug/L) Nonparametric Prediction Limit			
<u>Step</u>	<u>Equation</u>	<u>Description</u>			
1	PL = max(X) = 60.4	Compute nonparametric prediction limit as largest background measurement.			
2	Conf = 0.988	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).			
	Worksheet 1 - Upgradient vs. Downgradient Comparisons Selenium, total (ug/L) Nonparametric Prediction Limit				
<u>Step</u>	Equation	<u>Description</u>			
1	PL = median(X) = 4.0	Compute nonparametric prediction limit as median reporting limit in background.			
2	Conf = 0.988	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).			

Worksheet 1 - Upgradient vs. Downgradient Comparisons Silver, total (ug/L) Nonparametric Prediction Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	PL = median(X) = 4.0	Compute nonparametric prediction limit as median reporting limit in background.
2	Conf = 0.988	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).
		Worksheet 1 - Upgradient vs. Downgradient Comparisons Thallium, total (ug/L) Nonparametric Prediction Limit
<u>Step</u>	Equation	<u>Description</u>
1	PL = median(X) = 2.0	Compute nonparametric prediction limit as median reporting limit in background.
2	Conf = 0.988	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).
		Worksheet 1 - Upgradient vs. Downgradient Comparisons Vanadium, total (ug/L) Nonparametric Prediction Limit
<u>Step</u>	Equation	<u>Description</u>
1	PL = median(X) = 20.0	Compute nonparametric prediction limit as median reporting limit in background.
2	Conf = 0.988	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).
		Worksheet 1 - Upgradient vs. Downgradient Comparisons Zinc, total (ug/L) Nonparametric Prediction Limit
<u>Step</u>	Equation	<u>Description</u>
1	PL = max(X) = 69.2	Compute nonparametric prediction limit as largest background measurement.
2	Conf = 0.988	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).

Attachment C

Assessment Statistics for Trace Metals

pageco2024s2 October 2024

Table 1 Confidence Intervals for Comparing the Mean of the Last 4 Measurements to an Assessment Monitoring Standard

Constituent	Units	Well	N	Mean	SD	Factor	95% LCL	95% UCL	Standard	Trend	\Box
Arsenic, total	ug/L	MW-10	4	2.800	1.600	1.176	0.918	4.682	10.000		\vdash
Barium, total	ug/L	MW-10	4	529.250	47.654	1.176	473.195	585.305	2000.000	inc	
Cadmium, total	ug/L	MW-10	4	0.400	0.000	1.176	0.400	0.400	5.000		
Cobalt, total	ug/L	MW-10	4	2.275	0.562	1.176	1.614	2.936	2.100		
Zinc, total	ug/L	MW-10	4	14.575	9.150	1.176	3.812	25.338	2000.000		
Arsenic, total	ug/L	MW-14	4	2.000	0.000	1.176	2.000	2.000	10.000		
Barium, total	ug/L	MW-14	4	120.750	12.473	1.176	106.078	135.422	2000.000	dec	
Cadmium, total	ug/L	MW-14	4	1.175	1.550	1.176	0.000	2.998	5.000		
Cobalt, total	ug/L	MW-14	4	0.425	0.050	1.176	0.366	0.484	2.100		
Zinc, total	ug/L	MW-14	4	10.000	0.000	1.176	10.000	10.000	2000.000		
Arsenic, total	ug/L	MW-16	4	13.225	11.909	1.176	0.000	27.234	10.000	dec	
Barium, total	ug/L	MW-16	4	565.250	208.132	1.176	320.427	810.073	2000.000	dec	
Cadmium, total	ug/L	MW-16	4	0.400	0.000	1.176	0.400	0.400	5.000		
Cobalt, total	ug/L	MW-16	4	0.875	0.591	1.176	0.180	1.570	2.100	dec	
Zinc, total	ug/L	MW-16	4	5.000	0.000	1.176	5.000	5.000	2000.000		
Arsenic, total	ug/L	MW-18	4	40.400	20.003	1.176	16.871	63.929	10.000		**
Barium, total	ug/L	MW-18	4	519.000	228.871	1.176	249.781	788.219	2000.000		
Cadmium, total	ug/L	MW-18	4	0.525	0.250	1.176	0.231	0.819	5.000		
Cobalt, total	ug/L	MW-18	4	2.175	2.484	1.176	0.000	5.097	2.100	dec	
Zinc, total	ug/L	MW-18	4	10.000	0.000	1.176	10.000	10.000	2000.000		
Arsenic, total	ug/L	MW-20	4	83.525	28.797	1.176	49.651	117.399	10.000		**
Barium, total	ug/L	MW-20	4	1967.500	124.466	1.176	1821.093	2113.907	2000.000	dec	
Cadmium, total	ug/L	MW-20	4	0.400	0.000	1.176	0.400	0.400	5.000		
Cobalt, total	ug/L	MW-20	4	9.075	1.970	1.176	6.757	11.393	2.100	dec	**
Zinc, total	ug/L	MW-20	4	10.000	0.000	1.176	10.000	10.000	2000.000		
Arsenic, total	ug/L	MW-7	4	6.300	3.309	1.176	2.408	10.192	10.000		
Barium, total	ug/L	MW-7	4	307.500	11.561	1.176	293.900	321.100	2000.000	inc	
Cadmium, total	ug/L	MW-7	4	0.400	0.000	1.176	0.400	0.400	5.000		
Cobalt, total	ug/L	MW-7	4	9.350	0.580	1.176	8.667	10.033	2.100	inc	**
Zinc, total	ug/L	MW-7	4	5.000	0.000	1.176	5.000	5.000	2000.000		

^{* -} Insufficient Data ** - Significant Exceedance LCL = Lower Confidence Limit UCL = Upper Confidence Limit

Graph 3

Graph 4

Graph 5

Graph 10

Graph 12

Graph 13

Graph 14

Graph 15

Graph 19

Graph 22

Graph 23

Graph 24

Graph 25

Detect

User Limit

Trend test

Samples -

95% LCL

Standard

ND

18

Year

Median ND/2 ♦

Graph 27

Graph 28

Graph 30

Worksheet 6 - Assessment Monitoring Arsenic, total (ug/L) at MW-10

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 11.2 / 4	
	= 2.8	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((39.04 - 125.44/4) / (4-1)) ¹ / ₂	
	= 1.6	
3	$LCL = \overline{X} - tS/N^{1/2}$	Compute lower confidence limit for the mean of the last 4
	= 2.8 - 2.353 * 1.6/4 ^{1/2}	measurements.
	= 0.918	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	= 2.8 + 2.353 * 1.6/4 ^{1/2}	measurements.
	= 4.682	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 37 * (37-1) / 2	
	= 666	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 5148.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} \text{ var(S)}^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(666 \pm 2.576 * 5148.0^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [240.587, 425.413]	integers, interpolation is used.
9	CL(S) = [0.0, 0.7]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Barium, total (ug/L) at MW-10

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 2117.0 / 4	
	= 529.25	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= $((1.13\times10^6 - 4.48\times10^6/4) / (4-1))^{1/2}$	
	= 47.654	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 529.25 - 2.353 * 47.654/4 ^{1/2}	measurements.
	= 473.195	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	= 529.25 + 2.353 * 47.654/4 ^{1/2}	measurements.
	= 585.305	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 37 * (37-1) / 2	
	= 666	
6	S = 15.257	Sen's estimator of trend.
7	var(S) = 5844.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(666 \pm 2.576 * 5844.0^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [234.537, 431.463]	integers, interpolation is used.
9	CL(S) = [5.751 , 35.342]	Two-sided confidence interval for slope.
10	LCL(S) > 0	Significant increasing trend.

Worksheet 6 - Assessment Monitoring Cadmium, total (ug/L) at MW-10

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 1.6 / 4	
	= 0.4	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((0.64 - 2.56/4) / (4- 1)) ^½	
	= 4.21×10 ⁻⁹	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 0.4 - 2.353 * 4.21×10 ⁻⁹ / $4^{\frac{1}{2}}$	measurements.
	= 0.4	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	= $0.4 + 2.353 * 4.21 \times 10^{-9} / 4^{1/2}$	measurements.
	= 0.4	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 37 * (37 -1) / 2	
	= 666	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 887.667	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (666 ± 2.576 * 887.667 ^{1/2}) / 2	estimates for the values shown. When the values are not
	= [294.626, 371.374]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Cobalt, total (ug/L) at MW-10

Step	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 9.1 / 4	
	= 2.275	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((21.65 - 82.81/4) / (4-1)) ^{1/2}	
	= 0.562	
3	$LCL = \overline{X} - tS/N^{1/2}$	Compute lower confidence limit for the mean of the last 4
	= 2.275 - 2.353 * 0.562/4 ¹ / ₂	measurements.
	= 1.614	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	= 2.275 + 2.353 * 0.562/4 ^{1/2}	measurements.
	= 2.936	
5	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 37 * (37-1) / 2	
	= 666	
6	S = -0.07	Sen's estimator of trend.
7	var(S) = 5799.667	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (666 ± 2.576 * 5799.667 ^½) / 2	estimates for the values shown. When the values are not
	= [234.912, 431.088]	integers, interpolation is used.
9	CL(S) = [-0.402, 0.202]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Zinc, total (ug/L) at MW-10

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 58.3 / 4	
	= 14.575	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((1100.89 - 3398.89/4) / (4-1)) ^{1/2}	
	= 9.15	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 14.575 - 2.353 * 9.15/4 ^½	measurements.
	= 3.812	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	= 14.575 + 2.353 * 9.15/4 ^{1/2}	measurements.
	= 25.338	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 37 * (37-1) / 2	
	= 666	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 5028.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(666 \pm 2.576 * 5028.0^{\frac{1}{2}}) / 2$	estimates for the values shown. When the values are not
	= [241.67, 424.33]	integers, interpolation is used.
9	CL(S) = [-0.725, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Arsenic, total (ug/L) at MW-14

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 8.0 / 4	
	= 2.0	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((16.0 - 64.0/4) / (4-1)) ^{1/2}	
	= 0.0	
3	$LCL = \overline{X} - tS/N^{1/2}$	Compute lower confidence limit for the mean of the last 4
	= 2.0 - 2.353 * 0.0/4 ^{1/2}	measurements.
	= 2.0	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	= 2.0 + 2.353 * 0.0/4 ^{1/2}	measurements.
	= 2.0	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 37 * (37-1) / 2	
	= 666	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 3785.667	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^* \text{ var(S)}^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (666 ± 2.576 * 3785.667 ½) / 2	estimates for the values shown. When the values are not
	= [253.752, 412.248]	integers, interpolation is used.
9	CL(S) = [-0.36, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Barium, total (ug/L) at MW-14

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 483.0 / 4	
	= 120.75	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((58789.0 - 233289.0/4) / (4-1)) ^{1/2}	
	= 12.473	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 120.75 - 2.353 * 12.473/4 ^{1/2}	measurements.
	= 106.078	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	= 120.75 + 2.353 * 12.473/4 ^{1/2}	measurements.
	= 135.422	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 37 * (37-1) / 2	
	= 666	
6	S = -23.621	Sen's estimator of trend.
7	var(S) = 5845.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(666 \pm 2.576 * 5845.0^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [234.529, 431.471]	integers, interpolation is used.
9	CL(S) = [-40.627, -11.972]	Two-sided confidence interval for slope.
10	UCL(S) < 0	Significant decreasing trend.

Worksheet 6 - Assessment Monitoring Cadmium, total (ug/L) at MW-14

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 4.7 / 4	
	= 1.175	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((12.73 - 22.09/4) / (4-1)) ^{1/2}	
	= 1.55	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 1.175 - 2.353 * 1.55/4 ^{1/2}	measurements.
	= 0.0	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	= 1.175 + 2.353 * 1.55/4 ^{1/2}	measurements.
	= 2.998	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 38 * (38 -1) / 2	
	= 703	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 2864.333	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for
	= $(703 \pm 2.576 * 2864.333^{1/2}) / 2$	slope. The LCL and UCL are the M th largest slope estimates for the values shown. When the values are not
	= [282.567, 420.433]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Cobalt, total (ug/L) at MW-14

Step	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 1.7 / 4	
	= 0.425	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((0.73 - 2.89/4) / (4- 1)) ^{1/2}	
	= 0.05	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	$= 0.425 - 2.353 * 0.05/4^{\frac{1}{2}}$	measurements.
	= 0.366	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	$= 0.425 + 2.353 * 0.05/4^{1/2}$	measurements.
	= 0.484	
5	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 37 * (37-1) / 2	
	= 666	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 4219.667	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} \text{ var(S)}^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (666 ± 2.576 * 4219.667 ½) / 2	estimates for the values shown. When the values are not
	= [249.333, 416.667]	integers, interpolation is used.
9	CL(S) = [-0.086, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Zinc, total (ug/L) at MW-14

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 40.0 / 4	
	= 10.0	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((400.0 - 1600.0/4) / (4-1)) 1/2	
	= 0.0	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 10.0 - 2.353 * 0.0/4 ¹ / ₂	measurements.
	= 10.0	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	$= 10.0 + 2.353 * 0.0/4^{1/2}$	measurements.
	= 10.0	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 37 * (37 -1) / 2	
	= 666	
6	S = -0.174	Sen's estimator of trend.
7	var(S) = 4588.333	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (666 ± 2.576 * 4588.333 ^{1/2}) / 2	estimates for the values shown. When the values are not
	= [245.754, 420.246]	integers, interpolation is used.
9	CL(S) = [-1.857, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Arsenic, total (ug/L) at MW-16

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 52.9 / 4	
	= 13.225	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((1125.09 - 2798.41/4) / (4-1)) ^{1/2}	
	= 11.909	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 13.225 - 2.353 * 11.909/4 ^{1/2}	measurements.
	= 0.0	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	= 13.225 + 2.353 * 11.909/4 ^{1/2}	measurements.
	= 27.234	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 36 * (36 -1) / 2	
	= 630	
6	S = -1.848	Sen's estimator of trend.
7	var(S) = 5359.667	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{2} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(630 \pm 2.576 * 5359.667^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [220.706, 409.294]	integers, interpolation is used.
9	CL(S) = [-2.852, -0.544]	Two-sided confidence interval for slope.
10	UCL(S) < 0	Significant decreasing trend.

Worksheet 6 - Assessment Monitoring Barium, total (ug/L) at MW-16

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 2261.0 / 4	
	= 565.25	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= $((1.41 \times 10^6 - 5.11 \times 10^6 / 4) / (4-1))^{1/2}$	
	= 208.132	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 565.25 - 2.353 * 208.132/4 ^{1/2}	measurements.
	= 320.427	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	= 565.25 + 2.353 * 208.132/4 ^{1/2}	measurements.
	= 810.073	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 37 * (37-1) / 2	
	= 666	
6	S = -42.4	Sen's estimator of trend.
7	var(S) = 5843.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for
	= (666 ± 2.576 * 5843.0 ^{1/2}) / 2	slope. The LCL and UCL are the M th largest slope estimates for the values shown. When the values are not
	= [234.546, 431.454]	integers, interpolation is used.
9	CL(S) = [-60.155, -24.419]	Two-sided confidence interval for slope.
10	UCL(S) < 0	Significant decreasing trend.

Worksheet 6 - Assessment Monitoring Cadmium, total (ug/L) at MW-16

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 1.6 / 4	
	= 0.4	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((0.64 - 2.56/4) / (4-1)) ^{1/2}	
	= 4.21×10 ⁻⁹	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	$= 0.4 - 2.353 * 4.21 \times 10^{-9} / 4^{1/2}$	measurements.
	= 0.4	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	$= 0.4 + 2.353 * 4.21 \times 10^{-9} / 4^{1/2}$	measurements.
	= 0.4	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 36 * (36-1) / 2	
	= 630	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 431.667	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^* \text{ var(S)}^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (630 ± 2.576 * 431.667 ^½) / 2	estimates for the values shown. When the values are not
	= [288.24, 341.76]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Cobalt, total (ug/L) at MW-16

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 3.5 / 4	
	= 0.875	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((4.11 - 12.25/4) / (4-1)) ^{1/2}	
	= 0.591	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 0.875 - 2.353 * 0.591/4 ^{1/2}	measurements.
	= 0.18	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	$= 0.875 + 2.353 * 0.591/4^{1/2}$	measurements.
	= 1.57	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 36 * (36-1) / 2	
	= 630	
6	S = -0.118	Sen's estimator of trend.
7	var(S) = 5259.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(630 \pm 2.576 * 5259.0^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [221.596, 408.404]	integers, interpolation is used.
9	CL(S) = [-0.204, -0.07]	Two-sided confidence interval for slope.
10	UCL(S) < 0	Significant decreasing trend.

Worksheet 6 - Assessment Monitoring Zinc, total (ug/L) at MW-16

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 20.0 / 4	
	= 5.0	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((100.0 - 400.0/4) / (4-1)) ^{1/2}	
	= 0.0	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	$= 5.0 - 2.353 * 0.0/4^{1/2}$	measurements.
	= 5.0	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	$= 5.0 + 2.353 * 0.0/4^{1/2}$	measurements.
	= 5.0	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 36 * (36 -1) / 2	
	= 630	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 3088.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(630 \pm 2.576 * 3088.0^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [243.426, 386.574]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Arsenic, total (ug/L) at MW-18

Step	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 161.6 / 4	
	= 40.4	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{\frac{1}{2}}$	Compute sd of the last 4 measurements.
	= ((7729.02 - 26114.56/4) / (4-1)) ¹ / ₂	
	= 20.003	
3	$LCL = \overline{X} - tS/N^{1/2}$	Compute lower confidence limit for the mean of the last 4
	= 40.4 - 2.353 * 20.003/4 ^{1/2}	measurements.
	= 16.871	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	$= 40.4 + 2.353 * 20.003/4^{1/2}$	measurements.
	= 63.929	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 33 * (33 -1) / 2	
	= 528	
6	S = 0.732	Sen's estimator of trend.
7	var(S) = 4163.333	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^* \text{ var(S)}^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (528 ± 2.576 * 4163.333 ½) / 2	estimates for the values shown. When the values are not
	= [180.893, 347.107]	integers, interpolation is used.
9	CL(S) = [-2.942, 3.653]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Barium, total (ug/L) at MW-18

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 2076.0 / 4	
	= 519.0	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= $((1.23\times10^6 - 4.31\times10^6/4) / (4-1))^{1/2}$	
	= 228.871	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 519.0 - 2.353 * 228.871/4 ^{1/2}	measurements.
	= 249.781	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	= 519.0 + 2.353 * 228.871/4 ^{1/2}	measurements.
	= 788.219	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 33 * (33 -1) / 2	
	= 528	
6	S = 1.642	Sen's estimator of trend.
7	var(S) = 4165.333	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (528 ± 2.576 * 4165.333 ¹ / ₂) / 2	estimates for the values shown. When the values are not
	= [180.873, 347.127]	integers, interpolation is used.
9	CL(S) = [-46.731, 38.2]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Cadmium, total (ug/L) at MW-18

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 2.1 / 4	
	= 0.525	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((1.29 - 4.41/4) / (4-1)) ^{1/2}	
	= 0.25	
3	$LCL = \overline{X} - tS/N^{1/2}$	Compute lower confidence limit for the mean of the last 4
	= 0.525 - 2.353 * 0.25/4 ^{1/2}	measurements.
	= 0.231	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	= 0.525 + 2.353 * 0.25/4 ^{1/2}	measurements.
	= 0.819	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 33 * (33-1) / 2	
	= 528	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 1603.333	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (528 ± 2.576 * 1603.333 ½) / 2	estimates for the values shown. When the values are not
	= [212.426, 315.574]	integers, interpolation is used.
9	CL(S) = [0.0 , 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Cobalt, total (ug/L) at MW-18

Step	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 8.7 / 4	
	= 2.175	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((37.43 - 75.69/4) / (4 -1)) ¹ / ₂	
	= 2.484	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4 measurements.
	= 2.175 - 2.353 * 2.484/4 ^{1/2}	
	= 0.0	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4 measurements.
	= 2.175 + 2.353 * 2.484/4 ^{1/2}	
	= 5.097	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 33 * (33-1) / 2	
	= 528	
6	S = -1.753	Sen's estimator of trend.
7	var(S) = 4162.333	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope estimates for the values shown. When the values are not integers, interpolation is used.
	= (528 ± 2.576 * 4162.333 ^{1/2}) / 2	
	= [180.903, 347.097]	
9	CL(S) = [-3.321, -0.606]	Two-sided confidence interval for slope.
10	UCL(S) < 0	Significant decreasing trend.

Worksheet 6 - Assessment Monitoring Zinc, total (ug/L) at MW-18

Step	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 40.0 / 4	
	= 10.0	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((400.0 - 1600.0/4) / (4-1)) ^{1/2}	
	= 0.0	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	$= 10.0 - 2.353 * 0.0/4^{1/2}$	measurements.
	= 10.0	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	= 10.0 + 2.353 * 0.0/4 ^{1/2}	measurements.
	= 10.0	
5	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 33 * (33 -1) / 2	
	= 528	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 3068.667	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^* \text{ var(S)}^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (528 ± 2.576 * 3068.667 ½) / 2	estimates for the values shown. When the values are not
	= [192.651, 335.349]	integers, interpolation is used.
9	CL(S) = [-2.667, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Arsenic, total (ug/L) at MW-20

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 334.1 / 4	
	= 83.525	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((30393.53 - 111622.81/4) / (4-1)) ^{1/2}	
	= 28.797	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 83.525 - 2.353 * 28.797/4 ^{1/2}	measurements.
	= 49.651	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	= 83.525 + 2.353 * 28.797/4 ^{1/2}	measurements.
	= 117.399	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 33 * (33 -1) / 2	
	= 528	
6	S = 2.166	Sen's estimator of trend.
7	var(S) = 4163.333	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (528 ± 2.576 * 4163.333 ^{1/2}) / 2	estimates for the values shown. When the values are not
	= [180.893, 347.107]	integers, interpolation is used.
9	CL(S) = [-1.47, 4.568]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Barium, total (ug/L) at MW-20

<u>Step</u>	<u>Equation</u>	<u>Description</u>		
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.		
	= 7870.0 / 4			
	= 1967.5			
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.		
	= $((1.55 \times 10^7 - 6.19 \times 10^7 / 4) / (4-1))^{1/2}$			
	= 124.466			
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4		
	= 1967.5 - 2.353 * 124.466/4 ^{1/2}	measurements.		
	= 1821.093			
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4		
	= 1967.5 + 2.353 * 124.466/4 ^{1/2}	measurements.		
	= 2113.907			
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.		
	= 33 * (33-1) / 2			
	= 528			
6	S = -85.827	Sen's estimator of trend.		
7	var(S) = 4163.333	Variance estimate for slope.		
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for		
	= (528 ± 2.576 * 4163.333 ^{1/2}) / 2	slope. The LCL and UCL are the M th largest slope estimates for the values shown. When the values are not		
	= [180.893, 347.107]	integers, interpolation is used.		
9	CL(S) = [-145.453, -43.351]	Two-sided confidence interval for slope.		
10	UCL(S) < 0	Significant decreasing trend.		

Worksheet 6 - Assessment Monitoring Cadmium, total (ug/L) at MW-20

Step	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 1.6 / 4	
	= 0.4	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((0.64 - 2.56/4) / (4- 1)) ^{1/2}	
	= 4.21×10 ⁻⁹	
3	$LCL = \overline{X} - tS/N^{1/2}$	Compute lower confidence limit for the mean of the last 4
	$= 0.4 - 2.353 * 4.21 \times 10^{-9} / 4^{1/2}$	measurements.
	= 0.4	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	= $0.4 + 2.353 * 4.21 \times 10^{-9} / 4^{1/2}$	measurements.
	= 0.4	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 33 * (33-1) / 2	
	= 528	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 1864.333	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (528 ± 2.576 * 1864.333 ^½) / 2	estimates for the values shown. When the values are not
	= [208.387, 319.613]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Cobalt, total (ug/L) at MW-20

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 36.3 / 4	
	= 9.075	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((341.07 - 1317.69/4) / (4-1)) ^{1/2}	
	= 1.97	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 9.075 - 2.353 * 1.97/4 ^{1/2}	measurements.
	= 6.757	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	= 9.075 + 2.353 * 1.97/4 ^{1/2}	measurements.
	= 11.393	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 33 * (33 -1) / 2	
	= 528	
6	S = -1.233	Sen's estimator of trend.
7	var(S) = 4163.333	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{2} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for
	= (528 ± 2.576 * 4163.333 ^{1/2}) / 2	slope. The LCL and UCL are the M th largest slope estimates for the values shown. When the values are not
	= [180.893, 347.107]	integers, interpolation is used.
9	CL(S) = [-2.072, -0.91]	Two-sided confidence interval for slope.
10	UCL(S) < 0	Significant decreasing trend.

Worksheet 6 - Assessment Monitoring Zinc, total (ug/L) at MW-20

Step	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 40.0 / 4	
	= 10.0	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((400.0 - 1600.0/4) / (4-1)) ^{1/2}	
	= 0.0	
3	$LCL = \overline{X} - tS/N^{1/2}$	Compute lower confidence limit for the mean of the last 4
	= 10.0 - 2.353 * 0.0/4 ^{1/2}	measurements.
	= 10.0	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	= 10.0 + 2.353 * 0.0/4 ^{1/2}	measurements.
	= 10.0	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 33 * (33-1) / 2	
	= 528	
6	S = -0.044	Sen's estimator of trend.
7	var(S) = 3347.333	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (528 ± 2.576 * 3347.333 ^{1/2}) / 2	estimates for the values shown. When the values are not
	= [189.481, 338.519]	integers, interpolation is used.
9	CL(S) = [-6.43, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Arsenic, total (ug/L) at MW-7

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 25.2 / 4	
	= 6.3	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((191.6 - 635.04/4) / (4-1)) ^{1/2}	
	= 3.309	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 6.3 - 2.353 * 3.309/4 ^{1/2}	measurements.
	= 2.408	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	= 6.3 + 2.353 * 3.309/4 ^{1/2}	measurements.
	= 10.192	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 39 * (39 -1) / 2	
	= 741	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 4270.667	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for
	= (741 ± 2.576 * 4270.667 ^{1/2}) / 2	slope. The LCL and UCL are the M th largest slope estimates for the values shown. When the values are not
	= [286.329, 454.671]	integers, interpolation is used.
9	CL(S) = [0.0, 0.143]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Barium, total (ug/L) at MW-7

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 1230.0 / 4	
	= 307.5	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= $((378626.0 - 1.51 \times 10^6/4) / (4-1))^{1/2}$	
	= 11.561	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 307.5 - 2.353 * 11.561/4 ^{1/2}	measurements.
	= 293.9	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	= 307.5 + 2.353 * 11.561/4 ^{1/2}	measurements.
	= 321.1	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 37 * (37 -1) / 2	
	= 666	
6	S = 6.943	Sen's estimator of trend.
7	var(S) = 5842.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{2} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (666 ± 2.576 * 5842.0 ^{1/2}) / 2	estimates for the values shown. When the values are not
	= [234.554, 431.446]	integers, interpolation is used.
9	CL(S) = [3.468 , 10.622]	Two-sided confidence interval for slope.
10	LCL(S) > 0	Significant increasing trend.

Worksheet 6 - Assessment Monitoring Cadmium, total (ug/L) at MW-7

Step	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 1.6 / 4	
	= 0.4	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((0.64 - 2.56/4) / (4-1)) ^{1/2}	
	= 4.21×10 ⁻⁹	
3	$LCL = \overline{X} - tS/N^{1/2}$	Compute lower confidence limit for the mean of the last 4
	$= 0.4 - 2.353 * 4.21 \times 10^{-9} / 4^{1/2}$	measurements.
	= 0.4	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	$= 0.4 + 2.353 * 4.21 \times 10^{-9} / 4^{1/2}$	measurements.
	= 0.4	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 37 * (37-1) / 2	
	= 666	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 0.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(666 \pm 2.576 * 0.0^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [333.0, 333.0]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Cobalt, total (ug/L) at MW-7

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 37.4 / 4	
	= 9.35	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((350.7 - 1398.76/4) / (4-1)) ^{1/2}	
	= 0.58	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 9.35 - 2.353 * 0.58/4 ^{1/2}	measurements.
	= 8.667	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	$= 9.35 + 2.353 * 0.58/4^{1/2}$	measurements.
	= 10.033	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 37 * (37-1) / 2	
	= 666	
6	S = 0.63	Sen's estimator of trend.
7	var(S) = 5253.667	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for
	= (666 ± 2.576 * 5253.667 ½) / 2	slope. The LCL and UCL are the M th largest slope estimates for the values shown. When the values are not
	= [239.643, 426.357]	integers, interpolation is used.
9	CL(S) = [0.375, 0.966]	Two-sided confidence interval for slope.
10	LCL(S) > 0	Significant increasing trend.

Worksheet 6 - Assessment Monitoring Zinc, total (ug/L) at MW-7

Step	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 20.0 / 4	
	= 5.0	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((100.0 - 400.0/4) / (4-1)) ^{1/2}	
	= 0.0	
3	$LCL = \overline{X} - tS/N^{1/2}$	Compute lower confidence limit for the mean of the last 4
	= 5.0 - 2.353 * 0.0/4 ^{1/2}	measurements.
	= 5.0	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	$= 5.0 + 2.353 * 0.0/4^{1/2}$	measurements.
	= 5.0	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 37 * (37-1) / 2	
	= 666	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 2383.333	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (666 ± 2.576 * 2383.333 ½) / 2	estimates for the values shown. When the values are not
	= [270.121, 395.879]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Attachment D

Historical VOC Detections

pageco2024s2 October 2024

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Acetone	GWD-1	9/24/2009		76.0	10.0	ug/L
Acetone	GWD-1	10/13/2017		20.2	10.0	ug/L
Benzene Chloroethane	GWD-1 GWD-1	4/23/2012 4/23/2012		1.2 3.4	1.0 1.0	ug/L ug/L
Acetone	MW-1	9/17/2014		11.2	10.0	ug/L ug/L
Benzene	MW-1	3/25/2021		1.5	1.0	ug/L
Benzene	MW-1	3/16/2022		1.0	1.0	ug/L
Benzene	MW-1	3/24/2023		1.7	1.0	ug/L
Benzene	MW-1	5/09/2023		1.6	1.0	ug/L
Chloroethane	MW-1	9/17/2014		1.4	1.0	ug/L
Chloroethane	MW-1	3/25/2021		1.6	1.0	ug/L
Chloroethane	MW-1	3/24/2023		1.3	1.0	ug/L
Chloroethane	MW-1	5/09/2023		1.3	1.0	ug/L
Trichloroethylene	MW-1	9/16/2021		3	1	ug/L
Acetone	MW-10	10/10/2011		13.5	10.0	ug/L
Acetone	MW-10	9/17/2014		18.8	10.0	ug/L
Acetone	MW-10	10/13/2017		18.7	10.0	ug/L
Acetone	MW-10	9/06/2018		11.3	10.0	ug/L
Acetone	MW-10	3/25/2021		10.7	10.0	ug/L
Benzene	MW-10	9/06/2018		1.4	1.0	ug/L
Bis(2-ethylhexyl) phthalate	MW-10	9/06/2018		8	6	ug/L
Bis(2-ethylhexyl) phthalate	MW-10	4/02/2020		14	10.0	ug/L
Acetone Acetone	MW-11	10/13/2017		12.1	10.0 10.0	ug/L
	MW-13 MW-16	10/13/2017		16.9 1.8		ug/L ug/L
1,1-dichloroethane 1,1-dichloroethane	MW-16	4/16/2008		1.8 2.2	1.0	
	MW-16	6/17/2008 8/20/2008			1.0	ug/L
1,1-dichloroethane 1,1-dichloroethane	MW-16	10/16/2008		1.9 2.0	1.0 1.0	ug/L ug/L
1,1-dichloroethane	MW-16	12/04/2008		1.4	1.0	ug/L ug/L
1,1-dichloroethane	MW-16	3/16/2009		1.4	1.0	ug/L ug/L
1,1-dichloroethane	MW-16	9/24/2009		1.6	1.0	ug/L
1,1-dichloroethane	MW-16	4/19/2010		1.8	1.0	ug/L
1,1-dichloroethane	MW-16	5/03/2011		1.7	1.0	ug/L
1,1-dichloroethane	MW-16	10/11/2011		1.8	1.0	ug/L
1,1-dichloroethane	MW-16	4/23/2012		1.9	1.0	ug/L
1,1-dichloroethane	MW-16	9/10/2012		1.6	1.0	ug/L
1,1-dichloroethane	MW-16	4/04/2013		2.2	1.0	ug/L
1,1-dichloroethane	MW-16	10/11/2013		2.1	1.0	ug/L
1,1-dichloroethane	MW-16	4/23/2014		2.4	1.0	ug/L
1,1-dichloroethane	MW-16	9/18/2014		2.0	1.0	ug/L
1,1-dichloroethane	MW-16	4/29/2015		2.2	1.0	ug/L
1,1-dichloroethane	MW-16	10/06/2015		1.9	1.0	ug/L
1,1-dichloroethane	MW-16	4/23/2016		2.5	1.0	ug/L
1,1-dichloroethane	MW-16	9/01/2016		1.9	1.0	ug/L
1,1-dichloroethane	MW-16	3/22/2017		1.6	1.0	ug/L
1,1-dichloroethane	MW-16	10/13/2017		1.8	1.0	ug/L
1,1-dichloroethane	MW-16	3/09/2018		2.4	1.0	ug/L
1,1-dichloroethane	MW-16	3/07/2019		1.7	1.0	ug/L
1,1-dichloroethane	MW-16	9/26/2019		1.3	1.0	ug/L
1,1-dichloroethane	MW-16	3/25/2021		1.2	1.0	ug/L
1,1-dichloroethane	MW-16	3/16/2022		1.9	1.0	ug/L
1,1-dichloroethane	MW-16	3/18/2024		1.0	1.0	ug/L
1,2-dichloropropane	MW-16	3/16/2022		1 26	1	ug/L
1,4-dichlorobenzene 1.4-dichlorobenzene	MW-16	3/10/1994		2.6 2.6	1.0	ug/L
1,4-dichlorobenzene 1,4-dichlorobenzene	MW-16	6/09/1994				ug/L
1,4-dichlorobenzene 1,4-dichlorobenzene	MW-16 MW-16	4/28/2007 9/27/2007		3.8 3.1	1.0 1.0	ug/L ug/L
1,4-dichlorobenzene	MW-16	4/16/2008		3.5	1.0	ug/L ug/L
1,4-dichlorobenzene	MW-16	6/17/2008		4.1	1.0	ug/L ug/L
1,4-dichlorobenzene	MW-16	8/20/2008		4.1	1.0	ug/L ug/L
1,4-dichlorobenzene	MW-16	10/16/2008		3.2	1.0	ug/L ug/L
1,4-dichlorobenzene	MW-16	12/04/2008		4.9	1.0	ug/L
1,4-dichlorobenzene	MW-16	3/16/2009		4.2	1.0	ug/L
1,4-dichlorobenzene	MW-16	9/24/2009		3.0	1.0	ug/L
1,4-dichlorobenzene	MW-16	4/19/2010		3.6	1.0	ug/L
1,4-dichlorobenzene	MW-16	9/29/2010		4.2	1.0	ug/L
1,4-dichlorobenzene	MW-16	5/03/2011		3.6	1.0	ug/L
1,4-dichlorobenzene	MW-16	10/11/2011		3.4	1.0	ug/L
1,4-dichlorobenzene	MW-16	4/23/2012		2.5	1.0	ug/L
1,4-dichlorobenzene	MW-16	9/10/2012		2.7	1.0	ug/L
1,4-dichlorobenzene	MW-16	4/04/2013		2.3	1.0	ug/L
1,4-dichlorobenzene	MW-16	10/11/2013		2.0	1.0	ug/L
1,4-dichlorobenzene	MW-16	4/23/2014		1.7	1.0	ug/L
1,4-dichlorobenzene	MW-16	4/29/2015		1.5	1.0	ug/L
1,4-dichlorobenzene	MW-16	10/06/2015		2.0	1.0	ug/L
				1.6	1.0	. –

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
1,4-dichlorobenzene	MW-16	9/01/2016		2.1	1.0	ug/L
1,4-dichlorobenzene	MW-16	3/22/2017		2.6	1.0	ug/L
1,4-dichlorobenzene	MW-16	10/13/2017		2.0	1.0	ug/L
1,4-dichlorobenzene	MW-16	3/09/2018		1.8	1.0	ug/L
1,4-dichlorobenzene	MW-16	9/06/2018		2.7	1.0	
1,4-dichlorobenzene	MW-16	3/07/2019		3.8	1.0	ug/L
1,4-dichlorobenzene	MW-16	9/17/2020		1.8	1.0	ug/L
1,4-dichlorobenzene	MW-16	3/25/2021		1.8	1.0	ug/L
1,4-dichlorobenzene	MW-16	9/16/2021		2.2	1.0	ug/L
1,4-dichlorobenzene	MW-16	3/16/2022		2.1	1.0	
1,4-dichlorobenzene	MW-16	3/18/2024		1.8	1.0	ug/L
Acetone	MW-16	10/13/2017		13.1	10.0	ug/L
Benzene	MW-16	9/23/1993		2.4	2.0	ug/L
Benzene	MW-16	3/10/1994		2.1	2.0	ug/L
Benzene	MW-16	4/07/1995		1.3	1.0	ug/L
Benzene	MW-16	10/04/1995		1.3	1.0	ug/L
Benzene	MW-16	9/17/1996		1.6	1.0	ug/L
Benzene	MW-16	3/20/1997		2.1	2.0	ug/L
Benzene	MW-16	9/11/1997		2.8	2.0	ug/L
Benzene	MW-16	3/18/1999		1.6	1.0	
Benzene	MW-16	9/01/1999		2.3	2.0	ug/L
Benzene	MW-16	4/04/2000		1.7	1.0	ug/L
Benzene	MW-16	9/28/2000		1.5	1.0	
Benzene	MW-16	3/30/2001		1.8	1.0	ug/L
Benzene	MW-16	10/08/2001		1.6	1.0	ug/L
Benzene	MW-16	4/04/2002		1.6	1.0	ug/L
Benzene	MW-16	9/16/2002		1.5	1.0	ug/L
Benzene	MW-16	4/02/2003		1.2	1.0	ug/L
Benzene	MW-16	9/23/2003		1.6	1.0	ug/L
Benzene	MW-16	9/09/2004		1.1	1.0	ug/L
Benzene	MW-16	4/14/2005		1.6	1.0	ug/L
Benzene	MW-16	9/30/2005		1.8	1.0	ug/L
Benzene	MW-16	4/05/2006		1.5	1.0	ug/L
Benzene	MW-16	4/28/2007		1.2	1.0	ug/L
Benzene	MW-16	9/27/2007		1.2	1.0	ug/L
Benzene	MW-16	4/16/2008		1.4	1.0	
Benzene	MW-16	6/17/2008		1.4	1.0	ug/L
Benzene	MW-16	8/20/2008		1.5	1.0	ug/L
Benzene	MW-16	10/16/2008		1.4	1.0	
Benzene	MW-16	12/04/2008		1.9	1.0	ug/L
Benzene	MW-16	3/16/2009		1.7	1.0	ug/L
Benzene	MW-16	9/24/2009		1.2	1.0	ug/L
Benzene	MW-16	4/19/2010		1.2	1.0	ug/L
Benzene	MW-16	9/29/2010		1.7	1.0	ug/L
Benzene	MW-16	5/03/2011		1.3	1.0	ug/L
Benzene	MW-16	10/11/2011		1.3	1.0	ug/L
Benzene	MW-16	4/23/2012		1.0	1.0	ug/L
Benzene	MW-16	9/10/2012		1.2	1.0	ug/L
Benzene	MW-16	10/11/2013		1.1	1.0	
Benzene	MW-16	10/06/2015		1.0	1.0	ug/L
Benzene	MW-16	9/01/2016		1.2	1.0	ug/L
Benzene	MW-16 MW-16	3/22/2017		1.3	1.0	
Benzene		10/13/2017		1.1	1.0	ug/L
Benzene Benzene	MW-16 MW-16	9/06/2018 3/07/2019		1.7 2.1	1.0	ug/L
Benzene	MW-16	4/02/2020		1.6	1.0	ug/L ug/L
Benzene	MW-16	3/25/2021		1.5	1.0	
Benzene	MW-16	9/16/2021		1.3	1.0	
Benzene	MW-16	3/16/2022		1.6	1.0	
Benzene	MW-16	3/18/2024		1.5	1.0	
Chlorobenzene	MW-16	4/16/2008		9.1	1.0	
Chlorobenzene	MW-16	6/17/2008		9.1		ug/L ug/L
Chlorobenzene	MW-16	8/20/2008		10.4	1.0	
Chlorobenzene	MW-16	10/16/2008		9.2	1.0	
Chlorobenzene	MW-16	12/04/2008		14.5	1.0	
Chlorobenzene	MW-16	3/16/2009		12.3	1.0	
Chlorobenzene	MW-16	9/24/2009		8.7	1.0	
Chlorobenzene	MW-16	4/19/2010		9.2	1.0	
Chlorobenzene	MW-16					
Chlorobenzene	MW-16	9/29/2010 5/03/2011		11.3 9.6	1.0	
Chlorobenzene	MW-16	10/11/2011		9.6 8.7	1.0 1.0	
Chlorobenzene	MW-16	4/23/2012		8.7 6.6		
Chlorobenzene	MW-16	9/10/2012		7.5	1.0	ug/L
Chlorobenzene	MW-16	4/04/2013		7.5 5.8	1.0	
Chlorobenzene	MW-16	10/11/2013		6.0	1.0	
Chlorobenzene	MW-16	4/23/2014		4.6		ug/L ug/L
I OTHORODERIZERIC	14144-10	7/23/2014		4.0	1.0	ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Chlorobenzene	MW-16	9/18/2014		4.3	1.0	ug/L
Chlorobenzene	MW-16	4/29/2015		4.4	1.0	ug/L
Chlorobenzene	MW-16	10/06/2015		4.9	1.0	ug/L
Chlorobenzene Chlorobenzene	MW-16 MW-16	4/23/2016		3.5 6.0	1.0	ug/L
Chlorobenzene	MW-16	9/01/2016 3/22/2017		6.4	1.0 1.0	ug/L ug/L
Chlorobenzene	MW-16	10/13/2017		5.1	1.0	
Chlorobenzene	MW-16	3/09/2018		4.7	1.0	
Chlorobenzene	MW-16	9/06/2018		8.1	1.0	ug/L
Chlorobenzene	MW-16	3/07/2019		9.7	1.0	
Chlorobenzene	MW-16	9/26/2019		4.8	1.0	ug/L
Chlorobenzene	MW-16	4/02/2020		8.8	1.0	
Chlorobenzene	MW-16	9/17/2020		4.7	1.0	
Chlorobenzene	MW-16	3/25/2021		5.8	1.0	
Chlorobenzene	MW-16	9/16/2021		7.3	1.0	0
Chlorobenzene Chlorobenzene	MW-16 MW-16	3/16/2022		5.2 2.1	1.0	ug/L
Chlorobenzene	MW-16	9/01/2022 3/24/2023		3.0	1.0 1.0	
Chlorobenzene	MW-16	3/18/2024		5.2	1.0	ug/L ug/L
Chlorobenzene	MW-16	9/25/2024		2.3	1.0	
Cis-1,2-dichloroethylene	MW-16	9/01/2016		1.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-16	10/13/2017		1.2	1.0	ug/L
Cis-1,2-dichloroethylene	MW-16	3/07/2019		1.4	1.0	
Cis-1,2-dichloroethylene	MW-16	3/25/2021		1.3	1.0	ug/L
Cis-1,2-dichloroethylene	MW-16	3/16/2022		2.1	1.0	ug/L
Dichlorodifluoromethane	MW-16	10/11/2011		4.0	1.0	0
Dichlorodifluoromethane	MW-16	4/23/2012		5.0	1.0	ug/L
Dichlorodifluoromethane	MW-16	9/10/2012		3.6	1.0	0
Dichlorodifluoromethane	MW-16	4/04/2013 10/11/2013		4.3	1.0	ug/L
Dichlorodifluoromethane Dichlorodifluoromethane	MW-16 MW-16	4/23/2014		2.9 4.3	1.0 1.0	ug/L
Dichlorodifluoromethane	MW-16	9/18/2014		3.6	1.0	ug/L ug/L
Dichlorodifluoromethane	MW-16	4/29/2015		2.6	1.0	
Dichlorodifluoromethane	MW-16	10/06/2015		2.9	1.0	ug/L
Dichlorodifluoromethane	MW-16	4/23/2016		3.2	1.0	ug/L
Dichlorodifluoromethane	MW-16	9/01/2016		3.6	1.0	
Dichlorodifluoromethane	MW-16	3/22/2017		2.2	1.0	ug/L
Dichlorodifluoromethane	MW-16	10/13/2017		1.6	1.0	ug/L
Dichlorodifluoromethane	MW-16	3/09/2018		3.0	1.0	0
Dichlorodifluoromethane	MW-16	3/07/2019		4.6	1.0	ug/L
Trichloroethylene	MW-16 MW-16	9/23/1993		1.8 1.0	1.0 1.0	I U
Vinyl chloride Vinyl chloride	MW-16	6/17/2008 9/24/2009		1.6	1.0	ug/L ug/L
Vinyl chloride	MW-16	3/07/2019		2.5	1.0	
1,1-dichloroethane	MW-18	4/23/2012		1.3	1.0	ug/L
Acetone	MW-18	10/13/2017		18	10	ug/L
Benzene	MW-18	10/13/2017		1.6	1.0	ug/L
Bromomethane	MW-18	10/11/2013		1.6	1.0	ug/L
Chloroethane	MW-18	10/13/2017		1.6	1.0	0
Methyl iodide	MW-18	10/11/2013		1.5	1.0	
1,1-dichloroethane	MW-19	5/04/2011		1.3	1.0	
1,1-dichloroethane	MW-19	10/10/2011		1.7	1.0	0
1,1-dichloroethane	MW-19 MW-19	9/11/2012 4/05/2013		1.6 1.8	1.0	ug/L ug/L
1.1-dichloroethane	MW-19	10/11/2013		2.9		ug/L ug/L
1,1-dichloroethane	MW-19	4/22/2014		2.5		ug/L
1,1-dichloroethane	MW-19	9/17/2014		1.8	1.0	
1,1-dichloroethane	MW-19	10/06/2015		1.3	1.0	
1,1-dichloroethane	MW-19	4/23/2016		2.2	1.0	
1,1-dichloroethane	MW-19	9/01/2016		1.6	1.0	ug/L
1,1-dichloroethane	MW-19	3/22/2017		2.2	1.0	
1,1-dichloroethane	MW-19	10/13/2017		1.0	1.0	
1,1-dichloroethane	MW-19	3/09/2018		3.1	1.0	
1,1-dichloroethane	MW-19	9/06/2018		3.0	1.0	
1,1-dichloroethane	MW-19 MW-19	9/17/2020		2.3 2.6	1.0	
1,1-dichloroethane	MW-19	3/25/2021 9/16/2021		3.4	1.0 1.0	
1,1-dichloroethane	MW-19	3/16/2022		4.9	1.0	
1,1-dichloroethane	MW-19	9/01/2022		3.8	1.0	
1.1-dichloroethane	MW-19	3/24/2023		3.0	1.0	
1,1-dichloroethane	MW-19	9/07/2023		2.9	1.0	
Acetone	MW-19	10/13/2017		19.8		ug/L
Acetone	MW-19	9/06/2018		15.9	10.0	
Acetone	MW-19	9/26/2019		107.0	10.0	
Acetone	MW-19	9/17/2020 3/16/2022		11.2	10.0	
Benzene	MW-19			1.2		ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Benzene	MW-19	9/01/2022		1.0	1.0	ug/L
Bis(2-ethylhexyl) phthalate	MW-19	4/24/2012		33	. 8	ug/L
Chloroethane	MW-19	3/16/2022		1.4	1.0	ug/L
Chloroethane	MW-19	9/01/2022		1.2	1.0	ug/L
Chloromethane	MW-19 MW-19	4/23/2016 10/11/2013		3.6 1.5	1.0 1.0	ug/L
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-19	4/22/2014		1.5	1.0	ug/L ug/L
Cis-1,2-dichloroethylene	MW-19	4/23/2016		1.3	1.0	ug/L
Cis-1,2-dichloroethylene	MW-19	9/01/2016		1.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-19	3/22/2017		1.5	1.0	ug/L
Cis-1,2-dichloroethylene	MW-19	3/09/2018		1.9	1.0	ug/L
Cis-1,2-dichloroethylene	MW-19	9/06/2018		2.6	1.0	ug/L
Cis-1,2-dichloroethylene	MW-19	9/17/2020		1.7	1.0	ug/L
Cis-1,2-dichloroethylene	MW-19	3/25/2021		2.1	1.0	ug/L
Cis-1,2-dichloroethylene	MW-19	9/16/2021		2.6	1.0	ug/L
Cis-1,2-dichloroethylene	MW-19	3/16/2022		4.7	1.0	ug/L
Cis-1,2-dichloroethylene	MW-19	9/01/2022		3.5	1.0	ug/L
Cis-1,2-dichloroethylene Cis-1,2-dichloroethylene	MW-19 MW-19	3/24/2023 9/07/2023		2.2 1.1	1.0 1.0	ug/L ug/L
Dichlorodifluoromethane	MW-19	4/24/2012		1.1	1.0	ug/L ug/L
Dichlorodifluoromethane	MW-19	3/22/2017			1	ug/L ug/L
Vinyl chloride	MW-19	9/06/2018		3.2	1.0	ug/L ug/L
Vinyl chloride	MW-19	9/17/2020		1.4	1.0	ug/L ug/L
Vinyl chloride	MW-19	3/25/2021		1.2	1.0	ug/L
Vinyl chloride	MW-19	9/16/2021		1.9	1.0	ug/L
Vinyl chloride	MW-19	3/16/2022		1.9	1.0	ug/L
Vinyl chloride	MW-19	9/01/2022		2.1	1.0	ug/L
Vinyl chloride	MW-19	3/24/2023		1.0	1.0	ug/L
Vinyl chloride	MW-19	9/07/2023		1.2	1.0	ug/L
Benzene	MW-1D	9/07/2023		1.1	1.0	ug/L
Benzene	MW-1D	3/18/2024		1.3	1.0	ug/L
Chlorobenzene	MW-1D	9/07/2023		1.0	1.0	ug/L
Chlorobenzene Chloroethane	MW-1D	3/18/2024		1.5	1.0	ug/L
Acetone	MW-1D MW-20	3/18/2024 10/11/2013		1.1 13.0	1.0	ug/L ug/L
Acetone	MW-20	4/23/2014		18.8	10.0	ug/L ug/L
Acetone	MW-20	3/16/2022		57.2	10.0	ug/L
Benzene	MW-20	9/29/2010		1.0	1.0	ug/L
Benzene	MW-20	5/04/2011		1.1	1.0	ug/L
Benzene	MW-20	10/11/2011		1.4	1.0	ug/L
Benzene	MW-20	9/11/2012		2.3	1.0	ug/L
Benzene	MW-20	4/05/2013		1.8	1.0	ug/L
Benzene	MW-20	10/11/2013		1.5	1.0	ug/L
Benzene	MW-20	4/23/2014		1.6	1.0	ug/L
Benzene	MW-20	9/18/2014		1.9 1.9	1.0	ug/L
Benzene Benzene	MW-20 MW-20	4/28/2015 10/06/2015		2.0	1.0 1.0	ug/L ug/L
Benzene	MW-20	4/23/2016		1.5	1.0	ug/L ug/L
Benzene	MW-20	9/01/2016		1.8	1.0	ug/L
Benzene	MW-20	3/21/2017		2.6	1.0	ug/L
Benzene	MW-20	10/13/2017		2.0	1.0	ug/L
Benzene	MW-20	3/09/2018		2.9	1.0	ug/L
Benzene	MW-20	9/06/2018		3.6	1.0	ug/L
Benzene	MW-20	3/07/2019		2.5	1.0	ug/L
Benzene	MW-20	9/26/2019		3.1	1.0	ug/L
Benzene	MW-20	4/02/2020		2.8		ug/L
Benzene	MW-20	3/25/2021		3.3	1.0	ug/L
Benzene	MW-20	9/16/2021		3.0	1.0	ug/L
Benzene Benzene	MW-20	3/16/2022		3.8	1.0	ug/L
Benzene	MW-20 MW-20	9/01/2022 3/24/2023		2.6 2.6	1.0 1.0	ug/L ug/L
Benzene	MW-20	9/07/2023		2.0	1.0	ug/L ug/L
Benzene	MW-20	3/18/2024		2.2	1.0	ug/L
Benzene	MW-20	9/25/2024		2.1	1.0	ug/L
Bis(2-ethylhexyl) phthalate	MW-20	9/16/2021		8	6	ug/L
Bis(2-ethylhexyl) phthalate	MW-20	3/16/2022		7	6	ug/L
Chlorobenzene	MW-20	9/06/2018		1.2	1.0	ug/L
Chlorobenzene	MW-20	4/02/2020		1.0	1.0	ug/L
Chlorobenzene	MW-20	9/17/2020		1.2	1.0	ug/L
Chlorobenzene	MW-20	3/25/2021		1.1	1.0	ug/L
Chlorobenzene	MW-20	9/16/2021		1.1	1.0	ug/L
Chlorobenzene	MW-20	3/16/2022		1.1	1.0	ug/L
Chlorobenzene	MW-20	9/01/2022		1.1	1.0	ug/L
Chlorobenzene	N/N// 20	0/07/2022		1 0	1 ()	lua/I
Chlorobenzene Chlorobenzene	MW-20 MW-20	9/07/2023 3/18/2024		1.0 1.2	1.0 1.0	ug/L ug/L

Table 1
Historical Volatile Organic Compound Detections

Constituent	Well	Date	Identifier	Result	Limit	Units
Chloroethane	MW-20	4/19/2010		1.9	1.0	ug/L
Chloroethane	MW-20	5/27/2010		3.0	1.0	ug/L
Chloroethane	MW-20	7/28/2010		3.1	1.0	ug/L
Chloroethane	MW-20	9/29/2010		4.0	1.0	ug/L
Chloroethane	MW-20	11/03/2010		3.0	1.0	ug/L
Chloroethane	MW-20	5/04/2011		4.0	1.0	ug/L
Chloroethane	MW-20	10/11/2011		4.3	1.0	ug/L
Chloroethane	MW-20	9/11/2012		4.5	1.0	ug/L
Chloroethane	MW-20	4/05/2013		2.3	1.0	ug/L
Chloroethane	MW-20	10/11/2013		3.8	1.0	ug/L
Chloroethane	MW-20	4/23/2014		3.0	1.0	ug/L
Chloroethane	MW-20	9/18/2014		2.1	1.0	ug/L
Chloroethane	MW-20	4/28/2015		2.9	1.0	ug/L
Chloroethane	MW-20	10/06/2015		2.3	1.0	ug/L
Chloroethane	MW-20	4/23/2016		1.6	1.0	ug/L
Chloroethane	MW-20	3/21/2017		2.4	1.0	ug/L
Chloroethane	MW-20	10/13/2017		2.3	1.0	ug/L
Chloroethane	MW-20	3/09/2018		2.0	1.0	ug/L
Chloroethane	MW-20	9/06/2018		2.8	1.0	ug/L
Chloroethane	MW-20	3/07/2019		1.6	1.0	ug/L
Chloroethane Chloroethane	MW-20 MW-20	9/26/2019		2.0	1.0 1.0	ug/L
Chloroethane	MW-20	4/02/2020 9/17/2020		1.6 1.6	1.0	ug/L
Chloroethane	MW-20	3/25/2021		1.6	1.0	ug/L
Chloroethane	MW-20	9/16/2021		1.8	1.0	ug/L ug/L
Chloroethane	MW-20	3/16/2022		1.6	1.0	ug/L ug/L
Chloroethane	MW-20	9/01/2022		1.7	1.0	ug/L ug/L
Chloroethane	MW-20	9/07/2023		1.5	1.0	ug/L
Chloroethane	MW-20	3/18/2024		1.2	1.0	ug/L
1,1,1-trichloroethane	MW-3	9/23/1993		1.1	1.0	ug/L
1,1-dichloroethane	MW-3	4/16/2008		1.8	1.0	ug/L
1,1-dichloroethane	MW-3	6/17/2008		1.4	1.0	ug/L
1,1-dichloroethane	MW-3	4/19/2010		3.1	1.0	ug/L
1,1-dichloroethane	MW-3	5/03/2011		1.7	1.0	ug/L
1,1-dichloroethane	MW-3	4/23/2012		1.6	1.0	ug/L
1,1-dichloroethane	MW-3	9/17/2014		1.3	1.0	ug/L
1,1-dichloroethane	MW-3	9/01/2016		1.5	1.0	ug/L
Acetone	MW-3	10/13/2017		15.4	10.0	ug/L
Bis(2-ethylhexyl) phthalate	MW-3	9/16/2021		8	6	ug/L
Chloromethane	MW-3	4/19/2010		1	1	ug/L
Cis-1,2-dichloroethylene	MW-3	4/16/2008		4.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-3	6/17/2008		2.6	1.0	ug/L
Cis-1,2-dichloroethylene	MW-3	9/24/2009		1.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-3	4/19/2010		6.6	1.0	ug/L
Cis-1,2-dichloroethylene	MW-3	9/29/2010		1.3	1.0	ug/L
Cis-1,2-dichloroethylene	MW-3	5/03/2011		2.8	1.0	ug/L
Cis-1,2-dichloroethylene	MW-3	10/11/2011		1.4	1.0	ug/L
Cis-1,2-dichloroethylene	MW-3	4/23/2012		2.8	1.0	ug/L
Cis-1,2-dichloroethylene	MW-3	9/17/2014		2.0	1.0	ug/L
Cis-1,2-dichloroethylene	MW-3	9/01/2016		2.3	1.0	ug/L
Dichlorodifluoromethane	MW-3	4/19/2010		1.2	1.0	ug/L
Trichloroethylene	MW-3 MW-7	9/23/1993		1.4 3.7	1.0	ug/L
1,1-dichloropropene 2,4,5-t	MW-7	3/25/2021 3/25/2021		2.0	1.0 .5	ug/L
2,4,5-l Acetone	MW-7	10/13/2017		12.4	10.0	ug/L ug/L
Benzene	MW-7	9/16/2021		1.4	1.0	ug/L ug/L
Bis(2-ethylhexyl) phthalate	MW-7	9/01/2022		9	6	ug/L ug/L
Dio(2 outyliloxyl) pridialate	14144-1	3/0/1/2022		9		ug/∟

Attachment E

Assessment Statistics for VOCs

pageco2024s2 October 2024

Table 1 Confidence Intervals for Comparing the Mean of the Last 4 Measurements to an Assessment Monitoring Standard

Constituent	Units	Well	N	Mean	SD	Factor	95% LCL	95% UCL	Standard	Trend	
1,1-dichloroethane	ug/L	MW-1	4	0.500	0.000	1.176	0.500	0.500	140.000		
1,4-dichlorobenzene	ug/L	MW-1	4	0.500	0.000	1.176	0.500	0.500	75.000		
Benzene	ug/L	MW-1	4	1.075	0.665	1.176	0.293	1.857	5.000		
Chlorobenzene	ug/L	MW-1	4	0.500	0.000	1.176	0.500	0.500	100.000		
Chloroethane	ug/L	MW-1	4	0.900	0.462	1.176	0.357	1.443	2800.000		
Cis-1,2-dichloroethylene	ug/L	MW-1	4	0.500	0.000	1.176	0.500	0.500	70.000		
Vinyl chloride	ug/L	MW-1	4	0.500	0.000	1.176	0.500	0.500	2.000		
1,1-dichloroethane	ug/L	MW-16	4	0.625	0.250	1.176	0.331	0.919	140.000		
1,4-dichlorobenzene	ug/L	MW-16	4	0.825	0.650	1.176	0.060	1.590	75.000	dec	
Benzene	ug/L	MW-16	4	0.750	0.500	1.176	0.162	1.338	5.000		
Chlorobenzene	ug/L	MW-16	4	2.750	1.943	1.176	0.464	5.036	100.000	dec	
Chloroethane	ug/L	MW-16	4	0.500	0.000	1.176	0.500	0.500	2800.000		
Cis-1,2-dichloroethylene	ug/L	MW-16	4	0.500	0.000	1.176	0.500	0.500	70.000		
Vinyl chloride	ug/L	MW-16	4	0.500	0.000	1.176	0.500	0.500	2.000		
1,1-dichloroethane	ug/L	MW-19	4	3.675	0.903	1.176	2.613	4.737	140.000	inc	
1,4-dichlorobenzene	ug/L	MW-19	4	0.500	0.000	1.176	0.500	0.500	75.000		
Benzene	ug/L	MW-19	4	0.800	0.356	1.176	0.381	1.219	5.000		
Chlorobenzene	ug/L	MW-19	4	0.500	0.000	1.176	0.500	0.500	100.000		
Chloroethane	ug/L	MW-19	4	0.900	0.469	1.176	0.348	1.452	2800.000		
Cis-1,2-dichloroethylene	ug/L	MW-19	4	2.875	1.563	1.176	1.037	4.713	70.000		
Vinyl chloride	ug/L	MW-19	4	1.550	0.532	1.176	0.924	2.176	2.000		
1,1-dichloroethane	ug/L	MW-1D	3								*
1,4-dichlorobenzene	ug/L	MW-1D	3								*
Benzene	ug/L	MW-1D	3								*
Chlorobenzene	ug/L	MW-1D	3								*
Chloroethane	ug/L	MW-1D	3								*
Cis-1,2-dichloroethylene	ug/L	MW-1D	3								*
Vinyl chloride	ug/L	MW-1D	3								*
1,1-dichloroethane	ug/L	MW-20	4	0.500	0.000	1.176	0.500	0.500	140.000		
1,4-dichlorobenzene	ug/L	MW-20	4	0.500	0.000	1.176	0.500	0.500	75.000		
Benzene	ug/L	MW-20	4	2.225	0.263	1.176	1.916	2.534	5.000	inc	
Chlorobenzene	ug/L	MW-20	4	1.150	0.580	1.176	0.467	1.833	100.000		
Chloroethane	ug/L	MW-20	4	0.925	0.506	1.176	0.330	1.520	2800.000	dec	
Cis-1,2-dichloroethylene	ug/L	MW-20	4	0.500	0.000	1.176	0.500	0.500	70.000		
Vinvl chloride	ug/L	MW-20	4	0.500	0.000	1.176	0.500	0.500	2.000		
	~g, _		<u> </u>	0.000	0.000		0.000	0.000			<u> </u>

^{* -} Insufficient Data ** - Significant Exceedance LCL = Lower Confidence Limit UCL = Upper Confidence Limit

Graph 5

Graph 4

Graph 6

Graph 22

Graph 23

Graph 24

Graph 25

Graph 26

Graph 27

Graph 28

Worksheet 6 - Assessment Monitoring 1,1-dichloroethane (ug/L) at MW-1

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 2.0 / 4	
	= 0.5	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((1.0 - 4.0/4) / (4-1)) ^{1/2}	
	= 0.0	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	$= 0.5 - 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	$= 0.5 + 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 34 * (34-1) / 2	
	= 561	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 0.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(561 \pm 2.576 * 0.0^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [280.5, 280.5]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring 1,4-dichlorobenzene (ug/L) at MW-1

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 2.0 / 4	
	= 0.5	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	$= ((1.0 - 4.0/4) / (4-1))^{1/2}$	
	= 0.0	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	$= 0.5 - 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	$= 0.5 + 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 34 * (34-1) / 2	
	= 561	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 0.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(561 \pm 2.576 * 0.0^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [280.5, 280.5]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Benzene (ug/L) at MW-1

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 4.3 / 4	
	= 1.075	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((5.95 - 18.49/4) / (4-1)) ^{1/2}	
	= 0.665	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 1.075 - 2.353 * 0.665/4 ^{1/2}	measurements.
	= 0.293	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	= 1.075 + 2.353 * 0.665/4 ^{1/2}	measurements.
	= 1.857	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 37 * (37-1) / 2	
	= 666	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 1680.667	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(666 \pm 2.576 * 1680.667^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [280.197, 385.803]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Chlorobenzene (ug/L) at MW-1

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 2.0 / 4	
	= 0.5	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((1.0 - 4.0/4) / (4-1)) ^{1/2}	
	= 0.0	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	$= 0.5 - 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	$= 0.5 + 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 34 * (34 -1) / 2	
	= 561	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 0.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(561 \pm 2.576 * 0.0^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [280.5, 280.5]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Chloroethane (ug/L) at MW-1

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 3.6 / 4	
	= 0.9	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((3.88 - 12.96/4) / (4-1)) ^{1/2}	
	= 0.462	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 0.9 - 2.353 * 0.462/4 ^{1/2}	measurements.
	= 0.357	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	= 0.9 + 2.353 * 0.462/4 ^{1/2}	measurements.
	= 1.443	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 36 * (36 -1) / 2	
	= 630	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 1586.333	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(630 \pm 2.576 * 1586.333^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [263.701, 366.299]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Cis-1,2-dichloroethylene (ug/L) at MW-1

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 2.0 / 4	
	= 0.5	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	$= ((1.0 - 4.0/4) / (4-1))^{1/2}$	
	= 0.0	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	$= 0.5 - 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	$= 0.5 + 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 34 * (34-1) / 2	
	= 561	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 0.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(561 \pm 2.576 * 0.0^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [280.5, 280.5]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Vinyl chloride (ug/L) at MW-1

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 2.0 / 4	
	= 0.5	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((1.0 - 4.0/4) / (4-1)) ^{1/2}	
	= 0.0	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	$= 0.5 - 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	$= 0.5 + 2.353 * 0.0/4^{\frac{1}{2}}$	measurements.
	= 0.5	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 34 * (34 -1) / 2	
	= 561	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 0.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(561 \pm 2.576 * 0.0^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [280.5, 280.5]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring 1,1-dichloroethane (ug/L) at MW-16

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 2.5 / 4	
	= 0.625	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((1.75 - 6.25/4) / (4-1)) ^{1/2}	
	= 0.25	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 0.625 - 2.353 * 0.25/4 ^{1/2}	measurements.
	= 0.331	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4 measurements.
	$= 0.625 + 2.353 * 0.25/4^{1/2}$	
	= 0.919	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 37 * (37-1) / 2	
	= 666	
6	S = -0.064	Sen's estimator of trend.
7	var(S) = 5717.333	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(666 \pm 2.576 * 5717.333^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [235.61, 430.39]	integers, interpolation is used.
9	CL(S) = [-0.116, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring 1,4-dichlorobenzene (ug/L) at MW-16

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$ = 3.3 / 4	Compute the mean of the last 4 measurements.
	= 0.825	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((3.99 - 10.89/4) / (4-1))^{1/2}$	Compute sd of the last 4 measurements.
	= 0.65	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$ = 0.825 - 2.353 * 0.65/4 \frac{1}{2}	Compute lower confidence limit for the mean of the last 4 measurements.
	= 0.06	
4	UCL = \overline{X} + tS/N ^{1/2} = 0.825 + 2.353 * 0.65/4 ^{1/2}	Compute upper confidence limit for the mean of the last 4 measurements.
	= 1.59	
5	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 39 * (39 -1) / 2 = 741	
6	S = -0.182	Sen's estimator of trend.
7	var(S) = 6771.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(741 \pm 2.576 * 6771.0^{1/2}) / 2$ = $[264.516, 476.484]$	estimates for the values shown. When the values are not integers, interpolation is used.
9	CL(S) = [-0.246, -0.112]	Two-sided confidence interval for slope.
10	UCL(S) < 0	Significant decreasing trend.

Worksheet 6 - Assessment Monitoring Benzene (ug/L) at MW-16

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 3.0 / 4	
	= 0.75	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	$= ((3.0 - 9.0/4) / (4-1))^{1/2}$	
	= 0.5	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	$= 0.75 - 2.353 * 0.5/4^{1/2}$	measurements.
	= 0.162	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4 measurements.
	$= 0.75 + 2.353 * 0.5/4^{1/2}$	
	= 1.338	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 53 * (53 -1) / 2	
	= 1378	
6	S = -0.029	Sen's estimator of trend.
7	var(S) = 16534.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(1378 \pm 2.576 * 16534.0^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [523.383, 854.617]	integers, interpolation is used.
9	CL(S) = [-0.054, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Chlorobenzene (ug/L) at MW-16

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 11.0 / 4	
	= 2.75	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((41.58 - 121.0/4) / (4-1)) ^{1/2}	
	= 1.943	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 2.75 - 2.353 * 1.943/4 ^{1/2}	measurements.
	= 0.464	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	$= 2.75 + 2.353 * 1.943/4^{1/2}$	measurements.
	= 5.036	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 37 * (37 -1) / 2	
	= 666	
6	S = -0.432	Sen's estimator of trend.
7	var(S) = 5840.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(666 \pm 2.576 * 5840.0^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [234.571, 431.429]	integers, interpolation is used.
9	CL(S) = [-0.639, -0.228]	Two-sided confidence interval for slope.
10	UCL(S) < 0	Significant decreasing trend.

Worksheet 6 - Assessment Monitoring Chloroethane (ug/L) at MW-16

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 2.0 / 4	
	= 0.5	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	$= ((1.0 - 4.0/4) / (4-1))^{1/2}$	
	= 0.0	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	$= 0.5 - 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4 measurements.
	$= 0.5 + 2.353 * 0.0/4^{1/2}$	
	= 0.5	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 37 * (37-1) / 2	
	= 666	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 0.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(666 \pm 2.576 * 0.0^{1/2}) / 2$	estimates for the values shown. When the values are
	= [333.0, 333.0]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Cis-1,2-dichloroethylene (ug/L) at MW-16

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 2.0 / 4	
	= 0.5	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((1.0 - 4.0/4) / (4-1)) ^{1/2}	
	= 0.0	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	$= 0.5 - 2.353 * 0.0/4^{\frac{1}{2}}$	measurements.
	= 0.5	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	$= 0.5 + 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 37 * (37 -1) / 2	
	= 666	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 2043.333	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (666 ± 2.576 * 2043.333 ^{1/2}) / 2	estimates for the values shown. When the values are not
	= [274.778, 391.222]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Vinyl chloride (ug/L) at MW-16

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 2.0 / 4	
	= 0.5	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	$= ((1.0 - 4.0/4) / (4-1))^{1/2}$	
	= 0.0	
3	$LCL = \overline{X} - tS/N^{1/2}$	Compute lower confidence limit for the mean of the last 4
	$= 0.5 - 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	$= 0.5 + 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 37 * (37-1) / 2	
	= 666	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 1295.667	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (666 ± 2.576 * 1295.667 ½) / 2	estimates for the values shown. When the values are not
	= [286.638, 379.362]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring 1,1-dichloroethane (ug/L) at MW-19

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 14.7 / 4	
	= 3.675	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((56.47 - 216.09/4) / (4-1)) ^{1/2}	
	= 0.903	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 3.675 - 2.353 * 0.903/4 ^{1/2}	measurements.
	= 2.613	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	$= 3.675 + 2.353 * 0.903/4^{1/2}$	measurements.
	= 4.737	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 31 * (31 -1) / 2	
	= 465	
6	S = 0.182	Sen's estimator of trend.
7	var(S) = 3330.667	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(465 \pm 2.576 * 3330.667^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [158.167, 306.833]	integers, interpolation is used.
9	CL(S) = [0.035, 0.288]	Two-sided confidence interval for slope.
10	LCL(S) > 0	Significant increasing trend.

Worksheet 6 - Assessment Monitoring 1,4-dichlorobenzene (ug/L) at MW-19

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 2.0 / 4	
	= 0.5	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((1.0 - 4.0/4) / (4-1)) ^{1/2}	
	= 0.0	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	$= 0.5 - 2.353 * 0.0/4^{\frac{1}{2}}$	measurements.
	= 0.5	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	$= 0.5 + 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 31 * (31 -1) / 2	
	= 465	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 0.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (465 ± 2.576 * 0.0 ^{1/2}) / 2	estimates for the values shown. When the values are not
	= [232.5, 232.5]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Benzene (ug/L) at MW-19

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 3.2 / 4	
	= 0.8	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((2.94 - 10.24/4) / (4-1)) ^{1/2}	
	= 0.356	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 0.8 - 2.353 * 0.356/4 ^½	measurements.
	= 0.381	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	= 0.8 + 2.353 * 0.356/4 ^{1/2}	measurements.
	= 1.219	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 31 * (31-1) / 2	
	= 465	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 619.667	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(465 \pm 2.576 * 619.667^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [200.438, 264.562]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Chlorobenzene (ug/L) at MW-19

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 2.0 / 4	
	= 0.5	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	$= ((1.0 - 4.0/4) / (4-1))^{1/2}$	
	= 0.0	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	$= 0.5 - 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	$= 0.5 + 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 31 * (31-1) / 2	
	= 465	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 0.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(465 \pm 2.576 * 0.0^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [232.5, 232.5]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Chloroethane (ug/L) at MW-19

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 3.6 / 4	
	= 0.9	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((3.9 - 12.96/4) / (4-1)) ^{1/2}	
	= 0.469	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 0.9 - 2.353 * 0.469/4 ^{1/2}	measurements.
	= 0.348	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	= 0.9 + 2.353 * 0.469/4 ^{1/2}	measurements.
	= 1.452	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 31 * (31-1) / 2	
	= 465	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 619.667	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} \text{ var(S)}^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (465 ± 2.576 * 619.667 ^{1/2}) / 2	estimates for the values shown. When the values are not
	= [200.438, 264.562]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Cis-1,2-dichloroethylene (ug/L) at MW-19

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 11.5 / 4	
	= 2.875	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((40.39 - 132.25/4) / (4 -1)) ¹ / ₂	
	= 1.563	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 2.875 - 2.353 * 1.563/4 ^{1/2}	measurements.
	= 1.037	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	= 2.875 + 2.353 * 1.563/4 ^{1/2}	measurements.
	= 4.713	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 31 * (31 -1) / 2	
	= 465	
6	S = 0.118	Sen's estimator of trend.
7	var(S) = 2869.333	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (465 ± 2.576 * 2869.333 ^{1/2}) / 2	estimates for the values shown. When the values are not
	= [163.507, 301.493]	integers, interpolation is used.
9	CL(S) = [0.0, 0.192]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Vinyl chloride (ug/L) at MW-19

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 6.2 / 4	
	= 1.55	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((10.46 - 38.44/4) / (4-1)) ^{1/2}	
	= 0.532	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 1.55 - 2.353 * 0.532/4 ^{1/2}	measurements.
	= 0.924	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	= 1.55 + 2.353 * 0.532/4 ^{1/2}	measurements.
	= 2.176	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 31 * (31-1) / 2	
	= 465	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 2026.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(465 \pm 2.576 * 2026.0^{\frac{1}{2}}) / 2$	estimates for the values shown. When the values are not
	= [174.526, 290.474]	integers, interpolation is used.
9	CL(S) = [0.0, 0.054]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring 1,1-dichloroethane (ug/L) at MW-1D

Insufficient data to perform analysis

Worksheet 6 - Assessment Monitoring 1,4-dichlorobenzene (ug/L) at MW-1D

Insufficient data to perform analysis

Worksheet 6 - Assessment Monitoring Benzene (ug/L) at MW-1D

Insufficient data to perform analysis

Worksheet 6 - Assessment Monitoring Chlorobenzene (ug/L) at MW-1D

Insufficient data to perform analysis

Worksheet 6 - Assessment Monitoring Chloroethane (ug/L) at MW-1D

Insufficient data to perform analysis

Worksheet 6 - Assessment Monitoring Cis-1,2-dichloroethylene (ug/L) at MW-1D

Insufficient data to perform analysis

Worksheet 6 - Assessment Monitoring Vinyl chloride (ug/L) at MW-1D

Insufficient data to perform analysis

Worksheet 6 - Assessment Monitoring 1,1-dichloroethane (ug/L) at MW-20

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 2.0 / 4	
	= 0.5	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((1.0 - 4.0/4) / (4-1)) ^{1/2}	
	= 0.0	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	$= 0.5 - 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	$= 0.5 + 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 33 * (33 -1) / 2	
	= 528	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 0.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(528 \pm 2.576 * 0.0^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [264.0, 264.0]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring 1,4-dichlorobenzene (ug/L) at MW-20

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 2.0 / 4	
	= 0.5	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((1.0 - 4.0/4) / (4-1)) ^{1/2}	
	= 0.0	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	$= 0.5 - 2.353 * 0.0/4^{\frac{1}{2}}$	measurements.
	= 0.5	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	$= 0.5 + 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 33 * (33 -1) / 2	
	= 528	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 0.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(528 \pm 2.576 * 0.0^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [264.0, 264.0]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Benzene (ug/L) at MW-20

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 8.9 / 4	
	= 2.225	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((20.01 - 79.21/4) / (4- 1)) ^½	
	= 0.263	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 2.225 - 2.353 * 0.263/4 ^{1/2}	measurements.
	= 1.916	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	$= 2.225 + 2.353 * 0.263/4^{1/2}$	measurements.
	= 2.534	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 33 * (33 -1) / 2	
	= 528	
6	S = 0.168	Sen's estimator of trend.
7	var(S) = 4126.667	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(528 \pm 2.576 * 4126.667^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [181.26, 346.74]	integers, interpolation is used.
9	CL(S) = [0.08, 0.24]	Two-sided confidence interval for slope.
10	LCL(S) > 0	Significant increasing trend.

Worksheet 6 - Assessment Monitoring Chlorobenzene (ug/L) at MW-20

Step	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 4.6 / 4	
	= 1.15	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((6.3 - 21.16/4) / (4-1)) ^{1/2}	
	= 0.58	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 1.15 - 2.353 * 0.58/4 ^{1/2}	measurements.
	= 0.467	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	= 1.15 + 2.353 * 0.58/4 ^{1/2}	measurements.
	= 1.833	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 33 * (33-1) / 2	
	= 528	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 2718.333	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} \text{ var(S)}^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= (528 ± 2.576 * 2718.333 ^{1/2}) / 2	estimates for the values shown. When the values are not
	= [196.847, 331.153]	integers, interpolation is used.
9	CL(S) = [0.0, 0.055]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Chloroethane (ug/L) at MW-20

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 3.7 / 4	
	= 0.925	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((4.19 - 13.69/4) / (4-1)) ^{1/2}	
	= 0.506	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	= 0.925 - 2.353 * 0.506/4 ^{1/2}	measurements.
	= 0.33	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	= 0.925 + 2.353 * 0.506/4 ^{1/2}	measurements.
	= 1.52	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 33 * (33 -1) / 2	
	= 528	
6	S = -0.156	Sen's estimator of trend.
7	var(S) = 4119.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for
	= $(528 \pm 2.576 * 4119.0^{1/2}) / 2$	slope. The LCL and UCL are the M th largest slope estimates for the values shown. When the values are not
	= [181.337, 346.663]	integers, interpolation is used.
9	CL(S) = [-0.241, -0.082]	Two-sided confidence interval for slope.
10	UCL(S) < 0	Significant decreasing trend.

Worksheet 6 - Assessment Monitoring Cis-1,2-dichloroethylene (ug/L) at MW-20

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 2.0 / 4	
	= 0.5	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((1.0 - 4.0/4) / (4-1)) ^{1/2}	
	= 0.0	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	$= 0.5 - 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
4	$UCL = \overline{X} + tS/N^{\frac{1}{2}}$	Compute upper confidence limit for the mean of the last 4
	$= 0.5 + 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 33 * (33 -1) / 2	
	= 528	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 0.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{2} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(528 \pm 2.576 * 0.0^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [264.0, 264.0]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Worksheet 6 - Assessment Monitoring Vinyl chloride (ug/L) at MW-20

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute the mean of the last 4 measurements.
	= 2.0 / 4	
	= 0.5	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute sd of the last 4 measurements.
	= ((1.0 - 4.0/4) / (4-1)) ^{1/2}	
	= 0.0	
3	$LCL = \overline{X} - tS/N^{\frac{1}{2}}$	Compute lower confidence limit for the mean of the last 4
	$= 0.5 - 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
4	$UCL = \overline{X} + tS/N^{1/2}$	Compute upper confidence limit for the mean of the last 4
	$= 0.5 + 2.353 * 0.0/4^{1/2}$	measurements.
	= 0.5	
5	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 33 * (33 -1) / 2	
	= 528	
6	S = 0.0	Sen's estimator of trend.
7	var(S) = 0.0	Variance estimate for slope.
8	$M(S) = (N' \pm Z_{.995}^{*} * var(S)^{1/2}) / 2$	Ordinal positions for two-sided lower confidence limits for slope. The LCL and UCL are the M th largest slope
	= $(528 \pm 2.576 * 0.0^{1/2}) / 2$	estimates for the values shown. When the values are not
	= [264.0, 264.0]	integers, interpolation is used.
9	CL(S) = [0.0, 0.0]	Two-sided confidence interval for slope.
10	the interval includes 0	There is no significant trend.

Appendix C

Laboratory Reports for Reporting Period With Chain of Custody

Microbac Laboratories, Inc., Newton

CERTIFICATE OF ANALYSIS 1HC1337

Project Description

6047

For:

Todd Whipple

HLW Engineering

204 West Broad St

Story City, IA 50248

Sue Thompson

Client Services Manager

Tuesday, January 21, 2025

Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories. Review and compilation of your report was completed by Microbac Laboratories, Inc., Newton. If you have any questions, comments, or require further assistance regarding this report, please contact your service representative listed above.

I certify that all test results meet all of the requirements of the accrediting authority listed within this report. Analytical results are reported on a 'as received' basis unless specified otherwise. Analytical results for solids with units ending in (dry) are reported on a dry weight basis. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories. The reported results are related only to the samples analyzed as received.

Microbac Laboratories, Inc.

Revised Report: Amended - See Case Narrative

HLW Engineering

Todd Whipple 204 West Broad St Story City, IA 50248 Project Name: 6047

Project / PO Number: N/A Received: 03/19/2024 Reported: 01/21/2025

Case Narrative

Amended Report January 21, 2025: Sample 1HC1337-10 was not included in the original report due to a laboratory error. The sample was analyzed outside of the established holding time and those results are included in this report.

Tammy McDermott Quality Assurance Specialist

Sample Summary Report

Sample Name	Laboratory ID	Client Matrix	Sample Type	Sample Begin	Sample Taken	Lab Received
MW-1D	1HC1337-01	Aqueous	GRAB		03/18/24 08:26	03/19/24 10:45
MW-3	1HC1337-02	Aqueous	GRAB		03/18/24 09:27	03/19/24 10:45
MW-7	1HC1337-03	Aqueous	GRAB		03/18/24 11:44	03/19/24 10:45
MW-10	1HC1337-04	Aqueous	GRAB		03/18/24 12:25	03/19/24 10:45
MW-13	1HC1337-05	Aqueous	GRAB		03/18/24 11:08	03/19/24 10:45
MW-14	1HC1337-06	Aqueous	GRAB		03/18/24 10:51	03/19/24 10:45
MW-16	1HC1337-07	Aqueous	GRAB		03/18/24 10:14	03/19/24 10:45
MW-17 (b)	1HC1337-08	Aqueous	GRAB		03/18/24 09:08	03/19/24 10:45
MW-18	1HC1337-09	Aqueous	GRAB		03/18/24 09:52	03/19/24 10:45
MW-19	1HC1337-10	Aqueous	GRAB		03/18/24 11:27	03/19/24 10:45
MW-20	1HC1337-11	Aqueous	GRAB		03/18/24 12:07	03/19/24 10:45
GWD-1	1HC1337-12	Aqueous	GRAB		03/18/24 10:34	03/19/24 10:45
Duplicate	1HC1337-13	Aqueous	GRAB		03/18/24 09:52	03/19/24 10:45
MW-44 (b)	1HC1337-14	Aqueous	GRAB		03/18/24 08:47	03/19/24 10:45

Analytical Testing Parameters

Client Sample ID: MW-1D
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HC1337-01 **Collection Date:** 03/18/2024 8:26

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260D								
Chloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Bromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Chloroethane	1.1	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Acetone	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Methyl lodide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Chloroform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Benzene	1.3	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Dibromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Toluene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Chlorobenzene	1.5	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Xylenes, total	<2.0	2.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Styrene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS

Client Sample ID: MW-1D Collected By: Sample Matrix: Aqueous JGH

Lab Sample ID: 1HC1337-01					Collection D	Date: 03/18/	2024 8:26	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Bromoform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1315	LJS
Surrogate: Dibromofluoromethane	64.0	Limit: 75-136	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1315	LJS
Surrogate: Dibromofluoromethane	64.0	Limit: 80-126	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1315	LJS
Surrogate: 1,2-Dichloroethane-d4	59.3	Limit: 61-142	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1315	LJS
Surrogate: 1,2-Dichloroethane-d4	59.3	Limit: 63-138	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1315	LJS
Surrogate: Toluene-d8	105	Limit: 82-121	% Rec	1		03/21/24 0000	03/21/24 1315	LJS
Surrogate: Toluene-d8	105	Limit: 87-116	% Rec	1		03/21/24 0000	03/21/24 1315	LJS
Surrogate: 4-Bromofluorobenzene	87.5	Limit: 80-116	% Rec	1		03/21/24 0000	03/21/24 1315	LJS
Surrogate: 4-Bromofluorobenzene	87.5	Limit: 85-111	% Rec	1		03/21/24 0000	03/21/24 1315	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1338	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1338	RVV
Barium, total	0.784	0.0040	mg/L	4		03/21/24 0917	03/22/24 1338	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1338	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		03/21/24 0917	03/22/24 1338	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		03/21/24 0917	03/22/24 1338	RVV
Cobalt, total	0.0140	0.0004	mg/L	4		03/21/24 0917	03/22/24 1338	RVV
Copper, total	< 0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1338	RVV
Lead, total	< 0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1338	RVV
Nickel, total	0.0190	0.0040	mg/L	4		03/21/24 0917	03/22/24 1338	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1338	RVV
Silver, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1338	RVV
Silver, total Thallium, total	<0.0040 <0.0020	0.0040 0.0020	mg/L mg/L	4 4		03/21/24 0917 03/21/24 0917	03/22/24 1338 03/22/24 1338	RVV RVV
·								

Client Sample ID: MW-3
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HC1337-02 **Collection Date:** 03/18/2024 9:27

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260D								
Chloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Bromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Chloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Acetone	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Methyl lodide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Chloroform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Benzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Dibromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Toluene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Xylenes, total	<2.0	2.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Styrene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Bromoform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS

Microbac Laboratories, Inc., Newton

Client Sample ID: MW-3 Collected By: Sample Matrix: Aqueous JGH

Lab Sample ID: 1HC1337-02					Collection E	Date: 03/18/	03/18/2024 9:27	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1341	LJS
Surrogate: Dibromofluoromethane	69.7	Limit: 80-126	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1341	LJS
Surrogate: Dibromofluoromethane	69.7	Limit: 75-136	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1341	LJS
Surrogate: 1,2-Dichloroethane-d4	63.3	Limit: 63-138	% Rec	1		03/21/24 0000	03/21/24 1341	LJS
Surrogate: 1,2-Dichloroethane-d4	63.3	Limit: 61-142	% Rec	1		03/21/24 0000	03/21/24 1341	LJS
Surrogate: Toluene-d8	105	Limit: 87-116	% Rec	1		03/21/24 0000	03/21/24 1341	LJS
Surrogate: Toluene-d8	105	Limit: 82-121	% Rec	1		03/21/24 0000	03/21/24 1341	LJS
Surrogate: 4-Bromofluorobenzene	88.1	Limit: 85-111	% Rec	1		03/21/24 0000	03/21/24 1341	LJS
Surrogate: 4-Bromofluorobenzene	88.1	Limit: 80-116	% Rec	1		03/21/24 0000	03/21/24 1341	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1415	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1415	RVV
Barium, total	0.360	0.0040	mg/L	4		03/21/24 0917	03/22/24 1415	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1415	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		03/21/24 0917	03/22/24 1415	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		03/21/24 0917	03/22/24 1415	RVV
Cobalt, total	<0.0004	0.0004	mg/L	4		03/21/24 0917	03/22/24 1415	RVV
Copper, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1415	RVV
Lead, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1415	RVV
Nickel, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1415	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1415	RVV
Silver, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1415	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1415	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		03/21/24 0917	03/22/24 1415	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		03/21/24 0917	03/22/24 1415	RVV
—···-,··	5.0200	0.0200		-		-3/2./2. 3317	- 5,,	

Client Sample ID: MW-7
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HC1337-03 Collection Date: 03/18/2024 11:44

Determination of Volatile Organic	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Compounds EPA 5030B/EPA 8260D								
Chloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Bromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Chloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Acetone	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Methyl lodide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Chloroform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Benzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Dibromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Toluene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Xylenes, total	<2.0	2.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Styrene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Bromoform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS

Client Sample ID: MW-7 Collected By: Sample Matrix: Aqueous JGH

Lab Sample ID: 1HC1337-03					Collection D	Date: 03/18/	03/18/2024 11:44	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1408	LJS
Surrogate: Dibromofluoromethane	70.4	Limit: 75-136	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1408	LJS
Surrogate: Dibromofluoromethane	70.4	Limit: 80-126	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1408	LJS
Surrogate: 1,2-Dichloroethane-d4	66.8	Limit: 63-138	% Rec	1		03/21/24 0000	03/21/24 1408	LJS
Surrogate: 1,2-Dichloroethane-d4	66.8	Limit: 61-142	% Rec	1		03/21/24 0000	03/21/24 1408	LJS
Surrogate: Toluene-d8	104	Limit: 82-121	% Rec	1		03/21/24 0000	03/21/24 1408	LJS
Surrogate: Toluene-d8	104	Limit: 87-116	% Rec	1		03/21/24 0000	03/21/24 1408	LJS
Surrogate: 4-Bromofluorobenzene	88.3	Limit: 80-116	% Rec	1		03/21/24 0000	03/21/24 1408	LJS
Surrogate: 4-Bromofluorobenzene	88.3	Limit: 85-111	% Rec	1		03/21/24 0000	03/21/24 1408	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1421	RVV
Arsenic, total	0.0054	0.0040	mg/L	4		03/21/24 0917	03/22/24 1421	RVV
Barium, total	0.310	0.0040	mg/L	4		03/21/24 0917	03/22/24 1421	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1421	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		03/21/24 0917	03/22/24 1421	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		03/21/24 0917	03/22/24 1421	RVV
Cobalt, total	0.0087	0.0004	mg/L	4		03/21/24 0917	03/22/24 1421	RVV
Copper, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1421	RVV
Lead, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1421	RVV
Nickel, total	0.0142	0.0040	mg/L	4		03/21/24 0917	03/22/24 1421	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1421	RVV
Silver, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1421	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1421	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		03/21/24 0917	03/22/24 1421	RVV
,								-

Client Sample ID: MW-10
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HC1337-04 Collection Date: 03/18/2024 12:25

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260D								
Chloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Bromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Chloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Acetone	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Methyl lodide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Chloroform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Benzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Dibromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Toluene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Xylenes, total	<2.0	2.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Styrene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Bromoform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS

Microbac Laboratories, Inc., Newton

Client Sample ID: MW-10 Aqueous Sample Matrix: Collected By: JGH

03/19/2024 12:25 Collection Date:

Lab Sample ID: 1HC1337-04					Collection E	2024 12:25		
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1434	LJS
Surrogate: Dibromofluoromethane	71.4	Limit: 75-136	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1434	LJS
Surrogate: Dibromofluoromethane	71.4	Limit: 80-126	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1434	LJS
Surrogate: 1,2-Dichloroethane-d4	67.7	Limit: 63-138	% Rec	1		03/21/24 0000	03/21/24 1434	LJS
Surrogate: 1,2-Dichloroethane-d4	67.7	Limit: 61-142	% Rec	1		03/21/24 0000	03/21/24 1434	LJS
Surrogate: Toluene-d8	104	Limit: 82-121	% Rec	1		03/21/24 0000	03/21/24 1434	LJS
Surrogate: Toluene-d8	104	Limit: 87-116	% Rec	1		03/21/24 0000	03/21/24 1434	LJS
Surrogate: 4-Bromofluorobenzene	88.3	Limit: 85-111	% Rec	1		03/21/24 0000	03/21/24 1434	LJS
Surrogate: 4-Bromofluorobenzene	88.3	Limit: 80-116	% Rec	1		03/21/24 0000	03/21/24 1434	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1427	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1427	RVV
Barium, total	0.465	0.0040	mg/L	4		03/21/24 0917	03/22/24 1427	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1427	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		03/21/24 0917	03/22/24 1427	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		03/21/24 0917	03/22/24 1427	RVV
Cobalt, total	<0.0004	0.0004	mg/L	4		03/21/24 0917	03/22/24 1427	RVV
Copper, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1427	RVV
Lead, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1427	RVV
Nickel, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1427	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1427	RVV
Silver, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1427	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1427	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		03/21/24 0917	03/22/24 1427	RVV
Zinc, total	0.0283	0.0200	mg/L	4		03/21/24 0917	03/22/24 1427	RVV

JGH

Client Sample ID: MW-13
Sample Matrix: Aqueous Collected By:

Lab Sample ID: 1HC1337-05 Collection Date: 03/18/2024 11:08

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260D								
Chloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Bromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Chloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Acetone	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Methyl lodide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Chloroform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Benzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Dibromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Toluene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Xylenes, total	<2.0	2.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Styrene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Bromoform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS

JGH

Client Sample ID: MW-13 Aqueous Sample Matrix: Collected By:

03/19/2024 11:09 Collection Date:

Lab Sample ID: 1HC1337-05					Collection D	Date: 03/18/	2024 11:08	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1500	LJS
Surrogate: Dibromofluoromethane	76.7	Limit: 75-136	% Rec	1		03/21/24 0000	03/21/24 1500	LJS
Surrogate: Dibromofluoromethane	76.7	Limit: 80-126	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1500	LJS
Surrogate: 1,2-Dichloroethane-d4	72.5	Limit: 63-138	% Rec	1		03/21/24 0000	03/21/24 1500	LJS
Surrogate: 1,2-Dichloroethane-d4	72.5	Limit: 61-142	% Rec	1		03/21/24 0000	03/21/24 1500	LJS
Surrogate: Toluene-d8	103	Limit: 82-121	% Rec	1		03/21/24 0000	03/21/24 1500	LJS
Surrogate: Toluene-d8	103	Limit: 87-116	% Rec	1		03/21/24 0000	03/21/24 1500	LJS
Surrogate: 4-Bromofluorobenzene	87.7	Limit: 80-116	% Rec	1		03/21/24 0000	03/21/24 1500	LJS
Surrogate: 4-Bromofluorobenzene	87.7	Limit: 85-111	% Rec	1		03/21/24 0000	03/21/24 1500	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1433	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1433	RVV
Barium, total	0.0590	0.0040	mg/L	4		03/21/24 0917	03/22/24 1433	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1433	RVV
Cadmium, total	0.0008	0.0008	mg/L	4		03/21/24 0917	03/22/24 1433	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		03/21/24 0917	03/22/24 1433	RVV
Cobalt, total	<0.0004	0.0004	mg/L	4		03/21/24 0917	03/22/24 1433	RVV
Copper, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1433	RVV
Lead, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1433	RVV
Nickel, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1433	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1433	RVV
Silver, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1433	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1433	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		03/21/24 0917	03/22/24 1433	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		03/21/24 0917	03/22/24 1433	RVV
•	2.2200		J. –	•				

JGH

Client Sample ID: MW-14
Sample Matrix: Aqueous Collected By:

Lab Sample ID: 1HC1337-06 Collection Date: 03/18/2024 10:51

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260D								
Chloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Bromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Chloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Acetone	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Methyl Iodide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Chloroform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Benzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Dibromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Toluene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Xylenes, total	<2.0	2.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Styrene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Bromoform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS

Client Sample ID: MW-14
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HC1337-06 Collection Date: 03/18/2024 10:51

Lab Sample ID: 1HC1337-06					Collection D	Date: 03/18/	2024 10:51	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1527	LJS
Surrogate: Dibromofluoromethane	74.2	Limit: 80-126	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1527	LJS
Surrogate: Dibromofluoromethane	74.2	Limit: 75-136	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1527	LJS
Surrogate: 1,2-Dichloroethane-d4	70.2	Limit: 63-138	% Rec	1		03/21/24 0000	03/21/24 1527	LJS
Surrogate: 1,2-Dichloroethane-d4	70.2	Limit: 61-142	% Rec	1		03/21/24 0000	03/21/24 1527	LJS
Surrogate: Toluene-d8	104	Limit: 82-121	% Rec	1		03/21/24 0000	03/21/24 1527	LJS
Surrogate: Toluene-d8	104	Limit: 87-116	% Rec	1		03/21/24 0000	03/21/24 1527	LJS
Surrogate: 4-Bromofluorobenzene	86.8	Limit: 85-111	% Rec	1		03/21/24 0000	03/21/24 1527	LJS
Surrogate: 4-Bromofluorobenzene	86.8	Limit: 80-116	% Rec	1		03/21/24 0000	03/21/24 1527	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1440	RVV
Arsenic, total	< 0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1440	RVV
Barium, total	0.137	0.0040	mg/L	4		03/21/24 0917	03/22/24 1440	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1440	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		03/21/24 0917	03/22/24 1440	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		03/21/24 0917	03/22/24 1440	RVV
Cobalt, total	<0.0004	0.0004	mg/L	4		03/21/24 0917	03/22/24 1440	RVV
Copper, total	< 0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1440	RVV
Lead, total	< 0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1440	RVV
Nickel, total	< 0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1440	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1440	RVV
Silver, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1440	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1440	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		03/21/24 0917	03/22/24 1440	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		03/21/24 0917	03/22/24 1440	RVV
•	2.2300		J -	-				

Client Sample ID: MW-16
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HC1337-07 Collection Date: 03/18/2024 10:14

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260D								
Chloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Bromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Chloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Acetone	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Methyl Iodide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
1,1-Dichloroethane	1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Chloroform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Benzene	1.5	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Dibromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Toluene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Chlorobenzene	5.2	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Xylenes, total	<2.0	2.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Styrene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Bromoform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS

Client Sample ID: MW-16 Aqueous Sample Matrix: Collected By: JGH

03/19/2024 10:14 Collection Date:

Lab Sample ID: 1HC1337-07					Collection D	Date: 03/18/	2024 10:14	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
1,4-Dichlorobenzene	1.8	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1553	LJS
Surrogate: Dibromofluoromethane	78.7	Limit: 75-136	% Rec	1		03/21/24 0000	03/21/24 1553	LJS
Surrogate: Dibromofluoromethane	78.7	Limit: 80-126	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1553	LJS
Surrogate: 1,2-Dichloroethane-d4	76.1	Limit: 61-142	% Rec	1		03/21/24 0000	03/21/24 1553	LJS
Surrogate: 1,2-Dichloroethane-d4	76.1	Limit: 63-138	% Rec	1		03/21/24 0000	03/21/24 1553	LJS
Surrogate: Toluene-d8	105	Limit: 87-116	% Rec	1		03/21/24 0000	03/21/24 1553	LJS
Surrogate: Toluene-d8	105	Limit: 82-121	% Rec	1		03/21/24 0000	03/21/24 1553	LJS
Surrogate: 4-Bromofluorobenzene	89.3	Limit: 80-116	% Rec	1		03/21/24 0000	03/21/24 1553	LJS
Surrogate: 4-Bromofluorobenzene	89.3	Limit: 85-111	% Rec	1		03/21/24 0000	03/21/24 1553	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1446	RVV
Arsenic, total	0.0204	0.0040	mg/L	4		03/21/24 0917	03/22/24 1446	RVV
Barium, total	0.713	0.0040	mg/L	4		03/21/24 0917	03/22/24 1446	RVV
Beryllium, total	< 0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1446	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		03/21/24 0917	03/22/24 1446	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		03/21/24 0917	03/22/24 1446	RVV
Cobalt, total	0.0009	0.0004	mg/L	4		03/21/24 0917	03/22/24 1446	RVV
Copper, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1446	RVV
Lead, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1446	RVV
Nickel, total	0.0261	0.0040	mg/L	4		03/21/24 0917	03/22/24 1446	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1446	RVV
Silver, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1446	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1446	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		03/21/24 0917	03/22/24 1446	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		03/21/24 0917	03/22/24 1446	RVV
			•					

Client Sample ID: MW-17 (b)
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HC1337-08 **Collection Date:** 03/18/2024 9:08

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260D								
Chloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Bromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Chloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Acetone	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Methyl lodide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Chloroform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Benzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Dibromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Toluene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Xylenes, total	<2.0	2.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Styrene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Bromoform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS

Microbac Laboratories, Inc., Newton

Client Sample ID: MW-17 (b) Collected By: Sample Matrix: Aqueous JGH

Lab Sample ID: 1HC1337-08					Collection E	2024 9:08		
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1619	LJS
Surrogate: Dibromofluoromethane	70.5	Limit: 75-136	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1619	LJS
Surrogate: Dibromofluoromethane	70.5	Limit: 80-126	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1619	LJS
Surrogate: 1,2-Dichloroethane-d4	67.8	Limit: 61-142	% Rec	1		03/21/24 0000	03/21/24 1619	LJS
Surrogate: 1,2-Dichloroethane-d4	67.8	Limit: 63-138	% Rec	1		03/21/24 0000	03/21/24 1619	LJS
Surrogate: Toluene-d8	106	Limit: 87-116	% Rec	1		03/21/24 0000	03/21/24 1619	LJS
Surrogate: Toluene-d8	106	Limit: 82-121	% Rec	1		03/21/24 0000	03/21/24 1619	LJS
Surrogate: 4-Bromofluorobenzene	86.9	Limit: 80-116	% Rec	1		03/21/24 0000	03/21/24 1619	LJS
Surrogate: 4-Bromofluorobenzene	86.9	Limit: 85-111	% Rec	1		03/21/24 0000	03/21/24 1619	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1452	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1452	RVV
Barium, total	0.0964	0.0040	mg/L	4		03/21/24 0917	03/22/24 1452	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1452	RVV
Cadmium, total	0.0008	0.0008	mg/L	4		03/21/24 0917	03/22/24 1452	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		03/21/24 0917	03/22/24 1452	RVV
Cobalt, total	<0.0004	0.0004	mg/L	4		03/21/24 0917	03/22/24 1452	RVV
Copper, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1452	RVV
Lead, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1452	RVV
Nickel, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1452	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1452	RVV
Silver, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1452	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1452	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		03/21/24 0917	03/22/24 1452	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		03/21/24 0917	03/22/24 1452	RVV
	5.0200	0.0200		-		-3,2,,2, 3311	- 5,22,2	

Client Sample ID: MW-18
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HC1337-09 **Collection Date:** 03/18/2024 9:52

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260D								
Chloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Bromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Chloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Acetone	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Methyl lodide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Chloroform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Benzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Dibromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Toluene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Xylenes, total	<2.0	2.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Styrene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Bromoform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS

Client Sample ID: MW-18 Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HC1337-09					Collection D	oate: 03/18/	2024 9:52	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1645	LJS
Surrogate: Dibromofluoromethane	77.4	Limit: 75-136	% Rec	1		03/21/24 0000	03/21/24 1645	LJS
Surrogate: Dibromofluoromethane	77.4	Limit: 80-126	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1645	LJS
Surrogate: 1,2-Dichloroethane-d4	74.0	Limit: 63-138	% Rec	1		03/21/24 0000	03/21/24 1645	LJS
Surrogate: 1,2-Dichloroethane-d4	74.0	Limit: 61-142	% Rec	1		03/21/24 0000	03/21/24 1645	LJS
Surrogate: Toluene-d8	105	Limit: 87-116	% Rec	1		03/21/24 0000	03/21/24 1645	LJS
Surrogate: Toluene-d8	105	Limit: 82-121	% Rec	1		03/21/24 0000	03/21/24 1645	LJS
Surrogate: 4-Bromofluorobenzene	86.9	Limit: 80-116	% Rec	1		03/21/24 0000	03/21/24 1645	LJS
Surrogate: 4-Bromofluorobenzene	86.9	Limit: 85-111	% Rec	1		03/21/24 0000	03/21/24 1645	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1510	RVV
Arsenic, total	0.0237	0.0040	mg/L	4		03/21/24 0917	03/22/24 1510	RVV
Barium, total	0.377	0.0040	mg/L	4		03/21/24 0917	03/22/24 1510	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1510	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		03/21/24 0917	03/22/24 1510	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		03/21/24 0917	03/22/24 1510	RVV
Cobalt, total	0.0009	0.0004	mg/L	4		03/21/24 0917	03/22/24 1510	RVV
Copper, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1510	RVV
Lead, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1510	RVV
Nickel, total	0.0063	0.0040	mg/L	4		03/21/24 0917	03/22/24 1510	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1510	RVV
Silver, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1510	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1510	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		03/21/24 0917	03/22/24 1510	RVV
	0.0200	0.0200	9, =			00/21/21 001/	33/LL/L 1 1010	1 . v V

Client Sample ID: MW-19
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HC1337-10 Collection Date: 03/18/2024 11:27

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260D								
Chloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Vinyl Chloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Bromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Chloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Trichlorofluoromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Acetone	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Methyl Iodide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Carbon Disulfide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Methylene Chloride	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Acrylonitrile	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
1,1-Dichloroethane	2.3	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Vinyl Acetate	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
cis-1,2-Dichloroethylene	1.4	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
2-Butanone (MEK)	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Bromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Chloroform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Carbon Tetrachloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Benzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
1,2-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Trichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
1,2-Dichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Dibromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Bromodichloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Toluene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Tetrachloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Dibromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
1,2-Dibromoethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Chlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Ethylbenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Xylenes, total	<2.0	2.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Styrene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Bromoform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM

Client Sample ID: MW-19 Collected By: Sample Matrix: Aqueous JGH

Lab Sample ID: 1HC1337-10					Collection	Date: 03/18	03/18/2024 11:27	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1712	CSM
Surrogate: Dibromofluoromethane	71.0	Limit: 57-134	% Rec	1		03/21/24 0000	03/21/24 1712	CSM
Surrogate: Dibromofluoromethane	71.0	Limit: 75-136	% Rec	1	S2	03/21/24 0000	03/21/24 1712	CSM
Surrogate: 1,2-Dichloroethane-d4	66.7	Limit: 61-142	% Rec	1		03/21/24 0000	03/21/24 1712	CSM
Surrogate: 1,2-Dichloroethane-d4	66.7	Limit: 53-140	% Rec	1		03/21/24 0000	03/21/24 1712	CSM
Surrogate: Toluene-d8	106	Limit: 82-121	% Rec	1		03/21/24 0000	03/21/24 1712	CSM
Surrogate: Toluene-d8	106	Limit: 86-114	% Rec	1		03/21/24 0000	03/21/24 1712	CSM
Surrogate: 4-Bromofluorobenzene	85.5	Limit: 80-116	% Rec	1		03/21/24 0000	03/21/24 1712	CSM
Surrogate: 4-Bromofluorobenzene	85.5	Limit: 78-121	% Rec	1		03/21/24 0000	03/21/24 1712	CSM
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4	Н	01/13/25 1526	01/15/25 1851	RVV
Arsenic, total	0.0080	0.0040	mg/L	4	Н	01/13/25 1526	01/15/25 1851	RVV
Barium, total	0.250	0.0040	mg/L	4	Н	01/13/25 1526	01/15/25 1851	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4	Н	01/13/25 1526	01/15/25 1851	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4	Н	01/13/25 1526	01/15/25 1851	RVV
Chromium, total	<0.0080	0.0080	mg/L	4	Н	01/13/25 1526	01/15/25 1851	RVV
Cobalt, total	0.0013	0.0004	mg/L	4	н	01/13/25 1526	01/15/25 1851	RVV
Copper, total	0.0046	0.0040	mg/L	4	н	01/13/25 1526	01/15/25 1851	RVV
Lead, total	<0.0040	0.0040	mg/L	4	н	01/13/25 1526	01/15/25 1851	RVV
Nickel, total	0.0073	0.0040	mg/L	4	н	01/13/25 1526	01/15/25 1851	RVV
Selenium, total	<0.0040	0.0040	mg/L	4	н	01/13/25 1526	01/15/25 1851	RVV
Silver, total	<0.0040	0.0040	mg/L	4	н	01/13/25 1526	01/15/25 1851	RVV
Thallium, total	<0.0020	0.0020	mg/L	4	Н	01/13/25 1526	01/15/25 1851	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4	н	01/13/25 1526	01/15/25 1851	RVV
Zinc, total	<0.0200	0.0200	mg/L	4	н	01/13/25 1526	01/15/25 1851	RVV
==::-; ::	5.0200	0.0200		•	••	5.7.0720 .020		

Client Sample ID: MW-20
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HC1337-11 Collection Date: 03/18/2024 12:07

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260D								
Chloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Bromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Chloroethane	1.2	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Acetone	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Methyl lodide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Chloroform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Benzene	2.2	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Dibromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Toluene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Chlorobenzene	1.2	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Xylenes, total	<2.0	2.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Styrene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Bromoform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS

JGH

Client Sample ID: MW-20 Sample Matrix: Aqueous

Collected By:

Lab Sample ID: 1HC1337-11					Collection D	oate: 03/18/	2024 12:07	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1738	LJS
Surrogate: Dibromofluoromethane	79.0	Limit: 75-136	% Rec	1		03/21/24 0000	03/21/24 1738	LJS
Surrogate: Dibromofluoromethane	79.0	Limit: 80-126	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1738	LJS
Surrogate: 1,2-Dichloroethane-d4	76.1	Limit: 63-138	% Rec	1		03/21/24 0000	03/21/24 1738	LJS
Surrogate: 1,2-Dichloroethane-d4	76.1	Limit: 61-142	% Rec	1		03/21/24 0000	03/21/24 1738	LJS
Surrogate: Toluene-d8	103	Limit: 82-121	% Rec	1		03/21/24 0000	03/21/24 1738	LJS
Surrogate: Toluene-d8	103	Limit: 87-116	% Rec	1		03/21/24 0000	03/21/24 1738	LJS
Surrogate: 4-Bromofluorobenzene	86.1	Limit: 85-111	% Rec	1		03/21/24 0000	03/21/24 1738	LJS
Surrogate: 4-Bromofluorobenzene	86.1	Limit: 80-116	% Rec	1		03/21/24 0000	03/21/24 1738	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1516	RVV
Arsenic, total	0.112	0.0040	mg/L	4		03/21/24 0917	03/22/24 1516	RVV
Barium, total	2.11	0.100	mg/L	100		03/21/24 0917	03/25/24 1229	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1516	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		03/21/24 0917	03/22/24 1516	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		03/21/24 0917	03/22/24 1516	RVV
Cobalt, total	0.0097	0.0004	mg/L	4		03/21/24 0917	03/22/24 1516	RVV
Copper, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1516	RVV
Lead, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1516	RVV
Nickel, total	0.0314	0.0040	mg/L	4		03/21/24 0917	03/22/24 1516	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1516	RVV
Silver, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1516	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1516	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		03/21/24 0917	03/22/24 1516	RVV
	0.0200	0.0200	9, =	•		00/21/21 001/	33/LL/L 1 1010	1

Client Sample ID: GWD-1
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HC1337-12 Collection Date: 03/18/2024 10:34

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260D								
Chloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Bromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Chloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Acetone	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Methyl lodide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Chloroform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Benzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Dibromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Toluene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Xylenes, total	<2.0	2.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Styrene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Bromoform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS

Collected By:

JGH

Client Sample ID: GWD-1
Sample Matrix: Aqueous

Lab Sample ID: 1HC1337-12 Collection Date: 03/18/2024 10:34

Lab Sample ID. THO 1557-12					Collection	vale. 03/10/	2024 10.34	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1804	LJS
Surrogate: Dibromofluoromethane	75.4	Limit: 75-136	% Rec	1		03/21/24 0000	03/21/24 1804	LJS
Surrogate: Dibromofluoromethane	75.4	Limit: 80-126	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1804	LJS
Surrogate: 1,2-Dichloroethane-d4	72.3	Limit: 63-138	% Rec	1		03/21/24 0000	03/21/24 1804	LJS
Surrogate: 1,2-Dichloroethane-d4	72.3	Limit: 61-142	% Rec	1		03/21/24 0000	03/21/24 1804	LJS
Surrogate: Toluene-d8	105	Limit: 82-121	% Rec	1		03/21/24 0000	03/21/24 1804	LJS
Surrogate: Toluene-d8	105	Limit: 87-116	% Rec	1		03/21/24 0000	03/21/24 1804	LJS
Surrogate: 4-Bromofluorobenzene	85.7	Limit: 85-111	% Rec	1		03/21/24 0000	03/21/24 1804	LJS
Surrogate: 4-Bromofluorobenzene	85.7	Limit: 80-116	% Rec	1		03/21/24 0000	03/21/24 1804	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1523	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1523	RVV
Barium, total	0.262	0.0040	mg/L	4		03/21/24 0917	03/22/24 1523	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1523	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		03/21/24 0917	03/22/24 1523	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		03/21/24 0917	03/22/24 1523	RVV
Cobalt, total	<0.0004	0.0004	mg/L	4		03/21/24 0917	03/22/24 1523	RVV
Copper, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1523	RVV
Lead, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1523	RVV
Nickel, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1523	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1523	RVV
Silver, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1523	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1523	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		03/21/24 0917	03/22/24 1523	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		03/21/24 0917	03/22/24 1523	RVV

Client Sample ID: Duplicate
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HC1337-13 **Collection Date:** 03/18/2024 9:52

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260D								
Chloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Bromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Chloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Acetone	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Methyl lodide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Chloroform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Benzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Dibromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Toluene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Xylenes, total	<2.0	2.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Styrene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Bromoform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS

Client Sample ID: **Duplicate** Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HC1337-13					Collection D	Date: 03/18/	2024 9:52	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1831	LJS
Surrogate: Dibromofluoromethane	75.6	Limit: 80-126	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1831	LJS
Surrogate: Dibromofluoromethane	75.6	Limit: 75-136	% Rec	1		03/21/24 0000	03/21/24 1831	LJS
Surrogate: 1,2-Dichloroethane-d4	71.6	Limit: 63-138	% Rec	1		03/21/24 0000	03/21/24 1831	LJS
Surrogate: 1,2-Dichloroethane-d4	71.6	Limit: 61-142	% Rec	1		03/21/24 0000	03/21/24 1831	LJS
Surrogate: Toluene-d8	105	Limit: 87-116	% Rec	1		03/21/24 0000	03/21/24 1831	LJS
Surrogate: Toluene-d8	105	Limit: 82-121	% Rec	1		03/21/24 0000	03/21/24 1831	LJS
Surrogate: 4-Bromofluorobenzene	85.9	Limit: 85-111	% Rec	1		03/21/24 0000	03/21/24 1831	LJS
Surrogate: 4-Bromofluorobenzene	85.9	Limit: 80-116	% Rec	1		03/21/24 0000	03/21/24 1831	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1529	RVV
Arsenic, total	0.0237	0.0040	mg/L	4		03/21/24 0917	03/22/24 1529	RVV
Barium, total	0.390	0.0040	mg/L	4		03/21/24 0917	03/22/24 1529	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1529	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		03/21/24 0917	03/22/24 1529	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		03/21/24 0917	03/22/24 1529	RVV
Cobalt, total	0.0009	0.0004	mg/L	4		03/21/24 0917	03/22/24 1529	RVV
Copper, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1529	RVV
Lead, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1529	RVV
Nickel, total	0.0052	0.0040	mg/L	4		03/21/24 0917	03/22/24 1529	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1529	RVV
Silver, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1529	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1529	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		03/21/24 0917	03/22/24 1529	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		03/21/24 0917	03/22/24 1529	RVV

Client Sample ID: MW-44 (b)
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HC1337-14 Collection Date: 03/18/2024 8:47

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260D								
Chloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Vinyl Chloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Bromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Chloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Trichlorofluoromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Acetone	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Methyl lodide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Carbon Disulfide	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Methylene Chloride	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Acrylonitrile	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
1,1-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Vinyl Acetate	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
2-Butanone (MEK)	<10.0	10.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Bromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Chloroform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Carbon Tetrachloride	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Benzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
1,2-Dichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Trichloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
1,2-Dichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Dibromomethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Bromodichloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Toluene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Tetrachloroethylene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Dibromochloromethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
1,2-Dibromoethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Chlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Ethylbenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Xylenes, total	<2.0	2.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Styrene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Bromoform	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS

Client Sample ID: MW-44 (b) Aqueous Sample Matrix: Collected By: JGH

03/19/2024 9:47 Collection Date:

Lab Sample ID: 1HC1337-14					Collection D	oate: 03/18/	2024 8:47	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		03/21/24 0000	03/21/24 1857	LJS
Surrogate: Dibromofluoromethane	73.2	Limit: 80-126	% Rec	1	ZZZS-GC	03/21/24 0000	03/21/24 1857	LJS
Surrogate: Dibromofluoromethane	73.2	Limit: 75-136	% Rec	1		03/21/24 0000	03/21/24 1857	LJS
Surrogate: 1,2-Dichloroethane-d4	70.2	Limit: 61-142	% Rec	1		03/21/24 0000	03/21/24 1857	LJS
Surrogate: 1,2-Dichloroethane-d4	70.2	Limit: 63-138	% Rec	1		03/21/24 0000	03/21/24 1857	LJS
Surrogate: Toluene-d8	105	Limit: 87-116	% Rec	1		03/21/24 0000	03/21/24 1857	LJS
Surrogate: Toluene-d8	105	Limit: 82-121	% Rec	1		03/21/24 0000	03/21/24 1857	LJS
Surrogate: 4-Bromofluorobenzene	85.7	Limit: 85-111	% Rec	1		03/21/24 0000	03/21/24 1857	LJS
Surrogate: 4-Bromofluorobenzene	85.7	Limit: 80-116	% Rec	1		03/21/24 0000	03/21/24 1857	LJS
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1535	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1535	RVV
Barium, total	0.154	0.0040	mg/L	4		03/21/24 0917	03/22/24 1535	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1535	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		03/21/24 0917	03/22/24 1535	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		03/21/24 0917	03/22/24 1535	RVV
Cobalt, total	< 0.0004	0.0004	mg/L	4		03/21/24 0917	03/22/24 1535	RVV
Copper, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1535	RVV
Lead, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1535	RVV
Nickel, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1535	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1535	RVV
Silver, total	<0.0040	0.0040	mg/L	4		03/21/24 0917	03/22/24 1535	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		03/21/24 0917	03/22/24 1535	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		03/21/24 0917	03/22/24 1535	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		03/21/24 0917	03/22/24 1535	RVV

Batch Log Summary

Method	Batch	Laboratory ID	Client / Source ID				
EPA 6020A	1HC1176	1HC1176-BLK1					
		1HC1176-BS1					
		1HC1337-01	MW-1D				
		1HC1176-MS1	1HC1337-01				
		1HC1176-MSD1	1HC1337-01				
		1HC1176-PS1	1HC1337-01				
		1HC1337-02	MW-3				
		1HC1337-03	MW-7				
		1HC1337-04	MW-10				
		1HC1337-05	MW-13				
		1HC1337-06	MW-14				
		1HC1337-07	MW-16				
		1HC1337-08	MW-17 (b)				
		1HC1337-09	MW-18				
		1HC1337-11	MW-20				
		1HC1337-12	GWD-1				
		1HC1337-13	Duplicate				
		1HC1337-14	MW-44 (b)				
		1HC1337-11RE1	MW-20				
Method	Batch	Laboratory ID	Client / Source ID				
Method EPA 8260D	Batch 1HC1242	Laboratory ID 1HC1242-BS1	Client / Source ID				
			Client / Source ID				
		1HC1242-BS1	Client / Source ID				
		1HC1242-BS1 1HC1242-BSD1	Client / Source ID MW-1D				
		1HC1242-BS1 1HC1242-BSD1 1HC1242-BLK1					
		1HC1242-BS1 1HC1242-BSD1 1HC1242-BLK1 1HC1337-01	MW-1D				
		1HC1242-BS1 1HC1242-BSD1 1HC1242-BLK1 1HC1337-01 1HC1337-02	MW-1D MW-3				
		1HC1242-BS1 1HC1242-BSD1 1HC1242-BLK1 1HC1337-01 1HC1337-02 1HC1337-03	MW-1D MW-3 MW-7				
		1HC1242-BS1 1HC1242-BSD1 1HC1242-BLK1 1HC1337-01 1HC1337-02 1HC1337-03	MW-1D MW-3 MW-7 MW-10				
		1HC1242-BS1 1HC1242-BSD1 1HC1242-BLK1 1HC1337-01 1HC1337-02 1HC1337-03 1HC1337-04 1HC1337-05	MW-1D MW-3 MW-7 MW-10 MW-13				
		1HC1242-BS1 1HC1242-BSD1 1HC1242-BLK1 1HC1337-01 1HC1337-02 1HC1337-03 1HC1337-04 1HC1337-05 1HC1337-06	MW-1D MW-3 MW-7 MW-10 MW-13 MW-14				
		1HC1242-BS1 1HC1242-BSD1 1HC1242-BLK1 1HC1337-01 1HC1337-02 1HC1337-03 1HC1337-04 1HC1337-05 1HC1337-06 1HC1337-07	MW-1D MW-3 MW-7 MW-10 MW-13 MW-14 MW-16				
		1HC1242-BS1 1HC1242-BSD1 1HC1242-BLK1 1HC1337-01 1HC1337-02 1HC1337-03 1HC1337-04 1HC1337-05 1HC1337-06 1HC1337-07	MW-1D MW-3 MW-7 MW-10 MW-13 MW-14 MW-16 MW-17 (b)				
		1HC1242-BS1 1HC1242-BSD1 1HC1242-BLK1 1HC1337-01 1HC1337-02 1HC1337-03 1HC1337-04 1HC1337-05 1HC1337-06 1HC1337-07 1HC1337-08 1HC1337-09	MW-1D MW-3 MW-7 MW-10 MW-13 MW-14 MW-16 MW-17 (b) MW-18				
		1HC1242-BS1 1HC1242-BSD1 1HC1242-BLK1 1HC1337-01 1HC1337-02 1HC1337-03 1HC1337-04 1HC1337-05 1HC1337-06 1HC1337-07 1HC1337-07 1HC1337-09 1HC1337-09	MW-1D MW-3 MW-7 MW-10 MW-13 MW-14 MW-16 MW-17 (b) MW-18 MW-19				
		1HC1242-BS1 1HC1242-BSD1 1HC1242-BLK1 1HC1337-01 1HC1337-02 1HC1337-03 1HC1337-04 1HC1337-06 1HC1337-06 1HC1337-07 1HC1337-09 1HC1337-10 1HC1337-10	MW-1D MW-3 MW-7 MW-10 MW-13 MW-14 MW-16 MW-17 (b) MW-18 MW-19 MW-20				
		1HC1242-BS1 1HC1242-BSD1 1HC1242-BLK1 1HC1337-01 1HC1337-02 1HC1337-03 1HC1337-04 1HC1337-05 1HC1337-06 1HC1337-07 1HC1337-07 1HC1337-09 1HC1337-10 1HC1337-11	MW-1D MW-3 MW-7 MW-10 MW-13 MW-14 MW-16 MW-17 (b) MW-17 (b) MW-18 MW-19 MW-20 GWD-1				
		1HC1242-BS1 1HC1242-BSD1 1HC1242-BLK1 1HC1337-01 1HC1337-02 1HC1337-03 1HC1337-04 1HC1337-06 1HC1337-06 1HC1337-07 1HC1337-07 1HC1337-10 1HC1337-10 1HC1337-11 1HC1337-12 1HC1337-13	MW-1D MW-3 MW-7 MW-10 MW-13 MW-14 MW-16 MW-17 (b) MW-18 MW-19 MW-20 GWD-1 Duplicate				

CERTIFICATE OF ANALYSIS

1HC1337

EPA 8260D	1HC1242	1HC1242-BLK2		
		1HC1242-MS1	1HC1337-04	
		1HC1242-MSD1	1HC1337-04	
		1HC1242-MS2	1HC1336-11	
		1HC1242-MSD2	1HC1336-11	
Method	Batch	Laboratory ID	Client / Source ID	
EPA 6020A	1IA0549	1IA0549-BLK1		
		1IA0549-BS1		
		1HC1337-10	MW-19	
		1IA0549-MS1	1IA0501-01	
		1IA0549-MSD1	1IA0501-01	

				Spike	Source		%REC		RPD	
Determination of Volatile	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Organic Compounds										

Batch 1HC1242 - EPA 5030B - EPA 8260D

Blank (1HC1242-BLK1)			Prepared: 03/21/24 00:00 Analyzed: 03/21/24 11:20	
Chloromethane	<1.0	1.0	ug/L	
Vinyl Chloride	<1.0	1.0	ug/L	
Bromomethane	<1.0	1.0	ug/L	
Chloroethane	<1.0	1.0	ug/L	
Trichlorofluoromethane	<1.0	1.0	ug/L	
1,1-Dichloroethylene	<1.0	1.0	ug/L	
Acetone	<10.0	10.0	ug/L	
Methyl lodide	<1.0	1.0	ug/L	
Carbon Disulfide	<1.0	1.0	ug/L	
Methylene Chloride	<5.0	5.0	ug/L	
Acrylonitrile	<5.0	5.0	ug/L	
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	
1,1-Dichloroethane	<1.0	1.0	ug/L	
Vinyl Acetate	<5.0	5.0	ug/L	
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	
2-Butanone (MEK)	<10.0	10.0	ug/L	
Bromochloromethane	<1.0	1.0	ug/L	
Chloroform	<1.0	1.0	ug/L	
1,1,1-Trichloroethane	<1.0	1.0	ug/L	
Carbon Tetrachloride	<1.0	1.0	ug/L	
Benzene	<1.0	1.0	ug/L	
1,2-Dichloroethane	<1.0	1.0	ug/L	
Trichloroethylene	<1.0	1.0	ug/L	
1,2-Dichloropropane	<1.0	1.0	ug/L	
Dibromomethane	<1.0	1.0	ug/L	
Bromodichloromethane	<1.0	1.0	ug/L	

CERTIFICATE OF ANALYSIS

1HC1337

Spike Source

1.0 5.0 1.0	1.0	Prepared: 03	8/21/24 00:0	0 Analyzed					
5.0 1.0	5.0		3/21/24 00:0	0 Analyzed:					
5.0 1.0	5.0	ug/L		, 20u.	03/21/24 1	1:20			
1.0									
		ug/L							
1.0	1.0	ug/L							
	1.0	ug/L							
1.0	1.0	ug/L							
1.0	1.0	ug/L							
5.0	5.0	ug/L							
1.0	1.0	ug/L							
1.0	1.0	ug/L							
1.0	1.0	_							
1.0	1.0	ug/L							
1.0	1.0	ug/L							
2.0	2.0	ug/L							
1.0	1.0								
1.0	1.0								
1.0	1.0	_							
5.0	5.0	-							
1.0	1.0	_							
1.0	1.0	ug/L							
1.0	1.0	ug/L							
5.0	5.0	ug/L							
34.1		ug/L	50.2		68.0	80-126			ZZZS- GC
34.1		ug/L	50.2		68.0	75-136			ZZZS- GC
31.6		ug/L	50.1		63.1	63-138			
31.6		ug/L	50.1		63.1	61-142			
53.6		ug/L	50.4		106	87-116			
		_							
40.5		Ü		0 Analyzed					
1.0	1.0		<i>y</i> 2 17 2 1 00:0	o i maryzou.	00/22/21 00	0.10			
		•							
		_							
		_							
		-							
	34.1 31.6 31.6	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

RPD

%REC

CERTIFICATE OF ANALYSIS

1HC1337

Spike Source

%REC

RPD

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 1HC1242 - EPA 5030B - EP	A 8260D									
Blank (1HC1242-BLK2)			Prepared: 03	3/21/24 00:0	00 Analyzed:	03/22/24 0	0:13			
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L							
1,1-Dichloroethane	<1.0	1.0	ug/L							
Vinyl Acetate	<5.0	5.0	ug/L							
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L							
2-Butanone (MEK)	<10.0	10.0	ug/L							
Bromochloromethane	<1.0	1.0	ug/L							
Chloroform	<1.0	1.0	ug/L							
1,1,1-Trichloroethane	<1.0	1.0	ug/L							
Carbon Tetrachloride	<1.0	1.0	ug/L							
Benzene	<1.0	1.0	ug/L							
1,2-Dichloroethane	<1.0	1.0	ug/L							
Trichloroethylene	<1.0	1.0	ug/L							
1,2-Dichloropropane	<1.0	1.0	ug/L							
Dibromomethane	<1.0	1.0	ug/L							
Bromodichloromethane	<1.0	1.0	ug/L							
cis-1,3-Dichloropropene	<1.0	1.0	ug/L							
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L							
Toluene	<1.0	1.0	ug/L							
trans-1,3-Dichloropropene	<1.0	1.0	ug/L							
1,1,2-Trichloroethane	<1.0	1.0	ug/L							
Tetrachloroethylene	<1.0	1.0	ug/L							
2-Hexanone (MBK)	<5.0	5.0	ug/L							
Dibromochloromethane	<1.0	1.0	ug/L							
1,2-Dibromoethane	<1.0	1.0	ug/L							
Chlorobenzene	<1.0	1.0	ug/L							
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L							
Ethylbenzene	<1.0	1.0	ug/L							
Xylenes, total	<2.0	2.0	ug/L							
Styrene	<1.0	1.0	ug/L							
Bromoform	<1.0	1.0	ug/L							
1,2,3-Trichloropropane	<1.0	1.0	ug/L							
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L							
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L							
1,4-Dichlorobenzene	<1.0	1.0	ug/L							
1,2-Dichlorobenzene	<1.0	1.0	ug/L							
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L							
Surrogate: Dibromofluoromethane	37.2		ug/L	50.2		74.2	80-126			ZZZS: GC
Surrogate: Dibromofluoromethane	37.2		ug/L	50.2		74.2	75-136			ZZZS GC
Surrogate: 1,2-Dichloroethane-d4	35.8		ug/L	50.1		71.6	63-138			•
Surrogate: 1,2-Dichloroethane-d4	35.8		ug/L	50.1		71.6	61-142			
Surrogate: Toluene-d8	51.2		ug/L	50.4		102	87-116			

1HC1337

Spike Source

%REC

RPD

Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HC1242 - EPA 5030B - EPA	A 8260D									
Blank (1HC1242-BLK2)			Prepared: 03	3/21/24 00:0	00 Analyzed:	03/22/24 0	0:13			
Surrogate: Toluene-d8	51.2		ug/L	50.4		102	82-121			
Surrogate: 4-Bromofluorobenzene Surrogate: 4-Bromofluorobenzene	43.8 43.8		ug/L ug/L	50.1 50.1		87.2 87.2	85-111 80-116			
LCS (1HC1242-BS1)			Prepared: 03		00 Analyzed:					
Chloromethane	31.57	1.0	ug/L	30.6		103	63-155			
Vinyl Chloride	28.37	1.0	ug/L	30.2		93.9	70-154			
Bromomethane	29.77	1.0	ug/L	28.8		103	52-176			
Chloroethane	32.42	1.0	ug/L	31.6		102	72-148			
Trichlorofluoromethane	28.32	1.0	ug/L	32.6		86.8	70-152			
1,1-Dichloroethylene	49.29	1.0	ug/L	50.0		98.6	70-148			
Acetone	90.76	10.0	ug/L	102		89.0	43-172			
Methyl lodide	103.2	1.0	ug/L	99.7		103	69-170			
Carbon Disulfide	93.18	1.0	ug/L	101		92.3	72-162			
Methylene Chloride	47.29	5.0	ug/L	50.0		94.6	68-142			
Acrylonitrile	78.86	5.0	ug/L	100		78.6	67-144			
trans-1,2-Dichloroethylene	49.30	1.0	ug/L	50.0		98.6	66-148			
1,1-Dichloroethane	48.34	1.0	ug/L	50.0		96.7	66-143			
Vinyl Acetate	100.6	5.0	ug/L	102		98.8	43-153			
cis-1,2-Dichloroethylene	48.49	1.0	ug/L	49.5		98.0	71-149			
2-Butanone (MEK)	82.75	10.0	ug/L	103		80.1	52-159			
Bromochloromethane	50.24	1.0	ug/L	50.0		100	69-143			
Chloroform	48.07	1.0	ug/L	50.0		96.1	69-144			
1,1,1-Trichloroethane	43.50	1.0	ug/L	50.0		87.0	62-129			
Carbon Tetrachloride	46.38	1.0	ug/L	50.0		92.8	63-141			
Benzene	52.54	1.0	ug/L	50.0		105	71-134			
1,2-Dichloroethane	49.13	1.0	ug/L	50.0		98.3	72-132			
Trichloroethylene	49.19	1.0	ug/L	50.0		98.4	71-135			
1,2-Dichloropropane	50.38	1.0	ug/L	50.0		101	69-136			
Dibromomethane	51.47	1.0	ug/L	50.0		103	73-147			
Bromodichloromethane	47.84	1.0	ug/L	50.0		95.7	68-129			
cis-1,3-Dichloropropene	47.50	1.0	ug/L	50.3		94.4	65-134			
4-Methyl-2-pentanone (MIBK)	94.61	5.0	ug/L	101		93.3	58-147			
Toluene	51.33	1.0	ug/L	50.0		103	72-133			
trans-1,3-Dichloropropene	46.33	1.0	ug/L	50.4		91.9	67-130			
1,1,2-Trichloroethane	49.24	1.0	ug/L	50.4		98.5	69-135			
Tetrachloroethylene	49.78	1.0	ug/L ug/L	50.0		96.5 99.6	69-130			
2-Hexanone (MBK)	94.69	5.0	ug/L ug/L	103		91.7	55-144			
Dibromochloromethane	49.54	1.0	ug/L ug/L	49.5		100	73-127			
1,2-Dibromoethane	48.63	1.0	ug/L ug/L	50.0		97.3				
Chlorobenzene	51.85	1.0	_				67-132			
1,1,1,2-Tetrachloroethane	51.16	1.0	ug/L	50.0 50.0		104	72-123			
	49.11		ug/L			102	73-127			
Ethylbenzene	43.11	1.0	ug/L	50.0		98.2	71-127			

1HC1337

Determination of Volatile Organic Compounds	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HC1242 - EPA 5030B - EPA	A 8260D									
LCS (1HC1242-BS1)			Prepared: 03	3/21/24 00:0	0 Analyzed:	03/21/24 1	0:01			
Xylenes, total	150.4	2.0	ug/L	150		100	74-127			
Styrene	50.05	1.0	ug/L	50.0		100	66-126			
Bromoform	54.03	1.0	ug/L	50.0		108	68-130			
1,2,3-Trichloropropane	50.13	1.0	ug/L	50.0		100	63-136			
trans-1,4-Dichloro-2-butene	92.01	5.0	ug/L	104		88.6	54-134			
1,1,2,2-Tetrachloroethane	47.49	1.0	ug/L	49.8		95.3	61-131			
1,4-Dichlorobenzene	48.71	1.0	ug/L	50.0		97.4	70-129			
1,2-Dichlorobenzene	48.83	1.0	ug/L	50.0		97.7	69-126			
1,2-Dibromo-3-chloropropane	47.30	5.0	ug/L	50.0		94.6	50-143			
Surrogate: Dibromofluoromethane	50.7		ug/L	50.2		101	80-126			
Surrogate: Dibromofluoromethane	50.7		ug/L	50.2		101	75-136			
Surrogate: 1,2-Dichloroethane-d4	50.9		ug/L	50.1		102	63-138			
Surrogate: 1,2-Dichloroethane-d4	50.9		ug/L	50.1		102	61-142			
Surrogate: Toluene-d8	50.9		ug/L	50.4		101	87-116			
Surrogate: Toluene-d8	50.9		ug/L	50.4		101	82-121			
Surrogate: 4-Bromofluorobenzene Surrogate: 4-Bromofluorobenzene	53.2		ug/L	50.1		106	85-111 80-116			
.CS (1HC1242-BS2)	53.2		ug/L Prepared: 03	50.1 3/21/24 00:0	0 Analyzed:	106				
Chloromethane	30.12	1.0	· · · · · · · · · · · · · · · · · · ·		o / mary zou.					
	27.67	1.0	ug/L	30.6		98.3	63-155			
Vinyl Chloride		1.0	ug/L	30.2		91.5	70-154			
Bromomethane	27.16	1.0	ug/L	28.8		94.3	52-176			
Chloroethane	31.15	1.0	ug/L	31.6		98.5	72-148			
Trichlorofluoromethane	26.82	1.0	ug/L	32.6		82.2	70-152			
1,1-Dichloroethylene	46.33	1.0	ug/L	50.0		92.7	70-148			
Acetone	91.23	10.0	ug/L	102		89.4	43-172			
Methyl lodide	100.5	1.0	ug/L	99.7		101	69-170			
Carbon Disulfide	89.11	1.0	ug/L	101		88.2	72-162			
Methylene Chloride	43.02	5.0	ug/L	50.0		86.0	68-142			
Acrylonitrile	71.61	5.0	ug/L	100		71.4	67-144			
trans-1,2-Dichloroethylene	46.84	1.0	ug/L	50.0		93.7	66-148			
1,1-Dichloroethane	45.56	1.0	ug/L	50.0		91.1	66-143			
Vinyl Acetate	51.16	5.0	ug/L	102		50.2	43-153			
cis-1,2-Dichloroethylene	44.34	1.0	ug/L	49.5		89.6	71-149			
2-Butanone (MEK)	90.44	10.0	ug/L	103		87.6	52-159			
Bromochloromethane	44.80	1.0	ug/L	50.0		89.6	69-143			
Chloroform	45.76	1.0	ug/L	50.0		91.5	69-144			
1,1,1-Trichloroethane	42.73	1.0	ug/L	50.0		85.5	62-129			
Carbon Tetrachloride	45.78	1.0	ug/L	50.0		91.6	63-141			
Benzene	51.70	1.0	ug/L	50.0		103	71-134			
1,2-Dichloroethane	45.63	1.0	ug/L	50.0		91.3	72-132			
Trichloroethylene	53.83	1.0	ug/L	50.0		108	71-135			
1,2-Dichloropropane	47.90	1.0	ug/L	50.0		95.8				
Dibromomethane	47.15	1.0	ug/L ug/L	50.0		95.8 94.3	69-136 73-147			

1HC1337

				Spike	Source		%REC		RPD	N - 4
Determination of Volatile	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Organic Compounds										
Batch 1HC1242 - EPA 5030B - EPA	A 8260D		D 100			20/04/04 0	0.54			
LCS (1HC1242-BS2)			Prepared: 03		0 Analyzed:	03/21/24 2	2:54			
Bromodichloromethane	44.96	1.0	ug/L	50.0		89.9	68-129			
cis-1,3-Dichloropropene	42.75	1.0	ug/L	50.3		84.9	65-134			
4-Methyl-2-pentanone (MIBK)	85.43	5.0	ug/L	101		84.3	58-147			
Toluene	50.06	1.0	ug/L	50.0		100	72-133			
trans-1,3-Dichloropropene	40.81	1.0	ug/L	50.4		80.9	67-130			
1,1,2-Trichloroethane	45.63	1.0	ug/L	50.0		91.3	69-135			
Tetrachloroethylene	51.22	1.0	ug/L	50.0		102	69-130			
2-Hexanone (MBK)	96.01	5.0	ug/L	103		92.9	55-144			
Dibromochloromethane	46.69	1.0	ug/L	49.5		94.3	73-127			
1,2-Dibromoethane	45.42	1.0	ug/L	50.0		90.8	67-132			
Chlorobenzene	50.58	1.0	ug/L	50.0		101	72-123			
1,1,1,2-Tetrachloroethane	50.62	1.0	ug/L	50.0		101	73-127			
Ethylbenzene	48.60	1.0	ug/L	50.0		97.2	71-127			
Xylenes, total	147.2	2.0	ug/L	150		98.1	74-127			
Styrene	47.94	1.0	ug/L	50.0		95.9	66-126			
Bromoform	49.08	1.0	ug/L	50.0		98.2	68-130			
1,2,3-Trichloropropane	45.88	1.0	ug/L	50.0		91.8	63-136			
trans-1,4-Dichloro-2-butene	76.35	5.0	ug/L	104		73.5	54-134			
1,1,2,2-Tetrachloroethane	38.64	1.0	ug/L	49.8		77.5	61-131			
1,4-Dichlorobenzene	45.37	1.0	ug/L	50.0		90.7	70-129			
1,2-Dichlorobenzene	45.26	1.0	ug/L	50.0		90.5	69-126			
1,2-Dibromo-3-chloropropane	40.62	5.0	ug/L	50.0		81.2	50-143			
Currente: Dibremellueremethene	40.7		/!	50.0		07.0	00.406			
Surrogate: Dibromofluoromethane Surrogate: Dibromofluoromethane	48.7 48.7		ug/L ug/L	50.2 50.2		97.0 97.0	80-126 75-136			
Surrogate: 1,2-Dichloroethane-d4	48.6		ug/L ug/L	50.2 50.1		97.0 97.0	63-138			
Surrogate: 1,2-Dichloroethane-d4	48.6		ug/L	50.1		97.0	61-142			
Surrogate: Toluene-d8	50.7		ug/L	50.4		101	87-116			
Surrogate: Toluene-d8	50.7		ug/L	50.4		101	82-121			
Surrogate: 4-Bromofluorobenzene	51.8		ug/L	50.1		103	85-111			
Surrogate: 4-Bromofluorobenzene	51.8		ug/L	50.1		103	80-116			
.CS Dup (1HC1242-BSD1)			Prepared: 03	3/21/24 00:0	0 Analyzed:	03/21/24 1	0:27			
Chloromethane	28.57	1.0	ug/L	30.6		93.2	63-155	9.98	24	
Vinyl Chloride	25.33	1.0	ug/L	30.2		83.8	70-154	11.3	25	
Bromomethane	27.71	1.0	ug/L	28.8		96.2	52-176	7.17	27	
Chloroethane	29.65	1.0	ug/L	31.6		93.7	72-148	8.93	25	
Trichlorofluoromethane	25.91	1.0	ug/L	32.6		79.5	70-152	8.89	26	
1,1-Dichloroethylene	45.45	1.0	ug/L	50.0		90.9	70-148	8.11	24	
Acetone	87.47	10.0	ug/L	102		85.8	43-172	3.69	30	
Methyl lodide	93.25	1.0	ug/L	99.7		93.5	69-170	10.1	30	
Carbon Disulfide	84.52	1.0	ug/L	101		83.7	72-162	9.75	24	
Methylene Chloride	43.72	5.0	ug/L ug/L	50.0		87.4	68-142	7.85	21	
Acrylonitrile	74.90	5.0	ug/L	100		74.6				
	45.35		_				67-144	5.15	24	
trans-1,2-Dichloroethylene	40.00	1.0	ug/L	50.0		90.7	66-148	8.35	27	

1HC1337

Determination of Volatile	Result	DI	Unite	Spike	Source	0/ DEC	%REC	RPD	RPD Limit	Notes
Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch 1HC1242 - EPA 5030B - EPA	A 8260D									
_CS Dup (1HC1242-BSD1)			Prepared: 03	3/21/24 00:0	0 Analyzed:	03/21/24 1	0:27			
1,1-Dichloroethane	44.74	1.0	ug/L	50.0		89.5	66-143	7.74	24	
Vinyl Acetate	104.4	5.0	ug/L	102		102	43-153	3.71	30	
cis-1,2-Dichloroethylene	45.33	1.0	ug/L	49.5		91.6	71-149	6.74	26	
2-Butanone (MEK)	97.78	10.0	ug/L	103		94.7	52-159	16.7	27	
Bromochloromethane	47.32	1.0	ug/L	50.0		94.6	69-143	5.99	23	
Chloroform	44.79	1.0	ug/L	50.0		89.6	69-144	7.06	23	
1,1,1-Trichloroethane	40.00	1.0	ug/L	50.0		80.0	62-129	8.38	24	
Carbon Tetrachloride	42.70	1.0	ug/L	50.0		85.4	63-141	8.26	25	
Benzene	48.42	1.0	ug/L	50.0		96.8	71-134	8.16	24	
1,2-Dichloroethane	45.95	1.0	ug/L	50.0		91.9	71-134	6.69	24	
Trichloroethylene	45.28	1.0	ug/L	50.0		90.6	71-135	8.28	24 24	
1,2-Dichloropropane	46.72	1.0	ug/L	50.0		93.4	69-136	8.28 7.54	24 24	
Dibromomethane	48.39	1.0	ug/L	50.0		93.4 96.8	73-147	7.54 6.17	24 25	
Bromodichloromethane	44.43	1.0	_	50.0		88.9				
	44.62		ug/L				68-129	7.39	22	
cis-1,3-Dichloropropene	90.41	1.0	ug/L	50.3		88.7	65-134	6.25	23	
4-Methyl-2-pentanone (MIBK)	47.52	5.0	ug/L	101		89.2	58-147	4.54	27	
Toluene		1.0	ug/L	50.0		95.0	72-133	7.71	24	
trans-1,3-Dichloropropene	43.91	1.0	ug/L	50.4		87.1	67-130	5.36	24	
1,1,2-Trichloroethane	45.91	1.0	ug/L	50.0		91.8	69-135	7.00	23	
Tetrachloroethylene	45.90	1.0	ug/L	50.0		91.8	69-130	8.11	25	
2-Hexanone (MBK)	90.61	5.0	ug/L	103		87.7	55-144	4.40	25	
Dibromochloromethane	45.79	1.0	ug/L	49.5		92.5	73-127	7.87	22	
1,2-Dibromoethane	44.92	1.0	ug/L	50.0		89.8	67-132	7.93	24	
Chlorobenzene	48.12	1.0	ug/L	50.0		96.2	72-123	7.46	23	
1,1,1,2-Tetrachloroethane	47.77	1.0	ug/L	50.0		95.5	73-127	6.85	24	
Ethylbenzene	45.52	1.0	ug/L	50.0		91.0	71-127	7.59	26	
Xylenes, total	139.6	2.0	ug/L	150		93.1	74-127	7.46	25	
Styrene	46.28	1.0	ug/L	50.0		92.6	66-126	7.83	23	
Bromoform	50.06	1.0	ug/L	50.0		100	68-130	7.63	23	
1,2,3-Trichloropropane	46.72	1.0	ug/L	50.0		93.4	63-136	7.04	24	
trans-1,4-Dichloro-2-butene	86.26	5.0	ug/L	104		83.0	54-134	6.45	27	
1,1,2,2-Tetrachloroethane	45.12	1.0	ug/L	49.8		90.5	61-131	5.12	29	
1,4-Dichlorobenzene	45.26	1.0	ug/L	50.0		90.5	70-129	7.34	24	
1,2-Dichlorobenzene	45.92	1.0	ug/L	50.0		91.8	69-126	6.14	26	
1,2-Dibromo-3-chloropropane	44.14	5.0	ug/L	50.0		88.3	50-143	6.91	30	
Surrogate: Dibromofluoromethane	50.0		ug/L	50.2		99.6	80-126			
Surrogate: Dibromofluoromethane	50.0		ug/L	50.2		99.6	75-136			
Surrogate: 1,2-Dichloroethane-d4	50.0		ug/L	50.1		99.9	63-138			
Surrogate: 1,2-Dichloroethane-d4	50.0		ug/L	50.1		99.9	61-142			
Surrogate: Toluene-d8	50.7		ug/L	50.4		101	87-116			
Surrogate: Toluene-d8	50.7		ug/L	50.4		101	82-121			
Surrogate: 4-Bromofluorobenzene	52.6		ug/L	50.1		105 105	85-111 80-116			
Surrogate: 4-Bromofluorobenzene	52.6		ug/L	50.1		105	80-116			

1HC1337

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HC1242 - EPA 5030B - EPA	A 8260D									
LCS Dup (1HC1242-BSD2)			Prepared: 03	3/21/24 00:0	0 Analyzed:	03/21/24 2	3:20			
Chloromethane	27.98	1.0	ug/L	30.6		91.3	63-155	7.37	24	
Vinyl Chloride	25.58	1.0	ug/L	30.2		84.6	70-154	7.85	25	
Bromomethane	26.07	1.0	ug/L	28.8		90.5	52-176	4.10	27	
Chloroethane	29.26	1.0	ug/L	31.6		92.5	72-148	6.26	25	
Trichlorofluoromethane	24.56	1.0	ug/L	32.6		75.3	70-152	8.80	26	
1,1-Dichloroethylene	43.80	1.0	ug/L	50.0		87.6	70-148	5.61	24	
Acetone	87.31	10.0	ug/L	102		85.6	43-172	4.39	30	
Methyl Iodide	95.32	1.0	ug/L	99.7		95.6	69-170	5.29	30	
Carbon Disulfide	83.20	1.0	ug/L	101		82.4	72-162	6.86	24	
Methylene Chloride	41.81	5.0	ug/L	50.0		83.6	68-142	2.85	21	
Acrylonitrile	72.43	5.0	ug/L	100		72.2	67-144	1.14	24	
trans-1,2-Dichloroethylene	44.58	1.0	ug/L	50.0		89.2	66-148	4.94	27	
1,1-Dichloroethane	43.81	1.0	ug/L	50.0		87.6	66-143	3.92	24	
Vinyl Acetate	50.25	5.0	ug/L	102		49.3	43-153	1.79	30	
cis-1,2-Dichloroethylene	42.67	1.0	ug/L	49.5		86.2	71-149	3.84	26	
2-Butanone (MEK)	91.28	10.0	ug/L	103		88.4	52-159	0.924	27	
Bromochloromethane	43.92	1.0	ug/L	50.0		87.8	69-143	1.98	23	
Chloroform	43.68	1.0	ug/L	50.0		87.4	69-144	4.65	23	
1,1,1-Trichloroethane	40.28	1.0	ug/L	50.0		80.6	62-129	5.90	24	
Carbon Tetrachloride	42.85	1.0	ug/L	50.0		85.7	63-141	6.61	25	
Benzene	49.15	1.0	ug/L	50.0		98.3	71-134	5.06	24	
1,2-Dichloroethane	43.53	1.0	ug/L	50.0		87.1	72-132	4.71	24	
Trichloroethylene	50.49	1.0	ug/L	50.0		101	71-135	6.40	24	
1,2-Dichloropropane	46.12	1.0	ug/L	50.0		92.2	69-136	3.79	24	
Dibromomethane	45.98	1.0	ug/L	50.0		92.0	73-147	2.51	25	
Bromodichloromethane	43.26	1.0	ug/L	50.0		86.5	68-129	3.85	22	
cis-1,3-Dichloropropene	41.37	1.0	ug/L	50.3		82.2	65-134	3.28	23	
4-Methyl-2-pentanone (MIBK)	84.20	5.0	ug/L	101		83.0	58-147	1.45	27	
Toluene	47.54	1.0	ug/L	50.0		95.1	72-133	5.16	24	
trans-1,3-Dichloropropene	40.06	1.0	ug/L	50.4		79.4	67-130	1.85	24	
1,1,2-Trichloroethane	44.18	1.0	ug/L	50.0		88.4	69-135	3.23	23	
Tetrachloroethylene	48.69	1.0	ug/L	50.0		97.4	69-130	5.06	25	
2-Hexanone (MBK)	95.02	5.0	ug/L	103		92.0	55-144	1.04	25	
Dibromochloromethane	45.20	1.0	ug/L	49.5		91.3	73-127	3.24	22	
1,2-Dibromoethane	44.48	1.0	ug/L	50.0		89.0	67-132	2.09	24	
Chlorobenzene	48.36	1.0	ug/L	50.0		96.7	72-123	4.49	23	
1,1,1,2-Tetrachloroethane	48.74	1.0	ug/L	50.0		97.5	73-127	3.78	24	
Ethylbenzene	46.34	1.0	ug/L	50.0		92.7	71-127	4.76	26	
Xylenes, total	141.0	2.0	ug/L	150		94.0	74-127	4.28	25	
Styrene	45.88	1.0	ug/L	50.0		91.8	66-126	4.39	23	
Bromoform	48.13	1.0	ug/L	50.0		96.3	68-130	1.95	23	
1,2,3-Trichloropropane	45.09	1.0	ug/L	50.0		90.2	63-136	1.74	24	
trans-1,4-Dichloro-2-butene	74.68	5.0	ug/L	104		71.9	54-134	2.21	27	

1HC1337

Determination of Volatile Organic Compounds	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HC1242 - EPA 5030B - EPA	A 8260D									
LCS Dup (1HC1242-BSD2)			Prepared: 03	3/21/24 00:0	0 Analyzed:	03/21/24 2	3:20			
1,1,2,2-Tetrachloroethane	39.59	1.0	ug/L	49.8		79.4	61-131	2.43	29	
1,4-Dichlorobenzene	45.14	1.0	ug/L	50.0		90.3	70-129	0.508	24	
1,2-Dichlorobenzene	44.92	1.0	ug/L	50.0		89.8	69-126	0.754	26	
1,2-Dibromo-3-chloropropane	40.67	5.0	ug/L	50.0		81.3	50-143	0.123	30	
Surrogate: Dibromofluoromethane	48.0		ug/L	50.2		95.6	80-126			
Surrogate: Dibromofluoromethane	48.0		ug/L	50.2		95.6	75-136			
Surrogate: 1,2-Dichloroethane-d4	48.3		ug/L	50.1		96.5	63-138			
Surrogate: 1,2-Dichloroethane-d4	48.3		ug/L	50.1		96.5	61-142			
Surrogate: Toluene-d8	50.0		ug/L	50.4		99.2	87-116			
Surrogate: Toluene-d8	50.0		ug/L	50.4		99.2	82-121			
Surrogate: 4-Bromofluorobenzene	51.5 51.5		ug/L	50.1		103	85-111			
Surrogate: 4-Bromofluorobenzene	51.5	HC1337-04	ug/L Prepared: 0	<i>50.1</i> 3/21/24 00:0	IO Analyzed:	103	80-116 5:28			
Matrix Spike (1HC1242-MS1) Chloromethane	291.9	10.0	ug/L	306	ND	95.3	61-152			
Vinyl Chloride	263.9	10.0	ug/L	302		87.3				
•	258.9		•		ND		66-149			
Bromomethane	306.1	10.0	ug/L	288	ND	89.9	43-171			
Chloroethane		10.0	ug/L	316	ND	96.8	69-148			
Trichlorofluoromethane	254.2	10.0	ug/L	326	ND	78.0	62-163			
1,1-Dichloroethylene	463.1	10.0	ug/L	500	ND	92.6	70-148			
Acetone	886.3	100	ug/L	1020	ND	86.9	45-173			
Methyl lodide	980.1	10.0	ug/L	997	ND	98.3	62-167			
Carbon Disulfide	891.0	10.0	ug/L	1010	ND	88.2	71-163			
Methylene Chloride	422.8	50.0	ug/L	500	ND	84.6	69-140			
Acrylonitrile	703.7	50.0	ug/L	1000	ND	70.1	58-151			
trans-1,2-Dichloroethylene	476.4	10.0	ug/L	500	ND	95.3	69-144			
1,1-Dichloroethane	460.3	10.0	ug/L	500	ND	92.1	70-138			
Vinyl Acetate	1005	50.0	ug/L	1020	ND	98.7	58-142			
cis-1,2-Dichloroethylene	439.3	10.0	ug/L	495	ND	88.8	68-151			
2-Butanone (MEK)	837.2	100	ug/L	1030	ND	81.0	50-160			
Bromochloromethane	444.9	10.0	ug/L	500	ND	89.0	65-143			
Chloroform	461.7	10.0	ug/L	500	ND	92.3	71-143			
1,1,1-Trichloroethane	430.4	10.0	ug/L	500	ND	86.1	63-133			
Carbon Tetrachloride	458.3	10.0	ug/L	500	ND	91.7	63-142			
Benzene	526.1	10.0	ug/L	500	ND	105	69-133			
1,2-Dichloroethane	463.8	10.0	ug/L	500	ND	92.8	63-138			
Trichloroethylene	495.3	10.0	ug/L	500		99.1				
1,2-Dichloropropane	476.6	10.0	ug/L ug/L	500	ND	95.3	71-133			
Dibromomethane	478.3		_		ND		69-132			
	476.3 452.3	10.0	ug/L	500	ND	95.7	70-147			
Bromodichloromethane		10.0	ug/L	500	ND	90.5	67-130			
cis-1,3-Dichloropropene	381.6	10.0	ug/L	503	ND	75.8	61-126			
4-Methyl-2-pentanone (MIBK)	803.8	50.0	ug/L	1010	ND	79.3	55-147			
Toluene	500.1	10.0	ug/L	500	ND	100	71-133			
trans-1,3-Dichloropropene	389.4	10.0	ug/L	504	ND	77.2	63-124			

1HC1337

Spike Source

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 1HC1242 - EPA 5030B - EPA	A 8260D									
Matrix Spike (1HC1242-MS1)	Source:	1HC1337-04	Prepared: 0	3/21/24 00:0	00 Analyzed:	03/22/24 0	5:28			
1,1,2-Trichloroethane	458.3	10.0	ug/L	500	ND	91.7	69-133			
Tetrachloroethylene	524.5	10.0	ug/L	500	ND	105	70-124			
2-Hexanone (MBK)	866.3	50.0	ug/L	1030	ND	83.9	53-141			
Dibromochloromethane	473.2	10.0	ug/L	495	ND	95.6	74-122			
1,2-Dibromoethane	460.4	10.0	ug/L	500	ND	92.1	66-127			
Chlorobenzene	513.1	10.0	ug/L	500	ND	103	76-116			
1,1,1,2-Tetrachloroethane	520.3	10.0	ug/L	500	ND	104	77-121			
Ethylbenzene	495.1	10.0	ug/L	500	ND	99.0	73-124			
Xylenes, total	1488	20.0	ug/L	1500	ND	99.2	75-123			
Styrene	479.7	10.0	ug/L	500	ND	95.9	70-120			
Bromoform	487.9	10.0	ug/L	500	ND	97.6	70-124			
1,2,3-Trichloropropane	467.4	10.0	ug/L	500	ND	93.5	62-135			
trans-1,4-Dichloro-2-butene	690.2	50.0	ug/L	1040	ND	66.4	50-120			
1,1,2,2-Tetrachloroethane	456.3	10.0	ug/L	498	ND	91.5	63-126			
1,4-Dichlorobenzene	461.0	10.0	ug/L	500		92.2				
·	456.2		•		ND		72-119			
1,2-Dichlorobenzene	389.2	10.0	ug/L	500	ND	91.2	71-117			
1,2-Dibromo-3-chloropropane	309.2	50.0	ug/L	500	ND	77.8	49-134			
Surrogate: Dibromofluoromethane	484		ug/L	502		96.5	80-126			
Surrogate: Dibromofluoromethane	484		ug/L	502		96.5	75-136			
Surrogate: 1,2-Dichloroethane-d4	497		ug/L	501		99.3	63-138			
Surrogate: 1,2-Dichloroethane-d4	497		ug/L	501		99.3	61-142			
Surrogate: Toluene-d8	499		ug/L	504		99.0	87-116			
Surrogate: Toluene-d8	499		ug/L	504		99.0	82-121			
Surrogate: 4-Bromofluorobenzene	511		ug/L	501		102	85-111			
Surrogate: 4-Bromofluorobenzene	511		ug/L	501		102	80-116			
Matrix Spike (1HC1242-MS2)		1HC1336-11	Prepared: 0	3/21/24 00:0	00 Analyzed:	03/22/24 0	6:21			
Chloromethane	278.6	10.0	ug/L	306	ND	90.9	61-152			
Vinyl Chloride	258.8	10.0	ug/L	302	ND	85.6	66-149			
Bromomethane	256.5	10.0	ug/L	288	ND	89.1	43-171			
Chloroethane	293.9	10.0	ug/L	316	ND	92.9	69-148			
Trichlorofluoromethane	255.4	10.0	ug/L	326	ND	78.3	62-163			
1,1-Dichloroethylene	445.5	10.0	ug/L	500	ND	89.1	70-148			
Acetone	840.1	100	ug/L	1020	ND	82.4	45-173			
Methyl lodide	926.4	10.0	ug/L	997	ND	92.9	62-167			
Carbon Disulfide	843.0	10.0	ug/L	1010	ND	83.5	71-163			
Methylene Chloride	394.8	50.0	ug/L	500	ND	79.0	69-140			
Acrylonitrile	661.3	50.0	ug/L	1000	ND	65.9	58-151			
trans-1,2-Dichloroethylene	444.3	10.0	ug/L	500	ND	88.9	69-144			
1,1-Dichloroethane	429.7	10.0	ug/L	500	ND	85.9				
,	965.3	50.0	•				70-138			
Vinyl Acetate	413.0		ug/L	1020	ND	94.7	58-142			
cis-1,2-Dichloroethylene		10.0	ug/L	495	ND	83.5	68-151			
2-Butanone (MEK)	824.4	100	ug/L	1030	ND	79.8	50-160			
Bromochloromethane	414.6	10.0	ug/L	500	ND	82.9	65-143			

Microbac Laboratories, Inc., Newton

RPD

%REC

1	ш	\sim 1	227
- 1	п	い	337

Spike Source

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 1HC1242 - EPA 5030B - EPA	8260D									
latrix Spike (1HC1242-MS2)	Source: 1	HC1336-11	Prepared: 03	3/21/24 00:0	0 Analyzed:	03/22/24 0	6:21			
Chloroform	425.3	10.0	ug/L	500	ND	85.1	71-143			
1,1,1-Trichloroethane	409.2	10.0	ug/L	500	ND	81.9	63-133			
Carbon Tetrachloride	437.5	10.0	ug/L	500	ND	87.5	63-142			
Benzene	495.6	10.0	ug/L	500	ND	99.1	69-133			
1,2-Dichloroethane	430.3	10.0	ug/L	500	ND	86.1	63-138			
Trichloroethylene	471.9	10.0	ug/L	500	ND	94.4	71-133			
1,2-Dichloropropane	457.4	10.0	ug/L	500	ND	91.5	69-132			
Dibromomethane	444.4	10.0	ug/L	500	ND	88.9	70-147			
Bromodichloromethane	424.0	10.0	ug/L	500	ND	84.8	67-130			
cis-1,3-Dichloropropene	400.4	10.0	ug/L	503	ND	79.6	61-126			
4-Methyl-2-pentanone (MIBK)	822.3	50.0	ug/L	1010	ND	81.1	55-147			
Toluene	477.5	10.0	ug/L	500	ND	95.5	71-133			
trans-1,3-Dichloropropene	377.2	10.0	ug/L	504	ND	74.8	63-124			
1,1,2-Trichloroethane	425.9	10.0	ug/L	500	ND	85.2	69-133			
Tetrachloroethylene	490.1	10.0	ug/L	500	ND	98.0	70-124			
2-Hexanone (MBK)	852.1	50.0	ug/L	1030	ND	82.5	53-141			
Dibromochloromethane	443.5	10.0	ug/L	495	ND	89.6	74-122			
1,2-Dibromoethane	429.4	10.0	ug/L	500	ND	85.9	66-127			
Chlorobenzene	484.5	10.0	ug/L	500	ND	96.9	76-116			
1,1,1,2-Tetrachloroethane	491.3	10.0	ug/L	500	ND	98.3	70-110 77-121			
Ethylbenzene	472.9	10.0	ug/L	500	ND	94.6	73-124			
Xylenes, total	1423	20.0	ug/L	1500	ND	94.8	75-124 75-123			
Styrene	453.6	10.0	ug/L	500	ND	90.7	70-120			
Bromoform	462.6	10.0	_							
	437.8	10.0	ug/L	500	ND	92.5	70-124			
1,2,3-Trichloropropane trans-1,4-Dichloro-2-butene	691.2	50.0	ug/L	500	ND	87.6	62-135			
1,1,2,2-Tetrachloroethane	434.5		ug/L	1040	ND	66.5	50-120			
, , ,	442.2	10.0	ug/L	498	ND	87.2	63-126			
1,4-Dichlorobenzene		10.0	ug/L	500	ND	88.4	72-119			
1,2-Dichlorobenzene	444.7	10.0	ug/L	500	ND	88.9	71-117			
1,2-Dibromo-3-chloropropane	402.6	50.0	ug/L	500	ND	80.5	49-134			
Surrogate: Dibromofluoromethane	460		ug/L	502		91.7	80-126			
Surrogate: Dibromofluoromethane	460		ug/L	502		91.7	75-136			
Surrogate: 1,2-Dichloroethane-d4 Surrogate: 1,2-Dichloroethane-d4	468		ug/L	501		93.5	63-138			
Surrogate: 1,2-Dicnioroetnane-d4 Surrogate: Toluene-d8	468 497		ug/L	501 504		93.5 98.6	61-142 87-116			
Surrogate: Toluene-do Surrogate: Toluene-d8	497 497		ug/L ug/L	504 504		98.6 98.6	87-116 82-121			
Surrogate: 4-Bromofluorobenzene	514		ug/L ug/L	501		103	85-111			
Surrogate: 4-Bromofluorobenzene	514		ug/L	501		103	80-116			
Matrix Spike Dup (1HC1242-MSD1)	Source: 1	HC1337-04	Prepared: 0	3/21/24 00:0	00 Analyzed:	03/22/24 0	5:54			
Chloromethane	279.3	10.0	ug/L	306	ND	91.1	61-152	4.41	26	
Vinyl Chloride	251.0	10.0	ug/L	302	ND	83.0	66-149	5.01	23	
Bromomethane	260.2	10.0	ug/L	288	ND	90.3	43-171	0.501	29	
Chloroethane	291.1	10.0	ug/L	316	ND	92.0	69-148	5.02	25	

Microbac Laboratories, Inc., Newton

RPD

%REC

Microbac Laboratories, Inc., Newton CERTIFICATE OF ANALYSIS 1HC1337

				Spike	Source		%REC		RPD	Notes
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HC1242 - EPA 5030B - EPA	8260D									
Matrix Spike Dup (1HC1242-MSD1)	Source	: 1HC1337-04	Prepared: 03	3/21/24 00:0	00 Analyzed:	03/22/24 0	5:54			
Trichlorofluoromethane	236.7	10.0	ug/L	326	ND	72.6	62-163	7.13	25	
1,1-Dichloroethylene	444.6	10.0	ug/L	500	ND	88.9	70-148	4.08	22	
Acetone	907.8	100	ug/L	1020	ND	89.0	45-173	2.40	30	
Methyl Iodide	943.9	10.0	ug/L	997	ND	94.7	62-167	3.76	24	
Carbon Disulfide	839.9	10.0	ug/L	1010	ND	83.2	71-163	5.90	22	
Methylene Chloride	418.1	50.0	ug/L	500	ND	83.6	69-140	1.12	19	
Acrylonitrile	734.4	50.0	ug/L	1000	ND	73.2	58-151	4.27	15	
trans-1,2-Dichloroethylene	458.3	10.0	ug/L	500	ND	91.7	69-144	3.87	22	
1,1-Dichloroethane	446.0	10.0	ug/L	500	ND	89.2	70-138	3.16	20	
Vinyl Acetate	1014	50.0	ug/L	1020	ND	99.5	58-142	0.871	24	
cis-1,2-Dichloroethylene	432.4	10.0	ug/L	495	ND	87.4	68-151	1.58	22	
2-Butanone (MEK)	833.9	100	ug/L	1030	ND	80.7	50-160	0.395	23	
Bromochloromethane	445.6	10.0	ug/L	500	ND	89.1	65-143	0.157	22	
Chloroform	447.7	10.0	ug/L	500	ND	89.5	71-143	3.08	21	
1,1,1-Trichloroethane	413.2	10.0	ug/L	500	ND	82.7	63-133	4.08	23	
Carbon Tetrachloride	437.6	10.0	ug/L	500	ND	87.5	63-142	4.62	22	
Benzene	499.8	10.0	ug/L	500	ND	100	69-133	5.13	18	
1,2-Dichloroethane	452.1	10.0	ug/L	500	ND	90.4	63-138	2.55	20	
Trichloroethylene	469.2	10.0	ug/L	500	ND	93.8	71-133	5.41	23	
1,2-Dichloropropane	470.0	10.0	ug/L	500	ND	94.0	69-132	1.39	20	
Dibromomethane	475.9	10.0	ug/L	500	ND	95.2	70-147	0.503	22	
Bromodichloromethane	440.5	10.0	ug/L	500	ND	88.1	67-130	2.64	21	
cis-1,3-Dichloropropene	384.0	10.0	ug/L	503	ND	76.3	61-126	0.627	21	
4-Methyl-2-pentanone (MIBK)	824.3	50.0	ug/L	1010	ND	81.3	55-147	2.52	23	
Toluene	478.3	10.0	ug/L	500	ND	95.7	71-133	4.46	19	
trans-1,3-Dichloropropene	395.2	10.0	ug/L	504	ND	78.4	63-124	1.48	21	
1,1,2-Trichloroethane	451.9	10.0	ug/L	500	ND	90.4	69-133	1.41	19	
Tetrachloroethylene	485.1	10.0	ug/L	500	ND	97.0	70-124	7.81	24	
2-Hexanone (MBK)	909.4	50.0	ug/L	1030	ND	88.0	53-141	4.85	24	
Dibromochloromethane	468.0	10.0	ug/L	495	ND	94.5	74-122	1.10	21	
1,2-Dibromoethane	463.3	10.0	ug/L	500	ND	92.7	66-127	0.628	23	
Chlorobenzene	494.9	10.0	ug/L	500	ND	99.0	76-116	3.61	21	
1,1,1,2-Tetrachloroethane	504.6	10.0	ug/L	500	ND	101	77-121	3.06	25	
Ethylbenzene	471.2	10.0	ug/L	500	ND	94.2	73-124	4.95	20	

Microbac Laboratories, Inc., Newton

20.0

10.0

10.0

10.0

50.0

10.0

10.0

10.0

50.0

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

1500

500

500

500

1040

498

500

500

ND

ND

ND

ND

ND

ND

ND

ND

95.1

92.6

97.0

92.1

68.9

90.3

88.5

89.5

80.2

75-123

70-120

70-124

62-135

50-120

63-126

72-119

71-117

49-134

4.27

3.59

0.617

1.47

3.66

1.32

4.12

1.97

3.01

20

23

22

28

26

24

24

24

28

1426

462.8

484.9

460.6

715.9

450.3

442.4

447.3

401.1

Xylenes, total

Styrene

Bromoform

1,2,3-Trichloropropane

1,4-Dichlorobenzene

1,2-Dichlorobenzene

trans-1,4-Dichloro-2-butene

1,2-Dibromo-3-chloropropane

1,1,2,2-Tetrachloroethane

Spike Source

%REC

RPD

				Spike	Source		/0KEC		KFD	N1 - 4
Determination of Volatile	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Organic Compounds										
Batch 1HC1242 - EPA 5030B - EPA 8	3260D									
Matrix Spike Dup (1HC1242-MSD1)	Source	: 1HC1337-04	Prepared: 0	3/21/24 00:0	00 Analyzed:	03/22/24 0	5:54			
Surrogate: Dibromofluoromethane	487		ug/L	502		97.1	80-126			
Surrogate: Dibromofluoromethane	487		ug/L	502		97.1	75-136			
Surrogate: 1,2-Dichloroethane-d4	502		ug/L	501		100	63-138			
Surrogate: 1,2-Dichloroethane-d4	502		ug/L	501		100	61-142			
Surrogate: Toluene-d8	498		ug/L	504		98.8	87-116			
Surrogate: Toluene-d8	498		ug/L	504		98.8	82-121			
Surrogate: 4-Bromofluorobenzene	520		ug/L	501		104	85-111			
Surrogate: 4-Bromofluorobenzene	520		ug/L	501		104	80-116			
Matrix Spike Dup (1HC1242-MSD2)		: 1HC1336-11	<u> </u>	3/21/24 00:0	00 Analyzed:	03/22/24 0	6:47			
Chloromethane	266.0	10.0	ug/L	306	ND	86.8	61-152	4.63	26	
Vinyl Chloride	245.5	10.0	ug/L	302	ND	81.2	66-149	5.27	23	
Bromomethane	246.1	10.0	ug/L	288	ND	85.5	43-171	4.14	29	
Chloroethane	277.3	10.0	ug/L	316	ND	87.7	69-148	5.81	25	
Trichlorofluoromethane	246.5	10.0	ug/L	326	ND	75.6	62-163	3.55	25	
1,1-Dichloroethylene	437.8	10.0	ug/L	500	ND	87.6	70-148	1.74	22	
Acetone	860.1	100	ug/L	1020	ND	84.3	45-173	2.35	30	
Methyl lodide	897.0	10.0	ug/L	997	ND	90.0	62-167	3.22	24	
Carbon Disulfide	807.5	10.0	ug/L	1010	ND	80.0	71-163	4.30	22	
Methylene Chloride	389.5	50.0	ug/L	500	ND					
•	685.1		•			77.9	69-140	1.35	19	
Acrylonitrile	437.5	50.0	ug/L	1000	ND	68.3	58-151	3.54	15	
trans-1,2-Dichloroethylene		10.0	ug/L	500	ND	87.5	69-144	1.54	22	
1,1-Dichloroethane	422.7	10.0	ug/L	500	ND	84.5	70-138	1.64	20	
Vinyl Acetate	939.8	50.0	ug/L	1020	ND	92.2	58-142	2.68	24	
cis-1,2-Dichloroethylene	410.6	10.0	ug/L	495	ND	83.0	68-151	0.583	22	
2-Butanone (MEK)	802.9	100	ug/L	1030	ND	77.7	50-160	2.64	23	
Bromochloromethane	417.1	10.0	ug/L	500	ND	83.4	65-143	0.601	22	
Chloroform	424.2	10.0	ug/L	500	ND	84.8	71-143	0.259	21	
1,1,1-Trichloroethane	399.8	10.0	ug/L	500	ND	80.0	63-133	2.32	23	
Carbon Tetrachloride	426.8	10.0	ug/L	500	ND	85.4	63-142	2.48	22	
Benzene	474.7	10.0	ug/L	500	ND	94.9	69-133	4.31	18	
1,2-Dichloroethane	430.6	10.0	ug/L	500	ND	86.1		0.0697	20	
Trichloroethylene	455.9	10.0	ug/L	500	ND	91.2	71-133	3.45	23	
1,2-Dichloropropane	451.4	10.0	ug/L	500	ND	90.3	69-132	1.32	20	
Dibromomethane	442.3	10.0	ug/L	500	ND	88.5	70-147	0.474	22	
Bromodichloromethane	421.5	10.0	•							
			ug/L	500	ND	84.3	67-130	0.591	21	
cis-1,3-Dichloropropene	398.7	10.0	ug/L	503	ND	79.2	61-126	0.425	21	
4-Methyl-2-pentanone (MIBK)	833.1	50.0	ug/L	1010	ND	82.2	55-147	1.30	23	
Toluene	458.5	10.0	ug/L	500	ND	91.7	71-133	4.06	19	
trans-1,3-Dichloropropene	380.5	10.0	ug/L	504	ND	75.5	63-124	0.871	21	
1,1,2-Trichloroethane	427.2	10.0	ug/L	500	ND	85.4	69-133	0.305	19	
Tetrachloroethylene	475.1	10.0	ug/L	500	ND	95.0	70-124	3.11	24	
2-Hexanone (MBK)	866.6	50.0	ug/L	1030	ND	83.9	53-141	1.69	24	
Dibromochloromethane	444.5	10.0	ug/L	495	ND	89.8	74-122	0.225	21	

1HC1337

Spike Source

Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HC1242 - EPA 5030B - EPA 8	3260D									
Matrix Spike Dup (1HC1242-MSD2)	Source:	1HC1336-11	Prepared: 0	3/21/24 00:0	00 Analyzed:	03/22/24 0	6:47			
1,2-Dibromoethane	435.7	10.0	ug/L	500	ND	87.1	66-127	1.46	23	
Chlorobenzene	472.2	10.0	ug/L	500	ND	94.4	76-116	2.57	21	
1,1,1,2-Tetrachloroethane	476.2	10.0	ug/L	500	ND	95.2	77-121	3.12	25	
Ethylbenzene	458.0	10.0	ug/L	500	ND	91.6	73-124	3.20	20	
Xylenes, total	1380	20.0	ug/L	1500	ND	92.0	75-123	3.08	20	
Styrene	441.9	10.0	ug/L	500	ND	88.4	70-120	2.61	23	
Bromoform	454.9	10.0	ug/L	500	ND	91.0	70-124	1.68	22	
1,2,3-Trichloropropane	425.6	10.0	ug/L	500	ND	85.1	62-135	2.83	28	
trans-1,4-Dichloro-2-butene	692.8	50.0	ug/L	1040	ND	66.7	50-120	0.231	26	
1,1,2,2-Tetrachloroethane	442.9	10.0	ug/L	498	ND	88.8	63-126	1.91	24	
1,4-Dichlorobenzene	446.1	10.0	ug/L	500	ND	89.2	72-119	0.878	24	
1,2-Dichlorobenzene	442.1	10.0	ug/L	500	ND	88.4	71-117	0.586	24	
1,2-Dibromo-3-chloropropane	391.2	50.0	ug/L	500	ND	78.2	49-134	2.87	28	
0 / 0" " "										
Surrogate: Dibromofluoromethane Surrogate: Dibromofluoromethane	465		ug/L	502		92.6	80-126			
Surrogate: 1,2-Dichloroethane-d4	465 472		ug/L ug/L	502 501		92.6 94.3	75-136 63-138			
Surrogate: 1,2-Dichloroethane-d4	472		ug/L ug/L	501 501		94.3 94.3	61-142			
Surrogate: Toluene-d8	492		ug/L	50 <i>1</i>		97.7	87-116			
Surrogate: Toluene-d8	492		ug/L	504		97.7	82-121			
Surrogate: 4-Bromofluorobenzene	509		ug/L	501		102	85-111			
Surrogate: 4-Bromofluorobenzene	509		ug/L	501		102	80-116			
				Spike	Source		%REC		RPD	
Determination of Total Metals	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HC1176 - EPA 3005A Total R	Recoverable Metals	- EPA 6020A								
Blank (1HC1176-BLK1)			Prepared: 0	3/21/24 09:1	17 Analyzed:	03/22/24 1	3:07			
Antimony, total	<0.0020	0.0020	mg/L							
Arsenic, total	<0.0040	0.0040	mg/L							
Barium, total	<0.0040	0.0040	mg/L							
Beryllium, total	<0.0040	0.0040	mg/L							
Cadmium, total	<0.0008	0.0008	mg/L							
Chromium, total	<0.0080	0.0080	mg/L							
Cobalt, total	<0.0004	0.0004	mg/L							
Copper, total	<0.0040	0.0040	mg/L							
Lead, total	<0.0040	0.0040	mg/L							
Nickel, total	<0.0040	0.0040	mg/L							
Selenium, total	<0.0040	0.0040	mg/L							
Silver, total	<0.0040	0.0040	mg/L							
Thallium, total	<0.0020	0.0020	mg/L							
Vanadium, total	<0.0200	0.0200	mg/L							ZZZQB
Zinc, total	<0.0200	0.0200	mg/L							-12
	0.0200	0.0200	_	0/04/04 00 4	17 A ! !	00/00/04 4	0.44			
LCS (1HC1176-BS1)	B 41		Prepared: 03			03/22/24 1	J. 14			
	Microb	ac Labora	atories, I	nc., Ne	ewton					

RPD

%REC

1HC1337

Determination of Total Metals	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HC1176 - EPA 3005A Total R										
LCS (1HC1176-BS1)	ootolublo motul		Prepared: ()3/21/24 09:1	7 Analyzed:	03/22/24 1	3·14			
Antimony, total	0.0937	0.0020	mg/L	0.100	7 7 tharyzou.	93.7	80-120			
Arsenic, total	0.0937	0.0020	mg/L	0.100		93.7 93.7	80-120			
Barium, total	0.105	0.0040	mg/L	0.100		105	80-120			
Beryllium, total	0.0909	0.0040	mg/L	0.100		90.9	80-120			
Cadmium, total	0.0899	0.0040	mg/L	0.100		89.9	80-120			
Chromium, total	0.0939	0.0080	mg/L	0.100		93.9	80-120			
Cobalt, total	0.0893	0.0004	mg/L	0.100		89.3	80-120			
Copper, total	0.0894	0.0040	mg/L	0.100		89.4	80-120			
Lead, total	0.0984	0.0040	mg/L	0.100		98.4	80-120			
Nickel, total	0.0856	0.0040	mg/L	0.100		85.6	80-120			
Selenium, total	0.0924	0.0040	mg/L	0.100		92.4	80-120			
Silver, total	0.0956	0.0040	mg/L	0.100		95.6	80-120			
Thallium, total	0.0983	0.0040	mg/L	0.100		98.3	80-120			
Vanadium, total	0.102	0.0020	mg/L	0.100		102	80-120			
Zinc, total	0.0874	0.0200	mg/L	0.100		87.4	80-120			
·			_		7 Analyzadi					
Matrix Spike (1HC1176-MS1)		: 1HC1337-01		03/21/24 09:1						
Antimony, total	0.0944	0.0020	mg/L	0.100	ND	94.4	75-125			
Arsenic, total	0.0972	0.0040	mg/L	0.100	0.0027	94.4	75-125			
Barium, total	0.879	0.0040	mg/L	0.100	0.784	95.4	75-125			
Beryllium, total	0.0922	0.0040	mg/L	0.100	ND	92.2	75-125			
Cadmium, total	0.0846	0.0008	mg/L	0.100	0.0002	84.4	75-125			
Chromium, total	0.0905	0.0080	mg/L	0.100	0.0008	89.7	75-125			
Cobalt, total	0.102	0.0004	mg/L	0.100	0.0140	88.4	75-125			
Copper, total	0.0828	0.0040	mg/L	0.100	0.0014	81.4	75-125			
Lead, total	0.0915	0.0040	mg/L	0.100	0.0008	90.7	75-125			
Nickel, total	0.0993	0.0040	mg/L	0.100	0.0190	80.3	75-125			
Selenium, total	0.0913	0.0040	mg/L	0.100	ND	91.3	75-125			
Silver, total	0.0921	0.0040	mg/L	0.100	ND	92.1	75-125			
Thallium, total	0.0923	0.0020	mg/L	0.100	ND	92.3	75-125			
Vanadium, total	0.0986	0.0200	mg/L	0.100	ND	98.6	75-125			
Zinc, total	0.0842	0.0200	mg/L	0.100	ND	84.2	75-125			
Matrix Spike Dup (1HC1176-MSD1)	Source	: 1HC1337-01	Prepared: 0	3/21/24 09:1	7 Analyzed:	03/22/24 1	4:03			
Antimony, total	0.0957	0.0020	mg/L	0.100	ND	95.7	75-125	1.35	20	
Arsenic, total	0.0990	0.0040	mg/L	0.100	0.0027	96.3	75-125	1.86	20	
Barium, total	0.924	0.0040	mg/L	0.100	0.784	140	75-125	4.96	20	ZZZQM -4X
Beryllium, total	0.0916	0.0040	mg/L	0.100	ND	91.6	75-125	0.669	20	
Cadmium, total	0.0856	0.0008	mg/L	0.100	0.0002	85.4	75-125	1.16	20	
Chromium, total	0.0914	0.0080	mg/L	0.100	0.0008	90.6	75-125	0.973	20	
Cobalt, total	0.104	0.0004	mg/L	0.100	0.0140	89.5	75-125	1.12	20	
Copper, total	0.0830	0.0040	mg/L	0.100	0.0014	81.7	75-125	0.311	20	
Lead, total	0.0953	0.0040	mg/L	0.100	0.0008	94.5	75-125	4.06	20	
Nickel, total	0.102	0.0040	mg/L	0.100	0.0190	83.1	75-125	2.71	20	

CERTIFICATE OF ANALYSIS

1HC1337

			Spike	Source		%REC		RPD	
Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
ecoverable Metals	s - EPA 6020A								
Source	: 1HC1337-01	Prepared: 03	3/21/24 09:1	7 Analyzed:	03/22/24 1	4:03			
0.0967	0.0040	mg/L	0.100	ND	96.7	75-125	5.78	20	
0.0945	0.0040	mg/L	0.100	ND	94.5	75-125	2.54	20	
0.0964	0.0020	mg/L	0.100	ND	96.4	75-125	4.36	20	
0.0999	0.0200	mg/L	0.100	ND	99.9	75-125	1.29	20	
0.0857	0.0200	mg/L	0.100	ND	85.7	75-125	1.80	20	
Source	: 1HC1337-01	Prepared: 03	3/21/24 09:1	7 Analyzed:	03/22/24 1	4:09			
0.0811		mg/L	0.0800	0.00006	101	80-120			
0.0841		mg/L	0.0800	0.0027	102	80-120			
0.902		mg/L	0.0800	0.768	167	80-120			
0.0781		mg/L	0.0800	-0.000007	97.7	80-120			
0.0729		mg/L	0.0800	0.0002	90.9	80-120			
0.0770		mg/L	0.0800	0.0008	95.2	80-120			
0.0906		mg/L	0.0800	0.0137	96.1	80-120			
0.0698		mg/L	0.0800	0.0013	85.5	80-120			
0.0782		mg/L	0.0800	0.0008	96.8	80-120			
0.0899		mg/L	0.0800	0.0186	89.1	80-120			
0.0766		mg/L	0.0800	0.0007	94.9	80-120			
			0.0800	0.0001	99.1	80-120			
0.0794		mg/L	0.000						
0.0794 0.0814		•	0.0800	0.00004	102	80-120			
		mg/L		0.00004 0.0060	102 100				
0.0814 0.0862 0.0704	- FPA 6020A	•	0.0800			80-120 80-120 80-120			
0.0814 0.0862	- EPA 6020A	mg/L mg/L mg/L	0.0800 0.0800 0.0800	0.0060	100 81.5	80-120 80-120			
0.0814 0.0862 0.0704	- EPA 6020A	mg/L mg/L mg/L	0.0800 0.0800 0.0800	0.0060 0.0052	100 81.5	80-120 80-120			
0.0814 0.0862 0.0704 coverable Metals		mg/L mg/L mg/L	0.0800 0.0800 0.0800	0.0060 0.0052	100 81.5	80-120 80-120			
0.0814 0.0862 0.0704 coverable Metals <0.0020	0.0020	mg/L mg/L mg/L Prepared: 0' mg/L mg/L	0.0800 0.0800 0.0800	0.0060 0.0052	100 81.5	80-120 80-120			
0.0814 0.0862 0.0704 coverable Metals <0.0020 <0.0040	0.0020 0.0040	mg/L mg/L mg/L	0.0800 0.0800 0.0800	0.0060 0.0052	100 81.5	80-120 80-120			
0.0814 0.0862 0.0704 coverable Metals <0.0020 <0.0040 <0.0040	0.0020 0.0040 0.0040	mg/L mg/L mg/L Prepared: 0' mg/L mg/L mg/L	0.0800 0.0800 0.0800	0.0060 0.0052	100 81.5	80-120 80-120			
0.0814 0.0862 0.0704 ecoverable Metals <0.0020 <0.0040 <0.0040 <0.0040	0.0020 0.0040 0.0040 0.0040	mg/L mg/L mg/L Prepared: 0' mg/L mg/L mg/L	0.0800 0.0800 0.0800	0.0060 0.0052	100 81.5	80-120 80-120			
0.0814 0.0862 0.0704 ecoverable Metals <0.0020 <0.0040 <0.0040 <0.0040 <0.0008	0.0020 0.0040 0.0040 0.0040 0.0008 0.0080	mg/L mg/L mg/L Prepared: 0' mg/L mg/L mg/L mg/L mg/L mg/L	0.0800 0.0800 0.0800	0.0060 0.0052	100 81.5	80-120 80-120			
0.0814 0.0862 0.0704 coverable Metals <0.0020 <0.0040 <0.0040 <0.0040 <0.0008 <0.0080	0.0020 0.0040 0.0040 0.0040 0.0008 0.0080 0.0004	mg/L mg/L mg/L Prepared: 0' mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0800 0.0800 0.0800	0.0060 0.0052	100 81.5	80-120 80-120			
0.0814 0.0862 0.0704 coverable Metals <0.0020 <0.0040 <0.0040 <0.0040 <0.0008 <0.0080 <0.0004	0.0020 0.0040 0.0040 0.0040 0.0008 0.0080 0.0004	mg/L mg/L mg/L Prepared: 0: mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0800 0.0800 0.0800	0.0060 0.0052	100 81.5	80-120 80-120			
0.0814 0.0862 0.0704 coverable Metals <0.0020 <0.0040 <0.0040 <0.0040 <0.0008 <0.0080 <0.0004	0.0020 0.0040 0.0040 0.0040 0.0008 0.0080 0.0004	mg/L mg/L mg/L Prepared: 0 mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/	0.0800 0.0800 0.0800	0.0060 0.0052	100 81.5	80-120 80-120			
0.0814 0.0862 0.0704 coverable Metals <0.0020 <0.0040 <0.0040 <0.0008 <0.0008 <0.0004 <0.0004 <0.0004	0.0020 0.0040 0.0040 0.0040 0.0008 0.0008 0.0004 0.00040	mg/L mg/L mg/L Prepared: 0' mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0800 0.0800 0.0800	0.0060 0.0052	100 81.5	80-120 80-120			
0.0814 0.0862 0.0704 coverable Metals <0.0020 <0.0040 <0.0040 <0.0040 <0.0080 <0.0004 <0.0004 <0.0040 <0.0040 <0.0040	0.0020 0.0040 0.0040 0.0040 0.0008 0.0080 0.0004 0.0040 0.0040	mg/L mg/L mg/L Prepared: 0' mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0800 0.0800 0.0800	0.0060 0.0052	100 81.5	80-120 80-120			
0.0814 0.0862 0.0704 coverable Metals <0.0020 <0.0040 <0.0040 <0.0040 <0.0080 <0.0004 <0.0004 <0.0040 <0.0040 <0.0040 <0.0040	0.0020 0.0040 0.0040 0.0040 0.0008 0.0080 0.0004 0.0040 0.0040 0.0040	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0800 0.0800 0.0800	0.0060 0.0052	100 81.5	80-120 80-120			
0.0814 0.0862 0.0704 coverable Metals <0.0020 <0.0040 <0.0040 <0.0040 <0.0004 <0.0004 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040	0.0020 0.0040 0.0040 0.0040 0.0008 0.0080 0.0004 0.0040 0.0040 0.0040 0.0040	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0800 0.0800 0.0800	0.0060 0.0052	100 81.5	80-120 80-120			
0.0814 0.0862 0.0704 coverable Metals <0.0020 <0.0040 <0.0040 <0.0080 <0.0080 <0.0004 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040	0.0020 0.0040 0.0040 0.0040 0.0088 0.0080 0.0004 0.0040 0.0040 0.0040 0.0040 0.0040 0.0020	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0800 0.0800 0.0800	0.0060 0.0052	100 81.5	80-120 80-120			
0.0814 0.0862 0.0704 coverable Metals <0.0020 <0.0040 <0.0040 <0.0080 <0.0080 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0020 <0.0020	0.0020 0.0040 0.0040 0.0040 0.0088 0.0080 0.0004 0.0040 0.0040 0.0040 0.0040 0.0040	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0800 0.0800 0.0800	0.0060 0.0052	100 81.5	80-120 80-120 8:38			
0.0814 0.0862 0.0704 coverable Metals <0.0020 <0.0040 <0.0040 <0.0080 <0.0080 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0020 <0.0020	0.0020 0.0040 0.0040 0.0040 0.0088 0.0088 0.0004 0.0040 0.0040 0.0040 0.0040 0.0020 0.0020	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0800 0.0800 0.0800 1/13/25 15:2	0.0060 0.0052	100 81.5 01/15/25 1	80-120 80-120 8:38			
0.0814 0.0862 0.0704 coverable Metals <0.0020 <0.0040 <0.0040 <0.0080 <0.0080 <0.0004 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0020 <0.0020 <0.0200	0.0020 0.0040 0.0040 0.0040 0.0088 0.0080 0.0004 0.0040 0.0040 0.0040 0.0040 0.0040 0.0020	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0800 0.0800 0.0800	0.0060 0.0052	100 81.5 01/15/25 1	80-120 80-120 8:38			
	0.0967 0.0945 0.0964 0.0999 0.0857 Source 0.0811 0.0841 0.902 0.0781 0.0729 0.0770 0.0906 0.0698 0.0782 0.0899	Source: 1HC1337-01 0.0967 0.0945 0.0945 0.0999 0.0200 0.0857 0.0200 Source: 1HC1337-01 0.0811 0.0841 0.902 0.0781 0.0729 0.0770 0.0906 0.0698 0.0782 0.0899	Source: 1HC1337-01	Result RL Units Level ecoverable Metals - EPA 6020A Source: 1HC1337-01 Prepared: 03/21/24 09:1 0.0967 0.0040 mg/L 0.100 0.0945 0.0020 mg/L 0.100 0.0999 0.0200 mg/L 0.100 0.0857 0.0200 mg/L 0.100 Source: 1HC1337-01 Prepared: 03/21/24 09:1 0.0811 mg/L 0.0800 0.092 mg/L 0.0800 0.0729 mg/L 0.0800 0.0729 mg/L 0.0800 0.0770 mg/L 0.0800 0.0906 mg/L 0.0800 0.0698 mg/L 0.0800 0.0782 mg/L 0.0800 0.0899 mg/L 0.0800	Result RL Units Level Result Source: 1HC1337-01 Prepared: 03/21/24 09:17 Analyzed: 0.0967 0.0040 mg/L 0.100 ND ND 0.0967 0.0040 mg/L 0.100 ND 0.000 ND 0.0945 ND 0.0020 mg/L 0.100 ND 0.000 ND 0.0999 0.0200 mg/L 0.100 ND 0.000 ND 0.000 ND 0.000 ND 0.000 ND Source: 1HC1337-01 Prepared: 03/21/24 09:17 Analyzed: 0.000 ND 0.0000 ND 0.0000 ND 0.0811 mg/L 0.0800 0.0800 0.0002 0.0000 0.0002 0.0000 0.0000 0.0729 mg/L 0.0800 0.0800 0.0002 0.0768 0.0729 0.0000 0.0000 0.0008 0.0906 mg/L 0.0800 0.0800 0.0013 0.0000 0.0013 0.0698 0.0008 0.0000 0.0008 0.0782 mg/L 0.0800 0.0800 0.0018 0.0000 0.0008 0.0899 mg/L 0.0800 0.0186 0.0800 0.00186	Result RL Units Level Result %REC ecoverable Metals - EPA 6020A Source: 1HC1337-01 Prepared: 03/21/24 09:17 Analyzed: 03/22/24 1 0.0967 0.0040 mg/L 0.100 ND 96.7 0.0945 0.0040 mg/L 0.100 ND 94.5 0.0964 0.0020 mg/L 0.100 ND 96.4 0.0999 0.0200 mg/L 0.100 ND 99.9 0.0857 0.0200 mg/L 0.100 ND 85.7 ND 99.9 0.0200 mg/L 0.100 ND 85.7 Source: 1HC1337-01 Prepared: 03/21/24 09:17 Analyzed: 03/22/24 1 0.0811 mg/L 0.0800 0.00006 101 0.00841 mg/L 0.0800 0.0007 102 0.902 mg/L 0.0800 0.768 167 0.0781 mg/L 0.0800 0.768 167 0.0781 mg/L 0.0800 0.0002 90.9 0.0770 mg/L 0.0800 0.0002 90.9 0.0770 mg/L 0.0800 0.0002 90.9 0.00770 mg/L 0.0800 0.0008 95.2 0.0906 mg/L 0.0800 0.0013 85.5 0.0906 mg/L 0.0800 0.0013 85.5 0.0782 mg/L 0.0800 0.0008 96.8 0.0089 mg/L 0.0800 0.00186 89.1 ng/L 0.0899 0.0890 0.00186 89.1	Result RR	Name	Name

1HC1337

Determination of Total Metals	Desuit	D.	11	Spike	Source	0/ DEO	%REC	DDD	RPD	Notes
Determination of Total Metals Batch 1IA0549 - EPA 3005A Total Re	Result	RL EDA 6020A	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch TIA0549 - EPA 3005A Total Re	coverable Metals	- EPA 6020A								
LCS (1IA0549-BS1)			•	1/13/25 15:2	6 Analyzed:	01/15/25 1	8:45			
Beryllium, total	0.0961	0.0040	mg/L	0.100		96.1	80-120			
Cadmium, total	0.0956	0.0008	mg/L	0.100		95.6	80-120			
Chromium, total	0.0969	0.0080	mg/L	0.100		96.9	80-120			
Cobalt, total	0.104	0.0004	mg/L	0.100		104	80-120			
Copper, total	0.102	0.0040	mg/L	0.100		102	80-120			
Lead, total	0.0970	0.0040	mg/L	0.100		97.0	80-120			
Nickel, total	0.106	0.0040	mg/L	0.100		106	80-120			
Selenium, total	0.0956	0.0040	mg/L	0.100		95.6	80-120			
Silver, total	0.101	0.0040	mg/L	0.100		101	80-120			
Thallium, total	0.0978	0.0020	mg/L	0.100		97.8	80-120			
Vanadium, total	0.101	0.0200	mg/L	0.100		101	80-120			
Zinc, total	0.0999	0.0200	mg/L	0.100		99.9	80-120			
Matrix Spike (1IA0549-MS1)	Source	: 1IA0501-01	Prepared: 0	1/13/25 15:2	6 Analyzed:	01/15/25 1	9:09			
Antimony, total	0.0968	0.0020	mg/L	0.100	0.0008	96.0	75-125			
Arsenic, total	0.0952	0.0040	mg/L	0.100	ND	95.2	75-125			
Barium, total	0.112	0.0040	mg/L	0.100	0.0063	105	75-125			
Beryllium, total	0.0928	0.0040	mg/L	0.100	ND	92.8	75-125			
Cadmium, total	0.0929	0.0008	mg/L	0.100	ND	92.9	75-125			
Chromium, total	0.0955	0.0080	mg/L	0.100	0.0027	92.8	75-125			
Cobalt, total	0.101	0.0004	mg/L	0.100	0.0003	101	75-125			
Copper, total	0.294	0.0040	mg/L	0.100	0.206	87.8	75-125			
Lead, total	0.0976	0.0040	mg/L	0.100	0.0044	93.2	75-125			
Nickel, total	0.105	0.0040	mg/L	0.100	0.0037	102	75-125			
Selenium, total	0.0952	0.0040	mg/L	0.100	ND	95.2	75-125			
Silver, total	0.0961	0.0040	mg/L	0.100	ND	96.1	75-125			
Thallium, total	0.0929	0.0020	mg/L	0.100	ND	92.9	75-125			
Vanadium, total	0.0995	0.0200	mg/L	0.100	ND	99.5	75-125			
Zinc, total	0.331	0.0200	mg/L	0.100	0.246	85.0	75-125			
Matrix Spike Dup (1IA0549-MSD1)	Source	: 1IA0501-01	Prepared: 0	1/13/25 15:2	6 Analyzed:	01/15/25 1	9:15			
Antimony, total	0.0972	0.0020	mg/L	0.100	0.0008	96.5	75-125	0.425	20	
Arsenic, total	0.0964	0.0040	mg/L	0.100	ND	96.4	75-125	1.25	20	
Barium, total	0.114	0.0040	mg/L	0.100	0.0063	107	75-125	1.69	20	
Beryllium, total	0.0951	0.0040	mg/L	0.100	ND	95.1	75-125	2.39	20	
Cadmium, total	0.0945	0.0008	mg/L	0.100	ND	94.5	75-125	1.72	20	
Chromium, total	0.0952	0.0080	mg/L	0.100	0.0027	92.5	75-125	0.323	20	
Cobalt, total	0.102	0.0004	mg/L	0.100	0.0003	102	75-125	1.23	20	
Copper, total	0.299	0.0040	mg/L	0.100	0.206	93.2	75-125	1.83	20	
Lead, total	0.0988	0.0040	mg/L	0.100	0.0044	94.4	75-125	1.18	20	
Nickel, total	0.105	0.0040	mg/L	0.100	0.0037	102	75-125	0.221	20	
Selenium, total	0.0969	0.0040	mg/L	0.100	ND	96.9	75-125	1.82	20	
Silver, total	0.0967	0.0040	mg/L	0.100	ND	96.7	75-125	0.684	20	
Thallium, total	0.0947	0.0020	mg/L	0.100	ND	94.7	75-125	1.90	20	
Vanadium, total	0.0994	0.0200	mg/L	0.100	ND	99.4				
vanadium, totai	0.0994	0.0200	mg/L	0.100	ND	99.4	75-125	0.0945	20	

CERTIFICATE OF ANALYSIS

1HC1337

Spike Source

%REC

RPD

Determination of	Total Metals	Result	RL	. Unit	s Level	Result	%REC	Limits	RPD	Limit	Note
Batch 1IA0549 - EPA	3005A Total Red	overable Met	als - EPA 6020	4							
Matrix Spike Dup (1IA0)549-MSD1)	Sou	rce: 1IA0501-01	Prepared	d: 01/13/25 15::	26 Analyzed:	01/15/25 1	9:15			
Zinc, total		0.335	0.02	00 mg/L	0.100	0.246	88.6	75-125	1.07	20	
Post Spike (1IA0549-P	S1)	Sou	rce: 1IA0501-01	Prepared	d: 01/13/25 15:	26 Analyzed:	01/16/25 1	0:39			
Antimony, total		0.0718		mg/L	0.0800	0.0007	88.9	80-120			
Arsenic, total		0.0718		mg/L	0.0800	0.0006	89.0	80-120			
Barium, total		0.0752		mg/L	0.0800	0.0062	86.3	80-120			
Beryllium, total		0.0737		mg/L	0.0800	0.00001	92.1	80-120			
Cadmium, total		0.0690		mg/L	0.0800	0.00008	86.1	80-120			
Chromium, total		0.0757		mg/L	0.0800	0.0026	91.4	80-120			
Cobalt, total		0.0790		mg/L	0.0800	0.0003	98.5	80-120			
Copper, total		0.287		mg/L	0.0800	0.202	106	80-120			
Lead, total		0.0719		mg/L	0.0800	0.0043	84.4	80-120			
Nickel, total		0.0834		mg/L	0.0800	0.0036	99.7	80-120			
Selenium, total		0.0658		mg/L	0.0800	-0.0004	82.3	80-120			
Silver, total		0.0722		mg/L	0.0800	0.00007	90.1	80-120			
Thallium, total		0.0675		mg/L	0.0800	0.00005	84.3	80-120			
Vanadium, total		0.0796		mg/L	0.0800	0.0052	93.0	80-120			
Zinc, total		0.304		mg/L	0.0800	0.242	77.7	80-120			M2
Definitions											
H:	Sample was anal	vzed past holdir	na time.								
M2:	Matrix spike reco		•								
RL:	Reporting Limit	•									
RPD:	Relative Percent	Difference									
S2 :	Surrogate recove	ry is below acce	ptance limits.								
ZZZPS-4X:	The spike recove		of QC acceptance	limits for th	e Post Spike	due to ana	lyte conce	entration at	4 times o	r	
4a	greater the spike			4! 4	41 114	. 41		1			
ZZZQB-12:	The analyte was concentration of t								ie		
ZZZQM-4X:	The spike recove	•		•	-				on at 4		
-	times or greater t	he spike concer	tration.				-				
ZZZS-GC:	Surrogate recove surrogate.	ry outside of co	ntrol limits. The d	ata was acc	epted based	on valid red	covery of t	he remainir	ng		
Cooler Receipt Log	I										
Cooler ID:	Default Cooler		Temp: 0.4	l°C							
Cooler Inspection C	Checklist										
Custody Seals				No C	Containers Int	act					
COC/Labels Agre	е				reservation (
Received On Ice				Yes							

Report Comments

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions.

Reviewed and Approved By:

Sue Thompson Client Services Manager 01/21/25 15:36

A Microbac Company SITE INFORMATION ABORATORIES

Sampler:

TAH

Project:

Days Collew Neys

SPECIAL INSTRUCTIONS

600 East 17th Street South Newton, IA 50208

CHAIN OF CUSTODY RECORD

CAA TOO OARA

REPORT TO

INVOICE TO

Printed: 2/21/2024 2:09:20P

Page 51 of 53

Page 1 of

www.keystonelabs

Page County I andfill Assoc 2032 N 200 Tori Moreland

Ciaminua, IA 51052

Work Order LAB USE ONLY

Story City, IA 50246

DO Box 31.4 HI W Engineering Todd Whipple

Temperature

Turn-Cooler: No

Turn Around Time Standard

RUSH, need by

COC/Labels Agree Containers Intact Custody Seal **Preservation Confirmed**

Received on Ice

Analyses

_ab Sample

Number

Sample Date Time Containers Number of

Number

Sample Identification / Client ID

Matrix

Type

Water

GRAB

901

MW-1D

-001

MW-3

118174 118174 118174 118124 118124 4.27 6:26 11:44 2:25 +

1:08

10:5 10:14

> Indfill-app1-voc-group Indfill-app1-voc-group Indfill-app1-voc-group Indfll-app1-metals-6020 Indfli-app1-metals-6020 Indfil-app1-metals-6020

Indfill-app1-voc-group Indfill-appl-voc-group Indfli-appl-metals-6020 Indfil-appl-metals-6020

100

Remarks

Date/Time

0

HLW Engineering

Received By

Relinquished By

Date/Time

15/31

901

MW-16

Water

GRAB

3 118124

Water

GRAB

3118124

Water

GRAB

CU

Indfill-app1-voc-group

Indfll-app1-metals-6020

Indfill-appl-voc-group

Indfil-app1-metals-6020

03

Water

GR,AB

PN

Water

GRAB

RN

Water

GRAB

N

-001

MW-14

-007

MW-13

-001

DI-AMM

-001

MW-7

Date/Time

Réceived for

Relinguished By

Original - Lab Copy Yellow - Sampler Copy

PM: Heather Murphy

CHAIN OF CUSTODY RECORD

A Microbac Company SITE INFORMATION ABORATORIES

Sampler:

ta. H

Project:

Dane Or Hen Dens

SPECIAL INSTRUCTIONS

Newton, IA 50208 CAL TOS OAKA 600 East 17th Street South

- REPORT TO

Printed: 2/21/2024: 2:09:20P Page 2 of

Page 52 of 53

1	-
1	5
1	
1	<
1	<
	_
- 1	>
1	-
- 1	magazine.
1	
	Œ
	~
- 1	-
- 1	S
- 1	-
- 1	0
- 1	$\underline{\circ}$
- 1	-
- 1	~
- 1	(D
- 1	Contraction of the last
- 1	ω
- 1	-
- 1	0
- 1	CO

INVOICE TO

Sample Type GRAB GRAB GRAB GRAB GRAB GRAB GRAB Turn-Cooler: Temperature Work Order Siory City, IA 50246 DO DOX 314 HI W Engineering Todd Whipple LAB USE ONLY 0 3 11817A S (0 W 118174 1810 118124 118174 Date 118/24 118124 No 9:52 9:52 11:27 30.7 Time 120 H. 8 10:34 Containers Number of Indfill-app1-voc-group Indfill-app1-voc-group Indfill-app1-voc-group Indfill-appl-voc-group Indfill-appl-voc-group Indfill-app1-voc-group Indfill-app1-voc-group Ciannula, iA 5 1652 2032 N. Aug Page County I andfill Assoc Tori Moreland Received on Ice Containers Intact Preservation Confirmed COC/Labels Agree Custody Seal Analyses Indfil-app1-metals-6020 Indfil-app1-metals-6020 Indfll-app1-metals-6020 Indfil-app1-metals-6020 Indfil-app1-metals-6020 Indfil-appl-metals-6020 Indfl1-app1-metals-6020 Lab Sample Number

Number

Sample Identification / Client ID

Matrix

Water

-001

MW-17 (b)

-001

MW-18

Water

Turn Around Time
Standard

[

RUSH, need by

Relinquished By Date/Time 124

9

MW-44 (b)

Water

Water

Water

Water

Water

-00

Duplicate

-001

MW-20

007

GWD-1

-00

MW-19

Received By

Date/Time

Relingerished By

Date/Time

Rema

Date/Time

Original - Lab Copy Yellow - Sampler Copy

Received for Lab By

PM: Heather Murphy

HLW Engineering

A Microbac Company ABORATORIES

> CAA 700 CAEA Newton, IA 50208 600 East 17th Street South

CHAIN OF CUSTODY RECORD

Printed: 2/21/2024 2:09:20P Page 3 of

www.keystonelabs	/21/2024 2-09-20B	Page 3 o
Page	53	of 53

1	-001	Number	None Turn Aro	Sampler: Project:	7
	MW-53 - NO SAMPLE	Sample Identification / Client ID	None Turn Around Time Standard RUSH, need by	ampler: Droject: Page Co-New Regs 8047	- INCITA ALCOPIA
6	MARLE	on / Client ID	eed by//_	S. S.	
	Water	Matrix			
	GRAB	Sample Type	Work Order Temperature Turn-Cooler:	Todd HI W PO B	
	The second secon	Date	rk Order nperature , 4 n-Cooler: No	Todd Whipple HI W Engineering PO Box 31.4 Story City, IA 50246	() TT TO
		Time		5;	
		Number of Containers			The statement of the st
	Indfill-app1-voc-group	A	Custo Conta COC/I Presei	Tori Moreland Page County I 2022 N. Are Charmola, IA 51	
	up Indfil-app1-metals-6020	Analyses	Custody Seal Containers Intact COC/Labels Agree Preservation Confirmed Received on Ice	Tori Moreland Page County Landfill Assoc 2032 N. Auc Ciarinda, IA 5 (652	175
		Lab Sample Number			-

Received By

Date/Time

Received for Lab By

Original - Lab Copy Yellow - Sampler Copy

Date/Time

Relinquished By

Date/Time

Relipquished By

Date/Time

Remarks

HLW Engineering PM: Heather Murphy

CERTIFICATE OF ANALYSIS 1HH0317

Project Description

6047

For:

Todd Whipple

HLW Engineering

PO Box 314

Story City, IA 50248

Heather Murphy

Customer Relationship Specialist

Wednesday, August 14, 2024

Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories. Review and compilation of your report was completed by Microbac Laboratories, Inc., Newton. If you have any questions, comments, or require further assistance regarding this report, please contact your service representative listed above.

I certify that all test results meet all of the requirements of the accrediting authority listed within this report. Analytical results are reported on a 'as received' basis unless specified otherwise. Analytical results for solids with units ending in (dry) are reported on a dry weight basis. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories. The reported results are related only to the samples analyzed as received.

Microbac Laboratories, Inc.

CERTIFICATE OF ANALYSIS

1HH0317

HLW Engineering

Project Name: 6047

Todd Whipple PO Box 314 Story City, IA 50248 Project / PO Number: N/A Received: 08/02/2024 Reported: 08/14/2024

Sample Summary Report

Sample Name	Laboratory ID	Client Matrix	Sample Type	Sample Begin	Sample Taken	Lab Received
MW-53	1HH0317-01	Aqueous	GRAB		08/01/24 12:19	08/02/24 10:51
GU 3	1HH0317-02	Aqueous	GRAB		08/01/24 12:42	08/02/24 10:51
GU 4	1HH0317-03	Aqueous	GRAB		08/01/24 12:52	08/02/24 10:51

Analytical Testing Parameters

Client Sample ID: MW-53
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HH0317-01 **Collection Date:** 08/01/2024 12:19

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Vinyl Chloride	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Bromomethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Chloroethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Trichlorofluoromethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Acetone	<10.0	10.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Methyl Iodide	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Carbon Disulfide	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Methylene Chloride	<5.0	5.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Acrylonitrile	<5.0	5.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
1,1-Dichloroethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Vinyl Acetate	<5.0	5.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
2-Butanone (MEK)	<10.0	10.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Bromochloromethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Chloroform	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Carbon Tetrachloride	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Benzene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
1,2-Dichloroethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Trichloroethylene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
1,2-Dichloropropane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Dibromomethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Bromodichloromethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Toluene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Tetrachloroethylene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Dibromochloromethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
1,2-Dibromoethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Chlorobenzene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Ethylbenzene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Xylenes, total	<2.0	2.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM
Styrene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1335	CSM

Client Sample ID: MW-53 Sample Matrix: Aqueous

Collected By: JGH

Lab Sample ID: 1HH0317-01					Collection D	-	3/01/2024 12:19	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	d Analyzed	Analys
Bromoform	<1.0	1.0	ug/L	1		08/06/24 00	000 08/06/24 1335	CSM
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		08/06/24 00	000 08/06/24 1335	CSM
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		08/06/24 00	000 08/06/24 1335	CSM
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		08/06/24 00	000 08/06/24 1335	CSM
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		08/06/24 00	000 08/06/24 1335	CSM
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		08/06/24 00	000 08/06/24 1335	CSM
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		08/06/24 00	000 08/06/24 1335	CSM
Surrogate: Dibromofluoromethane	99.3	Limit: 57-134	% Rec	1		08/06/24 00	000 08/06/24 1335	CSM
Surrogate: Dibromofluoromethane	99.3	Limit: 75-136	% Rec	1		08/06/24 00	000 08/06/24 1335	CSM
Surrogate: 1,2-Dichloroethane-d4	103	Limit: 61-142	% Rec	1		08/06/24 00	000 08/06/24 1335	CSM
Surrogate: 1,2-Dichloroethane-d4	103	Limit: 53-140	% Rec	1		08/06/24 00	000 08/06/24 1335	CSM
Surrogate: Toluene-d8	99.0	Limit: 86-114	% Rec	1		08/06/24 00	000 08/06/24 1335	CSM
Surrogate: Toluene-d8	99.0	Limit: 82-121	% Rec	1		08/06/24 00	000 08/06/24 1335	CSM
Surrogate: 4-Bromofluorobenzene	98.0	Limit: 78-121	% Rec	1		08/06/24 00	000 08/06/24 1335	CSM
Surrogate: 4-Bromofluorobenzene	98.0	Limit: 80-116	% Rec	1		08/06/24 00	000 08/06/24 1335	CSM
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	d Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		08/06/24 16	08/08/24 2123	JAR
Arsenic, total	<0.0040	0.0040	mg/L	4		08/06/24 16	08/08/24 2123	JAR
Barium, total	0.0462	0.0040	mg/L	4		08/06/24 16	08/08/24 2123	JAR
Beryllium, total	<0.0040	0.0040	mg/L	4		08/06/24 16	08/08/24 2123	JAR
Cadmium, total	<0.0008	0.0008	mg/L	4		08/06/24 16	08/08/24 2123	JAR
Chromium, total	<0.0080	0.0080	mg/L	4		08/06/24 16	08/08/24 2123	JAR
Cobalt, total	<0.0004	0.0004	mg/L	4		08/06/24 16		JAR
Copper, total	<0.0040	0.0040	mg/L	4		08/06/24 16	607 08/08/24 2123	JAR
Lead, total	<0.0040	0.0040	mg/L	4		08/06/24 16		JAR
Nickel, total	<0.0040	0.0040	mg/L	4		08/06/24 16		JAR
Selenium, total	<0.0040	0.0040	mg/L	4		08/06/24 16		JAR
Silver, total	<0.0040	0.0040	mg/L	4		08/06/24 16		JAR
Thallium, total	<0.0020	0.0020	mg/L	4		08/06/24 16		JAR
Vanadium, total	<0.0200	0.0200	mg/L	4		08/06/24 16		JAR
Zinc, total	<0.0200	0.0200	mg/L	4		08/06/24 16		JAR
zino, totai	₹0.0200	0.0200	mg/L	-		00/00/24 10	00/00/24 2123	JAIK

1HH0317

Client Sample ID: GU 3
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HH0317-02 Collection Date: 08/01/2024 12:42

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Vinyl Chloride	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Bromomethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Chloroethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Trichlorofluoromethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Acetone	<10.0	10.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Methyl Iodide	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Carbon Disulfide	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Methylene Chloride	<5.0	5.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Acrylonitrile	<5.0	5.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
1,1-Dichloroethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Vinyl Acetate	<5.0	5.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
2-Butanone (MEK)	<10.0	10.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Bromochloromethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Chloroform	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Carbon Tetrachloride	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Benzene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
1,2-Dichloroethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Trichloroethylene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
1,2-Dichloropropane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Dibromomethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Bromodichloromethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Toluene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Tetrachloroethylene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Dibromochloromethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
1,2-Dibromoethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Chlorobenzene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Ethylbenzene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Xylenes, total	<2.0	2.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Styrene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Bromoform	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM

1HH0317

Client Sample ID: GU 3
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HH0317-02 Collection Date: 08/01/2024 12:42

Lab Sample ID: 1HH0317-02					Collection	Date: 08/01/	2024 12:42	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		08/06/24 0000	08/06/24 1358	CSM
Surrogate: Dibromofluoromethane	100	Limit: 75-136	% Rec	1		08/06/24 0000	08/06/24 1358	CSM
Surrogate: Dibromofluoromethane	100	Limit: 57-134	% Rec	1		08/06/24 0000	08/06/24 1358	CSM
Surrogate: 1,2-Dichloroethane-d4	104	Limit: 53-140	% Rec	1		08/06/24 0000	08/06/24 1358	CSM
Surrogate: 1,2-Dichloroethane-d4	104	Limit: 61-142	% Rec	1		08/06/24 0000	08/06/24 1358	CSM
Surrogate: Toluene-d8	99.0	Limit: 86-114	% Rec	1		08/06/24 0000	08/06/24 1358	CSM
Surrogate: Toluene-d8	99.0	Limit: 82-121	% Rec	1		08/06/24 0000	08/06/24 1358	CSM
Surrogate: 4-Bromofluorobenzene	97.3	Limit: 80-116	% Rec	1		08/06/24 0000	08/06/24 1358	CSM
Surrogate: 4-Bromofluorobenzene	97.3	Limit: 78-121	% Rec	1		08/06/24 0000	08/06/24 1358	CSM
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		08/06/24 1607	08/08/24 2147	JAR
Arsenic, total	<0.0040	0.0040	mg/L	4		08/06/24 1607	08/08/24 2147	JAR
Barium, total	0.287	0.0040	mg/L	4		08/06/24 1607	08/08/24 2147	JAR
Beryllium, total	<0.0040	0.0040	mg/L	4		08/06/24 1607	08/08/24 2147	JAR
Cadmium, total	<0.0008	0.0008	mg/L	4		08/06/24 1607	08/08/24 2147	JAR
Chromium, total	<0.0080	0.0080	mg/L	4		08/06/24 1607	08/08/24 2147	JAR
Cobalt, total	0.0004	0.0004	mg/L	4		08/06/24 1607	08/08/24 2147	JAR
Copper, total	<0.0040	0.0040	mg/L	4		08/06/24 1607	08/08/24 2147	JAR
Lead, total	<0.0040	0.0040	mg/L	4		08/06/24 1607	08/08/24 2147	JAR
Nickel, total	0.0061	0.0040	mg/L	4		08/06/24 1607	08/08/24 2147	JAR
Selenium, total	<0.0040	0.0040	mg/L	4		08/06/24 1607	08/08/24 2147	JAR
Silver, total	<0.0040	0.0040	mg/L	4		08/06/24 1607	08/08/24 2147	JAR
Thallium, total	<0.0020	0.0020	mg/L	4		08/06/24 1607	08/08/24 2147	JAR
Vanadium, total	<0.0200	0.0200	mg/L	4		08/06/24 1607	08/08/24 2147	JAR
Zinc, total	0.173	0.0200	mg/L	4		08/06/24 1607	08/08/24 2147	JAR
	V V	0.0200		•		20,00,2: :001	- 3, 0 0, 2 . 2 . 1	J

1HH0317

Client Sample ID: GU 4
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HH0317-03 Collection Date: 08/01/2024 12:52

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Vinyl Chloride	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Bromomethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Chloroethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Trichlorofluoromethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Acetone	<10.0	10.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Methyl lodide	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Carbon Disulfide	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Methylene Chloride	<5.0	5.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Acrylonitrile	<5.0	5.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
1,1-Dichloroethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Vinyl Acetate	<5.0	5.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
2-Butanone (MEK)	<10.0	10.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Bromochloromethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Chloroform	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Carbon Tetrachloride	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Benzene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
1,2-Dichloroethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Trichloroethylene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
1,2-Dichloropropane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Dibromomethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Bromodichloromethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Toluene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Tetrachloroethylene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Dibromochloromethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
1,2-Dibromoethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Chlorobenzene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Ethylbenzene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Xylenes, total	<2.0	2.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Styrene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Bromoform	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM

Client Sample ID: GU 4
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HH0317-03 Collection Date: 08/01/2024 12:52

Lab Sample ID: 1HH0317-03					Collection	Date: 08/01/	2024 12:52	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		08/06/24 0000	08/06/24 1421	CSM
Surrogate: Dibromofluoromethane	98.7	Limit: 75-136	% Rec	1		08/06/24 0000	08/06/24 1421	CSM
Surrogate: Dibromofluoromethane	98.7	Limit: 57-134	% Rec	1		08/06/24 0000	08/06/24 1421	CSM
Surrogate: 1,2-Dichloroethane-d4	104	Limit: 53-140	% Rec	1		08/06/24 0000	08/06/24 1421	CSM
Surrogate: 1,2-Dichloroethane-d4	104	Limit: 61-142	% Rec	1		08/06/24 0000	08/06/24 1421	CSM
Surrogate: Toluene-d8	99.3	Limit: 86-114	% Rec	1		08/06/24 0000	08/06/24 1421	CSM
Surrogate: Toluene-d8	99.3	Limit: 82-121	% Rec	1		08/06/24 0000	08/06/24 1421	CSM
Surrogate: 4-Bromofluorobenzene	97.4	Limit: 80-116	% Rec	1		08/06/24 0000	08/06/24 1421	CSM
Surrogate: 4-Bromofluorobenzene	97.4	Limit: 78-121	% Rec	1		08/06/24 0000	08/06/24 1421	CSM
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		08/06/24 1607	08/08/24 2153	JAR
Arsenic, total	<0.0040	0.0040	mg/L	4		08/06/24 1607	08/08/24 2153	JAR
Barium, total	0.272	0.0040	mg/L	4		08/06/24 1607	08/08/24 2153	JAR
Beryllium, total	<0.0040	0.0040	mg/L	4		08/06/24 1607	08/08/24 2153	JAR
Cadmium, total	<0.0008	0.0008	mg/L	4		08/06/24 1607	08/08/24 2153	JAR
Chromium, total	<0.0080	0.0080	mg/L	4		08/06/24 1607	08/08/24 2153	JAR
Cobalt, total	<0.0004	0.0004	mg/L	4		08/06/24 1607	08/08/24 2153	JAR
Copper, total	<0.0040	0.0040	mg/L	4		08/06/24 1607	08/08/24 2153	JAR
Lead, total	<0.0040	0.0040	mg/L	4		08/06/24 1607	08/08/24 2153	JAR
Nickel, total	0.0068	0.0040	mg/L	4		08/06/24 1607	08/08/24 2153	JAR
Selenium, total	<0.0040	0.0040	mg/L	4		08/06/24 1607	08/08/24 2153	JAR
Silver, total	<0.0040	0.0040	mg/L	4		08/06/24 1607	08/08/24 2153	JAR
Thallium, total	<0.0020	0.0020	mg/L	4		08/06/24 1607	08/08/24 2153	JAR
Vanadium, total	<0.0200	0.0200	mg/L	4		08/06/24 1607	08/08/24 2153	JAR
Zinc, total	0.0672	0.0200	J.					JAR

Laboratory ID

Client / Source ID

Batch

Batch Log Summary

Method

EPA 6020A	1HH0285		285-BLK1							
			285-BS1							
			317-01		MW-53					
		1HH0	285-MS1		1HH03	17-01				
		1HH0	285-MSD1		1HH03	17-01				
		1HH0	285-PS1		1HH03	17-01				
		1HH0	317-02		GU 3					
		1HH0	317-03		GU 4					
Method	Batch	Labo	ratory ID		Client	/ Source	ID			
EPA 8260B	1HH0301	1HH0	301-BS1							
		1HH0	301-BSD1							
		1HH0	301-BLK1							
			317-01		MW-53					
			317-02		GU 3					
			317-03		GU 4					
			301-MS1		1HH03	17.01				
			301-MSD1		1HH03					
Batch Quality Control Summary	: Microbac Laboratories,	Inc., Newto	on							
Batch Quality Control Summary	: Microbac Laboratories,	Inc., Newto		Spike	Source		%REC		RPD	
Batch Quality Control Summary Determination of Volatile Organic Compounds	: Microbac Laboratories, Result	Inc., Newto	:	Spike _evel	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Determination of Volatile	Result		:			%REC		RPD		Notes
Determination of Volatile Organic Compounds	Result	RL	:	_evel	Result		Limits	RPD		Notes
Determination of Volatile Organic Compounds Batch 1HH0301 - EPA 5030B - EPA	Result	RL	Units L	_evel	Result		Limits	RPD		Notes
Determination of Volatile Organic Compounds satch 1HH0301 - EPA 5030B - EPA	Result A 8260B	RL	Units L Prepared: 08/06/	_evel	Result		Limits	RPD		Notes
Determination of Volatile Organic Compounds Batch 1HH0301 - EPA 5030B - EPA Blank (1HH0301-BLK1) Chloromethane	Result A 8260B	RL	Units L Prepared: 08/06,	_evel	Result		Limits	RPD		Notes
Determination of Volatile Organic Compounds Batch 1HH0301 - EPA 5030B - EPA Blank (1HH0301-BLK1) Chloromethane Vinyl Chloride	Result A 8260B <1.0 <1.0	1.0 1.0	Units L Prepared: 08/06/ ug/L ug/L	_evel	Result		Limits	RPD		Notes
Determination of Volatile Organic Compounds Batch 1HH0301 - EPA 5030B - EPA Blank (1HH0301-BLK1) Chloromethane Vinyl Chloride Bromomethane	Result A 8260B <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0	Units L Prepared: 08/06/ ug/L ug/L ug/L	_evel	Result		Limits	RPD		Notes
Determination of Volatile Organic Compounds Batch 1HH0301 - EPA 5030B - EPA Blank (1HH0301-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane	Result 4 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0	Prepared: 08/06/ ug/L ug/L ug/L ug/L ug/L	_evel	Result		Limits	RPD		Notes
Determination of Volatile Organic Compounds Batch 1HH0301 - EPA 5030B - EPA Blank (1HH0301-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane	Result 4 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0 1.0	Prepared: 08/06/ ug/L ug/L ug/L ug/L ug/L ug/L	_evel	Result		Limits	RPD		Notes
Determination of Volatile Organic Compounds Batch 1HH0301 - EPA 5030B - EPA Blank (1HH0301-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene	Result 4 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0 1.0 1.0	Prepared: 08/06/ ug/L ug/L ug/L ug/L ug/L ug/L ug/L	_evel	Result		Limits	RPD		Notes
Determination of Volatile Organic Compounds Batch 1HH0301 - EPA 5030B - EPA Blank (1HH0301-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone	Result 4 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0	Prepared: 08/06/ ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	_evel	Result		Limits	RPD		Notes
Determination of Volatile Organic Compounds Batch 1HH0301 - EPA 5030B - EPA Blank (1HH0301-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl Iodide	Result 4 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 10.0	Prepared: 08/06/ ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	_evel	Result		Limits	RPD		Notes
Determination of Volatile Organic Compounds Batch 1HH0301 - EPA 5030B - EPA Blank (1HH0301-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl Iodide Carbon Disulfide	Result 4 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Prepared: 08/06/ ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	_evel	Result		Limits	RPD		Notes
Determination of Volatile Organic Compounds Batch 1HH0301 - EPA 5030B - EPA Blank (1HH0301-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl lodide Carbon Disulfide Methylene Chloride	Result 4 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <5.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 5.0	Prepared: 08/06/ ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	_evel	Result		Limits	RPD		Notes
Determination of Volatile Organic Compounds Batch 1HH0301 - EPA 5030B - EPA Blank (1HH0301-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl Iodide Carbon Disulfide Methylene Chloride Acrylonitrile	Result 4 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <5.0 <5.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 5.0 5.0	Prepared: 08/06/ ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	_evel	Result		Limits	RPD		Notes
Determination of Volatile Organic Compounds Batch 1HH0301 - EPA 5030B - EPA Blank (1HH0301-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl Iodide Carbon Disulfide Methylene Chloride Acrylonitrile trans-1,2-Dichloroethylene	Result 4 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <5.0 <5.0 <1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 5.0 5.0 1.0	Prepared: 08/06/ ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	_evel	Result		Limits	RPD		Notes
Determination of Volatile Organic Compounds Batch 1HH0301 - EPA 5030B - EPA Blank (1HH0301-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl lodide Carbon Disulfide Methylene Chloride Acrylonitrile trans-1,2-Dichloroethylene 1,1-Dichloroethane	Result 4 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <5.0 <5.0 <5.0 <1.0 <1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 5.0 5.0 1.0	Prepared: 08/06/ ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	_evel	Result		Limits	RPD		Notes
Determination of Volatile Organic Compounds Satch 1HH0301 - EPA 5030B - EPA Slank (1HH0301-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl lodide Carbon Disulfide Methylene Chloride Acrylonitrile trans-1,2-Dichloroethylene 1,1-Dichloroethane Vinyl Acetate	Result 4 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <5.0 <5.0 <5.0 <5.0 <fi><5.0 <fi><5.0 <fi><5.0</fi></fi></fi>	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 5.0 5.0 1.0 1.0	Prepared: 08/06/ ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	_evel	Result		Limits	RPD		Notes

CERTIFICATE OF ANALYSIS

1HH0317

Units

RL

Determination of Volatile

Result

Spike Source

Result %REC

Level

%REC

Limits

RPD

Limit

RPD

Notes

Organic Compounds	Nesuit	IXL.	O.I.I.O	2010.	rtoount	701123		141 5	Lillin
•									
Batch 1HH0301 - EPA 5030B - EPA	A 8260B								
Blank (1HH0301-BLK1)			Prepared: 0	8/06/24 00:0	0 Analyzed:	08/06/24 10	0:08		
Chloroform	<1.0	1.0	ug/L						
1,1,1-Trichloroethane	<1.0	1.0	ug/L						
Carbon Tetrachloride	<1.0	1.0	ug/L						
Benzene	<1.0	1.0	ug/L						
1,2-Dichloroethane	<1.0	1.0	ug/L						
Trichloroethylene	<1.0	1.0	ug/L						
1,2-Dichloropropane	<1.0	1.0	ug/L						
Dibromomethane	<1.0	1.0	ug/L						
Bromodichloromethane	<1.0	1.0	ug/L						
cis-1,3-Dichloropropene	<1.0	1.0	ug/L						
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L						
Toluene	<1.0	1.0	ug/L						
trans-1,3-Dichloropropene	<1.0	1.0	ug/L						
1,1,2-Trichloroethane	<1.0	1.0	ug/L						
Tetrachloroethylene	<1.0	1.0	ug/L						
2-Hexanone (MBK)	<5.0	5.0	ug/L						
Dibromochloromethane	<1.0	1.0	ug/L						
1,2-Dibromoethane	<1.0	1.0	ug/L ug/L						
Chlorobenzene	<1.0	1.0							
	<1.0		ug/L						
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L						
Ethylbenzene		1.0	ug/L						
Xylenes, total	<2.0	2.0	ug/L						
Styrene	<1.0	1.0	ug/L						
Bromoform	<1.0	1.0	ug/L						
1,2,3-Trichloropropane	<1.0	1.0	ug/L						
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L						
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L						
1,4-Dichlorobenzene	<1.0	1.0	ug/L						
1,2-Dichlorobenzene	<1.0	1.0	ug/L						
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L						
Surrogate: Dibromofluoromethane	49.9		ug/L	50.2		99.4	57-134		
Surrogate: Dibromofluoromethane	49.9		ug/L	50.2		99.4	75-136		
Surrogate: 1,2-Dichloroethane-d4	52.0		ug/L	50.4		103	61-142		
Surrogate: 1,2-Dichloroethane-d4	52.0		ug/L	50.4		103	53-140		
Surrogate: Toluene-d8	50.8		ug/L	50.5		101	86-114		
Surrogate: Toluene-d8	50.8		ug/L	50.5		101	82-121		
Surrogate: 4-Bromofluorobenzene	48.4		ug/L	50.2		96.5	80-116 79-121		
Surrogate: 4-Bromofluorobenzene	48.4		ug/L Prepared: 0	<i>50.2</i> 8/06/24 00:0	∩ Analvzed·	96.5	78-121 9:00		
.CS (1HH0301-BS1) Chloromethane	33.77	1.0	ug/L	30.6	o Allaiyzed.	110			
Vinyl Chloride	28.97	1.0	•				63-155		
•	29.77		ug/L	30.2		95.8	70-154		
Bromomethane		1.0	ug/L	28.8		103	52-176		
Chloroethane	35.17	1.0	ug/L	31.6		111	72-148		

1HH0317

				Spike	Source		%REC		RPD	Note
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 1HH0301 - EPA 5030B - EPA	V 6360B									
	4 02005		Prepared: 08	8/06/24 00:0	0 Δnalvzed:	08/06/24 0	9.00			
LCS (1HH0301-BS1)	35.13	4.0	•		o / maryzea.					
Trichlorofluoromethane	49.67	1.0	ug/L	32.6		108	70-152			
1,1-Dichloroethylene		1.0	ug/L	50.0		99.3	70-148			
Acetone	123.3 98.66	10.0	ug/L	101		122	43-172			
Methyl lodide	88.36	1.0	ug/L	102		96.8	69-170			
Carbon Disulfide		1.0	ug/L	103		86.0	72-162			
Methylene Chloride	52.26	5.0	ug/L	50.0		105	68-142			
Acrylonitrile	97.03	5.0	ug/L	100		96.5	56-135			
trans-1,2-Dichloroethylene	51.24	1.0	ug/L	50.0		102	66-148			
1,1-Dichloroethane	54.20	1.0	ug/L	50.0		108	66-143			
Vinyl Acetate	115.3	5.0	ug/L	100		115	43-153			
cis-1,2-Dichloroethylene	52.63	1.0	ug/L	50.0		105	71-149			
2-Butanone (MEK)	109.7	10.0	ug/L	102		108	52-159			
Bromochloromethane	48.47	1.0	ug/L	50.0		96.9	69-143			
Chloroform	50.50	1.0	ug/L	50.0		101	69-144			
1,1,1-Trichloroethane	50.67	1.0	ug/L	50.0		101	62-129			
Carbon Tetrachloride	52.51	1.0	ug/L	50.0		105	63-141			
Benzene	51.05	1.0	ug/L	50.0		102	71-134			
1,2-Dichloroethane	52.26	1.0	ug/L	50.0		105	72-132			
Trichloroethylene	51.32	1.0	ug/L	50.0		103	71-135			
1,2-Dichloropropane	54.16	1.0	ug/L	50.0		108	69-136			
Dibromomethane	50.17	1.0	ug/L	50.0		100	73-147			
Bromodichloromethane	53.95	1.0	ug/L	50.0		108	68-129			
cis-1,3-Dichloropropene	51.56	1.0	ug/L	50.0		103	65-134			
4-Methyl-2-pentanone (MIBK)	105.0	5.0	ug/L	100		105	58-147			
Toluene	49.52	1.0	ug/L	50.0		99.0	72-133			
trans-1,3-Dichloropropene	51.77	1.0	ug/L	50.0		104	67-130			
1,1,2-Trichloroethane	51.10	1.0	ug/L	50.0		102	69-135			
Tetrachloroethylene	50.65	1.0	ug/L	50.0		101	69-130			
2-Hexanone (MBK)	105.3	5.0	ug/L	99.3		106	55-144			
Dibromochloromethane	55.16	1.0	ug/L	50.0		110	73-127			
1,2-Dibromoethane	50.78	1.0	ug/L	50.0		102	67-132			
Chlorobenzene	49.42	1.0	ug/L	50.0		98.8	72-123			
1,1,1,2-Tetrachloroethane	55.89	1.0	ug/L	50.0		112	73-127			
Ethylbenzene	52.59	1.0	ug/L	50.0		105	71-127			
Xylenes, total	161.7	2.0	ug/L	150		108	74-127			
Styrene	56.01	1.0	ug/L	50.0		112	66-126			
Bromoform	52.60	1.0	ug/L	50.0		105	68-130			
1,2,3-Trichloropropane	52.42	1.0	ug/L	50.0		105	63-136			
trans-1,4-Dichloro-2-butene	93.96	5.0	ug/L	103		91.4	54-134			
1,1,2,2-Tetrachloroethane	50.66	1.0	ug/L	50.0		101	61-131			
1,4-Dichlorobenzene	47.36	1.0	ug/L ug/L	50.0		94.7				
1,2-Dichlorobenzene	50.64	1.0	ug/L	50.0			70-129			
1,2-Dibromo-3-chloropropane	54.80	5.0	ug/L ug/L	50.0		101 110	69-126 50-143			

1HH0317

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HH0301 - EPA 5030B - EPA	A 8260B									
LCS (1HH0301-BS1)			Prepared: 08	8/06/24 00:0	0 Analyzed:	08/06/24 0	9:00			
Surrogate: Dibromofluoromethane	50.4		ug/L	50.2		100	57-134			
Surrogate: Dibromofluoromethane	50.4		ug/L	50.2		100	75-136			
Surrogate: 1,2-Dichloroethane-d4	51.0		ug/L	50.4		101	53-140			
Surrogate: 1,2-Dichloroethane-d4	51.0		ug/L	50.4		101	61-142			
Surrogate: Toluene-d8	50.6		ug/L	50.5		100	86-114			
Surrogate: Toluene-d8	50.6		ug/L	50.5		100	82-121			
Surrogate: 4-Bromofluorobenzene	50.5		ug/L	50.2		101	78-121			
Surrogate: 4-Bromofluorobenzene	50.5		ug/L Prepared: 08	50.2	10 Analyzadi	101	80-116			
.CS Dup (1HH0301-BSD1)	24.05	4.0			o Analyzed.					
Chloromethane	31.05	1.0	ug/L	30.6		101	63-155	8.39	24	
Vinyl Chloride	27.14	1.0	ug/L	30.2		89.8	70-154	6.52	25	
Bromomethane	27.67	1.0	ug/L	28.8		96.1	52-176	7.31	27	
Chloroethane	33.05	1.0	ug/L	31.6		104	72-148	6.22	25	
Trichlorofluoromethane	32.41	1.0	ug/L	32.6		99.4	70-152	8.05	26	
1,1-Dichloroethylene	46.14	1.0	ug/L	50.0		92.3	70-148	7.37	24	
Acetone	119.4	10.0	ug/L	101		118	43-172	3.27	30	
Methyl lodide	95.70	1.0	ug/L	102		93.9	69-170	3.05	30	
Carbon Disulfide	81.19	1.0	ug/L	103		79.1	72-162	8.46	24	
Methylene Chloride	50.67	5.0	ug/L	50.0		101	68-142	3.09	21	
Acrylonitrile	96.74	5.0	ug/L	100		96.3	56-135	0.299	16	
trans-1,2-Dichloroethylene	47.99	1.0	ug/L	50.0		96.0	66-148	6.55	27	
1.1-Dichloroethane	50.84	1.0	ug/L	50.0		102	66-143	6.40	24	
Vinyl Acetate	116.4	5.0	ug/L	100		116	43-153	0.924	30	
cis-1,2-Dichloroethylene	50.24	1.0	ug/L	50.0		100	71-149	4.65	26	
2-Butanone (MEK)	97.82	10.0	ug/L	102		96.1	52-159	11.4	27	
Bromochloromethane	46.98	1.0	ug/L	50.0		94.0	69-143	3.12	23	
Chloroform	47.81	1.0	-			94.0 95.6				
	47.59		ug/L	50.0			69-144	5.47	23	
1,1,1-Trichloroethane	48.21	1.0	ug/L	50.0		95.2	62-129	6.27	24	
Carbon Tetrachloride		1.0	ug/L	50.0		96.4	63-141	8.54	25	
Benzene	48.15	1.0	ug/L	50.0		96.3	71-134	5.85	24	
1,2-Dichloroethane	50.41	1.0	ug/L	50.0		101	72-132	3.60	24	
Trichloroethylene	48.34	1.0	ug/L	50.0		96.7	71-135	5.98	24	
1,2-Dichloropropane	52.22	1.0	ug/L	50.0		104	69-136	3.65	24	
Dibromomethane	50.05	1.0	ug/L	50.0		100	73-147	0.239	25	
Bromodichloromethane	51.90	1.0	ug/L	50.0		104	68-129	3.87	22	
cis-1,3-Dichloropropene	49.98	1.0	ug/L	50.0		100	65-134	3.11	23	
4-Methyl-2-pentanone (MIBK)	105.2	5.0	ug/L	100		105	58-147	0.257	27	
Toluene	46.91	1.0	ug/L	50.0		93.8	72-133	5.41	24	
trans-1,3-Dichloropropene	52.00	1.0	ug/L	50.0		104	67-130	0.443	24	
1,1,2-Trichloroethane	51.63	1.0	ug/L	50.0		103	69-135	1.03	23	
Tetrachloroethylene	47.49	1.0	ug/L	50.0		95.0	69-130	6.44	25	
2-Hexanone (MBK)	106.0	5.0	ug/L	99.3		107	55-144	0.653	25	
Dibromochloromethane	54.03	1.0	ug/L	50.0		107				
Pipiotilorilordinerilarie	0-1.00	1.0	ug/L	50.0		100	73-127	2.07	22	

1HH0317

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HH0301 - EPA 5030B - EPA	A 8260B									
_CS Dup (1HH0301-BSD1)			Prepared: 08	3/06/24 00:0	0 Analyzed:	08/06/24 0	9:23			
1,2-Dibromoethane	50.64	1.0	ug/L	50.0		101	67-132	0.276	24	
Chlorobenzene	47.27	1.0	ug/L	50.0		94.5	72-123	4.45	23	
1,1,1,2-Tetrachloroethane	52.13	1.0	ug/L	50.0		104	73-127	6.96	24	
Ethylbenzene	49.75	1.0	ug/L	50.0		99.5	71-127	5.55	26	
Xylenes, total	152.4	2.0	ug/L	150		102	74-127	5.93	25	
Styrene	52.64	1.0	ug/L	50.0		105	66-126	6.20	23	
Bromoform	51.74	1.0	ug/L	50.0		103	68-130	1.65	23	
1,2,3-Trichloropropane	51.33	1.0	ug/L	50.0		103	63-136	2.10	24	
trans-1,4-Dichloro-2-butene	93.82	5.0	ug/L	103		91.3	54-134	0.149	27	
1,1,2,2-Tetrachloroethane	50.26	1.0	ug/L	50.0		101	61-131	0.793	29	
1,4-Dichlorobenzene	45.71	1.0	ug/L	50.0		91.4	70-129	3.55	24	
1,2-Dichlorobenzene	49.59	1.0	ug/L	50.0		99.2	69-126	2.10	26	
1,2-Dibromo-3-chloropropane	55.16	5.0	ug/L	50.0		110	50-143	0.655	30	
1,2-Biblottio-o-chioloproparie		0.0	ug/L	30.0		110	30-143	0.055	30	
Surrogate: Dibromofluoromethane	50.6		ug/L	50.2		101	57-134			
Surrogate: Dibromofluoromethane	50.6		ug/L	50.2		101	75-136			
Surrogate: 1,2-Dichloroethane-d4	50.8		ug/L	50.4		101	53-140			
Surrogate: 1,2-Dichloroethane-d4	50.8		ug/L	50.4		101	61-142			
Surrogate: Toluene-d8	51.0		ug/L	50.5		101	86-114			
Surrogate: Toluene-d8	51.0		ug/L	50.5		101	82-121			
Surrogate: 4-Bromofluorobenzene Surrogate: 4-Bromofluorobenzene	51.6 51.6		ug/L	50.2 50.2		103 103	78-121 80-116			
-		UU0247 04	ug/L Prepared: 08		O Analyzed:					
Matrix Spike (1HH0301-MS1) Chloromethane	295.0	HH0317-01 10.0	ug/L	306	ND	96.3	61-152			
Vinyl Chloride	255.9	10.0	ug/L ug/L	302		84.7	66-149			
·	269.6		•		ND					
Bromomethane	319.4	10.0	ug/L	288	ND	93.6	43-171			
Chloroethane		10.0	ug/L	316	ND	101	69-148			
Trichlorofluoromethane	317.3	10.0	ug/L	326	ND	97.3	62-163			
1,1-Dichloroethylene	456.8	10.0	ug/L	500	ND	91.4	70-148			
Acetone	1091	100	ug/L	1010	ND	108	45-173			
Methyl Iodide	828.9	10.0	ug/L	1020	ND	81.4	62-167			
Carbon Disulfide	775.5	10.0	ug/L	1030	ND	75.5	71-163			
Methylene Chloride	463.8	50.0	ug/L	500	ND	92.8	69-140			
Acrylonitrile	911.4	50.0	ug/L	1000	ND	90.7	38-147			
trans-1,2-Dichloroethylene	460.1	10.0	ug/L	500	ND	92.0	69-144			
1,1-Dichloroethane	477.9	10.0	ug/L	500	ND	95.6	70-138			
Vinyl Acetate	1134	50.0	ug/L	1000	ND	113	58-142			
cis-1,2-Dichloroethylene	520.7	10.0	ug/L	500	ND	104	68-151			
2-Butanone (MEK)	940.6	100	ug/L	1020	ND	92.4	50-160			
Bromochloromethane	451.2	10.0	ug/L	500	ND	90.2	65-143			
Chloroform	449.4	10.0	ug/L	500	ND	89.9	71-143			
1,1,1-Trichloroethane	457.0	10.0	ug/L	500	ND	91.4	63-133			
Carbon Tetrachloride	444.4	10.0	ug/L	500	ND	88.9	63-142			
Benzene	474.0	10.0	ug/L	500	ND	94.8	69-133			

				Spike	Source		%REC		RPD	Natas
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HH0301 - EPA 5030B -	EPA 8260B									
		411110047 04	Droporodi O	0/06/24 00:0	0 Analyzadi	00/06/24 2	0.45			
Matrix Spike (1HH0301-MS1)		1HH0317-01	•	8/06/24 00:0						
1,2-Dichloroethane	486.5	10.0	ug/L	500	ND	97.3	63-138			
Trichloroethylene	471.9	10.0	ug/L	500	ND	94.4	71-133			
1,2-Dichloropropane	509.7	10.0	ug/L	500	ND	102	69-132			
Dibromomethane	484.2	10.0	ug/L	500	ND	96.8	70-147			
Bromodichloromethane	489.8	10.0	ug/L	500	ND	98.0	67-130			
cis-1,3-Dichloropropene	464.4	10.0	ug/L	500	ND	92.9	61-126			
4-Methyl-2-pentanone (MIBK)	999.3	50.0	ug/L	1000	ND	99.8	55-147			
Toluene	459.0	10.0	ug/L	500	ND	91.8	71-133			
trans-1,3-Dichloropropene	482.0	10.0	ug/L	500	ND	96.4	63-124			
1,1,2-Trichloroethane	494.6	10.0	ug/L	500	ND	98.9	69-133			
Tetrachloroethylene	474.1	10.0	ug/L	500	ND	94.8	70-124			
2-Hexanone (MBK)	1016	50.0	ug/L	993	ND	102	53-141			
Dibromochloromethane	519.8	10.0	ug/L	500	ND	104	74-122			
1,2-Dibromoethane	488.9	10.0	ug/L	500	ND	97.8	66-127			
Chlorobenzene	465.1	10.0	ug/L	500	ND	93.0	76-116			
1,1,1,2-Tetrachloroethane	507.5	10.0	ug/L	500	ND	102	77-121			
Ethylbenzene	490.5	10.0	ug/L	500	ND	98.1	73-124			
Xylenes, total	1503	20.0	ug/L	1500	ND	100	75-123			
Styrene	513.8	10.0	ug/L	500	ND	103	70-120			
Bromoform	485.7	10.0	ug/L	500	ND	97.1	70-124			
1,2,3-Trichloropropane	492.9	10.0	ug/L	500	ND	98.6	62-135			
trans-1,4-Dichloro-2-butene	877.3	50.0	ug/L	1030	ND	85.3	50-120			
1,1,2,2-Tetrachloroethane	491.1	10.0	ug/L	500	ND	98.2	63-126			
1,4-Dichlorobenzene	443.1	10.0	ug/L	500	ND	88.6	72-119			
1,2-Dichlorobenzene	475.0	10.0	ug/L	500	ND	95.0	71-117			
1,2-Dibromo-3-chloropropane	514.4	50.0	ug/L	500	ND	103	49-134			
- 1,2 Bibrottie e etilotopropario	<u> </u>		ug/L		IND	100	49-134			
Surrogate: Dibromofluoromethane	472		ug/L	502		94.1	57-134			
Surrogate: Dibromofluoromethane	472		ug/L	502		94.1	75-136			
Surrogate: 1,2-Dichloroethane-d4	492		ug/L	504		97.8	53-140			
Surrogate: 1,2-Dichloroethane-d4	492		ug/L	504		97.8	61-142			
Surrogate: Toluene-d8	499		ug/L	505		98.9	86-114			
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene	499		ug/L	505		98.9	82-121			
Surrogate: 4-Bromofluorobenzene	496 496		ug/L ug/L	502 502		98.9 98.9	78-121 80-116			
•		1UU0217 01	Prepared: 0		0 Analyzed:					
Matrix Spike Dup (1HH0301-MSD	319.3	1HH0317-01						7.04	00	
Chloromethane		10.0	ug/L	306	ND	104	61-152	7.91	26	
Vinyl Chloride	278.8	10.0	ug/L	302	ND	92.2	66-149	8.57	23	
Bromomethane	279.8	10.0	ug/L	288	ND	97.2	43-171	3.71	29	
Chloroethane	341.0	10.0	ug/L	316	ND	108	69-148	6.54	25	
Trichlorofluoromethane	346.0	10.0	ug/L	326	ND	106	62-163	8.65	25	
1,1-Dichloroethylene	497.9	10.0	ug/L	500	ND	99.6	70-148	8.61	22	
Acetone	1110	100	ug/L	1010	ND	110	45-173	1.74	30	

Microbac Laboratories, Inc., Newton

ug/L

1020

92.2

62-167

12.5

10.0

939.1

Methyl Iodide

24

Spike Source %REC RPD

Microbac Laboratories, Inc., Newton CERTIFICATE OF ANALYSIS 1HH0317

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HH0301 - EPA 5030B - EPA	8260B									
Matrix Spike Dup (1HH0301-MSD1)	Source:	1HH0317-01	Prepared: 08	3/06/24 00:0	00 Analyzed:	08/06/24 2	1:08			
Carbon Disulfide	833.9	10.0	ug/L	1030	ND	81.2	71-163	7.26	22	
Methylene Chloride	489.9	50.0	ug/L	500	ND	98.0	69-140	5.47	19	
Acrylonitrile	925.1	50.0	ug/L	1000	ND	92.0	38-147	1.49	30	
trans-1,2-Dichloroethylene	490.1	10.0	ug/L	500	ND	98.0	69-144	6.31	22	
1,1-Dichloroethane	507.7	10.0	ug/L	500	ND	102	70-138	6.05	20	
Vinyl Acetate	1125	50.0	ug/L	1000	ND	112	58-142	0.841	24	
cis-1,2-Dichloroethylene	542.1	10.0	ug/L	500	ND	108	68-151	4.03	22	
2-Butanone (MEK)	972.6	100	ug/L	1020	ND	95.5	50-160	3.35	23	
Bromochloromethane	470.0	10.0	ug/L	500	ND	94.0	65-143	4.08	22	
Chloroform	471.6	10.0	ug/L	500	ND	94.3	71-143	4.82	21	
1,1,1-Trichloroethane	489.3	10.0	ug/L	500	ND	97.9	63-133	6.83	23	
Carbon Tetrachloride	484.7	10.0	ug/L	500	ND	96.9	63-142	8.68	22	
Benzene	496.4	10.0	ug/L	500	ND	99.3	69-133	4.62	18	
1,2-Dichloroethane	509.3	10.0	ug/L	500	ND	102	63-138	4.58	20	
Trichloroethylene	499.0	10.0	ug/L	500	ND	99.8	71-133	5.58	23	
1,2-Dichloropropane	519.7	10.0	ug/L	500	ND	104	69-132	1.94	20	
Dibromomethane	488.1	10.0	ug/L	500	ND	97.6	70-147	0.802	22	
Bromodichloromethane	506.3	10.0	ug/L	500	ND	101	67-130	3.31	21	
cis-1,3-Dichloropropene	476.7	10.0	ug/L	500	ND	95.3	61-126	2.61	21	
4-Methyl-2-pentanone (MIBK)	1033	50.0	ug/L	1000	ND	103	55-147	3.34	23	
Toluene	479.4	10.0	ug/L	500	ND	95.9	71-133	4.35	19	
trans-1,3-Dichloropropene	484.9	10.0	ug/L	500	ND	97.0	63-124	0.600	21	
1,1,2-Trichloroethane	501.4	10.0	ug/L	500	ND	100	69-133	1.37	19	
Tetrachloroethylene	496.1	10.0	ug/L	500	ND	99.2	70-124	4.54	24	
2-Hexanone (MBK)	1034	50.0	ug/L	993	ND	104	53-141	1.70	24	
Dibromochloromethane	537.4	10.0	ug/L	500	ND	107	74-122	3.33	21	
1,2-Dibromoethane	495.6	10.0	ug/L	500	ND	99.1	66-127	1.36	23	
Chlorobenzene	480.5	10.0	ug/L	500	ND	96.1	76-116	3.26	21	
1,1,1,2-Tetrachloroethane	530.6	10.0	ug/L	500	ND	106	77-121	4.45	25	
Ethylbenzene	515.7	10.0	ug/L	500	ND	103	73-124	5.01	20	
Xylenes, total	1569	20.0	ug/L	1500	ND	105	75-124	4.33	20	
Styrene	539.8	10.0	ug/L	500	ND	108	70-120	4.94	23	
Bromoform	504.1	10.0	ug/L	500	ND	101	70-120	3.72	22	
1,2,3-Trichloropropane	521.7	10.0	ug/L	500	ND				28	
trans-1,4-Dichloro-2-butene	896.6	50.0	ug/L	1030	ND	104 87.2	62-135 50-120	5.68 2.18		
1,1,2,2-Tetrachloroethane	497.1	10.0	ug/L ug/L	500		87.2 99.4	63-126		26 24	
1,1,2,2-Tetrachioroethane 1,4-Dichlorobenzene	453.6	10.0	ug/L ug/L	500	ND	99.4	72-119	1.21	24	
1,2-Dichlorobenzene	486.7	10.0	-		ND			2.34	24	
•	519.2		ug/L	500 500	ND	97.3	71-117	2.43	24	
1,2-Dibromo-3-chloropropane	J13.2	50.0	ug/L	500	ND	104	49-134	0.929	28	
Surrogate: Dibromofluoromethane	472		ug/L	502		94.1	57-134			
Surrogate: Dibromofluoromethane	472		ug/L	502		94.1	75-136			
Surrogate: 1,2-Dichloroethane-d4	500		ug/L	504		99.3	53-140			
Surrogate: 1,2-Dichloroethane-d4	500		ug/L	504		99.3	61-142			

CERTIFICATE OF ANALYSIS

1HH0317

Spike Source

%REC

RPD

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HH0301 - EPA 5030B - EPA	8260B									
Matrix Spike Dup (1HH0301-MSD1)	Source	: 1HH0317-01	Prepared: 08	8/06/24 00:0	00 Analyzed:	08/06/24 2	1:08			
Surrogate: Toluene-d8	502		ug/L	505		99.4	86-114			
Surrogate: Toluene-d8	502		ug/L	505		99.4	82-121			
Surrogate: 4-Bromofluorobenzene	514		ug/L	502		102	78-121			
Surrogate: 4-Bromofluorobenzene	514		ug/L	502		102	80-116			
				Spike	Source		%REC		RPD	Neter
Determination of Total Metals	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HH0285 - EPA 3005A Total F	Recoverable Metals	- EPA 6020A								
Blank (1HH0285-BLK1)			Prepared: 08	8/06/24 16:0)7 Analyzed:	08/08/24 2	0:46			
Antimony, total	<0.0020	0.0020	mg/L							
Arsenic, total	<0.0040	0.0040	mg/L							
Barium, total	<0.0040	0.0040	mg/L							
Beryllium, total	<0.0040	0.0040	mg/L							
Cadmium, total	<0.0008	0.0008	mg/L							
Chromium, total	<0.0080	0.0080	mg/L							
Cobalt, total	<0.0004	0.0004	mg/L							
Copper, total	<0.0040	0.0040	mg/L							
Lead, total	<0.0040	0.0040	mg/L							
Nickel, total	<0.0040	0.0040	mg/L							
Selenium, total	<0.0040	0.0040	mg/L							
Silver, total	<0.0040	0.0040	mg/L							
Thallium, total	<0.0020	0.0020	mg/L							
Vanadium, total	<0.0200	0.0200	mg/L							
Zinc, total	<0.0200	0.0200	mg/L							
LCS (1HH0285-BS1)			Prepared: 08	8/06/24 16:0)7 Analyzed:	08/08/24 2	0:52			
Antimony, total	0.0924	0.0020	mg/L	0.100		92.4	80-120			
Arsenic, total	0.0918	0.0040	mg/L	0.100		91.8	80-120			
Barium, total	0.103	0.0040	mg/L	0.100		103	80-120			
Beryllium, total	0.0947	0.0040	mg/L	0.100		94.7	80-120			
Cadmium, total	0.0934	0.0008	mg/L	0.100		93.4	80-120			
Chromium, total	0.0971	0.0080	mg/L	0.100		97.1	80-120			
Cobalt, total	0.101	0.0004	mg/L	0.100		101	80-120			
Copper, total	0.103	0.0040	mg/L	0.100		103	80-120			
Lead, total	0.0975	0.0040	mg/L	0.100		97.5	80-120			
Nickel, total	0.100	0.0040	mg/L	0.100		100	80-120			
Selenium, total	0.0866	0.0040	mg/L	0.100		86.6	80-120			
Silver, total	0.0979	0.0040	mg/L	0.100		97.9	80-120			
Thallium, total	0.0972	0.0040	mg/L	0.100		97.9				
Vanadium, total	0.0997	0.0020	mg/L	0.100		99.7	80-120 80-120			
Zinc, total	0.0882	0.0200	mg/L	0.100		99.7 88.2	80-120 80-120			
)7 Angless = -					
Matrix Spike (1HH0285-MS1)	Source	: 1HH0317-01	Prepared: 08	0/00/24 16:0	n Analyzed:	08/08/24 2	1.29			

1HH0317

				Spike	Source		%REC		RPD	Mad
Determination of Total Metals	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HH0285 - EPA 3005A Total R	Recoverable Metal	s - EPA 6020A								
Matrix Spike (1HH0285-MS1)	Source	: 1HH0317-01	Prepared: 0	8/06/24 16:0	7 Analyzed:	08/08/24 2	21:29			
Antimony, total	0.0900	0.0020	mg/L	0.100	ND	90.0	75-125			
Arsenic, total	0.0936	0.0040	mg/L	0.100	0.0016	91.9	75-125			
Barium, total	0.147	0.0040	mg/L	0.100	0.0462	101	75-125			
Beryllium, total	0.0886	0.0040	mg/L	0.100	ND	88.6	75-125			
Cadmium, total	0.0877	0.0008	mg/L	0.100	ND	87.7	75-125			
Chromium, total	0.0931	0.0080	mg/L	0.100	0.0008	92.3	75-125			
Cobalt, total	0.0990	0.0004	mg/L	0.100	0.0003	98.7	75-125			
Copper, total	0.0916	0.0040	mg/L	0.100	0.0017	89.9	75-125			
Lead, total	0.0901	0.0040	mg/L	0.100	ND	90.1	75-125			
Nickel, total	0.0974	0.0040	mg/L	0.100	0.0018	95.6	75-125			
Selenium, total	0.0880	0.0040	mg/L	0.100	ND	88.0	75-125			
Silver, total	0.0916	0.0040	mg/L	0.100	ND	91.6	75-125			
Thallium, total	0.0913	0.0020	mg/L	0.100	ND	91.3	75-125			
Vanadium, total	0.102	0.0200	mg/L	0.100	ND	102	75-125			
Zinc, total	0.0828	0.0200	mg/L	0.100	ND	82.8	75-125			
Matrix Spike Dup (1HH0285-MSD1)	Source	: 1HH0317-01	Prepared: 0	8/06/24 16:0)7 Analyzed:					
Antimony, total	0.0937	0.0020	mg/L	0.100	ND	93.7	75-125	4.03	20	
Arsenic, total	0.0973	0.0040	mg/L	0.100	0.0016	95.6	75-125	3.88	20	
Barium, total	0.154	0.0040	mg/L	0.100	0.0462	108	75-125	4.71	20	
Beryllium, total	0.0919	0.0040	mg/L	0.100	ND	91.9	75-125	3.67	20	
Cadmium, total	0.0915	0.0008	mg/L	0.100	ND	91.5	75-125	4.34	20	
Chromium, total	0.0978	0.0080	mg/L	0.100	0.0008	97.1	75-125	4.98	20	
Cobalt, total	0.103	0.0004	mg/L	0.100	0.0003	102	75-125	3.69	20	
Copper, total	0.0954	0.0040	mg/L	0.100	0.0017	93.7	75-125	4.04	20	
Lead, total	0.0934	0.0040	mg/L	0.100	ND	93.4	75-125	3.58	20	
Nickel, total	0.101	0.0040	mg/L	0.100	0.0018	99.2	75-125	3.68	20	
Selenium, total	0.0887	0.0040	mg/L	0.100	ND	88.7	75-125	0.785	20	
Silver, total	0.0964	0.0040	mg/L	0.100	ND	96.4	75-125	5.05	20	
Thallium, total	0.0958	0.0020	mg/L	0.100	ND	95.8	75-125	4.79	20	
Vanadium, total	0.105	0.0200	mg/L	0.100	ND	105	75-125	3.20	20	
Zinc, total	0.0874	0.0200	mg/L	0.100	ND	87.4	75-125	5.29	20	
Post Spike (1HH0285-PS1)		e: 1HH0317-01		8/06/24 16:0				0.20	20	
Antimony, total	0.0733		mg/L	0.0800	0.0001	91.5	80-120			
Arsenic, total	0.0763		mg/L	0.0800	0.0016	93.4	80-120			
Barium, total	0.125		mg/L	0.0800	0.0452	100	80-120			
Beryllium, total	0.0718		mg/L	0.0800	0.00002	89.8	80-120			
Cadmium, total	0.0710		mg/L	0.0800	0.00002	88.7	80-120			
Chromium, total	0.0764		mg/L	0.0800	0.0007	94.6	80-120			
Cobalt, total	0.0806		mg/L	0.0800	0.0007	100	80-120			
Copper, total	0.0746		mg/L	0.0800	0.0003	91.2	80-120			
Lead, total	0.0740		mg/L	0.0800	0.0010	92.4	80-120			
Nickel, total	0.0792		mg/L	0.0800	0.0001					
	0.0659					96.8	80-120			
Selenium, total	0.0003		mg/L	0.0800	0.0005	81.8	80-120			

CERTIFICATE OF ANALYSIS

1HH0317

Determination of	F Total Motals	Result		RL	Units	Spike	Source	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HH0285 - El			s - EPA		Units	Level	Result	%REC	Limits	RPD	Limit	
Post Spike (1HH0285	-PS1)	Source	e: 1HH03	17-01	Prepared: 0)8/06/24 16:0)7 Analyzed:	08/08/24 2	1:41			
Silver, total		0.0744			mg/L	0.0800	0.0003	92.6	80-120			
Thallium, total		0.0749			mg/L	0.0800	0.00003	93.6	80-120			
Vanadium, total		0.0847			mg/L	0.0800	0.0059	98.5	80-120			
Zinc, total		0.0669			mg/L	0.0800	0.0023	80.8	80-120			
Definitions												
RL:	Reporting Limit											
RPD:	Relative Percent	Difference										
Cooler Receipt Lo	g											
Cooler ID:	Default Cooler		Temp:	0.0°C								
Cooler Inspection	Checklist											
Custody Seals				No	Cor	ntainers Inta	act					Yes
COC/Labels Agr	ee			Yes	s Pre	servation C	onfirmed					No
Received On Ice	•			Yes	3							

Report Comments

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions.

Reviewed and Approved By:

asheram urphy

Heather Murphy

Customer Relationship Specialist heather.murphy@microbac.com 08/14/24 16:05 ☐ 600 E. 17th St. S. Newton, IA 50208 Phone: 641-792-845 Fax: 641-792-798!

HLW Engineering PM: Heather Murphy

66105 1-7856 1-6778

205 E VanBuren St Centerville, IA 52544 Phone: 641-437-7023 641-437-7040 Fax:

> PAGE_ OF_

Page 19 of 19

PRINT OR TYPE INFORMATION BELOW SAMPLER: SITE NAME; PAGE Co SUF ADDRESS: CITY/ST/ZIP:	REPORT TO: NAME: TODD WHIPPLE COMPANY NAME: HLW ENGINEERING ADDRESS: PO BOX 314 CITY/ST/ZIP: STORY CITY, 1A 50Z48 PHONE: 515-733-4144	BILL TO: NAME: COMPANY NAME: ADDRESS: CITY/ST/ZIP: PHONE:	BRIAN WARD PAGE CO SLF 2032 N AVE CLATLINDA, IA 51632
PHONE:	FAX: 515-733-4146	Keystone Quote No:	(If Applicable)

		135	PHONE: 515-7	33	-414	4			PHONE:	HONE:	
PHONE:	The		FAX: 515 - 7	33	-412	حاه	- 12		Keystone	Quote No:	(If Applicable)
	1			CONTAINERS		POSITE	-607	-6200B	REQUIRED		
CLIENT SAMPLE NUMBER	DATE	TIME	SAMPLE LOCATION	NO. OF COM	MATRIX	GRAB/COMPOSITE	APPINETALS	APO 1- VOC		UPON RECEIPT	C C LABORATORY SAMPLE NUMBER
MW 53	8/1/24	12:19					X	K			01
GU 3		12:42	-				K	κ			02
GU 4	8/1/14	12:52					×	K			03
		3					-				
linquished by: (Signature	e)	Date /2/	Received by: (Signature)		Date			Turn-Aro		Rush	Contact Lab Prior to Submission
Ilinquished by: (Signature	9)	Date Time	Received for Lab by: (Signatu	ire)	Time	0:	51	Remarks	:		EODM: CCD

CERTIFICATE OF ANALYSIS 1HI1877

Project Description

6047

For:

Todd Whipple

HLW Engineering

204 West Broad St

Story City, IA 50248

Heather Murphy

an heram ur Dh

Customer Relationship Specialist

Friday, October 11, 2024

Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories. Review and compilation of your report was completed by Microbac Laboratories, Inc., Newton. If you have any questions, comments, or require further assistance regarding this report, please contact your service representative listed above.

I certify that all test results meet all of the requirements of the accrediting authority listed within this report. Analytical results are reported on a 'as received' basis unless specified otherwise. Analytical results for solids with units ending in (dry) are reported on a dry weight basis. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories. The reported results are related only to the samples analyzed as received.

Microbac Laboratories, Inc.

HLW Engineering

Project Name: 6047

Todd Whipple 204 West Broad St Story City, IA 50248 Project / PO Number: N/A Received: 09/26/2024 Reported: 10/11/2024

Sample Summary Report

Sample Name MW-1D	Laboratory ID 1HI1877-01	Client Matrix Aqueous	Sample Type GRAB	Sample Begin	Sample Taken 09/25/24 17:13	Lab Received 09/26/24 10:03
MW-3	1HI1877-02	Aqueous	GRAB		09/25/24 16:45	09/26/24 10:03
MW-7	1HI1877-03	Aqueous	GRAB		09/25/24 14:59	09/26/24 10:03
MW-10	1HI1877-04	Aqueous	GRAB		09/25/24 18:20	09/26/24 10:03
MW-13	1HI1877-05	Aqueous	GRAB		09/25/24 15:15	09/26/24 10:03
MW-14	1HI1877-06	Aqueous	GRAB		09/25/24 15:30	09/26/24 10:03
MW-16	1HI1877-07	Aqueous	GRAB		09/25/24 15:53	09/26/24 10:03
MW-17 (b)	1HI1877-08	Aqueous	GRAB		09/25/24 16:57	09/26/24 10:03
MW-18	1HI1877-09	Aqueous	GRAB		09/25/24 16:30	09/26/24 10:03
MW-20	1HI1877-10	Aqueous	GRAB		09/25/24 14:45	09/26/24 10:03
Duplicate	1HI1877-11	Aqueous	GRAB		09/25/24 00:00	09/26/24 10:03
MW-53	1HI1877-12	Aqueous	GRAB		09/25/24 17:30	09/26/24 10:03
GV-3	1HI1877-13	Aqueous	GRAB		09/25/24 18:06	09/26/24 10:03
GV-4	1HI1877-14	Aqueous	GRAB		09/25/24 17:59	09/26/24 10:03

Analytical Testing Parameters

Client Sample ID:MW-1DSample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HI1877-01Collection Date:09/25/2024 17:13

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
Bromomethane	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
Chloroethane	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
Acetone	<10.0	10.0	ug/L	1			10/01/24 1723	BDF
Methyl lodide	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
Methylene Chloride	<5.0	5.0	ug/L	1			10/01/24 1723	BDF
Acrylonitrile	<5.0	5.0	ug/L	1			10/01/24 1723	BDF
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1			10/01/24 1723	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1			10/01/24 1723	BDF
Bromochloromethane	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
Chloroform	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
Benzene	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
Trichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
Dibromomethane	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1			10/01/24 1723	BDF
Toluene	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
2-Hexanone (MBK)	<5.0	5.0	ug/L	1			10/01/24 1723	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
Chlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
Ethylbenzene	<1.0	1.0	ug/L	1			10/01/24 1723	BDF
Xylenes, total	<2.0	2.0	ug/L	1			10/01/24 1723	BDF
Styrene	<1.0	1.0	ug/L	1			10/01/24 1723	BDF

1HI1877

Client Sample ID:MW-1DSample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HI1877-01Collection Date:09/25/2024 17

Lab Sample ID: 1HI1877-01					Collection Date: 09/25/2024 17:13					
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys		
Bromoform	<1.0	1.0	ug/L	1			10/01/24 1723	BDF		
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1			10/01/24 1723	BDF		
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1			10/01/24 1723	BDF		
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/01/24 1723	BDF		
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1723	BDF		
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1723	BDF		
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1			10/01/24 1723	BDF		
Surrogate: Dibromofluoromethane	89.8	Limit: 75-136	% Rec	1			10/01/24 1723	BDF		
Surrogate: Dibromofluoromethane	89.8	Limit: 57-134	% Rec	1			10/01/24 1723	BDF		
Surrogate: 1,2-Dichloroethane-d4	102	Limit: 53-140	% Rec	1			10/01/24 1723	BDF		
Surrogate: 1,2-Dichloroethane-d4	102	Limit: 61-142	% Rec	1			10/01/24 1723	BDF		
Surrogate: Toluene-d8	101	Limit: 82-121	% Rec	1			10/01/24 1723	BDF		
Surrogate: Toluene-d8	101	Limit: 86-114	% Rec	1			10/01/24 1723	BDF		
Surrogate: 4-Bromofluorobenzene	103	Limit: 80-116	% Rec	1			10/01/24 1723	BDF		
Surrogate: 4-Bromofluorobenzene	103	Limit: 78-121	% Rec	1			10/01/24 1723	BDF		
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys		
EPA 3005A/EPA 6020A										
Antimony, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/07/24 1123	RVV		
Arsenic, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/07/24 1123	RVV		
Barium, total	0.637	0.0040	mg/L	4		10/02/24 1601	10/07/24 1123	RVV		
Beryllium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/07/24 1123	RVV		
Cadmium, total	<0.0008	0.0008	mg/L	4		10/02/24 1601	10/07/24 1123	RVV		
Chromium, total	<0.0080	0.0080	mg/L	4		10/02/24 1601	10/07/24 1123	RVV		
Cobalt, total	0.0024	0.0004	mg/L	4		10/02/24 1601	10/07/24 1123	RVV		
Copper, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/07/24 1123	RVV		
Lead, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/07/24 1123	RVV		
Nickel, total	0.0113	0.0040	mg/L	4		10/02/24 1601	10/07/24 1123	RVV		
Selenium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/07/24 1123	RVV		
			_			10/02/24 1601	10/07/04 1100	RVV		
Silver, total	< 0.0040	0.0040	mg/L	4		10/02/24 1001	10/07/24 1123			
Silver, total Thallium, total	<0.0040 <0.0020	0.0040 0.0020	-	4 4		10/02/24 1601	10/07/24 1123	RVV		
			mg/L mg/L mg/L							

CERTIFICATE OF ANALYSIS

1HI1877

Client Sample ID:MW-3Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HI1877-02Collection Date:09/25/2024 16:45

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
Bromomethane	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
Chloroethane	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
Acetone	<10.0	10.0	ug/L	1			10/01/24 1745	BDF
Methyl lodide	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
Methylene Chloride	<5.0	5.0	ug/L	1			10/01/24 1745	BDF
Acrylonitrile	<5.0	5.0	ug/L	1			10/01/24 1745	BDF
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1			10/01/24 1745	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1			10/01/24 1745	BDF
Bromochloromethane	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
Chloroform	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
Benzene	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
Trichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
Dibromomethane	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1			10/01/24 1745	BDF
Toluene	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
2-Hexanone (MBK)	<5.0	5.0	ug/L	1			10/01/24 1745	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
Chlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
Ethylbenzene	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
Xylenes, total	<2.0	2.0	ug/L	1			10/01/24 1745	BDF
Styrene	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
Bromoform	<1.0	1.0	ug/L	1			10/01/24 1745	BDF
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1			10/01/24 1745	BDF

1HI1877

Client Sample ID:MW-3Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1H1877-02Collection Date:09/25/2024 16:48

Lab Sample ID: 1HI1877-02					Collection	Date: 09/25/	09/25/2024 16:45		
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys	
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1			10/01/24 1745	BDF	
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/01/24 1745	BDF	
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1745	BDF	
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1745	BDF	
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1			10/01/24 1745	BDF	
Surrogate: Dibromofluoromethane	103	Limit: 75-136	% Rec	1			10/01/24 1745	BDF	
Surrogate: Dibromofluoromethane	103	Limit: 57-134	% Rec	1			10/01/24 1745	BDF	
Surrogate: 1,2-Dichloroethane-d4	101	Limit: 53-140	% Rec	1			10/01/24 1745	BDF	
Surrogate: 1,2-Dichloroethane-d4	101	Limit: 61-142	% Rec	1			10/01/24 1745	BDF	
Surrogate: Toluene-d8	99.5	Limit: 82-121	% Rec	1			10/01/24 1745	BDF	
Surrogate: Toluene-d8	99.5	Limit: 86-114	% Rec	1			10/01/24 1745	BDF	
Surrogate: 4-Bromofluorobenzene	101	Limit: 78-121	% Rec	1			10/01/24 1745	BDF	
Surrogate: 4-Bromofluorobenzene	101	Limit: 80-116	% Rec	1			10/01/24 1745	BDF	
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys	
EPA 3005A/EPA 6020A									
Antimony, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/03/24 1740	RVV	
Arsenic, total	< 0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1740	RVV	
Barium, total	0.295	0.0040	mg/L	4		10/02/24 1601	10/03/24 1740	RVV	
Beryllium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1740	RVV	
Cadmium, total	<0.0008	0.0008	mg/L	4		10/02/24 1601	10/03/24 1740	RVV	
Chromium, total	<0.0080	0.0080	mg/L	4		10/02/24 1601	10/03/24 1740	RVV	
Cobalt, total	<0.0004	0.0004	mg/L	4		10/02/24 1601	10/03/24 1740	RVV	
Copper, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1740	RVV	
Lead, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1740	RVV	
Nickel, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1740	RVV	
Selenium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1740	RVV	
Silver, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1740	RVV	
Thallium, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/03/24 1740	RVV	
Vanadium, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/03/24 1740	RVV	
Zinc, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/03/24 1740	RVV	
,	2.2200		J. –			=			

CERTIFICATE OF ANALYSIS

1HI1877

Client Sample ID:MW-7Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1H1877-03Collection Date:09/25/2024 14:59

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
Bromomethane	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
Chloroethane	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
Acetone	<10.0	10.0	ug/L	1			10/01/24 1808	BDF
Methyl lodide	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
Methylene Chloride	<5.0	5.0	ug/L	1			10/01/24 1808	BDF
Acrylonitrile	<5.0	5.0	ug/L	1			10/01/24 1808	BDF
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1			10/01/24 1808	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1			10/01/24 1808	BDF
Bromochloromethane	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
Chloroform	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
Benzene	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
Trichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
Dibromomethane	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1			10/01/24 1808	BDF
Toluene	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
2-Hexanone (MBK)	<5.0	5.0	ug/L	1			10/01/24 1808	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
Chlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
Ethylbenzene	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
Xylenes, total	<2.0	2.0	ug/L	1			10/01/24 1808	BDF
Styrene	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
Bromoform	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1			10/01/24 1808	BDF

1HI1877

 Client Sample ID:
 MW-7

 Sample Matrix:
 Aqueous
 Collected By:
 Whipple, Todd

 Lab Sample ID:
 1HI1877-03
 Collection Date:
 09/25/2024 14:59

Lab Sample ID: 1HI1877-03					Collection	Date: 09/25/	09/25/2024 14:59	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1			10/01/24 1808	BDF
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1808	BDF
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1			10/01/24 1808	BDF
Surrogate: Dibromofluoromethane	95.8	Limit: 75-136	% Rec	1			10/01/24 1808	BDF
Surrogate: Dibromofluoromethane	95.8	Limit: 57-134	% Rec	1			10/01/24 1808	BDF
Surrogate: 1,2-Dichloroethane-d4	101	Limit: 61-142	% Rec	1			10/01/24 1808	BDF
Surrogate: 1,2-Dichloroethane-d4	101	Limit: 53-140	% Rec	1			10/01/24 1808	BDF
Surrogate: Toluene-d8	101	Limit: 82-121	% Rec	1			10/01/24 1808	BDF
Surrogate: Toluene-d8	101	Limit: 86-114	% Rec	1			10/01/24 1808	BDF
Surrogate: 4-Bromofluorobenzene	102	Limit: 80-116	% Rec	1			10/01/24 1808	BDF
Surrogate: 4-Bromofluorobenzene	102	Limit: 78-121	% Rec	1			10/01/24 1808	BDF
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/07/24 1138	RVV
Arsenic, total	0.0090	0.0040	mg/L	4		10/02/24 1601	10/07/24 1138	RVV
Barium, total	0.321	0.0040	mg/L	4		10/02/24 1601	10/07/24 1138	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/07/24 1138	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		10/02/24 1601	10/07/24 1138	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/02/24 1601	10/07/24 1138	RVV
Cobalt, total	0.0101	0.0004	mg/L	4		10/02/24 1601	10/07/24 1138	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/07/24 1138	RVV
Lead, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/07/24 1138	RVV
Nickel, total	0.0166	0.0040	mg/L	4		10/02/24 1601	10/07/24 1138	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/07/24 1138	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/07/24 1138	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/07/24 1138	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/07/24 1138	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/07/24 1138	RVV

CERTIFICATE OF ANALYSIS

1HI1877

Client Sample ID:MW-10Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HI1877-04Collection Date:09/25/2024 18:20

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Dichlorodifluoromethane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Chloromethane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Bromomethane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Chloroethane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Acrolein	<10.0	10.0	ug/L	1			10/01/24 1830	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Acetone	<10.0	10.0	ug/L	1			10/01/24 1830	BDF
Methyl lodide	<2.0	2.0	ug/L	1			10/01/24 1830	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Acetonitrile	<10.0	10.0	ug/L	1			10/01/24 1830	BDF
Methylene Chloride	<5.0	5.0	ug/L	1			10/01/24 1830	BDF
Acrylonitrile	<5.0	5.0	ug/L	1			10/01/24 1830	BDF
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1			10/01/24 1830	BDF
2,2-Dichloropropane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
2-Butanone (MEK)	<5.0	5.0	ug/L	1			10/01/24 1830	BDF
Bromochloromethane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Chloroform	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
1,1-Dichloropropene	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Benzene	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Trichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Dibromomethane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1			10/01/24 1830	BDF
Toluene	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Ethyl Methacrylate	<10.0	10.0	ug/L	1			10/01/24 1830	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
1,3-Dichloropropane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
2-Hexanone (MBK)	<5.0	5.0	ug/L	1			10/01/24 1830	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF

1HI1877

Client Sample ID: MW-10 Sample Matrix: Aqueous Lab Sample ID: 1HI1877-04

Collected By: **Collection Date:** Whipple, Todd 09/25/2024 18:20

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
Chlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Ethylbenzene	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Xylenes, total	<2.0	2.0	ug/L	1			10/01/24 1830	BDF
Styrene	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Bromoform	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1			10/01/24 1830	BDF
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
1,3-Dichlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
1,2-Dibromo-3-chloropropane	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
1,2,4-Trichlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1830	BDF
Allyl chloride	<1.0	1.0	ug/L	1		10/09/24 0000	10/09/24 1631	BDF
Chloroprene	<1.0	1.0	ug/L	1		10/09/24 0000	10/09/24 1631	BDF
Methacrylonitrile	<1.0	1.0	ug/L	1		10/09/24 0000	10/09/24 1631	BDF
Methyl Methacrylate	<1.0	1.0	ug/L	1		10/09/24 0000	10/09/24 1631	BDF
Propionitrile	<10.0	10.0	ug/L	1		10/09/24 0000	10/09/24 1631	BDF
Surrogate: Dibromofluoromethane	103	Limit: 57-134	% Rec	1		10/09/24 0000	10/09/24 1631	BDF
Surrogate: Dibromofluoromethane	95.7	Limit: 57-134	% Rec	1		10/09/24 0000	10/03/24 1031	BDF
Surrogate: 1,2-Dichloroethane-d4	102	Limit: 57-140	% Rec	1			10/01/24 1830	BDF
Surrogate: 1,2-Dichloroethane-d4	102	Limit: 53-140	% Rec	1			10/01/24 1830	BDF
Surrogate: 1,2-Dichloroethane-d4	103	Limit: 53-140	% Rec	1		10/09/24 0000	10/09/24 1631	BDF
Surrogate: Toluene-d8	99.8	Limit: 86-114	% Rec	1			10/01/24 1830	BDF
Surrogate: Toluene-d8	99.8	Limit: 86-114	% Rec	1			10/01/24 1830	BDF
Surrogate: Toluene-d8	96.4	Limit: 86-114	% Rec	1		10/09/24 0000	10/09/24 1631	BDF
Surrogate: 4-Bromofluorobenzene	101	Limit: 78-121	% Rec	1			10/01/24 1830	BDF
Surrogate: 4-Bromofluorobenzene	101	Limit: 78-121	% Rec	1			10/01/24 1830	BDF
Surrogate: 4-Bromofluorobenzene	97.6	Limit: 78-121	% Rec	1		10/09/24 0000	10/09/24 1631	BDF
Determination of General Solvents	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 8015C								
Isobutanol	<1.0	1.0	mg/L	1		10/08/24 0846	10/09/24 2120	PDS
Determination of Conventional Chemistry Parameters	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 376.2								
Sulfide, total	<0.10	0.10	mg/L	1		10/02/24 0829	10/02/24 1519	AKK
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/07/24 1144	RVV
Arsenic, total	0.0052	0.0040	mg/L	4		10/02/24 1601	10/07/24 1144	RVV
	Microbac	Laborator	_	Nove	ton			

1HI1877

Client Sample ID:MW-10Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HI1877-04Collection Date:09/25/2024 18:20

Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Barium, total	0.575	0.0040	mg/L	4		10/02/24 1601	10/07/24 1144	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/07/24 1144	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		10/02/24 1601	10/07/24 1144	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/02/24 1601	10/07/24 1144	RVV
Cobalt, total	0.0024	0.0004	mg/L	4		10/02/24 1601	10/07/24 1144	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/07/24 1144	RVV
Lead, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/07/24 1144	RVV
Nickel, total	0.0117	0.0040	mg/L	4		10/02/24 1601	10/07/24 1144	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/07/24 1144	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/07/24 1144	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/07/24 1144	RVV
Tin, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/07/24 1144	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/07/24 1144	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/07/24 1144	RVV
EPA 7470A								
Mercury, total	<0.00050	0.00050	mg/L	1		10/03/24 0808	10/04/24 1619	JAR

CERTIFICATE OF ANALYSIS

1HI1877

Client Sample ID:MW-13Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HI1877-05Collection Date:09/25/2024 15:15

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
Bromomethane	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
Chloroethane	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
Acetone	<10.0	10.0	ug/L	1			10/01/24 1853	BDF
Methyl Iodide	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
Methylene Chloride	<5.0	5.0	ug/L	1			10/01/24 1853	BDF
Acrylonitrile	<5.0	5.0	ug/L	1			10/01/24 1853	BDF
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1			10/01/24 1853	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1			10/01/24 1853	BDF
Bromochloromethane	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
Chloroform	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
Benzene	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
Trichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
Dibromomethane	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1			10/01/24 1853	BDF
Toluene	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
2-Hexanone (MBK)	<5.0	5.0	ug/L	1			10/01/24 1853	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
Chlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
Ethylbenzene	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
Xylenes, total	<2.0	2.0	ug/L	1			10/01/24 1853	BDF
Styrene	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
Bromoform	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1			10/01/24 1853	BDF

CERTIFICATE OF ANALYSIS

1HI1877

Client Sample ID:MW-13Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1H1877-05Collection Date:09/25/2024 15:15

Lab Sample ID: 1HI1877-05					Collection	Date: 09/25/	/2024 15:15	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1			10/01/24 1853	BDF
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1853	BDF
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1			10/01/24 1853	BDF
Surrogate: Dibromofluoromethane	95.5	Limit: 57-134	% Rec	1			10/01/24 1853	BDF
Surrogate: Dibromofluoromethane	95.5	Limit: 75-136	% Rec	1			10/01/24 1853	BDF
Surrogate: 1,2-Dichloroethane-d4	108	Limit: 53-140	% Rec	1			10/01/24 1853	BDF
Surrogate: 1,2-Dichloroethane-d4	108	Limit: 61-142	% Rec	1			10/01/24 1853	BDF
Surrogate: Toluene-d8	90.0	Limit: 86-114	% Rec	1			10/01/24 1853	BDF
Surrogate: Toluene-d8	90.0	Limit: 82-121	% Rec	1			10/01/24 1853	BDF
Surrogate: 4-Bromofluorobenzene	92.7	Limit: 78-121	% Rec	1			10/01/24 1853	BDF
Surrogate: 4-Bromofluorobenzene	92.7	Limit: 80-116	% Rec	1			10/01/24 1853	BDF
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/03/24 1810	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1810	RVV
Barium, total	0.0664	0.0040	mg/L	4		10/02/24 1601	10/03/24 1810	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1810	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		10/02/24 1601	10/03/24 1810	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/02/24 1601	10/03/24 1810	RVV
Cobalt, total	<0.0004	0.0004	mg/L	4		10/02/24 1601	10/03/24 1810	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1810	RVV
Lead, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1810	RVV
Nickel, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1810	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1810	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1810	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/03/24 1810	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/03/24 1810	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/03/24 1810	RVV

CERTIFICATE OF ANALYSIS

1HI1877

Client Sample ID:MW-14Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HI1877-06Collection Date:09/25/2024 15:30

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
Bromomethane	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
Chloroethane	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
Acetone	<10.0	10.0	ug/L	1			10/01/24 1915	BDF
Methyl Iodide	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
Methylene Chloride	<5.0	5.0	ug/L	1			10/01/24 1915	BDF
Acrylonitrile	<5.0	5.0	ug/L	1			10/01/24 1915	BDF
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1			10/01/24 1915	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1			10/01/24 1915	BDF
Bromochloromethane	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
Chloroform	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
Benzene	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
Trichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
Dibromomethane	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1			10/01/24 1915	BDF
Toluene	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
2-Hexanone (MBK)	<5.0	5.0	ug/L	1			10/01/24 1915	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
Chlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
Ethylbenzene	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
Xylenes, total	<2.0	2.0	ug/L	1			10/01/24 1915	BDF
Styrene	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
Bromoform	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1			10/01/24 1915	BDF

1HI1877

Client Sample ID:MW-14Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HI1877-06Collection Date:09/25/2024 15:3

Lab Sample ID: 1HI1877-06					Collection	Date: 09/25/	09/25/2024 15:30	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1			10/01/24 1915	BDF
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1915	BDF
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1			10/01/24 1915	BDF
Surrogate: Dibromofluoromethane	95.7	Limit: 57-134	% Rec	1			10/01/24 1915	BDF
Surrogate: Dibromofluoromethane	95.7	Limit: 75-136	% Rec	1			10/01/24 1915	BDF
Surrogate: 1,2-Dichloroethane-d4	103	Limit: 53-140	% Rec	1			10/01/24 1915	BDF
Surrogate: 1,2-Dichloroethane-d4	103	Limit: 61-142	% Rec	1			10/01/24 1915	BDF
Surrogate: Toluene-d8	98.5	Limit: 82-121	% Rec	1			10/01/24 1915	BDF
Surrogate: Toluene-d8	98.5	Limit: 86-114	% Rec	1			10/01/24 1915	BDF
Surrogate: 4-Bromofluorobenzene	101	Limit: 78-121	% Rec	1			10/01/24 1915	BDF
Surrogate: 4-Bromofluorobenzene	101	Limit: 80-116	% Rec	1			10/01/24 1915	BDF
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/03/24 1816	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1816	RVV
Barium, total	0.112	0.0040	mg/L	4		10/02/24 1601	10/03/24 1816	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1816	RVV
Cadmium, total	0.0035	0.0008	mg/L	4		10/02/24 1601	10/03/24 1816	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/02/24 1601	10/03/24 1816	RVV
Cobalt, total	0.0004	0.0004	mg/L	4		10/02/24 1601	10/03/24 1816	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1816	RVV
Lead, total	< 0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1816	RVV
Nickel, total	0.0041	0.0040	mg/L	4		10/02/24 1601	10/03/24 1816	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1816	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1816	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/03/24 1816	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/03/24 1816	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/03/24 1816	RVV

CERTIFICATE OF ANALYSIS

1HI1877

Client Sample ID:MW-16Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HI1877-07Collection Date:09/25/2024 15:53

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
Bromomethane	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
Chloroethane	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
Acetone	<10.0	10.0	ug/L	1			10/01/24 1938	BDF
Methyl lodide	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
Methylene Chloride	<5.0	5.0	ug/L	1			10/01/24 1938	BDF
Acrylonitrile	<5.0	5.0	ug/L	1			10/01/24 1938	BDF
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1			10/01/24 1938	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1			10/01/24 1938	BDF
Bromochloromethane	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
Chloroform	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
Benzene	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
Trichloroethylene	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
Dibromomethane	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1			10/01/24 1938	BDF
Toluene	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
2-Hexanone (MBK)	<5.0	5.0	ug/L	1			10/01/24 1938	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
Chlorobenzene	2.3	1.0	ug/L	1			10/01/24 1938	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
Ethylbenzene	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
Xylenes, total	<2.0	2.0	ug/L	1			10/01/24 1938	BDF
Styrene	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
Bromoform	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1			10/01/24 1938	BDF

1HI1877

Client Sample ID:MW-16Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1H1877-07Collection Date:09/25/2024 15:53

Lab Sample ID: 1HI1877-07					Collection	Date: 09/25/	2024 15:53	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1			10/01/24 1938	BDF
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1			10/01/24 1938	BDF
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1			10/01/24 1938	BDF
Surrogate: Dibromofluoromethane	94.2	Limit: 75-136	% Rec	1			10/01/24 1938	BDF
Surrogate: Dibromofluoromethane	94.2	Limit: 57-134	% Rec	1			10/01/24 1938	BDF
Surrogate: 1,2-Dichloroethane-d4	102	Limit: 61-142	% Rec	1			10/01/24 1938	BDF
Surrogate: 1,2-Dichloroethane-d4	102	Limit: 53-140	% Rec	1			10/01/24 1938	BDF
Surrogate: Toluene-d8	98.9	Limit: 82-121	% Rec	1			10/01/24 1938	BDF
Surrogate: Toluene-d8	98.9	Limit: 86-114	% Rec	1			10/01/24 1938	BDF
Surrogate: 4-Bromofluorobenzene	90.4	Limit: 80-116	% Rec	1			10/01/24 1938	BDF
Surrogate: 4-Bromofluorobenzene	90.4	Limit: 78-121	% Rec	1			10/01/24 1938	BDF
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/03/24 1822	RVV
Arsenic, total	0.0262	0.0040	mg/L	4		10/02/24 1601	10/03/24 1822	RVV
Barium, total	0.756	0.0040	mg/L	4		10/02/24 1601	10/03/24 1822	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1822	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		10/02/24 1601	10/03/24 1822	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/02/24 1601	10/03/24 1822	RVV
Cobalt, total	0.0017	0.0004	mg/L	4		10/02/24 1601	10/03/24 1822	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1822	RVV
Lead, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1822	RVV
Nickel, total	0.0360	0.0040	mg/L	4		10/02/24 1601	10/03/24 1822	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1822	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1822	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/03/24 1822	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/03/24 1822	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/03/24 1822	RVV
:			9					

CERTIFICATE OF ANALYSIS

1HI1877

Client Sample ID:MW-17 (b)Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HI1877-08Collection Date:09/25/2024 16:57

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
Bromomethane	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
Chloroethane	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
Acetone	<10.0	10.0	ug/L	1			10/01/24 2000	BDF
Methyl Iodide	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
Methylene Chloride	<5.0	5.0	ug/L	1			10/01/24 2000	BDF
Acrylonitrile	<5.0	5.0	ug/L	1			10/01/24 2000	BDF
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1			10/01/24 2000	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1			10/01/24 2000	BDF
Bromochloromethane	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
Chloroform	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
Benzene	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
Trichloroethylene	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
Dibromomethane	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1			10/01/24 2000	BDF
Toluene	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
2-Hexanone (MBK)	<5.0	5.0	ug/L	1			10/01/24 2000	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
Chlorobenzene	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
Ethylbenzene	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
Xylenes, total	<2.0	2.0	ug/L	1			10/01/24 2000	BDF
Styrene	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
Bromoform	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1			10/01/24 2000	BDF

1HI1877

Client Sample ID:MW-17 (b)Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1H1877-08Collection Date:09/25/2024 16:57

Lab Sample ID: 1HI1877-08					Collection	Date: 09/25/	2024 16:57	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1			10/01/24 2000	BDF
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1			10/01/24 2000	BDF
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1			10/01/24 2000	BDF
Surrogate: Dibromofluoromethane	95.7	Limit: 57-134	% Rec	1			10/01/24 2000	BDF
Surrogate: Dibromofluoromethane	95.7	Limit: 75-136	% Rec	1			10/01/24 2000	BDF
Surrogate: 1,2-Dichloroethane-d4	102	Limit: 61-142	% Rec	1			10/01/24 2000	BDF
Surrogate: 1,2-Dichloroethane-d4	102	Limit: 53-140	% Rec	1			10/01/24 2000	BDF
Surrogate: Toluene-d8	100	Limit: 86-114	% Rec	1			10/01/24 2000	BDF
Surrogate: Toluene-d8	100	Limit: 82-121	% Rec	1			10/01/24 2000	BDF
Surrogate: 4-Bromofluorobenzene	102	Limit: 78-121	% Rec	1			10/01/24 2000	BDF
Surrogate: 4-Bromofluorobenzene	102	Limit: 80-116	% Rec	1			10/01/24 2000	BDF
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/03/24 1829	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1829	RVV
Barium, total	0.0901	0.0040	mg/L	4		10/02/24 1601	10/03/24 1829	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1829	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		10/02/24 1601	10/03/24 1829	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/02/24 1601	10/03/24 1829	RVV
Cobalt, total	<0.0004	0.0004	mg/L	4		10/02/24 1601	10/03/24 1829	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1829	RVV
Lead, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1829	RVV
Nickel, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1829	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1829	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1829	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/03/24 1829	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/03/24 1829	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/03/24 1829	RVV
	0.0200	3.3200	≘, =	•		. 5, 52, 21 1001	.0,00,21 1020	

CERTIFICATE OF ANALYSIS

1HI1877

Client Sample ID:MW-18Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HI1877-09Collection Date:09/25/2024 16:30

Determination of Volatile Organic	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
Compounds EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
Bromomethane	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
Chloroethane	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
Acetone	<10.0	10.0	ug/L	1			10/03/24 2036	BDF
Methyl Iodide	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
Methylene Chloride	<5.0	5.0	ug/L	1			10/03/24 2036	BDF
Acrylonitrile	<5.0	5.0	ug/L	1		10/02/24 0000	10/02/24 1427	BDF
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1			10/03/24 2036	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1			10/03/24 2036	BDF
Bromochloromethane	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
Chloroform	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
Benzene	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
Trichloroethylene	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
Dibromomethane	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1			10/03/24 2036	BDF
Toluene	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
2-Hexanone (MBK)	<5.0	5.0	ug/L	1			10/03/24 2036	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
Chlorobenzene	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
Ethylbenzene	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
Xylenes, total	<2.0	2.0	ug/L	1			10/03/24 2036	BDF
Styrene	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
Bromoform	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1			10/03/24 2036	BDF

1HI1877

Client Sample ID:MW-18Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HI1877-09Collection Date:09/25/2024 16:3

Lab Sample ID: 1HI1877-09					Collection	Date: 09/25/	2024 16:30	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1			10/03/24 2036	BDF
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1			10/03/24 2036	BDF
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1			10/03/24 2036	BDF
Surrogate: Dibromofluoromethane	93.8	Limit: 57-134	% Rec	1		10/02/24 0000	10/02/24 1427	BDF
Surrogate: Dibromofluoromethane	94.1	Limit: 75-136	% Rec	1			10/03/24 2036	BDF
Surrogate: 1,2-Dichloroethane-d4	99.4	Limit: 53-140	% Rec	1		10/02/24 0000	10/02/24 1427	BDF
Surrogate: 1,2-Dichloroethane-d4	93.3	Limit: 61-142	% Rec	1			10/03/24 2036	BDF
Surrogate: Toluene-d8	99.1	Limit: 86-114	% Rec	1		10/02/24 0000	10/02/24 1427	BDF
Surrogate: Toluene-d8	96.9	Limit: 82-121	% Rec	1			10/03/24 2036	BDF
Surrogate: 4-Bromofluorobenzene	102	Limit: 78-121	% Rec	1		10/02/24 0000	10/02/24 1427	BDF
Surrogate: 4-Bromofluorobenzene	96.9	Limit: 80-116	% Rec	1			10/03/24 2036	BDF
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/07/24 1150	RVV
Arsenic, total	0.0436	0.0040	mg/L	4		10/02/24 1601	10/07/24 1150	RVV
Barium, total	0.416	0.0040	mg/L	4		10/02/24 1601	10/07/24 1150	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/07/24 1150	RVV
Cadmium, total	0.0009	0.0008	mg/L	4		10/02/24 1601	10/07/24 1150	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/02/24 1601	10/07/24 1150	RVV
Cobalt, total	0.0010	0.0004	mg/L	4		10/02/24 1601	10/07/24 1150	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/07/24 1150	RVV
Lead, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/07/24 1150	RVV
Nickel, total	0.0054	0.0040	mg/L	4		10/02/24 1601	10/07/24 1150	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/07/24 1150	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/07/24 1150	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/07/24 1150	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/07/24 1150	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/07/24 1150	RVV
	3.0200	0.0200	9/ =	•		.0/02/21 1001	.5/01/21 1100	

1HI1877

Client Sample ID:MW-20Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1H1877-10Collection Date:09/25/2024 14:45

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
Bromomethane	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
Chloroethane	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
Acetone	<10.0	10.0	ug/L	1			10/03/24 2059	BDF
Methyl lodide	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
Methylene Chloride	<5.0	5.0	ug/L	1			10/03/24 2059	BDF
Acrylonitrile	<5.0	5.0	ug/L	1		10/02/24 0000	10/02/24 1449	BDF
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1			10/03/24 2059	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1			10/03/24 2059	BDF
Bromochloromethane	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
Chloroform	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
Benzene	2.1	1.0	ug/L	1			10/03/24 2059	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
Trichloroethylene	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
Dibromomethane	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1			10/03/24 2059	BDF
Toluene	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
2-Hexanone (MBK)	<5.0	5.0	ug/L	1			10/03/24 2059	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
Chlorobenzene	1.9	1.0	ug/L	1			10/03/24 2059	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
Ethylbenzene	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
Xylenes, total	<2.0	2.0	ug/L	1			10/03/24 2059	BDF
Styrene	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
Bromoform	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1			10/03/24 2059	BDF

1HI1877

Client Sample ID:MW-20Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HI1877-10Collection Date:09/25/2024 14:4

Lab Sample ID: 1HI1877-10					Collection	Date: 09/25/	2024 14:45	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1			10/03/24 2059	BDF
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1			10/03/24 2059	BDF
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1			10/03/24 2059	BDF
Surrogate: Dibromofluoromethane	94.4	Limit: 75-136	% Rec	1			10/03/24 2059	BDF
Surrogate: Dibromofluoromethane	94.0	Limit: 57-134	% Rec	1		10/02/24 0000	10/02/24 1449	BDF
Surrogate: 1,2-Dichloroethane-d4	100	Limit: 53-140	% Rec	1		10/02/24 0000	10/02/24 1449	BDF
Surrogate: 1,2-Dichloroethane-d4	92.2	Limit: 61-142	% Rec	1			10/03/24 2059	BDF
Surrogate: Toluene-d8	97.4	Limit: 82-121	% Rec	1			10/03/24 2059	BDF
Surrogate: Toluene-d8	108	Limit: 86-114	% Rec	1		10/02/24 0000	10/02/24 1449	BDF
Surrogate: 4-Bromofluorobenzene	104	Limit: 78-121	% Rec	1		10/02/24 0000	10/02/24 1449	BDF
Surrogate: 4-Bromofluorobenzene	97.6	Limit: 80-116	% Rec	1			10/03/24 2059	BDF
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/03/24 1841	RVV
Arsenic, total	0.0441	0.0040	mg/L	4		10/02/24 1601	10/03/24 1841	RVV
Barium, total	1.95	0.0040	mg/L	4		10/02/24 1601	10/03/24 1841	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1841	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		10/02/24 1601	10/03/24 1841	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/02/24 1601	10/03/24 1841	RVV
Cobalt, total	0.0064	0.0004	mg/L	4		10/02/24 1601	10/03/24 1841	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1841	RVV
Lead, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1841	RVV
Nickel, total	0.0180	0.0040	mg/L	4		10/02/24 1601	10/03/24 1841	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1841	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1841	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/03/24 1841	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/03/24 1841	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/03/24 1841	RVV
	0.0200	0.0200	9/ =	•		.0/02/21 1001	.5/55/21 1041	1

1HI1877

Client Sample ID:DuplicateSample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HI877-11Collection Date:09/25/2024

Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/03/24 1847	RVV
Arsenic, total	0.0261	0.0040	mg/L	4		10/02/24 1601	10/03/24 1847	RVV
Barium, total	0.730	0.0040	mg/L	4		10/02/24 1601	10/03/24 1847	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1847	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		10/02/24 1601	10/03/24 1847	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/02/24 1601	10/03/24 1847	RVV
Cobalt, total	0.0017	0.0004	mg/L	4		10/02/24 1601	10/03/24 1847	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1847	RVV
Lead, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1847	RVV
Nickel, total	0.0335	0.0040	mg/L	4		10/02/24 1601	10/03/24 1847	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1847	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1847	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/03/24 1847	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/03/24 1847	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/03/24 1847	RVV

CERTIFICATE OF ANALYSIS

1HI1877

Client Sample ID:MW-53Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HI1877-12Collection Date:09/25/2024 17:30

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
Bromomethane	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
Chloroethane	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
Acetone	<10.0	10.0	ug/L	1			10/03/24 2121	BDF
Methyl Iodide	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
Methylene Chloride	<5.0	5.0	ug/L	1			10/03/24 2121	BDF
Acrylonitrile	<5.0	5.0	ug/L	1		10/02/24 0000	10/02/24 1512	BDF
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1			10/03/24 2121	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1			10/03/24 2121	BDF
Bromochloromethane	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
Chloroform	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
Benzene	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
Trichloroethylene	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
Dibromomethane	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1			10/03/24 2121	BDF
Toluene	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
2-Hexanone (MBK)	<5.0	5.0	ug/L	1			10/03/24 2121	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
Chlorobenzene	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
Ethylbenzene	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
Xylenes, total	<2.0	2.0	ug/L	1			10/03/24 2121	BDF
Styrene	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
Bromoform	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1			10/03/24 2121	BDF

1HI1877

Client Sample ID:MW-53Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HI1877-12Collection Date:09/25/2024 17:3

Lab Sample ID: 1HI1877-12					Collection	Date: 09/25/	2024 17:30	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1			10/03/24 2121	BDF
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1			10/03/24 2121	BDF
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1			10/03/24 2121	BDF
Surrogate: Dibromofluoromethane	95.3	Limit: 57-134	% Rec	1		10/02/24 0000	10/02/24 1512	BDF
Surrogate: Dibromofluoromethane	94.9	Limit: 75-136	% Rec	1			10/03/24 2121	BDF
Surrogate: 1,2-Dichloroethane-d4	93.5	Limit: 61-142	% Rec	1			10/03/24 2121	BDF
Surrogate: 1,2-Dichloroethane-d4	103	Limit: 53-140	% Rec	1		10/02/24 0000	10/02/24 1512	BDF
Surrogate: Toluene-d8	100	Limit: 86-114	% Rec	1		10/02/24 0000	10/02/24 1512	BDF
Surrogate: Toluene-d8	97.3	Limit: 82-121	% Rec	1			10/03/24 2121	BDF
Surrogate: 4-Bromofluorobenzene	90.4	Limit: 78-121	% Rec	1		10/02/24 0000	10/02/24 1512	BDF
Surrogate: 4-Bromofluorobenzene	97.4	Limit: 80-116	% Rec	1			10/03/24 2121	BDF
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/03/24 1853	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1853	RVV
Barium, total	0.0589	0.0040	mg/L	4		10/02/24 1601	10/03/24 1853	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1853	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		10/02/24 1601	10/03/24 1853	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/02/24 1601	10/03/24 1853	RVV
Cobalt, total	<0.0004	0.0004	mg/L	4		10/02/24 1601	10/03/24 1853	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1853	RVV
Lead, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1853	RVV
Nickel, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1853	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1853	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1853	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/03/24 1853	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/03/24 1853	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/03/24 1853	RVV

1HI1877

Client Sample ID:GV-3Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HI1877-13Collection Date:09/25/2024 18:06

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
Bromomethane	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
Chloroethane	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
Acetone	<10.0	10.0	ug/L	1			10/03/24 2144	BDF
Methyl Iodide	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
Methylene Chloride	<5.0	5.0	ug/L	1			10/03/24 2144	BDF
Acrylonitrile	<5.0	5.0	ug/L	1		10/02/24 0000	10/02/24 1534	BDF
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1			10/03/24 2144	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1			10/03/24 2144	BDF
Bromochloromethane	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
Chloroform	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
Benzene	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
Trichloroethylene	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
Dibromomethane	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1			10/03/24 2144	BDF
Toluene	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
2-Hexanone (MBK)	<5.0	5.0	ug/L	1			10/03/24 2144	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
Chlorobenzene	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
Ethylbenzene	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
Xylenes, total	<2.0	2.0	ug/L	1			10/03/24 2144	BDF
Styrene	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
Bromoform	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1			10/03/24 2144	BDF

1HI1877

Client Sample ID:GV-3Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1H1877-13Collection Date:09/25/2024 18:00

Lab Sample ID: 1HI1877-13					Collection	Date: 09/25/	2024 18:06	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1			10/03/24 2144	BDF
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1			10/03/24 2144	BDF
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1			10/03/24 2144	BDF
Surrogate: Dibromofluoromethane	95.9	Limit: 75-136	% Rec	1			10/03/24 2144	BDF
Surrogate: Dibromofluoromethane	95.9	Limit: 57-134	% Rec	1		10/02/24 0000	10/02/24 1534	BDF
Surrogate: 1,2-Dichloroethane-d4	102	Limit: 53-140	% Rec	1		10/02/24 0000	10/02/24 1534	BDF
Surrogate: 1,2-Dichloroethane-d4	94.1	Limit: 61-142	% Rec	1			10/03/24 2144	BDF
Surrogate: Toluene-d8	97.6	Limit: 82-121	% Rec	1			10/03/24 2144	BDF
Surrogate: Toluene-d8	98.4	Limit: 86-114	% Rec	1		10/02/24 0000	10/02/24 1534	BDF
Surrogate: 4-Bromofluorobenzene	104	Limit: 78-121	% Rec	1		10/02/24 0000	10/02/24 1534	BDF
Surrogate: 4-Bromofluorobenzene	97.2	Limit: 80-116	% Rec	1			10/03/24 2144	BDF
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/03/24 1911	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1911	RVV
Barium, total	0.242	0.0040	mg/L	4		10/02/24 1601	10/03/24 1911	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1911	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		10/02/24 1601	10/03/24 1911	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/02/24 1601	10/03/24 1911	RVV
Cobalt, total	<0.0004	0.0004	mg/L	4		10/02/24 1601	10/03/24 1911	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1911	RVV
Lead, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1911	RVV
Nickel, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1911	RVV
Selenium, total	0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1911	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1911	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/03/24 1911	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/03/24 1911	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/03/24 1911	RVV

CERTIFICATE OF ANALYSIS

1HI1877

Client Sample ID:GV-4Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1HI1877-14Collection Date:09/25/2024 17:59

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 5030B/EPA 8260B								
Chloromethane	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
Vinyl Chloride	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
Bromomethane	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
Chloroethane	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
Trichlorofluoromethane	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
1,1-Dichloroethylene	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
Acetone	<10.0	10.0	ug/L	1			10/03/24 2207	BDF
Methyl lodide	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
Carbon Disulfide	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
Methylene Chloride	<5.0	5.0	ug/L	1			10/03/24 2207	BDF
Acrylonitrile	<5.0	5.0	ug/L	1		10/02/24 0000	10/02/24 1557	BDF
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
1,1-Dichloroethane	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
Vinyl Acetate	<5.0	5.0	ug/L	1			10/03/24 2207	BDF
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
2-Butanone (MEK)	<10.0	10.0	ug/L	1			10/03/24 2207	BDF
Bromochloromethane	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
Chloroform	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
Carbon Tetrachloride	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
Benzene	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
1,2-Dichloroethane	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
Trichloroethylene	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
1,2-Dichloropropane	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
Dibromomethane	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
Bromodichloromethane	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1			10/03/24 2207	BDF
Toluene	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
Tetrachloroethylene	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
2-Hexanone (MBK)	<5.0	5.0	ug/L	1			10/03/24 2207	BDF
Dibromochloromethane	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
1,2-Dibromoethane	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
Chlorobenzene	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
Ethylbenzene	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
Xylenes, total	<2.0	2.0	ug/L	1			10/03/24 2207	BDF
Styrene	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
Bromoform	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1			10/03/24 2207	BDF

1HI1877

Client Sample ID:GV-4Sample Matrix:AqueousCollected By:Whipple, ToddLab Sample ID:1H1877-14Collection Date:09/25/2024 17:50

Lab Sample ID: 1HI1877-14					Collection	Date: 09/25/	2024 17:59	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1			10/03/24 2207	BDF
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1			10/03/24 2207	BDF
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1			10/03/24 2207	BDF
Surrogate: Dibromofluoromethane	95.1	Limit: 75-136	% Rec	1			10/03/24 2207	BDF
Surrogate: Dibromofluoromethane	96.5	Limit: 57-134	% Rec	1		10/02/24 0000	10/02/24 1557	BDF
Surrogate: 1,2-Dichloroethane-d4	94.4	Limit: 61-142	% Rec	1			10/03/24 2207	BDF
Surrogate: 1,2-Dichloroethane-d4	104	Limit: 53-140	% Rec	1		10/02/24 0000	10/02/24 1557	BDF
Surrogate: Toluene-d8	100	Limit: 86-114	% Rec	1		10/02/24 0000	10/02/24 1557	BDF
Surrogate: Toluene-d8	97.5	Limit: 82-121	% Rec	1			10/03/24 2207	BDF
Surrogate: 4-Bromofluorobenzene	97.3	Limit: 80-116	% Rec	1			10/03/24 2207	BDF
Surrogate: 4-Bromofluorobenzene	102	Limit: 78-121	% Rec	1		10/02/24 0000	10/02/24 1557	BDF
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/03/24 1918	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1918	RVV
Barium, total	0.289	0.0040	mg/L	4		10/02/24 1601	10/03/24 1918	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1918	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		10/02/24 1601	10/03/24 1918	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		10/02/24 1601	10/03/24 1918	RVV
Cobalt, total	<0.0004	0.0004	mg/L	4		10/02/24 1601	10/03/24 1918	RVV
Copper, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1918	RVV
Lead, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1918	RVV
Nickel, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1918	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1918	RVV
Silver, total	<0.0040	0.0040	mg/L	4		10/02/24 1601	10/03/24 1918	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		10/02/24 1601	10/03/24 1918	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		10/02/24 1601	10/03/24 1918	RVV
Zinc, total	0.106	0.0200	mg/L	4		10/02/24 1601	10/03/24 1918	RVV

Batch Log Summary

lethod	Batch	Laboratory ID	Client / Source ID
EPA 376.2	1HJ0090	1HJ0090-MSD1	1HI1952-01
		1HJ0090-BLK1	
		1HI1877-04	MW-10
		1HJ0090-MS1	1HI1952-01
		1HJ0090-BS1	
Method	Batch	Laboratory ID	Client / Source ID
EPA 8260B	1HJ0118	1HJ0118-BS1	
		1HJ0118-BLK1	
		1HI1877-01	MW-1D
		1HI1877-02	MW-3
		1HI1877-03	MW-7
		1HI1877-04	MW-10
		1HI1877-05	MW-13
		1HI1877-06	MW-14
		1HI1877-07	MW-16
		1HI1877-08	MW-17 (b)
		1HJ0118-MS1	1HI1863-09
		1HJ0118-MSD1	1HI1863-09
Method	Batch	Laboratory ID	Client / Source ID
EPA 6020A	1HJ0171	1HJ0171-BLK1	
		1HJ0171-BS1	
		1HJ0171-MS1	1HI1877-01
		1HJ0171-MSD1	1HI1877-01
		1HJ0171-PS1	1HI1877-01
		1HI1877-02	MW-3
		1HI1877-02 1HI1877-05	
			MW-3
		1HI1877-05	MW-13
		1HI1877-05 1HI1877-06	MW-3 MW-13 MW-14
		1HI1877-05 1HI1877-06 1HI1877-07	MW-13 MW-14 MW-16
		1HI1877-05 1HI1877-06 1HI1877-07 1HI1877-08	MW-3 MW-13 MW-14 MW-16 MW-17 (b)
		1HI1877-05 1HI1877-06 1HI1877-07 1HI1877-08 1HI1877-10	MW-3 MW-13 MW-14 MW-16 MW-17 (b) MW-20
		1HI1877-05 1HI1877-06 1HI1877-07 1HI1877-08 1HI1877-10 1HI1877-11	MW-3 MW-13 MW-14 MW-16 MW-17 (b) MW-20 Duplicate
		1HI1877-05 1HI1877-06 1HI1877-07 1HI1877-08 1HI1877-10 1HI1877-11	MW-3 MW-13 MW-14 MW-16 MW-17 (b) MW-20 Duplicate MW-53
		1HI1877-05 1HI1877-06 1HI1877-07 1HI1877-08 1HI1877-10 1HI1877-11 1HI1877-12	MW-3 MW-13 MW-14 MW-16 MW-17 (b) MW-20 Duplicate MW-53 GV-3
		1HI1877-05 1HI1877-06 1HI1877-07 1HI1877-08 1HI1877-10 1HI1877-11 1HI1877-12 1HI1877-13 1HI1877-14	MW-3 MW-13 MW-14 MW-16 MW-17 (b) MW-20 Duplicate MW-53 GV-3 GV-4
		1HI1877-05 1HI1877-06 1HI1877-07 1HI1877-08 1HI1877-10 1HI1877-11 1HI1877-12 1HI1877-13 1HI1877-14 1HI1877-01	MW-3 MW-13 MW-14 MW-16 MW-17 (b) MW-20 Duplicate MW-53 GV-3 GV-4 MW-1D

CERTIFICATE OF ANALYSIS

1HI1877

Method	Batch	Laboratory ID	Client / Source ID	
EPA 8260B	1HJ0198	1HI1877-09	MW-18	
		1HI1877-10	MW-20	
		1HI1877-12	MW-53	
		1HI1877-13	GV-3	
		1HI1877-14	GV-4	
		1HJ0198-BS1		
		1HJ0198-BSD1		
		1HJ0198-BLK1		
Method	Batch	Laboratory ID	Client / Source ID	
EPA 7470A	1HJ0203	1HJ0203-BLK1		
		1HJ0203-BS1		
		1HJ0203-MS1	1HI1589-04RE1	
		1HJ0203-MSD1	1HI1589-04RE1	
		1HI1877-04	MW-10	
Method	Batch	Laboratory ID	Client / Source ID	
EPA 8260B	1HJ0341	1HJ0341-BS1		
		1HJ0341-BLK1		
		1HJ0341-MS1	1HJ0275-05	
		1HJ0341-MSD1	1HJ0275-05	
		1HI1877-09	MW-18	
		1HI1877-10	MW-20	
		1HI1877-12	MW-53	
		1HI1877-13	GV-3	
		1HI1877-14	GV-4	
Method	Batch	Laboratory ID	Client / Source ID	
EPA 8015C	1HJ0622	1HJ0622-BS1		
		1HJ0622-BLK1		
		1HI1877-04	MW-10	
		1HJ0622-MS1	1HI1877-04	
		1HJ0622-MSD1	1HI1877-04	
Method	Batch	Laboratory ID	Client / Source ID	
EPA 8260B	1HJ0745	1HJ0745-BS1		
		1HJ0745-BSD1		
		1HJ0745-BLK1		

Batch Quality Control Summary: Microbac Laboratories, Inc., Newton

CERTIFICATE OF ANALYSIS

1HI1877

Spike Source

%REC

RPD

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ0118 - EPA 5030B - EPA	A 8260B									
Blank (1HJ0118-BLK1)			Prepared & /	Analyzed: 1	0/01/24 09:5	0				
Dichlorodifluoromethane	<1.0	1.0	ug/L							
Chloromethane	<1.0	1.0	ug/L							
Chloromethane	<1.0	1.0	ug/L							
Vinyl Chloride	<1.0	1.0	ug/L							
Vinyl Chloride	<1.0	1.0	ug/L							
Bromomethane	<1.0	1.0	ug/L							
Bromomethane	<1.0	1.0	ug/L							
Chloroethane	<1.0	1.0	ug/L							
Chloroethane	<1.0	1.0	ug/L							
Trichlorofluoromethane	<1.0	1.0	ug/L							
Trichlorofluoromethane	<1.0	1.0	ug/L							
Acrolein	<10.0	10.0	ug/L							
1,1-Dichloroethylene	<1.0	1.0	ug/L							
1,1-Dichloroethylene	<1.0	1.0	ug/L							
Acetone	<10.0	10.0	ug/L							
Acetone	<10.0	10.0	ug/L							
Methyl Iodide	<2.0	2.0	ug/L							
Methyl lodide	<1.0	1.0	ug/L							
Carbon Disulfide	<1.0	1.0	ug/L							
Carbon Disulfide	<1.0	1.0	ug/L							
Acetonitrile	<10.0	10.0	ug/L							
Methylene Chloride	<5.0	5.0	ug/L							
Methylene Chloride	<5.0	5.0	ug/L							
Acrylonitrile	<5.0	5.0	ug/L							
Acrylonitrile	<5.0	5.0	ug/L							
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L							
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L							
1,1-Dichloroethane	<1.0	1.0	ug/L							
1,1-Dichloroethane	<1.0	1.0	ug/L							
Vinyl Acetate	<5.0	5.0	ug/L							
Vinyl Acetate	<5.0	5.0	ug/L							
2,2-Dichloropropane	<1.0	1.0	ug/L							
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L							
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L							
2-Butanone (MEK)	<5.0	5.0	ug/L							
2-Butanone (MEK)	<10.0	10.0	ug/L							
Bromochloromethane	<1.0	1.0	ug/L							
Bromochloromethane	<1.0	1.0	ug/L							
Chloroform	<1.0	1.0	ug/L							
Chloroform	<1.0	1.0	ug/L							
1,1,1-Trichloroethane	<1.0	1.0	ug/L							
1,1,1-Trichloroethane	<1.0	1.0	ug/L							
1,1-Dichloropropene	<1.0	1.0	ug/L							

CERTIFICATE OF ANALYSIS

1HI1877

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ0118 - EPA 5030B - EPA	A 8260B									
Blank (1HJ0118-BLK1)			Prepared &	Analyzed: 10	0/01/24 09:5	60				
Carbon Tetrachloride	<1.0	1.0	ug/L							
Carbon Tetrachloride	<1.0	1.0	ug/L							
Benzene	<1.0	1.0	ug/L							
Benzene	<1.0	1.0	ug/L							
1,2-Dichloroethane	<1.0	1.0	ug/L							
1,2-Dichloroethane	<1.0	1.0	ug/L							
Trichloroethylene	<1.0	1.0	ug/L							
Trichloroethylene	<1.0	1.0	ug/L							
1,2-Dichloropropane	<1.0	1.0	ug/L							
1,2-Dichloropropane	<1.0	1.0	ug/L							
Dibromomethane	<1.0	1.0	ug/L							
Dibromomethane	<1.0	1.0	ug/L							
Bromodichloromethane	<1.0	1.0	ug/L							
Bromodichloromethane	<1.0	1.0	ug/L							
cis-1,3-Dichloropropene	<1.0	1.0	ug/L							
cis-1,3-Dichloropropene	<1.0	1.0	ug/L							
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L							
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L ug/L							
Toluene	<1.0	1.0	ug/L							
Toluene	<1.0	1.0	ug/L							
trans-1,3-Dichloropropene	<1.0	1.0	ug/L ug/L							
trans-1,3-Dichloropropene	<1.0	1.0	ug/L ug/L							
Ethyl Methacrylate	<10.0	10.0	ug/L ug/L							
1,1,2-Trichloroethane	<1.0	1.0	ug/L ug/L							
	<1.0	1.0								
1,1,2-Trichloroethane Tetrachloroethylene	<1.0	1.0	ug/L ug/L							
Tetrachloroethylene	<1.0	1.0								
1,3-Dichloropropane	<1.0	1.0	ug/L							
2-Hexanone (MBK)	<5.0	5.0	ug/L							
	<5.0 <5.0		ug/L							
2-Hexanone (MBK)	<1.0	5.0	ug/L							
Dibromochloromethane	<1.0	1.0	ug/L							
Dibromochloromethane	<1.0	1.0	ug/L							
1,2-Dibromoethane	<1.0	1.0	ug/L							
1,2-Dibromoethane		1.0	ug/L							
Chlorobenzene	<1.0	1.0	ug/L							
Chlorobenzene	<1.0	1.0	ug/L							
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L							
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L							
Ethylbenzene	<1.0	1.0	ug/L							
Ethylbenzene	<1.0	1.0	ug/L							
Xylenes, total	<2.0	2.0	ug/L							
Xylenes, total	<2.0	2.0	ug/L							
Styrene	<1.0	1.0	ug/L							

CERTIFICATE OF ANALYSIS

1HI1877

Spike Source

				Spike	Source		%REC		RPD	
Determination of Volatile	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Organic Compounds atch 1HJ0118 - EPA 5030B - EPA	N 9260B									
	4 0200B		Prepared & A	Analyzadi 1	0/01/24 00:5	0				
ank (1HJ0118-BLK1)	<1.0	4.0	•	Analyzed. 1	0/01/24 09.5	U				
Styrene		1.0	ug/L							
Bromoform	<1.0	1.0	ug/L							
Bromoform	<1.0	1.0	ug/L							
,2,3-Trichloropropane	<1.0	1.0	ug/L							
,2,3-Trichloropropane	<1.0	1.0	ug/L							
rans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L							
rans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L							
,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L							
,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L							
,3-Dichlorobenzene	<1.0	1.0	ug/L							
,4-Dichlorobenzene	<1.0	1.0	ug/L							
I,4-Dichlorobenzene	<1.0	1.0	ug/L							
1,2-Dichlorobenzene	<1.0	1.0	ug/L							
1,2-Dichlorobenzene	<1.0	1.0	ug/L							
I,2-Dibromo-3-chloropropane	<1.0	1.0	ug/L							
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L							
1,2,4-Trichlorobenzene	<1.0	1.0	ug/L							
Currogate: Dibromofluoromethane	50.2		ug/L	50.2		100	57-134			
Surrogate: Dibromofluoromethane	50.2		ug/L	50.2		100	57-134			
urrogate: Dibromofluoromethane	50.2		ug/L	50.2		100	75-136			
Surrogate: 1,2-Dichloroethane-d4	53.4		ug/L	50.4		106	53-140			
Surrogate: 1,2-Dichloroethane-d4	53.4		ug/L	50.4		106	53-140			
Surrogate: 1,2-Dichloroethane-d4	53.4		ug/L	50.4		106	53-140			
Surrogate: 1,2-Dichloroethane-d4	53.4		ug/L	50.4		106	61-142			
Surrogate: Toluene-d8	58.5		ug/L	50.5		116	86-114			S1
Surrogate: Toluene-d8	58.5 50.5		ug/L	50.5		116	86-114			S1
Surrogate: Toluene-d8 Surrogate: Toluene-d8	58.5 58.5		ug/L	50.5		116	86-114 82-121			S1
Surrogate: 4-Bromofluorobenzene	52.4		ug/L ug/L	50.5 50.2		116 104	78-121			
Surrogate: 4-Bromofluorobenzene	52.4		ug/L ug/L	50.2		10 4 104	78-121			
Surrogate: 4-Bromofluorobenzene	52.4		ug/L	50.2		104	78-121			
Surrogate: 4-Bromofluorobenzene	52.4		ug/L	50.2		104	80-116			
CS (1HJ0118-BS1)			Prepared &	Analyzed: 1	0/01/24 08:4	3				
Dichlorodifluoromethane	36.32	1.0	ug/L	30.0		121	49-138			
Chloromethane	35.45	1.0	ug/L	30.0		118	60-141			
Chloromethane	35.45	1.0	ug/L	30.0		118	63-155			
/inyl Chloride	34.15	1.0	ug/L	30.0		114	65-137			
/inyl Chloride	34.15	1.0	ug/L	30.0		114	70-154			
Bromomethane	26.59	1.0	ug/L	30.0		88.6	47-173			
Bromomethane	26.59	1.0	ug/L	30.0		88.6	52-176			
Chloroethane	42.35	1.0	ug/L	30.0		141	67-145			
Chloroethane	42.35	1.0	ug/L	30.0		141	72-148			
richlorofluoromethane	36.28	1.0	ug/L	30.0		121	63-127			
	36.28		-							

Microbac Laboratories, Inc., Newton

RPD

%REC

1HI1877

Determination of Volatile Organic Compounds	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Batch 1HJ0118 - EPA 5030B - EPA	A 8260B									
CS (1HJ0118-BS1)			Prepared & A	Analyzed: 10	0/01/24 08:4	3				
Acrolein	43.53	10.0	ug/L	100		43.3	21-142			Q3
1,1-Dichloroethylene	109.8	1.0	ug/L	100		110	69-136			
1,1-Dichloroethylene	109.8	1.0	ug/L	100		110	70-148			
Acetone	113.9	10.0	ug/L	101		113	45-153			
Acetone	113.9	10.0	ug/L	101		113	43-172			
Methyl Iodide	111.9	2.0	ug/L	102		110	58-156			
Methyl lodide	111.9	1.0	ug/L	102		110	69-170			
Carbon Disulfide	111.5	1.0	ug/L	103		109	68-128			
Carbon Disulfide	111.5	1.0	ug/L	103		109	72-162			
Acetonitrile	110.9	10.0	ug/L	103		108	35-177			
Methylene Chloride	104.3	5.0	ug/L	100		104	65-124			
Methylene Chloride	104.3	5.0	ug/L	100		104	68-142			
Acrylonitrile	102.6	5.0	ug/L	100		102	56-135			
Acrylonitrile	102.6	5.0	ug/L	100		102	56-135			
trans-1,2-Dichloroethylene	107.7	1.0	ug/L	100		108	74-126			
trans-1,2-Dichloroethylene	107.7	1.0	ug/L	100		108	66-148			
1,1-Dichloroethane	107.8	1.0	ug/L	100		108	73-122			
1,1-Dichloroethane	107.8	1.0	ug/L	100		108	66-143			
Vinyl Acetate	109.9	5.0	ug/L	100		110	24-171			
Vinyl Acetate	109.9	5.0	ug/L	100		110	43-153			
2,2-Dichloropropane	100.6	1.0	ug/L	100		101	68-120			
cis-1,2-Dichloroethylene	100.4	1.0	ug/L	100		100	65-149			
cis-1,2-Dichloroethylene	100.4	1.0	ug/L	100		100	71-149			
2-Butanone (MEK)	106.3	5.0	ug/L	102		104	57-147			
2-Butanone (MEK)	106.3	10.0	ug/L	102		104	52-159			
Bromochloromethane	107.7	1.0	ug/L	102		104	76-125			
Bromochloromethane	107.7	1.0	ug/L	100		108	69-143			
Chloroform	100.5	1.0	ug/L	100		101	71-125			
Chloroform	100.5	1.0	ug/L	100		101	69-144			
1,1,1-Trichloroethane	96.61	1.0	ug/L	100		96.6	66-118			
1,1,1-Trichloroethane	96.61	1.0	ug/L	100		96.6				
1,1-Dichloropropene	96.83	1.0	_				62-129			
Carbon Tetrachloride	102.4	1.0	ug/L ug/L	100		96.8	69-130			
Carbon Tetrachloride	102.4	1.0	ug/L ug/L	100 100		102	68-126 62 141			
Benzene	97.99	1.0	_			102	63-141			
Benzene	97.99	1.0	ug/L	100		98.0	81-123			
	101.2		ug/L	100		98.0	71-134			
1,2-Dichloroethane	101.2	1.0	ug/L	100		101	70-130			
1,2-Dichloroethane	98.43	1.0	ug/L	100		101	72-132			
Trichloroethylene	98.43	1.0	ug/L	100		98.4	84-118			
Trichloroethylene		1.0	ug/L	100		98.4	71-135			
1,2-Dichloropropane	88.64	1.0	ug/L	100		88.6	87-118			
1,2-Dichloropropane Dibromomethane	88.64 94.24	1.0 1.0	ug/L ug/L	100 100		88.6 94.2	69-136 82-126			

1HI1877

Spike Source

%REC

RPD

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ0118 - EPA 5030B - EPA	A 8260B									
_CS (1HJ0118-BS1)			Prepared &	Analyzed: 1	0/01/24 08:4	13				
Dibromomethane	94.24	1.0	ug/L	100		94.2	73-147			
Bromodichloromethane	91.97	1.0	ug/L	100		92.0	80-116			
Bromodichloromethane	91.97	1.0	ug/L	100		92.0	68-129			
cis-1,3-Dichloropropene	92.02	1.0	ug/L	100		92.0	83-116			
cis-1,3-Dichloropropene	92.02	1.0	ug/L	100		92.0	65-134			
4-Methyl-2-pentanone (MIBK)	104.6	5.0	ug/L	100		105	74-138			
4-Methyl-2-pentanone (MIBK)	104.6	5.0	ug/L	100		105	58-147			
Toluene	92.25	1.0	ug/L	100		92.2	78-123			
Toluene	92.25	1.0	ug/L	100		92.2	72-133			
trans-1,3-Dichloropropene	94.18	1.0	ug/L	100		94.2	75-120			
trans-1,3-Dichloropropene	94.18	1.0	ug/L	100		94.2	67-130			
Ethyl Methacrylate	99.48	10.0	ug/L	102		97.1	77-129			
1,1,2-Trichloroethane	93.09	1.0	ug/L	100		93.1	81-121			
1,1,2-Trichloroethane	93.09	1.0	ug/L	100		93.1	69-135			
Tetrachloroethylene	103.1	1.0	ug/L	100		103	76-120			
Tetrachloroethylene	103.1	1.0	ug/L	100		103	69-130			
1,3-Dichloropropane	115.8	1.0	ug/L	100		116	86-131			
2-Hexanone (MBK)	109.0	5.0	ug/L	99.3		110	76-139			
2-Hexanone (MBK)	109.0	5.0	ug/L	99.3		110	55-144			
Dibromochloromethane	109.2	1.0	ug/L	100		109	83-123			
Dibromochloromethane	109.2	1.0	ug/L	100		109	73-127			
1,2-Dibromoethane	109.0	1.0	ug/L	100		109	86-115			
1,2-Dibromoethane	109.0	1.0	ug/L	100		109	67-132			
Chlorobenzene	99.38	1.0	ug/L	100		99.4	82-117			
Chlorobenzene	99.38	1.0	ug/L	100		99.4	72-123			
1,1,1,2-Tetrachloroethane	98.24	1.0	ug/L	100		98.2	86-119			
1,1,1,2-Tetrachloroethane	98.24	1.0	ug/L	100		98.2	73-127			
Ethylbenzene	98.02	1.0	ug/L	100		98.0	80-122			
Ethylbenzene	98.02	1.0	ug/L	100		98.0	71-127			
Xylenes, total	306.7	2.0	ug/L	300		102	81-122			
Xylenes, total	306.7	2.0	ug/L	300		102	74-127			
Styrene	100.4	1.0	ug/L	100		100	85-118			
Styrene	100.4	1.0	ug/L	100		100	66-126			
Bromoform	97.39	1.0	ug/L	100		97.4	80-123			
Bromoform	97.39	1.0	ug/L	100		97.4	68-130			
1,2,3-Trichloropropane	104.2	1.0	ug/L	100		104	83-126			
1,2,3-Trichloropropane	104.2	1.0	ug/L	100		104	63-136			
trans-1,4-Dichloro-2-butene	97.18	5.0	ug/L	103		94.5	67-118			
trans-1,4-Dichloro-2-butene	97.18	5.0	ug/L	103		94.5	54-134			
1,1,2,2-Tetrachloroethane	121.3	1.0	ug/L	100		121	81-124			
1,1,2,2-Tetrachloroethane	121.3	1.0	ug/L	100		121	61-131			
1,3-Dichlorobenzene	101.1	1.0	ug/L	100		101	83-114			
1,4-Dichlorobenzene	98.93	1.0	ug/L	100		98.9	83-117			

1HI1877

Determination of Volatile	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Organic Compounds		112	C	_0.0.		,,,,,		•		
atch 1HJ0118 - EPA 5030B - EPA	8260B									
CS (1HJ0118-BS1)			Prepared & /	Analyzed: 10	0/01/24 08:4	3				
1,4-Dichlorobenzene	98.93	1.0	ug/L	100		98.9	70-129			
1,2-Dichlorobenzene	97.42	1.0	ug/L	100		97.4	83-116			
1,2-Dichlorobenzene	97.42	1.0	ug/L	100		97.4	69-126			
1,2-Dibromo-3-chloropropane	96.60	1.0	ug/L	100		96.6	77-128			
1,2-Dibromo-3-chloropropane	96.60	5.0	ug/L	100		96.6	50-143			
1,2,4-Trichlorobenzene	98.55	1.0	ug/L	100		98.6	66-134			
Surrogate: Dibromofluoromethane	51.2		ug/L	50.2		102	57-134			
Surrogate: Dibromofluoromethane	51.2		ug/L	50.2		102	57-134			
Surrogate: Dibromofluoromethane	51.2		ug/L	50.2		102	75-136			
Surrogate: 1,2-Dichloroethane-d4	52.8		ug/L	50.4		105	53-140			
Surrogate: 1,2-Dichloroethane-d4	52.8		ug/L	50.4		105	53-140			
Surrogate: 1,2-Dichloroethane-d4	52.8		ug/L	50.4		105	53-140			
Surrogate: 1,2-Dichloroethane-d4	52.8		ug/L	50.4		105	61-142			
Surrogate: Toluene-d8	48.4		ug/L	50.5		95.8	86-114			
Surrogate: Toluene-d8	48.4		ug/L	50.5		95.8	86-114			
Surrogate: Toluene-d8 Surrogate: Toluene-d8	48.4		ug/L	50.5		95.8	86-114			
Surrogate: 10iuerie-uo Surrogate: 4-Bromofluorobenzene	48.4 50.8		ug/L	50.5 50.2		95.8 101	82-121 78-121			
Surrogate: 4-Bromofluorobenzene	50.8		ug/L ug/L	50.2 50.2		101	78-121 78-121			
Surrogate: 4-Bromofluorobenzene	50.8		ug/L	50.2		101	78-121			
Surrogate: 4-Bromofluorobenzene	50.8		ug/L	50.2		101	80-116			
latrix Spike (1HJ0118-MS1)		HI1863-09	Prepared & /		0/01/24 20:2					
Dichlorodifluoromethane	311.8	10.0	ug/L	300	ND	104	37-140			
Chloromethane	333.0	10.0	ug/L	300	ND	111	47-147			
Chloromethane	333.0	10.0	ug/L	300	ND	111	61-152			
Vinyl Chloride	321.9	10.0	ug/L	300	ND	107	55-142			
Vinyl Chloride	321.9	10.0	ug/L	300	ND	107	66-149			
Bromomethane	258.6	10.0	ug/L	300	ND	86.2	34-160			
Bromomethane	258.6	10.0	ug/L	300	ND	86.2	43-171			
Chloroethane	336.1	10.0	ug/L	300	ND	112	54-154			
Chloroethane	336.1	10.0	ug/L	300	ND	112	69-148			
	327.7									
Trichlorofluoromethane	327.7	10.0	ug/L	300	ND	109	49-131			
Trichlorofluoromethane		10.0	ug/L	300	ND	109	62-163			
Acrolein	229.9	100	ug/L	1000	ND	22.9	22-138			M2
1,1-Dichloroethylene	1032	10.0	ug/L	1000	ND	103	57-143			
1,1-Dichloroethylene	1032	10.0	ug/L	1000	ND	103	70-148			
Acetone	1179	100	ug/L	1010	ND	116	27-173			
Acetone	1179	100	ug/L	1010	ND	116	45-173			
Methyl lodide	906.5	20.0	ug/L	1020	ND	89.0	39-157			
Methyl lodide	906.5	10.0	ug/L	1020	ND	89.0	62-167			
Carbon Disulfide	1012	10.0	ug/L	1030	ND	98.5	53-136			
Carbon Disulfide	1012	10.0	ug/L	1030	ND	98.5	71-163			
Carbon Disamac			-							
Acetonitrile	1110	100	ug/L	1030	ND	108	11-189			

1HI1877

Determination of Volatile	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Organic Compounds			00	_0.01		,,,,,		5		
Batch 1HJ0118 - EPA 5030B - EPA	A 8260B									
Matrix Spike (1HJ0118-MS1)	Source	: 1HI1863-09	Prepared &	Analyzed: 1	0/01/24 20:2	23				
Methylene Chloride	979.0	50.0	ug/L	1000	ND	97.9	69-140			
Acrylonitrile	1000	50.0	ug/L	1000	ND	99.7	38-147			
Acrylonitrile	1000	50.0	ug/L	1000	ND	99.7	38-147			
trans-1,2-Dichloroethylene	1008	10.0	ug/L	1000	ND	101	61-135			
trans-1,2-Dichloroethylene	1008	10.0	ug/L	1000	ND	101	69-144			
1,1-Dichloroethane	1006	10.0	ug/L	1000	ND	101	60-131			
1,1-Dichloroethane	1006	10.0	ug/L	1000	ND	101	70-138			
Vinyl Acetate	994.0	50.0	ug/L	1000	ND	99.4	24-163			
Vinyl Acetate	994.0	50.0	ug/L	1000	ND	99.4	58-142			
2,2-Dichloropropane	860.0	10.0	ug/L	1000	ND	86.0	37-112			
cis-1,2-Dichloroethylene	916.2	10.0	ug/L	1000	ND	91.6	47-162			
cis-1,2-Dichloroethylene	916.2	10.0	ug/L	1000	ND	91.6	68-151			
2-Butanone (MEK)	1067	50.0	ug/L	1020	ND	105	45-156			
2-Butanone (MEK)	1067	100	ug/L	1020	ND	105	50-160			
Bromochloromethane	1002	10.0	ug/L	1000	ND	100	55-132			
Bromochloromethane	1002	10.0	ug/L	1000	ND	100	65-143			
Chloroform	930.4	10.0	ug/L	1000	ND	93.0	45-142			
Chloroform	930.4	10.0	ug/L	1000	ND	93.0	71-143			
1,1,1-Trichloroethane	881.5	10.0	ug/L	1000	ND	88.2	52-128			
1,1,1-Trichloroethane	881.5	10.0	ug/L	1000	ND	88.2	63-133			
1,1-Dichloropropene	898.3	10.0	ug/L	1000	ND	89.8	49-138			
Carbon Tetrachloride	931.7	10.0	ug/L	1000	ND	93.2	56-132			
Carbon Tetrachloride	931.7	10.0	ug/L	1000	ND	93.2	63-142			
Benzene	968.5	10.0	ug/L	1000	ND	96.8	77-124			
Benzene	968.5	10.0	ug/L	1000	ND	96.8	69-133			
1,2-Dichloroethane	991.6	10.0	ug/L	1000	ND	99.2	67-130			
1,2-Dichloroethane	991.6	10.0	ug/L	1000	ND	99.2	63-138			
Trichloroethylene	1018	10.0	ug/L	1000	ND	102	75-123			
Trichloroethylene	1018	10.0	ug/L	1000	ND	102	71-133			
1,2-Dichloropropane	979.6	10.0	ug/L	1000	ND	98.0	75-126			
1,2-Dichloropropane	979.6	10.0	ug/L	1000	ND	98.0	69-132			
Dibromomethane	931.9	10.0	ug/L	1000	ND	93.2	72-131			
Dibromomethane	931.9	10.0	ug/L	1000	ND	93.2	70-147			
Bromodichloromethane	901.0	10.0	ug/L	1000	ND	90.1	70-123			
Bromodichloromethane	901.0	10.0	ug/L	1000	ND	90.1	67-130			
cis-1,3-Dichloropropene	891.5	10.0	ug/L	1000	ND	89.2	68-119			
cis-1,3-Dichloropropene	891.5	10.0	ug/L	1000	ND	89.2	61-126			
4-Methyl-2-pentanone (MIBK)	1042	50.0	ug/L	1000	ND	104	57-153			
4-Methyl-2-pentanone (MIBK)	1042	50.0	ug/L	1000	ND	104	55-147			
Toluene	922.3	10.0	ug/L	1000	ND	92.2	63-131			
Toluene	922.3	10.0	ug/L	1000	ND	92.2	71-133			
	005.5	46.5								

Microbac Laboratories, Inc., Newton

ug/L

ug/L

1000

ND

90.6

90.6

65-121

63-124

10.0

10.0

905.5

905.5

trans-1,3-Dichloropropene

trans-1,3-Dichloropropene

1HI1877

Units

RL

Determination of Volatile

Result

Spike Source

Result %REC

Level

%REC

Limits

RPD

Limit

RPD

Notes

Organic Compounds								
Batch 1HJ0118 - EPA 5030B - EPA	8260B							
Matrix Spike (1HJ0118-MS1)	Source:	1HI1863-09	Prepared &	Analyzed: 1	0/01/24 20:2	23		
Ethyl Methacrylate	982.3	100	ug/L	1020	ND	95.9	62-137	
1,1,2-Trichloroethane	915.3	10.0	ug/L	1000	ND	91.5	76-124	
1,1,2-Trichloroethane	915.3	10.0	ug/L	1000	ND	91.5	69-133	
Tetrachloroethylene	1023	10.0	ug/L	1000	ND	102	77-117	
Tetrachloroethylene	1023	10.0	ug/L	1000	ND	102	70-124	
1,3-Dichloropropane	1172	10.0	ug/L	1000	ND	117	81-132	
2-Hexanone (MBK)	1129	50.0	ug/L	993	ND	114	63-152	
2-Hexanone (MBK)	1129	50.0	ug/L	993	ND	114	53-141	
Dibromochloromethane	994.0	10.0	ug/L	1000	ND	99.4	77-124	
Dibromochloromethane	994.0	10.0	ug/L	1000	ND	99.4	74-122	
1,2-Dibromoethane	988.7	10.0	ug/L	1000	ND	98.9	82-117	
1,2-Dibromoethane	988.7	10.0	ug/L	1000	ND	98.9	66-127	
Chlorobenzene	998.0	10.0	ug/L	1000	ND	99.8	82-114	
Chlorobenzene	998.0	10.0	ug/L	1000	ND	99.8	76-116	
1,1,1,2-Tetrachloroethane	981.2	10.0	ug/L	1000	ND	98.1	82-118	
1,1,1,2-Tetrachloroethane	981.2	10.0	ug/L	1000	ND	98.1	77-121	
Ethylbenzene	1000	10.0	ug/L	1000	ND	100	80-119	
Ethylbenzene	1000	10.0	ug/L	1000	ND	100	73-124	
Xylenes, total	3273	20.0	ug/L	3000	ND	109	81-119	
Xylenes, total	3273	20.0	ug/L	3000	ND	109	75-123	
Styrene	1091	10.0	ug/L	1000	ND	109	81-119	
Styrene	1091	10.0	ug/L	1000	ND	109	70-120	
Bromoform	1020	10.0	ug/L	1000	ND	102	74-122	
Bromoform	1020	10.0	ug/L	1000	ND	102	70-124	
1,2,3-Trichloropropane	1129	10.0	ug/L	1000	ND	113	70-124	
1,2,3-Trichloropropane	1129	10.0	ug/L	1000	ND	113	62-135	
trans-1,4-Dichloro-2-butene	981.7	50.0	ug/L	1030	ND	95.5	56-116	
trans-1,4-Dichloro-2-butene	981.7	50.0	ug/L	1030	ND	95.5	50-110	
1,1,2,2-Tetrachloroethane	1439	10.0	ug/L ug/L	1000	ND	144	78-126	М
1,1,2,2-Tetrachloroethane	1439	10.0	ug/L	1000		144		M
1,3-Dichlorobenzene	1023	10.0	ug/L ug/L	1000	ND ND	102	63-126 81-113	IVI
1,4-Dichlorobenzene	991.4	10.0	·					
1.4-Dichlorobenzene	991.4	10.0	ug/L ug/L	1000 1000	ND ND	99.1 99.1	81-116	
1,2-Dichlorobenzene	986.2	10.0	•				72-119	
1,2-Dichlorobenzene	986.2	10.0	ug/L	1000	ND	98.6	81-116	
•	981.4		ug/L	1000	ND	98.6	71-117	
1,2-Dibromo-3-chloropropane	981.4	10.0	ug/L	1000	ND	98.1	63-138	
1,2-Dibromo-3-chloropropane	981.4 973.1	50.0	ug/L	1000	ND	98.1	49-134	
1,2,4-Trichlorobenzene	913.I	10.0	ug/L	1000	ND	97.3	65-132	
Surrogate: Dibromofluoromethane	464		ug/L	502		92.4	57-134	
Surrogate: Dibromofluoromethane	464		ug/L	502		92.4	57-134	
Surrogate: Dibromofluoromethane	464		ug/L	502		92.4	75-136	
Surrogate: 1,2-Dichloroethane-d4	488		ug/L	504		97.0	53-140	
Surrogate: 1,2-Dichloroethane-d4	488		ug/L	504		97.0	53-140	

1HI1877

Units

RL

Determination of Volatile

Result

Spike Source

Level

Matrix Spike (1HJ0118-MS1)	S	ource: 1HI1863-09	Prepared &	Analyzed: 10)/01/24 20:2	3				
Surrogate: 1,2-Dichloroethane-d4	48	38	ug/L	504		97.0	53-140			
Surrogate: 1,2-Dichloroethane-d4	48	38	ug/L	504		97.0	61-142			
Surrogate: Toluene-d8	47	77	ug/L	505		94.5	86-114			
Surrogate: Toluene-d8	4	77	ug/L	505		94.5	86-114			
Surrogate: Toluene-d8		77	ug/L	505		94.5	86-114			
Surrogate: Toluene-d8		77 	ug/L	505		94.5	82-121			
Surrogate: 4-Bromofluorobenzene		45 45	ug/L	502		109	78-121			
Surrogate: 4-Bromofluorobenzene Surrogate: 4-Bromofluorobenzene		45 45	ug/L	502		109 109	78-121 78-121			
Surrogate: 4-Bromofluorobenzene Surrogate: 4-Bromofluorobenzene		+5 45	ug/L ug/L	502 502		109 109	76-121 80-116			
Matrix Spike Dup (1HJ0118-MSD1)		ource: 1HI1863-09	-	Analyzed: 10)/01/24 20:4		00 770			
Dichlorodifluoromethane	297.9	10.0	ug/L	300	ND	99.3	37-140	4.56	18	
Chloromethane	301.7	10.0	ug/L	300	ND	101	47-147	9.86	18	
Chloromethane	301.7	10.0	ug/L	300	ND	101	61-152	9.86	26	
Vinyl Chloride	294.3	10.0	ug/L ug/L	300	ND ND	98.1	55-142	9.00 8.96	20 20	
Vinyl Chloride	294.3	10.0	ug/L ug/L	300		98.1				
Bromomethane	236.9	10.0	•		ND		66-149	8.96	23	
	236.9		ug/L	300	ND	79.0	34-160	8.76	22	
Bromomethane	308.9	10.0	ug/L	300	ND	79.0	43-171	8.76	29	
Chloroethane		10.0	ug/L	300	ND	103	54-154	8.43	20	
Chloroethane	308.9	10.0	ug/L	300	ND	103	69-148	8.43	25	
Trichlorofluoromethane	310.4	10.0	ug/L	300	ND	103	49-131	5.42	14	
Trichlorofluoromethane	310.4	10.0	ug/L	300	ND	103	62-163	5.42	25	
Acrolein	259.6	100	ug/L	1000	ND	25.8	22-138	12.1	30	M2
1,1-Dichloroethylene	960.4	10.0	ug/L	1000	ND	96.0	57-143	7.15	15	
1,1-Dichloroethylene	960.4	10.0	ug/L	1000	ND	96.0	70-148	7.15	22	
Acetone	1113	100	ug/L	1010	ND	110	27-173	5.74	30	
Acetone	1113	100	ug/L	1010	ND	110	45-173	5.74	30	
Methyl Iodide	915.9	20.0	ug/L	1020	ND	89.9	39-157	1.03	12	
Methyl Iodide	915.9	10.0	ug/L	1020	ND	89.9	62-167	1.03	24	
Carbon Disulfide	945.9	10.0	ug/L	1030	ND	92.1	53-136	6.73	20	
Carbon Disulfide	945.9	10.0	ug/L	1030	ND	92.1	71-163	6.73	22	
Acetonitrile	1053	100	ug/L	1030	ND	103	11-189	5.23	24	
Methylene Chloride	927.3	50.0	ug/L	1000	ND	92.7	57-128	5.42	14	
Methylene Chloride	927.3	50.0	ug/L	1000	ND	92.7	69-140	5.42	19	
Acrylonitrile	969.0	50.0	ug/L	1000	ND	96.5	38-147	3.20	30	
Acrylonitrile	969.0	50.0	ug/L	1000	ND	96.5	38-147	3.20	30	
trans-1,2-Dichloroethylene	954.2	10.0	ug/L ug/L	1000	ND	95.4	61-135	5.53	12	
trans-1,2-Dichloroethylene	954.2	10.0	ug/L ug/L	1000		95.4				
1,1-Dichloroethane	956.7		_		ND		69-144	5.53	22	
•	956.7 956.7	10.0	ug/L	1000	ND	95.7	60-131	4.99	15	
1,1-Dichloroethane		10.0	ug/L	1000	ND	95.7	70-138	4.99	20	
Vinyl Acetate	963.2	50.0	ug/L	1000	ND	96.3	24-163	3.15	16	
Vinyl Acetate	963.2	50.0	ug/L	1000	ND	96.3	58-142	3.15	24	

Microbac Laboratories, Inc., Newton

RPD

Limit

RPD

Notes

%REC

Result %REC Limits

1HI1877

B				Spike	Source		%REC		RPD	Notes
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
-										
Batch 1HJ0118 - EPA 5030B - EPA	8260B									
Matrix Spike Dup (1HJ0118-MSD1)	Source	: 1HI1863-09	Prepared &	Analyzed: 1	0/01/24 20:4	5				
cis-1,2-Dichloroethylene	881.9	10.0	ug/L	1000	ND	88.2	47-162	3.82	22	
cis-1,2-Dichloroethylene	881.9	10.0	ug/L	1000	ND	88.2	68-151	3.82	22	
2-Butanone (MEK)	1027	50.0	ug/L	1020	ND	101	45-156	3.76	20	
2-Butanone (MEK)	1027	100	ug/L	1020	ND	101	50-160	3.76	23	
Bromochloromethane	981.0	10.0	ug/L	1000	ND	98.1	55-132	2.16	15	
Bromochloromethane	981.0	10.0	ug/L	1000	ND	98.1	65-143	2.16	22	
Chloroform	900.4	10.0	ug/L	1000	ND	90.0	45-142	3.28	12	
Chloroform	900.4	10.0	ug/L	1000	ND	90.0	71-143	3.28	21	
1,1,1-Trichloroethane	862.9	10.0	ug/L	1000	ND	86.3	52-128	2.13	14	
1,1,1-Trichloroethane	862.9	10.0	ug/L	1000	ND	86.3	63-133	2.13	23	
1,1-Dichloropropene	874.4	10.0	ug/L	1000	ND	87.4	49-138	2.70	12	
Carbon Tetrachloride	921.0	10.0	ug/L	1000	ND	92.1	56-132	1.16	12	
Carbon Tetrachloride	921.0	10.0	ug/L	1000	ND	92.1	63-142	1.16	22	
Benzene	933.4	10.0	ug/L	1000	ND	93.3	77-124	3.69	12	
Benzene	933.4	10.0	ug/L	1000	ND	93.3	69-133	3.69	18	
1,2-Dichloroethane	964.1	10.0	ug/L	1000	ND	96.4	67-130	2.81	13	
1,2-Dichloroethane	964.1	10.0	ug/L	1000	ND	96.4	63-138	2.81	20	
Trichloroethylene	941.9	10.0	ug/L	1000	ND	94.2	75-123	7.80	11	
Trichloroethylene	941.9	10.0	ug/L	1000	ND	94.2	71-133	7.80	23	
1,2-Dichloropropane	962.8	10.0	ug/L	1000	ND	96.3	75-126	1.73	11	
1,2-Dichloropropane	962.8	10.0	ug/L	1000	ND	96.3	69-132	1.73	20	
Dibromomethane	969.0	10.0	ug/L	1000	ND	96.9	72-131	3.90	12	
Dibromomethane	969.0	10.0	ug/L	1000	ND	96.9	70-147	3.90	22	
Bromodichloromethane	869.0	10.0	ug/L	1000	ND	86.9	70-123	3.62	10	
Bromodichloromethane	869.0	10.0	ug/L	1000	ND	86.9	67-130	3.62	21	
cis-1,3-Dichloropropene	866.0	10.0	ug/L	1000	ND	86.6	68-119	2.90	10	
cis-1,3-Dichloropropene	866.0	10.0	ug/L	1000	ND	86.6	61-126	2.90	21	
4-Methyl-2-pentanone (MIBK)	1042	50.0	ug/L	1000	ND	104	57-153	0.0384	11	
4-Methyl-2-pentanone (MIBK)	1042	50.0	ug/L	1000	ND	104	55-147	0.0384	23	
Toluene	887.6	10.0	ug/L	1000	ND	88.8	63-131	3.83	15	
Toluene	887.6	10.0	ug/L	1000	ND	88.8	71-133	3.83	19	
trans-1,3-Dichloropropene	892.1	10.0	ug/L	1000	ND	89.2	65-121	1.49	14	
trans-1,3-Dichloropropene	892.1	10.0	ug/L	1000	ND	89.2	63-124	1.49	21	
Ethyl Methacrylate	962.8	100	ug/L	1020	ND	94.0	62-137	2.01	10	
1,1,2-Trichloroethane	896.3	10.0	ug/L	1000	ND	89.6	76-124	2.10	12	
1,1,2-Trichloroethane	896.3	10.0	ug/L	1000	ND	89.6	69-133	2.10	19	
Tetrachloroethylene	1007	10.0	ug/L	1000	ND	101	77-117	1.62	12	
Tetrachloroethylene	1007	10.0	ug/L	1000	ND	101	70-124	1.62	24	
1,3-Dichloropropane	1152	10.0	ug/L	1000	ND	115	81-132	1.76	12	
2-Hexanone (MBK)	1123	50.0	ug/L	993	ND	113	63-152	0.471	19	
2-Hexanone (MBK)	1123	50.0	ug/L	993	ND	113	53-141	0.471	24	
Dibromochloromethane	977.6	10.0	ug/L	1000	ND	97.8	77-124	1.66	17	

Microbac Laboratories, Inc., Newton

ug/L

1000

97.8

74-122 1.66

10.0

977.6

Dibromochloromethane

21

1HI1877

Spike Source

%REC

RPD

Determination of Valetile	Danult	DI.	11	James	Decult	0/ DEC	/orcho	DDD	1	Notes
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch 1HJ0118 - EPA 5030B - EPA 8	3260B									
Matrix Spike Dup (1HJ0118-MSD1)	Source	: 1HI1863-09	Prepared &	Analyzed: 1	0/01/24 20:4	5				
1,2-Dibromoethane	970.3	10.0	ug/L	1000	ND	97.0	82-117	1.88	14	
1,2-Dibromoethane	970.3	10.0	ug/L	1000	ND	97.0	66-127	1.88	23	
Chlorobenzene	981.2	10.0	ug/L	1000	ND	98.1	82-114	1.70	11	
Chlorobenzene	981.2	10.0	ug/L	1000	ND	98.1	76-116	1.70	21	
1,1,1,2-Tetrachloroethane	962.0	10.0	ug/L	1000	ND	96.2	82-118	1.98	15	
1,1,1,2-Tetrachloroethane	962.0	10.0	ug/L	1000	ND	96.2	77-121	1.98	25	
Ethylbenzene	969.7	10.0	ug/L	1000	ND	97.0	80-119	3.08	11	
Ethylbenzene	969.7	10.0	ug/L	1000	ND	97.0	73-124	3.08		
	3036		_						20	
Xylenes, total	3036	20.0	ug/L	3000	ND	101	81-119	7.52	11	
Xylenes, total		20.0	ug/L	3000	ND	101	75-123	7.52	20	
Styrene	1006	10.0	ug/L	1000	ND	101	81-119	8.16	12	
Styrene	1006	10.0	ug/L	1000	ND	101	70-120	8.16	23	
Bromoform	1025	10.0	ug/L	1000	ND	103	74-122	0.538	12	
Bromoform	1025	10.0	ug/L	1000	ND	103	70-124	0.538	22	
1,2,3-Trichloropropane	1079	10.0	ug/L	1000	ND	108	72-138	4.52	14	
1,2,3-Trichloropropane	1079	10.0	ug/L	1000	ND	108	62-135	4.52	28	
trans-1,4-Dichloro-2-butene	913.3	50.0	ug/L	1030	ND	88.8	56-116	7.22	10	
trans-1,4-Dichloro-2-butene	913.3	50.0	ug/L	1030	ND	88.8	50-120	7.22	26	
1,1,2,2-Tetrachloroethane	1242	10.0	ug/L	1000	ND	124	78-126	14.7	13	M1
1,1,2,2-Tetrachloroethane	1242	10.0	ug/L	1000	ND	124	63-126	14.7	24	
1,3-Dichlorobenzene	1016	10.0	ug/L	1000	ND	102	81-113	0.697	14	
1,4-Dichlorobenzene	972.1	10.0	ug/L	1000	ND	97.2				
·	972.1		_				81-116	1.97	14	
1,4-Dichlorobenzene	967.1	10.0	ug/L	1000	ND	97.2	72-119	1.97	24	
1,2-Dichlorobenzene		10.0	ug/L	1000	ND	96.7	81-116	1.96	13	
1,2-Dichlorobenzene	967.1	10.0	ug/L	1000	ND	96.7	71-117	1.96	24	
1,2-Dibromo-3-chloropropane	1035	10.0	ug/L	1000	ND	103	63-138	5.28	17	
1,2-Dibromo-3-chloropropane	1035	50.0	ug/L	1000	ND	103	49-134	5.28	28	
1,2,4-Trichlorobenzene	1014	10.0	ug/L	1000	ND	101	65-132	4.09	15	
Surrogate: Dibromofluoromethane	467		ug/L	502		93.0	57-134			
Surrogate: Dibromofluoromethane	467		ug/L	502		93.0	57-134			
Surrogate: Dibromofluoromethane	467		ug/L	502		93.0	75-136			
Surrogate: 1,2-Dichloroethane-d4	493		ug/L	504		97.9	53-140			
Surrogate: 1,2-Dichloroethane-d4	493		ug/L	504		97.9	53-140			
Surrogate: 1,2-Dichloroethane-d4	493		ug/L	504		97.9	53-140			
Surrogate: 1,2-Dichloroethane-d4	493		ug/L	504		97.9	61-142			
Surrogate: Toluene-d8	472		ug/L	505		93.5	86-114			
Surrogate: Toluene-d8 Surrogate: Toluene-d8	472 472		ug/L	505		93.5	86-114 86-114			
Surrogate: Toluene-do Surrogate: Toluene-d8	472 472		ug/L ug/L	505 505		93.5 93.5	86-114 82-121			
Surrogate: 4-Bromofluorobenzene	532		ug/L ug/L	503 502		93.5 106	78-121			
Surrogate: 4-Bromofluorobenzene	532		ug/L ug/L	502 502		106	78-121			
Surrogate: 4-Bromofluorobenzene	532		ug/L	502		106	78-121			
Surrogate: 4-Bromofluorobenzene	532		ug/L	502		106	80-116			

CERTIFICATE OF ANALYSIS

1HI1877

Spike Source

%REC

RPD

Determination of Volatile Organic Compounds										
Batch 1HJ0198 - EPA 5030B - EPA	A 8260B									
Blank (1HJ0198-BLK1)			Prepared: 10)/02/24 00:0	0 Analyzed:	10/02/24 2	1:11			
Acrylonitrile	<5.0	5.0	ug/L							
Surrogate: Dibromofluoromethane	46.4		ug/L	50.2		92.3	57-134			
Surrogate: 1,2-Dichloroethane-d4	48.8		ug/L	50.4		96.9	53-140			
Surrogate: Toluene-d8	44.5		ug/L	50.5		88.2	86-114			
Surrogate: 4-Bromofluorobenzene	52.0		ug/L	50.2		104	78-121			
_CS (1HJ0198-BS1)			Prepared: 10	0/02/24 00:0	0 Analyzed:	10/02/24 1	9:42			
Acrylonitrile	107.0	5.0	ug/L	100		107	56-135			
Surrogate: Dibromofluoromethane	47.2		ug/L	50.2		94.0	57-134			
Surrogate: 1,2-Dichloroethane-d4	50.1		ug/L	50.4		99.5	53-140			
Surrogate: Toluene-d8	52.0		ug/L	50.5		103	86-114			
Surrogate: 4-Bromofluorobenzene	50.0		ug/L	50.2		99.6	78-121			
CS Dup (1HJ0198-BSD1)			Prepared: 10	0/02/24 00:0	0 Analyzed:	10/02/24 2	0:04			
Acrylonitrile	96.95	5.0	ug/L	100		96.6	56-135	9.85	16	
Surrogate: Dibromofluoromethane	47.2		ug/L	50.2		93.9	57-134			
_			ug/L	50.4		98.8	53-140			
Surrogate: 1,2-Dichloroethane-d4	49.8		ug/L							
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Toluene-d8	49.8 52.2		-	50.5		104	86-114			
_	52.2 50.9		ug/L ug/L ug/L			104 101	86-114 78-121			
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1)	52.2 50.9 A 8260B		ug/L ug/L Prepared & A	50.5 50.2	0/03/24 16:1	101				
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1) Chloromethane	52.2 50.9 A 8260B	1.0	ug/L ug/L Prepared & A	50.5 50.2)/03/24 16:1	101				
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1) Chloromethane Vinyl Chloride	52.2 50.9 A 8260B <1.0 <1.0	1.0	ug/L ug/L Prepared & A ug/L ug/L	50.5 50.2)/03/24 16:1	101				
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1) Chloromethane Vinyl Chloride Bromomethane	52.2 50.9 A 8260B <1.0 <1.0 <1.0	1.0 1.0	ug/L ug/L Prepared & A ug/L ug/L ug/L	50.5 50.2)/03/24 16:1	101				
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane	52.2 50.9 A 8260B <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0	ug/L ug/L Prepared & / ug/L ug/L ug/L ug/L	50.5 50.2)/03/24 16:1	101				
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane	52.2 50.9 A 8260B <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0	ug/L ug/L Prepared & A ug/L ug/L ug/L ug/L ug/L	50.5 50.2)/03/24 16:1	101				
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene	52.2 50.9 A 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.5 50.2)/03/24 16:1	101				
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane	52.2 50.9 A 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0	ug/L ug/L Prepared & A ug/L ug/L ug/L ug/L ug/L	50.5 50.2	0/03/24 16:1	101				
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene	52.2 50.9 A 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.5 50.2)/03/24 16:1	101				
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone	52.2 50.9 A 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.5 50.2)/03/24 16:1	101				
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl Iodide	52.2 50.9 A 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	1.0 1.0 1.0 1.0 1.0 10.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.5 50.2)/03/24 16:1	101				
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl lodide Carbon Disulfide	52.2 50.9 A 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	1.0 1.0 1.0 1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.5 50.2	0/03/24 16:1	101				
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl lodide Carbon Disulfide Methylene Chloride	52.2 50.9 A 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	1.0 1.0 1.0 1.0 1.0 10.0 1.0 1.0 5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.5 50.2	0/03/24 16:1	101				
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl lodide Carbon Disulfide Methylene Chloride trans-1,2-Dichloroethylene	52.2 50.9 A 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	1.0 1.0 1.0 1.0 1.0 10.0 1.0 5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.5 50.2)/03/24 16:1	101				
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl lodide Carbon Disulfide Methylene Chloride trans-1,2-Dichloroethylene 1,1-Dichloroethylene	52.2 50.9 A 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	1.0 1.0 1.0 1.0 1.0 10.0 1.0 5.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.5 50.2)/03/24 16:1	101				
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl lodide Carbon Disulfide Methylene Chloride trans-1,2-Dichloroethylene 1,1-Dichloroethane Vinyl Acetate	52.2 50.9 A 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	1.0 1.0 1.0 1.0 1.0 1.0 1.0 5.0 1.0 5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.5 50.2	0/03/24 16:1	101				
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl lodide Carbon Disulfide Methylene Chloride trans-1,2-Dichloroethylene 1,1-Dichloroethane Vinyl Acetate cis-1,2-Dichloroethylene	52.2 50.9 A 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	1.0 1.0 1.0 1.0 1.0 10.0 1.0 5.0 1.0 5.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.5 50.2	0/03/24 16:1	101				
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl lodide Carbon Disulfide Methylene Chloride trans-1,2-Dichloroethylene 1,1-Dichloroethane Vinyl Acetate cis-1,2-Dichloroethylene 2-Butanone (MEK)	52.2 50.9 A 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	1.0 1.0 1.0 1.0 1.0 10.0 1.0 5.0 1.0 5.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.5 50.2	0/03/24 16:1	101				
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl Iodide Carbon Disulfide Methylene Chloride trans-1,2-Dichloroethylene 1,1-Dichloroethane Vinyl Acetate cis-1,2-Dichloroethylene 2-Butanone (MEK) Bromochloromethane	52.2 50.9 A 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	1.0 1.0 1.0 1.0 1.0 10.0 1.0 5.0 1.0 5.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.5 50.2	0/03/24 16:1	101				
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl lodide Carbon Disulfide Methylene Chloride trans-1,2-Dichloroethylene 1,1-Dichloroethane Vinyl Acetate cis-1,2-Dichloroethylene 2-Butanone (MEK) Bromochloromethane Chloroform	52.2 50.9 A 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	1.0 1.0 1.0 1.0 1.0 10.0 1.0 5.0 1.0 5.0 1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.5 50.2	0/03/24 16:1	101				
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Batch 1HJ0341 - EPA 5030B - EPA Blank (1HJ0341-BLK1) Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethylene Acetone Methyl lodide Carbon Disulfide Methylene Chloride trans-1,2-Dichloroethylene 1,1-Dichloroethane Vinyl Acetate cis-1,2-Dichloroethylene 2-Butanone (MEK) Bromochloromethane Chloroform 1,1,1-Trichloroethane	52.2 50.9 A 8260B <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	1.0 1.0 1.0 1.0 1.0 1.0 1.0 5.0 1.0 5.0 1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	50.5 50.2	0/03/24 16:1	101				

1HI1877

Spike Source

%REC

RPD

Determination of Volatile	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Organic Compounds										
Batch 1HJ0341 - EPA 5030B - EPA	A 8260B									
Blank (1HJ0341-BLK1)			Prepared &	Analyzed: 1	0/03/24 16:1	3				
Trichloroethylene	<1.0	1.0	ug/L							
1,2-Dichloropropane	<1.0	1.0	ug/L							
Dibromomethane	<1.0	1.0	ug/L							
Bromodichloromethane	<1.0	1.0	ug/L							
cis-1,3-Dichloropropene	<1.0	1.0	ug/L							
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L							
Toluene	<1.0	1.0	ug/L							
trans-1,3-Dichloropropene	<1.0	1.0	ug/L							
1,1,2-Trichloroethane	<1.0	1.0	ug/L							
Tetrachloroethylene	<1.0	1.0	ug/L							
2-Hexanone (MBK)	<5.0	5.0	ug/L							
Dibromochloromethane	<1.0	1.0	ug/L							
1,2-Dibromoethane	<1.0	1.0	ug/L							
Chlorobenzene	<1.0	1.0	ug/L							
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L							
Ethylbenzene	<1.0	1.0	ug/L							
Xylenes, total	<2.0	2.0	ug/L							
Styrene	<1.0	1.0	ug/L							
Bromoform	<1.0	1.0	ug/L							
1,2,3-Trichloropropane	<1.0	1.0	ug/L							
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L							
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L							
1,4-Dichlorobenzene	<1.0	1.0	ug/L							
1,2-Dichlorobenzene	<1.0	1.0	ug/L							
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L							
Surrogate: Dibromofluoromethane	46.9		ua/l	50.2		02.5	75-136			
Surrogate: 1,2-Dichloroethane-d4	46.1		ug/L ug/L	50.2 50.4		93.5 91.6	61-142			
Surrogate: Toluene-d8	49.4		ug/L	50.5		97.9	82-121			
Surrogate: 4-Bromofluorobenzene	49.2		ug/L	50.2		98.1	80-116			
LCS (1HJ0341-BS1)			Prepared &	Analyzed: 1	0/03/24 15:0)5				
Chloromethane	29.61	1.0	ug/L	30.0		98.7	63-155			
Vinyl Chloride	25.80	1.0	ug/L	30.0		86.0	70-154			
Bromomethane	29.84	1.0	ug/L	30.0		99.5	52-176			
Chloroethane	28.25	1.0	ug/L	30.0		94.2	72-148			
Trichlorofluoromethane	28.40	1.0	ug/L	30.0		94.7	70-152			
1,1-Dichloroethylene	81.74	1.0	ug/L	100		81.7	70-148			
Acetone	134.9	10.0	ug/L	101		133	43-172			
Methyl lodide	110.8	1.0	ug/L	102		109	69-170			
Carbon Disulfide	86.48	1.0	ug/L	103		84.2	72-162			
Methylene Chloride	86.75	5.0	ug/L	100		86.8	68-142			
trans-1,2-Dichloroethylene	82.53	1.0	ug/L	100		82.5	66-148			
1,1-Dichloroethane	81.24	1.0	ug/L	100		81.2	66-143			
.,		1.0	~ g, -	.50		V1.2	00-140			

1HI1877

Spike Source

%REC

RPD

				Spike	Source		/0KEC		KFD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ0341 - EPA 5030B - EPA	A 8260B									
LCS (1HJ0341-BS1)			Prepared &	Analyzed: 10	0/03/24 15:0)5				
Vinyl Acetate	87.98	5.0	ug/L	100		88.0	43-153			
cis-1,2-Dichloroethylene	74.74	1.0	ug/L	100		74.7	71-149			
2-Butanone (MEK)	106.8	10.0	ug/L	102		105	52-159			
Bromochloromethane	90.74	1.0	ug/L	100		90.7	69-143			
Chloroform	86.69	1.0	ug/L	100		86.7	69-144			
1,1,1-Trichloroethane	83.18	1.0	ug/L	100		83.2	62-129			
Carbon Tetrachloride	97.71	1.0	ug/L	100		97.7	63-141			
Benzene	94.37	1.0	ug/L	100		94.4	71-134			
1,2-Dichloroethane	92.39	1.0	ug/L	100		92.4	72-132			
Trichloroethylene	89.50	1.0	ug/L	100		89.5	71-135			
1,2-Dichloropropane	86.55	1.0	ug/L	100		86.6	69-136			
Dibromomethane	91.62	1.0	ug/L	100		91.6	73-147			
Bromodichloromethane	87.48	1.0	ug/L	100		87.5	68-129			
cis-1,3-Dichloropropene	89.24	1.0	ug/L	100		89.2	65-134			
4-Methyl-2-pentanone (MIBK)	83.29	5.0	ug/L	100		83.2	58-147			
Toluene	96.03	1.0	ug/L	100		96.0	72-133			
trans-1,3-Dichloropropene	94.02	1.0	ug/L	100		94.0	67-130			
1,1,2-Trichloroethane	96.16	1.0	ug/L	100		96.2	69-135			
Tetrachloroethylene	94.71	1.0	ug/L	100		94.7	69-130			
2-Hexanone (MBK)	98.47	5.0	ug/L	99.3		99.2	55-144			
Dibromochloromethane	95.83	1.0	ug/L	100		95.8	73-127			
1,2-Dibromoethane	90.68	1.0	ug/L	100		90.7	67-132			
Chlorobenzene	97.53	1.0	ug/L	100		97.5	72-123			
1,1,1,2-Tetrachloroethane	96.63	1.0	ug/L	100		96.6	73-127			
Ethylbenzene	91.29	1.0	ug/L	100		91.3	71-127			
Xylenes, total	276.4	2.0	ug/L	300		92.1	74-127			
Styrene	96.27	1.0	ug/L	100		96.3	66-126			
Bromoform	95.14	1.0	ug/L	100		95.1	68-130			
1,2,3-Trichloropropane	89.64	1.0	ug/L	100		89.6	63-136			
trans-1,4-Dichloro-2-butene	78.98	5.0	ug/L	103		76.8	54-134			
1,1,2,2-Tetrachloroethane	86.99	1.0	ug/L	100		87.0	61-131			
1,4-Dichlorobenzene	97.51	1.0	ug/L	100		97.5	70-129			
1.2-Dichlorobenzene	100.5	1.0	ug/L	100		101	69-126			
1,2-Dibromo-3-chloropropane	107.4	5.0	ug/L	100		107	50-143			
,, <u></u> ,,			9			101	00 140			
Surrogate: Dibromofluoromethane	46.5		ug/L	50.2		92.6	75-136			
Surrogate: 1,2-Dichloroethane-d4	45.1		ug/L	50.4		89.6	61-142			
Surrogate: Toluene-d8	50.0		ug/L	50.5		99.0	82-121			
Surrogate: 4-Bromofluorobenzene	50.5		ug/L	50.2	0/00/04 17 1	101	80-116			
Matrix Spike (1HJ0341-MS1)		HJ0275-05	Prepared & /	-						
Chloromethane	308.9	10.0	ug/L	300	ND	103	61-152			
Vinyl Chloride	264.7	10.0	ug/L	300	ND	88.2	66-149			
Bromomethane	300.7	10.0	ug/L	300	ND	100	43-171			

1HI1877

		11	1118//							
				Spike	Source		%REC		RPD	N - 4
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ0341 - EPA 5030B - EPA	A 8260B									
Matrix Spike (1HJ0341-MS1)	Source:	1HJ0275-05	Prepared &	Analyzed: 10	0/03/24 17:3	5				
Chloroethane	290.0	10.0	ug/L	300	ND	96.7	69-148			
Trichlorofluoromethane	291.4	10.0	ug/L	300	ND	97.1	62-163			
1,1-Dichloroethylene	830.8	10.0	ug/L	1000	ND	83.1	70-148			
Acetone	1997	100	ug/L	1010	ND	197	45-173			M1
Methyl lodide	1037	10.0	ug/L	1020	ND	102	62-167			
Carbon Disulfide	874.3	10.0	ug/L	1030	ND	85.1	71-163			
Methylene Chloride	869.9	50.0	ug/L	1000	ND	87.0	69-140			
trans-1,2-Dichloroethylene	834.6	10.0	ug/L	1000	ND	83.5	69-144			
1,1-Dichloroethane	817.1	10.0	ug/L	1000	ND	81.7	70-138			
Vinyl Acetate	869.2	50.0	ug/L	1000	ND	86.9	58-142			
cis-1,2-Dichloroethylene	746.9	10.0	ug/L	1000	ND	74.7	68-151			
2-Butanone (MEK)	1434	100	ug/L	1020	ND	141	50-160			
Bromochloromethane	884.5	10.0	ug/L	1000	ND	88.4	65-143			
Chloroform	872.3	10.0	ug/L	1000	ND	87.2	71-143			
1,1,1-Trichloroethane	835.8	10.0	ug/L	1000	ND	83.6	63-133			
Carbon Tetrachloride	987.7	10.0	ug/L	1000	ND	98.8	63-142			
Benzene	934.2	10.0	ug/L	1000	ND	93.4	69-133			
1,2-Dichloroethane	914.3	10.0	ug/L	1000	ND	91.4	63-138			
Trichloroethylene	890.8	10.0	ug/L	1000	ND	89.1	71-133			
1,2-Dichloropropane	850.7	10.0	ug/L	1000	ND	85.1	69-132			
Dibromomethane	902.7	10.0	ug/L	1000	ND	90.3	70-147			
Bromodichloromethane	860.5	10.0	ug/L	1000	ND	86.0	67-130			
cis-1,3-Dichloropropene	888.1	10.0	ug/L	1000	ND	88.8	61-126			
4-Methyl-2-pentanone (MIBK)	892.3	50.0	ug/L	1000	ND	89.1	55-147			
Toluene	949.9	10.0	ug/L	1000	ND	95.0	71-133			
trans-1,3-Dichloropropene	931.3	10.0	ug/L	1000	ND	93.1	63-124			
1,1,2-Trichloroethane	940.3	10.0	ug/L	1000	ND	94.0	69-133			
Tetrachloroethylene	942.3	10.0	ug/L	1000	ND	94.2	70-124			
2-Hexanone (MBK)	1364	50.0	ug/L	993	ND	137	53-141			
Dibromochloromethane	947.7	10.0	ug/L	1000	ND	94.8	74-122			
1,2-Dibromoethane	898.6	10.0	ug/L	1000	ND	89.9	66-127			
Chlorobenzene	956.2	10.0	ug/L	1000	ND	95.6	76-116			
1,1,1,2-Tetrachloroethane	946.0	10.0	ug/L	1000	ND	94.6	77-121			
Ethylbenzene	904.5	10.0	ug/L	1000	ND	90.4	73-124			
Xylenes, total	2725	20.0	ug/L	3000	ND	90.8	75-123			
Styrene	943.8	10.0	ug/L	1000	ND	94.4	70-120			
Bromoform	928.3	10.0	ug/L	1000	ND	92.8	70-124			
1,2,3-Trichloropropane	883.3	10.0	ug/L	1000	ND	88.3	62-135			
trans-1,4-Dichloro-2-butene	783.5	50.0	ug/L	1030	ND	76.2	50-120			
1,1,2,2-Tetrachloroethane	860.5	10.0	ug/L	1000	ND	86.0	63-126			
1,4-Dichlorobenzene	965.3	10.0	ug/L	1000	ND	96.5	72-119			
1,2-Dichlorobenzene	992.3	10.0	ug/L	1000	ND	99.2	71-117			
,	4040		g, - -				1 1 1 1 1 1			

ug/L

1000

ND

104

50.0

1043

1,2-Dibromo-3-chloropropane

49-134

1HI1877

Spike Source %REC RPD

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 1HJ0341 - EPA 5030B - EPA 8	3260B									
Matrix Spike (1HJ0341-MS1)	Source	1HJ0275-05	Prepared &	Analyzed: 10	0/03/24 17:3	5				
Surrogate: Dibromofluoromethane	465		ug/L	502		92.6	75-136			
Surrogate: 1,2-Dichloroethane-d4	453		ug/L	504		89.9	61-142			
Surrogate: Toluene-d8	495		ug/L	505 500		98.1	82-121			
Surrogate: 4-Bromofluorobenzene	501	41110075.05	ug/L	502	0/02/04 17:5	99.9	80-116			
Matrix Spike Dup (1HJ0341-MSD1)		1HJ0275-05	Prepared & /							
Chloromethane	278.2 235.8	10.0	ug/L	300	ND	92.7	61-152	10.5	26	
Vinyl Chloride		10.0	ug/L	300	ND	78.6	66-149	11.5	23	
Bromomethane	276.5	10.0	ug/L	300	ND	92.2	43-171	8.39	29	
Chloroethane	261.3	10.0	ug/L	300	ND	87.1	69-148	10.4	25	
Trichlorofluoromethane	262.8	10.0	ug/L	300	ND	87.6	62-163	10.3	25	
1,1-Dichloroethylene	750.8	10.0	ug/L	1000	ND	75.1	70-148	10.1	22	
Acetone	1789	100	ug/L	1010	ND	177	45-173	11.0	30	M1
Methyl Iodide	948.2	10.0	ug/L	1020	ND	93.1	62-167	8.93	24	
Carbon Disulfide	792.2	10.0	ug/L	1030	ND	77.1	71-163	9.85	22	
Methylene Chloride	814.4	50.0	ug/L	1000	ND	81.4	69-140	6.59	19	
trans-1,2-Dichloroethylene	760.9	10.0	ug/L	1000	ND	76.1	69-144	9.24	22	
1,1-Dichloroethane	752.1	10.0	ug/L	1000	ND	75.2	70-138	8.28	20	
Vinyl Acetate	842.4	50.0	ug/L	1000	ND	84.2	58-142	3.13	24	
cis-1,2-Dichloroethylene	689.1	10.0	ug/L	1000	ND	68.9	68-151	8.05	22	
2-Butanone (MEK)	1292	100	ug/L	1020	ND	127	50-160	10.4	23	
Bromochloromethane	826.4	10.0	ug/L	1000	ND	82.6	65-143	6.79	22	
Chloroform	806.2	10.0	ug/L	1000	ND	80.6	71-143	7.88	21	
1,1,1-Trichloroethane	762.7	10.0	ug/L	1000	ND	76.3	63-133	9.15	23	
Carbon Tetrachloride	906.8	10.0	ug/L	1000	ND	90.7	63-142	8.54	22	
Benzene	867.2	10.0	ug/L	1000	ND	86.7	69-133	7.44	18	
1,2-Dichloroethane	866.9	10.0	ug/L	1000	ND	86.7	63-138	5.32	20	
Trichloroethylene	822.0	10.0	ug/L	1000	ND	82.2	71-133	8.03	23	
1,2-Dichloropropane	801.2	10.0	ug/L	1000	ND	80.1	69-132	5.99	20	
Dibromomethane	858.5	10.0	ug/L	1000	ND	85.8	70-147	5.02	22	
Bromodichloromethane	818.2	10.0	ug/L	1000	ND	81.8	67-130	5.04	21	
cis-1,3-Dichloropropene	839.3	10.0	ug/L	1000	ND	83.9	61-126	5.65	21	
4-Methyl-2-pentanone (MIBK)	818.5	50.0	ug/L	1000	ND	81.8	55-147	8.63	23	
Toluene	879.8	10.0	ug/L	1000	ND	88.0	71-133	7.66	19	
trans-1,3-Dichloropropene	885.0	10.0	ug/L	1000	ND	88.5	63-124	5.10	21	
1,1,2-Trichloroethane	902.4	10.0	ug/L	1000	ND	90.2	69-133	4.11	19	
Tetrachloroethylene	869.2	10.0	ug/L	1000	ND	86.9	70-124	8.07	24	
2-Hexanone (MBK)	1253	50.0	ug/L	993	ND	126	53-141	8.53	24	
Dibromochloromethane	910.9	10.0	ug/L	1000	ND	91.1	74-122	3.96	21	
1,2-Dibromoethane	861.1	10.0	ug/L	1000	ND	86.1	66-127	3.96 4.26	23	
Chlorobenzene	897.5	10.0	ug/L ug/L	1000		89.8				
	896.2	10.0	_		ND		76-116	6.33	21	
1,1,1,2-Tetrachloroethane	843.6		ug/L	1000	ND	89.6	77-121	5.41	25	
Ethylbenzene Xylenes, total	2548	10.0 20.0	ug/L	1000 3000	ND	84.4	73-124	6.97	20	

1HI1877

Spike Source

%REC

RPD

				Spike	Source		/0KEC		KFD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ0341 - EPA 5030B - EPA	8260B									
Matrix Spike Dup (1HJ0341-MSD1)	Source: 1	HJ0275-05	Prepared &	Analyzed: 1	0/03/24 17:5	8				
Styrene	891.8	10.0	ug/L	1000	ND	89.2	70-120	5.67	23	
Bromoform	909.5	10.0	ug/L	1000	ND	91.0	70-124	2.05	22	
1,2,3-Trichloropropane	853.4	10.0	ug/L	1000	ND	85.3	62-135	3.44	28	
trans-1,4-Dichloro-2-butene	753.4	50.0	ug/L	1030	ND	73.3	50-120	3.92	26	
1,1,2,2-Tetrachloroethane	816.5	10.0	ug/L	1000	ND	81.6	63-126	5.25	24	
1,4-Dichlorobenzene	901.3	10.0	ug/L	1000	ND	90.1	72-119	6.86	24	
1,2-Dichlorobenzene	932.4	10.0	ug/L	1000	ND	93.2	71-117	6.22	24	
1,2-Dibromo-3-chloropropane	984.0	50.0	ug/L	1000	ND	98.4	49-134	5.86	28	
Surrogate: Dibromofluoromethane	469		ug/L	502		93.4	75-136			
Surrogate: 1,2-Dichloroethane-d4	451		ug/L	504		89.5	61-142			
Surrogate: Toluene-d8	498		ug/L	505		98.6	82-121			
Surrogate: 4-Bromofluorobenzene	503		ug/L	502		100	80-116			
Batch 1HJ0745 - EPA 5030B - EPA	8260B									
Blank (1HJ0745-BLK1)			Prepared: 10	0/09/24 00:0	00 Analyzed:	10/09/24 1	6:09			
Allyl chloride	<1.0	1.0	ug/L							
Chloroprene	<1.0	1.0	ug/L							
Methacrylonitrile	<1.0	1.0	ug/L							
Methyl Methacrylate	<1.0	1.0	ug/L							
Propionitrile	<10.0	10.0	ug/L							
Surrogate: Dibromofluoromethane	51.0		ug/L	50.2		102	57-134			
Surrogate: 1,2-Dichloroethane-d4	50.8		ug/L	50.4		101	53-140			
Surrogate: Toluene-d8	48.6		ug/L	50.5		96.3	86-114			
Surrogate: 4-Bromofluorobenzene	49.4		ug/L	50.2		98.4	78-121			
.CS (1HJ0745-BS1)			Prepared: 10	0/09/24 00:0	00 Analyzed:	10/09/24 1	5:01			
Allyl chloride	63.43	1.0	ug/L	50.4		126	40-154			
Chloroprene	59.73	1.0	ug/L	50.4		119	57-134			
Methacrylonitrile	54.50	1.0	ug/L	50.4		108	59-124			
Methyl Methacrylate	56.03	1.0	ug/L	50.1		112	64-130			
Propionitrile	54.94	10.0	ug/L	50.1		110	32-180			
Surrogate: Dibromofluoromethane	50.6		ug/L	50.2		101	57-134			
Surrogate: 1,2-Dichloroethane-d4	50.4		ug/L	50.4		100	53-140			
Surrogate: Toluene-d8	48.5		ug/L	50.5		96.1	86-114			
Surrogate: 4-Bromofluorobenzene	46.4		ug/L	50.2		92.4	78-121			
.CS Dup (1HJ0745-BSD1)			Prepared: 10	0/09/24 00:0	00 Analyzed:	10/09/24 1	5:24			
Allyl chloride	64.96	1.0	ug/L	50.4		129	40-154	2.38	16	
Chloroprene	60.73	1.0	ug/L	50.4		121	57-134	1.66	15	
Methacrylonitrile	56.16	1.0	ug/L	50.4		111	59-124	3.00	17	
Methyl Methacrylate	57.70	1.0	ug/L	50.1		115	64-130	2.94	17	
Propionitrile	56.80	10.0	ug/L	50.1		113	32-180	3.33	21	

CERTIFICATE OF ANALYSIS

1HI1877

Determination of Volatile Organic Compounds	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HJ0745 - EPA 5030B - EPA 8	3260B									
LCS Dup (1HJ0745-BSD1)			Prepared: 10	0/09/24 00:0	0 Analyzed:	10/09/24 1	5:24			
Surrogate: Dibromofluoromethane	49.6		ug/L	50.2		98.9	57-134		-	
Surrogate: 1,2-Dichloroethane-d4	50.2		ug/L ug/L	50.2 50.4		99.6	53-140			
Surrogate: Toluene-d8	49.3		ug/L	50.5		97.7	86-114			
Surrogate: 4-Bromofluorobenzene	50.3		ug/L	50.2		100	78-121			
				Spike	Source		%REC		RPD	Neter
Determination of General Solvents	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ0622 - Semi-Vol GC - EPA	8015C									
Blank (1HJ0622-BLK1)			Prepared: 10	0/08/24 08:4	6 Analyzed:	10/09/24 2	0:42			
Isobutanol	<1.0	1.0	mg/L							
LCS (1HJ0622-BS1)			Prepared: 10	0/08/24 08:4	6 Analyzed:	10/09/24 1	7:33			
Isobutanol	24.96	1.0	mg/L	24.0		104	77-128			
Matrix Spike (1HJ0622-MS1)	Source	e: 1HI1877-04	Prepared: 10	0/08/24 08:4	6 Analyzed:	10/09/24 2	1:57			
Isobutanol	25.08	1.0	mg/L	24.0	ND	105	63-135			
Matrix Spike Dup (1HJ0622-MSD1)	Source	e: 1HI1877-04	Prepared: 10	0/08/24 08:4	6 Analyzed:	10/09/24 2	2:36			
Isobutanol	25.34	1.0	mg/L	24.0	ND	106	63-135	1.02	30	
Determination of Conventional Chemistry Parameters	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HJ0090 - Wet Chem Prepara	ition - EPA 376.2									
Blank (1HJ0090-BLK1)			Prepared: 10	0/02/24 08:2	9 Analyzed:	10/02/24 1	5:19			
Sulfide, total	<0.10	0.10	mg/L							
LCS (1HJ0090-BS1)			Prepared: 10	0/02/24 08:2	9 Analyzed:	10/02/24 1	5:19			
Sulfide, total	0.320	0.10	mg/L	0.31		102	56-118			
Matrix Spike (1HJ0090-MS1)	Source	e: 1HI1952-01	Prepared: 10	0/02/24 08:2	9 Analyzed:	10/02/24 1	5:19			
Sulfide, total	0.358	0.10	mg/L	0.31	ND	114	50-150			
						10/02/24 1	5:19			
Matrix Spike Dup (1HJ0090-MSD1)	Source	e: 1HI1952-01	Prepared: 10	0/02/24 08:2	9 Analyzed:					R1
Matrix Spike Dup (1HJ0090-MSD1) Sulfide, total	0.264	9: 1HI1952-01 0.10	Prepared: 10	0.31	ND	83.9	50-150	30.1	30	
			•		-		50-150 %REC Limits	30.1 RPD	30 RPD Limit	Notes
Sulfide, total	0.264 Result	0.10 RL	mg/L	0.31 Spike	ND Source	83.9	%REC		RPD	
Sulfide, total Determination of Total Metals	0.264 Result	0.10 RL	mg/L	0.31 Spike Level	ND Source Result	83.9 %REC	%REC Limits		RPD	
Sulfide, total Determination of Total Metals Batch 1HJ0171 - EPA 3005A Total Re	0.264 Result	0.10 RL	mg/L Units	0.31 Spike Level	ND Source Result	83.9 %REC	%REC Limits		RPD	
Sulfide, total Determination of Total Metals Batch 1HJ0171 - EPA 3005A Total Re Blank (1HJ0171-BLK1)	0.264 Result ecoverable Metals	0.10 RL s - EPA 6020A	mg/L Units Prepared: 10	0.31 Spike Level	ND Source Result	83.9 %REC	%REC Limits		RPD	
Determination of Total Metals Batch 1HJ0171 - EPA 3005A Total Re Blank (1HJ0171-BLK1) Antimony, total	0.264 Result Recoverable Metals	0.10 RL s - EPA 6020A 0.0020	mg/L Units Prepared: 10 mg/L	0.31 Spike Level	ND Source Result	83.9 %REC	%REC Limits		RPD	

CERTIFICATE OF ANALYSIS

1HI1877

Spike Source

%REC

RPD

Determination of Total Metals	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ0171 - EPA 3005A Total	Recoverable Metals	- EPA 6020A								
Blank (1HJ0171-BLK1)			Prepared: 1	0/02/24 16:0)1 Analyzed:	10/03/24 1	7:03			
Cadmium, total	<0.0008	0.0008	mg/L							
Chromium, total	<0.0080	0.0080	mg/L							
Cobalt, total	<0.0004	0.0004	mg/L							
Copper, total	<0.0040	0.0040	mg/L							
Lead, total	<0.0040	0.0040	mg/L							
Nickel, total	<0.0040	0.0040	mg/L							
Selenium, total	<0.0040	0.0040	mg/L							
Silver, total	<0.0040	0.0040	mg/L							
Thallium, total	<0.0020	0.0020	mg/L							
Tin, total	<0.0200	0.0200	mg/L							
Vanadium, total	<0.0200	0.0200	mg/L							
Zinc, total	<0.0200	0.0200	mg/L							
LCS (1HJ0171-BS1)			Prepared: 1	0/02/24 16:0)1 Analyzed:	10/03/24 1	7:09			
Antimony, total	0.0983	0.0020	mg/L	0.100		98.3	80-120			
Arsenic, total	0.0961	0.0040	mg/L	0.100		96.1	80-120			
Barium, total	0.105	0.0040	mg/L	0.100		105	80-120			
Beryllium, total	0.101	0.0040	mg/L	0.100		101	80-120			
Cadmium, total	0.0995	0.0008	mg/L	0.100		99.5	80-120			
Chromium, total	0.0954	0.0080	mg/L	0.100		95.4	80-120			
Cobalt, total	0.103	0.0004	mg/L	0.100		103	80-120			
Copper, total	0.102	0.0040	mg/L	0.100		102	80-120			
Lead, total	0.0996	0.0040	mg/L	0.100		99.6	80-120			
Nickel, total	0.0992	0.0040	mg/L	0.100		99.2	80-120			
Selenium, total	0.0964	0.0040	mg/L	0.100		96.4	80-120			
Silver, total	0.101	0.0040	mg/L	0.100		101	80-120			
Thallium, total	0.0844	0.0020	mg/L	0.100		84.4	80-120			
Tin, total	0.0972	0.0200	mg/L	0.100		97.2	80-120			
Vanadium, total	0.0968	0.0200	mg/L	0.100		96.8	80-120			
Zinc, total	0.101	0.0200	mg/L	0.100		101	80-120			
Matrix Spike (1HJ0171-MS1)	Source:	1HI1877-01	Prepared: 1	0/02/24 16:0)1 Analyzed:	10/03/24 1	7:21			
Antimony, total	0.0990	0.0020	mg/L	0.100	ND	99.0	75-125			
Arsenic, total	0.0981	0.0040	mg/L	0.100	0.0013	96.8	75-125			
Barium, total	0.771	0.0040	mg/L	0.100	0.637	134	75-125			M6
Beryllium, total	0.0988	0.0040	mg/L	0.100	ND	98.8	75-125			
Cadmium, total	0.0963	0.0008	mg/L	0.100	0.0003	96.1	75-125			
Chromium, total	0.0919	0.0080	mg/L	0.100	0.0006	91.9	75-125			
Cobalt, total	0.103	0.0004	mg/L	0.100	0.0024	100	75-125			
Copper, total	0.0939	0.0040	mg/L	0.100	0.0010	92.8	75-125			
Lead, total	0.0959	0.0040	mg/L	0.100	ND	95.9	75-125			
Nickel, total	0.106	0.0040	mg/L	0.100	0.0113	94.6	75-125			
Selenium, total	0.0932	0.0040	mg/L	0.100	ND	93.2	75-125			
Silver, total	0.0972	0.0040	mg/L	0.100	ND	97.2	75-125			
Thallium, total	0.0836	0.0020	mg/L	0.100	0.0003	83.3	75-125			

1HI1877

Determination of Total Metals	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HJ0171 - EPA 3005A Total R			Oilles	Level	resuit	/orieu	LIIIIII	NFυ	Lillit	
			D	0/00/04 40-0)4 A l l-	40/02/04 4	7.04			
Matrix Spike (1HJ0171-MS1)		: 1HI1877-01	•)1 Analyzed:					
Tin, total	0.0973	0.0200	mg/L	0.100	ND	97.3	75-125			
Vanadium, total	0.0976	0.0200	mg/L	0.100	ND	97.6	75-125			
Zinc, total	0.0946	0.0200	mg/L	0.100	ND	94.6	75-125			
Matrix Spike Dup (1HJ0171-MSD1)	Source	: 1HI1877-01	Prepared: 1	0/02/24 16:0	1 Analyzed:	10/03/24 1	7:27			
Antimony, total	0.101	0.0020	mg/L	0.100	ND	101	75-125	2.42	20	
Arsenic, total	0.100	0.0040	mg/L	0.100	0.0013	98.8	75-125	2.02	20	
Barium, total	0.779	0.0040	mg/L	0.100	0.637	142	75-125	1.07	20	M6
Beryllium, total	0.102	0.0040	mg/L	0.100	ND	102	75-125	3.30	20	
Cadmium, total	0.0958	0.0008	mg/L	0.100	0.0003	95.6	75-125	0.529	20	
Chromium, total	0.0953	0.0080	mg/L	0.100	0.0006	95.3	75-125	3.65	20	
Cobalt, total	0.107	0.0004	mg/L	0.100	0.0024	105	75-125	3.98	20	
Copper, total	0.0994	0.0040	mg/L	0.100	0.0010	98.4	75-125	5.72	20	
Lead, total	0.0979	0.0040	mg/L	0.100	ND	97.9	75-125	2.15	20	
Nickel, total	0.112	0.0040	mg/L	0.100	0.0113	100	75-125	5.23	20	
Selenium, total	0.0969	0.0040	mg/L	0.100	ND	96.9	75-125	3.93	20	
Silver, total	0.0997	0.0040	mg/L	0.100	ND	99.7	75-125	2.53	20	
Thallium, total	0.0853	0.0020	mg/L	0.100	0.0003	85.0	75-125	2.00	20	
Tin, total	0.0997	0.0200	mg/L	0.100	ND	99.7	75-125	2.46	20	
Vanadium, total	0.100	0.0200	mg/L	0.100	ND	100	75-125	2.51	20	
Zinc, total	0.0981	0.0200	mg/L	0.100	ND	98.1	75-125	3.60	20	
Post Spike (1HJ0171-PS1)	Source	e: 1HI1877-01	•)1 Analyzed:			0.00		
Antimony, total	0.0758		mg/L	0.0800	0.0001	94.5	80-120			
Arsenic, total	0.0745		mg/L	0.0800	0.0012	91.5	80-120			
Barium, total	0.721		mg/L	0.0800	0.625	121	80-120			M6
Beryllium, total	0.0741		mg/L	0.0800	0.00001	92.6	80-120			
Cadmium, total	0.0717		mg/L	0.0800	0.0002	89.3	80-120			
Chromium, total	0.0694		mg/L	0.0800	0.0005	86.1	80-120			
Cobalt, total	0.0786		mg/L	0.0800	0.0024	95.3	80-120			
Copper, total	0.0711		mg/L	0.0800	0.0010	87.6	80-120			
Lead, total	0.0717		mg/L	0.0800	0.00006	89.6	80-120			
Nickel, total	0.0823		mg/L	0.0800	0.00000	89.0	80-120			
Selenium, total	0.0697		mg/L	0.0800	0.0111	86.3	80-120			
Silver, total	0.0738		mg/L	0.0800	0.0007					
Thallium, total	0.0614		mg/L			91.9 76.4	80-120			0
	0.0775		•	0.0800	0.0003	76.4	80-120			Q
Tin, total	0.0773		mg/L	0.0800	0.0003	96.4	75-125			
Vanadium, total			mg/L	0.0800	0.0026	92.1	80-120			
Zinc, total	0.0740		mg/L	0.0800	0.0051	86.1	80-120			
Batch 1HJ0203 - EPA 7470A Hg Wa	ter - EPA 7470A									
Blank (1HJ0203-BLK1)			Prepared: 1	0/03/24 08:0	8 Analyzed:	10/04/24 1	6:01			
Mercury, total	<0.00050	0.00050	mg/L							
CS (1HJ0203-BS1)			Prepared: 1	∩/∩3/24 ∩8·C	8 Analyzed:	10/04/24 1	6.03			

Microbac Laboratories, Inc., Newton

CERTIFICATE OF ANALYSIS

1HI1877

Spike

Source

Determination of Total Metals	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HJ0203 - EPA 7470A Hg Wat	er - EPA 7470A									
LCS (1HJ0203-BS1)		I	Prepared: 1	0/03/24 08:0	8 Analyzed:	10/04/24 1	6:03			
Mercury, total	0.00261	0.00050	mg/L	0.00250		104	80-120			
Matrix Spike (1HJ0203-MS1)	Source	: 1HI1589-04RE1	Prepared: ′	0/03/24 08:0	8 Analyzed:	10/04/24 1	6:08			
Mercury, total	0.00263	0.00050	mg/L	0.00250	ND	105	75-125			
Matrix Spike Dup (1HJ0203-MSD1)	Source	: 1HI1589-04RE1	Prepared: 1	0/03/24 08:0	8 Analyzed:	10/04/24 1	6:10			
Mercury, total	0.00257	0.00050	mg/L	0.00250	ND	103	75-125	1.93	20	

Definitions

M1: Matrix spike recovery is above acceptance limits.M2: Matrix spike recovery is below acceptance limits.

M6: Matrix spike recovery is outside of acceptance limits. The analyte concentration is greater than 4X the spiking level.

Q: One or more quality control criteria failed.

Q3: LCS recovery is below acceptance limits. The reported value is estimated.

R1: Duplicate RPD is outside acceptance criteria.

RL: Reporting Limit

RPD: Relative Percent Difference

S1: Surrogate recovery is above acceptance limits.

Cooler Receipt Log

Cooler ID: Default Cooler Temp: 0.0 °C

Cooler Inspection Checklist

Custody SealsNoContainers IntactYesCOC/Labels AgreeYesPreservation ConfirmedNoReceived On IceYes

Report Comments

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions.

Reviewed and Approved By:

atheram urphy

Heather Murphy

Customer Relationship Specialist heather.murphy@microbac.com

10/11/24 16:18

RPD

%REC

CHAIN OF CUSTODY RECORD

- CDECIAL INICEDIACEIONIC

600 East 17th Street Sout Newton, IA 50208 244 709 OAE4

HLW Engineering PM: Heather Murphy

inted: 8/12/2024 3:52:44P www.keystonelabs.com

Page 1 of

SITE INF	ORMATION	1
Sampler:	TODO WHIPPLE	
Project:	Page Co-New Regs	
	6047	

Todd Whipple HIW Engineering PO Pox 214 Story City, iA 50246

REPORT TO

Brian Ward Page County Landfill Assoc 2032 N Ava Ciaringa, iA 5 1052

SPECIAL INS	RUCTIONS	
None		
Turn Around Tin	ne RUSH, need by//	,

LAB USE ONLY Custody Seal Work Order Containers Intact COC/Labels Agree Temperature **Preservation Confirmed** Turn-Cooler: No Received on Ice

			Sample			Number of			Lab Sample
Number	Sample Identification / Client ID	Matrix	Туре	Date	Time	Containers	Analy	/ses	Number
-001	MW-1D	Aqueous	GRAB	9 125124	17:13	7	Indfill-app1-voc-group	Indfll-app1-metals-6020	01
-001	MW-3	Aqueous	GRAB	9 125124	16:45	7	Indfill-app1-voc-group	Indfil-app1-metals-6020	02
-001	MW-7	Aqueous	GRAB	9 125/24	14159	7	Indfill-app1-voc-group	Indfil-app1-metals-6020	03
-001	MW-10	Aqueous	GRAB	9 25/24	18:20	12*	Indfl1-app2-inorg-6020	Indfll-app2-org	04
-001	MW-13	Aqueous	GRAB	9/25/24	15:15	7	Indfili-app1-voc-group	Indfil-app1-metals-6020	05
-001	MW-14	Aqueous	GRAB	9/25/24	15:30	7	Indfill-app1-voc-group	IndflI-app1-metals-6020	060
-001	MW-16	Aqueous	GRAB	9/25/24	15:53	_7_	Indfill-app1-voc-group	Indfil-app1-metals-6020	07

Received By

Date/Time

Relinquished By

Received for Lab By

Date/Time

9-26-24

Original - Lab Copy Yellow - Sampler Copy

Remarks: MW-10 became dry before entire scuple was collected. Sample 15 MISSING (1) 250 plasfic Na OH container and the (5) I liter glass Jors. Please test all App 11 Compounds possible from the 12 containers.

26 οţ 52

CHAIN OF CUSTODY RECORD

Ne 0

www.keystonelabs.com

inted: 8/12/2024 3:52:44P

Page 2 of

MICROBAC®

00 East 17th Street Sou	
ewton. IA 50208	
44-702-9451	1 H I 1 8 7
TI TOM OTO!	III M Engineering

HLW Engineering PM: Heather Murphy

- (Sľ	TE	IN	FO	RM	ATI	ON
-----	----	----	----	----	----	-----	----

Sampler: TONS WHIPPLE

Project: Page Co-Hew Rega

6047

REPORT TO

Todd Whipple HIW Engineering PO Box 314

Story City, IA 50246

Brian Ward

Page County Landfill Assoc 2032 N. Ave.

Ciarinda, iA 5 1032

SPECIAL INSTRUCTIONS

None

Turn Around Time

Standard

RUSH, need by ___/__/_

LAB USE ONLY

Work Order

Temperature

Turn-Cooler: No Custody Seal

Containers Intact COC/Labels Agree

Preservation Confirmed

Received on Ice

			Sample			Number of			Lab Sample
Number	Sample Identification / Client ID	Matrix	Type	Date	Time	Containers	Anal	yses	Number
-001	MW-17 (b)	Aqueous	GRAB	9 125/24	16:57		Indfill-app1-voc-group	Indfil-app1-metals-6020	08
-001	MW-18	Aqueous	GRAB	9 125 124	16:30	7	Indfill-app1-voc-group	Indfil-app1-metals-6020	09
-001	MW-19 NOT Sampled	Aqueous	GRAB	9-25	educatio em directo de ordente de destrucción.	ACTUAL DESIGNATION OF THE PROPERTY OF THE PROP	Indfill-app1-voc-group	Indfil-app1-metals-6020	10
-001	MW-20	Aqueous	GRAB	9 125 124	14:45	7	Indfill-app1-voc-group	Indfil-app1-metals-6020	10
-001	GWD-1 Day	Aqueous	GRAB	9 25/24	DRY		Indfill-app1-voc-group	Indfil-app1-metals-6020	12-11
-001	Duplicate	Aqueous	GRAB	9 25 24	V		Indfill appl voc group	Indfll-app1-metals-6020	11/13
-001	MW-44 (b) NOT Soupled	Aqueous	GRAB		November of the section of the section		Indfill-app1-voc-group	Indfil-app1-metals-6020	Application and consequences and
									4

Co.000	Wind	9/26/24	
Relinquished By	Date/	Time '	

1

Received By Date/Time Relinquished By

Date/Time -26-24 10:03

Remarks:

Original - Lab Copy Yellow - Sampler Copy

			DINKE H				
CHAIN	OF	CU	ST	ODY	REC	OR	D

Received By

Date/Time

600 East 17th Street South Newton. IA 50208

MICROBAC®

644 702 0451

HLW Engineering
PM: Heather Murphy

THE RESIDEN		9
	Page 3 of	of 5
red: 8/12/2024	3:52:44P	26
red: 8/12/2024 ww.keystone	elabs.com	age

SITE	INFORMATION		RE	PORT TO -		Pivi. Heather ivid	MANAGER ID		
Project: Page Content Regs			Todd Whipple HI W Engineering PO Box 314 Story City, IA 50246				Brian Ward Page County Landfill Assoc 2032 N Ave Clarinda, IA 51632		
Nor	round Time ndard RUSH, need by/	/	Work (B USE ONLY Order 1 +1; erature Cooler: No	I1877 O.O		Custody Seal Containers Intact COC/Labels Agree Preservation Confirmed Received on Ice		
Number	Sample Identification / Client ID	Matrix	Sample Type	Date	Time	Number of Containers	Analyses	Lab Sample Number	
-001	MW-53 GV-3 GV-4	Aqueous Aq.	GRAB Grab Grab	9/25/24 9/25/24	17:30 18:06 17:59	7 7 7	Indfill-app1-voc-group Indfill-app1-metals-6020 Landfill App1 voc landfill AppIne Landfill App I Voc Landfill AppI	13 世 145 世 1845 15	
Relinquishe	and Compare 1/24/24 Bate/Time	Relinguishe	ed By	/	Date/Time	Re	emarks:	1	

Original - Lab Copy Yellow - Sampler Copy

Microbac Laboratories, Inc., Newton

CERTIFICATE OF ANALYSIS 1HL0001

Project Description

6047

For:

Todd Whipple

HLW Engineering

204 West Broad St

Story City, IA 50248

Heather Murphy

andheram ur Dh

Customer Relationship Specialist

Monday, January 20, 2025

Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories. Review and compilation of your report was completed by Microbac Laboratories, Inc., Newton. If you have any questions, comments, or require further assistance regarding this report, please contact your service representative listed above.

I certify that all test results meet all of the requirements of the accrediting authority listed within this report. Analytical results are reported on a 'as received' basis unless specified otherwise. Analytical results for solids with units ending in (dry) are reported on a dry weight basis. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories. The reported results are related only to the samples analyzed as received.

Microbac Laboratories, Inc.

1HL0001

HLW Engineering

Project Name: 6047

Todd Whipple 204 West Broad St Story City, IA 50248 Project / PO Number: N/A Received: 11/27/2024 Reported: 01/20/2025

Sample Summary Report

Sample Name	Laboratory ID	Client Matrix	Sample Type	Sample Begin	Sample Taken	Lab Received
MW-44	1HL0001-01	Aqueous	GRAB		11/25/24 10:54	11/27/24 09:48
GWD-1	1HL0001-02	Aqueous	GRAB		11/25/24 11:33	11/27/24 09:48
MW-14	1HL0001-03	Aqueous	GRAB		11/25/24 11:45	11/27/24 09:48
MW-19	1HL0001-04	Aqueous	GRAB		11/25/24 12:02	11/27/24 09:48
GU 4	1HL0001-05	Aqueous			11/25/24 12:37	11/27/24 09:48

Analytical Testing Parameters

Client Sample ID: MW-44
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HL0001-01 Collection Date: 11/25/2024 10:54

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 5030B/EPA 8260D								
Chloromethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1816	CSM
Vinyl Chloride	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1816	CSM
Bromomethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1816	CSM
Chloroethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1816	CSM
Trichlorofluoromethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1816	CSM
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1816	CSM
Acetone	<10.0	10.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
Methyl Iodide	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
Carbon Disulfide	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
Methylene Chloride	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
Acrylonitrile	<5.0	5.0	ug/L	1		12/03/24 1148	12/02/24 1816	CSM
Acrylonitrile	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1816	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
1,1-Dichloroethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
Vinyl Acetate	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
2-Butanone (MEK)	<10.0	10.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
Bromochloromethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
Chloroform	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
Carbon Tetrachloride	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
Benzene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
1,2-Dichloroethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
Trichloroethylene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
1,2-Dichloropropane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
Dibromomethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
Bromodichloromethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
Toluene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
Tetrachloroethylene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
Dibromochloromethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
1,2-Dibromoethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
Chlorobenzene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
Ethylbenzene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
Xylenes, total	<2.0	2.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM

Client Sample ID: MW-44
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HL0001-01 Collection Date: 11/25/2024 10:54

					Collection	Dato : 117207	2024 10:54	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
Styrene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
Bromoform	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1753	CSM
Surrogate: Dibromofluoromethane	103	Limit: 57-134	% Rec	1		12/02/24 0000	12/02/24 1816	CSM
Surrogate: Dibromofluoromethane	103	Limit: 75-136	% Rec	1		12/02/24 0000	12/02/24 1816	CSM
Surrogate: Dibromofluoromethane	103	Limit: 57-134	% Rec	1		12/03/24 1148	12/02/24 1816	CSM
Surrogate: 1,2-Dichloroethane-d4	110	Limit: 61-142	% Rec	1		12/02/24 0000	12/02/24 1816	CSM
Surrogate: 1,2-Dichloroethane-d4	110	Limit: 53-140	% Rec	1		12/02/24 0000	12/02/24 1816	CSM
Surrogate: 1,2-Dichloroethane-d4	110	Limit: 53-140	% Rec	1		12/03/24 1148	12/02/24 1816	CSM
Surrogate: Toluene-d8	92.5	Limit: 86-114	% Rec	1		12/03/24 1148	12/02/24 1816	CSM
Surrogate: Toluene-d8	92.6	Limit: 86-114	% Rec	1		12/02/24 0000	12/02/24 1753	CSM
Surrogate: Toluene-d8	92.5	Limit: 82-121	% Rec	1		12/02/24 0000	12/02/24 1816	CSM
Surrogate: 4-Bromofluorobenzene	96.3	Limit: 78-121	% Rec	1		12/02/24 0000	12/02/24 1753	CSM
Surrogate: 4-Bromofluorobenzene	96.7	Limit: 78-121	% Rec	1		12/03/24 1148	12/02/24 1816	CSM
Surrogate: 4-Bromofluorobenzene	96.7	Limit: 80-116	% Rec	1		12/02/24 0000	12/02/24 1816	CSM
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		12/02/24 1505	12/04/24 2302	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		12/02/24 1505	12/04/24 2302	RVV
Barium, total	0.134	0.0040	mg/L	4		12/02/24 1505	12/04/24 2302	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		12/02/24 1505	12/04/24 2302	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		12/02/24 1505	12/04/24 2302	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		12/02/24 1505	12/04/24 2302	RVV
Cobalt, total	<0.0004	0.0004	mg/L	4		12/02/24 1505	12/04/24 2302	RVV
Copper, total	<0.0040	0.0040	mg/L	4		12/02/24 1505	12/04/24 2302	RVV
Lead, total	<0.0040	0.0040	mg/L	4		12/02/24 1505	12/04/24 2302	RVV
Nickel, total	<0.0040	0.0040	mg/L	4		12/02/24 1505	12/04/24 2302	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		12/02/24 1505	12/04/24 2302	RVV
Silver, total	<0.0040	0.0040	mg/L	4		12/02/24 1505	12/04/24 2302	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		12/02/24 1505	12/04/24 2302	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		12/02/24 1505	12/04/24 2302	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		12/02/24 1505	12/04/24 2302	RVV

Client Sample ID: GWD-1
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HL0001-02 **Collection Date:** 11/25/2024 11:33

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260D								
Chloromethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Vinyl Chloride	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Bromomethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Chloroethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Trichlorofluoromethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Acetone	<10.0	10.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Methyl Iodide	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Carbon Disulfide	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Methylene Chloride	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Acrylonitrile	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
1,1-Dichloroethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Vinyl Acetate	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
2-Butanone (MEK)	<10.0	10.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Bromochloromethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Chloroform	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Carbon Tetrachloride	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Benzene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
1,2-Dichloroethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Trichloroethylene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
1,2-Dichloropropane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Dibromomethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Bromodichloromethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Toluene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Tetrachloroethylene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Dibromochloromethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
1,2-Dibromoethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Chlorobenzene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Ethylbenzene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Xylenes, total	<2.0	2.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Styrene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Bromoform	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM

Client Sample ID: GWD-1
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HL0001-02					Collection [-	/2024 11:33	
Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1838	CSM
Surrogate: Dibromofluoromethane	104	Limit: 75-136	% Rec	1		12/02/24 0000	12/02/24 1838	CSM
Surrogate: Dibromofluoromethane	104	Limit: 57-134	% Rec	1		12/02/24 0000	12/02/24 1838	CSM
Surrogate: 1,2-Dichloroethane-d4	112	Limit: 53-140	% Rec	1		12/02/24 0000	12/02/24 1838	CSM
Surrogate: 1,2-Dichloroethane-d4	112	Limit: 61-142	% Rec	1		12/02/24 0000	12/02/24 1838	CSM
Surrogate: Toluene-d8	94.0	Limit: 82-121	% Rec	1		12/02/24 0000	12/02/24 1838	CSM
Surrogate: Toluene-d8	94.0	Limit: 86-114	% Rec	1		12/02/24 0000	12/02/24 1838	CSM
Surrogate: 4-Bromofluorobenzene	95.8	Limit: 78-121	% Rec	1		12/02/24 0000	12/02/24 1838	CSM
Surrogate: 4-Bromofluorobenzene	95.8	Limit: 80-116	% Rec	1		12/02/24 0000	12/02/24 1838	CSM
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analys
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		12/02/24 1505	12/04/24 2308	RVV
Arsenic, total	0.0040	0.0040	mg/L	4		12/02/24 1505	12/04/24 2308	RVV
Barium, total	0.210	0.0040	mg/L	4		12/02/24 1505	12/04/24 2308	RVV
Beryllium, total	<0.0040	0.0040	mg/L	4		12/02/24 1505	12/04/24 2308	RVV
Cadmium, total	<0.0008	0.0008	mg/L	4		12/02/24 1505	12/04/24 2308	RVV
Chromium, total	<0.0080	0.0080	mg/L	4		12/02/24 1505	12/04/24 2308	RVV
Cobalt, total	<0.0004	0.0004	mg/L	4		12/02/24 1505	12/04/24 2308	RVV
Copper, total	<0.0040	0.0040	mg/L	4		12/02/24 1505	12/04/24 2308	RVV
Lead, total	<0.0040	0.0040	mg/L	4		12/02/24 1505	12/04/24 2308	RVV
Nickel, total	<0.0040	0.0040	mg/L	4		12/02/24 1505	12/04/24 2308	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		12/02/24 1505	12/04/24 2308	RVV
Silver, total	<0.0040	0.0040	mg/L	4		12/02/24 1505	12/04/24 2308	RVV
Thallium, total	<0.0020	0.0020	mg/L	4		12/02/24 1505	12/04/24 2308	RVV
Vanadium, total	<0.0200	0.0200	mg/L	4		12/02/24 1505	12/04/24 2308	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		12/02/24 1505	12/04/24 2308	RVV
Zino, total	~0.0200	0.0200	ilig/L	-		12/02/24 1303	12/04/24 2300	11 V V

Microbac Laboratories, Inc., Newton

CERTIFICATE OF ANALYSIS

1HL0001

Client Sample ID: MW-14
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HL0001-03 **Collection Date:** 11/25/2024 11:45

Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
200.7								
Calcium, total	165	0.1	mg/L	1		12/02/24 1519	12/03/24 2255	JAR
EPA 200.7, Rv. 4.4 (1994)								
Cadmium, total	<0.005	0.005	mg/L	1		12/02/24 1519	12/03/24 2255	JAR
EPA 3005A/EPA 6020A								
Cadmium, total	<0.0008	0.0008	mg/L	4		01/13/25 1526	01/15/25 1857	RVV

Client Sample ID: MW-19
Sample Matrix: Aqueous Collected By: JGH

Lab Sample ID: 1HL0001-04 Collection Date: 11/25/2024 12:02

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 8260D								
Chloromethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Vinyl Chloride	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Bromomethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Chloroethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Trichlorofluoromethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Acetone	<10.0	10.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Methyl Iodide	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Carbon Disulfide	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Methylene Chloride	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Acrylonitrile	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
1,1-Dichloroethane	3.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Vinyl Acetate	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
cis-1,2-Dichloroethylene	2.4	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
2-Butanone (MEK)	<10.0	10.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Bromochloromethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Chloroform	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Carbon Tetrachloride	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Benzene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
1,2-Dichloroethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Trichloroethylene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
1,2-Dichloropropane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Dibromomethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Bromodichloromethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Toluene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Tetrachloroethylene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
2-Hexanone (MBK)	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Dibromochloromethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
1,2-Dibromoethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Chlorobenzene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Ethylbenzene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Xylenes, total	<2.0	2.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Styrene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Bromoform	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
1,2,3-Trichloropropane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM

Client Sample ID: MW-19 Collected By: JGH

Result

Lab Sample ID: 1HL0001-04 **Collection Date:** 11/25/2024 12:02

RL

Units

DF

Note

Collected By:

JGH

Prepared

Analyzed

Analyst

Compounds						<u> </u>		
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
1,2-Dibromo-3-chloropropane	<5.0	5.0	ug/L	1		12/02/24 0000	12/02/24 1901	CSM
Surrogate: Dibromofluoromethane	107	Limit: 75-136	% Rec	1		12/02/24 0000	12/02/24 1901	CSM
Surrogate: Dibromofluoromethane	107	Limit: 57-134	% Rec	1		12/02/24 0000	12/02/24 1901	CSM
Surrogate: 1,2-Dichloroethane-d4	113	Limit: 53-140	% Rec	1		12/02/24 0000	12/02/24 1901	CSM
Surrogate: 1,2-Dichloroethane-d4	113	Limit: 61-142	% Rec	1		12/02/24 0000	12/02/24 1901	CSM
Surrogate: Toluene-d8	93.2	Limit: 86-114	% Rec	1		12/02/24 0000	12/02/24 1901	CSM
Surrogate: Toluene-d8	93.2	Limit: 82-121	% Rec	1		12/02/24 0000	12/02/24 1901	CSM
Surrogate: 4-Bromofluorobenzene	95.8	Limit: 80-116	% Rec	1		12/02/24 0000	12/02/24 1901	CSM
Surrogate: 4-Bromofluorobenzene	95.8	Limit: 78-121	% Rec	1		12/02/24 0000	12/02/24 1901	CSM
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020A								
Antimony, total	<0.0020	0.0020	mg/L	4		12/02/24 1505	12/04/24 2314	RVV
Arsenic, total	<0.0040	0.0040	mg/L	4		12/02/24 1505	12/04/24 2314	RVV
Barium, total	0.273	0.0040	mg/L	4		12/02/24 1505	12/04/24 2314	RVV
Damillions total								
Beryllium, total	<0.0040	0.0040	mg/L	4		12/02/24 1505	12/04/24 2314	RVV
Cadmium, total	<0.0040 <0.0008	0.0040 0.0008	mg/L mg/L	4 4		12/02/24 1505 12/02/24 1505	12/04/24 2314 12/04/24 2314	RVV
•			-					
Cadmium, total	<0.0008	0.0008	mg/L	4		12/02/24 1505	12/04/24 2314	RVV
Cadmium, total Chromium, total	<0.0008 <0.0080	0.0008 0.0080	mg/L mg/L	4 4		12/02/24 1505 12/02/24 1505	12/04/24 2314 12/04/24 2314	RVV RVV
Cadmium, total Chromium, total Cobalt, total	<0.0008 <0.0080 0.0010	0.0008 0.0080 0.0004	mg/L mg/L mg/L	4 4 4		12/02/24 1505 12/02/24 1505 12/02/24 1505	12/04/24 2314 12/04/24 2314 12/04/24 2314	RVV RVV RVV
Cadmium, total Chromium, total Cobalt, total Copper, total	<0.0008 <0.0080 0.0010 <0.0040	0.0008 0.0080 0.0004 0.0040	mg/L mg/L mg/L mg/L	4 4 4 4		12/02/24 1505 12/02/24 1505 12/02/24 1505 12/02/24 1505	12/04/24 2314 12/04/24 2314 12/04/24 2314 12/04/24 2314	RVV RVV RVV
Cadmium, total Chromium, total Cobalt, total Copper, total Lead, total	<0.0008 <0.0080 0.0010 <0.0040 <0.0040	0.0008 0.0080 0.0004 0.0040 0.0040	mg/L mg/L mg/L mg/L mg/L	4 4 4 4		12/02/24 1505 12/02/24 1505 12/02/24 1505 12/02/24 1505 12/02/24 1505	12/04/24 2314 12/04/24 2314 12/04/24 2314 12/04/24 2314 12/04/24 2314	RVV RVV RVV RVV
Cadmium, total Chromium, total Cobalt, total Copper, total Lead, total Nickel, total	<0.0008 <0.0080 0.0010 <0.0040 <0.0040 0.0074	0.0008 0.0080 0.0004 0.0040 0.0040	mg/L mg/L mg/L mg/L mg/L	4 4 4 4 4		12/02/24 1505 12/02/24 1505 12/02/24 1505 12/02/24 1505 12/02/24 1505 12/02/24 1505	12/04/24 2314 12/04/24 2314 12/04/24 2314 12/04/24 2314 12/04/24 2314 12/04/24 2314	RVV RVV RVV RVV RVV
Cadmium, total Chromium, total Cobalt, total Copper, total Lead, total Nickel, total Selenium, total	<0.0008 <0.0080 0.0010 <0.0040 <0.0040 0.0074	0.0008 0.0080 0.0004 0.0040 0.0040 0.0040	mg/L mg/L mg/L mg/L mg/L mg/L	4 4 4 4 4		12/02/24 1505 12/02/24 1505 12/02/24 1505 12/02/24 1505 12/02/24 1505 12/02/24 1505 12/02/24 1505	12/04/24 2314 12/04/24 2314 12/04/24 2314 12/04/24 2314 12/04/24 2314 12/04/24 2314 12/04/24 2314	RVV RVV RVV RVV RVV
Cadmium, total Chromium, total Cobalt, total Copper, total Lead, total Nickel, total Selenium, total Silver, total	<0.0008 <0.0080 0.0010 <0.0040 <0.0044 0.0074 <0.0040 <0.0040	0.0008 0.0080 0.0004 0.0040 0.0040 0.0040 0.0040	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	4 4 4 4 4 4		12/02/24 1505 12/02/24 1505 12/02/24 1505 12/02/24 1505 12/02/24 1505 12/02/24 1505 12/02/24 1505 12/02/24 1505	12/04/24 2314 12/04/24 2314 12/04/24 2314 12/04/24 2314 12/04/24 2314 12/04/24 2314 12/04/24 2314	RVV RVV RVV RVV RVV RVV

Client Sample ID: GU 4
Sample Matrix: Aqueous

Determination of Volatile Organic

Lab Sample ID: 1HL0001-05 Collection Date: 11/25/2024 12:37

Analyzed **Determination of Total Metals** Result RL Units DF Note Prepared Analyst EPA 200.7, Rv. 4.4 (1994) 0.020 12/02/24 1519 12/03/24 2303 Zinc, total 0.127 mg/L 1 JAR

Batch Log Summary

Method	Batch	Laboratory ID	Client / Source ID
EPA 6020A	1HL0065	1HL0065-BLK1	
		1HL0065-BS1	
		1HL0065-MS1	1HK2018-02
		1HL0065-MSD1	1HK2018-02
		1HL0065-PS1	1HK2018-02
		1HL0001-01	MW-44
		1HL0001-02	GWD-1
		1HL0001-04	MW-19
Method	Batch	Laboratory ID	Client / Source ID
EPA 200.7, Rv. 4.4 (1994)	1HL0071	1HL0071-BLK1	
200.7		1HL0071-BLK1	
		1HL0071-BS1	
EPA 200.7, Rv. 4.4 (1994)		1HL0071-BS1	
200.7		1HL0071-MS1	1HK1970-01
EPA 200.7, Rv. 4.4 (1994)		1HL0071-MS1	1HK1970-01
200.7		1HL0071-MSD1	1HK1970-01
EPA 200.7, Rv. 4.4 (1994)		1HL0071-MSD1	1HK1970-01
200.7		1HL0071-PS1	1HK1970-01
EPA 200.7, Rv. 4.4 (1994)		1HL0071-PS1	1HK1970-01
200.7		1HL0001-03	MW-14
EPA 200.7, Rv. 4.4 (1994)		1HL0001-03	MW-14
,		1HL0001-05	GU 4
Method	Batch	Laboratory ID	Client / Source ID
EPA 8260D	1HL0133	1HL0133-BS1	
		1HL0133-BSD1	
		1HL0133-BLK1	
		1HL0001-01	MW-44
		1HL0001-01RE1	MW-44
		1HL0001-01RE1 1HL0001-02	MW-44 GWD-1
		1HL0001-02	GWD-1
		1HL0001-02 1HL0001-02	GWD-1 GWD-1
		1HL0001-02 1HL0001-02 1HL0001-04	GWD-1 GWD-1 MW-19
		1HL0001-02 1HL0001-02 1HL0001-04 1HL0001-04	GWD-1 GWD-1 MW-19 MW-19
		1HL0001-02 1HL0001-02 1HL0001-04	GWD-1 GWD-1 MW-19

Microbac Laboratories, Inc., Newton

Microbac Laboratories, Inc., Newton

CERTIFICATE OF ANALYSIS

1HL0001

EPA 8260D	1HL0133	1HL0	1HL0133-MSD1		1HL000)1-01				
Method	Batch	Labo	ratory ID		Client	/ Source	ID			
EPA 6020A	1IA0549	1IA05	549-BLK1							
		1IA05	549-BS1							
		1HL0	001-03		MW-14					
		1IA05	549-MS1		1IA050					
			649-MSD1		1IA050					
			549-PS1		1IA050					
Batch Quality Control Summary	: Microbac Laboratorio	es, Inc., Newto	on							
				Spike	Source		%REC		RPD	
Determination of Volatile	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Organic Compounds										
Batch 1HL0133 - EPA 5030B - EPA	A 8260D									
Blank (1HL0133-BLK1)			Prepared: 12	/02/24 00:0	0 Analyzed:	12/02/24 1	5:29			
Chloromethane	<1.0	1.0	ug/L							
Vinyl Chloride	<1.0	1.0	ug/L							
Bromomethane	<1.0	1.0	ug/L							
Chloroethane	<1.0	1.0	ug/L							
Trichlorofluoromethane	<1.0	1.0	ug/L							
1,1-Dichloroethylene	<1.0	1.0	ug/L							
Acetone	<10.0	10.0	ug/L							
Methyl lodide	<1.0	1.0	ug/L							
Carbon Disulfide	<1.0	1.0	ug/L							
Methylene Chloride	<5.0	5.0	ug/L							
Acrylonitrile	<5.0	5.0	ug/L							
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L							
1,1-Dichloroethane	<1.0	1.0	ug/L							
Vinyl Acetate	<5.0	5.0	ug/L							
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L							
2-Butanone (MEK)	<10.0	10.0	ug/L							
Bromochloromethane	<1.0	1.0	ug/L							
Chloroform	<1.0	1.0	ug/L							
1,1,1-Trichloroethane	<1.0	1.0	ug/L							
Carbon Tetrachloride	<1.0	1.0	ug/L							
Benzene	<1.0	1.0	ug/L							
1,2-Dichloroethane	<1.0	1.0	ug/L							
Trichloroethylene	<1.0	1.0	ug/L							
1,2-Dichloropropane	<1.0	1.0	ug/L							
Dibromomethane	<1.0	1.0	ug/L							
Bromodichloromethane	<1.0	1.0	ug/L							
cis-1,3-Dichloropropene	<1.0	1.0	ug/L							
4-Methyl-2-pentanone (MIBK)	<5.0	5.0	ug/L							
Toluene	<1.0	1.0	ug/L							
trans-1,3-Dichloropropene	<1.0	1.0	ug/L							
	~10	4.0								

ug/L

1.0

<1.0

1,1,2-Trichloroethane

1HL0001

Spike Source

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HL0133 - EPA 5030B - EPA	A 8260D									
Blank (1HL0133-BLK1)			Prepared: 12	2/02/24 00:0	0 Analyzed:	12/02/24 1	5:29			
Tetrachloroethylene	<1.0	1.0	ug/L							
2-Hexanone (MBK)	<5.0	5.0	ug/L							
Dibromochloromethane	<1.0	1.0	ug/L							
1,2-Dibromoethane	<1.0	1.0	ug/L							
Chlorobenzene	<1.0	1.0	ug/L							
1,1,1,2-Tetrachloroethane	<1.0	1.0	ug/L							
Ethylbenzene	<1.0	1.0	ug/L							
Xylenes, total	<2.0	2.0	ug/L							
Styrene	<1.0	1.0	ug/L							
Bromoform	<1.0	1.0	ug/L							
1,2,3-Trichloropropane	<1.0	1.0	ug/L							
trans-1,4-Dichloro-2-butene	<5.0	5.0	ug/L							
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L							
1.4-Dichlorobenzene	<1.0	1.0	ug/L ug/L							
,	<1.0									
1,2-Dichlorobenzene	<5.0	1.0	ug/L							
1,2-Dibromo-3-chloropropane	\\ 3.0	5.0	ug/L							
Surrogate: Dibromofluoromethane	48.4		ug/L	50.2		96.4	57-134			
Surrogate: Dibromofluoromethane	48.4		ug/L	50.2		96.4	75-136			
Surrogate: 1,2-Dichloroethane-d4	52.3		ug/L	50.4		104	53-140			
Surrogate: 1,2-Dichloroethane-d4	52.3		ug/L	50.4		104	61-142			
Surrogate: Toluene-d8	47.0		ug/L	50.5		93.1	86-114			
Surrogate: Toluene-d8	47.0		ug/L	50.5		93.1	82-121			
Surrogate: 4-Bromofluorobenzene	48.4		ug/L	50.2		96.5	78-121			
Surrogate: 4-Bromofluorobenzene	48.4		ug/L	50.2		96.5	80-116			
LCS (1HL0133-BS1)	57.04		Prepared: 12		0 Analyzed:					
Chloromethane	57.31	1.0	ug/L	50.5		113	63-155			
Vinyl Chloride	57.97	1.0	ug/L	50.4		115	70-154			
Bromomethane	60.19	1.0	ug/L	50.2		120	52-176			
Chloroethane	49.44	1.0	ug/L	50.5		97.8	72-148			
Trichlorofluoromethane	45.23	1.0	ug/L	50.5		89.5	70-152			
1,1-Dichloroethylene	30.05	1.0	ug/L	30.1		99.9	70-148			
Acetone	89.90	10.0	ug/L	100		89.9	43-172			
Methyl lodide	92.46	1.0	ug/L	100		92.5	69-170			
Carbon Disulfide	92.78	1.0	ug/L	100		92.8	72-162			
Methylene Chloride	30.28	5.0	ug/L	30.1		101	68-142			
Acrylonitrile	41.04	5.0	ug/L	50.2		81.8	56-135			
trans-1,2-Dichloroethylene	31.50	1.0	ug/L	30.1		105	66-148			
1,1-Dichloroethane	31.42	1.0	ug/L	30.1		105	66-143			
Vinyl Acetate	148.9	5.0	ug/L	156		95.6	43-153			
cis-1,2-Dichloroethylene	30.87	1.0	ug/L	30.2		102	71-149			
2-Butanone (MEK)	81.76	10.0	ug/L	100		81.8	52-159			
Bromochloromethane	30.55	1.0	ug/L	30.2		101				
5.5.110011101101110110110	30.00	1.0	ag/L	JU.Z		101	69-143			

Microbac Laboratories, Inc., Newton

RPD

%REC

1HL0001

Determination of Volatile	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Organic Compounds	Result	KL	Units	Levei	Result	70KEU	Limits	ארט	Limit	
Batch 1HL0133 - EPA 5030B - EPA	8260D									
LCS (1HL0133-BS1)			Prepared: 12	2/02/24 00:0	0 Analyzed:	12/02/24 1	4:45			
1,1,1-Trichloroethane	30.06	1.0	ug/L	30.1		100	62-129			
Carbon Tetrachloride	30.06	1.0	ug/L	30.1		100	63-141			
Benzene	31.96	1.0	ug/L	30.3		106	71-134			
1,2-Dichloroethane	31.23	1.0	ug/L	30.1		104	72-132			
Trichloroethylene	30.10	1.0	ug/L	30.1		100	71-135			
1,2-Dichloropropane	30.70	1.0	ug/L	30.1		102	69-136			
Dibromomethane	28.62	1.0	ug/L	30.2		94.7	73-147			
Bromodichloromethane	29.72	1.0	ug/L	30.1		98.9	68-129			
cis-1,3-Dichloropropene	29.33	1.0	ug/L	30.1		97.6	65-134			
4-Methyl-2-pentanone (MIBK)	87.40	5.0	ug/L	100		87.4	58-147			
Toluene	30.36	1.0	ug/L	30.3		100	72-133			
trans-1,3-Dichloropropene	28.52	1.0	ug/L	30.0		94.9	67-130			
1,1,2-Trichloroethane	28.83	1.0	ug/L	30.1		95.9	69-135			
Tetrachloroethylene	33.65	1.0	ug/L	30.1		112	69-130			
2-Hexanone (MBK)	90.72	5.0	ug/L	100		90.7	55-144			
Dibromochloromethane	32.09	1.0	ug/L	30.0		107	73-127			
1,2-Dibromoethane	31.62	1.0	ug/L	30.1		105	67-132			
Chlorobenzene	33.04	1.0	ug/L	30.0		110	72-123			
1,1,1,2-Tetrachloroethane	33.67	1.0	ug/L	30.2		111	73-127			
Ethylbenzene	34.37	1.0	ug/L	30.1		114	71-127			
Xylenes, total	99.80	2.0	ug/L	90.6		110	74-127			
Styrene	34.09	1.0	ug/L	30.2		113	66-126			
Bromoform	30.59	1.0	ug/L	30.2		102	68-130			
1,2,3-Trichloropropane	29.91	1.0	ug/L	30.1		99.0	63-136			
trans-1,4-Dichloro-2-butene	93.41	5.0	_	100		93.4				
•	32.27	1.0	ug/L				54-134			
1,1,2,2-Tetrachloroethane	33.66		ug/L	30.1		107	61-131			
1,4-Dichlorobenzene	33.17	1.0	ug/L	30.1		112	70-129			
1,2-Dichlorobenzene	25.30	1.0	ug/L	30.1		110	69-126			
1,2-Dibromo-3-chloropropane	20.30	5.0	ug/L	30.1		84.1	50-143			
Surrogate: Dibromofluoromethane	48.7		ug/L	50.2		97.0	57-134			
Surrogate: Dibromofluoromethane	48.7		ug/L	50.2		97.0	75-136			
Surrogate: 1,2-Dichloroethane-d4	50.2		ug/L	50.4		99.8	53-140			
Surrogate: 1,2-Dichloroethane-d4	50.2		ug/L	50.4		99.8	61-142			
Surrogate: Toluene-d8	48.5		ug/L	50.5		96.2	86-114			
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene	48.5 48.4		ug/L	50.5 50.2		96.2 96.4	82-121 78-121			
Surrogate: 4-Bromofluorobenzene	48.4		ug/L ug/L	50.2 50.2		96.4 96.4	80-116			
.CS Dup (1HL0133-BSD1)	70.7		Prepared: 12		0 Analyzed:					
Chloromethane	51.45	1.0	ug/L	50.5		102	63-155	10.8	24	
Vinyl Chloride	51.96	1.0	ug/L ug/L	50.5		103	70-154	10.6	24 25	
Bromomethane	54.13	1.0	ug/L ug/L	50.4		103				
Chloroethane	45.56	1.0	ug/L ug/L	50.2			52-176 72-148	10.6	27	
Trichlorofluoromethane	41.60	1.0	ug/L ug/L	50.5		90.2 82.4	72-148 70-152	8.17 8.36	25 26	

Microbac Laboratories, Inc., Newton

				Spike	Source		%REC		RPD	
Determination of Volatile	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Organic Compounds Batch 1HL0133 - EPA 5030B - EPA	A 8260D									
CS Dup (1HL0133-BSD1)			Prepared: 12	2/02/24 00:0	0 Analyzed:	12/02/24 1	5:07			
1,1-Dichloroethylene	28.16	1.0	ug/L	30.1		93.6	70-148	6.49	24	
Acetone	101.8	10.0	ug/L	100		102	43-172	12.4	30	
Methyl Iodide	86.78	1.0	ug/L	100		86.8	69-170	6.34	30	
Carbon Disulfide	86.82	1.0	ug/L	100		86.8	72-162	6.64	24	
Methylene Chloride	29.13	5.0	ug/L	30.1		96.9	68-142	3.87	21	
Acrylonitrile	46.29	5.0	ug/L	50.2		92.2	56-135	12.0	16	
trans-1,2-Dichloroethylene	30.45	1.0	ug/L	30.1		101	66-148	3.39	27	
1,1-Dichloroethane	30.67	1.0	ug/L	30.1		102	66-143	2.42	24	
Vinyl Acetate	159.2	5.0	ug/L	156		102	43-153	6.70	30	
cis-1,2-Dichloroethylene	30.99	1.0	ug/L	30.2		103	71-149	0.388	26	
2-Butanone (MEK)	99.10	10.0	ug/L	100		99.1	52-159	19.2	27	
Bromochloromethane	31.26	1.0	ug/L	30.2		103	69-143	2.30	23	
Chloroform	30.64	1.0	ug/L	30.0		102	69-144	1.08	23	
1,1,1-Trichloroethane	29.99	1.0	ug/L	30.1		99.7	62-129	0.233	24	
Carbon Tetrachloride	30.07	1.0	ug/L	30.1		100	63-141	0.0333	25	
Benzene	31.72	1.0	ug/L	30.3		105	71-134	0.754	24	
1,2-Dichloroethane	32.28	1.0	ug/L	30.1		107	72-132	3.31	24	
Trichloroethylene	30.25	1.0	ug/L	30.1		101	71-135	0.497	24	
1,2-Dichloropropane	31.32	1.0	ug/L	30.1		104	69-136	2.00	24	
Dibromomethane	30.50	1.0	ug/L	30.2		101	73-147	6.36	25	
Bromodichloromethane	30.38	1.0	ug/L	30.1		101	68-129	2.20	22	
cis-1,3-Dichloropropene	30.13	1.0	ug/L	30.1		100	65-134	2.69	23	
4-Methyl-2-pentanone (MIBK)	107.8	5.0	ug/L	100		108	58-147	20.9	27	
Toluene	30.71	1.0	ug/L	30.3		101	72-133	1.15	24	
trans-1,3-Dichloropropene	29.85	1.0	ug/L	30.0		99.4	67-130	4.56	24	
1,1,2-Trichloroethane	30.90	1.0	ug/L	30.1		103	69-135	6.93	23	
Tetrachloroethylene	33.64	1.0	ug/L	30.1		112	69-130	0.0297	25	
2-Hexanone (MBK)	116.5	5.0	ug/L	100		116	55-144	24.9	25	
Dibromochloromethane	33.35	1.0	ug/L	30.0		111	73-127	3.85	22	
1,2-Dibromoethane	34.13	1.0	ug/L	30.1		113	67-132	7.63	24	
Chlorobenzene	33.70	1.0	ug/L	30.0		112	72-123	1.98	23	
1,1,1,2-Tetrachloroethane	34.45	1.0	ug/L	30.2		114	73-127	2.29	24	
Ethylbenzene	34.91	1.0	ug/L	30.1		116	71-127	1.56	26	
Xylenes, total	102.0	2.0	ug/L	90.6		112	74-127	2.15	25	
Styrene	35.40	1.0	ug/L	30.2		117	66-126	3.77	23	
3romoform	33.87	1.0	ug/L	30.1		113	68-130	10.2	23	
1,2,3-Trichloropropane	34.67	1.0	ug/L	30.2		115	63-136	14.7	24	
trans-1,4-Dichloro-2-butene	108.2	5.0	ug/L	100		108	54-134	14.7	27	
1,1,2,2-Tetrachloroethane	36.66	1.0	ug/L	30.1		122	61-131	12.7	29	
1,4-Dichlorobenzene	34.87	1.0	ug/L	30.1		116	70-129	3.53	24	
1,2-Dichlorobenzene	34.13	1.0	ug/L	30.1		114	69-126	2.85	26	
1,2-Dibromo-3-chloropropane	31.78	5.0	ug/L	30.1		106	50-143	22.7	30	

1HL0001

Spike Source

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 1HL0133 - EPA 5030B - EPA	A 8260D									
.CS Dup (1HL0133-BSD1)			Prepared: 12	2/02/24 00:0	00 Analyzed:	12/02/24 1	5:07			
Surrogate: Dibromofluoromethane	48.5		ug/L	50.2		96.6	57-134			
Surrogate: Dibromofluoromethane	48.5		ug/L	50.2		96.6	75-136			
Surrogate: 1,2-Dichloroethane-d4	51.2		ug/L	50.4		102	53-140			
Surrogate: 1,2-Dichloroethane-d4	51.2		ug/L	50.4		102	61-142			
Surrogate: Toluene-d8	48.7		ug/L	50.5		96.5	86-114			
Surrogate: Toluene-d8	48.7		ug/L	50.5		96.5	82-121			
Surrogate: 4-Bromofluorobenzene	48.6		ug/L	50.2		96.8	78-121			
Surrogate: 4-Bromofluorobenzene	48.6	111 0004 04	ug/L Prepared: 12	50.2	O Analyzod	96.8	80-116 4:00			
Matrix Spike (1HL0133-MS1)		HL0001-01	<u> </u>							
Chloromethane	636.4	10.0	ug/L	505	ND	126	61-152			
Vinyl Chloride	647.5	10.0	ug/L	504	ND	128	66-149			
Bromomethane	633.5	10.0	ug/L	502	ND	126	43-171			
Chloroethane	571.2	10.0	ug/L	505	ND	113	69-148			
Trichlorofluoromethane	527.6	10.0	ug/L	505	ND	104	62-163			
1,1-Dichloroethylene	359.0	10.0	ug/L	301	ND	119	70-148			
Acetone	1305	100	ug/L	1000	ND	131	45-173			
Methyl Iodide	1025	10.0	ug/L	1000	ND	102	62-167			
Carbon Disulfide	1089	10.0	ug/L	1000	ND	109	71-163			
Methylene Chloride	355.8	50.0	ug/L	301	ND	118	69-140			
Acrylonitrile	219.1	20.0	ug/L	502	ND	43.6	38-147			
trans-1,2-Dichloroethylene	381.7	10.0	ug/L	301	ND	127	69-144			
1,1-Dichloroethane	387.0	10.0	ug/L	301	ND	129	70-138			
Vinyl Acetate	1758	50.0	ug/L	1560	ND	113	58-142			
cis-1,2-Dichloroethylene	373.9	10.0	ug/L	302	ND	124	68-151			
2-Butanone (MEK)	1265	100	ug/L	1000	ND	126	50-160			
Bromochloromethane	396.6	10.0	ug/L	302	ND	131	65-143			
Chloroform	378.2	10.0	ug/L	300	ND	126	71-143			
1,1,1-Trichloroethane	381.6	10.0	ug/L	301	ND	127	63-133			
Carbon Tetrachloride	378.9	10.0	ug/L	301	ND	126	63-142			
Benzene	353.5	10.0	ug/L	303	ND	117	69-133			
1,2-Dichloroethane	359.1	10.0	ug/L	301	ND	119	63-138			
Trichloroethylene	337.8	10.0	ug/L	301	ND	112	71-133			
1,2-Dichloropropane	346.6	10.0	ug/L ug/L	301	ND ND	115	69-132			
Dibromomethane	336.9	10.0	ug/L ug/L	302	ND	111				
Bromodichloromethane	334.3	10.0	•				70-147 67 120			
cis-1,3-Dichloropropene	318.5		ug/L	301	ND	111	67-130			
	316.5 1179	10.0	ug/L	301	ND	106	61-126			
4-Methyl-2-pentanone (MIBK)		50.0	ug/L	1000	ND	118	55-147			
Toluene	341.3	10.0	ug/L	303	ND	113	71-133			
trans-1,3-Dichloropropene	314.5	10.0	ug/L	300	ND	105	63-124			
1,1,2-Trichloroethane	337.1	10.0	ug/L	301	ND	112	69-133			
Tetrachloroethylene	354.7	10.0	ug/L	301	ND	118	70-124			
2-Hexanone (MBK)	1213	50.0	ug/L	1000	ND	121	53-141			
Dibromochloromethane	355.0	10.0	ug/L	300	ND	118	74-122			

RPD

%REC

1HL0001

Units

RL

Determination of Volatile

Result

Spike Source

Result

%REC

Level

%REC

Limits

RPD

Limit

RPD

Notes

Organic Compounds	Result	KL	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch 1HL0133 - EPA 5030B - EPA	8260D									
Matrix Spike (1HL0133-MS1)	Source:	1HL0001-01	Prepared: 12	2/02/24 00:0	0 Analyzed:	12/03/24 0	4:00			
1,2-Dibromoethane	358.8	10.0	ug/L	301	ND	119	66-127			
Chlorobenzene	356.7	10.0	ug/L	300	ND	119	76-116			M1
1,1,1,2-Tetrachloroethane	362.3	10.0	ug/L	302	ND	120	77-121			
Ethylbenzene	374.5	10.0	ug/L	301	ND	124	73-124			
Xylenes, total	1091	20.0	ug/L	906	ND	120	75-123			
Styrene	373.6	10.0	ug/L	302	ND	124	70-120			M1
Bromoform	353.5	10.0	ug/L	301	ND	118	70-124			
1,2,3-Trichloropropane	373.8	10.0	ug/L	302	ND	124	62-135			
trans-1,4-Dichloro-2-butene	1093	50.0	ug/L	1000	ND	109	50-120			
1,1,2,2-Tetrachloroethane	389.5	10.0	ug/L	301	ND	130	63-126			M1
1,4-Dichlorobenzene	363.8	10.0	ug/L	301	ND	121	72-119			M1
1,2-Dichlorobenzene	357.9	10.0	ug/L	301	ND	119	71-117			M1
1,2-Dibromo-3-chloropropane	328.8	50.0	ug/L	301	ND	109	49-134			
Surrogate: Dibromofluoromethane	575		ug/L	502		115	57-134			
Surrogate: Dibromofluoromethane	575		ug/L	502		115	75-136			
Surrogate: 1,2-Dichloroethane-d4	607		ug/L	504		120	53-140			
Surrogate: 1,2-Dichloroethane-d4	607		ug/L	504		120	61-142			
Surrogate: Toluene-d8	501		ug/L	505		99.3	86-114			
Surrogate: Toluene-d8	501		ug/L	505		99.3	82-121			
Surrogate: 4-Bromofluorobenzene	495		ug/L	502		98.6	78-121			
Surrogate: 4-Bromofluorobenzene	495		ug/L	502		98.6	80-116			
Matrix Spike Dup (1HL0133-MSD1)		1HL0001-01	Prepared: 12	2/02/24 00:0	0 Analyzed:	12/03/24 1	0:22			
Chloromethane	666.3	10.0	ug/L	505	ND	132	61-152	4.59	26	
Vinyl Chloride	506.6	10.0	ug/L	504	ND	100	66-149	24.4	23	R1
Bromomethane	550.0	10.0	ug/L	502	ND	110	43-171	14.1	29	
Chloroethane	569.4	10.0	ug/L	505	ND	113	69-148	0.316	25	
Trichlorofluoromethane	526.6	10.0	ug/L	505	ND	104	62-163	0.190	25	
1,1-Dichloroethylene	355.6	10.0	ug/L	301	ND	118	70-148	0.952	22	
Acetone	1284	100	ug/L	1000	ND	128	45-173	1.61	30	
Methyl lodide	682.4	10.0	ug/L	1000	ND	68.2	62-167	40.1	24	R1
Carbon Disulfide	1072	10.0	ug/L	1000	ND	107	71-163	1.58	22	
Methylene Chloride	358.3	50.0	ug/L	301	ND	119	69-140	0.700	19	
Acrylonitrile	551.4	50.0	ug/L	502	ND	110	38-147	86.2	30	R1
trans-1,2-Dichloroethylene	375.1	10.0	ug/L	301	ND	125	69-144	1.74	22	
1,1-Dichloroethane	380.2	10.0	ug/L	301	ND	126	70-138	1.77	20	
Vinyl Acetate	1688	50.0	ug/L	1560	ND	108	58-142	4.06	24	
cis-1,2-Dichloroethylene	357.0	10.0	ug/L	302	ND	118	68-151	4.62	22	
2-Butanone (MEK)	1190	100	ug/L	1000	ND	119	50-160	6.07	23	
Bromochloromethane	380.9	10.0	ug/L	302	ND	126	65-143	4.04	22	
Chloroform	363.5	10.0	ug/L	300	ND	121	71-143	3.96	21	
	-	10.0	~9/ -	000	ND					
	352.1	10 0	ua/l	301	ND	117	63-133	8 በ/	23	
1,1,1-Trichloroethane Carbon Tetrachloride	352.1 352.7	10.0 10.0	ug/L ug/L	301 301	ND ND	117 117	63-133 63-142	8.04 7.16	23 22	

Microbac Laboratories, Inc., Newton

Determination of Volatile Organic Compounds	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HL0133 - EPA 5030B - EPA 8	2600									
Matrix Spike Dup (1HL0133-MSD1)		1HL0001-01	Prepared: 12	2/02/24 00:0	0 Analyzed:	12/03/24 1	0:22			
1,2-Dichloroethane	353.9	10.0	ug/L	301	ND	118	63-138	1.46	20	
Trichloroethylene	324.6	10.0	ug/L	301	ND	108	71-133	3.99	23	
1,2-Dichloropropane	335.0	10.0	ug/L	301	ND	111	69-132	3.40	20	
Dibromomethane	330.4	10.0	ug/L	302	ND	109	70-147	1.95	22	
Bromodichloromethane	328.0	10.0	ug/L	301	ND	109	67-130	1.90	21	
cis-1,3-Dichloropropene	309.4	10.0	ug/L	301	ND	103	61-126	2.90	21	
4-Methyl-2-pentanone (MIBK)	1238	50.0	ug/L	1000	ND	124	55-147	4.86	23	
Toluene	336.9	10.0	ug/L	303	ND	111	71-133	1.30	19	
trans-1,3-Dichloropropene	304.7	10.0	ug/L	300	ND	101	63-124	3.17	21	
1,1,2-Trichloroethane	328.0	10.0	ug/L	301	ND	109	69-133	2.74	19	
Tetrachloroethylene	334.0	10.0	ug/L	301	ND	111	70-124	6.01	24	
2-Hexanone (MBK)	1281	50.0	ug/L	1000	ND	128	53-141	5.43	24	
Dibromochloromethane	341.1	10.0	ug/L	300	ND	114	74-122	3.99	21	
1,2-Dibromoethane	346.5	10.0	ug/L	301	ND	115	66-127	3.49	23	
Chlorobenzene	344.6	10.0	ug/L	300	ND	115	76-116	3.45	21	
1,1,1,2-Tetrachloroethane	345.9	10.0	ug/L	302	ND	115	77-121	4.63	25	
Ethylbenzene	362.4	10.0	ug/L	301	ND	120	73-124	3.28	20	
Xylenes, total	1033	20.0	ug/L	906	ND	114	75-123	5.45	20	
Styrene	355.3	10.0	ug/L	302	ND	118	70-120	5.02	23	
Bromoform	342.7	10.0	ug/L	301	ND	114	70-120	3.10	22	
1,2,3-Trichloropropane	363.2	10.0	ug/L	302	ND	120	62-135	2.88	28	
trans-1,4-Dichloro-2-butene	1045	50.0	ug/L	1000	ND	104	50-120	4.49	26	
1,1,2,2-Tetrachloroethane	392.6	10.0	ug/L	301	ND	131	63-126	0.793	24	M1
1,4-Dichlorobenzene	351.7	10.0	ug/L	301	ND	117	72-119	3.38	24	IVI I
1,2-Dichlorobenzene	351.1	10.0	-			117				
·	327.8	50.0	ug/L	301 301	ND		71-117	1.92	24	
1,2-Dibromo-3-chloropropane	027.0	30.0	ug/L	301	ND	109	49-134	0.305	28	
Surrogate: Dibromofluoromethane	557		ug/L	502		111	57-134			
Surrogate: Dibromofluoromethane	557		ug/L	502		111	75-136			
Surrogate: 1,2-Dichloroethane-d4	575		ug/L	504		114	53-140			
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Toluene-d8	575 511		ug/L	504		114 101	61-142			
Surrogate: Toluene-d8	511 511		ug/L ug/L	505 505		101 101	86-114 82-121			
Surrogate: 4-Bromofluorobenzene	483		ug/L ug/L	502		96.2	78-121			
Surrogate: 4-Bromofluorobenzene	483		ug/L	502		96.2	80-116			
				Snika	Source		% DEC		RPD	
Determination of Total Metals	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	Limit	Notes
			Office	Level	Nesun	/arceo	Lillits	KFD	Lilling	
Batch 1HL0065 - EPA 3005A Total R	ecoverable Metals	- EPA 6020A								
Blank (1HL0065-BLK1)	40.0000		Prepared: 12	2/02/24 15:0	o Analyzed:	12/04/24 2	1:42			
Antimony, total	<0.0020	0.0020	mg/L							
Arsenic, total	<0.0040	0.0040	mg/L							
Barium, total	<0.0040	0.0040	mg/L							
Beryllium, total	<0.0040	0.0040	mg/L							

	_			Spike	Source		%REC		RPD	Notes
Determination of Total Metals	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HL0065 - EPA 3005A Total	Recoverable Metals	- EPA 6020A								
Blank (1HL0065-BLK1)			Prepared: 1	2/02/24 15:0)5 Analyzed:	12/04/24 2	1:42			
Cadmium, total	<0.0008	0.0008	mg/L							
Chromium, total	<0.0080	0.0080	mg/L							
Cobalt, total	<0.0004	0.0004	mg/L							
Copper, total	<0.0040	0.0040	mg/L							
Lead, total	<0.0040	0.0040	mg/L							
Nickel, total	<0.0040	0.0040	mg/L							
Selenium, total	<0.0040	0.0040	mg/L							
Silver, total	<0.0040	0.0040	mg/L							
Thallium, total	<0.0020	0.0020	mg/L							
Vanadium, total	<0.0200	0.0200	mg/L							
Zinc, total	<0.0200	0.0200	mg/L							
LCS (1HL0065-BS1)			Prepared: 1	2/02/24 15:0)5 Analyzed:	12/04/24 2	1:49			
Antimony, total	0.100	0.0020	mg/L	0.100		100	80-120			
Arsenic, total	0.0997	0.0040	mg/L	0.100		99.7	80-120			
Barium, total	0.112	0.0040	mg/L	0.100		112	80-120			
Beryllium, total	0.105	0.0040	mg/L	0.100		105	80-120			
Cadmium, total	0.0961	0.0008	mg/L	0.100		96.1	80-120			
Chromium, total	0.0936	0.0080	mg/L	0.100		93.6	80-120			
Cobalt, total	0.103	0.0004	mg/L	0.100		103	80-120			
Copper, total	0.0971	0.0040	mg/L	0.100		97.1	80-120			
Lead, total	0.0961	0.0040	mg/L	0.100		96.1	80-120			
Nickel, total	0.0985	0.0040	mg/L	0.100		98.5	80-120			
Selenium, total	0.1022	0.0040	mg/L	0.100		102	80-120			
Silver, total	0.101	0.0040	mg/L	0.100		101	80-120			
Thallium, total	0.0970	0.0020	mg/L	0.100		97.0	80-120			
Vanadium, total	0.100	0.0200	mg/L	0.100		100	80-120			
Zinc, total	0.101	0.0200	mg/L	0.100		101	80-120			
Matrix Spike (1HL0065-MS1)	Source:	1HK2018-02	Prepared: 1	2/02/24 15:0)5 Analyzed:	12/04/24 2	2:19			
Antimony, total	0.0999	0.0020	mg/L	0.100	ND	99.9	75-125			
Arsenic, total	0.101	0.0040	mg/L	0.100	0.0051	95.4	75-125			
Barium, total	0.517	0.0040	mg/L	0.100	0.415	102	75-125			
Beryllium, total	0.102	0.0040	mg/L	0.100	0.0001	102	75-125			
Cadmium, total	0.0934	0.0008	mg/L	0.100	ND	93.4	75-125			
Chromium, total	0.0907	0.0080	mg/L	0.100	0.0011	89.6	75-125			
Cobalt, total	0.0980	0.0004	mg/L	0.100	0.0006	97.4	75-125			
Copper, total	0.0874	0.0040	mg/L	0.100	0.0010	86.4	75-125			
Lead, total	0.0934	0.0040	mg/L	0.100	ND	93.4	75-125			
Nickel, total	0.100	0.0040	mg/L	0.100	0.0072	93.0	75-125			
Selenium, total	0.0981	0.0040	mg/L	0.100	ND	98.1	75-125			
Silver, total	0.0969	0.0040	mg/L	0.100	ND	96.9	75-125			
Thallium, total	0.0955	0.0020	mg/L	0.100	ND	95.5	75-125			
Vanadium, total	0.0953	0.0200	mg/L	0.100	ND	95.3	75-125			
Zinc, total	0.350	0.0200	mg/L	0.100	0.262	88.1	75-125			

				Spike	Source		%REC		RPD	
Determination of Total Metals	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 1HL0065 - EPA 3005A Total R	Recoverable Metals	s - EPA 6020A								
fatrix Spike Dup (1HL0065-MSD1)	Source	: 1HK2018-02	Prepared: 1	2/02/24 15:0	5 Analyzed:	12/04/24 2	2:25			
Antimony, total	0.100	0.0020	mg/L	0.100	ND	100	75-125	0.0980	20	
Arsenic, total	0.104	0.0040	mg/L	0.100	0.0051	98.5	75-125	3.00	20	
Barium, total	0.522	0.0040	mg/L	0.100	0.415	107	75-125	1.12	20	
Beryllium, total	0.100	0.0040	mg/L	0.100	0.0001	100	75-125	1.27	20	
Cadmium, total	0.0944	0.0008	mg/L	0.100	ND	94.4	75-125	1.05	20	
Chromium, total	0.0908	0.0080	mg/L	0.100	0.0011	89.6	75-125	0.0714	20	
Cobalt, total	0.0985	0.0004	mg/L	0.100	0.0006	97.9	75-125	0.510	20	
Copper, total	0.0893	0.0040	mg/L	0.100	0.0010	88.3	75-125	2.11	20	
Lead, total	0.0937	0.0040	mg/L	0.100	ND	93.7	75-125	0.307	20	
Nickel, total	0.103	0.0040	mg/L	0.100	0.0072	96.1	75-125	3.00	20	
Selenium, total	0.0993	0.0040	mg/L	0.100	ND	99.3	75-125	1.21	20	
Silver, total	0.0997	0.0040	mg/L	0.100	ND	99.7	75-125	2.85	20	
Thallium, total	0.0954	0.0020	mg/L	0.100	ND	95.4	75-125	0.100	20	
Vanadium, total	0.0968	0.0200	mg/L	0.100	ND	96.8	75-125	1.56	20	
Zinc, total	0.358	0.0200	mg/L	0.100	0.262	96.3	75-125	2.32	20	
ost Spike (1HL0065-PS1)	Source	: 1HK2018-02	Prepared: 1							
Antimony, total	0.0795		mg/L	0.0800	0.0002	99.1	80-120			
Arsenic, total	0.0825		mg/L	0.0800	0.0050	96.8	80-120			
Barium, total	0.500		mg/L	0.0800	0.407	117	80-120			
Beryllium, total	0.0809		mg/L	0.0800	0.0001	101	80-120			
Cadmium, total	0.0733		mg/L	0.0800	0.00007	91.5	80-120			
Chromium, total	0.0722		mg/L	0.0800	0.0011	88.8	80-120			
Cobalt, total	0.0797		mg/L	0.0800	0.0006	98.9	80-120			
Copper, total	0.0726		mg/L	0.0800	0.0010	89.5	80-120			
Lead, total	0.0750		mg/L	0.0800	0.0003	93.4	80-120			
Nickel, total	0.0820		mg/L	0.0800	0.0071	93.7	80-120			
Selenium, total	0.0792		mg/L	0.0800	0.0014	97.2	80-120			
Silver, total	0.0790		mg/L	0.0800	0.00009	98.6	80-120			
Thallium, total	0.0758		mg/L	0.0800	0.0001	94.6	80-120			
Vanadium, total	0.0798		mg/L	0.0800	0.0054	92.9	80-120			
Zinc, total	0.333		mg/L	0.0800	0.256	95.1	80-120			
Batch 1HL0071 - EPA 200.2 Total IC	P-OES (200.7) - EF	'A 200.7, Rv. 4.		0/00/04 45 3	0.4	40/00/04 5	1.04			
Blank (1HL0071-BLK1)	10.005		Prepared: 1	2/02/24 15:1	9 Analyzed:	12/03/24 2	1:34			
Cadmium, total	<0.005	0.005	mg/L							
Calcium, total	<0.1	0.1	mg/L							
Zinc, total	<0.020	0.020	mg/L							
CS (1HL0071-BS1)			Prepared: 1	2/02/24 15:1	9 Analyzed:	12/03/24 2	1:39			
Cadmium, total	0.187	0.005	mg/L	0.200		93.3	85-115			
Calcium, total	2.12	0.1	mg/L	2.20		96.5	85-115			
Zinc, total	0.182	0.020	mg/L	0.200		91.0	85-115			
Matrix Spike (1HL0071-MS1)	Source	: 1HK1970-01	Prepared: 1	2/02/24 15:1	9 Analyzed:	12/03/24 2	1:56			
Cadmium, total	0.187	0.005	mg/L	0.200	ND	93.6	70-130			

Microbac Laboratories, Inc., Newton

CERTIFICATE OF ANALYSIS

					Spike	Source		%REC		RPD	
Determination of	Total Metals	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HL0071 - EP	A 200.2 Total ICP	P-OES (200.7) - 20	00.7								
Matrix Spike (1HL0071	-MS1)	Source	e: 1HK1970-01	Prepared: 1	2/02/24 15:1	19 Analyzed:	12/03/24 2	21:56			
Calcium, total		321	0.1	mg/L	2.20	316	212	70-130			M6
Zinc, total		0.172	0.020	mg/L	0.200	ND	85.9	70-130			
Matrix Spike Dup (1HL	0071-MSD1)	Source	e: 1HK1970-01	Prepared: 1	2/02/24 15:1	19 Analyzed:	12/03/24 2	22:05			
Cadmium, total	-	0.179	0.005	mg/L	0.200	ND	89.7	70-130	4.24	20	
Calcium, total		315	0.1	mg/L	2.20	316	NR	70-130	2.00	20	M6
Zinc, total		0.167	0.020	mg/L	0.200	ND	83.6	70-130	2.79	20	
Post Spike (1HL0071-F	PS1)	Source	e: 1HK1970-01	Prepared: 1	2/02/24 15:1	19 Analyzed:	12/03/24 2	22:15			
Cadmium, total	-	0.786		mg/L	0.800	0.000783	98.1	85-115			
Calcium, total		336		mg/L	8.80	316	226	85-115			M6
Zinc, total		0.743		mg/L	0.800	0.00398	92.3	85-115			
Batch 1IA0549 - EPA	3005A Total Re	coverable Metals	- EPA 6020A								
Blank (1IA0549-BLK1)				Prepared: 0	1/13/25 15:2	26 Analyzed:	01/15/25	18:38			
Cadmium, total		<0.0008	0.0008	mg/L							
LCS (1IA0549-BS1)				ŭ	1/13/25 15:2	26 Analyzed:	01/15/25	18:45			
Cadmium, total		0.0956	0.0008	mg/L	0.100		95.6	80-120			
Matrix Spike (1IA0549-	MS1)	Source	e: 1IA0501-01	Prepared: 0	1/13/25 15:2	26 Analyzed:	01/15/25	19:09			
Cadmium, total	- ,	0.0929	0.0008	mg/L	0.100	ND	92.9	75-125			
Matrix Spike Dup (1IA)	549-MSD1)	Source	e: 1IA0501-01	Prepared: 0	1/13/25 15:2	26 Analyzed:	01/15/25	19:15			
Cadmium, total		0.0945	0.0008	mg/L	0.100	ND	94.5	75-125	1.72	20	
Post Spike (1IA0549-P	S1)	Source	e: 1IA0501-01	Prepared: 0	1/13/25 15:2	26 Analyzed:	01/16/25	10:39			
Cadmium, total	,	0.0690		mg/L	0.0800	0.00008	86.1	80-120			
Definitions											
M1:	Matrix spike reco	overy is above acce	ptance limits.								
M6:	Matrix spike reco	very is outside of a	cceptance limits.	The analyte	concentra	ition is grea	iter than 4	4X the spiki	ng level.		
R1:	Duplicate RPD is	outside acceptanc	e criteria.								
RL:	Reporting Limit										
RPD:	Relative Percent	Difference									
Cooler Receipt Log											
Cooler ID:	Default Cooler		Temp: 0.6°C	;							
Cooler Inspection (Checklist										
Custody Seals			٨	lo Con	tainers Inta	act					Ye
COC/Labels Agre	е		Y	es Pres	servation C	Confirmed					N

Report Comments

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions>.

Reviewed and Approved By:

eather am urphy

Heather Murphy

Customer Relationship Specialist heather.murphy@microbac.com 01/20/25 16:59

CHAIN OI

LABORATORIES, INC.

600 E. 17th St. S. Newton, IA 50208 Phone: 641-792-8451

Fax: 641-792-7989

HLW Engineering PM: Heather Murphy

205 E VanBuren St Centerville, IA 52544	
Phone: 641-437-7023	3
- 044 407 704	-

Fax: 641-437-7040 Page 22 of 22

OF_ PAGE_

DEPORT TO:	DILL TO:	
T-22 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		BIZIAN WARD
IVAIVIE.		PAGE CO SLF
OCIVII AIVI IVADE.	COMPANY NAME:	TAME CE
	ADDRESS:	ZO3Z - N AVENUE
CITY/ST/ZIP: STORY CITY IA SOLAD	CITY/ST/ZIP:	CLARINDA, IA 51632
PHONE: 515-733-4144	PHONE:	
FAX: 515-733-4146	Keystone Quote No:	(If Applicable)
	ADDRESS: FO BOX 314 CITY/ST/ZIP: STORY CITY IA SOLAB PHONE: 515-733-4144	NAME: TODD WHIPPLE COMPANY NAME: HLW ENGINEERING COMPANY NAME: ADDRESS: TO BOX 314 CITY/ST/ZIP: STORY CITY IA SOLAB CITY/ST/ZIP: PHONE: PHONE: 515- 733- 4144 PHONE:

PHONE:				FAX: 515-	+3.	5 4	1 -	-				- K	(eyst	one G	uote No:	(If Applica	ble)
CLIENT	рате	TIME			NO. OF CONTAINERS	MATRIX	GRAB/COMPOSITE	APP I, METALS	APPI, VOC'S Y	CAUMIUM, TOT. TOT.	Zinc, ToT. SE	REQU	JIREI		LAB LABORATORY WORK LABORATORY WORK LABORATORY WORK SAMPLE TEMPERAT UPON RECEIPT:	URE	
SAMPLE NUMBER	-		SAMP	LE LOCATION		WATER		/ /	X	7		+	+	+	SAMPLE CONDITION/C	OMMENTS	DI
	1125/24				7	WATEL	4	X				+		+			02
Mw 14	11/25/20				1	WATER	4			*				1			03
M11119	11/25/24	12:02			7	WATER	4	8	X.								04
GU4		12:37			١	WATER	-4				×						05
ŀ		*								, A.S.				1			
					-									1			
											0	\perp	_	_			
	1					1											
Relinguished by: (Sibrature		Date 10 Time	/14 Receiv	ved by: (Signature)		Date			į.	Turn	-Arou Sta	nd: ndarc	ı		Rush	act Lab Prior	to Submission

Relinguished by: (Signature)	Date 11/20/24 Time	Received by: (Signature)	Date	Turn-Around: Standard	Rush _	Contact Lab Prior to Submission
Relinquished by: (Signature)	Date	Received for Lab by: (Signature)	Date 11-27-24	Remarks:	. =	
	Time	Datwike	Time 9:48			FORM: CCR 7.97

Appendix D

Summary of Field Turbidity Measurements

Page County Sanitary Landfill

Field Turbidity Over Time

No-Purge Sampling

	No-Purge	Samping																									
	3/21/17	10/13/17	1/12/18	3/9/18	9/6/18	12/18/18	3/7/19	9/26/19	12/17/19	4/2/20	9/17/20	12/3/20	3/25/21	9/16/21	3/16/22	9/1/22	11/29/22	3/24/23	9/7/23	3/18/24	8/1/24	9/25/24	11/25/24	Max	Min	Ave	Std Dev
Well	<u>NTU</u>																										
1D	0.4	1.31		1.16	0.82		6.61	1.23		0.78	0.62		2.62	3.64	1.4	3.51		1.15	1.89	4.21		2.37		6.61	0.40	2.11	1.67
3	0.98	1.72	2.18	0.87	0.79	1.44	12.91	1.83		1.84	0.5		0.66	17.65	10	0.74		9.84	2.34	6.4		1.67		17.65	0.50	4.13	5.07
7	1.19	7.02		2.04	0.96		2.28	24.1	3.39	3.15	4.85	6.98	4.22	9.2	1.79	22.6		4.39	14.4	3.13		17.88		24.10	0.96	7.42	7.34
10	0.68	8.12		3.75	16.99		1.46	0.77		4.19	3.79		9.68	1.27	9.06	3.16		1.17	2.86	7.01		2.73		16.99	0.68	4.79	4.39
13	0.88	5.3	0.9	0.97	0.84		0.92	3.04		1.00	1.75		0.84	1.69	1.24	2.13		2.33	2.52	1.33		2.46		5.30	0.84	1.77	1.15
14	0.39	2.08		1.77	3.24	0.95	3.98	5.6		1.03	0.8		35.6	1.45	2.21	3.23	7.92	2.4	2.27	2.11		4.24	1.09	35.60	0.39	4.33	7.79
16	10.09	24.9	2.62	10.9	1.73			8.21		11.2	24.7		16.6	15.31	47.5	24.4		10.5	5.51	10.6		10.14		47.50	1.73	14.68	11.32
17	4.7	1.29		0.68	0.4		3.33	2.94		1.04	0.68		1.34	1.39	1.26	0.73		1.88	1.59	6		2.41		6.00	0.40	1.98	1.56
18	0.48	36.3		0.93	1.92		2.8	15.8		3.41	9.18		8.26	0.92	2.57	0.81		3.65	2.76	4.1		2.28		36.30	0.48	6.01	9.01
19R																							0.79	0.79	0.79	0.79	#DIV/0!
20	2.2	11.1		3.13	0.77		2.61	1.03		1.23	1.14		7.86	2.56	22.3	5.7		6.71	5.71	13.3		2.88		22.30	0.77	5.64	5.78
44																			2.31	4.26			2.53	4.26	2.31	3.03	1.07
53																					4.29	2.08		4.29	2.08	3.19	1.56
GWD-1	3.39	1.29		1.22	9.31		0.83	7.63		0.78	1.86		7.22		1.35	3.54		2.24	31.4	6.34			15.3	31.40	0.78	6.25	8.07
GWD-3																					2.13	2.03		2.13	2.03	2.08	0.07
GWD-4																					1.07	2.38	1.83	2.38	1.07	1.76	0.66
Max	10.09	36.30	2.62	10.9	16.99	1.44	12.91	24.1	3.39	11.2	24.7	6.98	35.6	17.65	47.5	24.40	7.92	10.50	31.40	42.10	4.29	17.88	15.30				
Min	0.39	1.29	0.9	0.68	0.4	0.95	0.62	0.77	3.39	0.78	0.5	6.98	0.66	0.92	1.14	0.73	7.92	0.86	1.39	1.33	4.29	1.67	0.79				
Median	1.02	5.30	2.18	1.22	1.14	1.195	2.445	3.04	3.39	1.04	1.75	6.98	5.26	1.98	2.21	3.16	7.92	2.40	2.52	6.00	4.29	2.46	1.81				
Average	2.63	8.68	1.9	2.991538	3.093077	1.195	3.253333	6.335385	3.39	2.41	4.364615	6.98	7.767692	4.89	8.140769	5.65	7.92	4.34	5.92	8.53	4.29	4.65	4.93				

Appendix E

Summary of Prediction Limit Exceedances 2018 - Present

Spring 2018		Fall 2018	
MW-3*	Selenium	MW-3*	Selenium
MW-7*	None	MW-7*	None
MW-10*	Arsenic	MW-10*	Arsenic
			Barium
			Zinc
			Acetone
			Benzene
			Bis(2-ethylhexyl)phthalate
MW-16*	1,1-dichloroethane	MW-16*	Barium
101 00	1,4-dichlorobenzene	14144 10	1,4-dichlorobenzene
	Chlorobenzene		Benzene
	Dichlorodifluoromethane		Chlorobenzene
MW-18**	Arsenic	MW-18**	Arsenic
			Barium
			Zinc
MW-19*	1,1-dichloroethane	MW-19*	1,1-dichloroethane
	cis-1,2-dichloroethene		Acetone
			cis-1,2-dichloroethene
			Vinyl Chloride
MW-20**	Arsenic	MW-20**	Arsenic
IVI VV - 2.U	Barium	1V1 VV -2U	Barium
	Benzene		Zinc
	Chloroethane		Benzene
	Chioroctilane		Chlorobenzene
	+		Chloroethane
			Cinoroculanc

^{* =} Assessment Monitoring Well ** = Corrective Action Monitoring Well *** = Field Sampling Error

Spring 2019		Fall 2019	
MW-3*	Selenium	MW-3*	Selenium
MW-7*	None	MW-7*	Arsenic
MW-10*	None	MW-10*	Arsenic
MW 16*	1 1 4:-1-141	MW 16*	A
MW-16*	1,1-dichloroethane	MW-16*	Arsenic Barium
	1,4-dichlorobenzene		
	Benzene		1,1-dichloroethane
	Chlorobenzene		Chlorobenzene
	cis-1,2-dichloroethene		
	Dichlorodifluoromethane		
	Vinyl Chloride		
MW-18**	Arsenic	MW-18**	Arsenic
	Barium		Barium
MW-19*	None	MW-19*	Acetone
MW-20**	Arsenic	MW-20**	Arsenic
11111 20	Barium	1/1// 20	Barium
	Benzene		Zinc
	Chloroethane		Benzene
			Chloroethane

^{* =} Assessment Monitoring Well ** = Corrective Action Monitoring Well *** = Field Sampling Error

Spring 2020		Fall 2020	
MW-3*	None	MW-3*	Selenium
MW-7*	None	MW-7*	Arsenic
MW-10*	Arsenic	MW-10*	None
	Barium		
	Bis(2ethylhexyl)phthalate		
MW-16*	Arsenic	MW-16*	Arsenic
	Barium		Barium
	Benzene		1,4-dichlorobenzene
	Chlorobenzene		Chlorobenzene
MW-18**	Arsenic	MW-18**	Arsenic
	Barium		
MW-19*	Arsenic	MW-19*	1,1-dichloroethane
1V1 VV -1 9	Aiselle	1V1 VV -1 7	Acetone
			cis-1,2-dichloroethene
			Vinyl Chloride
MW-20**	Arsenic	MW-20**	Arsenic
IVI W - 20 ***	Barium	IVI VV -20	Barium
	Benzene		Chlorobenzene
	Chlorobenzene		Chloroethane
	Chloroethane		Cinoroculane
	Chloroethane		

^{* =} Assessment Monitoring Well ** = Corrective Action Monitoring Well *** = Field Sampling Error

Spring 2021		Fall 2021	
MW-3*	None	MW-3*	Bis(2ethylhexyl)phthalate
MW-7*	1,1-dichloropropene	MW-7*	Benzene
	2,4,5-T		
2.5777.4.0.4		2.577.404	
MW-10*	Arsenic	MW-10*	None
	Barium		
	Acetone		
MW-16*	Arsenic	MW-16*	Arsenic
	Barium		Barium
	1,1-dichloroethane		1,4-dichlorobenzene
	1,4-dichlorobenzene		Benzene
	Benzene		Chlorobenzene
	Chlorobenzene		
	cis-1,2-dichloroethene		
MW-18**	Arsenic	MW-18**	Arsenic
MW-19*	Arsenic	MW-19*	1,1-dichloroethane
	1,1-dichloroethane		cis-1,2-dichloroethene
	cis-1,2-dichloroethene		Vinyl Chloride
	Vinyl Chloride		
MW-20**	Arsenic	MW-20**	Arsenic
IVI VV -2.0	Barium	1,1,1, 20	Barium
	Benzene		Benzene
	Chlorobenzene		Bis(2ethylhexyl)phthalate
	Chloroethane		Chlorobenzene
			Chloroethane
			-

^{* =} Assessment Monitoring Well ** = Corrective Action Monitoring Well *** = Field Sampling Error

Spring 2022		Fall 2022	
MW-3*	Copper	MW-3*	Selenium
MW-7*	None	MW-7*	Arsenic
			Bis(2ethylhexyl)phthalate
MW-10*	Many Metals ***	MW-10*	None
	•		
MW-16*	Arsenic	MW-16*	Chlorobenzene
	Barium		
	1,1-dichloroethane		
	1,2-dichloropropane		
	1,4-dichlorobenzene		
	Benzene		
	Chlorobenzene		
	cis-1,2-dichloroethene		
MW-18**	Arsenic	MW-18**	Arsenic
MW-19*	1,1-dichloroethane	MW-19*	1,1-dichloroethane
	Benzene		Benzene
	Chloroethane		Chloroethane
	cis-1,2-dichloroethene		cis-1,2-dichloroethene
	Vinyl Chloride		Vinyl Chloride
MW-20**	Arsenic	MW-20**	Arsenic
	Barium		Barium
	Acetone		Benzene
	Benzene		Chlorobenzene
	Bis(2ethylhexyl)phthalate		Chloroethane
	Chlorobenzene		
	Chloroethane		

^{* =} Assessment Monitoring Well ** = Corrective Action Monitoring Well *** = Field Sampling Error

Spring 2023		Fall 2023	
MW-1d	Benzene	MW-1d	Benzene
	Chloroethane		Chloroethane
MW-3*	Selenium	MW-3*	None
MW-7*	None	MW-7*	Arsenic
MW-16*	Chlorobenzene	MW-16*	None
MW-18**	Arsenic	MW-18**	Arsenic
	Barium		
MW-19*	1,1-dichloroethane	MW-19*	1,1-dichloroethane
	cis-1,2-dichloroethene		cis-1,2-dichloroethene
	Vinyl Chloride		Vinyl Chloride
MW-20**	Arsenic	MW-20**	Arsenic
	Barium		Barium
	Benzene		Benzene
			Chlorobenzene
			Chloroethane

Spring 2024		Fall 2024	
MW-1d*	Barium	MW-1d*	None
	Benzene		
	Chlorobenzene		
	Chloroethane		
MW-7*	None	MW-7*	Arsenic
MW-16*	Arsenic	MW-16*	Arsenic
	1,1-dichloroethane		Chlorobenzene
	1,4-dichlorobenzene		
	Benzene		
	Chlorobenzene		
MW-18**	Arsenic	MW-18**	Arsenic
MW-19*	1,1-dichloroethane	MW-19R*	1,1-dichloroethane
	cis-1,2-dichloroethene		cis-1,2-dichloroethene
MW-20**	Arsenic	MW-20**	Arsenic
	Barium		Barium
	Benzene		Benzene
	Chlorobenzene		Chlorobenzene
	Chloroethane		

^{* =} Assessment Monitoring Well ** = Corrective Action Monitoring Well

Appendix F

Summary of Assessment Monitoring Results

The full Appendix II sample events are highlighted in green.

Date	bis(2ethylhexyl)phthalate (ug/L)				
	MW-3	MW-7	MW-10	MW-16	MW-19
9/7/14	NT	NT	NT	NT	NT
4/28/15	NT	NT	NT	NT	NT
10/6/15	NT	NT	NT	NT	NT
4/23/16	NT	NT	NT	NT	NT
9/1/16	<8	NT	NT	<8	NT
3/21/17	NT	NT	NT	NT	<8
10/13/17	NT	NT	NT	NT	NT
3/9/18	NT	NT	NT	NT	NT
9/6/18	NT	NT	8.0	NT	NT
3/7/19	NT	NT	<6	NT	NT
9/26/19	NT	NT	<6	NT	NT
4/2/20	NT	NT	14.0	NT	NT
9/17/20	NT	NT	<6	NT	NT
3/25/21	NT	<6	<6	NT	NT
9/16/21	8.0	NT	<6	<6	NT
3/16/22	<6	NT	NT	NT	<6
9/1/22	NT	9.0	NT	NT	NT
3/24/23	NT	<6	NT	NT	NT
9/7/2023	NT	NT	NT	NT	NT
3/18/2024	NT	NT	NT	NT	NT
9/25/2024	NT	NT	Dry	NT	NT

Date	bis(2ethylhexyl)phthalate (ug/L)				
	MW-18	MW-20	MW-1d		
9/7/14	NT	NT	NT		
4/28/15	NT	NT	NT		
10/6/15	NT	NT	NT		
4/23/16	NT	NT	NT		
9/1/16	<8	<8	NT		
3/21/17	NT	NT	NT		
10/13/17	NT	NT	NT		
3/9/18	NT	NT	NT		
9/6/18	NT	NT	NT		
3/7/19	NT	NT	NT		
9/26/19	NT	NT	NT		
4/2/20	NT	NT	NT		
9/17/20	NT	NT	NT		
3/25/21	NT	NT	NT		
9/16/21	<6	8.0	NT		
3/16/22	NT	7.0	NT		
9/1/22	NT	<6	NT		
3/24/23	NT	NT	NT		
9/7/2023	NT	NT	<6		
3/18/2024	NT	NT	NT		
9/25/2024	NT	NT	NT		

The full Appendix II sample events are highlighted in green.

Date	e Dichlorodifluoromethane (ug/L)				
	MW-3	MW-7	MW-10	MW-16	MW-19
9/7/14	<1	NT	NT	3.6	<1
4/28/15	NT	NT	NT	2.6	NT
10/6/15	NT	NT	NT	2.9	NT
4/23/16	NT	NT	NT	3.2	NT
9/1/16	<1	NT	NT	3.6	NT
3/21/17	NT	NT	NT	2.2	1.0
10/13/17	NT	NT	NT	1.6	NT
3/9/18	NT	NT	NT	3.0	<1
9/6/18	NT	NT	<1	<1	<1
3/7/19	NT	NT	NT	4.6	NT
9/26/19	NT	NT	<1	<1	NT
4/2/20	NT	NT	NT	<1	NT
9/17/20	NT	NT	NT	<1	NT
3/25/21	NT	<1	NT	NT	NT
9/16/21	<1	NT	NT	<1	NT
3/16/22	NT	NT	NT	NT	<1
9/1/22	NT	<1	NT	NT	NT
3/24/2023	NT	NT	NT	NT	NT
9/7/2023	NT	NT	NT	NT	NT
3/18/2024	NT	NT	NT	NT	NT
9/25/2024	NT	NT	<1	NT	NT

Date	Date Dichlorodifluoromethane (ug/L)		
	MW-18	MW-20	MW-1d
9/7/14	NT	NT	NT
4/28/15	NT	NT	NT
10/6/15	NT	NT	NT
4/23/16	NT	NT	NT
9/1/16	<1	<1	NT
3/21/17	NT	NT	NT
10/13/17	NT	NT	NT
3/9/18	NT	NT	NT
9/6/18	NT	NT	NT
3/7/19	NT	NT	NT
9/26/19	NT	NT	NT
4/2/20	NT	NT	NT
9/17/20	NT	NT	NT
3/25/21	NT	NT	NT
9/16/21	<1	<1	NT
3/16/22	NT	NT	NT
9/1/22	NT	NT	NT
3/24/2023	NT	NT	NT
9/7/2023	NT	NT	<1
3/18/2024	NT	NT	NT
9/25/2024	NT	NT	NT

Appendix G

Expansion Area Cell and Infrastructure Layout

PAGE COUNTY SANITARY LANDFILL PAGE COUNTY, IOWA

01,

PROJECT NO. 6047-22A

Appendix H

Leachate Collection System Performance Evaluation Report

Appendix H.1- Volumes Hauled to Treatment

Page County Landfill Leachate Hauling

2024	Destination	Gallons	Gallons	Gallons
January	Coin	48,000		
February	Coin	66,000		
March	Coin	24,000		
	Clarinda		30,000	
April	Coin	36,000		
	Clarinda		30,000	
May	Coin	48,000		
	Clarinda		60,000	
June	Coin	42,000		
	Clarinda		24,000	
July	Coin	30,000		
	Clarinda		36,000	
August	Coin	12,000		
	Clarinda		36,000	
September	No leachate hauled			
October	No leachate hauled			
November	Coin	48,000		
	Clarinda		30,000	
December	Coin	90,000	·	
	Clarinda		90,000	
Subtotal Coin		444,000		
Subtotal Clarinda			336,000	
Subtotal Shenandoah				0
TOTAL GALLONS		780,000		

Appendix H.2-Treatment Agreements Coin, Shenandoah, Clarinda

DIRECTOR KAYLA LYON

August 1, 2022

AMIE JOHNSON CITY OF COIN **506 DEPOT STREET PO BOX 324** COIN, IA 51636-0324

RE: NPDES Final Permit #7335001

Dear Ms. Johnson:

Enclosed is the final NPDES permit that authorizes the discharge of wastewater from the City of Coin's wastewater treatment facility. This final permit is the same as the draft permit sent on June 23, 2022. The issuance date of this permit is September 1, 2022; please become familiar with all limits and requirements in the enclosed final permit.

The facility will be required to use new discharge monitoring report (DMR) forms once a final permit is issued. Paper and electronic DMR forms are available from your regional Field Office. The facility is strongly encouraged to use the electronic reporting form. Please contact Dan Olson at 712-243-1934 (Field Office 4) or dan.olson@dnr.iowa.gov for more information or to request forms.

If you have any questions, please contact me at 515-452-6235 or at ryan.olive@dnr.iowa.gov.

Sincerely,

Ryan Olive NPDES Section

Enclosures

www.lowaDNR.gov Fax: 515-725-8202

IOWA DEPARTMENT OF NATURAL RESOURCES

National Pollutant Discharge Elimination System (NPDES) Permit

OWNER NAME & ADDRESS

CITY OF COIN PO BOX 324 COIN, IA 51636

FACILITY NAME & ADDRESS

COIN CITY OF STP H AVE & HACKBERRY AVE COIN, IA 51636

Section 5, T67N, R38W Page County

IOWA NPDES PERMIT NUMBER: 7335001

DATE OF ISSUANCE: 09/01/2022 DATE OF EXPIRATION: 08/31/2027 YOU ARE REQUIRED TO FILE FOR RENEWAL

OF THIS PERMIT BY: 03/04/2027

EPA NUMBER: IA0062332

This permit is issued pursuant to the authority of section 402(b) of the Clean Water Act (33 U.S.C. 1342(b)), Iowa Code section 455B.174, and rule 567-64.3, Iowa Administrative Code. You are authorized to operate the disposal system and to discharge the pollutants specified in this permit in accordance with the effluent limitations, monitoring requirements and other terms set forth in this permit.

Pursuant to rule 561-7.4, Iowa Administrative Code, you may appeal any condition of this permit by filing a written notice of appeal and request for administrative hearing with the director of the department within 60 days of permit issuance.

Any existing, unexpired Iowa operation permit or Iowa NPDES permit previously issued by the department for the facility identified above is revoked by the issuance of this permit. This provision does not apply to any authorization to discharge under the terms and conditions of a general permit issued by the department or to any permit issued exclusively for the discharge of stormwater.

FOR THE DEPARTMENT OF NATURAL RESOURCES

By ______

Rvan Olive

NPDES Section, Environmental Services Division

Permit Number: 7335001

Outfall No.: 001 CONTROLLED DISCHARGE FROM A THREE CELL WASTE STABILIZATION LAGOON.

Receiving Stream: UNNAMED CREEK

Route of Flow: UNNAMED CREEK TO TARKIO RIVER

Class A1 waters are primary contact recreational use waters in which recreational or other uses may result in prolonged and direct contact with the water, involving considerable risks of ingesting water in quantities sufficient to pose a health hazard. Such activities would include, but not be limited to, swimming, diving, water skiing, and water contact recreational canoeing.

Waters designated Class B(WW1) are those in which temperature, flow and other habitat characteristics are suitable to maintain warm water game fish populations along with a resident aquatic community that includes a variety of native nongame fish and invertebrates species. These waters generally include border rivers, large interior rivers, and the lower segments of medium-size tributary streams.

Bypasses from any portion of a treatment facility or from a sanitary sewer collection system designed to carry only sewage are prohibited.

Permit Number: 7335001

Effluent Limitations:

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

001 CONTROLLED DISCHARGE FROM A THREE CELL WASTE STABILIZATION LAGOON.

Outfall: 001 Ef	Outfall: 001 Effective Dates: 09/01/2022 to 08/31/2027					
<u>Parameter</u>	Season	Limit Type	<u>Limits</u>			
CBOD5						
	Yearly	7 Day Average	40 MG/L			
	Yearly	30 Day Average	25 MG/L			
TOTAL SUSPI	ENDED SOLIDS					
	Yearly	7 Day Average	120 MG/L			
	Yearly	30 Day Average	80 MG/L			
РН						
	Yearly	Daily Maximum	9.0 STD UNITS			
	Yearly	Daily Minimum	6.0 STD UNITS			

Permit Number: 7335001

Monitoring and Reporting Requirements

- (a) Samples and measurements taken shall be representative of the volume and nature of the monitored wastewater.
- (b) Analytical and sampling methods specified in 40 CFR Part 136 or other methods approved in writing by the department shall be utilized. All effluent samples for which a limit applies must be analyzed using sufficiently sensitive methods (i.e. testing procedures) approved under 567 IAC Chapter 63 and 40 CFR Part 136 for the analysis of pollutants or pollutant parameters or as required under 40 CFR chapter I, subchapter N or O.

For the purposes of this paragraph, an approved method is sufficiently sensitive when:

- (1) the method minimum level (ML) is at or below the level of the effluent limit established in the permit for the measured pollutant or pollutant parameter; or
- (2) the method has the lowest ML of the approved analytical methods for the measured pollutant or pollutant parameter.

Samples collected for operational testing need not be analyzed by approved analytical methods; however, commonly accepted test methods should be used.

- (c) You are required to report all data including calculated results needed to determine compliance with the limitations contained in this permit. The results of any monitoring not specified in this permit performed at the compliance monitoring point and analyzed according to 40 CFR Part 136 shall be included in the calculation and reporting of any data submitted in accordance with this permit. This includes daily maximums and minimums, 30-day averages and 7-day averages for all parameters that have concentration (mg/l) and mass (lbs/day) limits. In addition, flow data shall be reported in million gallons per day (MGD).
- (d) Records of monitoring activities and results shall include for all samples: the date, exact place and time of the sampling; the dates the analyses were performed; who performed the analyses; the analytical techniques or methods used; and the results of such analyses.
- (e) Results of all monitoring shall be recorded on forms provided by, or approved by, the department, and shall be submitted to the appropriate regional field office of the department by the fifteenth day following the close of the reporting period. Your reporting period is on a MONTHLY basis, ending on the last day of each reporting period.
- (f) Operational performance monitoring for treatment unit process control shall be conducted to ensure that the facility is properly operated in accordance with its design. The results of any operational performance monitoring need not be reported to the department, but shall be maintained in accordance with rule 567 IAC 63.2 (455B). The results of any operational performance monitoring specified in this permit shall be submitted to the department in accordance with these reporting requirements.
- (g) Chapter 63 of the rules provides you with further explanation of your monitoring requirements.

Permit Number: 7335001

Outfall	Wastewater Parameter	Sample Frequency	Sample Type	Monitoring Location				
The follo	the following monitoring requirements shall be in effect from 09/01/2022 to 08/31/2027							
001	BIOCHEMICAL OXYGEN DEMAND (BOD5)	1 EVERY 3 MONTHS	24 HOUR COMPOSITE	RAW WASTE				
001	FLOW	7/WEEK OR DAILY	24 HOUR TOTAL	RAW WASTE				
001	CBOD5	PRIOR TO DISCHARGE	GRAB	PRE-DISCHARGE SAMPLE				
001	TOTAL SUSPENDED SOLIDS	PRIOR TO DISCHARGE	GRAB	PRE-DISCHARGE SAMPLE				
001	AMMONIA NITROGEN (N)	TWICE PER DRAWDOWN	GRAB	FINAL EFFLUENT				
001	CBOD5	TWICE PER DRAWDOWN	GRAB	FINAL EFFLUENT				
001	E. COLI	TWICE PER DRAWDOWN	GRAB	FINAL EFFLUENT				
001	FLOW	DAILY DURING DRAWDOWN	INSTANTANEOUS	FINAL EFFLUENT				
001	РН	ONCE PER DRAWDOWN	GRAB	FINAL EFFLUENT				
001	TOTAL SUSPENDED SOLIDS	TWICE PER DRAWDOWN	GRAB	FINAL EFFLUENT				
001	CELL DEPTH	1 TIME PER WEEK	MEASUREMENT	CELL 3 CONTENTS				
001	CELL DEPTH	1 TIME PER WEEK	MEASUREMENT	CELL 2 CONTENTS				
001	CELL DEPTH	1 TIME PER WEEK	MEASUREMENT	CELL 1 CONTENTS				

Permit Number: 7335001

Special Monitoring Requirements

Outfall # Description 001 E. COLI

If the effluent has been disinfected using chlorine, ultraviolet light (UV), or any other process intended to disrupt the biological integrity of the E. coli, the samples shall be analyzed using the Most Probable Number method found in Standard Method 9223B (Colilert® or Colilert-18® made by IDEXX Laboratories, Inc.). If the effluent has not been disinfected the samples may be analyzed using either the MPN method above or EPA Method 1603: Escherichia coli (E. coli) in water by membrane filtration using modified membrane-thermotolerant E. coli agar (modified mTEC) or mColiBlue-24® made by the Hach Company.

Permit Number: 7335001

Significant Industrial User Discharges:

Significant Industrial User: PAGE COUNTY SANITARY LANDFILL ASSOCIATION

Outfall # Outfall Description

001 SANITARY LANDFILL LEACHATE WILL BE TRUCKED TO THE TREATMENT PLANT FOR

DISPOSAL.

Significant Industrial User Effluent Limitations

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

	PAGE COUNTY SANITARY LANDFILL ASSOCIATION Outfall: 001 Effective Dates: 09/01/2022 to 08/31/2027						
Parameter	Season	<u>Limit Type</u>	Limit Values				
FLOW							
	Yearly	30 Day Average	0.0175 MGD				
	Yearly	DAILY MAXIMUM	0.0220 MGD				
BIOCHEMICAL OXYGEN DEMAND (BOD5)							
	Yearly	30 Day Average	25 LBS/DAY				
	Yearly	DAILY MAXIMUM	45 LBS/DAY				
TOTAL SUSPE	ENDED SOLIDS						
	Yearly	30 Day Average	25 LBS/DAY				
	Yearly	DAILY MAXIMUM	45 LBS/DAY				
AMMONIA NI	TROGEN (N)						
	Yearly	30 Day Average	10 LBS/DAY				
	Yearly	DAILY MAXIMUM	15 LBS/DAY				
РН							
	Yearly	DAILY MAXIMUM	9.0 STD UNITS				
	Yearly	DAILY MINIMUM	5.8 STD UNITS				

Permit Number: 7335001

Monitoring and Reporting Requirements

- (a) Samples and measurements taken shall be representative of the volume and nature of the monitored wastewater.
- (b) Analytical and sampling methods specified in 40 CFR Part 136 or other methods approved in writing by the department shall be utilized. All effluent samples for which a limit applies must be analyzed using sufficiently sensitive methods (i.e. testing procedures) approved under 567 IAC Chapter 63 and 40 CFR Part 136 for the analysis of pollutants or pollutant parameters or as required under 40 CFR chapter I, subchapter N or O.

For the purposes of this paragraph, an approved method is sufficiently sensitive when:

- (1) the method minimum level (ML) is at or below the level of the effluent limit established in the permit for the measured pollutant or pollutant parameter; or
- (2) the method has the lowest ML of the approved analytical methods for the measured pollutant or pollutant parameter.

Samples collected for operational testing need not be analyzed by approved analytical methods; however, commonly accepted test methods should be used.

- (c) You are required to report all data including calculated results needed to determine compliance with the limitations contained in this permit. The results of any monitoring not specified in this permit performed at the compliance monitoring point and analyzed according to 40 CFR Part 136 shall be included in the calculation and reporting of any data submitted in accordance with this permit. This includes daily maximums and minimums, 30-day averages and 7-day averages for all parameters that have concentration (mg/l) and mass (lbs/day) limits. In addition, flow data shall be reported in million gallons per day (MGD).
- (d) Records of monitoring activities and results shall include for all samples: the date, exact place and time of the sampling; the dates the analyses were performed; who performed the analyses; the analytical techniques or methods used; and the results of such analyses.
- (e) Results of all monitoring shall be recorded on forms provided by, or approved by, the department, and shall be submitted to the appropriate regional field office of the department by the fifteenth day following the close of the reporting period. Your reporting period is on a MONTHLY basis, ending on the last day of each reporting period.
- (f) Operational performance monitoring for treatment unit process control shall be conducted to ensure that the facility is properly operated in accordance with its design. The results of any operational performance monitoring need not be reported to the department, but shall be maintained in accordance with rule 567 IAC 63.2 (455B). The results of any operational performance monitoring specified in this permit shall be submitted to the department in accordance with these reporting requirements.
- (g) Chapter 63 of the rules provides you with further explanation of your monitoring requirements.

Permit Number: 7335001

PAGE C	PAGE COUNTY SANITARY LANDFILL ASSOCIATION					
Outfall	Wastewater Parameter	Sample Frequency	Sample Type	Monitoring Location		
001	AMMONIA NITROGEN (N)	1 EVERY 3 MONTHS	GRAB	PRIOR TO DISCHARGE TO CITY SEWER		
001	BIOCHEMICAL OXYGEN DEMAND (BOD5)	1 EVERY 3 MONTHS	GRAB	PRIOR TO DISCHARGE TO CITY SEWER		
001	FLOW	1 EVERY BATCH	ESTIMATED	PRIOR TO DISCHARGE TO CITY SEWER		
001	PH	1 EVERY BATCH	GRAB	PRIOR TO DISCHARGE TO CITY SEWER		
001	SANITARY LANDFILL LEACHATE	1 EVERY 12 MONTHS	GRAB	PRIOR TO DISCHARGE TO CITY SEWER		
001	TOTAL SUSPENDED SOLIDS	1 EVERY 3 MONTHS	GRAB	PRIOR TO DISCHARGE TO CITY SEWER		

Permit Number: 7335001

ADDITIONAL MONITORING REQUIREMENTS

PAGE COUNTY SANITARY LANDFILL ASSOCIATION

The permittee shall analyze a representative sample of the landfill leachate discharge from Page County Sanitary Landfill Association at least annually for each of the pollutants listed below. In addition, the permittee shall monitor the volume of waste discharged and BOD5, TSS, pH, and Ammonia Nitrogen at the frequencies specified on page 9 of this permit.

Pollutant

Biochemical Oxygen Demand (BOD5)

Total Suspended Solids

Ammonia Nitrogen (NH3-N)

Oil and Grease (O&G)

pН

Chloride (as Cl)

Sulfate (as SO4)

Arsenic, Total (as As)

Chromium, Total (as Cr)

Copper, Total (as Cu)

Iron, Total (as Fe)

Lead, Total (as Pb)

Nickel, Total (as Ni)

Selenium, Total (as Se)

Zinc, Total (as Zn)

Benzoic Acid

Chlorobenzene

Ethylbenzene

p-Cresol

Phenol

Toluene

The permittee will indicate completion of the annual leachate monitoring by entering a "1" in the "LEACHAT" column on the Discharge Monitoring Report (DMR) spreadsheet on the day that the samples are collected. Select the No Discharge Indicator "NOT REQUIRED/MP" on the DMR spreadsheet during the months that the monitoring is not required.

Results of annual monitoring shall be submitted to the addresses below:

NPDES.mail@dnr.iowa.gov

Subject: Landfill Leachate Scan (7335001)

Iowa DNR Field Office 4
1401 Sunnyside Ln.
Atlantic, IA 50022

Permit Number: 7335001

Design Capacity

Design: 1

The design capacity for the treatment works is specified in Construction Permit Number 76-482-S, issued June 11, 1976. The treatment plant is designed to treat:

- * An average dry weather (ADW) flow of 0.035 Million Gallons Per Day (MGD).
- * An average wet weather (AWW-180) flow of 0.035 Million Gallons Per Day (MGD).
- * A maximum wet weather (MWW) flow of 0.035 Million Gallons Per Day (MGD).
- * A design 5-day biochemical oxygen demand (BOD5) load of 60 lbs/day.

Operator Certification Type/Grade: WL/IL

Wastes in such volumes or quantities as to exceed the design capacity of the treatment works or reduce the effluent quality below that specified in the operation permit of the treatment works are considered to be a waste which interferes with the operation or performance of the treatment works and are prohibited by subrule IAC 567-62.1(7).

Permit Number: 7335001

SEWAGE SLUDGE HANDLING AND DISPOSAL REQUIREMENTS

"Sewage sludge" is solid, semisolid, or liquid residue generated during the treatment of domestic sewage in a treatment works. Sewage sludge does not include the grit and screenings generated during preliminary treatment.

- 1. The permittee shall comply with all existing Federal and State laws and regulations that apply to the use and disposal of sewage sludge and with technical standards developed pursuant to Section 405(d) of the Clean Water Act when such standards are promulgated. If an applicable numerical limit or management practice for pollutants in sewage sludge is promulgated after issuance of this permit that is more stringent than a sludge pollutant limit or management practice specified in existing Federal or State laws or regulations, this permit shall be modified, or revoked and reissued, to conform to the regulations promulgated under Section 405(d) of the Clean Water Act. The permittee shall comply with the limitation no later than the compliance deadline specified in the applicable regulations.
- 2. The permittee shall provide written notice to the Department of Natural Resources prior to any planned changes in sludge disposal practices.
- 3. Land application of sewage sludge shall be conducted in accordance with criteria established in rule IAC 567 67.1 through 67.11 (455B).

Permit Number: 7335001

Controlled Discharge Lagoon Operation and Sampling Procedures

OPERATION REQUIREMENTS

Continuous discharge of wastewater from this facility is prohibited. The treatment plant must be operated using a storage/drawdown mode of operating. Wastewater must be stored for approximately 180 days after which time the water level is to be lowered to make room for the next storage period. Acceptable discharge periods are April 15th through June 15th and October 1st through December 21st. Lagoon drawdown shall occur during these periods except in emergency situations. The permittee is required to contact the local DNR Field Office and obtain prior approval if there is a need to discharge during other times of the year, when stream flows are low or if the effluent limitations specified in this permit will not be met. Lagoon drawdown at a rate greater than 10 times the 180 day AWW design flow is prohibited.

PRE-DISCHARGE SAMPLING

The permittee is responsible for complying with the limits contained in this permit. Therefore, a grab sample of the lagoon cell contents collected at a point near the outlet structure shall be analyzed at least two weeks prior to an anticipated discharge to demonstrate that the wastewater is of such quality to meet the effluent limitations in the permit. The permittee must have the sample analyzed for 5-day carbonaceous biochemical oxygen demand (CBOD5) and total suspended solids (TSS). The results must be compared with the 30-day average effluent limits. If the results are less than the 30-day average limits, the permittee may isolate the final cell and draw down the lagoon cell. If the pre-discharge sample results exceed the 30-day average effluent limits for either CBOD5 or TSS, the permittee must contact the local DNR Field Office for guidance before beginning to discharge.

Report pre-discharge sample results in the spaces provided on the monthly operation report form.

EFFLUENT SAMPLING

The permittee must collect and analyze a sample of the final effluent on the third day after discharge begins for all parameters for which monitoring of the final effluent is specified on the page titled MONITORING AND REPORTING REQUIREMENTS. Subsequent samples shall be taken at the specified frequencies. For final effluent samples that are required to be taken twice during drawdown, the first sample shall be taken the third day after the drawdown begins, and the second sample shall be taken between three (3) and five (5) days before the drawdown ends. Report the results on the discharge monitoring report (DMR) form in the columns provided for effluent monitoring. The results must be reported for the days the samples were collected, not for the days the sample results were received from the laboratory.

Revised: April 10, 2013

Permit Number: 7335001

SIGNIFICANT INDUSTRIAL USER LIMITATIONS, MONITORING AND REPORTING REQUIREMENTS

- 1. You must enforce the pollutant limits for each significant industrial user that are listed elsewhere in this permit. Violation of a treatment agreement limit is prohibited by subrule 567 IAC 62.1(6). Monitoring of each significant industrial user is required elsewhere in this permit.
- 2. Monitoring of each significant industrial user is required elsewhere in this permit. Results of the required monitoring shall be included on your discharge monitoring report, which must be submitted by the fifteenth of the following month.
- 3. You are required to notify the department, in writing, of any of the following:
 - (a) 180 days prior to the introduction of pollutants to your facility from a significant industrial user. A significant industrial user means an industrial user of a treatment works that:
 - (1) Discharges an average of 25,000 gallons per day or more of process wastewater excluding sanitary, noncontact cooling and boiler blowdown wastewater:
 - (2) Contributes a process waste stream which makes up five percent or more of the average dry weather hydraulic or organic capacity of the publicly-owned treatment works:
 - (3) Is subject to Categorical Pretreatment Standards under 40 CFR 403.6 and 40 CFR Chapter I, Subchapter N; or
 - (4) Is designated by the department as a significant industrial user on the basis that the contributing industry, either singly or in combination with other contributing industries, has a reasonable potential for adversely affecting the operation of or effluent quality from the publicly-owned treatment works or for violating any pretreatment standards or requirements.
 - (b) 60 days prior to a proposed expansion, production increase or process modification that may result in the discharge of a new pollutant or a discharge in excess of limitations stated in the existing treatment agreement.
 - (c) 10 days prior to any commitment by you to accept waste from any new significant industrial user. Your written notification must include a new or revised treatment agreement in accordance with rule 64.3(5)(455B).
- 4. You shall require all users of your facility to comply with Sections 204(b), 307, and 308 of the Clean Water Act.
 - (a) Section 204(b) requires that all users of the treatment works constructed with funds provided under Sections 201(g) or 601 of the Act to pay their proportionate share of the costs of operation, maintenance and replacement of the treatment works.
 - (b) Section 307 of the Act requires users to comply with pretreatment standards promulgated by EPA for pollutants that would cause interference with the treatment process or would pass through the treatment works.
 - (c) Section 308 of the Act requires users to allow access at reasonable times to state and EPA inspectors for the purpose of sampling the discharge and reviewing and copying records.

STANDARD CONDITIONS

1. **ADMINISTRATIVE RULES** - Rules of the Iowa Department of Natural Resources (department) that govern the operation of a facility in connection with this permit are published in Part 567 of the Iowa Administrative Code (IAC) in Chapters 60-65, 67, and 121. Reference to the term "rule" in this permit means the designated provision of Part 567 of the IAC. Reference to the term "CFR" means the Code of Federal Regulations.

2. LIMIT DEFINITIONS -

- (a) 7 day average means the arithmetic mean (average) of pollutant parameter values for samples collected in a period of seven consecutive days. The first 7-day period shall begin with the first day of the month. [567 IAC 60.2]
- (b) 30 day average means the arithmetic mean of pollutant parameter values for samples collected in a period of 30 consecutive days. [567 IAC 60.2]
- (c) Daily maximum means the total discharge by mass, volume, or concentration during a twenty-four hour period. [567 IAC 60.2]

3. MONITORING AND RECORDS OF OPERATION -

- (a) Electronic reporting. Records of operation required by this permit shall be electronically submitted to the department within 15 days following the close of the monthly reporting period, in accordance with the monitoring requirements incorporated in this permit, unless an approval for paper submittal of records of operation has been obtained in accordance with 567 IAC 63.7(2).
- (b) Maintenance of records. You shall retain for a minimum of three years all paper and electronic records of monitoring activities and results including all original strip chart recordings for continuous monitoring instrumentation and calibration and maintenance records. {567 IAC 63.2(3)}
- (c) Any person who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required to be maintained under this permit shall, upon conviction, be punished by a fine of not more than \$10,000 or by imprisonment for not more than two years, or both. {40 CFR 122.41(j)(5)}
- 4. USE OF CERTIFIED LABORATORIES Analyses of wastewater, groundwater or sewage sludge that are required to be submitted as a result of this permit must be performed by a laboratory certified by the State of Iowa. Routine, on-site monitoring for pH, temperature, dissolved oxygen, total residual chlorine and other pollutants that must be analyzed immediately upon sample collection, physical measurements, and operational performance monitoring specified in 567 IAC 63.3(4) are excluded from this requirement. [567 IAC 63.1]
- 5. **DUTY TO PROVIDE INFORMATION** You must furnish to the director, within a reasonable time, any information the director may request to determine compliance with this permit or determine whether cause exists for amending, revoking and reissuing, or terminating this permit, in accordance with 567 IAC 64.3(11)"c". You must also furnish to the director, upon request, copies of any records required to be kept by this permit. If you become aware that you failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application, you must promptly submit such facts or information. If you become aware that you failed to submit any relevant facts in any report to the director, including records of operation, you shall promptly submit such facts or information. [567 IAC 60.4(2)"a", 567 IAC 63.7(6), 40 CFR 122.41(h)}
- 6. **DUTY TO REAPPLY AND PERMIT CONTINUATION** If you wish to continue to discharge after the expiration date of this permit, you must file a complete application for reissuance at least 180 days prior to the expiration date of this permit. If a timely and sufficient application is submitted, this permit will remain in effect until the department makes a final determination on the permit application. [567 IAC 64.8(1), Iowa Code 17A.18]
- 7. **DUTY TO COMPLY** You must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of the Clean Water Act and is grounds for enforcement action; permit termination, revocation and reissuance, or modification; or denial of a permit renewal application. Issuance of this permit does not relieve you of the responsibility to comply with all local, state and federal laws, ordinances, regulations or other legal requirements applying to the operation of your facility. **[567 IAC 64.7(4)"e", 40 CFR 122.41(a)]**
- 8. **DUTY TO MITIGATE** You shall take all reasonable steps to minimize or prevent any discharge in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment. {See 567 IAC 64.7(7)"i", 40 CFR 122.41(d)}
- 9. PROPER OPERATION AND MAINTENANCE All facilities and control systems shall be operated as efficiently as possible and maintained in good working order. A sufficient number of staff, adequately trained and knowledgeable in the operation of your facility, shall be retained at all times. Adequate laboratory controls and appropriate quality assurance procedures shall be provided to maintain compliance with the conditions of this permit. {567 IAC 64.7(7)"f", 40 CFR 122.41(e)}
- 10. SIGNATORY REQUIREMENTS Applications, discharge monitoring reports, or other information submitted to the department in connection with this permit must be signed and certified in accordance with 567 IAC 64.3(8).
- 11. TRANSFER OF TITLE OR OWNER ADDRESS CHANGE If title to your facility, or any part of it, is transferred, the new owner shall be subject to this permit. You are required to notify the new owner of the requirements of this permit in writing prior to any transfer of title. The department shall be notified in writing within 30 days of the occurrence. No transfer of the authorization to discharge from the facility represented by the permit shall take place prior to notifying the department of the transfer of title. Whenever the address of the owner is changed, the department shall be notified in writing within 30 days of the address change. {567 IAC 64.14}

STANDARD CONDITIONS

- 12. **PERMIT MODIFICATION, SUSPENSION OR REVOCATION** This permit may be amended, revoked and reissued, or terminated in whole or in part for cause including, but not limited to, those specified in 567 IAC 64.3(11)"b". This permit may be modified due to conditions or information on which this permit is based, including any new standard the department may adopt that would change the required effluent limits. If a toxic pollutant is present in your discharge and more stringent standards for toxic pollutants are established under Section 307(a) of the Clean Water Act, this permit will be modified in accordance with the new standards. The filing of a request for a permit amendment, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance does not stay any permit condition. [567 IAC 64.3(11) and 64.7(7)"g", 40 CFR 122.62(a)(6)]
- 13. TWENTY-FOUR HOUR REPORTING You shall report any noncompliance that may endanger human health or the environment, including, but not limited to, violations of maximum daily limits for any toxic pollutant (listed as toxic under 307(a)(1) of the Clean Water Act) or hazardous substance (as designated in 40 CFR Part 116 pursuant to 311 of the Act). Information shall be provided orally to the appropriate regional field office of the department within 24 hours from the time you become aware of the circumstances. A written submission that includes a description of noncompliance and its cause; the period of noncompliance including exact dates and times, whether the noncompliance has been corrected or the anticipated time it is expected to continue; and the steps taken or planned to reduce, eliminate, and prevent a reoccurrence of the noncompliance must be provided to the appropriate field office within 5 days of the occurrence. [567 IAC 63.12]
- 14. OTHER NONCOMPLIANCE You shall report all instances of noncompliance not reported under Condition #13 at the time discharge monitoring reports are submitted. The report shall contain the information listed in Condition #13. You shall give advance notice to the appropriate regional field office of the department of any planned activity which may result in noncompliance with permit requirements. Notice is required only when previous notice has not been given to any other section of the department. [567 IAC 63.7(5) and 63.14]
- 15. INSPECTION OF PREMISES, RECORDS, EQUIPMENT, METHODS AND DISCHARGES You are required to permit authorized personnel to:
 - (a) Enter upon the premises where a regulated facility or activity is located or conducted or where records are kept under conditions of this permit;
 - (b) Have access to and copy, at reasonable times, any records that must be kept under the conditions of this permit;
 - (c) Inspect, at reasonable times, any facilities, equipment, practices or operations regulated or required under this permit; and
 - (d) Sample or monitor, at reasonable times, to assure compliance or as otherwise authorized by the Clean Water Act.

{40 CFR 122.41(i)}

- 16. NOTICE OF CHANGED CONDITIONS You are required to notify the director of any changes in existing conditions or information on which this permit is based, including, but not limited to, the following:
 - (a) If your facility is a publicly owned treatment works (POTW) or otherwise accepts waste for treatment from an indirect discharger or industrial contributor, you must notify the director if there is any substantial change in the volume or character of pollutants being introduced to the POTW by an indirect discharger or industrial contributor. See 567 IAC 64.3(5) for further requirements. {40 CFR 122.42(b)}
 - (b) If your facility has a manufacturing, commercial, mining, or silviculture discharge, you must notify the director as soon as you know or have reason to believe that any activity has occurred or will occur which would result in the discharge of any toxic pollutant which is not limited in this permit. {See 40 CFR 122.42(a)}
 - (c) You must notify the director if you have begun or will begin to use or manufacture, as an intermediate or final product or byproduct, any toxic pollutant which was not reported in the permit application. [40 CFR 122.21(g)(9)]
- 17. PLANNED CHANGES You shall give notice to the appropriate regional field office of the department 30 days prior to any planned physical alterations or additions to the permitted facility. Facility expansions, production increases, or process modifications which result in new or increased discharges of pollutants must be reported by submission of a new permit application. If any modification of, addition to, or construction of a disposal system is to be made, you must first obtain a written construction permit from this department. In addition, no construction activity that will result in disturbance of one acre or more shall be initiated without first obtaining coverage under NPDES General Permit No. 2.

 Notice is required only when:
 - (a) Notice has not been given to any other section of the department:
 - (b) The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source as defined in 567 IAC 60.2;
 - (c) The alteration or addition results in a significant change in sludge use or disposal practices; or
 - (d) The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants that are not subject to effluent limitations in the permit.

{567 IAC 63.13, 567 IAC 64.2 and 64.7(7)"a"}

18. FAILURE TO SUBMIT FEES - This permit may be revoked, in whole or in part, if the appropriate permit fees are not submitted within thirty (30) days of the date of notification that such fees are due. [567 IAC 64.16(1)]

STANDARD CONDITIONS

- 19. BYPASSES "Bypass" means the diversion of waste streams from any portion of a treatment facility or collection system. A bypass does not include internal operational waste stream diversions that are part of the design of the treatment facility, maintenance diversions where redundancy is provided, diversions of wastewater from one point in a collection system to another point in a collection system, or wastewater backups into buildings that are caused in the building lateral or private sewer line.
 - (a) Prohibitions.
 - i. Bypasses from any portion of a treatment facility or from a sanitary sewer collection system designed to carry only sewage are prohibited.
 - ii. The department may not assess a civil penalty against a permittee for a bypass if the permittee has complied with all of the following:
 - (1) The bypass was unavoidable to prevent loss of life, personal injury, or severe property damage;
 - (2) There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate backup equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass which occurred during normal periods of equipment downtime or preventive maintenance; and
 - (3) The permittee submitted notices as required by paragraph (d) of this section.
 - (c) The Director may approve an anticipated bypass after considering its adverse effects if the Director determines that it will meet the three conditions listed above and a request for bypass has been submitted to the appropriate regional field office of the department at least ten days prior to the expect event, in accordance with 567 IAC 63.6(2).
 - (d) Bypasses shall be reported in accordance with 567 IAC 63.6. *{567 IAC 63.6}*
- 20. UPSETS "Upset" means an exceptional incident in which there is unintentional and temporary noncompliance with technology-based permit effluent limitations because of factors beyond the reasonable control of the permittee. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation.
 - (a) Effect of an upset. An upset constitutes an affirmative defense to the assessment of a civil penalty for noncompliance with technology-based permit effluent limitations if the requirements of paragraph (c) of this condition are met. No determination made during administrative review of claims that noncompliance was caused by upset, and before an action for noncompliance, is final administrative action subject to judicial review.
 - (b) Conditions necessary for demonstration of an upset. A permittee who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed operating logs or other relevant evidence, that;
 - i. An upset occurred and that the permittee can identify the cause(s) of the upset;
 - ii. The permitted facility was at the time being properly operated;
 - iii. The permittee submitted notice of the upset to the department in accordance with 567 IAC 63.6(3); and
 - iv. The permittee complied with any remedial measures required by the department in accordance with 567 IAC 63.6(6)"b".
 - (c) Burden of Proof. In any enforcement proceeding, the permittee seeking to establish the occurrence of an upset has the burden of proof. {567 IAC 63.6}
- 21. NEED TO HALT OR REDUCE ACTIVITY It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. {567 IAC 64.7(7)"i", 40 CFR 122.41(c)}
- 22. PROPERTY RIGHTS This permit does not convey any property rights of any sort or any exclusive privilege. [567 IAC 64.4(3)"b", 40 CFR 122.41(g)]
- 23. EFFECT OF A PERMIT Compliance with a permit during its term constitutes compliance, for purposes of enforcement, with Sections 301, 302, 306, 307, 318, 403 and 405(a)-(b) of the Clean Water Act, and equivalent limitations and standards set out in 567 IAC Chapters 61 and 62. [567 IAC 64.4(3)"a"]
- 24. SEVERABILITY The provisions of this permit are severable and if any provision or application of any provision to any circumstance is found to be invalid by this department or a court of law, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected by such finding.

TURKLE - CLARK NVIRONMENTAL CONSULTING, L.C.

September 7, 2016

Eric Wiklund IDNR Water Quality - NPDES Permits 5th Floor Wallace Bldg 502 E. 9th St Des Moines, IA 50319

RE: Treatment Agreement between City of Clarinda and Page County Landfill NPDES permit # 7329001

Dear Eric:

Attached is a treatment agreement form approved by the City of Clarinda and the Page County Sanitary Landfill Association for accepting and treating the leachate from the landfill. The limits are similar to those authorized with the City of Shenandoah. This additional treatment location provides alternatives for the landfill to utilize should one system be unable to accept the leachate.

If you should have questions or need additional information regarding this agreement, please feel free to contact me directly.

Sincerely,

Cindy Turkle,

Senior Environmental Professional

Cc: Page County Landfill

Gary McClarnon, City of Clarinda Al Bertelsen, Field Office #4 Geoffrey Spain, Land Quality

Enclosure

DND UCE ONLY

IOWA DEPARTMENT OF NATURAL RESOURCES TREATMENT AGREEMENT FORM

	DIAK ORE CIATA
NOTICE	NPDES NO.
A properly executed Treatment Agreement must be submitted by the industrial user not less	
	IND. CONT. AGREEMENT NO.
than one hundred eighty (180) days before the new significant industrial user proposes to	
discharge into a wastewater disposal system. Any proposed expansion, production increase,	REPLACES AGREEMENT NO.
or process modification that may result in <u>any</u> change to a previous Treatment Agreement	Na Angalo Noneciment 1107
requires execution of a new Treatment Agreement.	

SIGNIFICANT INDUSTRIAL U	SER	SYSTEM RECEIVING WASTE		
NAME		NAME		
Page County Sanitary Landfill		Clarinda Wastewater Treatment		
MAILING ADDRESS		MAILING ADDRESS		
2032 N Ave, Clarinda, IA 51632-959		200 S. 15th St., Clarinda, IA 51632		
AUTHORIZED REPRESENTATIVE PHONE NO.		AUTHORIZED REPRESENTATIVE	PHONE NO.	
Myron Magwitz 712-542-5018		Gary McClarnon 712-542-21		

CERTIFICATION OF INDUSTRIAL USER

I am the duly authorized representative for the significant industrial user identified above and state that the proposed discharge to the system receiving waste identified above shall not exceed the quantities listed on page two of this form after:

EFFECTIVE DATE	
PLI PCIINT DWIT	
Cantomban 1 2016	
September 1, 2016	

I further assure that notice of any anticipated increase in pollutants contributed shall be given to the owner of the system identified above sufficiently in advance of such increase to allow this contributor to submit a new treatment agreement to the Department of Natural Resources no later than sixty days in advance of the increase or change.

TYPED OR PRINTED NAME	TITLE	SIGNATURE	DATE
Myron Magwitz	Manager	Myson Magnit	9-1-16
		7 77	

CERTIFICATION OF SYSTEM RECEIVING WASTE

I am the duly authorized representative for the facility owner named above and state that the owner agrees to accept the discharge described on page two from the contractor identified above, and accepts responsibility for providing treatment of the volume and quantities described on the reverse in accordance with the provisions of Chapter 455B, Code of lowa, and the rules of the Department of Natural Resources. This agreement is conditioned on the industrial contributor complying with all applicable standards and requirements of the Department of Natural Resources and the United State Environmental Protection Agency. This agreement is entered for the purpose of identifying pollutants contributed and limiting the quantity contributed, and shall not otherwise be construed to affect local ordinances, sewer service agreements or fee systems entered into between the parties.

This agreement may be modified or terminated by the owner of the disposal system if additional pollutants or additional quantities or volumes of pollutants are contributed other than identified on the reverse, or because of any condition that requires either a temporary or permanent reduction or elimination of the accepted contribution.

TYPED OR PRINTED NAME	TITLE	SIGNATURE	DATE
Gary Mickenon	City Manager	Harry M: Clarmon	9-2-2016

TREATMENT AGREEMENT FORM

				· · · · · · · · · · · · · · · · · · ·		
1. PROCESS DESCRIPTION						
SPECIFIC MANUFACTURING PROCESS			SIC CODES			
Municipal solid waste landfill leachate			4953			
201/21/107/21			2002114701			
CONSUMPTION PRINCIPAL RAW MATERIAL AMOUNT CONSUMED PER DAY			PRODUCTION PRINCIPAL PRODUCTS AMOUNT PRODUCED PER DAY			
Residential and	50 TPD			Il leachate varies		
commercial waste	30 150			, ,		
Contract Con						
2. HOUSEN MAKENING	A DAVE OF CREEKING		4 HOURS OF OR	EDATION DUDING	5. RANGE OF	NH LEVEL IN
2. HOURLY MAXIMUM FLOW CONTRIBUTION	3. DAYS OF OPERATION PER WEEK		4. HOURS OF OPERATION DURING 5. RANGE O PEAK DAY OF OPERATION CONTR			
NA	7			Potentially 24/day		MAXIMUM
					5.8	8.5
						<u> </u>
6. DESCRIPTION OF PRETREA	ATMENT PROVIDED					
None						
7. DESCRIPTION OF ANY BAT	TCH OR PERIODIC D	ISCHARGES				
Leachate is temporarily sto		William .	agoon. When vo	lumes require draw	down, the leac	hate is
transported to the POTW f			<u>.</u>		,	
8. COMPATIBLE WASTE IN C	ONTRIBUTION					
WASTEWATER PARAMETE	R AVERAGE	MAXIMUM	WASTEWATE	R PARAMETER	AVERAGE	MUMIXAM
Flow (MGD)	0.022000	0.03000	Ammonia Nitrogo	en (lbs/day)	12.843	35.03
BOD5 (lbs/day)	9.174	25.02	Oil and Grease (n	ng/i)		
Total Suspended Solids (lbs/c	day) 18.35	50.04				
Total Kjeldahl Nitrogen (lbs/c	lay)					
9. INCOMPATIBLE WASTE IN	CONTRIBUTION					
			Δ\/	ERAGE		IMUM
WASTEWATER PARAMETER		mg/l	lbs/day	mg/l	lbs/day	
none				135/444		100,004
1						
					1	
						-
		-1.00				
202						
	· · · · · · · · · · · · · · · · · · ·					
Ja			·		18.35	

Fax: 515-725-8202

January 24, 2022

ROGER MCQUEEN - MAYOR SHENANDOAH CITY PO BOX 338 500 W CLARINDA AVE SHENANDOAH, IOWA 51601

RE: NPDES Final Permit #3659001

To whom it may concern,

Enclosed is the final NPDES permit that authorizes the discharge of wastewater from the Shenandoah City wastewater treatment facility. This final permit is the same as the draft permit sent on November 30, 2021. The issuance date of this permit is February 1, 2022; please become familiar with all limits and requirements in the enclosed final permit.

The facility will be required to use new discharge monitoring report (DMR) forms. Paper and electronic DMR forms are available from your regional Field Office. The facility is strongly encouraged to use the electronic reporting form. Please contact Dan Olson at 712-243-1934 (Field Office 4) or dan.olson@dnr.iowa.gov for more information or to request forms.

If you have any questions, please contact me at 515-725-8418 or at derek.dusenbery@dnr.iowa.gov.

Sincerely,

Derek Dusenbery
Derek Dusenbery
Date: 2022.01.24
13:28:27 -06'00'

Derek Dusenbery Environmental Specialist NPDES Permit Writer

Phone: 515-725-8200

IOWA DEPARTMENT OF NATURAL RESOURCES

National Pollutant Discharge Elimination System (NPDES) Permit

OWNER NAME & ADDRESS

CITY OF SHENANDOAH CITY HALL, P.O. BOX 338 SHENANDOAH, IA 51601

FACILITY NAME & ADDRESS

SHENANDOAH CITY OF STP WEST OF TOWN OFF 190TH STREET AND WEST SHERIDAN AVENUE SHENANDOAH, IA 51601

Section 24, T69N, R40W Fremont County

IOWA NPDES PERMIT NUMBER: 3659001

DATE OF ISSUANCE: 02/01/2022 **DATE OF EXPIRATION:** 01/31/2027

YOU ARE REQUIRED TO FILE FOR RENEWAL OF THIS

PERMIT BY: 08/04/2026 **EPA NUMBER:** IA0032328

This permit is issued pursuant to the authority of section 402(b) of the Clean Water Act (33 U.S.C. 1342(b)), lowa Code section 455B.174, and rule 567-64.3, lowa Administrative Code. You are authorized to operate the disposal system and to discharge the pollutants specified in this permit in accordance with the effluent limitations, monitoring requirements and other terms set forth in this permit.

You may appeal any condition of this permit by filing a written notice of appeal and request for administrative hearing with the director of the department within 30 days of permit issuance.

Any existing, unexpired Iowa operation permit or Iowa NPDES permit previously issued by the department for the facility identified above is revoked by the issuance of this permit. This provision does not apply to any authorization to discharge under the terms and conditions of a general permit issued by the department or to any permit issued exclusively for the discharge of stormwater.

FOR THE DEPARTMENT OF NATURAL RESOURCES

Derek

Digitally signed by Derek
Dusenbery

By Dusenbery

Date: 2022.01.24 12:24:00 -06'00'

Derek Dusenbery

NPDES Section, Environmental Services Division

Facility Name: SHENANDOAH CITY OF STP

Permit Number: 3659001

Outfall No.: 001 DISCHARGE FROM A TRICKLING FILTER WASTEWATER TREATMENT FACILITY.

Receiving Stream: UNNAMED CREEK

Route of Flow: UNNAMED CREEK TO EAST NISHNABOTNA RIVER

Class A2 waters are secondary contact recreational use waters in which recreational or other uses may result in contact with the water that is either incidental or accidental. During the recreational use, the probability of ingesting appreciable quantities of water is minimal. Class A2 uses include fishing, commercial and recreational boating, any limited contact incidental to shoreline activities and activities in which users do not swim or float in the water body while on a boating activity.

Waters designated Class B(WW2) are those in which flow or other physical characteristics are capable of supporting a resident aquatic community that includes a variety of native nongame fish and invertebrate species. The flow and other physical characteristics limit the maintenance of warm water game fish populations. These waters generally consist of small perennially flowing streams.

Outfall No.: 002 DISCHARGE TO GOLF COURSE IRRIGATION SYSTEM.

Receiving Stream: GOLF COURSE GOLF COURSE

Class A1 waters are primary contact recreational use waters in which recreational or other uses may result in prolonged and direct contact with the water, involving considerable risks of ingesting water in quantities sufficient to pose a health hazard. Such activities would include, but not be limited to, swimming, diving, water skiing, and water contact recreational canoeing.

Outfall No.: 003 BYPASS OF ETHANOL PLANT RETURN FLOW

Receiving Stream: UNNAMED CREEK

Route of Flow: UNNAMED CREEK TO EAST NISHNABOTNA RIVER

Class A2 waters are secondary contact recreational use waters in which recreational or other uses may result in contact with the water that is either incidental or accidental. During the recreational use, the probability of ingesting appreciable quantities of water is minimal. Class A2 uses include fishing, commercial and recreational boating, any limited contact incidental to shoreline activities and activities in which users do not swim or float in the water body while on a boating activity.

Waters designated Class B(WW2) are those in which flow or other physical characteristics are capable of supporting a resident aquatic community that includes a variety of native nongame fish and invertebrate species. The flow and other physical characteristics limit the maintenance of warm water game fish populations. These waters generally consist of small perennially flowing streams.

Bypasses from any portion of a treatment facility or from a sanitary sewer collection system designed to carry only sewage are prohibited.

Facility Name: SHENANDOAH CITY OF STP

Permit Number: 3659001

Effluent Limitations:

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

001 DISCHARGE FROM A TRICKLING FILTER WASTEWATER TREATMENT FACILITY.

Outfall: 001 E	Outfall: 001 Effective Dates: 02/01/2022 to 01/31/2027				
<u>Parameter</u>	<u>Season</u>	<u>Limit Type</u>	<u>Limits</u>		
CBOD5			85% Removal Required		
	Yearly	7 Day Average	40 MG/L 627 LBS/DAY		
	Yearly	30 Day Average	25 MG/L 392 LBS/DAY		
TOTAL SUSPENDED SOLIDS			85% Removal Required		
	Yearly	7 Day Average	45 MG/L 706 LBS/DAY		
	Yearly	30 Day Average	30 MG/L 470 LBS/DAY		
ACUTE TOXICITY, CERIODAPHNIA					
	Yearly	Daily Maximum	1 NO TOXICITY		
ACUTE TOXICITY, PIMEPHALES					
	Yearly	Daily Maximum	1 NO TOXICITY		
DISSOLVED OXYGEN					
	Yearly	Daily Minimum	5.0 MG/L		
PH					
	Yearly	Daily Maximum	9.0 STD UNITS		
	Yearly	Daily Minimum	6.5 STD UNITS		

Outfall: 001	Effective Dates: 02	2/01/2022 to 04/30/2026			
<u>Parameter</u>	Season	<u>Limit Type</u>	<u>Limits</u>		
AMMONIA N	ITROGEN (N)		•		
	JAN	30 Day Average	19 MG/L	258 LBS/DAY	
	JAN	Daily Maximum	19 MG/L	276 LBS/DAY	
	FEB	30 Day Average	19 MG/L	266 LBS/DAY	
	FEB	Daily Maximum	19 MG/L	266 LBS/DAY	
	MAR	30 Day Average	18 MG/L	225 LBS/DAY	
	MAR	Daily Maximum	18 MG/L	263 LBS/DAY	
	APR	30 Day Average	10 MG/L	98 LBS/DAY	
	APR	Daily Maximum	19 MG/L	273 LBS/DAY	
	MAY	30 Day Average	9.0 MG/L	85 LBS/DAY	
	MAY	Daily Maximum	18 MG/L	265 LBS/DAY	
	JUN	30 Day Average	6.1 MG/L	59 LBS/DAY	
	JUN	Daily Maximum	17 MG/L	253 LBS/DAY	
	JUL	30 Day Average	7.0 MG/L	64 LBS/DAY	
	JUL	Daily Maximum	21 MG/L	306 LBS/DAY	
	AUG	30 Day Average	6.4 MG/L	59 LBS/DAY	
	AUG	Daily Maximum	19 MG/L	281 LBS/DAY	
	SEP	30 Day Average	6.9 MG/L	66 LBS/DAY	
	SEP	Daily Maximum	20 MG/L	289 LBS/DAY	
	ОСТ	30 Day Average	15 MG/L	135 LBS/DAY	
	ОСТ	Daily Maximum	19 MG/L	276 LBS/DAY	
	NOV	30 Day Average	17 MG/L	166 LBS/DAY	
	NOV	Daily Maximum	17 MG/L	257 LBS/DAY	
	DEC	30 Day Average	19 MG/L	195 LBS/DAY	
	DEC	Daily Maximum	19 MG/L	280 LBS/DAY	

<u>Parameter</u>	Season	Limit Type	<u>Limits</u>	
AMMONIA N	ITROGEN (N)			
	JAN	30 Day Average	3.4 MG/L	53.4 LBS/DAY
	JAN	Daily Maximum	15.2 MG/L	238.1 LBS/DAY
	FEB	30 Day Average	4.0 MG/L	62.0 LBS/DAY
	FEB	Daily Maximum	14.2 MG/L	222.6 LBS/DAY
	MAR	30 Day Average	3.4 MG/L	53.4 LBS/DAY
	MAR	Daily Maximum	14.7 MG/L	230.3 LBS/DAY
	APR	30 Day Average	1.5 MG/L	23.9 LBS/DAY
	APR	Daily Maximum	15.7 MG/L	246.2 LBS/DAY
	MAY	30 Day Average	1.7 MG/L	27.3 LBS/DAY
	MAY	Daily Maximum	15.2 MG/L	238.1 LBS/DAY
	JUN	30 Day Average	1.3 MG/L	20.5 LBS/DAY
	JUN	Daily Maximum	14.4 MG/L	226.4 LBS/DAY
	JUL	30 Day Average	1.0 MG/L	15.8 LBS/DAY
	JUL	Daily Maximum	14.3 MG/L	217.9 LBS/DAY
	AUG	30 Day Average	1.0 MG/L	15.0 LBS/DAY
	AUG	Daily Maximum	13.7 MG/L	208.5 LBS/DAY
	SEP	30 Day Average	1.1 MG/L	16.6 LBS/DAY
	SEP	Daily Maximum	16.5 MG/L	258.6 LBS/DAY
	ОСТ	30 Day Average	1.6 MG/L	24.4 LBS/DAY
	ОСТ	Daily Maximum	15.7 MG/L	246.2 LBS/DAY
	NOV	30 Day Average	2.3 MG/L	36.4 LBS/DAY
	NOV	Daily Maximum	14.7 MG/L	230.3 LBS/DAY
	DEC	30 Day Average	2.5 MG/L	38.8 LBS/DAY
· · · · · · · · · · · · · · · · · · ·	DEC	Daily Maximum	16.0 MG/L	250.3 LBS/DAY

Parameter	Season	Limit Type	Limits
E. COLI	<u> </u>		
	MAR	Geometric Mean	134 #/100 ML
	APR	Geometric Mean	134 #/100 ML
	MAY	Geometric Mean	134 #/100 ML
	JUN	Geometric Mean	134 #/100 ML
	JUL	Geometric Mean	134 #/100 ML
	AUG	Geometric Mean	134 #/100 ML
	SEP	Geometric Mean	134 #/100 ML
	ОСТ	Geometric Mean	134 #/100 ML
	NOV	Geometric Mean	134 #/100 ML

Outfall: 001 Ej	Outfall: 001 Effective Dates: 01/01/2027 to 01/31/2027						
<u>Parameter</u>	Season	<u>Limit Type</u>	Limits				
SELENIUM, TOTAL (AS SE)							
	Yearly	30 Day Average	0.005 MG/L 0.0784 LBS/DAY				
	Yearly	Daily Maximum	0.0193 MG/L 0.3026 LBS/DAY				
COPPER, TOTA	L (AS CU)						
	Yearly	30 Day Average	0.01687 MG/L 0.2645 LBS/DAY				
	Yearly	Daily Maximum	0.0269 MG/L 0.4217 LBS/DAY				

Permit Number: 3659001

Monitoring and Reporting Requirements

(a) Samples and measurements taken shall be representative of the volume and nature of the monitored wastewater.

(b) Analytical and sampling methods specified in 40 CFR Part 136 or other methods approved in writing by the department shall be utilized. All effluent samples for which a limit applies must be analyzed using sufficiently sensitive methods (i.e. testing procedures) approved under 567 IAC Chapter 63 and 40 CFR Part 136 for the analysis of pollutants or pollutant parameters or as required under 40 CFR chapter I, subchapter N or O.

For the purposes of this paragraph, an approved method is sufficiently sensitive when:

- (1) the method minimum level (ML) is at or below the level of the effluent limit established in the permit for the measured pollutant or pollutant parameter; or
- (2) the method has the lowest ML of the approved analytical methods for the measured pollutant or pollutant parameter.

Samples collected for operational testing need not be analyzed by approved analytical methods; however, commonly accepted test methods should be used.

- (c) You are required to report all data including calculated results needed to determine compliance with the limitations contained in this permit. The results of any monitoring not specified in this permit performed at the compliance monitoring point and analyzed according to 40 CFR Part 136 shall be included in the calculation and reporting of any data submitted in accordance with this permit. This includes daily maximums and minimums, 30-day averages and 7-day averages for all parameters that have concentration (mg/l) and mass (lbs/day) limits. In addition, flow data shall be reported in million gallons per day (MGD).
- (d) Records of monitoring activities and results shall include for all samples: the date, exact place and time of the sampling; the dates the analyses were performed; who performed the analyses; the analytical techniques or methods used; and the results of such analyses.
- (e) Results of all monitoring shall be recorded on forms provided by, or approved by, the department, and shall be submitted to the appropriate regional field office of the department by the fifteenth day following the close of the reporting period. Your reporting period is on a MONTHLY basis, ending on the last day of each reporting period.
- (f) Operational performance monitoring for treatment unit process control shall be conducted to ensure that the facility is properly operated in accordance with its design. The results of any operational performance monitoring need not be reported to the department, but shall be maintained in accordance with rule 567 IAC 63.2 (455B). The results of any operational performance monitoring specified in this permit shall be submitted to the department in accordance with these reporting requirements.
- (g) Chapter 63 of the rules provides you with further explanation of your monitoring requirements.

Outfall	Wastewater Parameter	Sample Frequency	Sample Type	Monitoring Location
The follov	ving monitoring requirements shall be in effect	from 02/01/2022 to 01/31/2027		
001	BIOCHEMICAL OXYGEN DEMAND (BOD5)	2 TIMES PER WEEK	24 HOUR COMPOSITE	RAW WASTE
001	FLOW	7/WEEK OR DAILY	24 HOUR TOTAL	RAW WASTE
001	NITROGEN, TOTAL (AS N)	1 TIME PER WEEK	24 HOUR COMPOSITE	RAW WASTE
001	NITROGEN, TOTAL KJELDAHL (AS N)	1 EVERY MONTH	24 HOUR COMPOSITE	RAW WASTE
001	PH	2 TIMES PER WEEK	GRAB	RAW WASTE
001	PHOSPHORUS, TOTAL (AS P)	1 TIME PER WEEK	24 HOUR COMPOSITE	RAW WASTE
001	TEMPERATURE	2 TIMES PER WEEK	GRAB	RAW WASTE
001	TOTAL SUSPENDED SOLIDS	1 TIME PER WEEK	24 HOUR COMPOSITE	RAW WASTE
001	E. COLI	SEE SPECIAL MONITORING	GRAB	EFFLUENT AFTER DISINFECTION - GEO MEAN
001	ACUTE TOXICITY, CERIODAPHNIA	1 EVERY 12 MONTHS	24 HOUR COMPOSITE	EFFLUENT AFTER DISINFECTION
001	ACUTE TOXICITY, PIMEPHALES	1 EVERY 12 MONTHS	24 HOUR COMPOSITE	EFFLUENT AFTER DISINFECTION
001	AMMONIA NITROGEN (N)	2 TIMES PER WEEK	24 HOUR COMPOSITE	EFFLUENT AFTER DISINFECTION
001	CBOD5	2 TIMES PER WEEK	24 HOUR COMPOSITE	EFFLUENT AFTER DISINFECTION
001	COPPER, TOTAL (AS CU)	1 EVERY MONTH	24 HOUR COMPOSITE	EFFLUENT AFTER DISINFECTION
001	DISSOLVED OXYGEN	2 TIMES PER WEEK	GRAB	EFFLUENT AFTER DISINFECTION
001	NITROGEN, TOTAL (AS N)	1 TIME PER WEEK	24 HOUR COMPOSITE	EFFLUENT AFTER DISINFECTION
001	PH	2 TIMES PER WEEK	GRAB	EFFLUENT AFTER DISINFECTION
001	PHOSPHORUS, TOTAL (AS P)	1 TIME PER WEEK	24 HOUR COMPOSITE	EFFLUENT AFTER DISINFECTION
001	SELENIUM, TOTAL (AS SE)	1 EVERY MONTH	24 HOUR COMPOSITE	EFFLUENT AFTER DISINFECTION
001	TEMPERATURE	2 TIMES PER WEEK	GRAB	EFFLUENT AFTER DISINFECTION
001	TOTAL SUSPENDED SOLIDS	1 TIME PER WEEK	24 HOUR COMPOSITE	EFFLUENT AFTER DISINFECTION
001	ZINC, TOTAL (AS ZN)	1 EVERY MONTH	24 HOUR COMPOSITE	EFFLUENT AFTER DISINFECTION
002	FLOW	7/WEEK OR DAILY	24 HOUR COMPOSITE	PRIOR TO LAND APPLICATION
002	NITROGEN, TOTAL (AS N)	1 EVERY 2 MONTHS	24 HOUR COMPOSITE	PRIOR TO LAND APPLICATION

Permit Number: 3659001

Special Monitoring Requirements

Outfall Description

001 E. COLI

Except as specified in the effluent monitoring study portion of the compliance schedule in this permit, monitoring for *E. coli* is not required until the final *E. coli* limit is effective. All E.coli sample results must be reported in the Monthly Operation Report. If E.coli monitoring is not conducted during the time from the end of the effluent monitoring study to the final compliance date, the facility shall indicate on the Monthly Operation Report that monitoring is not required by using the "NOT REQ/MP" no discharge code.

The limit for *E. coli* specified in the limit pages of this permit is a geometric mean. The disinfection season is established in the lowa Administrative Code, Subparagraph 567 IAC 61.3(3)"a"(1), and is in effect from March 15 to November 15. Any disinfection system (chlorine, UV light, etc.) shall be operated to comply with the limit during the entire disinfection season.

The facility must collect and analyze a minimum of five samples in one calendar month during each 3-month period from March 15 to November 15. The 3-month periods are March – May, June – August, and September – November. The collection of five samples in each 3-month period will result in a minimum of 15 samples being collected during a calendar year. For example, for the first 3-month period, the operator may choose April as the calendar month to collect the 5 individual *E. coli* samples to determine compliance with the limits. The operator may also choose the months of March or May as well, as long as each of the 5 samples is collected during a single calendar month. The same principle applies to the other two 3-month periods during the disinfection season. The following requirements apply to the individual samples collected in one calendar month:

Samples must be spaced over one calendar month.

No more than one sample can be collected on any one day.

There must be a minimum of two days between each sample.

No more than two samples may be collected in a period of seven consecutive days.

If the effluent has been disinfected using chlorine, ultraviolet light (UV), or any other process intended to disrupt the biological integrity of the *E. coli*, the samples shall be analyzed using the Most Probable Number method found in Standard Method 9223B (Colilert® or Colilert-18® made by IDEXX Laboratories, Inc.). If the effluent has not been disinfected the samples may be analyzed using either the MPN method above or EPA Method 1603: Escherichia coli (*E. coli*) in water by membrane filtration using modified membrane-thermotolerant *E. coli* agar (modified mTEC) or mColiBlue-24® made by the Hach Company.

The geometric mean must be calculated using all valid sample results collected during a month. The geometric mean formula is as follows: Geometric Mean = (Sample one * Sample two * Sample three * Sample four *Sample five...Sample N)^(1/N), which is the Nth root of the result of the multiplication of all of the sample results where N = the number of samples. If a sample result is a less than value, the value reported by the lab without the less than sign should be used in the geometric mean calculation.

The geometric mean can be calculated in one of the following ways:

Use a scientific calculator that can calculate the powers of numbers.

Enter the samples in Microsoft Excel and use the function "GEOMEAN" to perform the calculation.

Use the geometric mean calculator on the Iowa DNR webpage at:

http://www.iowadnr.gov/Environmental-Protection/Water-Quality/NPDES-Wastewater-Permitting/NPDES-Operator-Information/Bacteria-Sampling

Permit Number: 3659001

Special Monitoring Requirements - Continued

NITROGEN, TOTAL (AS N)

Total nitrogen shall be determined by testing for Total Kjeldahl Nitrogen (TKN) and nitrate + nitrite nitrogen and reporting the sum of the TKN and nitrate + nitrite results (reported as N). Nitrate + nitrite can be analyzed together or separately.

METALS

Sample and analyze your final effluent for parameters listed below at the frequency shown on the Monitoring and Reporting Requirements pages of this permit. EPA approved test methods shall be used to test at a detection level at or below the levels listed after each parameter. If a sample result is not at a detection level which is low enough to demonstrate compliance with the limit in the permit, the facility will be considered to be non-compliant with that limit.

Copper 0.01687 mg/L Selenium 0.0050 mg/L Zinc 0.2156 mg/L

FLOW (OUTFALL 002)

Disinfected effluent shall be held in a retention pond with a detention time of at least 20 days prior to reuse as irrigation on a golf course. For this purpose, effluent may be disinfected using any common treatment technology, and either an existing pond or a pond constructed specifically for effluent retention may be used.

Also, a golf course utilizing treated final effluent shall take all of the following actions:

- (1) Clearly state on all scorecards that treated final effluent is used for irrigation of the golf course and oral contact with golf balls and tees should be avoided;
- (2) Post signs that warn against consumption of water at all water hazards;
- (3) Color code, label, or tag all piping and sprinklers associated with the distribution or transmission of the treated final effluent to clearly warn against the consumptive use of the contents; and
- (4) Restrict the access of the public to any area of the golf course where spraying is being conducted.

GOLF COURSE

A minimum total residual chlorine level of 0.5 mg/l must be maintained at a minimum of 15 minutes contact time of chlorine to wastewater prior to the irrigation of the golf course with treatment plant effluent.

In addition, a golf course utilizing treated final effluent shall take all of the following actions:

- (1) Clearly state on all scorecards that treated final effluent is used for irrigation of the golf course and oral contact with golf balls and tees should be avoided;
- (2) Post signs that warn against consumption of water at all water hazards;
- (3) Color code, label, or tag all piping and sprinklers associated with the distribution or transmission of the treated final effluent to clearly warn against the consumptive use of the contents; and
- (4) Restrict the access of the public to any area of the golf course where spraying is being conducted.

Permit Number: 3659001

ADDITIONAL OPERATING, MONITORING AND REPORTING REQUIREMENTS

In addition to the monitoring requirements specified elsewhere in this permit, you shall collect at least one grab sample of the final effluent from outfall 001 on a day when the plant is operating normally. The sample(s) you collect must be representative of the actual discharge and shall be analyzed for chloride, sulfate, and oil & grease using sufficiently sensitive methods (i.e., testing procedures) approved under 567 IAC Chapter 63 and 40 CFR Part 136.

For the purposes of this paragraph, an approved method is "sufficiently sensitive" when:

- (1) the method reporting limit is at or below 389 mg/L for chloride and 1,514 mg/L for sulfate; or
- (2) the level of the measured pollutant in the discharge is high enough that the method detects and quantifies the level of the pollutant in the discharge; or
- (3) the method has the lowest reporting limit of the approved analytical methods for the measured pollutant.

The lab report(s) with the analytical result(s) shall be submitted to the email address below no later than [Insert date of 3 months from permit issuance]. The analytical result(s) will be evaluated and the department will reopen this permit if it is determined that there is a reasonable potential for the discharge to cause or contribute to a water quality standards violation for cadmium or lead.

npdes.mail@dnr.iowa.gov

Subject: Additional Monitoring (3659001)

Permit Number: 3659001

Significant Industrial User Discharges:

Significant Industrial User: AMERICANA COMPANIES

Outfall # Outfall Description

001 PROCESS WASTEWATER PRIOR TO MIXING WITH ANY OTHER WASTES

Significant Industrial User Effluent Limitations

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

Outfall: 001 Ej	ffective Dates: 02/01/	/2022 to 01/31/2027		
Parameter	<u>Season</u>	Limit Type	Limit Values	
FLOW	•	•	•	
	Yearly	30 Day Average	0.072 MGD	
	Yearly	DAILY MAXIMUM	0.072 MGD	
ZINC, TOTAL (A	S ZN)			
	Yearly	30 Day Average	1.48 MG/L	0.888 LBS/DAY
	Yearly	DAILY MAXIMUM	2.61 MG/L	1.57 LBS/DAY
CADMIUM, TO	TAL (AS CD)	•	•	
	Yearly	30 Day Average	0.07 MG/L	0.42 LBS/DAY
	Yearly	DAILY MAXIMUM	0.11 MG/L	0.07 LBS/DAY
CHROMIUM, TO	OTAL (AS CR)			
	Yearly	30 Day Average	1.01 MG/L	0.606 LBS/DAY
	Yearly	DAILY MAXIMUM	2.77 MG/L	1.66 LBS/DAY
CYANIDE, TOTA	AL (AS CN)	•	-	
	Yearly	30 Day Average	0.45 MG/L	0.270 LBS/DAY
	Yearly	DAILY MAXIMUM	1.20 MG/L	0.72 LBS/DAY
NICKEL, TOTAL	(AS NI)	-	•	
	Yearly	30 Day Average	2.38 MG/L	1.42 LBS/DAY
	Yearly	DAILY MAXIMUM	3.90 MG/L	2.34 LBS/DAY

Outfall: 001	Outfall: 001 Effective Dates: 02/01/2022 to 01/31/2027					
<u>Parameter</u>	<u>Season</u>	Limit Type	<u>Limit Values</u>			
OIL AND GREA	ASE	•				
	Yearly	30 Day Average	50 MG/L			
	Yearly	DAILY MAXIMUM	100 MG/L			
SILVER, TOTAL (AS AG)						
	Yearly	30 Day Average	0.24 MG/L 0.144 LBS/DAY			
	Yearly	DAILY MAXIMUM	0.43 MG/L 0.26 LBS/DAY			
TOTAL TOXIC	ORGANICS					
	Yearly	DAILY MAXIMUM	2.13 LBS/DAY			
COPPER, TOTA	AL (AS CU)					
	Yearly	30 Day Average	2.07 MG/L 1.24 LBS/DAY			
	Yearly	DAILY MAXIMUM	3.28 MG/L 1.97 LBS/DAY			
LEAD, TOTAL ((AS PB)					
	Yearly	30 Day Average	0.43 MG/L 0.258 LBS/DAY			
	Yearly	DAILY MAXIMUM	0.60 MG/L 0.36 LBS/DAY			
PH						
	Yearly	DAILY MAXIMUM	10 STD UNITS			
	Yearly	DAILY MINIMUM	5 STD UNITS			

Permit Number: 3659001

Monitoring and Reporting Requirements

(a) Samples and measurements taken shall be representative of the volume and nature of the monitored wastewater.

(b) Analytical and sampling methods specified in 40 CFR Part 136 or other methods approved in writing by the department shall be utilized. All effluent samples for which a limit applies must be analyzed using sufficiently sensitive methods (i.e. testing procedures) approved under 567 IAC Chapter 63 and 40 CFR Part 136 for the analysis of pollutants or pollutant parameters or as required under 40 CFR chapter I, subchapter N or O.

For the purposes of this paragraph, an approved method is sufficiently sensitive when:

- (1) the method minimum level (ML) is at or below the level of the effluent limit established in the permit for the measured pollutant or pollutant parameter; or
- (2) the method has the lowest ML of the approved analytical methods for the measured pollutant or pollutant parameter.

Samples collected for operational testing need not be analyzed by approved analytical methods; however, commonly accepted test methods should be used.

- (c) You are required to report all data including calculated results needed to determine compliance with the limitations contained in this permit. The results of any monitoring not specified in this permit performed at the compliance monitoring point and analyzed according to 40 CFR Part 136 shall be included in the calculation and reporting of any data submitted in accordance with this permit. This includes daily maximums and minimums, 30-day averages and 7-day averages for all parameters that have concentration (mg/l) and mass (lbs/day) limits. In addition, flow data shall be reported in million gallons per day (MGD).
- (d) Records of monitoring activities and results shall include for all samples: the date, exact place and time of the sampling; the dates the analyses were performed; who performed the analyses; the analytical techniques or methods used; and the results of such analyses.
- (e) Results of all monitoring shall be recorded on forms provided by, or approved by, the department, and shall be submitted to the appropriate regional field office of the department by the fifteenth day following the close of the reporting period. Your reporting period is on a MONTHLY basis, ending on the last day of each reporting period.
- (f) Operational performance monitoring for treatment unit process control shall be conducted to ensure that the facility is properly operated in accordance with its design. The results of any operational performance monitoring need not be reported to the department, but shall be maintained in accordance with rule 567 IAC 63.2 (455B). The results of any operational performance monitoring specified in this permit shall be submitted to the department in accordance with these reporting requirements.
- (g) Chapter 63 of the rules provides you with further explanation of your monitoring requirements.

Permit Number: 3659001

AMERICA	NA COMPANIES			
Outfall	Wastewater Parameter	Sample Frequency	Sample Type	Monitoring Location
001	CADMIUM, TOTAL (AS CD)	1 EVERY MONTH	24 HOUR COMPOSITE	PRIOR TO DISCHARGE TO CITY SEWER
001	CHROMIUM, TOTAL (AS CR)	1 EVERY MONTH	24 HOUR COMPOSITE	PRIOR TO DISCHARGE TO CITY SEWER
001	COPPER, TOTAL (AS CU)	1 EVERY MONTH	24 HOUR COMPOSITE	PRIOR TO DISCHARGE TO CITY SEWER
001	CYANIDE, TOTAL (AS CN)	1 EVERY MONTH	GRAB	PRIOR TO DISCHARGE TO CITY SEWER
001	FLOW	7/WEEK OR DAILY	24 HOUR TOTAL	PRIOR TO DISCHARGE TO CITY SEWER
001	LEAD, TOTAL (AS PB)	1 EVERY MONTH	24 HOUR COMPOSITE	PRIOR TO DISCHARGE TO CITY SEWER
001	NICKEL, TOTAL (AS NI)	1 EVERY MONTH	24 HOUR COMPOSITE	PRIOR TO DISCHARGE TO CITY SEWER
001	OIL AND GREASE	1 EVERY MONTH	GRAB	PRIOR TO DISCHARGE TO CITY SEWER
001	PH	1 EVERY MONTH	GRAB	PRIOR TO DISCHARGE TO CITY SEWER
001	SILVER, TOTAL (AS AG)	1 EVERY MONTH	24 HOUR COMPOSITE	PRIOR TO DISCHARGE TO CITY SEWER
001	TOTAL TOXIC ORGANICS	1 EVERY MONTH	24 HOUR COMPOSITE	PRIOR TO DISCHARGE TO CITY SEWER
001	ZINC, TOTAL (AS ZN)	1 TIME PER WEEK	24 HOUR COMPOSITE	PRIOR TO DISCHARGE TO CITY SEWER

AMERICANA COMPANIES Special Monitoring Requirements

Outfall # Description

001 TOTAL TOXIC ORGANICS

In lieu of monitoring for total toxic organics (TTO), you may make the following certification statement on each monthly discharge report: "based on my inquiry of the person or persons directly responsible for managing compliance with the permit limitation or (pretreatment standard) for TTO. I certify that to the best on my knowledge and belief, no dumping of concentrated toxic organics into the wastewater has occurred since filing of the last discharge monitoring report. I further certify that this facility is implementing the solvent management plan submitted to the department of natural resources."

Permit Number: 3659001

Significant Industrial User Discharges:

Significant Industrial User: PAGE COUNTY SANITARY LANDFILL

Outfall # Outfall Description

001 Batch Discharge by Truck

Significant Industrial User Effluent Limitations

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

Outfall: 001	Outfall: 001 Effective Dates: 02/01/2022 to 01/31/2027						
<u>Parameter</u>	Season	<u>Limit Type</u>	<u>Limit Values</u>				
FLOW	FLOW						
	Yearly	30 Day Average	0.022000 MGD				
	Yearly	DAILY MAXIMUM	0.03000 MGD				
BIOCHEMICAL	OXYGEN DEMA	ND (BOD5)					
	Yearly	30 Day Average	9.174 LBS/DAY				
	Yearly	DAILY MAXIMUM	25.02 LBS/DAY				
TOTAL SUSPE	NDED SOLIDS						
	Yearly	30 Day Average	18.35 LBS/DAY				
	Yearly	DAILY MAXIMUM	50.04 LBS/DAY				
AMMONIA NI	TROGEN (N)						
	Yearly	30 Day Average	12.843 LBS/DAY				
	Yearly	DAILY MAXIMUM	35.03 LBS/DAY				
PH	·	<u>.</u>					
	Yearly	30 Day Average	8.5 STD UNITS				
	Yearly	DAILY MINIMUM	5.8 STD UNITS				

Permit Number: 3659001

Monitoring and Reporting Requirements

(a) Samples and measurements taken shall be representative of the volume and nature of the monitored wastewater.

(b) Analytical and sampling methods specified in 40 CFR Part 136 or other methods approved in writing by the department shall be utilized. All effluent samples for which a limit applies must be analyzed using sufficiently sensitive methods (i.e. testing procedures) approved under 567 IAC Chapter 63 and 40 CFR Part 136 for the analysis of pollutants or pollutant parameters or as required under 40 CFR chapter I, subchapter N or O.

For the purposes of this paragraph, an approved method is sufficiently sensitive when:

- (1) the method minimum level (ML) is at or below the level of the effluent limit established in the permit for the measured pollutant or pollutant parameter; or
- (2) the method has the lowest ML of the approved analytical methods for the measured pollutant or pollutant parameter.

Samples collected for operational testing need not be analyzed by approved analytical methods; however, commonly accepted test methods should be used.

- (c) You are required to report all data including calculated results needed to determine compliance with the limitations contained in this permit. The results of any monitoring not specified in this permit performed at the compliance monitoring point and analyzed according to 40 CFR Part 136 shall be included in the calculation and reporting of any data submitted in accordance with this permit. This includes daily maximums and minimums, 30-day averages and 7-day averages for all parameters that have concentration (mg/l) and mass (lbs/day) limits. In addition, flow data shall be reported in million gallons per day (MGD).
- (d) Records of monitoring activities and results shall include for all samples: the date, exact place and time of the sampling; the dates the analyses were performed; who performed the analyses; the analytical techniques or methods used; and the results of such analyses.
- (e) Results of all monitoring shall be recorded on forms provided by, or approved by, the department, and shall be submitted to the appropriate regional field office of the department by the fifteenth day following the close of the reporting period. Your reporting period is on a MONTHLY basis, ending on the last day of each reporting period.
- (f) Operational performance monitoring for treatment unit process control shall be conducted to ensure that the facility is properly operated in accordance with its design. The results of any operational performance monitoring need not be reported to the department, but shall be maintained in accordance with rule 567 IAC 63.2 (455B). The results of any operational performance monitoring specified in this permit shall be submitted to the department in accordance with these reporting requirements.
- (g) Chapter 63 of the rules provides you with further explanation of your monitoring requirements.

Permit Number: 3659001

PAGE COUNTY SANITARY LANDFILL						
Outfall	Wastewater Parameter	Sample Frequency	Sample Type	Monitoring Location		
001	AMMONIA NITROGEN (N)	1 EVERY BATCH	GRAB	PRIOR TO DISCHARGE TO CITY SEWER		
001	BIOCHEMICAL OXYGEN DEMAND (BOD5)	1 EVERY BATCH	GRAB	PRIOR TO DISCHARGE TO CITY SEWER		
001	FLOW	1 EVERY BATCH	24 HOUR TOTAL	PRIOR TO DISCHARGE TO CITY SEWER		
001	PH	1 EVERY BATCH	GRAB	PRIOR TO DISCHARGE TO CITY SEWER		
001	SANITARY LANDFILL LEACHATE	1 EVERY 12 MONTHS	GRAB	PRIOR TO DISCHARGE TO CITY SEWER		
001	TOTAL SUSPENDED SOLIDS	1 EVERY BATCH	GRAB	PRIOR TO DISCHARGE TO CITY SEWER		

ADDITIONAL MONITORING REQUIREMENTS PAGE COUNTY SANITARY LANDFILL

The permittee shall analyze a representative sample of the landfill leachate discharge from Page County Sanitary Landfill at least annually for each of the pollutants listed below. In addition, the permittee shall monitor the volume of waste discharged and pH, Ammonia Nitrogen, BOD5, and TSS at the frequencies specified on page 18 of this permit.

Pollutant:

Biochemical Oxygen Demand (BOD5) Total Suspended Solids Ammonia Nitrogen (NH3-N) Oil and Grease (O&G)

Ph Chloride (as Cl)
Sulfate (as SO4) Arsenic, Total (as As)
Chromium, Total (as Cr) Copper, Total (as Cu)
Iron, Total (as Fe) Lead, Total (as Pb)
Nickel, Total (as Ni) Selenium, Total (as Se)

Zinc, Total (as Zn)

Chlorobenzene

p-Cresol

Benzoic Acid

Ethylbenzene

Phenol

Toluene

The permittee will indicate completion of the annual leachate monitoring by entering a "1" in the "LEACHAT" column on the Discharge Monitoring Report (DMR) spreadsheet on the day that the samples are collected. Select the No Discharge Indicator "NOT REQUIRED/MP" on the DMR spreadsheet during the months that the monitoring is not required.

Results of annual monitoring shall be submitted to the addresses below:

NPDES.mail@dnr.iowa.gov Iowa DNR Field Office 4
Subject: Landfill Leachate Scan (3659001) 1401 Sunnyside Ln.
Atlantic, IA 50022

Permit Number: 3659001

Significant Industrial User Discharges:

Significant Industrial User: FREMONT COUNTY SANITARY LANDFILL

Outfall # Outfall Description

001 Batch Discharge by Truck

Significant Industrial User Effluent Limitations

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

Outfall: 001	Outfall: 001 Effective Dates: 02/01/2022 to 01/31/2027				
<u>Parameter</u>	Season	<u>Limit Type</u>	<u>Limit Values</u>		
FLOW	•	<u>.</u>	•		
	Yearly	30 Day Average	0.022000 MGD		
	Yearly	DAILY MAXIMUM	0.030000 MGD		
BIOCHEMICAL	OXYGEN DEMA	ND (BOD5)			
	Yearly	30 Day Average	83.00 LBS/DAY		
	Yearly	DAILY MAXIMUM	83.00 LBS/DAY		
TOTAL SUSPENDED SOLIDS					
	Yearly	30 Day Average	25.00 LBS/DAY		
	Yearly	DAILY MAXIMUM	25.00 LBS/DAY		
AMMONIA NI	TROGEN (N)				
	Yearly	30 Day Average	12.843 LBS/DAY		
	Yearly	DAILY MAXIMUM	35.028 LBS/DAY		
NITROGEN, TO	OTAL KJELDAHL (AS N)			
	Yearly	30 Day Average	33.36 LBS/DAY		
	Yearly	DAILY MAXIMUM	33.36 LBS/DAY		
PH					
	Yearly	DAILY MAXIMUM	9.5 STD UNITS		
	Yearly	DAILY MINIMUM	5.5 STD UNITS		

Permit Number: 3659001

Monitoring and Reporting Requirements

(a) Samples and measurements taken shall be representative of the volume and nature of the monitored wastewater.

(b) Analytical and sampling methods specified in 40 CFR Part 136 or other methods approved in writing by the department shall be utilized. All effluent samples for which a limit applies must be analyzed using sufficiently sensitive methods (i.e. testing procedures) approved under 567 IAC Chapter 63 and 40 CFR Part 136 for the analysis of pollutants or pollutant parameters or as required under 40 CFR chapter I, subchapter N or O.

For the purposes of this paragraph, an approved method is sufficiently sensitive when:

- (1) the method minimum level (ML) is at or below the level of the effluent limit established in the permit for the measured pollutant or pollutant parameter; or
- (2) the method has the lowest ML of the approved analytical methods for the measured pollutant or pollutant parameter.

Samples collected for operational testing need not be analyzed by approved analytical methods; however, commonly accepted test methods should be used.

- (c) You are required to report all data including calculated results needed to determine compliance with the limitations contained in this permit. The results of any monitoring not specified in this permit performed at the compliance monitoring point and analyzed according to 40 CFR Part 136 shall be included in the calculation and reporting of any data submitted in accordance with this permit. This includes daily maximums and minimums, 30-day averages and 7-day averages for all parameters that have concentration (mg/l) and mass (lbs/day) limits. In addition, flow data shall be reported in million gallons per day (MGD).
- (d) Records of monitoring activities and results shall include for all samples: the date, exact place and time of the sampling; the dates the analyses were performed; who performed the analyses; the analytical techniques or methods used; and the results of such analyses.
- (e) Results of all monitoring shall be recorded on forms provided by, or approved by, the department, and shall be submitted to the appropriate regional field office of the department by the fifteenth day following the close of the reporting period. Your reporting period is on a MONTHLY basis, ending on the last day of each reporting period.
- (f) Operational performance monitoring for treatment unit process control shall be conducted to ensure that the facility is properly operated in accordance with its design. The results of any operational performance monitoring need not be reported to the department, but shall be maintained in accordance with rule 567 IAC 63.2 (455B). The results of any operational performance monitoring specified in this permit shall be submitted to the department in accordance with these reporting requirements.
- (g) Chapter 63 of the rules provides you with further explanation of your monitoring requirements.

Permit Number: 3659001

FREMONT COUNTY SANITARY LANDFILL						
Outfall	Wastewater Parameter	Sample Frequency	Sample Type	Monitoring Location		
001	AMMONIA NITROGEN (N)	1 EVERY BATCH	GRAB	PRIOR TO DISCHARGE TO CITY SEWER		
001	BIOCHEMICAL OXYGEN DEMAND (BOD5)	1 EVERY BATCH	GRAB	PRIOR TO DISCHARGE TO CITY SEWER		
001	FLOW	1 EVERY BATCH	24 HOUR TOTAL	PRIOR TO DISCHARGE TO CITY SEWER		
001	NITROGEN, TOTAL KJELDAHL (AS N)	1 EVERY BATCH	GRAB	PRIOR TO DISCHARGE TO CITY SEWER		
001	PH	1 EVERY BATCH	GRAB	PRIOR TO DISCHARGE TO CITY SEWER		
001	SANITARY LANDFILL LEACHATE	1 EVERY 12 MONTHS	GRAB	PRIOR TO DISCHARGE TO CITY SEWER		
001	TOTAL SUSPENDED SOLIDS	1 EVERY BATCH	GRAB	PRIOR TO DISCHARGE TO CITY SEWER		

ADDITIONAL MONITORING REQUIREMENTS FREMONT COUNTY SANITARY LANDFILL

The permittee shall analyze a representative sample of the landfill leachate discharge from Fremont County Sanitary Landfill at least annually for each of the pollutants listed below. In addition, the permittee shall monitor the volume of waste discharged and pH, Ammonia Nitrogen, BOD5, and TSS at the frequencies specified on page 21 of this permit.

Pollutant:

Biochemical Oxygen Demand (BOD5)

Ammonia Nitrogen (NH3-N)

Ph

Total Suspended Solids
Oil and Grease (O&G)
Chloride (as Cl)

Sulfate (as SO4)
Chromium, Total (as Cr)
Iron, Total (as Fe)
Nickel, Total (as Ni)

Arsenic, Total (as As)
Copper, Total (as Cu)
Lead, Total (as Pb)
Selenium, Total (as Se)

Zinc, Total (as Zn)
Chlorobenzene
Benzoic Acid
Ethylbenzene

p-Cresol Phenol

Toluene

The permittee will indicate completion of the annual leachate monitoring by entering a "1" in the "LEACHAT" column on the Discharge Monitoring Report (DMR) spreadsheet on the day that the samples are collected. Select the No Discharge Indicator "NOT REQUIRED/MP" on the DMR spreadsheet during the months that the monitoring is not required. Results of annual monitoring shall be submitted to the addresses below:

NPDES.mail@dnr.iowa.gov Iowa DNR Field Office 4
Subject: Landfill Leachate Scan (3659001) 1401 Sunnyside Ln.
Atlantic, IA 50022

Permit Number: 3659001

Significant Industrial User Discharges:

Significant Industrial User: GREEN PLAINS RENEWABLE ENERGY

Outfall # Outfall Description

001 DISCHARGE OF COOLING WATER

Significant Industrial User Effluent Limitations

You are prohibited from discharging pollutants except in compliance with the following effluent limitations:

Outfall: 001 Effective Dates: 02/01/2022 to 01/31/2027					
<u>Parameter</u>	Season	Limit Type	<u>Limit Values</u>		
FLOW					
	Yearly	30 Day Average	0.230 MGD		
	Yearly	DAILY MAXIMUM	0.3 MGD		
BIOCHEMICAL	OXYGEN DEMANI	D (BOD5)			
	Yearly	30 Day Average	30 LBS/DAY		
	Yearly	DAILY MAXIMUM	45 LBS/DAY		
TOTAL SUSPENDED SOLIDS					
	Yearly	30 Day Average	35 LBS/DAY		
	Yearly	DAILY MAXIMUM	45 LBS/DAY		
AMMONIA NI	TROGEN (N)				
	Yearly	30 Day Average	3.0 LBS/DAY		
	Yearly	DAILY MAXIMUM	10 LBS/DAY		
NITROGEN, TO	OTAL KJELDAHL (AS	S N)			
	Yearly	30 Day Average	10 LBS/DAY		
	Yearly	DAILY MAXIMUM	15 LBS/DAY		
OIL AND GREASE					
	Yearly	30 Day Average	15 MG/L		
	Yearly	DAILY MAXIMUM	30 MG/L		
РН					
	Yearly	DAILY MAXIMUM	8.0 STD UNITS		
	Yearly	DAILY MINIMUM	7.0 STD UNITS		

Permit Number: 3659001

Monitoring and Reporting Requirements

(a) Samples and measurements taken shall be representative of the volume and nature of the monitored wastewater.

(b) Analytical and sampling methods specified in 40 CFR Part 136 or other methods approved in writing by the department shall be utilized. All effluent samples for which a limit applies must be analyzed using sufficiently sensitive methods (i.e. testing procedures) approved under 567 IAC Chapter 63 and 40 CFR Part 136 for the analysis of pollutants or pollutant parameters or as required under 40 CFR chapter I, subchapter N or O.

For the purposes of this paragraph, an approved method is sufficiently sensitive when:

- (1) the method minimum level (ML) is at or below the level of the effluent limit established in the permit for the measured pollutant or pollutant parameter; or
- (2) the method has the lowest ML of the approved analytical methods for the measured pollutant or pollutant parameter.

Samples collected for operational testing need not be analyzed by approved analytical methods; however, commonly accepted test methods should be used.

- (c) You are required to report all data including calculated results needed to determine compliance with the limitations contained in this permit. The results of any monitoring not specified in this permit performed at the compliance monitoring point and analyzed according to 40 CFR Part 136 shall be included in the calculation and reporting of any data submitted in accordance with this permit. This includes daily maximums and minimums, 30-day averages and 7-day averages for all parameters that have concentration (mg/l) and mass (lbs/day) limits. In addition, flow data shall be reported in million gallons per day (MGD).
- (d) Records of monitoring activities and results shall include for all samples: the date, exact place and time of the sampling; the dates the analyses were performed; who performed the analyses; the analyses or methods used; and the results of such analyses.
- (e) Results of all monitoring shall be recorded on forms provided by, or approved by, the department, and shall be submitted to the appropriate regional field office of the department by the fifteenth day following the close of the reporting period. Your reporting period is on a MONTHLY basis, ending on the last day of each reporting period.
- (f) Operational performance monitoring for treatment unit process control shall be conducted to ensure that the facility is properly operated in accordance with its design. The results of any operational performance monitoring need not be reported to the department, but shall be maintained in accordance with rule 567 IAC 63.2 (455B). The results of any operational performance monitoring specified in this permit shall be submitted to the department in accordance with these reporting requirements.
- (g) Chapter 63 of the rules provides you with further explanation of your monitoring requirements.

GREEN PLAINS RENEWABLE ENERGY							
Outfall	Wastewater Parameter	Sample Frequency	Sample Type	Monitoring Location			
001	AMMONIA NITROGEN (N)	1 EVERY MONTH	24 HOUR COMPOSITE	PRIOR TO DISCHARGE TO CITY SEWER			
001	BIOCHEMICAL OXYGEN DEMAND (BOD5)	1 EVERY MONTH	24 HOUR COMPOSITE	PRIOR TO DISCHARGE TO CITY SEWER			
001	FLOW	7/WEEK OR DAILY	24 HOUR TOTAL	PRIOR TO DISCHARGE TO CITY SEWER			
001	NITROGEN, TOTAL KJELDAHL (AS N)	1 EVERY MONTH	24 HOUR COMPOSITE	PRIOR TO DISCHARGE TO CITY SEWER			
001	OIL AND GREASE	1 EVERY MONTH	GRAB	PRIOR TO DISCHARGE TO CITY SEWER			
001	PH	1 EVERY MONTH	GRAB	PRIOR TO DISCHARGE TO CITY SEWER			
001	TOTAL SUSPENDED SOLIDS	1 EVERY MONTH	24 HOUR COMPOSITE	PRIOR TO DISCHARGE TO CITY SEWER			

Permit Number: 3659001

Outfall Number: 001

Ceriodaphnia and Pimephales Toxicity Effluent Testing

- 1. For facilities that have not been required to conduct toxicity testing by a previous NPDES permit, the initial annual toxicity test shall be conducted within three (3) months of permit issuance. For facilities that have been required to conduct toxicity testing by a previous NPDES permit, the initial annual toxicity test shall be conducted within twelve months (12) of the last toxicity test.
- 2. The test organisms that are to be used for acute toxicity testing shall be Ceriodaphnia dubia and Pimephales promelas. The acute toxicity testing procedures used to demonstrate compliance with permit limits shall be those listed in 40 CFR Part 136 and adopted by reference in rule 567 IAC 63.1(1). The method for measuring acute toxicity is specified in USEPA, October 2002, Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition. USEPA, Office of Water, Washington, D.C., EPA 821-R-02-012.
- 3. The diluted effluent sample must contain a minimum of 100.00 % effluent and no more than 0.00 % of culture water.
- 4. One valid positive toxicity result will require, at a minimum, quarterly testing for effluent toxicity until three successive tests are determined not to be positive.
- 5. Two successive valid positive toxicity results or three positive results out of five successive valid effluent toxicity tests will require a toxicity reduction evaluation to be completed to eliminate the toxicity.
- 6. A non-toxic test result shall be indicated as a "1" on the monthly operation report. A toxic test result shall be indicated as a "2" on the monthly operation report. DNR Form 542-1381 shall also be submitted to the DNR field office along with the monthly operation report.

Ceriodaphnia and Pimephales Toxicity Effluent Limits

The maximum limit of "1" for the parameters Acute Toxicity, Ceriodaphnia and Acute Toxicity, Pimephales means no positive toxicity results.

Definition: "Positive toxicity result" means a statistical difference of mortality rate between the control and the diluted effluent sample. For more information, see USEPA, October 2002, Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition, USEPA, Office of Water, Washington, D.C., EPA 821-R-02-012.

Permit Number: 3659001

Design Capacity

Design: 1

The design capacity for the treatment works is specified in Construction Permit Number 88-41-S, issued Thursday,17 Oct 2002. The treatment plant is designed to treat:

- * An average dry weather (ADW) flow of 0.8670 Million Gallons Per Day (MGD).
- * An average wet weather (AWW) flow of 1.8800 Million Gallons Per Day (MGD).
- * A maximum wet weather (MWW) flow of 5.4000 Million Gallons Per Day (MGD).
- * A design 5-day biochemical oxygen demand (BOD5) load of 1,450 lbs/day.
- * A design Total Kjeldahl Nitrogen (TKN) load of 322.00 lbs/day.

Operator Certification Type/Grade: WW/III

Wastes in such volumes or quantities as to exceed the design capacity of the treatment works or reduce the effluent quality below that specified in the operation permit of the treatment works are considered to be a waste which interferes with the operation or performance of the treatment works and are prohibited by subrule IAC 567-62.1(7).

Permit Number: 3659001

SEWAGE SLUDGE HANDLING AND DISPOSAL REQUIREMENTS

"Sewage sludge" is solid, semisolid, or liquid residue generated during the treatment of domestic sewage in a treatment works. Sewage sludge does not include the grit and screenings generated during preliminary treatment.

- 1. The permittee shall comply with all existing Federal and State laws and regulations that apply to the use and disposal of sewage sludge and with technical standards developed pursuant to Section 405(d) of the Clean Water Act when such standards are promulgated. If an applicable numerical limit or management practice for pollutants in sewage sludge is promulgated after issuance of this permit that is more stringent than a sludge pollutant limit or management practice specified in existing Federal or State laws or regulations, this permit shall be modified, or revoked and reissued, to conform to the regulations promulgated under Section 405(d) of the Clean Water Act. The permittee shall comply with the limitation no later than the compliance deadline specified in the applicable regulations.
- 2. The permittee shall provide written notice to the Department of Natural Resources prior to any planned changes in sludge disposal practices.
- 3. Land application of sewage sludge shall be conducted in accordance with criteria established in rule IAC 567 67.1 through 67.11 (455B).

Permit Number: 3659001

SIGNIFICANT INDUSTRIAL USER LIMITATIONS, MONITORING AND REPORTING REQUIREMENTS

1. You must enforce the pollutant limits for each significant industrial user that are listed elsewhere in this permit. Violation of a treatment agreement limit is prohibited by subrule 567 IAC 62.1(6). Monitoring of each significant industrial user is required elsewhere in this permit.

You are required to notify the department, in writing, of any of the following:

- (a) 180 days prior to the introduction of pollutants to your facility from a significant industrial user. A significant industrial user means an industrial user of a treatment works that:
 - (1) Discharges an average of 25,000 gallons per day or more of process wastewater excluding sanitary, noncontact cooling and boiler blowdown wastewater:
 - (2) Contributes a process waste stream which makes up five percent or more of the average dry weather hydraulic or organic capacity of the publicly-owned treatment works:
 - (3) Is subject to Categorical Pretreatment Standards under 40 CFR 403.6 and 40 CFR Chapter I, Subchapter N; or
 - (4) Is designated by the department as a significant industrial user on the basis that the contributing industry, either singly or in combination with other contributing industries, has a reasonable potential for adversely affecting the operation of or effluent quality from the publicly-owned treatment works or for violating any pretreatment standards or requirements.
- (b) 60 days prior to a proposed expansion, production increase or process modification that may result in the discharge of a new pollutant or a discharge in excess of limitations stated in the existing treatment agreement.
- (c) 10 days prior to any commitment by you to accept waste from any new significant industrial user. Your written notification must include a new or revised treatment agreement in accordance with rule 64.3(5)(455B).
- 2. You shall require all users of your facility to comply with Sections 204(b), 307, and 308 of the Clean Water Act.
 - (a) Section 204(b) requires that all users of the treatment works constructed with funds provided under Sections 201(g) or 601 of the Act to pay their proportionate share of the costs of operation, maintenance and replacement of the treatment works.
 - (b) Section 307 of the Act requires users to comply with pretreatment standards promulgated by EPA for pollutants that would cause interference with the treatment process or would pass through the treatment works.
 - (c) Section 308 of the Act requires users to allow access at reasonable times to state and EPA inspectors for the purpose of sampling the discharge and reviewing and copying records.

Permit Number: 3659001

Nutrient Reduction Requirements

In support of the Iowa Nutrient Reduction Strategy you shall prepare and submit a report that evaluates the feasibility and reasonableness of reducing the amounts of nitrogen and phosphorus discharged into surface water. The report shall be submitted no later than 11-1-2023 and shall address the following:

- A description of the existing treatment facility with particular emphasis on its capabilities for removing nitrogen and phosphorus. The description shall include monitoring data that define the current amounts of total nitrogen and total phosphorus in both the raw wastewater and the final effluent.
- A description and evaluation of operational changes to the existing treatment facility that could be implemented to reduce the amounts of total nitrogen and total phosphorus discharged in the final effluent and the feasibility and reasonableness of each. Your evaluation must discuss the projected degree of total nitrogen and total phosphorus reduction achievable for each operational change. When evaluating feasibility you must consider what, if any, effect operational changes would have on the removal of other pollutants (e.g. CBOD₅, TSS). When evaluating reasonableness you shall include estimates of the additional cost, if any, to implement such changes and for a publicly-owned treatment works the impact on user rates.
- A description and evaluation of new or additional treatment technologies that would achieve significant reductions in the amounts of total nitrogen and total phosphorus discharged in the final effluent with a goal of achieving annual average concentrations of 10 mg/L total nitrogen and 1 mg/L total phosphorus for plants treating typical domestic strength sewage. For purposes of this evaluation typical domestic sewage is considered to contain approximately 25 35 mg/L total nitrogen and 4 8 mg/L total phosphorus. For plants treating wastewater with total nitrogen and/or total phosphorus concentrations greater than typical domestic strength sewage, the evaluation shall include the projected reductions in the total nitrogen and phosphorus effluent concentrations achievable with the application of feasible and reasonable treatment technology with a goal of achieving at least a 66 % reduction in nitrogen and 75% reduction in total phosphorus. For each treatment technology the report shall assess its feasibility, reasonableness, practicability, the availability of equipment, capital costs, annual operating costs, impact on user rates and any non-water quality environmental impacts (e.g. additional air pollution, increased sludge production, etc.).
- A Based on the evaluations of operational changes and new or additional treatment technologies the report must select the preferred method(s) for reducing total nitrogen and total phosphorus in the final effluent, the rationale for the selected method(s) and an estimate of the effluent quality achievable.
- In addition to selecting operational changes and/or new or additional treatment technologies, the permittee may evaluate and propose to implement practices within the watershed that may achieve greater reductions in nitrogen and phosphorous than the preferred method(s) alone. Such evaluations are particularly encouraged when no feasible or reasonable operational changes or additional treatment technologies can be identified or when the schedule for installing the selected technology exceeds ten years.
- The report must include a schedule for making operational changes and/or installing new or additional treatment technologies to achieve the concentration and/or percentage removal goals listed above. Additional financial justification must be included in the report if no operational changes or treatment technologies are feasible or reasonable.

The schedule will be incorporated into the NPDES permit by amendment. Effluent discharge limits will be based on one full year of operating data after implementation of the operational changes or completion of plant modifications and a six month optimization period.

The report shall be sent to the following email:

npdes.mail@dnr.iowa.gov

Subject: Nutrient Reduction Requirement (3659001)

Permit Number: 3659001

Ammonia Nitrogen and E. coli Compliance Schedule

The facility shall make necessary improvements to meet the new/more stringent ammonia nitrogen and *E. coli* limits according to the following schedule <u>unless an</u> approved alternative schedule is submitted to the Department:

- Submit an Alternatives Implementation Compliance Plan (AICP) by 8/1/2022. The AICP shall be in accordance with 567 IAC 64.7(5)"g" and shall include an updated Disadvantaged Community Analysis.
- Complete a Self-Assessment Matrix and submit a Work Record Request form to DNR's Wastewater Engineering Section by 2/1/2023. The forms and instructions are available on the DNR website at http://www.iowadnr.gov/InsideDNR/RegulatoryWater/WastewaterConstruction.aspx. Questions on the forms should be directed to either Terry Kirschenman at 515/725-8422 or Emy Liu at 515/725-8421.
- Submit a Facility Plan by 4/1/2023. The Facility Plan shall be in accordance with Chapter 11.2 of the Iowa Wastewater Facilities Design Standards adopted April 25, 1979.
- Submit progress report by 1/1/2024.
- Submit final plans and specifications by 7/1/2024.
- Award contract for construction of wastewater treatment improvements by 12/1/2024.
- Submit progress report by 9/1/2025.
- Complete construction of wastewater treatment improvements by 4/1/2026.
- Achieve compliance with the more stringent limits by 5/1/2026.

Within fourteen (14) days following all dates of compliance, the permittee shall provide written notice of compliance with the scheduled event. All written notices and progress reports shall be sent to the following address:

Iowa Department of Natural Resources Environmental Services Division Regional Office # 4 1401 Sunnyside Lane Atlantic, IA 50022

Permit Number: 3659001

59 Month Copper and Selenium Compliance Schedule

The facility shall meet the final limits for copper and selenium listed on the limits pages of this permit according to the following schedule:

- The facility shall submit a compliance strategy by February 1, 2023. The compliance strategy must describe the steps the facility will take to comply with the final effluent limits as soon as possible, but no later than January 1, 2027.
- The facility shall submit progress reports every 12 months until compliance with final effluent limits is achieved, with the first progress report due February 1, 2024. The progress reports shall detail completion of the steps described in the compliance strategy.
- Achieve compliance with final effluent limits by January 1, 2027.

Within fourteen (14) days following all dates of compliance, the permittee shall provide written notice of compliance with the scheduled event. All written notices and progress reports shall be sent to the following address:

Iowa Department of Natural Resources Environmental Services Division Regional Office # 4 1401 Sunnyside Lane Atlantic, IA 50022

STANDARD CONDITIONS

1. ADMINISTRATIVE RULES

Rules of this Department that govern the operation of your facility in connection with this permit are published in Part 567 of the Iowa Administrative Code (IAC) in Chapters 60-65, 67, and 121. Reference to the term "rule" in this permit means the designated provision of Part 567 of the IAC. Reference to the term "CFR" means the Code of Federal Regulations.

2. DEFINITIONS

- (a) 7 day average means the sum of the total daily discharges by mass, volume, or concentration during a 7 consecutive day period, divided by the total number of days during the period that measurements were made. Four 7 consecutive day periods shall be used each month to calculate the 7-day average. The first 7-day period shall begin with the first day of the month.
- (b) 30 day average means the sum of the total daily discharges by mass, volume, or concentration during a calendar month, divided by the total number of days during the month that measurements were made.
- (c) Daily maximum means the total discharge by mass, volume, or concentration during a twenty-four hour period.

3. DUTY TO PROVIDE INFORMATION

You must furnish to the Director, within a reasonable time, any information the Director may request to determine compliance with this permit or determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, in accordance with 567 IAC 64.3(11)"c". You must also furnish to the Director, upon request, copies of any records required to be kept by this permit.

4. MONITORING AND RECORDS OF OPERATION

- (a) Maintenance of records. You shall retain for a minimum of three years all paper and electronic records of monitoring activities and results including all original strip chart recordings for continuous monitoring instrumentation and calibration and maintenance records. {See 567 IAC 63.2(3)}
- (b) Any person who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required to be maintained under this permit shall, upon conviction, be punished by a fine of not more than \$10,000 or by imprisonment for not more than two years, or both. {See 40 CFR 122.41(j)(5)}

5. SIGNATORY REQUIREMENTS

Applications, reports or other information submitted to the Department in connection with this permit must be signed and certified in accordance with 567 IAC 64.3(8).

6. OTHER INFORMATION

Where you become aware that you failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application, you must promptly submit such facts or information. Where you become aware that you failed to submit any relevant facts in the submission of in any report to the director, including records of operation, you shall promptly submit such facts or information.

{See 567 IAC 60.4(2)"a" and 567 IAC 63.7}

7. TRANSFER OF TITLE OR OWNER ADDRESS CHANGE

If title to your facility, or any part of it, is transferred the new owner shall be subject to this permit. You are required to notify the new owner of the requirements of this permit in writing prior to any transfer of title. The Director shall be notified in writing within 30 days of the transfer. No transfer of the authorization to discharge from the facility represented by the permit shall take place prior to notifying the department of the transfer of title. Whenever the address of the owner is changed, the department shall be notified in writing within 30 days of the address change. Electronic notification is not sufficient; all title transfers or address changes must be reported to the department by mail. *{See 567 IAC 64.14}*

8. PROPER OPERATION AND MAINTENANCE

All facilities and control systems shall be operated as efficiently as possible and maintained in good working order. A sufficient number of staff, adequately trained and knowledgeable in the operation of your facility shall be retained at all times and adequate laboratory controls and appropriate quality assurance procedures shall be provided to maintain compliance with the conditions of this permit.

{See 40 CFR 122.41(e) and 567 IAC 64.7(7)"f"}

9. PERMIT MODIFICATION, SUSPENSION OR REVOCATION

- (a) This permit may be modified, suspended, or revoked and reissued for cause including but not limited to those specified in 567 IAC 64.3(11).
- (b) This permit may be modified due to conditions or information on which this permit is based, including any new standard the department may adopt that would change the required effluent limits. {See 567 IAC 64.3(11)}
- (c) If a toxic pollutant is present in your discharge and more stringent standards for toxic pollutants are established under Section 307(a) of the Clean Water Act, this permit will be modified in accordance with the new standards.

{See 40 CFR 122.62(a)(6) and 567 IAC 64.7(7)"g"}

The filing of a request for a permit modification, revocation or suspension, or a notification of planned changes or anticipated noncompliance does not stay any permit condition.

10. DUTY TO REAPPLY AND PERMIT CONTINUATION

If you wish to continue to discharge after the expiration date of this permit, you must file a complete application for reissuance at least 180 days prior to the expiration date of this permit. If a timely and sufficient application is submitted, this permit will remain in effect until the Department makes a final determination on the permit application. *[See 567 IAC 64.8(1) and Iowa Code 17A.18]*

11. DUTY TO COMPLY

You must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of the Clean Water Act and is grounds for enforcement action; permit termination, revocation and reissuance, or modification; or denial of a permit renewal application. Issuance of this permit does not relieve you of the responsibility to comply with all local, state and federal laws, ordinances, regulations or other legal requirements applying to the operation of your facility. *{See 40 CFR 122.41(a) and 567 IAC 64.7(4) "e"}*

STANDARD CONDITIONS

12. DUTY TO MITIGATE

You shall take all reasonable steps to minimize or prevent any discharge in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment. {See 40 CFR 122.41(d) and 567 IAC 64.7(7)"i"}

13. TWENTY-FOUR HOUR REPORTING

You shall report any noncompliance that may endanger human health or the environment, including, but not limited to, violations of maximum daily limits for any toxic pollutant (listed as toxic under 307(a)(1) of the Clean Water Act) or hazardous substance (as designated in 40 CFR Part 116 pursuant to 311 of the Clean Water Act). Information shall be provided orally within 24 hours from the time you become aware of the circumstances. A written submission that includes a description of noncompliance and its cause; the period of noncompliance including exact dates and times, whether the noncompliance has been corrected or the anticipated time it is expected to continue; and the steps taken or planned to reduce, eliminate, and prevent a reoccurrence of the noncompliance must be provided within 5 days of the occurrence. *{See 567 IAC 63.12}*

14. OTHER NONCOMPLIANCE

You shall report all instances of noncompliance not reported under Condition #13 at the time monitoring reports are submitted. You shall give advance notice to the appropriate regional field office of the department of any planned activity which may result in noncompliance with permit requirements. {See 567 IAC 63.14}

15. INSPECTION OF PREMISES, RECORDS, EQUIPMENT, METHODS AND DISCHARGES

You are required to permit authorized personnel to:

- (a) Enter upon the premises where a regulated facility or activity is located or conducted or where records are kept under conditions of this permit;
- (b) Have access to and copy, at reasonable times, any records that must be kept under the conditions of this permit:
- (c) Inspect, at reasonable times, any facilities, equipment, practices or operations regulated or required under this permit; and
- (d) Sample or monitor, at reasonable times, to assure compliance or as otherwise authorized by the Clean Water Act.

16. FAILURE TO SUBMIT FEES

This permit may be revoked, in whole or in part, if the appropriate permit fees are not submitted within thirty (30) days of the date of notification that such fees are due. {See 567 IAC 64.16(1)}

17. NEED TO HALT OR REDUCE ACTIVITY

It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. {See 40 CFR 122.41(c) and 567 IAC 64.7(7)"j"}

18. NOTICE OF CHANGED CONDITIONS

You are required to notify the director of any changes in existing conditions or information on which this permit is based. This includes, but is not limited to, the following:

- (a) If your facility is a publicly owned treatment works (POTW) or otherwise may accept waste for treatment from an indirect discharger or industrial contributor (See 567 IAC 64.3(5) for further notice requirements).
- (b) If your facility is a POTW and there is any substantial change in the volume or character of pollutants being introduced to the POTW by a source introducing pollutants into the POTW at the time of issuance of the permit. {See 40 CFR 122.42(b)}
- (c) As soon as you know or have reason to believe that any activity has occurred or will occur which would result in the discharge of any toxic pollutant which is not limited in this permit. {See 40 CFR 122.42(a)}
- (d) If you have begun or will begin to use or manufacture as an intermediate or final product or byproduct any toxic pollutant which was not reported in the permit application.

19. PLANNED CHANGES

The permittee shall give notice to the appropriate regional field office of the department 30 days prior to any planned physical alterations or additions to the permitted facility. Notice is required only when:

- (a) Notice has not been given to any other section of the department. (Note: Facility expansions, production increases, or process modifications which may result in new or increased discharges of pollutants must be reported to the Director in advance. If such discharges will exceed effluent limitations, your report must include an application for a new permit. If any modification of, addition to, or construction of a disposal system is to be made, you must first obtain a written permit from this Department. In addition, no construction activity that will result in disturbance of one acre or more shall be initiated without first obtaining coverage under NPDES General Permit No. 2 for "Storm water discharge associated with construction activity.") {See 567 IAC 64.7(7)"a" and 64.2}
- (b) The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source as defined in 567 IAC 60.2;
- (c) The alteration or addition results in a significant change in the permittee's sludge use or disposal practices; or
- (d) The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants that are not subject to effluent limitations in the permit. {See 567 IAC 63.13 and 63.14}

20. USE OF CERTIFIED LABORATORIES

Analyses of wastewater, groundwater or sewage sludge that are required to be submitted to the department as a result of this permit must be performed by a laboratory certified by the State of Iowa. Routine, on-site monitoring for pH, temperature, dissolved oxygen, total residual chlorine and other pollutants that must be analyzed immediately upon sample collection, settleable solids, physical measurements, and operational monitoring tests specified in 567 IAC 63.3(4) are excluded from this requirement.

STANDARD CONDITIONS

21. BYPASSES

- (a) Definition. "Bypass" means the diversion of waste streams from any portion of a treatment facility or collection system. A bypass does not include internal operational waste stream diversions that are part of the design of the treatment facility, maintenance diversions where redundancy is provided, diversions of wastewater from one point in a collection system to another point in a collection system, or wastewater backups into buildings that are caused in the building lateral or private sewer line.
- (b) Prohibitions.
 - Bypasses from any portion of a treatment facility or from a sanitary sewer collection system designed to carry only sewage are prohibited.
 - ii. Bypass is prohibited and the department may not assess a civil penalty against a permittee for bypass if the permittee has complied with all of the following:
 - Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage; and
 - (2) There were no feasible alternatives to the bypass such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate backup equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass which occurred during normal periods of equipment downtime or preventive maintenance; and
 - (3) The permittee submitted notices as required by paragraph (d) of this section.
- (c) The Director may approve an anticipated bypass after considering its adverse effects if the Director determines that it will meet the three conditions listed above and a request for bypass has been submitted to the Department in accordance with 567 IAC 63.6(2).
- (d) Reporting bypasses. Bypasses shall be reported in accordance with 567 IAC 63.6.

22. UPSET PROVISION

- (a) Definition. "Upset" means an exceptional incident in which there is unintentional and temporary noncompliance with technology based permit effluent limitations because of factors beyond the reasonable control of the permittee. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation.
- (b) Effect of an upset. An upset constitutes an affirmative defense in an action brought for noncompliance with such technology based permit effluent limitations if the requirements of paragraph "c" of this condition are met. No determination made during administrative review of claims that noncompliance was caused by upset, and before an action for noncompliance, is final administrative action subject to judicial review.
- (c) Conditions necessary for demonstration of an upset. A permittee who wishes to establish the affirmative defense of upset shall demonstrate through properly signed operating logs or other relevant evidence that;
 - i. An upset occurred and that the permittee can identify the cause(s) of the upset;
 - ii. The permitted facility was at the time being properly operated;

- iii. The permittee submitted notice of the upset to the Department in accordance with 567 IAC 63.6(3); and
- iv. The permittee complied with any remedial measures required in accordance with $567 \, \text{IAC} \, 63.6 \, (6)'' b''$.
- (d) Burden of Proof. In any enforcement proceeding, the permittee seeking to establish the occurrence of an upset has the burden of proof.

23. PROPERTY RIGHTS

This permit does not convey any property rights of any sort or any exclusive privilege. {See 567 IAC 64.4(3)"b"}

24. EFFECT OF A PERMIT

Compliance with a permit during its term constitutes compliance, for purposes of enforcement, with Sections 301, 302, 306, 307, 318, 403 and 405(a)-(b) of the Clean Water Act, and equivalent limitations and standards set out in 567 IAC Chapters 61 and 62. {See 567 IAC 64.4(3)"a"}

25. SEVERABILITY

The provisions of this permit are severable and if any provision or application of any provision to any circumstance is found to be invalid by this department or a court of law, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected by such finding.

Appendix H.3 – Summary of Monthly Lagoon Discharge Testing & Monthly Laboratory Reports

PAGE COUNTY LANDFILL LEACHATE ANALYSIS RESULTS - SUMMARY

TABLE H1 - LABORATORY RESULTS (mg/l) [Beginning with January 2016]

DATE	B.O.D.			AMMONIA		TOTAL		
DATE		Б.О.Д.		AMMONIA		SUSP. SOLIDS		
1/11/2016		26		97.6				
1/11/2016		26		87.6		48 37		
4/5/2016		18		88.5				
5/2/2016		18		56.0		29		
5/31/2016		20		78.7		43		
7/5/2016		16		72.2		47		
8/1/2016		15		73.7		38		
9/1/2016		12		6.7		74		
10/4/2016		26		44.8		62		
10/31/2016		23		36.1		59		
12/5/2016		187		37.2		71		
1/3/2017		136		58.6		37		
2/1/2017		368		60.1		77		
3/6/2017		24		63.3		83		
4/3/2017		296		36.0		30		
5/1/2017		132		70.7		27		
6/6/2017		33		59.9		79		
7/5/2017		244		67.4		93		
8/1/2017		73		89.7		39		
9/5/2017		14		88.2		11		
10/2/2017		97		80.9		61		
11/1/2017		87		115.0	٧	7		
12/4/2017		20		128.0		31		
1/3/2018		20		128.0		44		
2/5/2018		14		124.0		29		
3/5/2018		16		105.0		14		
4/2/2018		19		83.2		44		
5/1/2018		29		128.0		37		
6/4/2018		24		126.0		27		
7/2/2018		34		109.0		31		
8/1/2018		28		132.0		19		
9/4/2018		88		95.1		44		
10/1/2018		40		69.5		62		
11/5/2018		48		160.0		131		
12/3/2018		29		117.0		67		
1/2/2019		323		172.0		76		
2/4/2019		70		165.0		52		
3/4/2019		38		164.0		78		
4/2/2019		465		215.0		83		
5/1/2019		116		106.0		31		
6/3/2019		50		138.0		141		
7/1/2019		43		196.0		107		
8/6/2019		30		223.0		67		
9/3/2019		11	<	0.10		29		
10/3/2019		19	Ţ	81.3		44		
10/16/2019		6		1.2		10		
11/4/2019	<	5		2.4		6		
12/9/2019		8		3.2		8		
12/0/2010				U. <u>Z</u>		9		

PAGE COUNTY LANDFILL LEACHATE ANALYSIS RESULTS - SUMMARY

TABLE H1 (continued) - LABORATORY RESULTS (mg/l) [Beginning with January 2016]

DATE	B.O.D.		AMMONIA		TOTAL		
					SUSP. SOLIDS		
1/6/2020	6		2.3		4		
2/3/2020	32		161.0		45		
3/2/2020	15		84.4		36		
4/1/2020	17		101.0	<	10		
5/4/2020	10		61.6		15		
6/1/2020	9		57.8		12		
7/6/2020	17		118.0		28		
8/4/2020	22		34.7		25		
9/1/2020	31		168.0		59		
10/5/2020	30		171.0		40		
11/2/2020	28		188.0		50		
12/1/2020	31		174.0		56		
1/4/2021	29		177.0		38		
2/1/2021	25		139.0		46		
3/2/2021	18		136.0		33		
3/25/2021	13		10.8		16		
4/5/2021	14		101.0		68		
5/3/2021	19		125.0		30		
6/1/2021	16		116.0		45		
7/6/2021	24		102.0		500		
8/2/2021	31		114.0		56		
9/1/2021	22		88.5		47		
10/5/2021	34		151.0		74		
11/1/2021	32		0.46		39		
12/2/2021	41		1.3		17		
1/3/2022	21		167.0		30		
2/1/2022	28		188.0		40		
3/1/2022	32		155.0		34		
3/16/2022	34		1.1		62		
4/4/2022	79		113.0		71		
5/2/2022	19		110.0		38		
6/1/2022	23		1.0		92		
7/5/2022	19		69.3		42		
8/2/2022	10		69.4		88		
9/6/2022	18		112.0		25		
10/5/2022	20		108.0		32		
11/1/2022	18		86.8		36		
12/5/2022	20		93.7		23		

PAGE COUNTY LANDFILL LEACHATE ANALYSIS RESULTS - SUMMARY

TABLE H1 (continued) - LABORATORY RESULTS (mg/l) [Beginning with January 2016]

DATE	B.O.D.	AMMONIA	TOTAL		
DATE	B.O.D.	AMMONIA	SUSP. SOLIDS		
1/4/2023	21	98.8	20		
2/1/2023	22	115.0	35		
3/1/2023	26	102.0	49		
4/4/2023	20	117.0	40		
5/1/2023	19	109.0	57		
6/5/2023	20	141.0	36		
7/5/2023	23	122.0	42		
8/1/2023	24	167.0	35		
9/5/2023	24	172.0	24		
10/4/2023	25	218.0	25		
11/1/2023	26	182.0	22		
12/5/2023	26	204.0	23		
2/5/2024	31	139.0	43		
3/4/2024	22	237.0	34		
3/18/2024	6	0.24	7		
4/1/2024	6	0.33	6		
5/1/2024	12	0.10	13		
8/1/2024	19	88.9	30		
9/3/2024	9	40.3	18		
10/1/2024	18	37.2	5		
12/2/2024	12	45.8	6		
		+			
		+			
		+			
		+			
		+			
		+			
AVERAGE	22.3	105.0	43.6		
DEDMIT DAI					

PERMIT DAILY MAXIMUM

[Some parameters not required to be analyzed as frequently under the new permit.] [Some results less than detection limit are shown as zero or the detection limit.]

Keystone Laboratories - Newton CERTIFICATE OF ANALYSIS 1HB0300

Page County Landfill Assoc.

Project Name: Leachate

Brian Ward 2032 N Ave Clarinda, IA 51632 Project / PO Number: / [none] Received: 02/06/2024 Reported: 02/14/2024

Analytical Testing Parameters

Client Sample ID: Leachate
Sample Matrix: Water
Lab Sample ID: 1HB0300-01

Collected By: PCLF
Collection Date: 02/05/2024 10:00

Determination of Conventional Chemistry Parameters	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
SM 5210 B								
BOD (5 day)	31	6	mg/L	3		02/06/24 1807	02/07/24 0546	BDF
TIMBERLINE								
Nitrogen, Ammonia	139	10.0	mg/L	100		02/12/24 1018	02/12/24 1247	LJS
USGS I-3765-85								
Total Suspended Solids (TSS)	43	1	mg/L	1		02/08/24 0808	02/08/24 1432	MEAH

Definitions

RL: Reporting Limit

Report Comments

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions>.

Reviewed and Approved By:

asheram urphy

Heather Murphy

Customer Relationship Specialist heather.murphy@microbac.com 02/14/24 14:37

CHAIN OF CUSTODY

600 East 17th Street South Newton, IA 50208 641-792-8451

Page County Landfill Assoc.

Page 1 c 1/5/2024 9:17:22/

ww.keystonelab

1	INFORMATION ————————————————————————————————————		RE	PORT TO				Control Contro	
Sampl Proje	er: PCLF ct: Leachate		Pag 203/	i n Ward e County Lai 2 N Ave inda, IA 516			2032 1	County Landfill Assoc.	
No Turp A	cial instructions ine iround Time indard RUSH, need by/	Work Order Temperature 3. Co Turn-Cooler:				Custody Seal Containers Intact COC/Labels Agree Preservation Confirmed Received on Ice			
Number	Sample Identification / Client ID	Matrix	Sample Type	Date	Time	Number of Containers		Analyses	Lab Sample Number
-001	Leachate	Water	GRAB	215134	10:00	2	hod-5210 tss-i-3765-85	nh3-fimberline	01

Received By

Relinquished By

Date/Time

2/5/34 /0:00m Date/Time

Relinquished By

Date/Time

Remarks:

Received for Lab By Date/Time

CERTIFICATE OF ANALYSIS

1HC0223

Page County Landfill Assoc.

Project Name: Leachate

Brian Ward 2032 N Ave Clarinda, IA 51632 Project / PO Number: N/A Received: 03/05/2024 Reported: 03/19/2024

Analytical Testing Parameters

Client Sample ID:LeachateSample Matrix:WaterCollected By:Ward, BrianLab Sample ID:1HC0223-01Collection Date:03/04/2024 10:15

Determination of Conventional Chemistry Parameters	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
SM 5210 B								
BOD (5 day)	22	6	mg/L	3		03/05/24 1627	03/05/24 1717	MND
TIMBERLINE								
Nitrogen, Ammonia	237	10.0	mg/L	100		03/13/24 0934	03/18/24 1538	LJS
USGS I-3765-85								
Total Suspended Solids (TSS)	34	1	mg/L	1		03/07/24 0824	03/07/24 1245	MEAH

Definitions

RL: Reporting Limit

Report Comments

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions.

Reviewed and Approved By:

Sue Thompson Client Services Manager 03/19/24 07:07

CHAIN OF CUS

Veystone LABORATORIES A Microbac Company

600 East 17th Street Soul Newton, IA 50208 641-792-8451

Page County Landfill Assoc. PM: Heather Murphy

Page 1 of 5 www.keystonelabs

SITE INFORMATION	REPORT TO	INVOICE TO
Sampler: PCLF	Brian Ward Page County Landfill Assoc.	Brian Ward Page County Landfill Assoc.
Project: Leachate	2032 N Ave Clarinda, IA 516 3 2	2032 N Ave Clarinda, IA 51632
SPECIAL INSTRUCTIONS	LAB USE ONLY	
None	Work Order HC0723	Custody Seal Containers Intact
Turn Around Time	Temperature 3,4	COC/Labels Agree Preservation Confirmed
Standard RUSH, need by//_	Turn-Cooler: Yes	Received on Ice
	Sample Number	er of Lab Sample
Number Sample Identification / Client ID Matrix	K Type Date Time Contain	ners Analyses Number

Number	Sample Identi	ilication / Chent ID	Maurix	Type	Date	Time	Containers	Analyses	Number
-001	Leachate		Water	GRAB	3/4/24	10:15A	L Lucidicama	hod-5210 nh3-timberline tss-i-3765-85	01
									2
					1				
			7						

POVIE	3-4-24 10:15Am			Damanika	
Relinquished By	Date/Time	Relinquished By	Date/Time	Remarks:	,
		John mmuy	3/5/24 103	5_	
Received By	Date/Time	Received for Lab By	Date/Time		
		Original - Lab Cop	y Yellow - Sampler Cop	oy	

1HD0140

Page County Landfill Assoc.

Project Name: Leachate

Brian Ward 2032 N Ave Clarinda, IA 51632 Project / PO Number: N/A Received: 04/02/2024 Reported: 04/10/2024

Analytical Testing Parameters

Client Sample ID: Leachate
Sample Matrix: Water
Lab Sample ID: 1HD0140-01

Collected By: PCLF
Collection Date: 04/01/2024 10:20

Determination of Conventional Chemistry Parameters	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
SM 5210 B								
BOD (5 day)	<6	6	mg/L	3			04/02/24 1713	MND
TIMBERLINE								
Nitrogen, Ammonia	0.33	0.10	mg/L	1		04/08/24 0727	04/08/24 1031	LJS
USGS I-3765-85								
Total Suspended Solids (TSS)	6	1	mg/L	1		04/04/24 1253	04/05/24 1019	RDH

Definitions

RL: Reporting Limit

Report Comments

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions.

Reviewed and Approved By:

atheram urphy

Heather Murphy

Customer Relationship Specialist heather.murphy@microbac.com 04/10/24 14:28

Veystone LABORATORIES

CHAIN OF CUS

LABORATORIES A Microbac Company	Newto	nst 17th S treet Sc n, IA 50208 12-8451	1	H D 0 1 Je County Landfil PM: Heather Murph	4 U II Assoc.	nted: 3/16/2 www.k	Page 1 d to 2 d
SITE INFORMATION Sampler: Project: Leachate		REPORT TO Brian Ward Page County 2032 N Ave Clarinda, IA 8	Landfill Assoc. 51632		2032 N	ETO lard bunty Landfill Assoc.	
None Turn Around Time Standard RUSH, need by		Work Order Temperature () Turn-Cooler:	IHDO	140	COC/I	dy Seal iners Intact _abels Agree vation Confirmed ved on Ice	
Number Sample Identification / Client ID	Matrix	Sample Type Date	Time	Number of Containers	Aı	nalyses	Lab Sample Number
-001 Leachate	VVater	GRAB 4//	24 10:20	n 2	hod-5210 tss-i-3765-85	nh3-timberline	01
Relinquished By Date/Time Date/Time	Relinquishe Received for	MAMuy	Date/Time 4/2/24 Date/Time	10:30	narks:		

1HE0168

Page County Landfill Assoc.

Project Name: Leachate

Brian Ward 2032 N Ave Clarinda, IA 51632 Project / PO Number: N/A Received: 05/02/2024 Reported: 05/16/2024

Analytical Testing Parameters

Client Sample ID: Leachate
Sample Matrix: Aqueous
Lab Sample ID: 1HE0168-01

Collected By: PCLF
Collection Date: 05/01/2024 11:00

Determination of Conventional Chemistry Parameters	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
SM 5210 B								
BOD (5 day)	12	6	mg/L	3			05/02/24 1426	MND
TIMBERLINE								
Nitrogen, Ammonia	<0.10	0.10	mg/L	1		05/14/24 1539	05/15/24 1241	LJS
USGS I-3765-85								
Total Suspended Solids (TSS)	13	1	mg/L	1		05/07/24 1704	05/08/24 1317	MEAH

Definitions

RL: Reporting Limit

Report Comments

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions.

Reviewed and Approved By:

Sue Thompson Client Services Manager 05/16/24 08:01

Veystone LABORATORIES

CHAIN OF CUSTODY RECORD

Newton, IA 50208 641-792-8451

rinted: 4/6/2024 9:15:31/ operations on

Page 1 o to

600 East 17th Street Sout A Microbac Company

Page County Landfill Assoc. PM: Heather Murphy SITE INFORMATION REPORT TO -Sampler: PCLF Brian Ward Brian Ward Page County Landfill Assoc. Page County Landfill Assoc. Project: 2032 N Ave Leachate 2032 N Ave Clarinda, IA 51632 Clarinda, IA 51632 SPECIAL INSTRUCTIONS LAB USE ONLY Custody Seal HEB168 Work Order None Containers Intact Temperature COC/Labels Agree Turn Around Time Preservation Confirmed Turn-Cooler: Standard Yes RUSH, need by Received on Ice Sample Number of Lab Sample

Number	Sample Identification	n / Client ID	Matrix	Туре	Date	Time	Containers	A	nalyses	Number
-001	Leachate		Water	GRAB	51124	11:00	2	hod-5210 tss-i-3765-85	nh3-timberline	10
							-			2.5
										100
										. 4

			2
PCLF Relinquished By	5-1-24 //:100 Aim-	Relinquished By Date/Time Remarks:	i
Received By	Date/Time	Received for Lab By Original - Lab Copy Yellow - Sampler Copy	

1HG0202

Page County Landfill Assoc.

Project Name: Leachate

Brian Ward 2032 N Ave Clarinda, IA 51632 Project / PO Number: N/A Received: 07/02/2030 Reported: 07/16/2024

Analytical Testing Parameters

Client Sample ID: Leachate
Sample Matrix: Aqueous
Lab Sample ID: 1HG0202-01

Collected By: Unknown
Collection Date: 07/01/2024 10:00

Determination of Conventional Chemistry Parameters	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
SM 5210 B								
BOD (5 day)	20	6	mg/L	3		07/02/24 1428	07/02/24 1737	MND
TIMBERLINE								
Nitrogen, Ammonia	72.4	1.00	mg/L	10		07/15/24 0751	07/15/24 1429	LNH
USGS I-3765-85								
Total Suspended Solids (TSS)	57	1	mg/L	1		07/03/24 0809	07/05/24 1230	MEAH

Definitions

RL: Reporting Limit

Report Comments

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions>.

Reviewed and Approved By:

atheram urphy

Heather Murphy

Customer Relationship Specialist heather.murphy@microbac.com 07/16/24 13:43

(E)	NAI	D	0	D	^	®	600 East 17	
$\langle e \rangle$	MI			H	Δ	(Alexton IA	I ISSISI IISSII SIIII

Date/Time

Received By

641-792-84

CHAIN OF CUSTODY RECORD

Page County Landfill Assoc.

PM: Heather Murphy

Page 1 o jo 2 o

SITE INFORMATION		PONTTO T	, riodanisi maripus	1	INVOICE TO		
Project: Leachate	Pag 203	an Ward ge County Land 32 N Ave Irinda, IA 5163			Brian Ward Page County Landfill Assoc. 2032 N Ave Clarinda, IA 51632		
None Turn Around Time Standard RUSH, need by//_	Work Tempe	B USE ONLY Order I HGC erature Cooler: Yes	1,9		Custody Seal Containers Intact COC/Labels Agree Preservation Confi		
Number Sample Identification / Client ID	Sample Matrix Type	Date	Time	Number of Containers	Analyses	Lab Sample Number	
-001 Leachate	Aqueaus GRAB	7/1/04	10:00 him	2	hod-5210 nh3-timbe tss-i-3765-85	rime <u>61</u>	
Relinquished By Date/Time R	Retinguished By	1 10	Date/Time	Ren	narks:		

CERTIFICATE OF ANALYSIS

1HH0266

Page County Landfill Assoc.

Project Name: Leachate

Brian Ward 2032 N Ave Clarinda, IA 51632 Project / PO Number: N/A Received: 08/02/2024 Reported: 08/14/2024

Analytical Testing Parameters

Client Sample ID: Leachate
Sample Matrix: Aqueous
Lab Sample ID: 1HH0266-01

Collected By: unknown

Collection Date:

08/01/2024 10:00

-								
Determination of Conventional Chemistry Parameters	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
SM 5210 B								
BOD (5 day)	19	6	mg/L	3	K2		08/02/24 1539	MND
TIMBERLINE								
Nitrogen, Ammonia	88.9	1.00	mg/L	10		08/13/24 0706	08/14/24 1336	LNH
USGS I-3765-85								
Total Suspended Solids (TSS)	30	1	mg/L	1		08/06/24 1103	08/06/24 1550	MEAH

Definitions

K2: Glucose/glutamic acid recovery was below acceptance limits. The reported value is estimated.

RL: Reporting Limit

Report Comments

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions>.

Reviewed and Approved By:

wherem urphy

Heather Murphy

Customer Relationship Specialist heather.murphy@microbac.com 08/14/24 15:55

CHAIN OF CUSTODY RECORD

600 East 17th Street So: Newton, IA 50208 641-792-8451

Page County Landfill Assoc.

Printed: 7/3/2024 8:21:58A & ebe

Page 1 of

SITE IN Sampler	the state of the s		Bria Page 2032	PORT TO in Ward e County Landi 2 N Ave inda, IA 51632	fill Assoc.	PM: Heather Murphy	Brian Ward Page County Landfill Assoc. 2032 N Ave Clarinda, IA 51632			
Non	ound Time	by//_		Work C	rature	0266		Con COO Pres	stody Seal ntainers Intact C/Labels Agree servation Confirmed seived on Ice	
Number	Sample Identification / (Client ID N	/latrix	Sample Type	Date	Time	Number of Containers		Analyses	Lab Sample Number
-001	Leachate		rqueous	GRAB	8/1/34	10:00	2	bod-5210 tss-i-3765-85	nh3-timherline	01
							*			

PCLE	8-1-24 10:00 AM
Relinquished By	Date/Time

Received By

Date/Time

Date/Time Date/Time

Remarks:

1HI0093

Page County Landfill Assoc.

Project Name: Leachate

Brian Ward 2032 N Ave Clarinda, IA 51632 Project / PO Number: N/A Received: 09/04/2024 Reported: 09/16/2024

Analytical Testing Parameters

Client Sample ID: Leachate

Sample Matrix: Aqueous Collected By:
Lab Sample ID: 1HI0093-01 Collection Date

Collection Date: 09/03/2024 10:00

PCLF

Determination of Conventional Chemistry Parameters	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
SM 5210 B								
BOD (5 day)	9	6	mg/L	3	K3	09/04/24 1417	09/04/24 1527	KDA
TIMBERLINE								
Nitrogen, Ammonia	40.3	1.00	mg/L	10		09/12/24 1319	09/14/24 1724	JAC
USGS I-3765-85								
Total Suspended Solids (TSS)	18	1	mg/L	1		09/06/24 0754	09/06/24 0912	MEAH

Definitions

K3: Glucose/glutamic acid recovery was above acceptance limits. The reported value is estimated.

RL: Reporting Limit

Report Comments

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions>.

Reviewed and Approved By:

asheram urphy

Heather Murphy

Customer Relationship Specialist heather.murphy@microbac.com 09/16/24 08:33

(S) MICI	ROBAC®
----------	--------

500 East 1 Newton, 12 641-792-84

Page County Landfill Assoc. PM: Heather Murphy

Page 1 o

SITE INFORMATION Sampler: PCLF Project: Leachate		Bria Pag 203	PORT TO In Ward e County Lai 2 N Ave inda, IA 516			Brian Page (2032 N	County Landfill Assoc.	
SPECIAL INSTRUCTIONS None Turn Around Time Standard RUSH, need by/_	_/	Work (36-	20093		Con COC Pres	tody Seal tainers Intact C/Labels Agree ervation Confirmed eived on Ice	
Number Sample Identification / Client ID	Matrix	Sample Type	Date	Time	Number of Containers		Analyses	Lab Sample Number
-001 Leachate	Aqueous	GRAB	9/3/24	(C'00n	and a second sec	horl-5210 tss-i-3765-85	nh3-timherline	10.
Received By P-3-24 101004 Date/Time Date/Time	Relinguished	By Lab By	ymer	Date/Time	1041 Ren	narks:		

Page County Landfill Assoc.

Project Name: Leachate

Brian Ward 2032 N Ave Clarinda, IA 51632 Project / PO Number: N/A Received: 10/02/2024 Reported: 10/10/2024

Analytical Testing Parameters

Client Sample ID: Leachate Sample Matrix: Aqueous Lab Sample ID: 1HJ0137-01

Collected By: **PCLF Collection Date:** 10/01/2024 10:15

Determination of Conventional Chemistry Parameters	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
SM 5210 B								
BOD (5 day)	18	6	mg/L	3		10/02/24 1741	10/02/24 1741	MND
TIMBERLINE								
Nitrogen, Ammonia	37.2	1.00	mg/L	10		10/08/24 0842	10/08/24 1219	JAC
USGS I-3765-85								
Total Suspended Solids (TSS)	5	1	mg/L	1		10/04/24 1450	10/07/24 1310	RDH

Definitions

> RL: Reporting Limit

Report Comments

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions.

Reviewed and Approved By:

atheram urphy

Heather Murphy

Customer Relationship Specialist heather.murphy@microbac.com 10/10/24 13:15

CHAIN OF CUST

600 East 17th Street South Newton, IA 50208 641-792-8451

Page County Landfill Assoc. PM: Heather Murphy

Page 1 of

ww.keystonelabs.com

SITE INFORMATION	F	EPORT TO			INVO	TICE TO	
Project: Leachate	P 24	rian Ward age County Land 032 N Ave Iarinda, IA 5163			Page 2032	Nard County Landfill Assoc. N Ave Ida, IA 51632	
None Turn Around Time Standard RUSH, need by/_	Wor Tem	/	+5 013°	7	Co CC Pre	stody Seal ntainers Intact IC/Labels Agree eservation Confirmed ceived on Ice	
Number Sample Identification / Client ID	Sampl Matrix Type		Time	Number of Containers		Analyses	Lab Sample Number
-001 Leachate	Aqueous GRA	10/1/24	10:15	2	hod-5210 tss-i-3765-85	uh3-famher line	On the second series.

Received By

Relinquished By

Date/Time

10-1-24 /0:15Am
Date/Time

Relinguished By

10:00

Date/Time

Date/Time

Original - Lab Copy Yellow - Sampler Copy

Remarks:

Page County Landfill Assoc.

Project Name: Leachate

Brian Ward 2032 N Ave Clarinda, IA 51632 Project / PO Number: N/A Received: 12/03/2024 Reported: 12/13/2024

Analytical Testing Parameters

Client Sample ID: Leachate
Sample Matrix: Aqueous
Lab Sample ID: 1HL0110-01

Collected By: PCLF
Collection Date: 12/02/2024 10:00

Determination of Conventional	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Chemistry Parameters								
SM 5210 B-2016								
BOD (5 day)	12	6	mg/L	3		12/03/24 1335	12/03/24 1616	MND
TIMBERLINE								
Nitrogen, Ammonia	45.8	1.00	mg/L	10		12/09/24 1349	12/09/24 1640	SDF
USGS I-3765-85								
Total Suspended Solids (TSS)	6	2	mg/L	2		12/04/24 1432	12/05/24 1110	MEAH

Definitions

RL: Reporting Limit

Report Comments

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions.

Reviewed and Approved By:

atheram urphy

Heather Murphy

Customer Relationship Specialist heather.murphy@microbac.com 12/13/24 08:17

LABORATORIES A Microbac Company

600 East Newton, 641-792-1

Page County Landfill Assoc. PM: Heather Murphy

Page 1 of

of 2

Printed: 11/7/2024 1:50:07P

www.keystonelabs.

SITE	NFORMATION		REF	PORT TO			INVO	ICE TO	
Sampler Project	t: Leachate		Page 2032	n Ward e County Land N Ave nda, IA 5163			2032	County Landfill Assoc.	
Non	ound Time		Work Control Temper		0.0		Cor CO	atody Seal atainers Intact C/Labels Agree servation Confirmed seived on Ice	
Number	Sample Identification / Client ID	Matrix	Sample Type	Date	Time	Number of Containers		Analyses	Lab Sample Number
-001	Leachate	Aqueous	GRAE	12/2/84	1010Chm	Accessed Lancased	bod-5210 fss-i-3765-85	nh3-finnberline	Ol
Received By		Relinquished	chstat	ler 12/3	Date/Time	27 Re	marks:		

Appendix H.4 – Annual Leachate Testing Laboratory Report

CERTIFICATE OF ANALYSIS 1HC1212

Project Description

Leachate Sampling

For:

Todd Whipple

HLW Engineering

PO Box 314

Story City, IA 50248

Heather Murphy

Customer Relationship Specialist

Tuesday, April 2, 2024

Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories. Review and compilation of your report was completed by Microbac Laboratories, Inc., Newton. If you have any questions, comments, or require further assistance regarding this report, please contact your service representative listed above.

I certify that all test results meet all of the requirements of the accrediting authority listed within this report. Analytical results are reported on a 'as received' basis unless specified otherwise. Analytical results for solids with units ending in (dry) are reported on a dry weight basis. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories. The reported results are related only to the samples analyzed as received.

Microbac Laboratories, Inc.

CERTIFICATE OF ANALYSIS

1HC1212

HLW Engineering

Project Name: Leachate Sampling

Todd Whipple PO Box 314 Story City, IA 50248 Project / PO Number: N/A Received: 03/19/2024 Reported: 04/02/2024

Sample Summary Report

Sample NameLaboratory IDClient MatrixSample TypeSample BeginSample TakenLab ReceivedLeachate Tank1HC1212-01WaterGRAB03/18/24 16:0603/19/24 10:45

Analytical Testing Parameters

Client Sample ID: Leachate Tank

Sample Matrix: Water Collected By: JGH

Lab Sample ID: 1HC1212-01 **Collection Date:** 03/18/2024 16:06

Determination of Volatile Organic Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 5030B/EPA 624								
Chloromethane	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
Vinyl Chloride	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
Bromomethane	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
Chloroethane	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
1,1-Dichloroethylene	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
Methylene Chloride	<5.0	5.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
1,1-Dichloroethane	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
2-Butanone (MEK)	<10.0	10.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
Chloroform	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
1,1,1-Trichloroethane	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
Carbon Tetrachloride	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
Benzene	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
1,2-Dichloroethane	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
Trichloroethylene	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
1,2-Dichloropropane	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
Dibromomethane	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
Bromodichloromethane	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
2-Chloroethylvinyl ether	<10.0	10.0	ug/L	1	P-02	03/20/24 0000	03/20/24 1332	CSM
cis-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
Toluene	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
trans-1,3-Dichloropropene	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
1,1,2-Trichloroethane	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
Tetrachloroethylene	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
Chlorobenzene	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
Ethylbenzene	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
Xylenes, total	<2.0	2.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
Bromoform	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
1,3-Dichlorobenzene	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
1,4-Dichlorobenzene	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
1,2-Dichlorobenzene	<1.0	1.0	ug/L	1		03/20/24 0000	03/20/24 1332	CSM
Surrogate: Dibromofluoromethane	107	Limit: 79-129	% Rec	1		03/20/24 0000	03/20/24 1332	CSM
Surrogate: 1,2-Dichloroethane-d4	107	Limit: 66-134	% Rec	1		03/20/24 0000	03/20/24 1332	CSM
Surrogate: Toluene-d8	98.0	Limit: 91-113	% Rec	1		03/20/24 0000	03/20/24 1332	CSM
Surrogate: 4-Bromofluorobenzene	103	Limit: 83-112	% Rec	1		03/20/24 0000	03/20/24 1332	CSM
Determination of Base/Neutral/Acid Extractable Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst

EPA 625

Client Sample ID: Leachate Tank

Sample Matrix: Water Collected By: JGH

Lab Sample ID: 1HC1212-01 **Collection Date:** 03/18/2024 16:06

Determination of Base/Neutral/Acid Extractable Compounds	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
N-Nitrosodimethylamine	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Phenol	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Aniline	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Bis(2-Chloroethyl) Ether	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
2-Chlorophenol	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
1,3-Dichlorobenzene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
1,4-Dichlorobenzene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Benzyl Alcohol	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
1,2-Dichlorobenzene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
2-Methylphenol (o-Cresol)	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Bis[2-Chloroisopropyl]ether	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
n-Nitroso-di-n-propylamine	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
(3 & 4)-Methylphenol	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Hexachloroethane	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Nitrobenzene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Isophorone	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
2-Nitrophenol	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
2,4-Dimethylphenol	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Bis (2-Chloroethoxy) Methane	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
2,4-Dichlorophenol	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
1,2,4-Trichlorobenzene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Naphthalene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
4-Chloroaniline	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Hexachlorobutadiene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
4-Chloro-3-methylphenol	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
2-Methylnaphthalene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Hexachlorocyclopentadiene	<20	20	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
2,4,6-Trichlorophenol	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
2,4,5-Trichlorophenol	<50	50	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
2-Chloronaphthalene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
2-Nitroaniline	<50	50	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Dimethylphthalate	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Acenaphthylene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
2,6-Dinitrotoluene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
3-Nitroaniline	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Acenaphthene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
2,4-Dinitrophenol	<20	20	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Dibenzofuran	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
2,4-Dinitrotoluene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
4-Nitrophenol	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Diethyl Phthalate	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Fluorene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
4-Chlorophenyl Phenyl Ether	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP

Client Sample ID: Leachate Tank

Sample Matrix: Water Collected By: JGH

Lab Sample ID: 1HC1212-01 **Collection Date:** 03/18/2024 16:06

Determination of Base/Neutral/Acid	Result	RL Units		DF	Note	Prepared	Analyzed	Analys
Extractable Compounds	Roount				11016	Tioparea	Analyzou	,uiys
4-Nitroaniline	<20	20	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
4,6-Dinitro-2-methylphenol	<20	20	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
N-Nitrosodiphenylamine	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Azobenzene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
4-Bromophenyl Phenyl Ether	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Hexachlorobenzene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Pentachlorophenol	<20	20	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Phenanthrene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Anthracene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Di-n-butyl Phthalate	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Fluoranthene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Benzidine	<50	50	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Pyrene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Butyl Benzyl Phthalate	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Benzo(a)anthracene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Chrysene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Bis(2-Ethylhexyl) Phthalate	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Di-n-octyl Phthalate	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Indeno(1,2,3-cd)Pyrene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
3,3'-Dichlorobenzidine	<20	20	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Benzo(b)Fluoranthene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Benzo(k)Fluoranthene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Benzo(a)Pyrene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Dibenzo(a,h)anthracene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Benzo(g,h,i)perylene	<10	10	ug/L	1		03/25/24 1217	04/01/24 1200	EPP
Surrogate: 2-Fluorophenol	64.3	Limit: 19-139	% Rec	1		03/25/24 1217	04/01/24 1200	EPP
Surrogate: Phenol-d6	67.3	Limit: 14-154	% Rec	1		03/25/24 1217	04/01/24 1200	EPP
Surrogate: Nitrobenzene-d5	73.7	Limit: 17-146	% Rec	1		03/25/24 1217	04/01/24 1200	EPP
Surrogate: 2-Fluorobiphenyl	83.0	Limit: 18-122	% Rec	1		03/25/24 1217	04/01/24 1200	EPP
Surrogate: 2,4,6-Tribromophenol	105	Limit: 21-151	% Rec	1		03/25/24 1217	04/01/24 1200	EPP
Surrogate: Terphenyl-dl4	66.7	Limit: 27-131	% Rec	1		03/25/24 1217	04/01/24 1200	EPP
etermination of Organochlorine nsecticides & PCBs	Result	RL	Units	DF	Note	Prepared	Analyzed	Analy
PA 3510C/EPA 608								
Alpha-BHC	<0.05	0.05	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Gamma-BHC [Lindane]	<0.05	0.05	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Beta-BHC	<0.05	0.05	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Heptachlor	<0.05	0.05	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Delta-BHC	<0.05	0.05	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Aldrin	<0.05	0.05	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Heptachlor Epoxide	<0.05	0.05	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Endosulfan I	<0.05	0.05	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
4,4`-DDE	<0.05	0.05	ug/L	1		03/21/24 1711	04/01/24 1326	EPP

Microbac Laboratories, Inc., Newton

Client Sample ID: Leachate Tank

Sample Matrix: Water Collected By: JGH

Lab Sample ID: 1HC1212-01 **Collection Date:** 03/18/2024 16:06

Lab Sample ID: 1HC1212-01					Collection	Date: 03/18/	2024 16:06	
Determination of Organochlorine Insecticides & PCBs	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Dieldrin	<0.05	0.05	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Endrin	<0.05	0.05	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
4,4`-DDD	<0.05	0.05	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Endosulfan II	<0.05	0.05	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
4,4`-DDT	<0.05	0.05	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Endrin Aldehyde	<0.05	0.05	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Endosulfan Sulfate	<0.05	0.05	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Methoxychlor	<0.05	0.05	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Chlordane	<0.10	0.10	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Toxaphene	<0.20	0.20	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Arochlor 1016	<0.20	0.20	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Arochlor 1221	<0.20	0.20	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Arochlor 1232	<0.20	0.20	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Arochlor 1242	<0.20	0.20	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Arochlor 1248	<0.20	0.20	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Arochlor 1254	<0.20	0.20	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Arochlor 1260	<0.20	0.20	ug/L	1		03/21/24 1711	04/01/24 1326	EPP
Surrogate: Decachlorobiphenyl	68.2	Limit: 19-120	% Rec	1		03/21/24 1711	04/01/24 1326	EPP
Surrogate: Tetrachloro-m-xylene	71.2	Limit: 30-119	% Rec	1		03/21/24 1711	04/01/24 1326	EPP
Determination of Conventional Chemistry Parameters	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
5310B								
Total Organic Carbon	35.5	0.50	mg/L	1		03/27/24 0000	03/27/24 1134	CSM
EPA 1664A								
Oil and Grease	<4	4	mg/L	1		03/22/24 1032	03/26/24 1100	ССВ
EPA 351.2								
Nitrogen, Kjeldahl, total	4.29	2.00	mg/L	1		03/21/24 1007	03/25/24 1307	AKK
SM 5210 B			Ü					
BOD (5 day)	<6	6	mg/L	3		03/20/24 1011	03/20/24 1011	MND
TIMBERLINE			9/=					
Nitrogen, Ammonia	0.24	0.10	mg/L	1		03/28/24 1445	03/29/24 1333	LNH
USGS I-1750-85	0.24	0.10	mg/L	•		00/20/24 1440	00/20/24 1000	LIVII
Total Dissolved Solids (TDS)	971	5	mg/L	1		03/22/24 0755	03/22/24 1030	MEAH
USGS I-3765-85	3/1	3	IIIg/L	'		03/22/24 0/33	03/22/24 1030	WEAH
	7	1	ma/l	1		03/04/04 0830	02/22/24 1027	BDU
Total Suspended Solids (TSS)	7	'	mg/L	1		03/21/24 0830	03/22/24 1027	RDH
Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
200.7								
Iron, total	0.185	0.100	mg/L	1		03/20/24 0800	03/20/24 1941	JAR
245.1								
Mercury, total	<0.00050	0.00050	mg/L	1		03/22/24 1503	03/26/24 1427	JAR

1HC1212

Client Sample ID: Leachate Tank

Sample Matrix: Water Collected By: JGH

Lab Sample ID: 1HC1212-01 **Collection Date:** 03/18/2024 16:06

Determination of Total Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 200.8								
Arsenic, total	0.0032	0.0020	mg/L	4		03/25/24 0840	03/25/24 1934	RVV
Barium, total	0.270	0.0020	mg/L	4		03/25/24 0840	03/25/24 1934	RVV
Cadmium, total	<0.0002	0.0002	mg/L	4		03/25/24 0840	03/25/24 1934	RVV
Chromium, total	<0.0020	0.0020	mg/L	4		03/25/24 0840	03/25/24 1934	RVV
Copper, total	<0.0020	0.0020	mg/L	4		03/25/24 0840	03/25/24 1934	RVV
Lead, total	<0.0008	0.0008	mg/L	4		03/25/24 0840	03/25/24 1934	RVV
Nickel, total	0.0279	0.0040	mg/L	4		03/25/24 0840	03/25/24 1934	RVV
Selenium, total	<0.0040	0.0040	mg/L	4		03/25/24 0840	03/25/24 1934	RVV
Silver, total	<0.0020	0.0020	mg/L	4		03/25/24 0840	03/25/24 1934	RVV
Zinc, total	<0.0200	0.0200	mg/L	4		03/25/24 0840	03/25/24 1934	RVV

Batch Log Summary

	Batch	Laboratory ID	Client / Source ID
200.7	1HC1067	1HC1067-BLK1	
		1HC1067-BS1	
		1HC1067-MS1	1HC1107-01
		1HC1067-MSD1	1HC1107-01
		1HC1067-PS1	1HC1107-01
		1HC1212-01	Leachate Tank
Method	Batch	Laboratory ID	Client / Source ID
SM 5210 B	1HC1094	1HC1094-BLK1	
		1HC1094-SRM1	
		1HC1094-DUP1	1HC1186-01
		1HC1212-01	Leachate Tank
Method	Batch	Laboratory ID	Client / Source ID
USGS I-3765-85	1HC1167	1HC1167-DUP1	1HC1210-01
		1HC1167-BS1	
		1HC1212-01	Leachate Tank
		1HC1167-BLK1	
Method	Batch	Laboratory ID	Client / Source ID
EPA 624	1HC1175	1HC1175-BS1	
		1HC1175-BSD1	
		1HC1175-BLK1	
		1HC1212-01	Leachate Tank
		1HC1175-MS1	1HC1212-01
		1HC1175-MSD1	1HC1212-01
Method	Batch	Laboratory ID	Client / Source ID
EPA 351.2	1HC1186	1HC1186-BLK1	
		1HC1186-BS1	
		1HC1186-MS1	1HC1164-02
		1HC1186-MSD1	1HC1164-02
		1HC1212-01	Leachate Tank
Method	Batch	Laboratory ID	Client / Source ID
EPA 608	1HC1238	1HC1238-BLK1	
		1HC1238-BS1	
		1HC1238-BSD1	
		1HC1212-01	Leachate Tank

CERTIFICATE OF ANALYSIS

1HC1212

USGS I-1750-85	1HC1249	1HC1212-01	Leachate Tank	
		1HC1249-DUP1	1HC1428-01	
		1HC1249-BLK1		
		1HC1249-BS1		
Method	Batch	Laboratory ID	Client / Source ID	
EPA 1664A	1HC1269	1HC1269-BLK1		
		1HC1269-DUP1	1HC1464-01	
		1HC1269-BS1		
		1HC1212-01	Leachate Tank	
Method	Batch	Laboratory ID	Client / Source ID	
245.1	1HC1285	1HC1285-BLK1		
		1HC1285-BS1		
		1HC1285-MS1	1HC1142-01	
		1HC1285-MSD1	1HC1142-01	
		1HC1212-01	Leachate Tank	
Method	Batch	Laboratory ID	Client / Source ID	
EPA 200.8	1HC1317	1HC1317-BLK1		
		1HC1317-BS1		
		1HC1212-01	Leachate Tank	
		1HC1317-MS1	1HC1275-02	
		1HC1317-MSD1	1HC1275-02	
		1HC1317-PS1	1HC1275-02	
Method	Batch	Laboratory ID	Client / Source ID	
EPA 625	1HC1348	1HC1348-BLK1		
		1HC1348-BS1		
		1HC1348-BSD1		
		1HC1212-01	Leachate Tank	
Method	Batch	Laboratory ID	Client / Source ID	
TIMBERLINE	1HC1602	1HC1602-BLK1		
		1HC1602-BS1		
		1HC1602-MS1	1HC1186-02	
		1HC1602-MSD1	1HC1186-02	
		1HC1212-01	Leachate Tank	
		1HC1602-MS2	1HC1201-01	
		1HC1602-MSD2	1HC1201-01	
Method	Batch	Laboratory ID	Client / Source ID	
5310B	1HC1664	1HC1664-BS1		
		1HC1664-BSD1		
		1HC1664-BLK1		

CERTIFICATE OF ANALYSIS 1HC1212

5310B 1HC1664 1HC1212-01 Leachate Tank

1HC1664-DUP1 1HC1212-01

Batch Quality Control Summary: Microbac Laboratories, Inc., Newton

%REC **RPD** Spike Source Notes **Determination of Volatile** RL Result Units Level Result %REC Limits **RPD** Limit **Organic Compounds** Batch 1HC1175 - EPA 5030B - EPA 624

Blank (1HC1175-BLK1)			Prepared: 0	03/20/24 00:00 Ana	alyzed: 03/20/24 1	1:35		
Chloromethane	<1.0	1.0	ug/L					
Vinyl Chloride	<1.0	1.0	ug/L					
Bromomethane	<1.0	1.0	ug/L					
Chloroethane	<1.0	1.0	ug/L					
1,1-Dichloroethylene	<1.0	1.0	ug/L					
Methylene Chloride	<5.0	5.0	ug/L					
trans-1,2-Dichloroethylene	<1.0	1.0	ug/L					
1,1-Dichloroethane	<1.0	1.0	ug/L					
cis-1,2-Dichloroethylene	<1.0	1.0	ug/L					
2-Butanone (MEK)	<10.0	10.0	ug/L					
Chloroform	<1.0	1.0	ug/L					
1,1,1-Trichloroethane	<1.0	1.0	ug/L					
Carbon Tetrachloride	<1.0	1.0	ug/L					
Benzene	<1.0	1.0	ug/L					
1,2-Dichloroethane	<1.0	1.0	ug/L					
Trichloroethylene	<1.0	1.0	ug/L					
1,2-Dichloropropane	<1.0	1.0	ug/L					
Dibromomethane	<1.0	1.0	ug/L					
Bromodichloromethane	<1.0	1.0	ug/L					
2-Chloroethylvinyl ether	<10.0	10.0	ug/L					
cis-1,3-Dichloropropene	<1.0	1.0	ug/L					
Toluene	<1.0	1.0	ug/L					
trans-1,3-Dichloropropene	<1.0	1.0	ug/L					
1,1,2-Trichloroethane	<1.0	1.0	ug/L					
Tetrachloroethylene	<1.0	1.0	ug/L					
Chlorobenzene	<1.0	1.0	ug/L					
Ethylbenzene	<1.0	1.0	ug/L					
Xylenes, total	<2.0	2.0	ug/L					
Bromoform	<1.0	1.0	ug/L					
1,1,2,2-Tetrachloroethane	<1.0	1.0	ug/L					
1,3-Dichlorobenzene	<1.0	1.0	ug/L					
1,4-Dichlorobenzene	<1.0	1.0	ug/L					
1,2-Dichlorobenzene	<1.0	1.0	ug/L					
Surrogate: Dibromofluoromethane	54.2		ug/L	50.2	108	79-129		
Surrogate: 1,2-Dichloroethane-d4	54.0		ug/L	50.1	108	66-134		
Surrogate: Toluene-d8	49.5		ug/L	50.4	98.2	91-113		
Surrogate: 4-Bromofluorobenzene	52.0		ug/L	50.1	104	83-112		
LCS (1HC1175-BS1)		Prepared: 03/20/24 00:00 Analyzed: 03/20/24 10:15						

Determination of Volatile Organic Compounds	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HC1175 - EPA 5030B - EPA	Δ 624									
LCS (1HC1175-BS1)			Prepared: 03	3/20/24 00:0	0 Analyzed:	03/20/24 1	0:15			
Chloromethane	35.89	1.0	ug/L	30.6		117	63-145			
Vinyl Chloride	31.79	1.0	ug/L	30.2		105	68-145			
Bromomethane	33.97	1.0	ug/L	28.8		118	69-150			
Chloroethane	34.99	1.0	ug/L	31.6		111	74-134			
1,1-Dichloroethylene	57.71	1.0	ug/L	50.0		115	76-139			
Methylene Chloride	48.60	5.0	ug/L	50.0		97.2	67-141			
trans-1,2-Dichloroethylene	53.25	1.0	ug/L	50.0		106	71-137			
1,1-Dichloroethane	52.04	1.0	ug/L	50.0		104	72-130			
cis-1,2-Dichloroethylene	53.05	1.0	ug/L	49.5		107	81-134			
2-Butanone (MEK)	110.7	10.0	ug/L	103		107	44-158			
Chloroform	51.63	1.0	ug/L	50.0		103	76-132			
1,1,1-Trichloroethane	47.64	1.0	ug/L	50.0		95.3	65-122			
Carbon Tetrachloride	52.13	1.0	ug/L	50.0		104	66-132			
Benzene	48.99	1.0	ug/L	50.0		98.0	77-130			
1,2-Dichloroethane	47.68	1.0	ug/L	50.0		95.4	75-124			
Trichloroethylene	48.28	1.0	ug/L	50.0		96.6	79-126			
1,2-Dichloropropane	49.01	1.0	ug/L	50.0		98.0	79-128			
Dibromomethane	52.20	1.0	ug/L	50.0		104	71-139			
Bromodichloromethane	47.49	1.0	ug/L	50.0		95.0	76-122			
2-Chloroethylvinyl ether	102.2	10.0	ug/L	103		99.6	50-169			
cis-1,3-Dichloropropene	46.86	1.0	ug/L	50.3		93.1	74-122			
Toluene	48.44	1.0	ug/L	50.0		96.9	76-128			
trans-1,3-Dichloropropene	46.52	1.0	ug/L	50.4		92.3	73-125			
1,1,2-Trichloroethane	48.14	1.0	ug/L	50.0		96.3	74-126			
Tetrachloroethylene	47.51	1.0	ug/L	50.0		95.0	68-124			
Chlorobenzene	45.65	1.0	ug/L	50.0		91.3	77-120			
Ethylbenzene	47.18	1.0	ug/L	50.0		94.4	76-118			
Xylenes, total	139.8	2.0	ug/L	150		93.2	74-121			
Bromoform	51.91	1.0	ug/L	50.0		104	68-128			
1,1,2,2-Tetrachloroethane	46.39	1.0	ug/L	49.8		93.1	62-128			
1,3-Dichlorobenzene	46.10	1.0	ug/L	50.0		92.2	72-123			
1,4-Dichlorobenzene	47.28	1.0	ug/L	50.0		94.6	75-120			
1,2-Dichlorobenzene	46.21	1.0	ug/L	50.0		92.4	72-121			
Surrogate: Dibromofluoromethane	53.9		ug/L	50.2		107	79-129			
Surrogate: 1,2-Dichloroethane-d4	53.0		ug/L	50.1		106	66-134			
Surrogate: Toluene-d8	50.6		ug/L	50.4		100	91-113			
Surrogate: 4-Bromofluorobenzene	50.2		ug/L	50.1		100	83-112			
LCS Dup (1HC1175-BSD1)			Prepared: 03	3/20/24 00:0	0 Analyzed:	03/20/24 1	0:42			

Microbac Laboratories, Inc., Newton

ug/L

ug/L

ug/L

ug/L

30.2

28.8

31.6

107

94.2

113

101

63-145

68-145

69-150

74-134

9.06

11.0

4.27

9.27

1.0

1.0

1.0

1.0

32.78

28.47

32.55

31.89

Chloromethane

Bromomethane

Vinyl Chloride

Chloroethane

27

30

30

29

5				Spike	Source		%REC		RPD	Notes
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HC1175 - EPA 5030B - EPA	A 624									
LCS Dup (1HC1175-BSD1)			Prepared: 03	3/20/24 00:0	0 Analyzed:	03/20/24 1	0:42			
1,1-Dichloroethylene	52.40	1.0	ug/L	50.0		105	76-139	9.64	30	
Methylene Chloride	47.32	5.0	ug/L	50.0		94.6	67-141	2.67	25	
trans-1,2-Dichloroethylene	49.71	1.0	ug/L	50.0		99.4	71-137	6.88	29	
1,1-Dichloroethane	49.38	1.0	ug/L	50.0		98.8	72-130	5.25	27	
cis-1,2-Dichloroethylene	49.90	1.0	ug/L	49.5		101	81-134	6.12	23	
2-Butanone (MEK)	107.0	10.0	ug/L	103		104	44-158	3.45	25	
Chloroform	49.00	1.0	ug/L	50.0		98.0	76-132	5.23	26	
1,1,1-Trichloroethane	44.27	1.0	ug/L	50.0		88.6	65-122	7.33	29	
Carbon Tetrachloride	48.13	1.0	ug/L	50.0		96.3	66-132	7.98	30	
Benzene	45.84	1.0	ug/L	50.0		91.7	77-130	6.64	27	
1,2-Dichloroethane	46.19	1.0	ug/L	50.0		92.4	75-124	3.17	25	
Trichloroethylene	45.34	1.0	ug/L	50.0		90.7	79-126	6.28	28	
1,2-Dichloropropane	46.92	1.0	ug/L	50.0		93.8	79-128	4.36	26	
Dibromomethane	50.97	1.0	ug/L	50.0		102	71-139	2.38	27	
Bromodichloromethane	46.08	1.0	ug/L	50.0		92.2	76-122	3.01	24	
2-Chloroethylvinyl ether	99.92	10.0	ug/L	103		97.4	50-169	2.27	28	
cis-1,3-Dichloropropene	45.92	1.0	ug/L	50.3		91.2	74-122	2.03	27	
Toluene	45.45	1.0	ug/L	50.0		90.9	76-128	6.37	28	
trans-1,3-Dichloropropene	45.74	1.0	ug/L	50.4		90.7	73-125	1.69	27	
1,1,2-Trichloroethane	47.27	1.0	ug/L	50.0		94.5	74-126	1.82	26	
Tetrachloroethylene	44.38	1.0	ug/L	50.0		88.8	68-124	6.81	28	
Chlorobenzene	43.83	1.0	ug/L	50.0		87.7	77-120	4.07	27	
Ethylbenzene	44.24	1.0	ug/L	50.0		88.5	76-118	6.43	27	
Xylenes, total	133.2	2.0	ug/L	150		88.8	74-121	4.84	27	
Bromoform	51.47	1.0	ug/L	50.0		103	68-128	0.851	25	
1,1,2,2-Tetrachloroethane	45.42	1.0	ug/L	49.8		91.1			28	
1,3-Dichlorobenzene	44.55	1.0	ug/L	50.0		89.1	62-128 72-123	2.11 3.42	20 29	
1,4-Dichlorobenzene	45.93	1.0	ug/L	50.0		91.9	72-123 75-120	2.90	29 26	
1.2-Dichlorobenzene	45.34	1.0	ug/L	50.0		90.7				
1,2-DICHIOIODENZENE	40.04	1.0	ug/L	50.0		90.7	72-121	1.90	30	
Surrogate: Dibromofluoromethane	54.0		ug/L	50.2		108	79-129			
Surrogate: 1,2-Dichloroethane-d4	53.0		ug/L	50.1		106	66-134			
Surrogate: Toluene-d8	50.4		ug/L	50.4		100	91-113			
Surrogate: 4-Bromofluorobenzene	50.9		ug/L	50.1		102	83-112			
Matrix Spike (1HC1175-MS1)	Source: 11	HC1212-01	Prepared: 03		0 Analyzed:	03/20/24 1	5:18			
Chloromethane	341.5	10.0	ug/L	306	ND	111	50-155			
Vinyl Chloride	309.9	10.0	ug/L	302	ND	103	64-148			
Bromomethane	423.9	10.0	ug/L	288	ND	147	50-159			
Chloroethane	337.6	10.0	ug/L	316	ND	107	65-144			
1,1-Dichloroethylene	571.4	10.0	ug/L	500	ND	114	78-139			
Methylene Chloride	477.4	50.0	ug/L	500	ND	95.5	65-144			
trans-1,2-Dichloroethylene	525.9	10.0	ug/L	500	ND	105	67-142			
1,1-Dichloroethane	513.0	10.0	ug/L	500	ND	103	71-133			

Spike Source

				Spike	Source		%REC		RPD	
Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HC1175 - EPA 5030B - EPA	624									
Matrix Spike (1HC1175-MS1)	Source: 1	HC1212-01	Prepared: 0	3/20/24 00:0	00 Analyzed:	03/20/24 1	5:18			
cis-1,2-Dichloroethylene	531.5	10.0	ug/L	495	ND	107	76-142			
2-Butanone (MEK)	1009	100	ug/L	1030	ND	97.7	48-169			
Chloroform	506.1	10.0	ug/L	500	ND	101	75-133			
1,1,1-Trichloroethane	477.1	10.0	ug/L	500	ND	95.5	66-120			
Carbon Tetrachloride	523.5	10.0	ug/L	500	ND	105	67-132			
Benzene	500.8	10.0	ug/L	500	ND	100	79-128			
1,2-Dichloroethane	472.4	10.0	ug/L	500	ND	94.5	74-124			
Trichloroethylene	500.3	10.0	ug/L	500	ND	100	82-122			
1,2-Dichloropropane	494.1	10.0	ug/L	500	ND	98.8	80-126			
Dibromomethane	525.0	10.0	ug/L	500	ND	105	62-141			
Bromodichloromethane	475.7	10.0	ug/L	500	ND	95.1	77-119			
2-Chloroethylvinyl ether	<100	100	ug/L	1030	ND	7.96	10-157			QM-05
cis-1,3-Dichloropropene	479.7	10.0	ug/L	503	ND	95.3	69-120			
Toluene	501.3	10.0	ug/L	500	ND	100	80-125			
trans-1,3-Dichloropropene	476.9	10.0	ug/L	504	ND	94.6	70-122			
1,1,2-Trichloroethane	490.5	10.0	ug/L	500	ND	98.1	73-127			
Tetrachloroethylene	487.6	10.0	ug/L	500	ND	97.5	70-122			
Chlorobenzene	464.0	10.0	ug/L	500	ND	92.8	81-114			
Ethylbenzene	474.7	10.0	ug/L	500	ND	94.9	79-113			
Xylenes, total	1425	20.0	ug/L	1500	ND	95.0	79-114			
Bromoform	500.0	10.0	ug/L	500	ND	100	66-126			
1,1,2,2-Tetrachloroethane	470.0	10.0	ug/L	498	ND	94.3	56-132			
1,3-Dichlorobenzene	474.4	10.0	ug/L	500	ND	94.9	69-125			
1,4-Dichlorobenzene	482.6	10.0	ug/L	500	ND	96.5	73-119			
1,2-Dichlorobenzene	475.1	10.0	ug/L	500	ND	95.0	71-117			
Surrogate: Dibromofluoromethane	524		ug/L	502		104	79-129			
Surrogate: 1,2-Dichloroethane-d4	513		ug/L	501		103	66-134			
Surrogate: Toluene-d8	515		ug/L	504		102	91-113			
Surrogate: 4-Bromofluorobenzene	500		ug/L	501		99.7	83-112			
Matrix Spike Dup (1HC1175-MSD1)	Source: 1	HC1212-01	Prepared: 0	3/20/24 00:0	00 Analyzed:	03/20/24 1	5:45			
Chloromethane	330.6	10.0	ug/L	306	ND	108	50-155	3.24	19	
Vinyl Chloride	297.0	10.0	ug/L	302	ND	98.3	64-148	4.25	24	
Bromomethane	362.4	10.0	ug/L	288	ND	126	50-159	15.6	17	
Chloroethane	325.9	10.0	ug/L	316	ND	103	65-144	3.53	28	
1,1-Dichloroethylene	542.9	10.0	ug/L	500	ND	109	78-139	5.12	20	
Methylene Chloride	461.4	50.0	ug/L	500	ND	92.3	65-144	3.41	16	
trans-1,2-Dichloroethylene	497.2	10.0	ug/L	500	ND	99.4	67-142	5.61	18	
1,1-Dichloroethane	489.3	10.0	ug/L	500	ND	97.9	71-133	4.73	16	
cis-1,2-Dichloroethylene	507.1	10.0	ug/L	495	ND	102	76-142	4.70	17	
2-Butanone (MEK)	985.5	100	ug/L	1030	ND	95.4	48-169	2.38	17	
Chloroform	487.7	10.0	ug/L	500	ND	97.5	75-133	3.70	16	
1,1,1-Trichloroethane	456.5	10.0	ug/L	500	ND	91.3	66-120	4.41	15	
			J. =		.,,,		00 120		.0	

RPD

%REC

Spike Source

%REC

RPD

Determination of Volatile Organic Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HC1175 - EPA 5030B - EPA	624									
Matrix Spike Dup (1HC1175-MSD1)	Source:	1HC1212-01	Prepared: 03	3/20/24 00:0	00 Analyzed:	03/20/24 1	5:45			
Carbon Tetrachloride	505.6	10.0	ug/L	500	ND	101	67-132	3.48	15	
Benzene	476.1	10.0	ug/L	500	ND	95.2	79-128	5.06	12	
1,2-Dichloroethane	464.4	10.0	ug/L	500	ND	92.9	74-124	1.71	12	
Trichloroethylene	476.5	10.0	ug/L	500	ND	95.3	82-122	4.87	13	
1,2-Dichloropropane	480.7	10.0	ug/L	500	ND	96.1	80-126	2.75	10	
Dibromomethane	512.4	10.0	ug/L	500	ND	102	62-141	2.43	11	
Bromodichloromethane	461.9	10.0	ug/L	500	ND	92.4	77-119	2.94	10	
2-Chloroethylvinyl ether	<100	100	ug/L	1030	ND	5.12	10-157	43.5	30	QM-05
cis-1,3-Dichloropropene	464.9	10.0	ug/L	503	ND	92.4	69-120	3.13	10	
Toluene	479.2	10.0	ug/L	500	ND	95.8	80-125	4.51	12	
trans-1,3-Dichloropropene	458.3	10.0	ug/L	504	ND	90.9	70-122	3.98	10	
1,1,2-Trichloroethane	479.4	10.0	ug/L	500	ND	95.9	73-127	2.29	10	
Tetrachloroethylene	469.0	10.0	ug/L	500	ND	93.8	70-122	3.89	15	
Chlorobenzene	447.9	10.0	ug/L	500	ND	89.6	81-114	3.53	12	
Ethylbenzene	459.5	10.0	ug/L	500	ND	91.9	79-113	3.25	13	
Xylenes, total	1385	20.0	ug/L	1500	ND	92.3	79-114	2.81	12	
Bromoform	500.2	10.0	ug/L	500	ND	100	66-126		16	
1,1,2,2-Tetrachloroethane	460.3	10.0	ug/L	498	ND	92.3	56-132	2.09	29	
1,3-Dichlorobenzene	451.4	10.0	ug/L	500	ND	90.3	69-125	4.97	18	
1,4-Dichlorobenzene	463.7	10.0	ug/L	500	ND	92.7	73-119	3.99	21	
1,2-Dichlorobenzene	458.2	10.0	ug/L	500	ND	91.6	71-117	3.62	23	
Surrogate: Dibromofluoromethane	525		ug/L	502		105	79-129			
Surrogate: 1,2-Dichloroethane-d4	513		ug/L	501		103	66-134			
Surrogate: Toluene-d8	510		ug/L	504		101	91-113			
Surrogate: 4-Bromofluorobenzene	503		ug/L	501		100	83-112			
				Spike	Source		%REC		RPD	Notes
Determination of Base/Neutral/Acid Extractable Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HC1348 - EPA 625 BNA - EF	PA 625									
Blank (1HC1348-BLK1)			Prepared: 03	3/25/24 12:1	17 Analyzed:	03/29/24 1	6:48			
N-Nitrosodimethylamine	<10	10	ug/L							
Phenol	<10	10	ug/L							
Aniline	<10	10	ug/L							
Bis(2-Chloroethyl) Ether	<10	10	ug/L							
2-Chlorophenol	<10	10	ug/L							
1,3-Dichlorobenzene	<10	10	ug/L							
1,4-Dichlorobenzene	<10	10	ug/L							

ug/L

ug/L

ug/L

10

10

10

<10

<10

<10

Benzyl Alcohol

1,2-Dichlorobenzene

2-Methylphenol (o-Cresol)

Microbac Laboratories, Inc., Newton

CERTIFICATE OF ANALYSIS

1HC1212

Spike Source %REC RPD

Determination of Result RL Units Level Result %REC Limits RPD Limit Notes

Base/Neutral/Acid

Extractable Compounds

Batch 1HC1348 - EPA 625 BNA - EPA 625

Blank (1HC1348-BLK1)			Prepared: 03/25/24 12:17 Analyzed: 03/29/24 16:48	
Bis[2-Chloroisopropyl]ether	<10	10	ug/L	
n-Nitroso-di-n-propylamine	<10	10	ug/L	
(3 & 4)-Methylphenol	<10	10	ug/L	
Hexachloroethane	<10	10	ug/L	
Nitrobenzene	<10	10	ug/L	
Isophorone	<10	10	ug/L	
2-Nitrophenol	<10	10	ug/L	
2,4-Dimethylphenol	<10	10	ug/L	
Bis (2-Chloroethoxy) Methane	<10	10	ug/L	
2,4-Dichlorophenol	<10	10	ug/L	
1,2,4-Trichlorobenzene	<10	10	ug/L	
Naphthalene	<10	10	ug/L	
4-Chloroaniline	<10	10	ug/L	
Hexachlorobutadiene	<10	10	ug/L	
4-Chloro-3-methylphenol	<10	10	ug/L	
2-Methylnaphthalene	<10	10	ug/L	
Hexachlorocyclopentadiene	<20	20	ug/L	
2,4,6-Trichlorophenol	<10	10	ug/L	
2,4,5-Trichlorophenol	<50	50	ug/L	
2-Chloronaphthalene	<10	10	ug/L	
2-Nitroaniline	<50	50	ug/L	
Dimethylphthalate	<10	10	ug/L	
Acenaphthylene	<10	10	ug/L	
2,6-Dinitrotoluene	<10	10	ug/L	
3-Nitroaniline	<10	10	ug/L	
Acenaphthene	<10	10	ug/L	
2,4-Dinitrophenol	<20	20	ug/L	
Dibenzofuran	<10	10	ug/L	
2,4-Dinitrotoluene	<10	10	ug/L	
4-Nitrophenol	<10	10	ug/L	
Diethyl Phthalate	<10	10	ug/L	
Fluorene	<10	10	ug/L	
4-Chlorophenyl Phenyl Ether	<10	10	ug/L	
4-Nitroaniline	<20	20	ug/L	
4,6-Dinitro-2-methylphenol	<20	20	ug/L	
N-Nitrosodiphenylamine	<10	10	ug/L	
Azobenzene	<10	10	ug/L	
4-Bromophenyl Phenyl Ether	<10	10	ug/L	
Hexachlorobenzene	<10	10	ug/L	
Pentachlorophenol	<20	20	ug/L	
Phenanthrene	<10	10	ug/L	
Anthracene	<10	10	ug/L	

1HC1212

Spike Source

				Spike	Source		%REC		RPD	
Determination of Base/Neutral/Acid	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Extractable Compounds										
Batch 1HC1348 - EPA 625 BNA -	EPA 625									
Blank (1HC1348-BLK1)			Prepared: 03	3/25/24 12:1	7 Analyzed:	03/29/24 1	6:48			
Di-n-butyl Phthalate	<10	10	ug/L							
Fluoranthene	<10	10	ug/L							
Benzidine	<50	50	ug/L							
Pyrene	<10	10	ug/L							
Butyl Benzyl Phthalate	<10	10	ug/L							
Benzo(a)anthracene	<10	10	ug/L							
Chrysene	<10	10	ug/L							
Bis(2-Ethylhexyl) Phthalate	<10	10	ug/L							
Di-n-octyl Phthalate	<10	10	ug/L ug/L							
•	<10									
Indeno(1,2,3-cd)Pyrene	<20	10	ug/L							
3,3´-Dichlorobenzidine		20	ug/L							
Benzo(b)Fluoranthene	<10	10	ug/L							
Benzo(k)Fluoranthene	<10	10	ug/L							
Benzo(a)Pyrene	<10	10	ug/L							
Dibenzo(a,h)anthracene	<10	10	ug/L							
Benzo(g,h,i)perylene	<10	10	ug/L							
Surrogate: 2-Fluorophenol	20.2		ug/L	29.6		68.3	19-139			
Surrogate: Phenol-d6	21.2		ug/L ug/L	30.5		69.4	14-154			
Surrogate: Nitrobenzene-d5	20.9		ug/L	30.0		69.6	17-146			
Surrogate: 2-Fluorobiphenyl	19.7		ug/L	28.8		68.4	18-122			
Surrogate: 2,4,6-Tribromophenol	27.2		ug/L	29.7		91.3	21-151			
Surrogate: Terphenyl-dl4	27.0		ug/L	28.8		93.8	27-131			
LCS (1HC1348-BS1)			Prepared: 03	3/25/24 12:1	7 Analyzed:	03/29/24 1	7:13			
N-Nitrosodimethylamine	15.3	10	ug/L	25.0		61.2	39-127			
Phenol	18.7	10	ug/L	25.0		74.7	42-118			
Aniline	<10	10	ug/L	25.0		24.5	10-115			
Bis(2-Chloroethyl) Ether	12.4	10	ug/L	25.0		49.7	35-150			
2-Chlorophenol	19.3	10	ug/L	25.0		77.4	51-117			
1,3-Dichlorobenzene	12.3	10	ug/L	25.0		49.1	27-91.3			
1,4-Dichlorobenzene	12.6	10	ug/L	25.0		50.4	28-92.6			
Benzyl Alcohol	17.7	10	ug/L	25.0		70.8	22-147			
1,2-Dichlorobenzene	13.2	10	ug/L	25.0		52.7	32-94.8			
2-Methylphenol (o-Cresol)	19.5	10	ug/L	25.0		78.0	50-138			
Bis[2-Chloroisopropyl]ether	18.1	10	ug/L	25.0		72.4	40-125			
n-Nitroso-di-n-propylamine	16.8	10	ug/L	25.0		67.4				
(3 & 4)-Methylphenol	19.3	10					47-136			
	<10		ug/L	25.0		77.1	56-130			
Hexachloroethane		10	ug/L	25.0		32.4	13-110			
Nitrobenzene	19.4	10	ug/L	25.0		77.4	46-133			
Isophorone	19.3	10	ug/L	25.0		77.1	48-130			
2-Nitrophenol	21.3	10	ug/L	25.0		85.3	54-116			
2,4-Dimethylphenol	22.2	10	ug/L	25.0		88.8	47-121			
Bis (2-Chloroethoxy) Methane	<10	10	ug/L	25.0		34.6	25-110			

RPD

%REC

1HC1212

Determination of Base/Neutral/Acid Extractable Compounds	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HC1348 - EPA 625 BNA -	EPA 625									
LCS (1HC1348-BS1)			Prepared: 03	3/25/24 12:1	7 Analyzed:	03/29/24 1	7:13			
2,4-Dichlorophenol	22.6	10	ug/L	25.0		90.2	50-118			
1,2,4-Trichlorobenzene	11.1	10	ug/L	25.0		44.4	27-95.5			
Naphthalene	14.8	10	ug/L	25.0		59.1	42-107			
4-Chloroaniline	<10	10	ug/L	25.0			10-124			QS-03
Hexachlorobutadiene	<10	10	ug/L	25.0		19.7	10-110			
4-Chloro-3-methylphenol	22.9	10	ug/L	25.0		91.5	54-138			
2-Methylnaphthalene	13.4	10	ug/L	25.0		53.5	49-110			
2,4,6-Trichlorophenol	23.3	10	ug/L	25.0		93.4	46-127			
2,4,5-Trichlorophenol	<50	50	ug/L	25.0		93.0	62-119			
2-Chloronaphthalene	12.2	10	ug/L	25.0		48.9	38-118			
2-Nitroaniline	<50	50	ug/L	25.0		86.8	33-143			
Dimethylphthalate	22.0	10	ug/L	25.0		88.2	58-125			
Acenaphthylene	14.7	10	ug/L	25.0		58.9	41-116			
2,6-Dinitrotoluene	22.3	10	ug/L	25.0		89.3	58-126			
3-Nitroaniline	<10	10	ug/L	25.0			10-149			QS-03
Acenaphthene	16.3	10	ug/L	25.0		65.3	45-117			
2,4-Dinitrophenol	20.9	20	ug/L	25.0		83.6	21-138			
Dibenzofuran	17.7	10	ug/L	25.0		70.8	51-126			
2,4-Dinitrotoluene	20.3	10	ug/L	25.0		81.2	52-134			
4-Nitrophenol	22.2	10	ug/L	25.0		88.9	41-149			
Diethyl Phthalate	22.2	10	ug/L	25.0		88.7	53-132			
Fluorene	18.8	10	ug/L	25.0		75.2	47-126			
4-Chlorophenyl Phenyl Ether	17.9	10	ug/L	25.0		71.4	47-124			
4-Nitroaniline	<20	20	ug/L	25.0		34.6	10-126			
4,6-Dinitro-2-methylphenol	20.3	20	ug/L	25.0		81.2	50-139			
N-Nitrosodiphenylamine	19.3	10	ug/L	25.0		77.2	29-129			
Azobenzene	17.2	10	ug/L	25.0		69.0	53-115			
4-Bromophenyl Phenyl Ether	19.9	10	ug/L	25.0		79.4	48-125			
Hexachlorobenzene	20.1	10	ug/L	25.0		80.3	29-137			
Pentachlorophenol	20.0	20	ug/L	25.0		79.8	15-154			
Phenanthrene	20.2	10	ug/L	25.0		80.7	45-136			
Anthracene	20.2	10	ug/L	25.0		80.8	43-135			
Di-n-butyl Phthalate	21.8	10	ug/L	25.0		87.0	42-153			
Fluoranthene	21.5	10	ug/L	25.0		86.0	42-143			
Pyrene	20.8	10	ug/L	25.0		83.1	40-146			
Butyl Benzyl Phthalate	20.6	10	ug/L	25.0		82.5	40-151			
Benzo(a)anthracene	20.5	10	ug/L	25.0		82.1	48-136			
Chrysene	21.1	10	ug/L	25.0		84.3	50-136			
Bis(2-Ethylhexyl) Phthalate	23.9	10	ug/L	25.0		95.4	34-180			
Di-n-octyl Phthalate	22.4	10	ug/L	25.0		89.8	40-165			
Indeno(1,2,3-cd)Pyrene	18.6	10	ug/L	25.0		74.2	39-152			
Benzo(b)Fluoranthene	20.6	10	ug/L	25.0		82.4	52-140			

1HC1212

Spike Source

%REC

RPD

				Spike	Source		%REC		RPD	
Determination of Base/Neutral/Acid Extractable Compounds	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HC1348 - EPA 625 BNA -	EDA 625									
	LFA 023									
LCS (1HC1348-BS1)			Prepared: 03	3/25/24 12:1	7 Analyzed:	03/29/24 1	7:13			
Benzo(k)Fluoranthene	21.8	10	ug/L	25.0		87.2	47-147			
Benzo(a)Pyrene	20.6	10	ug/L	25.0		82.5	38-142			
Dibenzo(a,h)anthracene	17.5	10	ug/L	25.0		69.8	37-153			
Benzo(g,h,i)perylene	17.6	10	ug/L	25.0		70.6	39-157			
Surrogate: 2-Fluorophenol	21.5		ug/L	29.6		72.7	19-139			
Surrogate: Phenol-d6	22.1		ug/L	30.5		72.5	14-154			
Surrogate: Nitrobenzene-d5	24.3		ug/L	30.0		80.9	17-146			
Surrogate: 2-Fluorobiphenyl	23.0		ug/L	28.8		79.8	18-122			
Surrogate: 2,4,6-Tribromophenol	29.5		ug/L	29.7		99.2	21-151			
Surrogate: Terphenyl-dl4	27.3		ug/L	28.8		94.6	27-131			
LCS Dup (1HC1348-BSD1)			Prepared: 03	3/25/24 12:1	7 Analyzed:	03/29/24 1	7:37			
N-Nitrosodimethylamine	15.6	10	ug/L	25.0		62.3	39-127	1.75	30	
Phenol	18.0	10	ug/L	25.0		72.1	42-118	3.54	30	
Aniline	12.7	10	ug/L	25.0		50.7	10-115	69.7	30	QR-02
Bis(2-Chloroethyl) Ether	12.6	10	ug/L	25.0		50.6	35-150	1.76	30	
2-Chlorophenol	19.6	10	ug/L	25.0		78.5	51-117	1.49	27	
1,3-Dichlorobenzene	13.3	10	ug/L	25.0		53.3	27-91.3	8.20	30	
1,4-Dichlorobenzene	13.6	10	ug/L	25.0		54.5	28-92.6	7.78	30	
Benzyl Alcohol	17.7	10	ug/L	25.0		71.0	22-147	0.226	30	
1,2-Dichlorobenzene	14.3	10	ug/L	25.0		57.0	32-94.8	7.87	30	
2-Methylphenol (o-Cresol)	19.9	10	ug/L	25.0		79.4	50-138	1.83	24	
Bis[2-Chloroisopropyl]ether	19.0	10	ug/L	25.0		76.0	40-125	4.80	26	
n-Nitroso-di-n-propylamine	17.2	10	ug/L	25.0		68.9	47-136	2.17	29	
(3 & 4)-Methylphenol	20.1	10	ug/L	25.0		80.2	56-130	4.02	26	
Hexachloroethane	<10	10	•	25.0		32.4				
	18.5	10	ug/L				13-110	0.123	30	
Nitrobenzene	18.3		ug/L	25.0		74.2	46-133	4.33	19	
Isophorone	21.3	10	ug/L	25.0		73.2	48-130	5.16	23	
2-Nitrophenol		10	ug/L	25.0		85.0	54-116	0.329	25	
2,4-Dimethylphenol	20.7	10	ug/L	25.0		83.0	47-121	6.85	29	00.00
Bis (2-Chloroethoxy) Methane	17.6	10	ug/L	25.0		70.4	25-110	68.2	30	QR-02
2,4-Dichlorophenol	21.4	10	ug/L	25.0		85.5	50-118	5.33	21	
1,2,4-Trichlorobenzene	10.3	10	ug/L	25.0		41.0	27-95.5	7.87	30	
Naphthalene	14.7	10	ug/L	25.0		58.9	42-107	0.271	26	
4-Chloroaniline	12.0	10	ug/L	25.0		47.8	10-124	200	30	QR-04
Hexachlorobutadiene	<10	10	ug/L	25.0		17.8	10-110	10.2	30	
4-Chloro-3-methylphenol	22.0	10	ug/L	25.0		87.8	54-138	4.15	12	
2-Methylnaphthalene	12.6	10	ug/L	25.0		50.6	49-110	5.61	25	
2,4,6-Trichlorophenol	25.6	10	ug/L	25.0		102	46-127	9.04	21	
2,4,5-Trichlorophenol	<50	50	ug/L	25.0		102	62-119	9.62	15	
2-Chloronaphthalene	13.3	10	ug/L	25.0		53.0	38-118	8.08	24	
2-Nitroaniline	<50	50	ug/L	25.0		96.7	33-143	10.7	30	
Dimethylphthalate	24.4	10	ug/L	25.0		97.7	58-125	10.2	20	

Determination of	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Base/Neutral/Acid										
Extractable Compounds										
Batch 1HC1348 - EPA 625 BNA	· EPA 625									
LCS Dup (1HC1348-BSD1)			Prepared: 03	3/25/24 12:1	7 Analyzed:	03/29/24 1	7:37			
Acenaphthylene	18.2	10	ug/L	25.0		72.9	41-116	21.3	30	
2,6-Dinitrotoluene	24.1	10	ug/L	25.0		96.5	58-126	7.75	20	
3-Nitroaniline	21.7	10	ug/L	25.0		87.0	10-149	200	30	QR-04
Acenaphthene	18.1	10	ug/L	25.0		72.6	45-117	10.5	27	
2,4-Dinitrophenol	23.2	20	ug/L	25.0		92.7	21-138	10.3	22	
Dibenzofuran	19.2	10	ug/L	25.0		76.8	51-126	8.13	15	
2,4-Dinitrotoluene	23.0	10	ug/L	25.0		92.1	52-134	12.6	22	
4-Nitrophenol	24.0	10	ug/L	25.0		96.2	41-149	7.91	28	
Diethyl Phthalate	25.1	10	ug/L	25.0		100	53-132	12.2	22	
Fluorene	20.5	10	ug/L	25.0		81.8	47-126	8.40	27	
4-Chlorophenyl Phenyl Ether	19.9	10	ug/L	25.0		79.6	47-124	10.8	20	
4-Nitroaniline	21.2	20	ug/L	25.0		84.6	10-126	84.0	25	QR-02
4,6-Dinitro-2-methylphenol	22.0	20	ug/L	25.0		87.9	50-139	7.95	25	
N-Nitrosodiphenylamine	23.5	10	ug/L	25.0		94.2	29-129	19.8	30	
Azobenzene	22.3	10	ug/L	25.0		89.2	53-115	25.5	25	QR-02
4-Bromophenyl Phenyl Ether	23.2	10	ug/L	25.0		92.9	48-125	15.6	18	
Hexachlorobenzene	23.5	10	ug/L	25.0		94.2	29-137	15.9	30	
Pentachlorophenol	22.2	20	ug/L	25.0		88.6	15-154	10.4	29	
Phenanthrene	23.4	10	ug/L	25.0		93.5	45-136	14.6	27	
Anthracene	22.9	10	ug/L	25.0		91.5	43-135	12.4	28	
Di-n-butyl Phthalate	24.8	10	ug/L	25.0		99.4	42-153	13.2	29	
Fluoranthene	24.3	10	ug/L	25.0		97.2	42-143	12.2	30	
Pyrene	24.8	10	ug/L	25.0		99.2	40-146	17.7	25	
Butyl Benzyl Phthalate	24.4	10	ug/L	25.0		97.8	40-151	16.9	29	
Benzo(a)anthracene	23.8	10	ug/L	25.0		95.1	48-136	14.7	30	
Chrysene	24.1	10	ug/L	25.0		96.4	50-136	13.4	30	
Bis(2-Ethylhexyl) Phthalate	29.4	10	ug/L	25.0		118	34-180	20.8	30	
Di-n-octyl Phthalate	26.0	10	ug/L	25.0		104	40-165	14.8	30	
Indeno(1,2,3-cd)Pyrene	21.4	10	ug/L	25.0		85.6	39-152	14.3	30	
Benzo(b)Fluoranthene	23.5	10	ug/L	25.0		93.9	52-140	13.1	30	
Benzo(k)Fluoranthene	26.0	10	ug/L	25.0		104	47-147	17.6	30	
Benzo(a)Pyrene	25.0	10	ug/L	25.0		100	38-142	19.2	30	
Dibenzo(a,h)anthracene	21.4	10	ug/L	25.0		85.6	37-153	20.2	30	
Benzo(g,h,i)perylene	20.4	10	ug/L	25.0		81.4	39-157	14.3	30	
Currente 2 Fluore hand	20.0			20.0		60.0	10 100			
Surrogate: 2-Fluorophenol Surrogate: Phenol-d6	20.2 21.5		ug/L	29.6 30.5		68.2 70.6	19-139 14-154			
Surrogate: Nitrobenzene-d5	21.5 21.9		ug/L ug/L	30.5 30.0		70.6 72.8	14-154 17-146			
Surrogate: 2-Fluorobiphenyl	23.7		ug/L	28.8		82.2	18-122			
Surrogate: 2,4,6-Tribromophenol	30.6		ug/L	29.7		103	21-151			

ug/L

28.8

105

27-131

30.2

Surrogate: Terphenyl-dl4

Microbac Laboratories, Inc., Newton

CERTIFICATE OF ANALYSIS

1HC1212

Determination of Result RL Units Lev Organochlorine Insecticides & PCBs	vel	Result	%REC	Limits	RPD	Limit	Notes
-							
& PCBs							
Batch 1HC1238 - 3510C NP/OC Sep FnI - EPA 608							
Blank (1HC1238-BLK1) Prepared: 03/21/24	4 17:11	1 Analyzed:	04/01/24 1	2:09			
Alpha-BHC <0.05 0.05 ug/L							
Gamma-BHC [Lindane] <0.05 0.05 ug/L							
Beta-BHC <0.05 0.05 ug/L							
Heptachlor <0.05 0.05 ug/L							
Delta-BHC <0.05 0.05 ug/L							
Aldrin <0.05 0.05 ug/L							
Heptachlor Epoxide <0.05 0.05 ug/L							
Endosulfan I <0.05 0.05 ug/L							
4,4`-DDE <0.05 0.05 ug/L							
Dieldrin <0.05 0.05 ug/L							
Endrin <0.05 0.05 ug/L							
4,4`-DDD <0.05 0.05 ug/L							
Endosulfan II <0.05 0.05 ug/L							
4,4`-DDT <0.05 0.05 ug/L							
Endrin Aldehyde <0.05 0.05 ug/L							
Endosulfan Sulfate <0.05 0.05 ug/L							

			3. —				
Arochlor 1221	<0.20	0.20	ug/L				
Arochlor 1232	<0.20	0.20	ug/L				
Arochlor 1242	<0.20	0.20	ug/L				
Arochlor 1248	<0.20	0.20	ug/L				
Arochlor 1254	<0.20	0.20	ug/L				
Arochlor 1260	<0.20	0.20	ug/L				
Surrogate: Decachlorobiphenyl	0.370		ug/L	0.600	61.7	19-120	
Surrogate: Tetrachloro-m-xylene	0.444		ug/L	0.600	74.0	30-119	
LCS (1HC1238-BS1)			Prepared: (03/21/24 17:11 Ana	llyzed: 04/01/24 12	1:23	
Alpha-BHC	0.232	0.05	ug/L	0.250	92.7	32-136	
Gamma-BHC [Lindane]	0.229	0.05	ug/L	0.250	91.6	37-127	
Beta-BHC	0.224	0.05	ug/L	0.250	89.4	36-131	
Heptachlor	0.244	0.05	ug/L	0.250	97.6	36-128	
Delta-BHC	0.265	0.05	ug/L	0.250	106	29-147	
Aldrin	0.222	0.05	ug/L	0.250	88.7	41-120	
Heptachlor Epoxide	0.229	0.05	ug/L	0.250	91.6	50-132	
Endosulfan I	0.245	0.05	ug/L	0.250	98.0	50-133	
4,4`-DDE	0.233	0.05	ug/L	0.250	93.1	46-140	
Dieldrin	0.224	0.05	ug/L	0.250	89.5	41-138	
Endrin	0.326	0.05	ug/L	0.250	131	32-152	
4,4`-DDD	0.224	0.05	ug/L	0.250	89.5	44-150	

0.05

0.10

0.20

0.20

ug/L

ug/L

ug/L

ug/L

< 0.05

< 0.10

<0.20

< 0.20

Methoxychlor

Chlordane

Toxaphene

Arochlor 1016

Determination of	- "			Spike	Source	0/ 550	%REC		RPD	Notes
Determination of Organochlorine Insecticides & PCBs	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	110101
Batch 1HC1238 - 3510C NP/OC Sep	FnI - EPA 608									
.CS (1HC1238-BS1)			Prepared: 03	3/21/24 17:1	1 Analyzed:	04/01/24 1	2:23			
Endosulfan II	0.236	0.05	ug/L	0.250		94.2	45-141			
4,4`-DDT	0.260	0.05	ug/L	0.250		104	46-145			
Endrin Aldehyde	0.208	0.05	ug/L	0.250		83.2	33-145			
Endosulfan Sulfate	0.240	0.05	ug/L	0.250		96.1	52-133			
Methoxychlor	0.296	0.05	ug/L	0.250		118	32-161			
Surrogate: Decachlorobiphenyl	0.438		ug/L	0.600		73.0	19-120			
Surrogate: Tetrachloro-m-xylene	0.494		ug/L	0.600		82.3	30-119			
.CS Dup (1HC1238-BSD1)			Prepared: 03	3/21/24 17:1	1 Analyzed:	04/01/24 1	2:38			
Alpha-BHC	0.253	0.05	ug/L	0.250		101	32-136	8.78	30	
Gamma-BHC [Lindane]	0.256	0.05	ug/L	0.250		103	37-127	11.2	30	
Beta-BHC	0.231	0.05	ug/L	0.250		92.5	36-131	3.36	30	
Heptachlor	0.271	0.05	ug/L	0.250		108	36-128	10.4	30	
Delta-BHC	0.288	0.05	ug/L	0.250		115	29-147	8.33	30	
Aldrin	0.246	0.05	ug/L	0.250		98.2	41-120	10.2	30	
Heptachlor Epoxide	0.253	0.05	ug/L	0.250		101	50-132	10.1	30	
Endosulfan I	0.273	0.05	ug/L	0.250		109	50-133	10.7	30	
4,4`-DDE	0.262	0.05	ug/L	0.250		105	46-140	11.7	30	
Dieldrin	0.246	0.05	ug/L	0.250		98.4	41-138	9.55	30	
Endrin	0.362	0.05	ug/L	0.250		145	32-152	10.3	30	
4,4`-DDD	0.247	0.05	ug/L	0.250		98.9	44-150	10.1	30	
Endosulfan II	0.256	0.05	ug/L	0.250		102	45-141	8.38	30	
4,4`-DDT	0.293	0.05	ug/L	0.250		117	46-145	11.9	30	
Endrin Aldehyde	0.220	0.05	ug/L	0.250		88.1	33-145	5.74	30	
Endosulfan Sulfate	0.265	0.05	ug/L	0.250		106	52-133	9.86	30	
Methoxychlor	0.329	0.05	ug/L	0.250		131	32-161	10.3	30	
Surrogate: Decachlorobiphenyl	0.447		ug/L	0.600		74.5	19-120			
Surrogate: Tetrachloro-m-xylene	0.503		ug/L	0.600		83.9	30-119			
				Spike	Source		%REC		RPD	
Determination of	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Conventional Chemistry Parameters										
Batch 1HC1094 - General Prep Micı	o - SM 5210 B									
Blank (1HC1094-BLK1)			Prepared &	Analyzed: 03	3/20/24 07:3	5				
BOD (5 day)	<2	2	mg/L							
Duplicate (1HC1094-DUP1)	Source: 11	HC1186-01	Prepared &	Analyzed: 03	3/20/24 09:4	9				
BOD (5 day)	424	60	mg/L		363	<u> </u>	·	15.5	29	
Reference (1HC1094-SRM1)			Prepared &	Analyzed: 03	3/20/24 07:4	0				
BOD (5 day)	182	100	mg/L	198		91.9	84.6-115.4			

Determination of Conventional Chemistry Parameters	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1HC1167 - Wet Chem Prepara	ation - USGS I-376	5-85								
Blank (1HC1167-BLK1)			Prepared: 03	3/21/24 08:3	0 Analyzed:	03/22/24	10:27			
Total Suspended Solids (TSS)	<1	1	mg/L							
LCS (1HC1167-BS1)			Prepared: 03	3/21/24 08:3	0 Analyzed:	03/22/24	10:27			
Total Suspended Solids (TSS)	12.0	1	mg/L	15.0		80.0	74-114			
Duplicate (1HC1167-DUP1)	Source	: 1HC1210-01	Prepared: 03	3/21/24 08:3	0 Analyzed:	03/22/24	10:27			
Total Suspended Solids (TSS)	351	1	mg/L		372			5.96	30	
Batch 1HC1186 - Wet Chem Prepara	ation - EPA 351.2									
Blank (1HC1186-BLK1)			Prepared: 03	3/21/24 10:0	7 Analyzed:	03/25/24	12:50			
Nitrogen, Kjeldahl, total	<2.00	2.00	mg/L							
LCS (1HC1186-BS1)			Prepared: 03	/21/24 10:0	7 Analyzed:	03/25/24	12:50			
Nitrogen, Kjeldahl, total	19.7	2.00	mg/L	20.0		98.6	90-110			
Matrix Spike (1HC1186-MS1)	Source	: 1HC1164-02	Prepared: 03	/21/24 10:0	7 Analyzed:	03/25/24	12:52			
Nitrogen, Kjeldahl, total	54.8	5.00	mg/L	50.0	4.38	101	90-110			
Matrix Spike Dup (1HC1186-MSD1)	Source	: 1HC1164-02	Prepared: 03	3/21/24 10:0	7 Analyzed:	03/25/24	12:53			
Nitrogen, Kjeldahl, total	51.6	5.00	mg/L	50.0	4.38	94.5	90-110	5.90	10	
Batch 1HC1249 - Wet Chem Prepara	ation - USGS I-175	0-85								
Batch 1HC1249 - Wet Chem Prepara	ation - USGS I-175	0-85	Prepared: 03	3/22/24 07:5	5 Analyzed:	03/22/24	10:30			
<u> </u>	etion - USGS I-175 <5	0-85	Prepared: 03	3/22/24 07:5	5 Analyzed:	03/22/24	10:30			
Blank (1HC1249-BLK1)			<u> </u>							
Blank (1HC1249-BLK1) Total Dissolved Solids (TDS)			mg/L							
Blank (1HC1249-BLK1) Total Dissolved Solids (TDS) LCS (1HC1249-BS1)	<5 99	5	mg/L Prepared: 03	3/22/24 07:5 100	5 Analyzed:	03/22/24 ² 98.8	10:30 71-114			
Blank (1HC1249-BLK1) Total Dissolved Solids (TDS) LCS (1HC1249-BS1) Total Dissolved Solids (TDS)	<5 99	5	mg/L Prepared: 03 mg/L	3/22/24 07:5 100	5 Analyzed:	03/22/24 ² 98.8	10:30 71-114	5.68	30	
Blank (1HC1249-BLK1) Total Dissolved Solids (TDS) LCS (1HC1249-BS1) Total Dissolved Solids (TDS) Duplicate (1HC1249-DUP1)	<5 99 Source 2560	5 5 : 1HC1428-01	mg/L Prepared: 03 mg/L Prepared: 03	3/22/24 07:5 100	5 Analyzed: 5 Analyzed:	03/22/24 ² 98.8	10:30 71-114	5.68	30	
Blank (1HC1249-BLK1) Total Dissolved Solids (TDS) LCS (1HC1249-BS1) Total Dissolved Solids (TDS) Duplicate (1HC1249-DUP1) Total Dissolved Solids (TDS) Batch 1HC1269 - Wet Chem Prepara	<5 99 Source 2560	5 5 : 1HC1428-01	mg/L Prepared: 03 mg/L Prepared: 03	100 1005/22/24 07:5	5 Analyzed: 5 Analyzed: 2710	03/22/24 ² 98.8 03/22/24 ²	71-114 10:30	5.68	30	
Blank (1HC1249-BLK1) Total Dissolved Solids (TDS) LCS (1HC1249-BS1) Total Dissolved Solids (TDS) Duplicate (1HC1249-DUP1) Total Dissolved Solids (TDS)	<5 99 Source 2560	5 5 : 1HC1428-01	mg/L Prepared: 03 mg/L Prepared: 03 mg/L	100 1005/22/24 07:5	5 Analyzed: 5 Analyzed: 2710	03/22/24 ² 98.8 03/22/24 ²	71-114 10:30	5.68	30	
Blank (1HC1249-BLK1) Total Dissolved Solids (TDS) LCS (1HC1249-BS1) Total Dissolved Solids (TDS) Duplicate (1HC1249-DUP1) Total Dissolved Solids (TDS) Batch 1HC1269 - Wet Chem Prepara Blank (1HC1269-BLK1) Oil and Grease	<5 99 Source 2560 ation - EPA 1664A	5 : 1HC1428-01 5	mg/L Prepared: 03 mg/L Prepared: 03 mg/L Prepared: 03	5/22/24 07:5 100 5/22/24 07:5 5/22/24 10:3	5 Analyzed: 5 Analyzed: 2710 2 Analyzed:	03/22/24 ² 98.8 03/22/24 ² 03/26/24 ²	71-114 10:30 11:00	5.68	30	
Blank (1HC1249-BLK1) Total Dissolved Solids (TDS) LCS (1HC1249-BS1) Total Dissolved Solids (TDS) Duplicate (1HC1249-DUP1) Total Dissolved Solids (TDS) Batch 1HC1269 - Wet Chem Prepara	<5 99 Source 2560 ation - EPA 1664A	5 : 1HC1428-01 5	mg/L Prepared: 03 mg/L Prepared: 03 mg/L Prepared: 03 mg/L	5/22/24 07:5 100 5/22/24 07:5 5/22/24 10:3	5 Analyzed: 5 Analyzed: 2710 2 Analyzed:	03/22/24 ² 98.8 03/22/24 ² 03/26/24 ²	71-114 10:30 11:00	5.68	30	
Blank (1HC1249-BLK1) Total Dissolved Solids (TDS) LCS (1HC1249-BS1) Total Dissolved Solids (TDS) Duplicate (1HC1249-DUP1) Total Dissolved Solids (TDS) Batch 1HC1269 - Wet Chem Prepara Blank (1HC1269-BLK1) Oil and Grease LCS (1HC1269-BS1) Oil and Grease	<5 99 Source 2560 ation - EPA 1664A <4 33.7	5 :: 1HC1428-01 5	mg/L Prepared: 03 mg/L Prepared: 03 mg/L Prepared: 03 mg/L Prepared: 03	6/22/24 07:5 100 6/22/24 07:5 6/22/24 10:3 6/22/24 10:3 40.0	5 Analyzed: 5 Analyzed: 2710 2 Analyzed: 2 Analyzed:	03/22/24 2 98.8 03/22/24 2 03/26/24 2 03/26/24 2 84.2	71-114 10:30 11:00 11:00 78-114	5.68	30	
Blank (1HC1249-BLK1) Total Dissolved Solids (TDS) LCS (1HC1249-BS1) Total Dissolved Solids (TDS) Duplicate (1HC1249-DUP1) Total Dissolved Solids (TDS) Batch 1HC1269 - Wet Chem Prepara Blank (1HC1269-BLK1) Oil and Grease LCS (1HC1269-BS1)	<5 99 Source 2560 ation - EPA 1664A <4 33.7	5 : 1HC1428-01 5	mg/L Prepared: 03 mg/L Prepared: 03 mg/L Prepared: 03 mg/L Prepared: 03 mg/L	6/22/24 07:5 100 6/22/24 07:5 6/22/24 10:3 6/22/24 10:3 40.0	5 Analyzed: 5 Analyzed: 2710 2 Analyzed: 2 Analyzed:	03/22/24 2 98.8 03/22/24 2 03/26/24 2 03/26/24 2 84.2	71-114 10:30 11:00 11:00 78-114	5.68	30	
Blank (1HC1249-BLK1) Total Dissolved Solids (TDS) LCS (1HC1249-BS1) Total Dissolved Solids (TDS) Duplicate (1HC1249-DUP1) Total Dissolved Solids (TDS) Batch 1HC1269 - Wet Chem Prepara Blank (1HC1269-BLK1) Oil and Grease LCS (1HC1269-BS1) Oil and Grease Duplicate (1HC1269-DUP1)	<5 99 Source 2560 ation - EPA 1664A <4 33.7 Source 14.4	5 : 1HC1428-01 5 4 4 : 1HC1464-01	mg/L Prepared: 03 mg/L Prepared: 03 mg/L Prepared: 03 mg/L Prepared: 03 mg/L Prepared: 03	6/22/24 07:5 100 6/22/24 07:5 6/22/24 10:3 6/22/24 10:3 40.0	5 Analyzed: 5 Analyzed: 2710 2 Analyzed: 2 Analyzed: 2 Analyzed:	03/22/24 2 98.8 03/22/24 2 03/26/24 2 03/26/24 2 84.2	71-114 10:30 11:00 11:00 78-114			
Blank (1HC1249-BLK1) Total Dissolved Solids (TDS) LCS (1HC1249-BS1) Total Dissolved Solids (TDS) Duplicate (1HC1249-DUP1) Total Dissolved Solids (TDS) Batch 1HC1269 - Wet Chem Prepara Blank (1HC1269-BLK1) Oil and Grease LCS (1HC1269-BS1) Oil and Grease Duplicate (1HC1269-DUP1) Oil and Grease Batch 1HC1602 - General Prep HPL	<5 99 Source 2560 ation - EPA 1664A <4 33.7 Source 14.4	5 : 1HC1428-01 5 4 4 : 1HC1464-01	mg/L Prepared: 03 mg/L Prepared: 03 mg/L Prepared: 03 mg/L Prepared: 03 mg/L Prepared: 03	6/22/24 07:5 100 6/22/24 07:5 6/22/24 10:3 40.0 6/22/24 10:3	5 Analyzed: 5 Analyzed: 2710 2 Analyzed: 2 Analyzed: 2 Analyzed: 15.0	03/22/24 2 98.8 03/22/24 2 03/26/24 2 03/26/24 2 84.2 03/26/24 2	10:30 71-114 10:30 11:00 11:00 78-114			
Blank (1HC1249-BLK1) Total Dissolved Solids (TDS) LCS (1HC1249-BS1) Total Dissolved Solids (TDS) Duplicate (1HC1249-DUP1) Total Dissolved Solids (TDS) Batch 1HC1269 - Wet Chem Prepara Blank (1HC1269-BLK1) Oil and Grease LCS (1HC1269-BS1) Oil and Grease Duplicate (1HC1269-DUP1) Oil and Grease	<5 99 Source 2560 ation - EPA 1664A <4 33.7 Source 14.4	5 : 1HC1428-01 5 4 4 : 1HC1464-01	mg/L Prepared: 03 mg/L	6/22/24 07:5 100 6/22/24 07:5 6/22/24 10:3 40.0 6/22/24 10:3	5 Analyzed: 5 Analyzed: 2710 2 Analyzed: 2 Analyzed: 2 Analyzed: 15.0	03/22/24 2 98.8 03/22/24 2 03/26/24 2 03/26/24 2 84.2 03/26/24 2	10:30 71-114 10:30 11:00 11:00 78-114			
Blank (1HC1249-BLK1) Total Dissolved Solids (TDS) LCS (1HC1249-BS1) Total Dissolved Solids (TDS) Duplicate (1HC1249-DUP1) Total Dissolved Solids (TDS) Batch 1HC1269 - Wet Chem Prepara Blank (1HC1269-BLK1) Oil and Grease LCS (1HC1269-BS1) Oil and Grease Duplicate (1HC1269-DUP1) Oil and Grease Batch 1HC1602 - General Prep HPL Blank (1HC1602-BLK1)	Source 2560 ation - EPA 1664A 4 33.7 Source 14.4 C/IC - TIMBERLING	5 : 1HC1428-01 5 4 :: 1HC1464-01 4	mg/L Prepared: 03	6/22/24 07:5 100 6/22/24 07:5 6/22/24 10:3 40.0 6/22/24 10:3	5 Analyzed: 5 Analyzed: 2710 2 Analyzed: 2 Analyzed: 15.0 5 Analyzed:	03/22/24 2 98.8 03/22/24 2 03/26/24 2 03/26/24 2 03/26/24 2	10:30 71-114 10:30 11:00 11:00 78-114 11:00			

Determination of Conventional Chemistry	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Parameters										
Batch 1HC1602 - General Prep HPL	C/IC - TIMBERLINE									
Matrix Spike (1HC1602-MS1)	Source:	1HC1186-02	Prepared: 03	3/28/24 14:4	5 Analyzed:	03/29/24 1	3:18			
Nitrogen, Ammonia	39.3	0.10	mg/L	5.00	38.7	13.5	84-115			QM-15
Matrix Spike (1HC1602-MS2)	Source:	1HC1201-01	Prepared: 03	3/28/24 14:4	5 Analyzed:	03/29/24 1	3:59			
Nitrogen, Ammonia	5.06	0.10	mg/L	5.00	ND	101	84-115			
Matrix Spike Dup (1HC1602-MSD1)	Source:	1HC1186-02	Prepared: 03	3/28/24 14:4	5 Analyzed:	03/29/24 1	3:19			
Nitrogen, Ammonia	39.1	0.10	mg/L	5.00	38.7	9.35	84-115	0.524	20	QM-15
Matrix Spike Dup (1HC1602-MSD2)	Source:	1HC1201-01	Prepared: 03	3/28/24 14:4	5 Analyzed:	03/29/24 1	4:01			
Nitrogen, Ammonia	5.04	0.10	mg/L	5.00	ND	101	84-115	0.288	20	
Batch 1HC1664 - TOC/DOC - 5310B										
Blank (1HC1664-BLK1)			Prepared: 03	3/27/24 00:0	0 Analyzed:	03/27/24 1	0:28			
Total Organic Carbon	<0.50	0.50	mg/L							
LCS (1HC1664-BS1)			Prepared: 03	3/27/24 00:0	0 Analyzed:	03/27/24 0	9:58			
Total Organic Carbon	5.42	0.50	mg/L	5.00		108	86-120			
LCS Dup (1HC1664-BSD1)			Prepared: 03	3/27/24 00:0	0 Analyzed:	03/27/24 1	0:14			
Total Organic Carbon	5.36	0.50	mg/L	5.00		107	86-120	1.00	10	
Duplicate (1HC1664-DUP1)	Source:	1HC1212-01	Prepared: 03	3/27/24 00:0	0 Analyzed:	03/29/24 1	5:17			
Total Organic Carbon	34.20	0.50	mg/L		35.49			3.70	20	
				Spike	Source		%REC		RPD	Notes
Determination of Total Metals	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	110100
Batch 1HC1067 - EPA 200.2 Total IC	P-OES (200.7) - 200).7								
Blank (1HC1067-BLK1)			Prepared: 03	3/20/24 08:0	0 Analyzed:	03/20/24 1	8:04			
Iron, total	<0.100	0.100	mg/L							
LCS (1HC1067-BS1)			Prepared: 03	3/20/24 08:0	0 Analyzed:	03/20/24 1	8:09			
Iron, total	2.37	0.100	mg/L	2.20		108	85-115			
Matrix Spike (1HC1067-MS1)	Source:	1HC1107-01	Prepared: 03	3/20/24 08:0	0 Analyzed:	03/20/24 1	8:21			
Iron, total	2.61	0.100	mg/L	2.20	0.269	106	70-130			
Matrix Spike Dup (1HC1067-MSD1)	Source:	1HC1107-01	Prepared: 03	3/20/24 08:0	0 Analyzed:	03/20/24 1	8:27			
Iron, total	2.41	0.100	mg/L	2.20	0.269	97.3	70-130	7.88	20	
Post Spike (1HC1067-PS1)	Source:	1HC1107-01	Prepared: 03	3/20/24 08:0	0 Analyzed:	03/20/24 1	8:33			
Iron, total	9.73		mg/L	8.80	0.269	108	85-115			
Batch 1HC1285 - EPA 7470A Hg Wat	ter - 245.1									
							4.00			
Blank (1HC1285-BLK1)			Prepared: 03	3/22/24 15:0	3 Analyzed:	03/26/24 1	4:00			
Blank (1HC1285-BLK1) Mercury, total	<0.00050	0.00050	Prepared: 03	3/22/24 15:0	3 Analyzed:	03/26/24 1	4:00			
,	<0.00050	0.00050	•							

				Spike	Source		%REC		RPD	Natas
Determination of Total Metals	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HC1285 - EPA 7470A Hg Wa	ter - 245.1									
Matrix Spike (1HC1285-MS1)	Source:	1HC1142-01	Prepared: 0	3/22/24 15:0	3 Analyzed:	03/26/24 1	14:07			
Mercury, total	0.00236	0.00050	mg/L	0.00250	ND	94.5	70-130			
Matrix Spike Dup (1HC1285-MSD1)	Source:	1HC1142-01	Prepared: 0	3/22/24 15:0	3 Analyzed:	03/26/24 1	14:09			
Mercury, total	0.00242	0.00050	mg/L	0.00250	ND	96.8	70-130	2.47	10	
Batch 1HC1317 - EPA 200.2 Total IC	P-MS - EPA 200.8									
Blank (1HC1317-BLK1)			Prepared: 0	3/25/24 08:4	l0 Analyzed:	03/25/24 1	19:22			
Arsenic, total	<0.0020	0.0020	mg/L							
Barium, total	<0.0020	0.0020	mg/L							
Cadmium, total	<0.0002	0.0002	mg/L							
Chromium, total	<0.0008	0.0008	mg/L							
Copper, total	<0.0020	0.0020	mg/L							
Lead, total	<0.0008	0.0008	mg/L							
Nickel, total	<0.0040	0.0040	mg/L							
Selenium, total	<0.0040	0.0040	mg/L							
Silver, total	<0.0020	0.0020	mg/L							
Zinc, total	<0.0200	0.0200	mg/L							
LCS (1HC1317-BS1)			Prepared: 0	3/25/24 08:4	0 Analyzed:	03/25/24 1	19:28			
Arsenic, total	0.0935	0.0020	mg/L	0.100		93.5	85-115			
Barium, total	0.103	0.0020	mg/L	0.100		103	85-115			
Cadmium, total	0.0948	0.0002	mg/L	0.100		94.8	85-115			
Chromium, total	0.0926	0.0008	mg/L	0.100		92.6	85-115			
Copper, total	0.0958	0.0020	mg/L	0.100		95.8	85-115			
Lead, total	0.0960	0.0008	mg/L	0.100		96.0	85-115			
Nickel, total	0.0920	0.0040	mg/L	0.100		92.0	85-115			
Selenium, total	0.0910	0.0040	mg/L	0.100		91.0	85-115			
Silver, total	0.0971	0.0020	mg/L	0.100		97.1	85-115			
Zinc, total	0.0916	0.0200	mg/L	0.100		91.6	85-115			
Matrix Spike (1HC1317-MS1)	Source:	1HC1275-02	Prepared: 0	3/25/24 08:4	10 Analyzed:	03/25/24 1	19:59			
Arsenic, total	0.0980	0.0020	mg/L	0.100	0.0054	92.6	70-130			
Barium, total	0.123	0.0020	mg/L	0.100	0.0231	100	70-130			
Cadmium, total	0.0830	0.0002	mg/L	0.100	ND	83.0	70-130			
Chromium, total	0.113	0.0008	mg/L	0.100	0.0036	110	70-130			
Copper, total	0.469	0.0020	mg/L	0.100	0.384	85.0	70-130			
Lead, total	0.0844	0.0008	mg/L	0.100	ND	84.4	70-130			
Nickel, total	0.103	0.0040	mg/L	0.100	0.0165	86.8	70-130			
Selenium, total	0.0893	0.0040	mg/L	0.100	0.0046	84.7	70-130			
Silver, total	0.0885	0.0020	mg/L	0.100	ND	88.5	70-130			
Zinc, total	0.0994	0.0200	mg/L	0.100	ND	99.4	70-130			
Matrix Spike Dup (1HC1317-MSD1)		1HC1275-02		3/25/24 08:4						
Arsenic, total	0.100	0.0020	mg/L	0.100	0.0054	95.1	70-130	2.51	20	
Barium, total	0.129	0.0020	mg/L	0.100	0.0231	106	70-130	4.97	20	
Cadmium, total	0.0869	0.0002	mg/L	0.100	ND	86.9	70-130	4.60	20	
Caa.mam, total		0.0002	9, ⊏	0.100	שויו	00.5	10-130	4.00	20	

Microbac Laboratories, Inc., Newton

CERTIFICATE OF ANALYSIS

					Spike	Source		%REC		RPD	
Determination of	Total Metals	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1HC1317 - EP/	A 200.2 Total ICI	P-MS - EPA 200.	8								
Matrix Spike Dup (1HC	1317-MSD1)	Source	ce: 1HC1275-02	Prepared: 0	3/25/24 08:4	10 Analyzed:	03/25/24 2	0:05			
Chromium, total		0.111	0.0008	mg/L	0.100	0.0036	107	70-130	2.27	20	
Copper, total		0.484	0.0020	mg/L	0.100	0.384	100	70-130	3.16	20	
Lead, total		0.0876	0.0008	mg/L	0.100	ND	87.6	70-130	3.67	20	
Nickel, total		0.107	0.0040	mg/L	0.100	0.0165	90.1	70-130	3.15	20	
Selenium, total		0.0954	0.0040	mg/L	0.100	0.0046	90.8	70-130	6.57	20	
Silver, total		0.0908	0.0020	mg/L	0.100	ND	90.8	70-130	2.46	20	
Zinc, total		0.103	0.0200	mg/L	0.100	ND	103	70-130	3.49	20	
Post Spike (1HC1317-P	S1)	Sour	ce: 1HC1275-02	Prepared: 0	3/25/24 08:4	10 Analyzed:	03/25/24 2	0:11			
Arsenic, total		0.0833		mg/L	0.0800	0.0053	97.5	70-130			
Barium, total		0.106		mg/L	0.0800	0.0226	104	70-130			
Cadmium, total		0.0714		mg/L	0.0800	0.00002	89.2	70-130			
Chromium, total		0.0925		mg/L	0.0800	0.0035	111	70-130			
Copper, total		0.480		mg/L	0.0800	0.376	129	70-130			
Lead, total		0.0721		mg/L	0.0800	0.0004	89.7	70-130			
Nickel, total		0.0921		mg/L	0.0800	0.0162	94.8	70-130			
Selenium, total		0.0791		mg/L	0.0800	0.0045	93.3	70-130			
Silver, total		0.0751		mg/L	0.0800	0.000004	93.9	70-130			
Zinc, total		0.0872		mg/L	0.0800	0.0161	88.9	70-130			
Definitions											
P-02:	Sample was inco	orrectly preserved	for this analysis.								
QM-05:			-								
Q.III OO.	•	ery and/or RPD wa LCSD were within	•								
Q 00.	•	•	as outside accepta acceptance limits								
QM-15:	The LCS and/or acceptable.	LCSD were within ery was outside ac	•	showing tha	at the labor	atory is in c	ontrol and	I the data is	3		
	The LCS and/or acceptable. The spike recove matrix interferen The RPD result of	LCSD were within ery was outside acce. exceeded the QC o	acceptance limits ceptance limits du control limits; howe	showing that to dilution ever, both pe	at the labor required fo ercent reco	atory is in c or high analy overies were	ontrol and yte conce acceptal	I the data is	d/or		
QM-15:	The LCS and/or acceptable. The spike recove matrix interferen The RPD result of for the QC batch	LCSD were within ery was outside acce. exceeded the QC were accepted ba	acceptance limits	showing that e to dilution ever, both pe coveries and	at the labor required fo ercent reco	atory is in c or high analy overies were	ontrol and yte conce acceptal	I the data is	d/or		
QM-15: QR-02:	The LCS and/or acceptable. The spike recove matrix interferen. The RPD result of for the QC batch. The Duplicate R	LCSD were within ery was outside acce. exceeded the QC were accepted baPD for this analyte	acceptance limits ceptance limits du control limits; howe ased on percent re	showing that e to dilution ever, both pecoveries and ance limits.	at the labor required for ercent reco	atory is in c or high analy overies were	ontrol and yte conce acceptal	I the data is	d/or		
QM-15: QR-02: QR-04:	The LCS and/or acceptable. The spike recove matrix interferen. The RPD result of for the QC batch. The Duplicate R	LCSD were within ery was outside acce. exceeded the QC were accepted baPD for this analyte	acceptance limits du ceptance limits; howe ased on percent re exceeded accepta	showing that e to dilution ever, both pecoveries and ance limits.	at the labor required for ercent reco	atory is in c or high analy overies were	ontrol and yte conce acceptal	I the data is	d/or		
QM-15: QR-02: QR-04: QS-03:	The LCS and/or acceptable. The spike recove matrix interferen The RPD result of for the QC batch The Duplicate RIThe blank spike	LCSD were within ery was outside acce. exceeded the QC were accepted baPD for this analyte recovery was belo	acceptance limits du ceptance limits; howe ased on percent re exceeded accepta	showing that e to dilution ever, both pecoveries and ance limits.	at the labor required for ercent reco	atory is in c or high analy overies were	ontrol and yte conce acceptal	I the data is	d/or		
QM-15: QR-02: QR-04: QS-03: RL:	The LCS and/or acceptable. The spike recove matrix interferen The RPD result of the QC batch The Duplicate R The blank spike Reporting Limit	LCSD were within ery was outside acce. exceeded the QC were accepted baPD for this analyte recovery was belo	acceptance limits du ceptance limits; howe ased on percent re exceeded accepta	showing that e to dilution ever, both pecoveries and ance limits.	at the labor required for ercent reco	atory is in c or high analy overies were	ontrol and yte conce acceptal	I the data is	d/or		
QM-15: QR-02: QR-04: QS-03: RL: RPD:	The LCS and/or acceptable. The spike recove matrix interferen The RPD result of the QC batch The Duplicate R The blank spike Reporting Limit	LCSD were within ery was outside acce. exceeded the QC were accepted baPD for this analyte recovery was belo	acceptance limits du ceptance limits; howe ased on percent re exceeded accepta	showing that e to dilution ever, both po coveries and ance limits. eptance limi	at the labor required for ercent reco	atory is in c or high analy overies were	ontrol and yte conce acceptal	I the data is	d/or		
QM-15: QR-02: QR-04: QS-03: RL: RPD:	The LCS and/or acceptable. The spike recove matrix interferen The RPD result of for the QC batch The Duplicate R The blank spike Reporting Limit Relative Percent	LCSD were within ery was outside acce. exceeded the QC were accepted baPD for this analyte recovery was belo	acceptance limits ceptance limits du control limits; howe ased on percent re exceeded accepta w established acce	showing that e to dilution ever, both po coveries and ance limits. eptance limi	at the labor required for ercent reco	atory is in c or high analy overies were	ontrol and yte conce acceptal	I the data is	d/or		
QM-15: QR-02: QR-04: QS-03: RL: RPD: Cooler Receipt Log Cooler ID:	The LCS and/or acceptable. The spike recove matrix interferen The RPD result of for the QC batch The Duplicate R The blank spike Reporting Limit Relative Percent	LCSD were within ery was outside acce. exceeded the QC were accepted baPD for this analyte recovery was belo	acceptance limits ceptance limits du control limits; howe ased on percent re exceeded accepta w established acce	showing that e to dilution ever, both po coveries and ance limits. eptance limi	at the labor required for ercent reco	atory is in control or high analyoveries were ness of QC	ontrol and yte conce acceptal	I the data is	d/or		Ye
QM-15: QR-02: QR-04: QS-03: RL: RPD: Cooler Receipt Log Cooler ID:	The LCS and/or acceptable. The spike recove matrix interferenthe RPD result of for the QC batch The Duplicate RIThe blank spike Reporting Limit Relative Percenthe Default Cooler	LCSD were within ery was outside acce. exceeded the QC were accepted baPD for this analyte recovery was belo	acceptance limits ceptance limits du control limits; howe ased on percent re exceeded accepte w established acce Temp: 2.2°C	showing that e to dilution ever, both per coveries and ance limits. eptance limit	at the labor required for ercent record complete ts.	atory is in control of high analytic properties were ness of QC	ontrol and yte conce acceptal	I the data is	d/or		Ye N

Report Comments

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions>.

Reviewed and Approved By:

eather am urphy

Heather Murphy

Customer Relationship Specialist heather.murphy@microbac.com 04/02/24 16:44 Appendix H.5 – Leachate Piezometer Elevation Monitoring

				PAGE C	OUNTY LA	NDFILL				
	TABL	E H2 - LEA	CHATE PIE				ESURVEY	ED ELEVAT	IONS	
	LPZ 1	LPZ 24	LPZ 25	LPZ 29	LPZ 33	LPZ 36	LPZ 38	LPZ 39	LPZ 41	LPZ 2
TOC ELV.	1122.27	1168.23	1167.80	1141.56	1166.21	1167.91	1164.89	1120.04	1116.07	1113.50
Depth	23.70	24.20	19.50	20.30	20.20	22.60	23.30	18.92		11.00
		2.00			5.50	5.00				
Year	10/02	2010	10/02	10/02	2010	2010	10/02	10/09	9/17	7/25
Old TOC Elv.								1111.04		
New Depth	23.70	26.20	19.50	20.30	25.70	27.60	23.30	18.92		
New TOC Elv.	1122.27	1170.23	1167.80	1141.56	1171.71	1172.91	1164.89	1120.04	1117.60	1113.50
bottom Elv	1098.57	1144.03	1148.30	1121.26	1146.01	1145.31	1141.59	1101.04	1106.00	1102.50
DATE	LEACHATE I	ELEVATION	IS							
1/2/2015	1099.04	1146.99	1151.40	1124.46	1146.52	1152.47	1143.89	1101.34		
2/6/2015								1101.32		
3/4/2015								1101.30		
4/8/2015	1101.52	1146.32	1152.08	1124.13	1146.52	1152.98	1143.89	1101.29		
5/5/2015								1101.30		
6/2/2015								1101.28		
7/1/2015	1100.95	1146.30	1151.79	1124.11	1146.52	1152.76	1143.89	1101.47		
8/4/2015								1101.65		
9/3/2015								1102.52		
10/6/2015								1102.27		
11/4/2015								1102.02		
12/3/2015	1103.18	1147.03	1152.23	1124.37	1146.39	1153.59	1144.00	1101.69		
1/4/2016	1103.18	1147.03	1152.23	1124.37	1146.39	1153.68	1144.00	1101.69		
2/1/2016								1101.64		
3/1/2016								1101.55		
4/1/2016								1101.64		
5/2/2016								1101.44		
6/3/2016								1101.32		
7/8/2016	1101.72		1151.90	1123.67	1146.64	1153.04	1144.33	1101.34		
8/16								1101.36		
9/16								1101.54		
10/16								1101.43	1106.20	
11/16								1101.72	1106.24	
12/16								1101.83	1106.28	
1/6/2017								1101.84	1106.40	
2/13/2017								1101.74	1106.10	
3/14/2017								1101.79	1106.10	
4/12/2017								1101.69	1105.80	
5/15/2017								1101.59	1106.05	
6/12/2017								1101.59	1105.95	
7/13/2017	1102.37	1146.73	1151.60	1124.16	1146.81	1152.71	1144.39	1101.54	1106.10	
8/8/2017								1101.54	1106.05	
9/10/2017								1101.64	1106.10	
10/16/2017								1101.59	1106.25	
11/6/2017								1101.64	1106.15	
12/22/2017								1101.69	1106.25	

				PAGE C	OUNTY LA	NDFILL				
	TABL	.E H2 - LEA	CHATE PIE				ESURVEY	ED ELEVAT	IONS	
	LPZ 1	LPZ 24	LPZ 25	LPZ 29	LPZ 33	LPZ 36	LPZ 38	LPZ 39	LPZ 41	LPZ 2
TOC ELV.	1122.27	1168.23	1167.80	1141.56	1166.21	1167.91	1164.89	1120.04	1116.07	1113.50
Depth	23.70	24.20	19.50	20.30	20.20	22.60	23.30	18.92		11.00
		2.00			5.50	5.00				
Year	10/02	2010	10/02	10/02	2010	2010	10/02	10/09	9/17	7/25
Old TOC Elv.								1111.04		
New Depth	23.70	26.20	19.50	20.30	25.70	27.60	23.30	18.92		
New TOC Elv.	1122.27	1170.23	1167.80	1141.56	1171.71	1172.91	1164.89	1120.04	1117.60	1113.50
bottom Elv	1098.57	1144.03	1148.30	1121.26	1146.01	1145.31	1141.59	1101.04	1106.00	1102.50
DATE	LEACHATE I	ELEVATION	IS							
1/10/2018	1102.27	1146.63	1150.50	1125.06	1146.71	1152.76	1144.29	1101.64	1106.25	
2/5/2018								1101.74	1106.20	
3/19/2018								1101.64	1106.20	
4/5/2018								1101.64	1106.15	
5/2/2018								1101.59	1106.20	
6/15/2018								1101.64	1106.25	
7/6/2018	1102.37	1146.63	1151.50	1124.21	1146.71	1152.61	1144.34	1101.64	1106.15	
8/29/2018								1101.64	1106.15	
9/10/2018								1101.59	1106.10	
10/15/2018								1101.54	1106.15	
11/9/2018								1101.59	1106.20	
12/18/2018								1101.59	1106.20	
1/7/2019	1102.37							1101.24	1106.20	
2/4/2019								1101.34	1106.30	
3/12/2019								1101.34	1106.20	
4/8/2019								1101.39	1106.05	
5/14/2019								1101.34	1106.00	
6/6/2019								1101.54	1106.00	
7/17/2019	1102.17	1146.83	1150.80	1124.21	1146.61	1152.61	1144.19	1101.24	1106.10	
8/8/2019								1101.24	1105.90	
9/11/2019								1101.34	1106.10	
10/1/2019								1101.29	1106.20	
11/8/2019								1101.34	1106.05	
12/21/2019								1101.34	1106.10	
1/20/2020	1102.57	1146.63	1150.65	1124.26	1146.81	1152.90	1144.24	1101.04	1106.10	
2/5/2020								1101.35	1106.20	
3/16/2020								1101.33	1106.10	
4/23/2020								1101.34	1106.10	
5/6/2020								1101.34	1106.00	
6/15/2020								1101.44	1105.90	
7/9/2020	1102.17	1146.53	1150.70	1124.21	1146.71	1152.81	1144.79	1100.89	1105.90	
8/23/2020								1101.14	1105.90	
9/13/2020								1101.14	1105.95	
10/6/2020								1101.24	1105.90	
11/4/2020								1101.24	1105.90	
12/18/2020								1101.19	1105.90	

				PAGE C	OUNTY LA	NDFILL				
	TABL	E H2 - LEA	CHATE PIE	ZOMETER	MEASURE	MENTS - R	ESURVEYE	D ELEVAT	IONS	
	LPZ 1	LPZ 24	LPZ 25	LPZ 29	LPZ 33	LPZ 36	LPZ 38	LPZ 39	LPZ 41	LPZ 2
TOC ELV.	1122.27	1168.23	1167.80	1141.56	1166.21	1167.91	1164.89	1120.04	1116.07	1113.50
Depth	23.70	24.20	19.50	20.30	20.20	22.60	23.30	18.92		11.00
		2.00			5.50	5.00				
Year	10/02	2010	10/02	10/02	2010	2010	10/02	10/09	9/17	7/25
Old TOC Elv.								1111.04		
New Depth	23.70	26.20	19.50	20.30	25.70	27.60	23.30	18.92		
New TOC Elv.	1122.27	1170.23	1167.80	1141.56	1171.71	1172.91	1164.89	1120.04	1117.60	1113.50
bottom Elv	1098.57	1144.03	1148.30	1121.26	1146.01	1145.31	1141.59	1101.04	1106.00	1102.50
DATE	LEACHATE E									
1/7/2021	1102.42	1147.03	1150.80	1124.66	1146.71	1152.76	1144.29	1101.19	1106.18	
2/15/2021								1101.29	1106.15	
3/11/2021								1101.29	1106.20	
4/13/2021								1101.34	1106.05	
5/17/2021								1101.24	1106.05	
6/7/2021								1101.24	1106.00	
7/19/2021	1102.27	1146.63	1150.60	1124.25	1146.61	1152.71	1144.39	1101.04	1106.05	
8/5/2021								1101.04	1106.00	
9/9/2021								1101.14	1106.05	
10/19/2021								1101.24	1106.10	
11/4/2021								1101.24	1106.00	
12/10/2021								1101.22	1106.05	
1/10/2022	1102.37	1146.73	1150.6	1124.46	1146.71	1152.71	1144.24	1101.04	1106.19	
2/8/2022								1101.34	1106.10	
3/14/2022								1101.29	1106.10	
4/8/2022								1101.44	1106.00	
5/9/2022								1101.29	1105.97	
6/6/2022								1101.24	1105.95	
7/11/2022	1102.17	1146.63	1150.5	1124.24	1146.51	1152.61	1144.29	1100.94	1105.90	
8/1/2022								1101.09	1105.99	
9/12/2022								1101.19	1106.00	
10/3/2022								1101.29	1106.05	
11/9/2022								1101.23	1105.95	
12/5/2022								1101.24	1106.00	

					OUNTY LA					
	TABL	E H2 - LEA	CHATE PIE	ZOMETER	MEASURE	MENTS - R	ESURVEYE	ED ELEVAT	IONS	
	1.57.4	157.04	107.05	1.07.00	1.07.00	1.07.00	1.07.00	1.07.00	107.44	1070
T00 511/	LPZ 1	LPZ 24	LPZ 25	LPZ 29	LPZ 33	LPZ 36	LPZ 38	LPZ 39	LPZ 41	LPZ 2
TOC ELV.	1122.27	1168.23	1167.80	1141.56	1166.21	1167.91	1164.89	1120.04	1116.07	1113.50
Depth	23.70	24.20	19.50	20.30	20.20	22.60	23.30	18.92		11.00
		2.00			5.50	5.00				
Year	10/02	2010	10/02	10/02	2010	2010	10/02	10/09	9/17	7/25
Old TOC Elv.								1111.04		
New Depth	23.70	26.20	19.50	20.30	25.70	27.60	23.30	18.92		
New TOC Elv.	1122.27	1170.23	1167.80	1141.56	1171.71	1172.91	1164.89	1120.04	1117.60	1113.50
bottom Elv	1098.57	1144.03	1148.30	1121.26	1146.01	1145.31	1141.59	1101.04	1106.00	1102.50
DATE	LEAGUATE		10							
DATE	LEACHATE E			4404.04	4440.70	1150 70	444407	1101.00	1100 10	
1/16/2023	1102.34	1146.63	1150.55	1124.31	1146.76	1152.72	1144.27	1101.09	1106.12	
2/23/2023								1101.10	1106.10	
3/14/2023								1101.09	1106.05	
4/27/2023								1101.04	1106.00	
5/13/2023								1101.24	1106.00	
6/17/2023								1101.24	1105.95	
7/8/2023	1102.27	1146.68	1150.5	1124.21	1146.21	1152.66	1144.29	1101.09	1105.85	
8/21/2023								1101.19	1105.97	
9/23								1101.09	1105.98	
10/23								1101.24	1105.97	
11/23								1101.13	1105.97	
12/11/2023								1101.17	1105.97	
1/24								1101.11	1106.00	DNE
2/24								1101.09	1105.97	DNE
3/24								1101.09	1105.97	DNE
4/24								1101.14	1106.00	DNE
5/24								1101.13	1106.00	DNE
6/24								1101.14	1105.98	DNE
7/24	1102.3	1146.63	1150.52	1124.26	1146.36	1142.7	1164.89	1101.14	1105.98	DNE
8/24		11.0.00		0				1101.13	1105.99	DNE
9/24								1101.13	1105.97	1102.50
10/24								1101.13	1105.97	1102.50
11/24								1101.14	1105.99	1102.50
12/24								1101.14	1105.99	1102.50
14/4								1101.14	1100.00	1102.00