

CON 12-1-1 Doc # 112018

November 25, 2024

GROUNDWATER QUALITY TESTING REPORT

For

GEORGIA – PACIFIC GYPSUM NORTH RECYCLE PILE

Fort Dodge, Iowa

PERMIT #94-SDP-18-09

MER #9510

		•	

January 22, 2025

Mr. Brian Rath, P.E. Iowa Department of Natural Resources Solid Waste Section Wallace State Office Building 502 East 9th Street Des Moines, IA 50319-0034

Ms. Olivia Jackson Georgia-Pacific Gypsum LLC 2374 Mill Road Fort Dodge, IA 50501

RE: Georgia-Pacific Gypsum North Recycle Pile; November 2024 Groundwater Testing Permit #94-SDP-18-09; MER #9510

Dear Mr. Rath / Ms. Jackson:

Enclosed is a report detailing the November 25, 2024 groundwater testing completed at the Georgia-Pacific Gypsum North Recycle Pile. There were no detects that exceed GWPS during this November 25, 2024 testing event.

Please call if you have any questions or if additional information is needed.

Respectfully submitted on behalf of Georgia-Pacific Gypsum,

Dave Minikis, Sr. Eng. Tech.

Cc: IDNR Field Office 2

RECEIVED

JAN 23 2025

NOVEMBER 25, 2024 GROUNDWATER TESTING REPORT For

GEORGIA – PACIFIC GYPSUM NORTH RECYCLE PILE

Fort Dodge, Iowa

PERMIT #94-SDP-18-09

Georgia-Pacific Gypsum North Recycle Pile

November 25, 2024 Groundwater Testing Permit #94-SDP-18-09

Per MER Engineering correspondence dated October 12, 2022, Georgia-Pacific Gypsum proposed to make changes to the current groundwater testing at this site. This proposal would eliminate the testing for the indicator parameters listed in Table 3-2 from the HMSP and Closure / Post Closure Authorization. The proposed change in groundwater testing would include testing for the Table 3-1 parameters; total arsenic, total barium, total cadmium, total chromium, total lead, total mercury, and total zinc, as well as field tested parameters temperature, pH, and specific conductance. These metal parameters have US EPA and Iowa Statewide Groundwater Standards to adhere to. The Department approved the proposed changes per DNR correspondence dated October 18, 2022. Georgia-Pacific Gypsum completed a first round of sampling for this new list of parameters in November 2022. Four of five monitoring locations were successfully sampled and tested during the November 2022 event. Monitoring well MW4 could not be sampled as there was insufficient groundwater available at that time. A second round of this testing was proposed to be completed in March 2023. That groundwater testing was dismissed as MW4 did not contain adequate groundwater to complete the sampling. Groundwater was successfully sampled/tested at all monitoring locations in April 2023 and July 2023. The Department then suspended groundwater testing for the remainder of 2023. In December 2023, the Department reinstated groundwater testing for calendar year 2024. A first round of 2024 groundwater testing was completed on May 1, 2024, a second round completed on August 6, 2024, and a third round completed on November 25, 2024.

In early November 2024, groundwater levels were checked to see if groundwater was available where sampling / testing could be completed. Georgia-Pacific Gypsum completed another round of groundwater sampling / testing on November 25, 2024 at all monitoring locations at the North Recycle Pile. One monitoring location, MW1, had low levels of Arsenic (2.82 μ g/L) detected. All monitoring locations had barium detected at low levels. One monitoring location, MW2 (71.1 μ g/L) had low a level of zinc detected. There were no other detects for any of the other remaining parameters during this November 2024 testing event. The table below displays the parameter detects for the 1st (November 2022), 2nd (April 2023), 3rd (July 2023), 4th (May 2024), 5th (August 2024), and 6th November 2024 rounds of testing for the new list of parameters. As can be seen below and on the next page, all detects are low level with none exceeding any known US EPA or lowa Statewide Groundwater Standards.

		ARSE	NIC - SS (10 μ	g/L)		
DATE		M W 1	MW2	M W 3	MW4	M W 5
11/21/2022	(µg/L)	2.22	2.1	<2.00		<2.00
4/27/2023	(µg/L)	<2.00	<2.00	<2.00	<2.00	<2.00
7/20/2023	(µg/L)	<2.00	2.5	<2.00	<2.00	<2.00
5/1/2024	(µg/L)	<2.00	<2.00	<2.00	<2.00	<2.00
8/6/2024	(µg/L)	4.97	<2.00	<2.00	<2.00	<2.00
11/25/2024	(µg/L)	2.82	<2.00	<2.00	<2.00	<2.00
		BARIL	JM - SS (2000	μg/L)		
11/21/2022	(µg/L)	11.0	13.1	16.3		11.6
4/27/2023	(µg/L)	9.1	11.4	12.9	9.6	9.22
7/20/2023	(µg/L)	9.52	11.5	15.6	9.2	10.3
5/1/2024	(µg/L)	10.1	11.0	13.7	9.18	8.17
8/6/2024	(µg/L)	10.5	11.7	12.1	9.32	9.94
11/25/2024	(µg/L)	9.84	10.9	16 .2	9.58	10.6

 $\boldsymbol{\mathsf{SS}}$ is the lowa Statewide Standard (GWPS) for that parameter

Bold font (2.22) with gray back shading indicates a detect.

GI	EORGIA-PAC	IFIC NORTH R	ECYCLE PILE	- PERMIT#9	94-SDP-18-090	;
		CADM	IUM - SS (5.0	μg/L)		
11/21/2022	(µg/L)	<0.100	<0.100	0.255		<0.100
4/27/2023	(µg/L)	<0.200	<0.200	<0.200	<0.200	<0.200
7/20/2023	(µg/L)	<0.200	<0.200	<0.200	<0.200	<0.200
5/1/2024	(µg/L)	<0.200	<0.200	<0.200	<0.200	<0.200
8/6/2024	(µg/L)	<0.200	<0.200	<0.200	<0.200	<0.200
11/25/2024	(µg/L)	<0.200	<0.200	<0.200	<0.200	<0.200
		ZINC	- SS (2000 µ	ıg/L)		
11/21/2022	(µg/L)	23.3	69.8	<20.00		<20.00
4/27/2023	(µg/L)	<20.00	64.2	<20.00	<20.00	<20.00
7/20/2023	(µg/L)	<20.00	59.8	<20.00	<20.00	<20.00
5/1/2024	(µg/L)	<20.00	85.9	<20.00	<20.00	<20.00
8/6/2024	(µg/L)	24.2	87.3	<20.00	<20.00	<20.00
11/25/2024	(µg/L)	<20.00	71.1	<20.00	<20.00	<20.00

 $\boldsymbol{\mathsf{SS}}$ is the lowa Statewide Standard (GWPS) for that parameter

Bold font (2.22) with gray back shading indicates a detect.

Monitoring well MW2 has some history with arsenic detects (3) that did exceed GWPS when utilizing dissolved analysis. These arsenic detects were reported to the Department during the first three quarters of calendar year 2013 groundwater testing at this site. The fourth quarter 2013 arsenic result returned from dissolved analysis as no detect. MW2 has had no arsenic detects since 2013 groundwater testing that have exceeded GWPS.

Lower Confidence (LCL) and Upper Confidence (UCL) Limits were examined for groundwater parameters arsenic, barium, and zinc that have been detected with <u>Total Analysis</u> in monitoring wells MW1 and MW2. The LCL and UCL calculations are displayed in the tables below.

MW2	Arsenic (ug/L)
Nov-22	2.1
Apr-23	2.0
Jul-23	2.5
May-24	2.0
Aug-24	2.0
Nov-24	2.0
Mar-25	2.1 Guesses for future levels of arsenic using the
Jun-25	2.1 average of the previous 6 events
Mean	2.1
Standard Deviation	0.17
Confidence Level	0.01
number of samples	8
ble 16-1 Unified Guidance	2.998 for 7 degrees of freedom
Lower Confidence Limit	1.92 Which is less than the GWPS of 10 µg/L for Arseni
Upper Confidence Limit	2.28 Which is less than the GWPS of 10 µg/L for Arseni

MW2	Barium (ug/L)
Nov-22	13.1
Apr-23	11.4
Jul-23	11.5
May-24	11.0
Aug-24	11.7
Nov-24	10.9
Mar-25	11.6 Guesses for future levels of arsenic using the
Jun-25	11.6 average of the previous 6 events
Mean	11.6
Standard Deviation	0.67
Confidence Level	0.01
number of samples	8
able 16-1 Unified Guidance	2.998 for 7 degrees of freedom
Lower Confidence Limit	10.89 Which is less than the GWPS of 2000 µg/L for Bariu
Upper Confidence Limit	12.31 Which is less than the GWPS of 2000 µg/L for Bariu

Georgia-Pacific North Rec	ycle Pile
MW2	Zinc (ug/L)
Nov-22	69.8
Apr-23	64.2
Jul-23	59.8
May-24	85.9
Aug-24	87.3
Nov-24	71.1
Mar-25	73.02 Guesses for future levels of arsenic using the
Jun-25	73.02 average of the previous 6 events
Mean	73.02
Standard Deviation	9.54
Confidence Level	0.01
number of samples	8
Table 16-1 Unified Guidance	2.998 for 7 degrees of freedom
Lower Confidence Limit	62.91 Which is less than the GWPS of 2000 μg/L for Zinc
Upper Confidence Limit	83.12 Which is less than the GWPS of 2000 μg/L for Zinc

Georgia-Pacific North Rec	ycle Pile	
MW1	Barium (ug/L)	
Nov-22	11.0	
Apr-23	9.1	
Jul-23	9.52	
May-24	10.1	
Aug-24	10.5	
Nov-24	9.84	
Mar-25	10.01 Guesses for future levels of arsenic using the	
Jun-25	10.01 average of the previous 6 events	
Mean	10.01	
Standard Deviation	0.58	
Confidence Level	0.01	
number of samples	8	
Table 16-1 Unified Guidance	2.998 for 7 degrees of freedom	
Lower Confidence Limit	9.40 Which is less than the GWPS of 2000 µg/L for Bar	rium
Upper Confidence Limit	10.62 Which is less than the GWPS of 2000 μg/L for Bar	rium

Georgia-Pacific North Rec	ycle Pile
MW1	Zinc (ug/L)
Nov-22	23.3
Apr-23	20.0
Jul-23	20.0
May-24	20.0
Aug-24	24.2
Nov-24	20.0
Mar-25	21.25 Guesses for future levels of arsenic using the
Jun-25	21.25 average of the previous 6 events
Mean	21.25
Standard Deviation	1.65
Confidence Level	0.01
number of samples	8
Table 16-1 Unified Guidance	2.998 for 7 degrees of freedom
Lower Confidence Limit	19.50 Which is less than the GWPS of 2000 μg/L for Zinc
Upper Confidence Limit	23.00 Which is less than the GWPS of 2000 $\mu\text{g}/\text{L}$ for Zinc

As can be seen, all LCL and UCL calculations are well below the GWPS for arsenic, barium, and zinc in MW1 and MW2. As stated previously, monitoring well MW2 has had some arsenic levels detected by dissolved analysis which did exceed GWPS in calendar year 2013. Since that 2013 testing, there have been 2 - arsenic detects utilizing total analysis, both well below the GWPS of 10.0µg/L. MW2 had no arsenic detected during latest testing event. MW1 did have arsenic detected during this November 2024 testing event. The MW1 arsenic detected during this November 2024 testing event did not exceed GWPS. There have been no other parameter detects that have exceeded a GWPS at any of the other monitoring locations at this closed unit.

Please note below and on the next page, Health Standards have been plotted using the test data from the last six (6) groundwater testing events utilizing Total Analysis for MW1 and MW2. The Health Standards include the detect levels for arsenic, barium, and zinc compared to their respective Groundwater Protection Standards.

The Health Standards graphs show that none of the groundwater detects for arsenic, barium, or zinc exceed the GWPS at monitoring locations MW1 or MW2. All detects are low level with none exceeding any known US EPA or lowa Statewide Groundwater Standards.

Olivia Jackson (Georgia-Pacific) and MER Engineering discussed these latest groundwater testing results as well as the updated Environmental Covenant guidance documents provided by Brian Rath (IDNR). Georgia-Pacific intends to pursue an Environmental Covenant (EC) for both of their closed gypsum board waste piles in calendar year

2025. The Department in their January 6, 2025 e-mail, instruct Georgia-Pacific Gypsum to continue groundwater testing and all reporting until an Environmental Covenant for this site has been approved.

Enclosed are copies of the site plat, data tables summarizing the parameters tested to date for each of the five monitoring locations, analytical results, and field data measurement data forms (542-1322).

Site Plat

(November 2024)

Groundwater Data Tables with Detects Noted in Bold Font

(November 2024)

		GEORGIA-PACIFIC NORTH RECYCLE PILE - PERMIT #94-SDP-18-09C						
ARSENIC - SS (10 μg/L)								
	MW1	MW2	MW3	MW4	MW5			
(μg/L)	<1.0	23.6	<1.0	<1.0	<1.0			
(μg/L)	<2.0	22.8	<2.0	<2.0	<2.0			
(μg/L)	<1.0	19.2	<1.0	<1.0	<1.0			
(µg/L)	<2.0	<2.0	<2.0	<2.0	<2.0			
(µg/L)	2.22	2.10	<2.00		<2.00			
(µg/L)	<2.00	<2.00	<2.00	<2.00	<2.00			
(μg/L)	<2.00	2.50	<2.00	<2.00	<2.00			
(μg/L)	<2.00	<2.00	<2.00	<2.00	<2.00			
(μg/L)	4.97	<2.00	<2.00	<2.00	<2.00			
(μg/L)	2.82	<2.00	<2.00	<2.00	<2.00			
	,							
		+						
	(μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L)	(μg/L) <1.0	(μg/L) <1.0	(μg/L) <1.0	(μg/L) <1.0			

Value in Bold Font indicates a detect.

MCL = USEPA Maximum Contaminant Level

SDWS = Secondary Drinking Water Standard

SS = Iowa State Standard

11/21/2022 (*) Indicates first time in which Total Metals Analysis was completed.

GEORGIA-PACIFIC NORTH RECYCLE PILE - PERMIT #94-SDP-18-09C						
		BAR	IUM - SS (2000	μg/L)		
DATE		MW1	MW2	MW3	MW4	MW5
2/6/2013	(μg/L)	112	64.5	150	108	106
5/21/2013	(μg/L)	35.8	24.8	17.3	22.7	22.3
8/14/2013	(µg/L)	28.9	31.5	28.5	32.7	36.7
11/7/2013	(μg/L)	18.8	15.1	27.6	19.5	19.3
11/21/2022 (*)	(μg/L)	11.0	13.1	16.3		11.6
4/27/2023	(μg/L)	9.1	11.4	12.9	9.6	9.22
7/20/2023	(μg/L)	9.52	11.5	15.6	9.2	20.9
5/1/2024	(μg/L)	10.1	11.0	13.7	9.18	8.17
8/6/2024	(μg/L)	10.5	11.7	12.1	9.31	9.94
11/25/2024	(μg/L)	9.84	10.9	16.2	9.58	10.6
		- Pil				

Value in Bold Font indicates a detect.

MCL = USEPA Maximum Contaminant Level

SDWS = Secondary Drinking Water Standard

SS = Iowa State Standard

11/21/2022 (*) Indicates first time in which Total Metals Analysis was completed.

		X N

GEORGIA-PACIFIC NORTH RECYCLE PILE - PERMIT #94-SDP-18-09C						
		CAD	MIUM - SS (5.0	μg/L)	7	
DATE		MW1	MW2	MW3	MW4	MW5
2/6/2013	(μg/L)	<0.5	<0.5	<0.5	<0.5	<0.5
5/21/2013	(µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5
8/14/2013	(μg/L)	<0.5	<0.5	<0.5	<0.5	<0.5
11/7/2013	(μg/L)	<0.5	<0.5	<0.5	<0.5	<0.5
11/21/2022 (*)	(μg/L)	<0.100	<0.100	0.255		<0.100
4/27/2023	(µg/L)	<0.200	<0.200	<0.200	<0.200	<0.200
7/20/2023	(μg/L)	<0.200	<0.200	<0.200	<0.200	<0.200
5/1/2024	(μg/L)	<0.200	<0.200	<0.200	<0.200	<0.200
8/6/2024	(µg/L)	<0.200	<0.200	<0.200	<0.200	<0.200
11/25/2024	(μg/L)	<0.200	<0.200	<0.200	<0.200	<0.200
	1					
-						
			 			
			ļ			
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
				1		

DATE MW1 MW2 MW3 MW4 2/6/2013 (μg/L) <2.0 <2.0 <2.0 <2.0 5/21/2013 (μg/L) <2.0 <2.0 <2.0 <2.0 8/14/2013 (μg/L) <2.0 <2.0 <2.0 <2.0 11/7/2013 (μg/L) <2.0 <2.0 <2.0 <2.0	GEORGIA-PACIFIC NORTH RECYCLE PILE - PERMIT #94-SDP-18-09C CHROMIUM - SS (100 µg/L)										
2/6/2013 (μg/L) <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <th>MW5</th> <th>MW4</th> <th></th> <th></th> <th></th> <th></th> <th>DATE</th>	MW5	MW4					DATE				
5/21/2013 (μg/L) <2.0	<2.0	<2.0				(ug/L)					
8/14/2013 (μg/L) <2.0	<2.0	<2.0	<2.0								
11/7/2013 (μg/L) <2.0	<2.0	<2.0	<2.0	<2.0							
11/21/2022 (*) (μg/L) <5.0 <5.0 <5.0 <5.0 4/27/2023 (μg/L) <5.0 <5.0 <5.0 <5.0 7/20/2023 (μg/L) <5.0 <5.0 <5.0 <5.0 5/1/2024 (μg/L) <5.0 <5.0 <5.0 <5.0 8/6/2024 (μg/L) <5.0 <5.0 <5.0 <5.0 <5.0	<2.0	<2.0	<2.0	<2.0	<2.0						
4/27/2023 (μg/L) <5.0	<5.0		<5.0	<5.0	<5.0						
7/20/2023 (μg/L) <5.0	<5.0	<5.0	<5.0	<5.0							
5/1/2024 (μg/L) <5.0	<5.0	<5.0	<5.0	<5.0	<5.0						
8/6/2024 (μg/L) <5.0 <5.0 <5.0 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0						
	<5.0	<5.0	<5.0	<5.0	<5.0						
	<5.0	<5.0	<5.0	<5.0	<5.0						
				_							
	ļ										

Value in Bold Font indicates a detect.

MCL = USEPA Maximum Contaminant Level

SDWS = Secondary Drinking Water Standard

SS = Iowa State Standard

11/21/2022 (*) Indicates first time in which Total Metals Analysis was completed.

	GEORGIA	-PACIFIC NORT	H RECYCLE PILE	PERMIT #94-SE	P-18-09C				
LEAD - SS (15 μg/L)									
DATE		MW1	MW2	MW3	MW4	MW5			
2/6/2013	(μg/L)	<4.0	<4.0	<4.0	<4.0	<4.0			
5/21/2013	(μg/L)	<4.0	<4.0	<4.0	<4.0	<4.0			
8/14/2013	(μg/L)	<4.0	<4.0	<4.0	<4.0	<4.0			
11/7/2013	(μg/L)	<4.0	<4.0	<4.0	<4.0	<4.0			
11/21/2022 (*)	(μg/L)	<0.500	<0.500	<0.500		<0.500			
4/27/2023	(μg/L)	<0.500	<0.500	<0.500	<0.500	<0.500			
7/20/2023	(μg/L)	<0.500	<0.500	<0.500	<0.500	<0.500			
5/1/2024	(μg/L)	<0.500	<0.500	<0.500	<0.500	<0.500			
8/6/2024	(μg/L)	<0.500	<0.500	<0.500	<0.500	<0.500			
11/25/2024	(μg/L)	<0.500	<0.500	<0.500	<0.500	<0.500			
			ļ	-		_			

GEORGIA-PACIFIC NORTH RECYCLE PILE - PERMIT #94-SDP-18-09C										
		MER	CURY - SS (2.0	μg/L)						
DATE		MW1	MW2	MW3	MW4	MW5				
2/6/2013	(μg/L)	<0.20	<0.20	<0.20	<0.20	<0.20				
5/21/2013	(μg/L)	<0.20	<0.20	<0.20	<0.20	<0.20				
8/14/2013	(μg/L)	<0.20	<0.20	<0.20	<0.20	<0.20				
11/7/2013	(μg/L)	<0.20	<0.20	<0.20	<0.20	<0.20				
1/21/2022 (*)	(μg/L)	<0.200	<0.200	<0.200		<0.200				
4/27/2023	(μg/L)	<0.200	<0.200	<0.200	<0.200	<0.200				
7/20/2023	(μg/L)	<0.200	<0.200	<0.200	<0.200	<0.200				
5/1/2024	(μg/L)	<0.200	<0.200	<0.200	<0.200	<0.200				
8/6/2024	(μg/L)	<0.200	<0.200	<0.200	<0.200	<0.200				
11/25/2024	(μg/L)	<0.200	<0.200	<0.200	<0.200	<0.200				
					 					
	1									

	GEORGIA-PACIFIC NORTH RECYCLE PILE - PERMIT #94-SDP-18-09C									
	1		NC - SS (2000 μ							
DATE		MW1	MW2	MW3	MW4	MW5				
2/6/2013	(μg/L)	163	254	194	174	152				
5/21/2013	(μg/L)	54.5	164	56.5	63.7	55.1				
8/14/2013	(μg/L)	110	172	91.9	116	109				
11/7/2013	(μg/L)	155	231	122	166	175				
11/21/2022 (*)	(μg/L)	23.3	69.8	<20.00		<20.00				
4/27/2023	(μg/L)	<20.00	64.2	<20.00	<20.00	<20.00				
7/20/2023	(μg/L)	<20.00	59.8	<20.00	<20.00	<20.00				
5/1/2024	(μg/L)	<20.00	85.9	<20.00	<20.00	<20.00				
8/6/2024	(μg/L)	24.2	87.3	<20.00	<20.00	<20.00				
11/25/2024	(μg/L)	<20.00	71.1	<20.00	<20.00	<20.00				
					 					
					 					
				<u> </u>						

			TSS			
DATE		MW1	MW2	MW3	MW4	MW5
11/15/18 (*)	(mg/L)	151	29.0	136	36.0	14.4
5/2/2019	(mg/L)	25.5	19.3	15.3	87.0	8.6
11/14/2019	(mg/L)	60.0	19.0	62.8	4.2	3.9
5/26/2020	(mg/L)	65.6	17.3	45.4	11.1	5.7
11/16/2020	(mg/L)	28.0	3.6	72.0	42.0	4.7
5/24/2021	(mg/L)	12.9	7.4	74.3	9.9	2.6
11/16/2021	(mg/L)	555	3.9	104	1600	11.8
5/24/2022	(mg/L)	34.0	8.0	105	4.0	5.1
11/21/2022	(mg/L)	36.6	10.3	138		8.3
4/27/2023	(mg/L)	25.3	10.9	15.9	10.0	3.1
7/20/2023	(mg/L)	34.5	8.3	32.5	4.4	20.9
5/1/2024	(mg/L)	31.3	11.1	15.6	8.3	17.8
8/6/2024	(mg/L)	55.4	13.9	19.8	2.5	4.2
11/25/2024	(mg/L)	32.8	9.0	44.5	56.0	13.5

GE			PILE - PERMIT		
	pH (Fiel	d Measuremen	t) (SDWS = 6.5-		
DATE	MW1	MW2	MW3	MW4	MW5
2/6/2013	6.92	6.68	6.74	6.77	7.03
5/21/2013	6.79	6.59	6.79	6.76	6.81
8/14/2013	6.72	6.44	6.71	6.68	6.76
11/7/2013	6.79	6.60	6.69	6.69	6.83
5/14/2014	6.78	6.51	6.62	6.67	6.74
11/3/2014	6.65	6.54	6.64	6.67	6.75
5/15/2015	6.85	6.53	6.72	6.74	6.77
11/4/2015	6.64	6.68	6.70	6.78	6.72
5/18/2016	6.83	6.48	6.69	6.62	6.58
11/1/2016	6.65	6.52	6.69	6.75	6.95
5/24/2017	6.94	6.50	6.90	6.73	6.74
11/14/2017	6.72	6.51	6.62	6.73	6.81
5/24/2018	6.94	6.67	6.96	6.79	6.82
11/15/18 (*)	6.91	6.59	6.94	6.83	6.82
5/2/2019	7.02	6.68	7.02	6.85	6.77
11/14/2019	6.70	6.58	6.75	6.90	6.74
5/26/2020	6.78	6.57	6.88	6.84	6.81
11/16/2020	6.95	6.66	6.59	6.87	7.18
5/24/2021	7.02	6.52	6.68	6.98	6.83
11/16/2021	7.26	6.78	6.60	6.99	6.87
5/24/2022	7.06	6.54	6.62	6.96	6.90
11/21/2022	7.22	6.69	6.58		6.92
4/27/2023	7.04	6.65	6.73	6.99	6.94
7/20/2023	6.86	6.59	6.59	6.79	6.95
5/1/2024	7.10	6.62	6.82	6.96	6.87
8/6/2024	6.83	6.67	6.68	6.83	6.89
11/25/2024	7.04	6.75	6.60	6.91	6.94

SPECIFIC CONDUCTANCE									
DATE		MW1	MW2	MW3	MW4	MW5			
2/6/2013	(mS/cm)	2.87	3.83	3.07	3.44	3.05			
5/21/2013	(mS/cm)	2.39	3.56	2.27	3.31	3.05			
8/14/2013	(mS/cm)	2.84	3.51	2.46	3.29	2.90			
11/7/2013	(mS/cm)	2.88	3.69	2.76	3.32	2.98			
5/14/2014	(mS/cm)	2.74	3.53	2.74	3.30	2.98			
11/3/2014	(mS/cm)	2.87	3.60	2.57	3.21	2.99			
5/15/2015	(mS/cm)	2.83	3.55	2.44	3.16	3.02			
11/4/2015	(mS/cm)	2.80	3.49	2.52	3.17	3.05			
5/18/2016	(mS/cm)	2.85	3.51	2.42	3.21	3.19			
11/1/2016	(mS/cm)	2.79	3.45	2.58	3.11	3.08			
5/24/2017	(mS/cm)	2.72	3.45	2.37	3.07	3.17			
11/14/2017	(mS/cm)	2.78	3.47	2.95	3.07	3.12			
5/24/2018	(mS/cm)	2.70	3.40	2.33	3.08	3.19			
11/15/18 (*)	(mS/cm)	2.72	3.46	2.30	3.08	3.22			
5/2/2019	(mS/cm)	2.72	3.37	2.25	3.02	3.16			
11/14/2019	(mS/cm)	2.78	3.41	2.62	3.01	3.15			
5/26/2020	(mS/cm)	2.70	3.32	2.36	2.93	3.02			
11/16/2020	(mS/cm)	2.65	3.26	2.65	3.05	2.88			
5/24/2021	(mS/cm)	2.57	3.13	2.64	2.95	2.72			
11/16/2021	(mS/cm)	2.71	3.25	3.11	3.04	2.73			
5/24/2022	(mS/cm)	2.64	3.26	2.77	3.01	2.83			
11/21/2022	(mS/cm)	2.71	3.23	3.02		2.65			
4/27/2023	(mS/cm)	2.59	3.10	2.61	2.96	2.64			
7/20/2023	(mS/cm)	2.59	3.18	2.75	2.93	2.60			
5/1/2024	(mS/cm)	2.68	3.13	2.89	3.02	2.97			
8/6/2024	(mS/cm)	2.71	3.23	2.71	2.91	2.66			
11/25/2024	(mS/cm)	2.70	3.32	2.93	2.98	2.66			

TEMPERATURE								
DATE		MW1	MW2	MW3	MW4	MW5		
2/6/2013	(°C)	11.0	9.9	9.8	9.7	10.3		
5/21/2013	(°C)	10.9	11.3	8.3	10.9	9.0		
8/14/2013	(°C)	12.6	12.3	12.4	11.7	12.6		
11/7/2013	(°C)	12.5	10.7	11.8	10.2	12.1		
5/14/2014	(°C)	12.9	11.4	8.6	10.5	8.6		
11/3/2014	(°C)	13.7	12.4	12.9	10.5	13.0		
5/15/2015	(°C)	13.4	11.4	8.9	10.1	8.8		
11/4/2015	(°C)	14.2	12.0	13.2	10.6	12.9		
5/18/2016	(°C)	12.2	11.2	9.3	10.4	9.6		
11/1/2016	(°C)	14.3	11.7	13.3	10.8	13.4		
5/24/2017	(°C)	12.4	11.0	9.1	10.5	9.1		
11/14/2017	(°C)	12.6	11.0	11.9	10.5	12.9		
5/24/2018	(°C)	12.7	11.3	9.4	11.0	10.4		
11/15/18 (*)	(°C)	13.2	10.8	11.8	10.0	12.2		
5/2/2019	(°C)	11.6	11.0	7.6	10.0	8.2		
11/14/2019	(°C)	12.2	10.4	11.4	10.0	10.6		
5/26/2020	(°C)	12.1	11.4	9.1	10.4	9.2		
11/16/2020	(°C)	11.4	10.9	11.1	9.9	10.9		
5/24/2021	(°C)	12.5	11.6	9.8	10.6	9.4		
11/16/2021	(°C)	11.2	10.8	11.3	9.8	11.8		
5/24/2022	(°C)	11.9	10.9	8.6	9.9	8.0		
11/21/2022	(°C)	11.3	10.8	10.8		11.4		
4/27/2023	(°C)	12.2	11.1	8.7	10.2	8.8		
7/20/2023	(°C)	12.3	12.1	10.2	10.1	11.3		
5/1/2024	(°C)	12.2	11.2	8.7	10.3	8.6		
8/6/2024	(°C)	12.8	11.4	11.1	10.4	11.4		
11/25/2024	(°C)	11.1	10.8	11.1	9.9	12.4		
		`						

Eurofins Test America Laboratory Reports for Groundwater Testing

(November 25, 2024)

ANALYTICAL REPORT

PREPARED FOR

Attn: Dave Minikis MER Engineering Inc 109 Regency West Court Fort Dodge, Iowa 50501

Generated 12/16/2024 3:08:39 PM

JOB DESCRIPTION

Georgia Pacific MW Sampling

JOB NUMBER

310-295984-1

Eurofins Cedar Falls 3019 Venture Way Cedar Falls IA 50613

See page two for job notes and contact information.

Page 1 of 21

Eurofins Cedar Falls

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 12/16/2024 3:08:39 PM

Authorized for release by Hannah Dietz, Project Manager I Hannah.Dietz@et.eurofinsus.com (319)277-2401

Laboratory Job ID: 310-295984-1

Client: MER Engineering Inc Project/Site: Georgia Pacific MW Sampling

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Detection Summary	6
Client Sample Results	7
Definitions	12
QC Sample Results	13
QC Association	14
Chronicle	15
Certification Summary	17
Method Summary	18
Chain of Custody	19
Receipt Checklists	21

Case Narrative

Client: MER Engineering Inc

Project: Georgia Pacific MW Sampling

Job ID: 310-295984-1 Eurofins Cedar Falls

Job Narrative 310-295984-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/26/2024 8:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -0.5°C.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Cedar Falls

Job ID: 310-295984-1

Page 4 of 21

12/16/2024

Sample Summary

Client: MER Engineering Inc

Project/Site: Georgia Pacific MW Sampling

Job ID: 310-295984-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
310-295984-1	MVV5	Water	11/25/24 09:10	11/26/24 08:45
310-295984-2	MVV3	Water	11/25/24 09:27	11/26/24 08:45
310-295984-3	MVV4	Water	11/25/24 09:48	11/26/24 08:45
310-295984-4	MVV1	Water	11/25/24 10:10	11/26/24 08:45
310-295984-5	MW2	Water	11/25/24 10:30	11/26/24 08:45

4

Detection Summary

Client: MER Engineering Inc

Total Suspended Solids

Project/Site: Georgia Pacific MW Sampling

Client Sample ID: MW5 Lab Sample ID: 310-295984-1 Analyte Result Qualifier RL MDL Unit Dil Fac D Method **Prep Type** Barium 0.0106 0.00200 6020B Total/NA mg/L Total Suspended Solids 13.5 1.9 mg/L I-3765-85 Total/NA Client Sample ID: MW3 Lab Sample ID: 310-295984-Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type Barium 0.0162 0.00200 mg/L 6020B Total/NA Total Suspended Solids I-3765-85 44.5 Total/NA 3.8 mg/L Client Sample ID: MW4 Lab Sample ID: 310-295984-3 Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type Barium 0.00958 0.00200 mg/L 6020B Total/NA Total Suspended Solids 56.0 3.8 I-3765-85 Total/NA mg/L Client Sample ID: MW1 Lab Sample ID: 310-295984-4 Analyte Result Qualifier RL MDL Unit Dil Fac D Method **Prep Type** Arsenic 0.00282 0.00200 mg/L 6020B Total/NA Barium 0.00984 0.00200 6020B Total/NA mg/L Total Suspended Solids 32.8 1.9 mg/L I-3765-85 Total/NA Client Sample ID: MW2 Lab Sample ID: 310-295984-5 Analyte Result Qualifier RL MDL Unit Dil Fac D Method **Prep Type** Barium 0.0109 0.00200 6020B Total/NA mg/L 0.0711 Zinc 0.0200 mg/L 6020B Total/NA

1.9

mg/L

9.0

I-3765-85

Total/NA

Job ID: 310-295984-1

Client: MER Engineering Inc

Project/Site: Georgia Pacific MW Sampling

Job ID: 310-295984-1

Lab Sample ID: 310-295984-1

11/26/24 20:43

Matrix: Water

Client Sample ID: MW5

Date Collected: 11/25/24 09:10 Date Received: 11/26/24 08:45

Total Suspended Solids (USGS

I-3765-85)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		12/03/24 09:00	12/05/24 19:00	1
Barium	0.0106		0.00200		mg/L		12/03/24 09:00	12/05/24 19:00	1
Cadmium	<0.000200		0.000200		mg/L		12/03/24 09:00	12/05/24 19:00	1
Chromium	<0.00500		0.00500		mg/L		12/03/24 09:00	12/05/24 19:00	1
Lead	<0.000500		0.000500		mg/L		12/03/24 09:00	12/05/24 19:00	1
Zinc	<0.0200		0.0200		mg/L		12/03/24 09:00	12/05/24 19:00	1
Method: SW846 7470A -	Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000200		0.000200		mg/L		12/13/24 15:25	12/16/24 11:22	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

1.9

mg/L

13.5

Eurofins Cedar Falls

Client: MER Engineering Inc

Project/Site: Georgia Pacific MW Sampling

Lab Sample ID: 310-295984-2

Matrix: Water

Job ID: 310-295984-1

Client Sample ID: MW3

Date Collected: 11/25/24 09:27 Date Received: 11/26/24 08:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		12/03/24 09:00	12/05/24 19:02	1
Barium	0.0162		0.00200		mg/L		12/03/24 09:00	12/05/24 19:02	1
Cadmium	<0.000200		0.000200		mg/L		12/03/24 09:00	12/05/24 19:02	1
Chromium	<0.00500		0.00500		mg/L		12/03/24 09:00	12/05/24 19:02	1
Lead	<0.000500		0.000500		mg/L		12/03/24 09:00	12/05/24 19:02	1
Zinc	<0.0200		0.0200		mg/L		12/03/24 09:00	12/05/24 19:02	1
Method: SW846 7470A - Mercur	y (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000200		0.000200		mg/L		12/13/24 15:25	12/16/24 11:24	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS I-3765-85)	44.5		3.8		mg/L			11/26/24 20:43	1

Client: MER Engineering Inc

Project/Site: Georgia Pacific MW Sampling

Job ID: 310-295984-1

Lab Sample ID: 310-295984-3

Matrix: Water

Client Sample ID: MW4
Date Collected: 11/25/24 09:48

Date Received: 11/26/24 08:45

1-3765-85)

Method: SW846 6020B - Metals	(ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		12/03/24 09:00	12/05/24 19:04	1
Barium	0.00958		0.00200		mg/L		12/03/24 09:00	12/05/24 19:04	1
Cadmium	<0.000200		0.000200		mg/L		12/03/24 09:00	12/05/24 19:04	1
Chromium	<0.00500		0.00500		mg/L		12/03/24 09:00	12/05/24 19:04	1
Lead	<0.000500		0.000500		mg/L		12/03/24 09:00	12/05/24 19:04	1
Zinc	<0.0200		0.0200		mg/L		12/03/24 09:00	12/05/24 19:04	1
- Method: SW846 7470A - Mercur	y (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000200		0.000200		mg/L		12/13/24 15:25	12/16/24 11:30	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS	56.0		3.8		mg/L			11/26/24 20:43	1

Client: MER Engineering Inc

Project/Site: Georgia Pacific MW Sampling

Lab Sample ID: 310-295984-4

Matrix: Water

Job ID: 310-295984-1

Client Sample ID: MW1

Date Collected: 11/25/24 10:10 Date Received: 11/26/24 08:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.00282		0.00200		mg/L		12/03/24 09:00	12/05/24 19:07	1
Barium	0.00984		0.00200		mg/L		12/03/24 09:00	12/05/24 19:07	1
Cadmium	<0.000200		0.000200		mg/L		12/03/24 09:00	12/05/24 19:07	1
Chromium	<0.00500		0.00500		mg/L		12/03/24 09:00	12/05/24 19:07	1
Lead	<0.000500		0.000500		mg/L		12/03/24 09:00	12/05/24 19:07	1
Zinc	<0.0200		0.0200		mg/L		12/03/24 09:00	12/05/24 19:07	1
- Method: SW846 7470A - Mercur	y (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000200		0.000200		mg/L		12/13/24 15:25	12/16/24 11:32	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS I-3765-85)	32.8		1.9		mg/l_			11/26/24 20:43	1

Client: MER Engineering Inc

Project/Site: Georgia Pacific MW Sampling

Job ID: 310-295984-1

Client Sample ID: MW2

Date Collected: 11/25/24 10:30 Date Received: 11/26/24 08:45 Lab Sample ID: 310-295984-5

Matrix: Water

Method: SV	V846 6020B	- Metals	(ICP/MS)
------------	------------	----------	----------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		12/03/24 09:00	12/05/24 19:09	1
Barium	0.0109		0.00200		mg/L		12/03/24 09:00	12/05/24 19:09	1
Cadmium	<0.000200		0.000200		mg/L		12/03/24 09:00	12/05/24 19:09	1
Chromium	< 0.00500		0.00500		mg/L		12/03/24 09:00	12/05/24 19:09	1
Lead	<0.000500		0.000500		mg/L		12/03/24 09:00	12/05/24 19:09	1
Zinc	0.0711		0.0200		mg/L		12/03/24 09:00	12/05/24 19:09	1

Method: SW846 7470A - Mercury (CVAA)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000200		0.000200		mg/L		12/13/24 15:25	12/16/24 11:35	1

I-3765-85)

General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Suspended Solids (USGS	9.0		1.9		mg/L			11/26/24 20:43	1	

Definitions/Glossary

Client: MER Engineering Inc

Project/Site: Georgia Pacific MW Sampling

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\$	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 310-295984-1

QC Sample Results

Client: MER Engineering Inc

Project/Site: Georgia Pacific MW Sampling

Job ID: 310-295984-1

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 310-441307/1-A

Matrix: Water

Analysis Batch: 441732

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 441307

мв мв

Analyte	Result C	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200	0.00200	mg/L		12/03/24 09:00	12/05/24 18:26	1
Barium	<0.00200	0.00200	mg/L		12/03/24 09:00	12/05/24 18:26	1
Cadmium	<0.000200	0.000200	mg/L		12/03/24 09:00	12/05/24 18:26	1
Chromium	<0.00500	0.00500	mg/L		12/03/24 09:00	12/05/24 18:26	1
Lead	<0.000500	0.000500	mg/L		12/03/24 09:00	12/05/24 18:26	1
Zinc	<0.0200	0.0200	mg/L		12/03/24 09:00	12/05/24 18:26	1

Lab Sample ID: LCS 310-441307/2-A Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike

Added

0.200

0.100

0 100

0.100

0.200

0.200

LCS LCS

0.2090

0.1073

0.09949

0.1005

0.2147

0.1778

Result Qualifier

Unit

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

D

Matrix: Water

Analyte

Arsenic

Barium

Cadmium

Chromium

Lead

Zinc

Analysis Batch: 441732

80 - 120

80 _ 120

80 - 120

100

107

89

Prep Batch: 441307

%Rec %Rec Limits 105 80 - 120 107 80 - 120 99 80 - 120

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 310-441702/1-A

Matrix: Water

Analysis Batch: 442584

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 441702

Result

Analyte

MB MB Qualifier

RL MDL Unit Prepared Analyzed Dil Fac <0.000200 0.000200 mg/L 12/13/24 15:25 12/16/24 10:43 Mercury

Lab Sample ID: LCS 310-441702/2-A

Matrix: Water

Analysis Batch: 442584

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 441702**

LCS LCS Spike %Rec Added Result Qualifier Unit %Rec Limits 0.00167 0.001632 Mercury mg/L 80 - 120

Method: I-3765-85 - Residue, Non-filterable (TSS)

Lab Sample ID: MB 310-441059/1

Matrix: Water

Analysis Batch: 441059

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Total Suspended Solids <5.0 5.0 mg/L 11/26/24 20:43

Lab Sample ID: LCS 310-441059/2

Matrix: Water

Analysis Batch: 441059

LCS LCS %Rec Spike Result Qualifier Added Unit %Rec Limits Analyte Total Suspended Solids 100 103.0 103 81 - 116 mg/L

Eurofins Cedar Falls

Prep Type: Total/NA

QC Association Summary

Client: MER Engineering Inc

Project/Site: Georgia Pacific MW Sampling

Metals

Prep Batch: 441307

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-295984-1	MW5	Total/NA	Water	3005A	
310-295984-2	MVV3	Total/NA	Water	3005A	
310-295984-3	MVV4	Total/NA	Water	3005A	
310-295984-4	MVV1	Total/NA	Water	3005A	
310-295984-5	MW2	Total/NA	Water	3005A	
MB 310-441307/1-A	Method Blank	Total/NA	Water	3005A	
LCS 310-441307/2-A	Lab Control Sample	Total/NA	Water	3005A	

Prep Batch: 441702

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-295984-1	MW5	Total/NA	Water	7470A	
310-295984-2	MVV3	Total/NA	Water	7470A	
310-295984-3	MVV4	Total/NA	Water	7470A	
310-295984-4	MVV1	Total/NA	Water	7470A	
310-295984-5	MW2	Total/NA	Water	7470A	
MB 310-441702/1-A	Method Blank	Total/NA	Water	7470A	
LCS 310-441702/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 441732

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-295984-1	MVV5	Total/NA	Water	6020B	441307
310-295984-2	MVV3	Total/NA	Water	6020B	441307
310-295984-3	MVV4	Total/NA	Water	6020B	441307
310-295984-4	MVV1	Total/NA	Water	6020B	441307
310-295984-5	MVV2	Total/NA	Water	6020B	441307
MB 310-441307/1-A	Method Blank	Total/NA	Water	6020B	441307
LCS 310-441307/2-A	Lab Control Sample	Total/NA	Water	6020B	441307

Analysis Batch: 442584

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-295984-1	MVV5	Total/NA	Water	7470A	441702
310-295984-2	MW3	Total/NA	Water	7470A	441702
310-295984-3	MW4	Total/NA	Water	7470A	441702
310-295984-4	MW1	Total/NA	Water	7470A	441702
310-295984-5	MW2	Total/NA	Water	7470A	441702
MB 310-441702/1-A	Method Blank	Total/NA	Water	7470A	441702
LCS 310-441702/2-A	Lab Control Sample	Total/NA	Water	7470A	441702

General Chemistry

Analysis Batch: 441059

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-295984-1	MVV5	Total/NA	Water	I-3765-85	
310-295984-2	MVV3	Total/NA	Water	I-3765-85	
310-295984-3	MVV4	Total/NA	Water	I-3765-85	
310-295984-4	MW1	Total/NA	Water	I-3765-85	
310-295984-5	MW2	Total/NA	Water	I-3765-85	
MB 310-441059/1	Method Blank	Total/NA	Water	I-3765-85	
LCS 310-441059/2	Lab Control Sample	Total/NA	Water	I-3765-85	

Eurofins Cedar Falls

Job ID: 310-295984-1

Lab Chronicle

Client: MER Engineering Inc

Project/Site: Georgia Pacific MW Sampling

Lab Sample ID: 310-295984-1

Matrix: Water

Job ID: 310-295984-1

Client Sample ID: MW5

Date Collected: 11/25/24 09:10 Date Received: 11/26/24 08:45

Client Sample ID: MW3

Date Collected: 11/25/24 09:27

Date Received: 11/26/24 08:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3005A			441307	F5MW	EET CF	12/03/24 09:00
Total/NA	Analysis	6020B		1	441732	NFT2	EET CF	12/05/24 19:00
Total/NA	Prep	7470A			441702	QTZ5	EET CF	12/13/24 15:25
Total/NA	Analysis	7470A		1	442584	QTZ5	EET CF	12/16/24 11:22
Total/NA	Analysis	I-3765-85		1	441059	MDU9	FET CF	11/26/24 20:43

Lab Sample ID: 310-295984-2

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number Analyst Lab or Analyzed Total/NA Prep 3005A 441307 F5MW EET CF 12/03/24 09:00 Total/NA 6020B 441732 NFT2 12/05/24 19:02 Analysis **EET CF** Total/NA 7470A 12/13/24 15:25 Prep 441702 QTZ5 **EET CF** Total/NA Analysis 7470A 442584 QTZ5 **EET CF** 12/16/24 11:24 Total/NA I-3765-85 441059 MDU9 EET CF 11/26/24 20:43 Analysis

Client Sample ID: MW4

Date Collected: 11/25/24 09:48

Date Received: 11/26/24 08:45

Lab	Sample	D:	310-295984-3	
-----	--------	----	--------------	--

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3005A			441307	F5MW	EET CF	12/03/24 09:00
Total/NA	Analysis	6020B		1	441732	NFT2	EET CF	12/05/24 19:04
Total/NA	Prep	7470A			441702	QTZ5	EET CF	12/13/24 15:25
Total/NA	Analysis	7470A		1	442584	QTZ5	EET CF	12/16/24 11:30
Total/NA	Analysis	I-3765-85		1	441059	MDU9	EET CF	11/26/24 20:43

Client Sample ID: MW1

Date Collected: 11/25/24 10:10

Date Received: 11/26/24 08:45

Lab	Sample	ID:	310-295984-4
			Bill - 4-1 VAI-4

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3005A			441307	F5MW	EET CF	12/03/24 09:00
Total/NA	Analysis	6020B		1	441732	NFT2	EET CF	12/05/24 19:07
Total/NA	Prep	7470A			441702	QTZ5	EET CF	12/13/24 15:25
Total/NA	Analysis	7470A		1	442584	QTZ5	EET CF	12/16/24 11:32
Total/NA	Analysis	I-3765-85		1	441059	MDU9	EET CF	11/26/24 20:43

Eurofins Cedar Falls

Lab Chronicle

Client: MER Engineering Inc

Project/Site: Georgia Pacific MW Sampling

Lab Sample ID: 310-295984-5

Matrix: Water

Job ID: 310-295984-1

Client Sample ID: MW2

Date Collected: 11/25/24 10:30 Date Received: 11/26/24 08:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3005A			441307	F5MW	EET CF	12/03/24 09:00
Total/NA	Analysis	6020B		1	441732	NFT2	EET CF	12/05/24 19:09
Total/NA	Prep	7470A			441702	QTZ5	EET CF	12/13/24 15:25
Total/NA	Analysis	7470A		1	442584	QTZ5	EET CF	12/16/24 11:35
Total/NA	Analysis	I-3765-85		1	441059	MDU9	EET CF	11/26/24 20:43

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Eurofins Cedar Falls

Page 16 of 21

12/16/2024

Accreditation/Certification Summary

Client: MER Engineering Inc

Project/Site: Georgia Pacific MW Sampling

Job ID: 310-295984-1

Laboratory: Eurofins Cedar Falls

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
lowa	State	007	12-01-25

5

8

9

11

13

Method Summary

Client: MER Engineering Inc

Project/Site: Georgia Pacific MW Sampling

Job ID: 310-295984-1

Method	Method Description	Protocol	Laboratory	
6020B	Metals (ICP/MS)	SW846	EET CF	
7470A	Mercury (CVAA)	SW846	EET CF	
I-3765-85	Residue, Non-filterable (TSS)	USGS	EET CF	
3005A	Preparation, Total Metals	SW846	EET CF	
7470A	Preparation, Mercury	SW846	EET CF	

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.
USGS = "Methods For Analysis Of Water And Fluvial Sediments", USGS, 1989

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Eurofins Cedar Falls

Environment Testing America

Cooler/Sample Receipt and Temperature Log Form

Client: M& L & STATE Project: Receipt Information Date/Time Received: TIME Received By: J Delivery Type: SUPS FedEx FedEx Ground US Mail Spee-Dee Lab Courier Lab Field Services Client Drop-off Other: Condition of Cooler/Containers Sample(s) received in Cooler? Yes No If yes: Cooler ID:						
City/State: Project: Receipt Information Date/Time DATE TIME Received By:						
Date/Time Received: Date						
Date/Time Received: TIME Received By: Delivery Type: Delivery Type						
Lab Courier Lab Field Services Client Drop-off Other: Condition of Cooler/Containers						
Condition of Cooler/Containers						
Sample(s) received in Cooler? X Yes No If yes: Cooler ID:						
,						
Multiple Coolers?						
Cooler Custody Seals Present? Yes No If yes: Cooler custody seals intact? Yes No						
Sample Custody Seals Present? Yes No If yes: Sample custody seals intact? Yes No						
Trip Blank Present? ☐ Yes ☑ No If yes: Which VOA samples are in cooler? ↓						
Temperature Record						
Coolant: Wet ice Blue ice Dry ice Other: NONE						
Thermometer ID: P Correction Factor (°C):						
• Temp Blank Temperature – If no temp blank, or temp blank temperature above criteria, proceed to Sample Container Temperature						
Uncorrected Temp (°C): -0 5 Corrected Temp (°C): -0 5						
Sample Container Temperature						
Container(s) used: CONTAINER 1 CONTAINER 2						
Uncorrected Temp (°C):						
Corrected Temp (°C):						
Exceptions Noted						
If temperature exceeds criteria, was sample(s) received same day of sampling?						
2) If temperature is <0°C, are there obvious signs that the integrity of sample containers is compromised? (e.g., bulging septa, broken/cracked bottles, frozen solid?)						
Note. If yes, contact PM before proceeding. If no, proceed with login						
Additional Comments						
·						

Eurofins Cedar Falls 3019 Venture Way Cedar Falls, 1A 50613 Phone: 319-277-2401 Fax: 319-277-2425	Chain of Custody Record	tody Recol	p		Çeurofins = Corte Te of TAP. I. C
Client Information	Sampler	Lab PM ⁻ Diefz Hanna	ш Ч	Carrier Tracking No(s):	COC No: 310-99837-22678 1
Cilent Contact Dave Minikis	Phone:	E-Mail: Hannah Dret	E-Mail: Hannah Dietz@et eurofinsus.com	State of Origin:	Page:
Company MER Engineering Inc	PWSID:		Analysis Requested	guested	#497
Address. 109 Regency West Court	Due Date Requested.				Preservation Codes: D - HN03
City Fort Dodge	TAT Requested (days):		(~	N - None
State, Zip: IA, 50501	Compliance Project A Yes A No		(7	[41 AT	
Phone:	Po#. Purchase Order not required		(SSI) AT	.01	
Email: minikis@mereng com	WO#		οΤ οΤ οΤ)	9
l	Project#: 31015312) =	hz	19Ula)
SIEGGEORGIA-PACTEIC GYPSUM NORTH RECYCLE PILE	SSOW#.		un u		of confor
		Matrix (Wewater (Westerd Sesouth	SAN	SS.I ZIN JEK	төдтий
Sample Identification	Sample Date Time G=grab)	FIBIG	#) #) # () # () # ()	U	문 Special Instructions/Note:
	\langle	Preservation Code: XX	N O		
MWS	11-25-24 9:10 G	Water N	XXXXXXX	×	PLEMSE SEND EED
MW3	9:27 6	Water NN	X X X X	×	MARK MEDA
must	9:48 (9	Water & ~	X X X X X X	ベメイ	1 32
Mwi	10:10 64	Water N N	X X X X X X	XX	Carpor + mal.
MWZ	V 10:30 G	Water NNX	XXXXXXX	X	M.M.CO.40E PSURTERIA.COM
	X	Sam	ple Disposal (A fee may be	Issessed if samples are	per than 1 mo
		Spec	Special Instructions/QC Requirements:	Visposal By Lab ents:	Archive For Months
Empty Kit Relinquished by:	Date.	Time.		Method of Shipment:	
Relinquished by Minima	Date/Time:	Company	Received by:	Date/Time:	Сомралу
Reliffquished by:			Received by:	Date/Time:	Сотралу
	Date/Time:	Company	Received by:	Date/Time:	11 24 0 Sapra
Cuspody beals infact: Custody Seal No.		0	Cooler Temperature(s) °C and Other Remarks	:marks:	
)			:		Ver 10/10/2024

Login Sample Receipt Checklist

Client: MER Engineering Inc

Job Number: 310-295984-1

Login Number: 295984

List Source: Eurofins Cedar Falls

List Number: 1 Creator: Homolar, Dana J

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

DNR Field Form 542-1322

(November 25, 2024 Groundwater Testing)

Site Name (leorgia Pacific	North Recycle Pile	Permit No	94-SDP-18-09	
Monitoring Well	/Piezometer No	n. MW5	Upgradient	X	
SEQUENCE NI	IMBER	(1)	Downgradien		
Name of person	sampling	MER Enginee	Permit No Upgradient Downgradient ering, Inc. – Dave Minil	cis	
Name of person	3diiipiiiig	THERE ENGINEE	51		
A. MONITOI	RING WELL/P	IEZOMETER CON	IDITIONS		
Well/Piezo	meter Properly	Canned? Yes	Standing Wat	er or Litter No	
If no expl	ain	cupped:	Standing Wat _ If yes, explain		
B. GROUND	WATER ELEV	VATION MEASUR	EMENT (±0.01 foot, N	(ISL)	
Elevation:	Top of inner w	vell casing 1117.	37 Ground Eleva	tion 1113.79	9
** Depth of We	ell 26.20	Inside Casing	g Diameter (in inches)	2.0	
Equipment V	Used Electro	onic water depth inc	Ground Eleva g Diameter (in inches) _ licator		
Groundwate	er Level (±0.01	foot below top of ir	nner casing, MSL):		
	,				
			Depth to	Groundwater	
		Date/Time	<u>Groundwater</u>	Elevation	
* Before Pu					
* After Purg	ging _			1106.70	
 Before Sar 	mpling $\underline{1}$	<u>1-25-24/ 9:10</u>	10.58	1106.79	
*C. WELL PU					
Quantity of W	ater Removed	from Well (gallons)	gal. /el) <u>(0.5 gal./ft. of liqu</u>		
No of Well V	olumes (based	on current water lev	(el) (0.5 gal./ft. of liqu	id)	
Was well num	ped/bailed dry	?n/a	<u> </u>		
was well pain	pour current and				
Equipmen	t used:				
Bail	er type P	VC-Disposable	Dedicated B Dedicated P	ailer? X	
Pum	ip type	•	Dedicated Pr	ımp?	
If no	ot dedicated, m	ethod of cleaning _			
*D. FIELD M	EASUREMEN	T			
			1 / 1 200 F		
Weather (Conditions	Cloudy - Wir	ndy / ± 30° F		
Field Mea	surements (afte	er stabilization):	Units	Co	
Tem	iperature	12.1	Units	C	
Eq	uipment Used	<u>Oakton Mult</u>	1-Parameter Tester 33		
pH.		6.94 0.14 M.16	i-Parameter Tester 35		
Eq	uipment Used	Oakton Mull	1-Parameter 1 ester 33	E/om	
Spe	cific Cond	2.00	Units <u>μ</u> ! i-Parameter Tester 35	5/CIII	
Eq	uipment Used	<u>Uakton Muli</u>	1-Parameter Tester 55		
	Total Double	Managered 25 04'			
Comments	Total Depth	Measured - 23.94			
NOTE: A44	l. I ala amatany	Depart and Q 1/2" x	11" site plan showing	locations of all surface	e and
NOTE: Atta	ich Laboratory	toring points. One	map per sampling round		
grot	muwater momi	toring points. One i	map per samping round	••	
* Omit if anl	magguring grov	ındwater elevations.			
** Course this d	incasuring grou	inning field work.	•		
Secure uns u	ata octore begi	illillig ficia work.			

		.æ

542-1322

Site N	Jame <u>Georgia Pacific North I</u>	Recycle Pile	Permit No	94-SDP-18-09	
Moni	toring Well/Piezometer No.	MW4	Upgradient		
SEQU	JENČE NUMBER	(3)	Downgradient	X	
Name	Jame <u>Georgia Pacific North I</u> toring Well/Piezometer No JENCE NUMBER of person sampling	MER Engineering	g, Inc. – Dave Minikis		
A.	MONITORING WELL/PIEZO Well/Piezometer Properly Capp If no, explain	METER CONDI	TIONS		
B. **	GROUNDWATER ELEVATION Elevation: Top of inner well case Depth of Well 32.30 Equipment Used Electro	ON MEASUREM sing 1116.36 Inside Casing Di nic water depth in	IENT (±0.01 foot, MSL Ground Elevation iameter (in inches) ndicator	1113.72 2.0	
	Groundwater Level (±0.01 foot	below top of inn	er casing, MSL):		
	<u>Date/</u>	<u>Γime</u>	Depth to Groundwater	Groundwater <u>Elevation</u>	
*	Before Purging				
*	After Purging Before Sampling 11-25-2			1007.55	
*	Before Sampling <u>11-25-</u>	<u> 24/ 9:48</u>	28.81	1087.55	
*C.	WELL PURGING				
Qu	antity of Water Removed from V. of Well Volumes (based on cu	Well (gallons)	gal.		
Ño	. of Well Volumes (based on cu	rrent water level)	(0.5 gal./tt. of liquid)		
Wa	as well pumped/bailed dry?	n/a			
	Equipment used:				
	Railer type PVC-I	Disposable	Dedicated Baile	r? <u>X</u>	
	Pump type		Dedicated Pump	o?	
	Bailer type PVC-I Pump type If not dedicated, method	of cleaning			
*D.	FIELD MEASUREMENT				
	Weather Conditions Field Measurements (after stab Temperature Equipment Used	Claudy	Windy / + 30° F		
	Weather Conditions	oilization).	• W IIIdy / ± 50 1		
	Temperature	9.9	UnitsC	0	
	Equipment Used	Oakton Multi-Pa	arameter Tester 35		
	pH	6.91		- Water - Wate	-
	pH Equipment Used	Oakton Multi-Pa	arameter Tester 35	/	
	Specific Cond. Equipment Used	2.93	Units Units µS/	CIII	
	Equipment Used	Oakton Multi-P	arameter Tester 33		
Con	nments <u>Total Depth Measured</u>				
NO	TE: Attach Laboratory Repo groundwater monitoring	rt and 8-1/2" x 11 points. One map	I" site plan showing loc p per sampling round.	ations of all surface	and
* O	mit if only measuring groundwa	iter elevations.			
** S	ecure this data before beginning	g field work.			542-1322
(Jun	e - 1989)				342-1322

Site I	Name <u>Georgia Pacifi</u>	c North Recycle Pile	Permit No	94-SDP-18-09)
Mon	toring Well/Piezometer	No. <u>MW1</u>	Ugradient Downgradient ing, Inc. – Dave Minikis		
SEQ	JENCE NUMBER	(4)	Downgradient		
Nam	e of person sampling	MER Engineer	ing, inc. – Dave willikis		*
A.	MONITORING WELL Well/Piezometer Proper If no, explain	PIEZOMETER CONI ly Capped? <u>Yes</u>	DITIONS Standing Water o _ If yes, explain	or Litter <u>No</u>	
B. **]	GROUNDWATER ELL Elevation: Top of inner Depth of Well 65. Equipment Used	EVATION MEASURE well casing <u>1115.6</u> 95 Inside Casing Electronic water depth	EMENT (±0.01 foot, MSI 8 Ground Elevation Diameter (in inches) n indicator	2) 1 2.0	11
	Groundwater Level (±0	.01 foot below top of i	nner casing, MSL):		
		<u>Date/Time</u>	I	Groundwater <u>Elevation</u>	
*	Before Purging		and an individual state of the		
*	After Purging Before Sampling			1058.35	
*	Before Sampling	11-25-24/10:10	57.33	1058.35	
*C.	WELL PURGING				
No	antity of Water Remove . of Well Volumes (base as well pumped/bailed dr	d on current water leve	ei) (0.5 gai./ii. oi iiquid)		
	Equipment used:				
	Bailer type	PVC-Disposable	Dedicated Baile Dedicated Pump	r?X	
	Pump type		Dedicated Pump	o?	
	If not dedicated,	method of cleaning			
*D.	FIELD MEASUREME	NT			
	Weather Conditions	Cloudy - Wine	$\frac{\text{dy} / \pm 30^{\circ} \text{ F}}{\text{Units}} = \frac{\text{C}^{\circ}}{\text{Parameter Tester 35}}$		
	Field Measurements (a	fter stabilization):			
	Temperature	11.1	Units C ^c	0	-
	Equipment Use	d <u>Oakton Multi</u>	-Parameter Tester 35		
	pH	d Oakton Multi	-Parameter Tester 35		
	Specific Cond	2.70	Units us	S/cm	
	Equipment Use	d Oakton Multi-	Units μS -Parameter Tester 35		
Con	ments <u>Total Depth Mea</u>				
NO	TE: Attach Laborator groundwater more	ry Report and 8-1/2" x nitoring points. One m	11" site plan showing loc ap per sampling round.	ations of all surfac	e and
* O	mit if only measuring gr	oundwater elevations.			
** 5	ecure this data before be	ginning field work.			542 1222
(Jun	e - 1989)				542-1322

Site N	Jame Georgia Pac	ific North Recycle Pile	Permit No	94-SD	P-18-09
Moni	toring Well/Piezomete	er No. MW2	Ugradient		77
SEQ	JENČE NUMBER 🔃	(5)	Downgradien	t	X
Name	e of person sampling _	ific North Recycle Pile or No. MW2 (5) MER Engineer	ring, Inc. – Dave Mini	K1S	
A.	MONTEON NICHWEI	LL/PIEZOMETER CON perly Capped? <u>Yes</u>	DITIONS		
B. **]	GROUNDWATER E Elevation: Top of inn Depth of Well	CLEVATION MEASURI er well casing 1120.0 3.83 Inside Casing Electronic water dept	EMENT (±0.01 foot, N 6 Ground Eleva Diameter (in inches) h indicator	MSL) ation	1116.90
	Groundwater Level (±0.01 foot below top of i	inner casing, MSL):		
		<u>Date/Time</u>	Depth to Groundwater	Groundwate <u>Elevation</u>	er
*	Before Purging				
*	After Purging	11-25-24/10:30	(2.29	1058.22	_
*	Before Sampling	11-25-24/10:30	02.38	1030.22	_
*C.	WELL PURGING				
Qı No W	antity of Water Remo b. of Well Volumes (ba as well pumped/bailed	ved from Well (gallons) used on current water lev dry?n/a	gal. el) (0.5 gal./ft. of liqu –	uid)	
	Equipment used:				
	Bailer type	PVC-Disposable	Dedicated B	Bailer?	X
	Pump type		Dedicated P	'ump'?	
	If not dedicate	d, method of cleaning			
*D.	FIELD MEASUREN	MENT			
	Weather Conditions	Cloudy - Win	ndy / ± 30° F		
	Field Measurements	(atter stabilization):			
	Temperature _	10.3 Sed Oakton Multi	Units	Co	
	Equipment U	sed Oakton Multi	-Parameter Tester 35		
		6.75	-Parameter Tester 35		
	Equipment U	3 3 2	Units	uS/cm	
	Fauinment I	Sed Oakton Multi 3.32 Used Oakton Multi	-Parameter Tester 35		
Con		1easured – 73.83'			
COL					
NO	TE: Attach Labora groundwater r	tory Report and 8-1/2" x nonitoring points. One r	11" site plan showing nap per sampling roun	g locations of a d.	ll surface and
* (Omit if only measuring Secure this data before	groundwater elevations.			
	occure uno uata octore	beginning field work.			- 10 12CC

(June - 1989) 542-1322