

Alliant Energy 4902 North Biltmore Lane P.O. Box 77007 Madison, WI 53707-1007

1-800-ALLIANT (800-255-4268) alliantenergy.com

November 27, 2024

Mr. Brian Rath Land Quality Bureau Iowa Department of Natural Resources 6200 Park Ave Des Moines, IA 50321

Subject: 2024 Annual Water Quality Report Interstate Power and Light Company – Ottumwa Midland Landfill Permit #90-SDP-8-92P

Dear Mr. Rath:

On behalf of Interstate Power and Light Company (IPL), Alliant Energy is providing the enclosed 2024 Annual Water Quality Report for the Ottumwa Midland Landfill, as required by Permit #90-SDP-8-92P and associated amendments.

Please call me at (515) 558-9704 or email me at <u>jennycoughlin@alliantenergy.com</u> with any questions regarding the enclosed report.

Sincerely,

Jenny Coughlin Sr. Environmental Specialist Alliant Energy Corporate Services, Inc.

Enclosures

Cc: IDNR Field Office #6 Rob Saunders – IPL Meghan Blodgett, Thomas Karwoski – SCS Engineers

2024 Annual Water Quality Report

Interstate Power and Light Company Ottumwa-Midland Landfill Permit #90-SDP-8-92P

Alliant Energy 4902 North Biltmore Lane Madison, Wisconsin 53718

25224073.00 | November 27, 2024

2830 Dairy Drive Madison, WI 53718 608-224-2830

CERTIFICATION

I, Thomas J. Karwoski, hereby certify that this report was prepared by me, or under my direct supervision, and that I am a qualified ground water scientist as defined in IAC SS 113.10(1)d.

Karuali

Signature

November 27, 2024 Date

Pages or Sheets Covered by this Certification:

2024 Annual Water Quality Report, Interstate Power and Light Company Ottumwa-Midland Landfill, Permit #90-SDP-8-92P

[This page left blank intentionally]

EXECUTIVE SUMMARY

Period of Report Coverage

The period of coverage for this report is from November 2023 through October 2024. The report includes the April 2024 water level measurement event and the August 2024 groundwater sampling event conducted at the Ottumwa-Midland Landfill (OML, also referred to as Site). OML is a coal combustion residual (CCR) landfill located near Ottumwa, lowa (**Figure 1**).

Report Priority

Comparison of the 2024 results to the Groundwater Protection Standards (GWPSs) indicated no new GWPS exceedances. GWPS exceedances in 2024 were:

- Shallow wells:
 - Cobalt above the Statewide Standard (SWS) at MW-108
 - Lithium above the GWPS at MW-1R, MW-15R, MW-100R, and MW-108
 - Manganese above the SWS at wells MW-15R and MW-108
- Mid-depth Pennsylvanian wells:
 - Lithium at MW-12, MW-13, MW-14, MW-16R, and MW-102P

Lithium concentrations at all sampled monitoring wells in August 2024 exceeded the GWPS (14 μ g/L). August 2023 was the first sampling event in which lithium was included, background concentrations have not yet been calculated. However, the widespread nature of lithium GWPS exceedances and the fact that the highest detected lithium concentrations was at background Pennsylvanian well MW-102P indicate that elevated lithium concentrations occur naturally at the Site.

The two shallow wells with cobalt and manganese exceedances are screened within the Pennsylvanian shale. As shown on **Figures 3** and **5**, both are upgradient of the landfill. The cobalt and manganese GWPS exceedances at MW-15R and MW-108 may reflect natural variation within the shale and/or impacts related to the presence of coal and historic coal mining activities.

SCS Engineers (SCS) recommends that the current monitoring program be continued during 2025, with updates to the analytical parameter list as described in **Section 8.0**. A new monitoring well was installed to the south of TCB-1/2 in November 2024. Documentation of this well installation will be submitted under separate cover, and this well will be included in the 2025 monitoring events.

Site Status and Applicable Rules

The following summarizes the Site status and applicable rules associated with groundwater sampling at the OML site:

- Landfill Status: Active
- Types of Wastes Accepted: CCR

• Applicable Iowa Administrative Code (IAC) Rules: 567-103 current version, 567-115.26(6) (certain provisions), 567-115.21 (referenced for monitoring well maintenance and evaluation requirements, in place of the rescinded 567-110.9). The monitoring and reporting were also performed in accordance with the provisions of the variance to 567-103.1(2)f granted on July 20, 2017, and the conditions of the landfill permit renewal dated July 21, 2017.

Sect	on	Pag	e
Certif	icatio	n	i
Execu	utive S	Summary	iii
Table	of Co	ontents	. v
Acror	yms/	Abbreviations	vii
1.0	Site I	Background	.1
	1.1	Site History	1
	1.2	Site Hydrogeology	1
		1.2.1 Geology	1
		1.2.2 Hydrogeology/Groundwater Flow Conditions	1
2.0	Sam	pling Status Summary	.2
3.0	Moni	itoring Well Maintenance and Performance Summary	.2
	3.1	Well Maintenance Recommendations	3
4.0	Quali	ity Assurance/Quality Control Summary	.3
	4.1	Sample Collection and Handling	4
	4.2	Analytical Sensitivity and Blanks	4
	4.3	Accuracy	4
	4.4	Data Quality Summary	4
5.0	Com	parison to Standards	.5
	5.1	Statistical Analysis	5
	5.2	2024 Results	5
	5.3	Standards History	
6.0	Sum	mary of Findings for Groundwater	.6
7.0	Addit	tional Reporting	
	7.1	Annual Inspection and Leachate Control System Performance Evaluation	7
	7.2	Other Monitoring Points	
		7.2.1 Surface Water Monitoring	7
		7.2.2 Leachate Collection System	
		7.2.3 Underdrain System	
8.0		ptor Survey	
9.0	Reco	ommendations	.8
10.0	Refe	rences	.8

Tables

- Table 1.Monitoring Program Summary
- Table 2.Monitoring Program Implementation Schedule
- Table 3.Monitoring Well Maintenance and Performance Reevaluation Schedule
- Table 4A.Monitoring Well Maintenance and Performance Summary
- Table 4B.Vertical Gradients
- Table 5.Background Summary
- Table 6.
 Summary of Well/Detected Constituent Pairs with No Previous SSIs
- Table 7.Summary of Ongoing and Newly Identified SSIs
- Table 8. Historic SSIs & GWPS Exceedances
- Table 9.
 Historical Prediction Limits and Groundwater Protection Standards
- Table 10.Groundwater Quality Trend Summary
- Table 11.Data Analytical Summary Additional Points

Figures

- Figure 1. Site Location Map
- Figure 2. Site Plan
- Figure 3. Water Table Map April 2, 2024
- Figure 4. Water Table Map August 6-8, 2024
- Figure 5. Potentiometric Surface Map Pennsylvanian Unit April 2, 2024
- Figure 6. Potentiometric Surface Map Pennsylvanian Unit August 6-8, 2024

Appendices

- Appendix A Groundwater Sampling Field Sheets
- Appendix B Laboratory Analytical Reports
- Appendix C Summary of Historical Groundwater Chemistry
- Appendix D Statistical Evaluation of Groundwater Monitoring Results
 - D1 Times Series Graphs Shallow
 - D2 Times Series Graphs Pennsylvanian
 - D3 Outlier Analysis Results Shallow
 - D4 Outlier Analysis Results Pennsylvanian
 - D5 Interwell Prediction Limit Analysis Results Shallow
 - D6 Interwell Prediction Limit Analysis Results Pennsylvanian
- Appendix E Groundwater Quality Trend Summary
- Appendix F Additional Points Data History, 2020-Present
- Appendix G 2024 Annual Facility Inspection Summary and Leachate Control System Performance Evaluation
- Appendix H Receptor Survey

 $l:\25224073.00\Deliverables\2024\AWQR\241127_OML_2024\AWQR.docx$

ACRONYMS/ABBREVIATIONS

CCR = Coal Combustion Residual COC = Chain of Custody EPA = Environmental Protection Agency GWPS = Groundwater Protection Standard IAC = Iowa Administrative Code IDNR = Iowa Department of Natural Resources LCS = Laboratory Control Sample LCSD = Laboratory Control Sample Duplicate MS = Matrix Spike MSD = Matrix Spike Duplicate MCL = EPA Maximum Contaminant Level OML or Site = Ottumwa-Midland Landfill QA/QC = Quality Assurance/Quality Control RCRA = Resource Conservation and Recovery Act SCS = SCS Engineers SMCLs = Secondary Maximum Contaminant Levels SWS = IDNR Statewide Standard for a protected groundwater source SSI = Statistically Significant Increase above background UPL = Upper Prediction Limits U.S. EPA = U.S. Environmental Protection Agency

[This page left blank intentionally]

1.0 SITE BACKGROUND

1.1 SITE HISTORY

The Ottumwa Midland Landfill (OML, also referred to as Site) is an active Coal Combustion Residual (CCR) landfill located near Ottumwa, lowa (**Figure 1**). OML accepted waste during the 2023 to 2024 period covered by this report. The amount of CCR accepted during this period is provided in the Annual Facility Inspection Summary (**Appendix G**). A site plan is shown on **Figure 2**.

The southern portion of the landfill was developed in a former clay mine pit. Mining operations included the excavation of the unconsolidated clay material and approximately 40 feet of shale from the pit. Spoils from the mining operation, including both unconsolidated material and shale, were stockpiled to the east, west, and south of the existing CCR landfill. Collapsed underground coal mines appear to exist in the southeastern and northwestern portions of the property, outside the active filling area. More details regarding the Site geology can be obtained in the Hydrogeological Investigation Reports prepared by Montgomery Watson in May 1994 (Montgomery Watson, 1994) and by SCS in August 2013 (SCS, 2013).

Expansion construction began at the Site in March 2014, following the issuance of Amendment #6 to Permit #90-SDP-08-92P, issued February 28, 2014. The Phase 1 Liner Construction Documentation Report was approved by the Iowa Department of Natural Resources (IDNR) on January 12, 2016, and CCR disposal in Phase 1 of the expansion began in October 2016. Monitoring wells associated with Phase 1 of the landfill expansion were added to the groundwater sampling program in September 2015. The sampling program is summarized in **Table 1**. Additional parameters were included in the August 2023 and August 2024 monitoring events as outlined in communications with IDNR prior to the sampling event, including the Recommended Assessment Steps document submitted to IDNR on June 30, 2023.

1.2 SITE HYDROGEOLOGY

1.2.1 Geology

The Site geology consists of unconsolidated deposits of loess and till (generally silt and clay), which overlie the Pennsylvanian shale. The unconsolidated material and up to 40 feet of shale were removed from the original landfill area during historic clay mining operations at the Site. The base of the landfill is within the Pennsylvanian shale. Mississippian limestone and sandstone underlie the Pennsylvanian shale. Coal beds are present within the Pennsylvanian shale, and evidence of historical underground mining of these coal beds has been observed at the OML site. The Pennsylvanian shale is considered to be a confining unit, and the Mississippian limestone and sandstone and sandstone unit is considered to be the uppermost aquifer in the area.

More detailed descriptions of the regional and local geology are provided by the Hydrogeological Investigation Reports prepared by Montgomery Watson in May 1994 (Montgomery Watson, 1994) and SCS in August 2013 (SCS, 2013).

1.2.2 Hydrogeology/Groundwater Flow Conditions

Groundwater and surface water levels were measured during April and August 2024, as shown in **Table 2**. The groundwater levels during the August event were measured prior to purging the wells for

sampling. The groundwater and surface water elevation data are included in **Table 4A**. The April and August 2024 water level data were used to create water table and potentiometric surface maps (**Figure 3** through **Figure 6**). Flow directions were consistent with historical data.

As described below in **Section 3.0**, a biennial evaluation of water level conditions was included in the 2023 Annual Water Quality Report (AWQR). The next biennial evaluation will be completed in 2025.

2.0 SAMPLING STATUS SUMMARY

The IDNR requested that sampling data be summarized in a series of tables to consistently convey information related to groundwater monitoring at CCR landfills throughout lowa. These tables are discussed within the text in appropriate sections as noted and included in the Tables section at the end of the text. **Table 1** provides an overview of the sampling status for the Site, including the monitoring points in the program, current monitoring program, comparative statistics findings, and the number of samples collected. **Figure 2** depicts the monitoring network for OML.

Field sheets from the August 2024 sampling event are included in **Appendix A**. Sampling completed in 2018 through 2024 and anticipated sampling for 2025 are summarized in **Table 2**. The laboratory analytical report for the August 2024 sampling event is included in **Appendix B**. Groundwater chemistry summary tables for sampling performed before 2020 are included in **Appendix C**. Summary tables of groundwater chemistry data for sampling performed since transitioning to unfiltered sampling in 2017 are included with the statistical analysis in **Appendix D**.

2024 was the second year in which parameters calcium, lithium, molybdenum, and total suspended solids (TSS) were included in the sampling program, as requested by IDNR. Because of the low number of samples for the parameters listed above, UPLs cannot be calculated at this time. UPL calculations for these parameters will be included in the report when a minimum of four samples have been collected at background wells. Additionally, field parameters dissolved oxygen (DO) and oxidation-reduction potential (ORP) are included in the tables of this AWQR for evaluation of the potential influences on groundwater chemistry due to reducing groundwater conditions. DO and ORP are required parameters to determine stability during low-flow sampling and have been included in AWQRs prior to 2023 on field sheets.

3.0 MONITORING WELL MAINTENANCE AND PERFORMANCE SUMMARY

lowa Administrative Code (IAC) 567-115.21 was referenced for monitoring well maintenance and evaluation, in place of the rescinded 567-110.9. Each requirement is listed below in italics, followed by text describing how the requirement was addressed. **Table 3** provides the years in which each requirement was previously met and for which it is next scheduled.

a. A biennial examination of high and low water levels accompanied by a discussion of the acceptability of well location (vertically and horizontally) and exposure of the screened interval to the atmosphere.

An evaluation was included in the 2023 AWQR and concluded that the existing monitoring wells adequately characterize the groundwater quality and groundwater flow conditions at the site. The next biennial evaluation will be required in 2025.

b. A biennial evaluation of water level conditions in the monitoring wells to ensure that the effects of waste disposal or well operation have not resulted in changes in the hydrologic setting and resultant flow paths.

An evaluation was included in the 2023 AWQR. The next biennial evaluation will be required in 2025. Water levels in 2024 were generally consistent with historical data.

c. Annual measurement of well depths to ensure that wells are physically intact and not filling with sediment.

Well depths measured during April and August 2024 in all wells that do not contain dedicated pumps are summarized in **Table 4A**. The maximum discrepancy between the measured total depth and as-installed total depth was less than 1 foot in all wells except MW-9M, MW-107, MW-110P, MW-116M, MW-117, and MW-122P. The discrepancy at MW-9M was apparently due to a transcription error in the field. At all wells except MW-117, total depths measured in August 2024 were within 1 foot of the as-built depth, suggesting April 2024 measurements were anomalous in these wells. The discrepancies at MW-117 in April and August 2024 were 1.13 and 1.16 feet, respectively. Total depths at this well will continue to be monitored and compared to the as-built depth in 2025. The groundwater level at this well is within the open screen, and the well is functioning as intended to provide groundwater elevation data.

d. Every five years conduct in-situ permeability tests on monitoring wells to compare test data with those collected originally to determine if well deterioration is occurring.

A variance to IAC 567-110.9(2)(d) for in situ permeability tests every 5 years was granted by IDNR in a letter dated April 1, 1999. Although IAC 567-110 has been rescinded since the variance was granted, the same permeability test requirements are now in IAC 567-115.21(2), and our understanding is that the conditions of the variance still apply. The conditions of the variance state that, if a well cannot be sampled or purged because of plugging, the well will be replaced within 6 months of reporting this condition to IDNR in the annual report. The monitoring wells at this Site are performing adequately as noted above.

3.1 WELL MAINTENANCE RECOMMENDATIONS

No well maintenance activities are recommended based on observations during the 2024 sampling events.

One new monitoring well was installed downgradient of temporary contact water basin TCB-1/2 in November 2024. Documentation of the well installation will be submitted under separate cover, and this well will be added to the monitoring program in 2025.

4.0 QUALITY ASSURANCE/QUALITY CONTROL SUMMARY

Data validation quality assurance/quality control (QA/QC) procedures are performed on analytical results for laboratory quality control samples, and a quality assurance assessment of the data is conducted as the data are generated. The QA/QC review procedure provides documentation of the accuracy and precision of the analytical data and confirms that the analyses are sufficiently sensitive to detect constituents at levels below regulatory standards, where such standards exist. QA/QC data validation includes review of sample handling, analytical sensitivity, blanks, accuracy, and precision. The QA/QC and data validation procedures and findings are discussed in more detail below.

4.1 SAMPLE COLLECTION AND HANDLING

Groundwater samples are collected using dedicated low-flow pumps. Samples are not field filtered. A water level measurement tape is the only down-hole equipment used in multiple wells and is decontaminated between wells. All samples are placed on ice after collection and are transported to the laboratory in sealed coolers under Chain of Custody (COC).

Sample receipt forms were reviewed and checked to verify that samples were received in good condition and within the acceptable temperature range. COC records for each sampling event were reviewed and confirmed that information was complete.

Monitoring well MW-17 and leachate headwell LP-1 were not sampled in August 2024 because they were dry during the sampling event. Surface water monitoring points SW-1, SW-2, SW-4, and SW-5, and groundwater underdrain monitoring point GU-2 were not sampled in August 2024 because they were either dry or insufficient water was present for sample collection.

4.2 ANALYTICAL SENSITIVITY AND BLANKS

Laboratory QA/QC procedures and post-analysis data validation assist in producing data of acceptable quality and reliability. Eurofins - Cedar Falls is a certified laboratory in lowa and performed QA/QC procedures, including analyzing laboratory method blanks in association with samples collected for the project to check for contributions to the analytical results possibly attributable to laboratory-based contamination. A field blank was submitted with the groundwater samples to assess whether cross-contamination occurred during sample handling and transport. No detections were reported for the August 2024 field blank sample. No detections were reported in the method blanks.

4.3 ACCURACY

Laboratory analytical accuracy can be assessed by evaluating the constituent recoveries from the following laboratory QA/QC samples: laboratory control sample (LCS), LCS duplicate (LCSD), matrix spike (MS), and MS duplicate (MSD). LCS/LCSD samples assess the accuracy of analytical procedures by checking the ability to recover constituents added to clean aqueous matrices. MS/MSD samples check the ability to recover constituents added to the sample matrix. Because the QC samples are run by the laboratory on a per-batch basis and a batch may include other projects, the MS/MSD results run with the batch are included in the laboratory report only if the sample used for the MS/MSD originated in the OML project.

For the analysis of the August 2024 samples, LCS, MS, and MSD results reported in the analytical laboratory report were within applicable control limits. Control limits did not apply to some parameters due to analyte concentrations present in the original sample.

4.4 DATA QUALITY SUMMARY

Based on the above QA/QC procedures and the field sampling standard operating procedures, the samples collected during this reporting period are considered to be representative of Site conditions at the locations and times they were obtained. Based on the QA/QC review, no samples were rejected as unusable due to QC failures or other issues identified during the data review.

5.0 COMPARISON TO STANDARDS

5.1 STATISTICAL ANALYSIS

Statistical analysis is completed for the Site on an annual basis. The 2024 Annual Statistical Summary Report is included in **Appendix D**, including a summary table of data used for the statistical analysis of each parameter. **Table 5** provides the background and Groundwater Protection Standard (GWPS) summary for the Site.

Groundwater samples collected in 2024 were unfiltered, in accordance with the variance to 567-103.1(2)f granted on July 20, 2017, and the conditions of the landfill permit renewal dated July 21, 2017. The 2024 sampling event was the eighth round of unfiltered samples collected at the Site, and 2024 was the fifth reporting period during which the statistical approach described below was applied at the Site.

The selected statistical analysis method uses a prediction interval approach as recommended for detection monitoring in the March 2009 U.S. Environmental Protection Agency (U.S. EPA) Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at Resource Conservation and Recovery Act (RCRA) Facilities (Unified Guidance).

Interwell testing was selected for the prediction interval evaluation, with monitoring well MW-1/1R used as the background well for the shallow unit and MW-102P used as the background well for the mid-depth Pennsylvanian unit. Monitoring results from the downgradient wells were compared to the UPLs to evaluate whether a Statistically Significant Increase (SSI) over background has occurred. UPL calculations were completed in 2024 using the eight rounds of unfiltered sample results for metals and a longer data record for anions that are not typically affected by filtration (e.g., chloride, sulfate).

Detection of an SSI at a compliance well indicates that the groundwater quality is different than the background groundwater quality, but does not necessarily indicate an impact to public health or the environment.

To evaluate potential health impacts, the monitoring results were compared to health-based GWPS values. The GWPS values were set at the drinking water MCL if one exists; otherwise, the Iowa Statewide Standard (SWS) for protected groundwater was used. If the UPL established based on background monitoring was higher than the MCL or SWS, then the GWPS was set at the UPL. Secondary Maximum Contaminant Levels (SMCLs) were not used to establish GWPS values because SMCLs are not health-based standards, but they are shown in **Table 5** for comparison with the UPL and GWPS values.

5.2 2024 RESULTS

Table 6 is a summary of monitoring points/detected constituents from the 2024 sampling event thatdid not exceed a UPL. Table 7 provides a summary of ongoing and newly identified SSIs andcompares these concentrations to the GWPS values.

Table 8 provides a visualization of the historic SSIs and regulatory standard exceedances since 2017, the first year during which unfiltered samples were collected at the Site. **Table 8** does not identify SSIs prior to 2020, as this was the first year UPLs were calculated.

August 2024 is the eighth event completed since transitioning to unfiltered sampling. Trend analyses for wells and parameters with regulatory standard exceedances were performed. **Table 10** provides a summary of the wells, parameters and trends that were performed. The Trends report can be found in **Appendix E**.

5.3 STANDARDS HISTORY

The standards for 2020 through 2024 are summarized in **Table 9**. Graphs of standards history were not prepared because this is only the 5th year that UPL calculations have been completed since the transition to unfiltered sampling and the change in statistical method. Graphs will be added in future AWQRs.

6.0 SUMMARY OF FINDINGS FOR GROUNDWATER

This was the fifth year that the new statistical approach using UPLs was implemented; results have only been compared to the UPLs calculated for the current year. The UPL exceedances noted for 2024 were generally similar to the UPL exceedances in 2023 and to results flagged as being above background using the previous method (mean plus two standard deviations).

Comparison of the 2024 results to the GWPSs indicated no new GWPS exceedances. GWPS exceedances in 2024 were:

- Shallow wells:
 - Cobalt above the SWS at MW-108
 - Lithium above the GWPS at MW-1R, MW-15R, MW-100R, and MW-108
 - Manganese above the SWS at wells MW-15R and MW-108
- Mid-depth Pennsylvanian wells:
 - Lithium at MW-12, MW-13, MW-14, MW-16R, and MW-102P

Lithium concentrations at all sampled monitoring wells in August 2024 exceeded the GWPS (14 μ g/L). August 2023 was the first sampling event in which lithium was included, background concentrations have not yet been calculated. However, the widespread nature of lithium GWPS exceedances and the fact that the highest detected lithium concentrations was at background Pennsylvanian well MW-102P indicate that elevated lithium concentrations occur naturally at the Site.

MW-17 was not sampled in August 2022, August 2023, or August 2024 because it was dry during each sampling event, but the results for the August 2021 event indicated that concentrations of cobalt and manganese exceeded the SWS. MW-17 was installed in an unconventional manner, in a trench adjacent to the sedimentation basin rather than installed in a boring like a typical monitoring well. Based on this unusual construction MW-17 may not be providing representative or useful data in the context of groundwater monitoring at the Site.

The two shallow wells with cobalt and manganese exceedances are screened within the Pennsylvanian shale. As shown on **Figures 3** and **5**, both are upgradient of the landfill. The cobalt and manganese GWPS exceedances at MW-15R and MW-108 may reflect natural variation within the shale and/or impacts related to the presence of coal and historic coal mining activities.

TSS was added to the monitoring program in 2023. Measured TSS was at or below 5 mg/L in all monitoring well samples except MW-14 (6 mg/L). Dedicated low flow pumps are used at the Site to minimize sample turbidity at monitoring wells to the extent practicable.

Calcium, lithium, and molybdenum were added to the monitoring program in 2023. Calcium, lithium, and molybdenum were all detected at multiple wells in August 2024. There is no applicable GWPS for calcium. Lithium concentrations are discussed above, and all detected molybdenum concentrations were below the applicable GWPS.

7.0 ADDITIONAL REPORTING

7.1 ANNUAL INSPECTION AND LEACHATE CONTROL SYSTEM PERFORMANCE EVALUATION

The 2024 Annual Facility Inspection Summary and Leachate Control System Performance Evaluation is included in **Appendix G.**

7.2 OTHER MONITORING POINTS

7.2.1 Surface Water Monitoring

Surface water monitoring points SW-1R, SW-2R, SW-4, and SW-5 were dry during the August 2024 sampling event (**Table 4A**). SW-3 was sampled in August 2024. Analytical results for SW-3 were consistent with historical results and are included in **Table 11**.

7.2.2 Leachate Collection System

A sample was voluntarily collected from the leachate storage lagoon during the August 2024 sampling event. The leachate storage lagoon is located on the south side of 130th Street. The Phase 1 and 2 Temporary Contact Water Basin (TCB-1/2) was also sampled in August 2024.

Results for the 2024 leachate samples were consistent with historical results and are included in **Table 11**. Historic analytical results for leachate sample results are included in **Appendix C** and **Appendix F**.

7.2.3 Underdrain System

Samples were collected at the active landfill underdrain system (GU-EX), and the Phase 1 Expansion underdrain system (GU-1 [Temporary]).

Results for the 2024 underdrain system were consistent with historical results and are included in **Table 11**. Historic analytical results for leachate sample results are included in **Appendix C** and **Appendix F**.

Re-routing of the underdrain system discharge is currently in the design phase. Updates on this work will be provided to IDNR under separate cover.

8.0 RECEPTOR SURVEY

As requested by IDNR, an updated receptor survey was completed in 2024. SCS contacted Wapello County to request assistance with searching relevant records for water supply sources near OML. Mr. Travis Baily of the Wapello County Engineers Office responded and stated that most of Wapello County is on Rural Water, and searches of the GeoSAM and Private Well Tracking System databases would yield the best information about potentially-active private water supply sources in the area. Mr. Baily performed a search of the GeoSAM and PWTS databases and provided the results to SCS. The only PWTS record generated by this search is associated with a monitoring well at OML. GeoSAM search results for wells apparently located within one mile of OML are summarized in **Appendix H**.

9.0 **RECOMMENDATIONS**

SCS recommends that the current monitoring program be continued during 2025, with the inclusion of calcium, lithium, molybdenum, and TSS. In addition, the new well installed to the south of TCB-1/2 in November 2024 will be included in 2025 monitoring.

10.0 REFERENCES

Montgomery Watson, 1994, Hydrogeological Investigation Report and Hydrologic Monitoring System Plan, Ottumwa-Midland Commercial Landfill, Ottumwa, IA, May 1994.

SCS Engineers, 2013, Proposed Landfill Expansion Soil and Hydrologic Investigation Report, Ottumwa Midland Landfill, Ottumwa, IA, September 2013.

U.S. Geological Survey, 1983, Water Resources Investigations Open File Report 82-1014, Hydrology of Area 38, Western Region, Interior Coal Province, Iowa and Missouri.

Tables

- 1 Monitoring Program Summary
- 2 Monitoring Program Implementation Schedule
- 3 Monitoring Well Maintenance and Performance Reevaluation Schedule
- 4A Monitoring Well Maintenance and Performance Summary
- 4B Vertical Gradients
- 5 Background Summary
- 6 Summary of Well/Detected Constituent Pairs with No Previous SSIs
- 7 Summary of Ongoing and Newly Identified SSIs
- 8 Historic SSIs & GWPS Exceedances
- 9 Historical Prediction Limits and Groundwater Protection Standards
- 10 Groundwater Quality Trend Summary
- 11 Data Analytical Summary Additional Points

Table 1 Monitoring Program Summary 2024 Annual Water Quality Report Ottumwa Midland Landfill Permit No. 90-SDP-8-92P

Monitoring Point	Formation	Current Monitoring Program	Change for Next Sampling Event	UPL Exceedances	Total # of Samples in each monitoring program since January 1, 2018
Sampled Monitoring W	/ells				
MW-1R*	Shallow (Unconsolidated)	Routine	NC	None [#]	7
MW-12	Pennsylvanian Shale	Routine	NC	Chloride, Fluoride	7
MW-13	Pennsylvanian Shale	Routine	NC	Chloride	7
MW-14	Pennsylvanian Shale	Routine	NC	Arsenic, Chloride	7
				Boron, Cobalt, Magnesium,	
MW-15R	Shallow (Unconsolidated)	Routine	NC	Manganese, TDS	7
MW-16R	Pennsylvanian Shale	Routine	NC	Barium, Chloride	7
MW-17	Shallow (Unconsolidated)	Routine	NC	N/A	4
MW-100R	Shallow (Unconsolidated)	Routine	NC	None	7
				Boron, Magnesium, Manganese,	
MW-101R	Shallow (Unconsolidated)	Routine	NC	Selenium, TDS	7
MW-102P	Pennsylvanian Shale	Routine	NC	None [#]	7
				Arsenic, Boron, Cobalt, Iron, Manganese,	
MW-108	Shallow (Unconsolidated)	Routine	NC	Zinc	7

Table 1 Monitoring Program Summary 2024 Annual Water Quality Report Ottumwa Midland Landfill Permit No. 90-SDP-8-92P

Monitoring Point			Change for Next Sampling Event	UPL Exceedances	Total # of Samples in each monitoring program since January 1, 2018	
Water Level Only Mon	itoring Wells					
MW-5	Shallow (Unconsolidated)	Routine	NC	N/A	Water levels only	
MW-6	Shallow (Unconsolidated)	Routine	NC	N/A	Water levels only	
MW-8	Shallow (Unconsolidated)	Routine	NC	N/A	Water levels only	
MW-9P	Pennsylvanian Shale	Routine	NC	N/A	Water levels only	
MW-9M	Mississippian Limestone	Routine	NC	N/A	Water levels only	
MW-10R	Shallow (Unconsolidated)	Routine	NC	N/A	Water levels only	
MW-11R	Shallow (Unconsolidated)	Routine	NC	N/A	Water levels only	
MW-102	Shallow (Unconsolidated)	Routine	NC	N/A	Water levels only	
MW-102M	Mississippian Limestone	Routine	NC	N/A	Water levels only	
MW-107	Shallow (Unconsolidated)	Routine	NC	N/A	Water levels only	
MW-110	Shallow (Unconsolidated)	Routine	NC	N/A	Water levels only	
MW-110P	Pennsylvanian Shale	Routine	NC	N/A	Water levels only	
MW-111	Shallow (Unconsolidated)	Routine	NC	N/A	Water levels only	
MW-112	Shallow (Unconsolidated)	Routine	NC	N/A	Water levels only	
MW-115	Shallow (Unconsolidated)	Routine	NC	N/A	Water levels only	
MW-116	Shallow (Unconsolidated)	Routine	NC	N/A	Water levels only	
MW-116P	Pennsylvanian Shale	Routine	NC	N/A	Water levels only	
MW-116M	Mississippian Limestone	Routine	NC	N/A	Water levels only	
MW-117	Shallow (Unconsolidated)	Routine	NC	N/A	Water levels only	
MW-122	Shallow (Unconsolidated)	Routine	NC	N/A	Water levels only	
MW-122P	Pennsylvanian Shale	Routine	NC	N/A	Water levels only	
MW-122M	Mississippian Limestone	Routine	NC	N/A	Water levels only	

Table 1 Monitoring Program Summary 2024 Annual Water Quality Report Ottumwa Midland Landfill Permit No. 90-SDP-8-92P

Monitoring Point	Formation	Current Monitoring Program	Change for Next Sampling Event	UPL Exceedances	Total # of Samples in each monitoring program since January 1, 2018
Surface Water Monito	ring Points				
SW-1R	N/A (Surface Water)	Routine	NC	N/A	1 (typically dry)
SW-2R	N/A (Surface Water)	Routine	NC	N/A	1 (typically dry)
SW-3	N/A (Surface Water)	Routine	NC	N/A	7
SW-4	N/A (Surface Water)	Routine	NC	N/A	2 (often dry)
SW-5 N/A (Surface Water)		Routine	NC	N/A	4
Other monitoring poin	ts				
Underdrain Wet Well/Pumping Station (GU-EX)	N/A (Underdrain)	Routine	NC	N/A	6
GU-1 Temp	N/A (Underdrain)	Routine	NC	N/A	5
GU-2 Temp	N/A (Underdrain)	Routine	NC	N/A	1 (typically dry)
TCB-1/2 Leachate Wet Well/	N/A (Temporary Contact Basin)	Routine	NC	N/A	7
Pumping Station	N/A (Leachate)	Routine (Voluntary)	NC	N/A	1
LP-1	N/A (Leachate)	Routine (Voluntary)	NC	N/A	0 (typically dry)
Leachate Basin	N/A (Leachate)	Routine (Voluntary)	NC	N/A	7

Comments:

*: MW-1R was installed in 2019 to replace former monitoring well MW-1

[#]: UPLs do not apply to MW-1R or MW-102P because they are background wells.

N/A = Not Applicable

NC = No change

Updated by	LH	Date	9/26/2024
Checked by	RM	Date	11/5/2024

I:\25224073.00\Deliverables\2024 AWQR\Tables\[AWQR_OML_Tables_241104.xlsx]1 - Monitoring Program Summary

<u> </u>																
		1				R		ates and Constituents		*					Upcoming Sampling Da	tes and Constituents
Monitoring Point	4/19/2018	8/14/2018	4/16/2019	8/7-9/2019	5/20-21/2020*	8/24-25/2020	4/12-13 & 15/2021	8/9-12/2021	4/13-14/2022	8/22-24/2022	4/3-4/2023	8/28-31/2023	4/3-4/2024	8/6-8/2024	April 2025	August 2025
		1						Sampled Monitoring We	lls					1 4 4 5	•	
	Groundwater Elevation	Not Sampled (Well Dry)	List A + Fluoride and TDS, Groundwater	I.						Abandoned						
MW-1**	Lievation	Diyj	Elevation													
MW-1 **		Not Installed														
MW-12																
MW-13																
MW-14				List A + Fluoride and		List A + Fluoride and		List A + Fluoride and		List A + Fluoride and		List A + calcium, lithium,		List A + calcium, lithium.		List A + calcium, lithium,
MW-15R MW-16R	Groundwater	List A + Fluoride and	Groundwater	TDS, Groundwater	Groundwater Elevation	TDS, Groundwater	Groundwater	TDS, Groundwater	Groundwater	TDS, Groundwater	Groundwater	molybdenum, TDS,	Groundwater	molybdenum, TDS,	Groundwater Elevation	molybdenum, TDS, TSS,
MW-10k MW-17	Elevation	TDS, Groundwater	Elevation	Elevation	Groundwater Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	TSS, Groundwater	Elevation	TSS, Groundwater	Groundwater Elevation	Groundwater Elevation
MW-100R		Elevation										Elevation		Elevation		
MW-101R																
MW-102P																
MW-108		1	L	I		I I	Wate	er Level Only Monitoring	Wells		L	1		1 I		I
MW-5				1			wate			1		1				
MW-6																
MW-8																
MW-9P																
MW-9M MW-10R																
MW-10R MW-11R																
MW-102																
MW-102M																
MW-107																
MW-110 MW-110P	Groundwater Elevation	Groundwater Elevation	Groundwater Elevation	Groundwater Elevation	Groundwater Elevation	Groundwater Elevation	Groundwater Elevation	Groundwater Elevation	Groundwater Elevation	Groundwater Elevation	Groundwater Elevation	Groundwater Elevation	Groundwater Elevation	Groundwater Elevation	Groundwater Elevation	Groundwater Elevation
MW-110P MW-111	Elevation	Elevation	Elevation	Elevation		Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation		
MW-112																
MW-115																
MW-116																
MW-116P MW-116M																
MW-116M MW-117																
MW-117 MW-122																
MW-122P		1														
MW-122M		1						L		L		I				l
CW 10		1		1			Sur	face Water Monitoring P	oints	1		1	1	,		
SW-1R SW-2R																
SW-3	Water Level	List A + Fluoride and	Water Level	List A + Fluoride and	Water Level	List A + Fluoride and	Water Level	List A + Fluoride and	Water Level	List A + Fluoride and	Water Level	List A + Ca, Li, Mo, F,	Water Level	List A + Ca, Li, Mo, F,	Water Level	List A + Ca, Li, Mo, F, and
SW-4		TDS, Water level		TDS, Water level		TDS, Water level		TDS, Water level		TDS, Water level		and TDS, Water level		and TDS, Water level		TDS, Water level
SW-5								I		I						
Ladardaria Mat Mall/Durani		1		1				Other monitoring point	S	1		1		,		1
Underdrain Wet Well/Pumping Station (GU-EX)		1														
GU-1 Temp																
GU-2 Temp		List A + Fluoride and		List A + Fluoride and		List A + Fluoride and		List A + Fluoride and		List A + Fluoride and		List A + Ca, Li, Mo,		List A + Ca, Li, Mo,	-	
TCB-1/2	-	TDS	-	TDS	-	TDS		TDS	-	TDS		Fluoride and TDS	-	Fluoride and TDS	-	List A + Ca, Li, Mo, Fluoride and TDS
Leachate Wet Well/ Pumping Station																and IDS
(Voluntary) Leachate Lagoon (Voluntary)																
		1				Leachate level mo:	surements attom	pted during all events; p	nint always dry	l		I	!	· · · · · · · · · · · · · · · · · · ·	Leachate Level	1
LP-1 (Voluntary)						ceachate level mea	sourements attem	preu during all events; p	unic always ury						Leachate Level	1

Table 2 Table 2 Monitoring Program Implementation Schedule 2024 Annual Water Quality Report Ottumwa Midland Landfill Permit No. 90-SDP-8-92P

Notes: (1): List Arsenic, barium, beylium, boron, cobalt, capper, iron, lead, magnesium, manganese, selenium, zinc, sulfate, chloride, field pH, field specific conductance, field temperature, groundwater elevation, and well depth (metals reported as total). Ruoride and total dissolved solids were added in 2014. (2): Quarterly background monitoring has not been completed at GU-2 Temp because this monitoring point has been dry during most sampling events. * The spring 2000 water level measurement event was delayed due to site access restrictions related to the COVID-19 pandemic. **.MW-IR replaced MW-1 in 2019.

Updated by:	LH, 09/26/2024
Checked by:	RM, 11/4/2024

1:\25224073.00\Deliverables\2024 AWQR\Tables\[AWQR_OML_Tables_241104.xlsx]2 - Implementation Schedule

Table 3Monitoring Well Maintenance and Performance Reevaluation Schedule2024 Annual Water Quality ReportOttumwa Midland LandfillPermit No. 90-SDP-8-92P

Compliance with:	Monitoring Calendar Years							
compliance with.	2019	2020	2021	2022	2023	2024	2025	
567 IAC 115.21(2)a. high and low water levels (biennial)	Completed		Completed		Completed		Scheduled	
567 IAC 115.21(2)b. changes in the hydrologic setting and flow paths (biennial)	Completed		Completed		Completed		Scheduled	
567 IAC 115.21(2)c. well depths (annual)*	Completed	Completed	Completed	Completed	Completed	Completed	Scheduled	
567 IAC 115.21(2)d. in-situ permeability tests (every 5 years)**	Not Applicable - Variance granted by IDNR (see comment below)							

Comments:

*: To avoid the potential for cross-contamination and increased sample turbidity associated with removing and re-installing dedicated pumps, well depths are not measured annually at wells with dedicated pumps.

**: A variance to IAC 567-110.9(2)(d) for in situ permeability tests every 5 years was granted by IDNR in a letter dated April 1, 1999. (Note: Although IAC 567-110 has been rescinded since the variance was granted, the same permeability test requirements are now in IAC 567-115.21(2), and our understanding is that the conditions of the variance still apply.)

Updated by: LH, 9/11/2024 Checked by: RM, 11/4/2024

I:\25224073.00\Deliverables\2024 AWQR\Tables\[AWQR_OML_Tables_241104.xlsx]3 - MW Main & Perform Schedule

Ottumwa Midland Landfill

Well	Top of	Top of	Total Depth	Monitoring Parameter	Date of Me	asurements	Maximum Depth	Maximum Depth
wen	Casing	Screen	Total Depth	Monitoring Parameter	April 2-3, 2024	August 6-8, 2024	Discrepancy (ft) ¹ April	Discrepancy (ft) ¹ August
				Groundwater Level (ft)	12.34	9.77		
MW-1R	823.31	814.01	24.30	Groundwater Elevation (Ft MSL)	810.97	813.54	N/A	N/A
	025.51	014.01	24.50	Measured Well Depth (ft)	NM	NM	N/A	
				Submerged screen	N	N		
				Groundwater Level (ft)	49.40	49.52		
MW-5	784.31	737.88	56.43	Groundwater Elevation (Ft MSL)	734.91	734.79	-0.14	0.33
10100-5	704.51	/5/.00	50.45	Measured Well Depth (ft)	56.57	56.10	-0.14	0.55
				Submerged screen	N	N		
				Groundwater Level (ft)	17.04	16.02		-0.66
MW-6	797.03	786.71	25.32	Groundwater Elevation (Ft MSL)	779.99	781.01	-0.66	
101 00-0	/97.03	/80./1	25.52	Measured Well Depth (ft)	25.98	25.98	-0.00	
				Submerged screen	N	Ν		
				Groundwater Level (ft)	17.37	17.12		0.13
MW-8	804.96	794.56	20.40	Groundwater Elevation (Ft MSL)	787.59	787.84	0.15	
101 00-0	604.90	794.50	20.40	Measured Well Depth (ft)	20.25	20.27	0.15	
				Submerged screen	N	Ν		
				Groundwater Level (ft)	67.23	67.35		
MW-9P	789.78	701.87	92.91	Groundwater Elevation (Ft MSL)	722.55	722.43	-0.29	0.29
10100-9P	/89./8	/01.8/	92.91	Measured Well Depth (ft)	93.20	92.62	-0.29	0.29
				Submerged screen	Y	Y		
				Groundwater Level (ft)	91.94	91.51		
	700.00	620 72	156.00	Groundwater Elevation (Ft MSL)	697.86	698.29	00.44	0.00
MW-9M	789.80	638.72	156.08	Measured Well Depth (ft)	56.67 ⁽²⁾	155.85	99.41	0.23
				Submerged screen	Y	Y		
				Groundwater Level (ft)	32.30	30.75	-0.10	
NAVA 100	700 5 6	762.06	40.20	Groundwater Elevation (Ft MSL)	756.26	757.81		0.12
MW-10R	788.56	763.06	40.30	Measured Well Depth (ft)	40.40	40.18		
				Submerged screen	N	N		

Ottumwa Midland Landfill

Well	Top of	Top of	Total Depth	Monitoring Parameter	Date of Me	asurements	Maximum Depth	Maximum Depth
wen	Casing	Screen	Total Depth	Monitoring Parameter	April 2-3, 2024	August 6-8, 2024	Discrepancy (ft) ¹ April	Discrepancy (ft) ¹ August
				Groundwater Level (ft)	13.23	13.87		
MW-11R	779.96	764.16	30.80	Groundwater Elevation (Ft MSL)	766.73	766.09	0.20	0.22
	779.90	704.10	50.80	Measured Well Depth (ft)	30.60	30.58	0.20	0.22
				Submerged screen	Y	Y		
				Groundwater Level (ft)	99.90	99.80		
MW-12	822.43	701.71	125.72	Groundwater Elevation (Ft MSL)	722.53	722.63	N/A	N/A
10100-12	022.45	/01./1	125.72	Measured Well Depth (ft)	NM	NM	N/A	N/A
				Submerged screen	Y	Y		
				Groundwater Level (ft)	39.96	39.92		
MW-13	762.48	724.08	48.40	Groundwater Elevation (Ft MSL)	722.52	722.56	N1/A	N/A
10100-13	762.48	724.08	.08 48.40	Measured Well Depth (ft)	NM	NM	N/A	N/A
				Submerged screen	N	N		
				Groundwater Level (ft)	38.42	38.40		N/A
MW-14	761.02	723.04	47.98	Groundwater Elevation (Ft MSL)	722.6	722.62	N/A	
10100-14	701.02	725.04	47.96	Measured Well Depth (ft)	NM	NM	N/A	
				Submerged screen	Ν	Ν		
				Groundwater Level (ft)	47.68	48.04		
MW-15R	808.49	765.79	57.70	Groundwater Elevation (Ft MSL)	760.81	760.45	N/A	N/A
10100-13K	000.49	103.19	57.70	Measured Well Depth (ft)	NM	NM	N/A	IN/A
				Submerged screen	N	N		
				Groundwater Level (ft)	97.16	91.66		
MW-16R	814.13	724.13	105.00	Groundwater Elevation (Ft MSL)	716.97	722.47	N/A	N/A
	014.15	724.15	105.00	Measured Well Depth (ft)	NM	NM	IN/A	N/A
				Submerged screen	N	Ν		
				Groundwater Level (ft)	16.23	19.03	0.32	
MW-17	760.63	746.01	19.62	Groundwater Elevation (Ft MSL)	744.40	741.60		0.25
1/1//	/00.03	740.01	19.02	Measured Well Depth (ft)	19.30	19.37		
				Submerged screen	N	N		

Ottumwa Midland Landfill

Well	Top of	Top of	Total Depth	Monitoring Parameter	Date of Me	asurements	Maximum Depth	Maximum Depth Discrepancy (ft) ¹
wen	Casing	Screen		Wolltoning Farameter	April 2-3, 2024	August 6-8, 2024	Discrepancy (ft) ¹ April	August
				Groundwater Level (ft)	14.25	13.90		
MW-100R	822.40	809.65	27.90	Groundwater Elevation (Ft MSL)	808.15	808.5	N/A	N/A
IVI VV-TOOK	022.40	809.05	27.90	Measured Well Depth (ft)	NM	NM	N/A	N/A
				Submerged screen	N	N		
				Groundwater Level (ft)	16.70	16.73		
MW-101R	700.25	705.25	29.00	Groundwater Elevation (Ft MSL)	782.65	782.62	NI / A	NI / A
WW-101K	799.35	785.35	29.00	Measured Well Depth (ft)	NM	NM	- N/A -	N/A
				Submerged screen	N	N		
				Groundwater Level (ft)	19.43	17.92		0.28
MW-102	797.24	782.80	29.70	Groundwater Elevation (Ft MSL)	777.81	779.32		
IVI VV-102	/9/.24	762.80	2.80 29.70	Measured Well Depth (ft)	29.45	29.42	0.25	
				Submerged screen	N	N		
				Groundwater Level (ft)	74.73	74.75		
MW-102P	797.64	700.10	103.20	Groundwater Elevation (Ft MSL)	722.91	722.89	N/A	N/A
IVI VV-102P	/9/.04	700.10	103.20	Measured Well Depth (ft)	NM	NM	N/A	
				Submerged screen	Y	Y		
				Groundwater Level (ft)	88.19	99.97		
MW-102M	798.03	652.65	152.10	Groundwater Elevation (Ft MSL)	709.84	698.06	N/A	N/A
10100-102101	796.05	052.05	152.10	Measured Well Depth (ft)	NM	NM	N/A	N/A
				Submerged screen	Y	Y		
				Groundwater Level (ft)	21.40	21.22		
MW-107	788.50	776.75	26.80	Groundwater Elevation (Ft MSL)	767.10	767.28	-1.00	0.01
10100-107	/00.50	//0./5	20.80	Measured Well Depth (ft)	27.80	26.79	-1.00	0.01
				Submerged screen	N	N		
				Groundwater Level (ft)	25.38	24.36		
MW-108	765.57	746.62	27.70	Groundwater Elevation (Ft MSL)	740.19	741.21	N/A	NI/A
10100-108	/05.5/	740.02	2 27.70	Measured Well Depth (ft)	NM	NM	N/A	N/A
				Submerged screen	N	N		

Ottumwa Midland Landfill

Well	Top of	Top of	Total Depth	Monitoring Parameter	Date of Me	asurements	Maximum Depth	Maximum Depth Discrepancy (ft) ¹
Wen	Casing Screen		Total Depth	womoning Parameter	April 2-3, 2024	August 6-8, 2024	Discrepancy (ft) ¹ April	August
				Groundwater Level (ft)	20.62	20.93		
MW-110	760.39	737.92	37.60	Groundwater Elevation (Ft MSL)	739.77	739.46	0.15	0.25
10100-110	700.59	151.92	57.00	Measured Well Depth (ft)	37.45	37.35	0.15	0.25
				Submerged screen	Y	Y		
				Groundwater Level (ft)	36.58	36.26		
MW-110P	760.23	689.67	74.80	Groundwater Elevation (Ft MSL)	723.65	723.97	-5.10	-0.08
IVI VV-110P	700.25	069.07	74.80	Measured Well Depth (ft)	79.90	74.88	-5.10	-0.08
				Submerged screen	Y	Y		
				Groundwater Level (ft)	6.15	41.35	0.15	0.31
MW-111	787.38	760.05	42.70	Groundwater Elevation (Ft MSL)	781.23	746.03		
	/8/.38	760.05	760.05 42.70	Measured Well Depth (ft)	42.55	42.39		
				Submerged screen	Y	N		
				Groundwater Level (ft)	24.26	24.14	0.43	0.56
MW-112	811.93		799.55 27.90	Groundwater Elevation (Ft MSL)	787.67	787.79		
10100-112	011.95	799.55		Measured Well Depth (ft)	27.47	27.34		
				Submerged screen	Ν	N		
				Groundwater Level (ft)	26.14	25.65		
MW-115	752.44	740.59	27.40	Groundwater Elevation (Ft MSL)	726.30	726.79	0.51	0.52
10100-113	752.44	740.59	27.40	Measured Well Depth (ft)	26.89	26.88	0.51	0.52
				Submerged screen	Ν	Ν		
				Groundwater Level (ft)	17.81	17.39		
MW-116	742.47	729.98	27.70	Groundwater Elevation (Ft MSL)	724.66	725.08	-0.08	-0.04
10100-110	/42.4/	129.90	27.70	Measured Well Depth (ft)	27.78	27.74	-0.08	-0.04
				Submerged screen	Ν	Ν		
				Groundwater Level (ft)	19.21	19.86		
MW-116P	742.22	60E 7	E1 70	Groundwater Elevation (Ft MSL)	723.12	722.47		0.14
101 A0-110b	742.33	.33 695.7	695.7 51.70	Measured Well Depth (ft)	52.50	51.56		
				Submerged screen	Y	Y		

Table 4A Monitoring Well Maintenance and Performance Summary 2024 Annual Water Quality Report

Ottumwa Midland Landfill

Permit No. 90-SDP-8-92P

Well	Top of	of Top of Total Depth		Monitoring Parameter	Date of Me	easurements	Maximum Depth	Maximum Depth Discrepancy (ft) ¹ August
WCII	Casing Screen			wontoning rarameter	April 2-3, 2024	August 6-8, 2024	Discrepancy (ft) ¹ April	
				Groundwater Level (ft)	19.50	19.52		
MW-116M	742.25	640.06	107.20	Groundwater Elevation (Ft MSL)	722.75	722.73	-1.60	-0.21
	742.25	040.00	107.20	Measured Well Depth (ft)	108.80	107.41	-1.00	-0.21
				Submerged screen	Y	Y		
				Groundwater Level (ft)	21.94	22.12		
	700 77	760.06	20.70	Groundwater Elevation (Ft MSL)	758.83	758.65	4.42	1.1.5
MW-117	780.77	769.96	28.70	Measured Well Depth (ft)	27.57	27.54	1.13	1.16
				Submerged screen	N	N		
				Groundwater Level (ft)	21.12	21.33	0.28 0.27	
	704.00	765.04	765.84 43.80	Groundwater Elevation (Ft MSL)	772.9	772.69		0.34
MW-122	794.02	765.84		Measured Well Depth (ft)	43.42	43.46	0.38	
				Submerged screen	Y	Y		
				Groundwater Level (ft)	72.07	72.04		0.73
MM 1220	704 74		104 70	Groundwater Elevation (Ft MSL)	722.67	722.70	-1.42	
MW-122P	794.74	665.65	665.65 104.70	Measured Well Depth (ft)	106.12	103.97		
				Submerged screen	Y	Y		
				Groundwater Level (ft)	91.12	104.28		
NAVA/ 122NA	702 54	642.04	155.20	Groundwater Elevation (Ft MSL)	701.42	688.26	N/A	N1/A
MW-122M	792.54	642.94	155.30	Measured Well Depth (ft)	NM	NM	N/A	N/A
				Submerged screen	Y	Y		
SW-01R	NA	NA	NA	Surface Water Depth (ft)	0.17	DRY		
SW-02R	NA	NA	NA	Surface Water Depth (ft)	0.17	DRY		
SW-03	NA	NA	NA	Surface Water Depth (ft)	NM	0.3		
SW-04	NA	NA	NA	Surface Water Depth (ft)	0.25	DRY		
SW-05	NA	NA	NA	Surface Water Depth (ft)	NM	DRY		

Comments:

(1) To avoid the potential for cross-contamination and increased sample turbidity associated with removing and re-installing dedicated pumps, well depths are not measured annually at wells with dedicated pumps. Depths are checked when pumps are pulled for maintenance or replacement.

(2) The total depth measurement recorded in April 2024 was approximately 100' different than the expcted results and is likely a transcription error missing a leading 1.

Updated by	LH	Date: 9/26/2024
Checked by	RM	Date: 11/5/2024

Table 4B Vertical Gradients 2024 Annual Water Quality Report Ottumwa Midland Landfill Permit No. 90-SDP-8-92P

	Well Pair		Vertical Hydraulic	Gradient (feet/foot) ⁽¹⁾
	Shallower Well	Deeper Well	April 2024	August 2024
	MW-1R	MW-12	-0.836	-0.849
Water Table &	MW-10R	MW-9P	-0.637	-0.659
Pennsylvanian	MW-102	MW-102P	-0.725	-0.738
Wells	MW-110	MW-110P	-0.379	-0.359
vvens	MW-116	MW-116P	-0.058	-0.097
	MW-122	MW-122P	-0.728	-0.725
	MW-9P	MW-9M	-0.391	-0.382
Pennsylvanian &	MW-102P	MW-102M	-0.279	-0.531
Mississippian Wells	MW-116P	MW-116M	-0.007	0.005
	MW-122P	MW-122M	-0.408	-0.661

Comments:

(1) A negative value indicates a downward gradient; a positive value indicates an upward gradient.

Updated by:	LH	Date:	9/26/2024
Checked by:	RM	Date:	11/4/2024

I:\25224073.00\Deliverables\2024 AWQR\Tables\[AWQR_OML_Tables_241104.xlsx]4B - Vertical Gradients

Table 5 Background Summary 2024 Annual Water Quality Report Ottumwa Midland Landfill Permit No. 90-SDP-8-92P

	Interwell Background							
Constituent	Units	Samples	Detections	UPL	Statistical Test	GWPS	Source	Other Standards
Shallow Hydrogeologic Unit - MW	/-1/MW-1R					•	•	
Field pH	SU	8	8	N/A	N/A	none		SMCL <6.5 or >8.5
Field Temperature	deg C	8	8	N/A	N/A	none		
Field Specific Conductance	µmhos/cm	8	8	N/A	N/A	none		
Field Oxidation Potential	mV	2	2*	N/A	N/A	none		
Dissolved Oxygen	mg/L	2	2*	N/A	N/A	none		
Arsenic	μg/l	8	1	0.880	PL(NP)	10.00	MCL	
Barium	μg/l	8	8	90.1	PL(P)	2,000	MCL	
Beryllium	μg/l	8	1	DQ	DQ	4.00	MCL	
Boron	μg/l	8	4	116	PL(P)	6,000	SWS	
Calcium	mg/L	2	2	N/A	N/A	none		
Cobalt	μg/l	8	3	0.370	PL(NP)	2.1	SWS	
Copper	μg/l	8	3	2.10	PL(NP)	1,300	SWS	SMCL 1,000
Iron	μg/l	8	5	931	PL(P)	none		SMCL 300
Lead	μg/l	8	4	1.58	PL(P)	15.00	SWS	
Lithium	μg/l	2	2	N/A	N/A	14	SWS	
Magnesium	μg/l	8	8	48,100	PL(NP)	none		
Manganese	μg/l	8	4	24.7	PL(P)	300	SWS	SWS 300, SMCL 50
Molybdenum	μg/l	2	2	N/A	N/A	40	SWS	
Selenium	μg/l	8	5	2.98	PL(P)	50	MCL	
Zinc	μg/l	8	1	10.0	PL(NP)	2,000	SWS	SMCL 5,000
Chloride	mg/L	8	8	298	PL(P)	none		SMCL 250
Fluoride	mg/L	8	7	0.972	PL(P)	4.00	MCL	SMCL 2
Sulfate	mg/L	8	8	459	PL(P)	none		SMCL 250
Total Dissolved Solids	mg/L	8	8	1,020	PL(P)	none		SMCL 500
Total Suspended Solids	mg/L	2	2	N/A	N/A	none		

Table 5 Background Summary 2024 Annual Water Quality Report Ottumwa Midland Landfill Permit No. 90-SDP-8-92P

	Interwell Background							
Constituent	Units	Samples	Detections	UPL	Statistical Test	GWPS	Source	Other Standards
Pennsylvanian Shale Hydrogeologic Un	it - MW-102P		•				-	•
Field pH	SU	8	8	N/A	N/A	none		SMCL <6.5 or >8.5
Field Temperature	deg C	8	8	N/A	N/A	none		
Field Specific Conductance	µmhos/cm	8	8	N/A	N/A	none		
Field Oxidation Potential	mV	2	2*	N/A	N/A	none		
Dissolved Oxygen	mg/L	2	2*	N/A	N/A	none		
Arsenic	μg/l	8	2	0.880	PL(NP)	10.00	MCL	
Barium	μg/l	8	8	27.8	PL(P)	2,000	MCL	
Beryllium	μg/l	8	1	1.30	PL(NP)	4.00	MCL	
Boron	μg/l	8	8	2,180	PL(P)	6,000	SWS	
Calcium	mg/L	2	2	N/A	N/A	none		
Cobalt	μg/l	8	8	1.62	PL(P)	2.1	SWS	
Copper	μg/l	8	3	4.30	PL(NP)	1,300	SWS	SMCL 1,000
Iron	μg/l	8	8	5,500	PL(NP)	none		SMCL 300
Lead	μg/l	8	2	1.10	PL(NP)	15.00	SWS	
Lithium	μg/l	2	2	N/A	N/A	14	SWS	
Magnesium	μg/l	8	8	204,000	PL(P)	none		
Manganese	μg/l	8	8	574	PL(NP)	574	Background	SWS 300, SMCL 50
Molybdenum	μg/l	2	1	N/A	N/A	40	SWS	
Selenium	μg/l	8	0	DQ	DQ	50	MCL	
Zinc	μg/l	8	5	23.7	PL(P)	2,000	SWS	SMCL 5,000
Chloride	mg/L	8	8	9.77	PL(P)	none		SMCL 250
Fluoride	mg/L	8	6	1.07	PL(P)	4.00	MCL	SMCL 2
Sulfate	mg/L	8	8	2,230	PL(P)	none		SMCL 250
Total Dissolved Solids	mg/L	8	8	3,100	PL(NP)	none		SMCL 500
Total Suspended Solids	mg/L	2	2	N/A	N/A	none		

PL(NP) - Prediction Limit (Non-Parametric)

PL(P) - Prediction Limit (Parametric)

MCL - Maximum Contaminant Level

SWS - Statewide Standard for Groundwater SMCL - Secondary Maximum Contaminant Level GWPS - Groundwater Protection Standard DQ - Double Quantification

Notes:

* = Field parameters ORP and DO have been collected historically as part of stability requirements for low-flow sampling, but were not reported in AWQRs prior to 2023.

Updated by LH	Date 10/31/2024
Checked by RM	Date 11/4/2024

I:\25224073.00\Deliverables\2024 AWQR\Tables\[AWQR_OML_Tables_241104.xlsx]5 - Background & GWPS summary

Well	Constituent	Units	Most Recent Result	UPL
	Field pH	SU	6.97	N/A
	Field Temperature	deg C	14.4	N/A
	Field Specific Conductance	µmhos/cm	787	N/A
	Field Oxidation Potential	mV	107.2	N/A
	Dissolved Oxygen	mg/L	1.38	N/A
	Barium	μg/l	71	N/A
	Calcium	mg/L	90	N/A
MW-1R*	Iron	μg/l	46 J	N/A
INI M-TK*	Lithium	μg/l	23	N/A
	Magnesium	μg/l	28000	N/A
	Molybdenum	μg/l	1.6 J	N/A
	Chloride	mg/L	29	N/A
	Fluoride	mg/L	0.46 J	N/A
	Sulfate	mg/L	80	N/A
	Total Dissolved Solids	mg/L	470	N/A
	Total Suspended Solids	mg/L	1.6 J	N/A
	Field pH	SU	7.23	N/A
	Field Temperature	deg C	17.1	N/A
	Field Specific Conductance	µmhos/cm	2369	N/A
	Field Oxidation Potential	mV	145.3	N/A
	Dissolved Oxygen	mg/L	8.03	N/A
	Barium	µg/I	15	27.8
	Boron	µg/l	1,400	2180
MW-12	Calcium	mg/L	14	N/A
	Iron	μg/l	43 J	931
	Lithium	μg/l	110	N/A
	Magnesium	μg/l	6400	204000
	Manganese Sulfate	μg/l	140	574
		mg/L	720	2230
	Total Dissolved Solids	mg/L	1700	3100
	Total Suspended Solids	mg/L	2.0	N/A

Well	Constituent	Units	Most Recent Result	UPL
	Field pH	SU	6.97	N/A
	Field Temperature	deg C	15.9	N/A
	Field Specific Conductance	µmhos/cm	3194	N/A
	Field Oxidation Potential	mV	-34.4	N/A
	Dissolved Oxygen	mg/L	0.15	N/A
	Barium	μg/l	18	27.8
	Boron	μg/l	1,800	2180
	Calcium	mg/L	120	N/A
MW-13	Cobalt	μg/l	1.1	1.62
	Iron	μg/l	130	931
	Lithium	μg/l	160	N/A
	Magnesium	μg/l	60000	N/A 204000
	Manganese	μg/l	250	574
	Fluoride	mg/L	0.68 J	1.07
	Sulfate	mg/L mg/L	1200	2230
	Total Dissolved Solids	mg/L	2,300	3100
	Total Suspended Solids	mg/L	1.4 J	N/A
	Field pH	SU	7.10	N/A
	Field Temperature	deg C	17.0	N/A
	Field Specific Conductance	µmhos/cm	3214	N/A
	Field Oxidation Potential	mV	46.0	N/A
	Dissolved Oxygen	mg/L	0.56	N/A
	Barium	μg/l	23	27.8 2180
	Boron	μg/l μg/l	1,900	2180
	Calcium	mg/L	76	N/A
	Cobalt	μg/l	0.56	1.62
MW-14	Copper	μg/l	2.1 J	2.1
	Iron	μg/l	47 J	931
	Lithium	μg/l	140	N/A
	Magnesium	μg/l	34,000	204000
	Manganese	μg/l	160	574
	Molybdenum	μg/l	16	N/A
	Fluoride	mg/L	0.70 J	1.07
	Sulfate	mg/L	670	2230
	Total Dissolved Solids	mg/L	2000	3100
	Total Suspended Solids	mg/L	6.0	N/A

Well	Constituent	Units	Most Recent Result	UPL
	Field pH	SU	6.27	N/A
	Field Temperature	deg C	14.0	N/A
	Field Specific Conductance	µmhos/cm	2101	N/A
	Field Oxidation Potential	mV	74.9	N/A
	Dissolved Oxygen	mg/L	0.42	N/A
	Barium	μg/l	36	90.1
	Calcium	mg/L	300	N/A
MW-15R	Copper	μg/l	1.8 J	2.1
	Iron	μg/l	310	931
	Lithium	μg/l	42	N/A
	Molybdenum	μg/l	5.2	N/A
	Selenium	μg/l	1.4 J	2.98
	Chloride	mg/L	10	298
	Sulfate	mg/L	440	459
	Total Suspended Solids	mg/L	2.5	N/A
	Field pH	SU	6.94	N/A
	Field Temperature	deg C	15.0	N/A
	Field Temperature Field Specific Conductance	µmhos/cm	3511	N/A
	Field Oxidation Potential	mV	-44.9	N/A
	Dissolved Oxygen	mg/L	0.20	N/A 2180
	Boron	mg/L μg/l	2,000	2180
	Calcium	mg/L	81	N/A
MW-16R	Cobalt	μg/l	0.93	1.62
IVIV-TOR	Iron	μg/l	480	5500
	Lithium	μg/l	110	N/A
	Magnesium	μg/l	39,000	204000
	Manganese	μg/l	270	574
	Fluoride	mg/L	0.45 J	1.07
	Sulfate	mg/L	790	2230
	Total Dissolved Solids	mg/L	2200	3100
	Total Suspended Solids	mg/L	2.9	N/A

Well	Constituent	Units	Most Recent Result	UPL
	Field pH	SU	7.05	N/A
	Field Temperature	deg C	14.0	N/A
	Field Specific Conductance	µmhos/cm	1007	N/A
	Field Specific Conductance Field Oxidation Potential	mV	123.3	N/A
	Dissolved Oxygen	mg/L	4.33	N/A
	Barium	μg/l	44	90.1
MW-100R	Calcium	mg/L	130	N/A
	Lithium	μg/l	21	N/A
	Magnesium	μg/l	40000	48,100
	Molybdenum	μg/l	2.2	N/A
	Chloride	mg/L	28	298
	Sulfate	mg/L	180	459
	Total Dissolved Solids	mg/L	640	1020
	Field pH	SU	6.80	N/A
	Field Temperature	deg C	13.8	N/A
	Field Specific Conductance	µmhos/cm	1,533	N/A
	Field Oxidation Potential	mV	112.2	N/A
	Dissolved Oxygen	mg/L	0.70	, N/A
	Barium	μg/l	37	90.1
MW-101R	Calcium	mg/L	220	N/A
WW-101K	Cobalt	μg/l	0.22 J	0.37
	Copper	μg/l	2.0 J	2.1
	Iron	μg/l	82 J	931
	Lithium	μg/l	84	N/A
	Molybdenum	μg/l	6.5	N/A
	Chloride	mg/L	6.7	298
	Total Suspended Solids	mg/L	5.0	N/A

Table 6 Summary of Well/Detected Constituent Pairs With No SSIs 2024 Annual Water Quality Report Ottumwa Midland Landfill Permit No. 90-SDP-8-92P

Well	Constituent	Units	Most Recent Result	UPL
	Field pH	SU	6.49	N/A
	Field Temperature	deg C	14.0	N/A
	Field Specific Conductance	µmhos/cm	3556	N/A
	Field Oxidation Potential	mV	-44.0	N/A
	Dissolved Oxygen	mg/L	0.02	N/A
	Barium	μg/l	23	N/A
	Boron	μg/l	1700	N/A
	Calcium	mg/L	430	N/A
	Cobalt	μg/l	0.74	N/A
MW-102P*	Copper	μg/l	4.3 J	N/A
VIV-102P	Iron	μg/l	5500	N/A
	Lithium	ug/l	230	N/A
	Magnesium	μg/l	150000	N/A
	Manganese	μg/l	530	N/A
	Zinc	μg/l	12 J	N/A
	Chloride	mg/L	9.4	N/A
Fluori	Fluoride	mg/L	0.53 J	N/A
	Sulfate	mg/L	1400	N/A
	Total Dissolved Solids	mg/L	2800	N/A
	Total Dissolved Solids Total Suspended Solids	mg/L	12	N/A

Table 6 Summary of Well/Detected Constituent Pairs With No SSIs 2024 Annual Water Quality Report Ottumwa Midland Landfill Permit No. 90-SDP-8-92P

Well	Constituent	Units	Most Recent Result	UPL
	Field pH	SU	6.56	N/A
	Field Temperature	deg C	14.2	N/A
	Field Specific Conductance	µmhos/cm	621	N/A
	Field Oxidation Potential	mV	-27.3	N/A
	Dissolved Oxygen	mg/L	0.97	N/A
	Barium	μg/l	34	90.1
	Calcium	mg/L	75	N/A
MW-108	Lithium	μg/l	49	N/A
	Magnesium	μg/l	16,000	48,100
	Molybdenum	μg/l	3.0	N/A
	Chloride	mg/L	2.6 J	298
	Fluoride	mg/L	0.43 J	0.972
	Sulfate	mg/L	130	459
	Total Dissolved Solids	mg/L	390	1020
	Total Suspended Solids	mg/L	6.8	N/A

UPL = Upper Prediction Limit

SSI = Statistically Significant Increase

mg/= milligrams per liter μg/L = micrograms per liter

ND = Non-detect

J = Estimated concentration at or above the LOD and below the LOQ.

Comments:

1. This table provides a summary of detected constituents from the 2023 sampling event that did not exceed the UPL in 2023. The background levels listed are interwell prediction limits calculated using MW-1/1R data for the shallow aquifer and MW-102P data for the Pennsylvanian unit. UPLs were first calculated in 2020 using data from 2017 through 2020, and were updated in 2022 and 2023.

2. Results below the limit of quantitation (J flags) are estimated values and are not compared to the UPL or GWPS. They are included in this table regardless of whether the estimated value is higher or lower than the UPL.

3. MW-17 was dry during the October 2024 sampling event.

*. UPLs do not apply to MW-1R and MW-102P because they are background wells.

 Updated by
 LH
 Date
 9/16/2024

 Checked by
 RM
 Date
 11/4/2024

Table 7

Summary of Ongoing and Newly Identified SSIs 2024 Annual Water Quality Report Ottumwa Midland Landfill Permit No. 90-SDP-8-92P

			Most Recent		
Well	Constituent	Units	Result	UPL	Action Level (GWPS)
Shallow Hydr	ogeologic Unit				
	Boron	μg/l	380	116	6000
	Cobalt	μg/l	1.1	0.37	2
MW-15R	Magnesium	μg/l	100000	48100	none
	Manganese	μg/l	440	24.7	300
	Total Dissolved Solids	mg/L	1500	1020	none
	Boron	μg/l	720	116	6000
	Magnesium	μg/l	71000	48100	none
MW-101R	Manganese	μg/l	180	25	300
	Selenium	μg/l	5.2	3	50
	Sulfate	mg/L	480	459	none
	Total Dissolved Solids	mg/L	1100	1020	none
	Arsenic	μg/l	4.1	0.88	10
	Boron	μg/l	300	116	6000
MW-108	Cobalt	μg/l	5.0	0.37	2
10100-100	Iron	μg/l	4300	931	none
	Manganese	μg/l	920	24.7	300
	Zinc	μg/l	43	10	2000
Mid-Depth (P	Pennsylvanian) Hydrogeolog	gic Unit			
MW-12	Chloride	mg/L	49	9.77	none
10100-12	Fluoride	mg/L	2.6	1.07	4
MW-13	Chloride	mg/L	13	9.77	none
MW-14	Arsenic	μg/l	2.6	0.88	10
10100-14	Chloride	mg/L	20	9.77	none
MW-16R	Barium	μg/l	38	27.8	2000
IVIVV-TOK	Chloride	mg/L	22	9.77	none

UPL = Upper Prediction Limit GWPS = Groundwater Protection Standard mg/= milligrams per liter μg/L = micrograms per liter

Comments:

1. This table includes results for wells/constituents that exceeded the UPL in 2024, which is the fourth year for which UPLs were calculated.

2. Results below the limit of quantitation (J flags) are estimated values and are not compared to the UPL or GWPS.

Updated by:	LH
Checked by:	RM

Date 9/26/2024 Date 11/4/2024

I:\25224073.00\Deliverables\2024 AWQR\Tables\[AWQR_OML_Tables_241104.xlsx]7- Standards Exceed Summary

Table 8 Historic SSIs & GWPS Exceedances 2024 Annual Water Quality Report Ottumwa Midland Landfill Permit No. 90-SDP-8-92P

Key: gray =UP	L; black =action level (GWPS)								
Well	Constituent	2017	2018	2019	2020	2021	2022	2023	2024
Shallow Hydro	geologic Unit	•	•		•	•		•	
MW-1R	Lithium*								
MW-15R	Boron								
	Cobalt		1						
	Iron								
	Lithium*								
	Magnesium								
	Manganese		1						
	Zinc								
	Sulfate								
	Total Dissolved Solids								
MW-17	Boron						Dry in August	Dry in August	Dry in August
	Cobalt						2022 - not	2023 - not	2024 - not
	Manganese						sampled	sampled	sampled
MW-100R	Lithium*								
MW-101R	Boron								
	Lithium*								
	Magnesium								
	Manganese								
	Selenium								
	Sulfate								
	Total Dissolved Solids								
MW-108	Arsenic								
	Boron								
	Cobalt		1						
	Iron								
	Lithium*								
	Manganese								
	Zinc								
Pennsylvanian	Hydrogeologic Unit	•	•	•		•	•		
MW-12	Chloride								
	Fluoride								
	Lithium*								
MW-13	Chloride								
	Lithium*								
MW-14	Arsenic				<u> </u>	'			
	Chloride								
	Lithium*			1					
MW-16R	Barium		1	1					
-	Chloride								
]	Lithium*								
MW-102P	Lithium*		1	1					

Abbreviations:

UPL = Upper Prediction Limit SSI = Statistically Significant Increase GWPS = Groundwater Protection Standard

1: UPLs were calculated annually beginning in 2020 when at least four sampling events with unfiltered (total) data. UPLs are only applied to results from 2020 onwards in this table.

*: Lithium was added to the sampling program in 2023.

Updated by	LH	Date	9/26/2024				
Checked by	RM	Date	11/4/2024				

I:\25224073.00\Deliverables\2024 AWQR\Tables\[AWQR_OML_Tables_241104.xlsx]8 - Historic CL & AL

Table 9
Historic Prediction Limits and Groundwater Protection Standards
2024 Annual Water Quality Report
Ottumwa Midland Landfill
Permit No. 90-SDP-8-92P

				UPL					GWPS		
Constituent	Units	2020	2021	2022	2023	2024	2020	2021	2022	2023	2024
Shallow Hydrogeological U	nits										
Arsenic	mg/L	0.880	0.880	0.880	0.880	0.880	10	10	10	10	10
Barium	μg/L	125	109	99.7	95.6	90.1	2,000	2,000	2,000	2,000	2,000
Beryllium	μg/L	0.270	0.270	DQ	DQ	DQ	4	4	4	4	4
Boron	μg/L	287	256	198	129	116	6,000	6,000	6,000	6,000	6,000
Cobalt	mg/L	1.10	0.799	0.37	0.37	0.37	2.10	2.10	2.10	2.10	2.10
Copper	mg/L	4.74	3.80	2.10	2.10	2.10	1,300	1,300	1,300	1,300	1,300
Iron	μg/L	1,140	840	4,000	665	931	none	none	none	none	none
Lead	μg/L	2.62	2.04	0.90	1.32	1.58	15.00	15.00	15.00	15.00	15.00
Magnesium	μg/L	135,000	48,100	48,100	48,100	48,100	none	none	none	none	none
Manganese	mg/L	59.00	391	85.50	33.00	24.70	300	391	300	300	300
Selenium	μg/L	4.42	3.48	2.87	3.45	2.98	50.00	50.00	50.00	50.00	50.00
Zinc	μg/L	10.0	10.0	10.0	10.0	10.0	2,000	2,000	2,000	2,000	2,000
Chloride	mg/L	180	335	178	287	298	none	none	none	none	none
Fluoride	μg/L	1.47	1.21	1.16	1.10	0.97	4	4	4	4	4
Sulfate	mg/L	482	482	485	483	459	none	none	none	none	none
Total Dissolved Solids	μg/L	1,600	1,350	1,240	1,130	1,020	none	none	none	none	none
Pennsylvanian Shale Hydro	ogeologic U	nit									
Arsenic	mg/L	0.880	0.880	0.880	0.880	0.880	10	10	10	10	10
Barium	μg/L	32.1	29.9	29.9	28.0	27.8	2,000	2,000	2,000	2,000	2,000
Beryllium	μg/L	0.270	0.270	0.270	1.300	1.300	4	4	4	4	4
Boron	μg/L	3,090	2,690	2,400	2,190	2,180	6,000	6,000	6,000	6,000	6,000
Cobalt	mg/L	2.24	1.87	1.89	1.60	1.62	2.24	2.1	2.1	2.1	2.1
Copper	mg/L	2.00	2.00	2.00	2.70	4.30	1,300	1,300	1,300	1,300	1,300
Iron	μg/L	6,140	6,040	5,500	5,500	5,500	none	none	none	none	none
Lead	μg/L	1.10	1.10	1.10	1.10	1.10	15.00	15.00	15.00	15.00	15.00
Magnesium	μg/L	205,000	193,000	225,000	206,000	204,000	none	none	none	none	none
Manganese	mg/L	627	662	574	755	574	627	662	755	574	574
Selenium	μg/L	1.00	0.96	DQ	DQ	DQ	50	50	50	50	50
Zinc	μg/L	40.00	40.00	40.00	23.10	23.70	2,000	2,000	2,000	2,000	2,000
Chloride	mg/L	9.68	9.60	9.70	9.63	9.77	none	none	none	none	none
Fluoride	μg/L	1.80	1.53	1.44	1.06	1.07	4	4	4	4	4
Sulfate	mg/L	2,300	2,260	2,410	2,200	2,230	none	none	none	none	none
Total Dissolved Solids	μg/L	3,670	3,650	3,950	3,510	3,100	none	none	none	none	none

Comments: Graphs were not generated in 2024 due to the small number of events completed to date (2020 was first year for UPL calculations).

Updated by:	LH, 10/31/2024
Checked by:	RM, 11/4/2024

I:\25224073.00\Deliverables\2024 AWQR\Tables\[AWQR_OML_Tables_241104.xlsx]9 - UPL History and Graphs

Table 10 Groundwater Quality Trend Summary 2024 Annual Water Quality Report Ottumwa Midland Landfill Permit No. 90-SDP-8-92P

	Current GWPS				
Well	Exceedances	Trend			
MW-108	Cobalt	Significant decreasing trend			
10100-100	Manganese	No significant trend			
MW-15R	Manganese	Significant decreasing trend			

Comments:

Only well/constituent pairs with GWPS exceedances are included in this summary.

Updated by: LH, 10/30/2024 Checked by: RM, 11/4/2024

Table 11Data Analytical Summary - Additional Points2024 Annual Water Quality ReportOttumwa Midland LandfillPermit No. 90-SDP-8-92P

		GWPS		GU-1									LEACHATE	
CHEMICAL PARAMETER	GWPS	SOURCE	EVENT	TEMP	GU-2	GU-EX	LP-1	SW-1R	SW-2R	SW-3	SW-4	SW-5	BASIN	TCB-1/2
ARSENIC, μg/L	10	MCL	2024-Aug	<0.53		0.70 J				2.0			9.7	0.95 J
BARIUM, μg/L	2,000	MCL	2024-Aug	38		35				52			72	76
BERYLLIUM, μg/L	4	MCL	2024-Aug	<0.33		<0.33				<0.33			<0.33	<0.33
BORON, μg/L	6,000	SWS	2024-Aug	270		900				560			2,100	430
CALCIUM, mg/L			2024-Aug	230		150				61			260	130
COBALT, μg/L	2.1	SWS	2024-Aug	11		3.5				0.20 J			0.68	<0.17
COPPER, μg/L	1,300	SWS	2024-Aug	<1.8		<1.8				<1.8			<1.8	<1.8
FLUORIDE, mg/L	4	MCL	2024-Aug	0.42 J		0.46 J				<0.38			<0.38	<0.38
IRON, μg/L			2024-Aug	<36		260				76 J			<36	<36
LEAD, μg/L	15	SWS	2024-Aug	<0.26		<0.26				<0.26			<0.26	<0.26
LITHIUM, μg/L	14	SWS	2024-Aug	48		26				8.7 J			43	3.3 J
MAGNESIUM, μg/L			2024-Aug	61000		36000				23000			28000	14000
MANGANESE, μg/L	300	SWS	2024-Aug	2000	DRY	250	DRY	DRY	DRY	26	DRY	DRY	86	6.0 J
MOLYBDENUM, µg/L	40	SWS	2024-Aug	2.2		48				9.9			680	3.9
SELENIUM, μg/L	50	MCL	2024-Aug	1.4 J		4.7 J				1.9 J			76	<1.4
ZINC, μg/L	2000	SWS	2024-Aug	29		39				<9.7			<9.7	<9.7
CHLORIDE, mg/L			2024-Aug	20		32				4.6 J			1000	12
SULFATE, mg/L			2024-Aug	390		460				250			1,900	380
TOTAL DISSOLVED SOLIDS, mg/L			2024-Aug	1100		930				410			5,000	590
TOTAL SUSPENDED SOLIDS, mg/L			2024-Aug	<1.4		2.5				8.3			6.0	3.9
pH, SU			2024-Aug	6.73		7.70				8.56			8.60	8.06
TEMPERATURE, DEGREES C			2024-Aug	20.7		23.3				28.1			25.8	28.3
DISSOLVED OXYGEN			2024-Aug	6.66		7.22				8.94			12.64	8.39
OXIDATION REDUCTION POTENTIAL			2024-Aug	83.1		56.2				18.0			63.7	71.9
SPECIFIC CONDUCTANCE, UMHOS/CM			2024-Aug	1438		1281				651			6,769	863

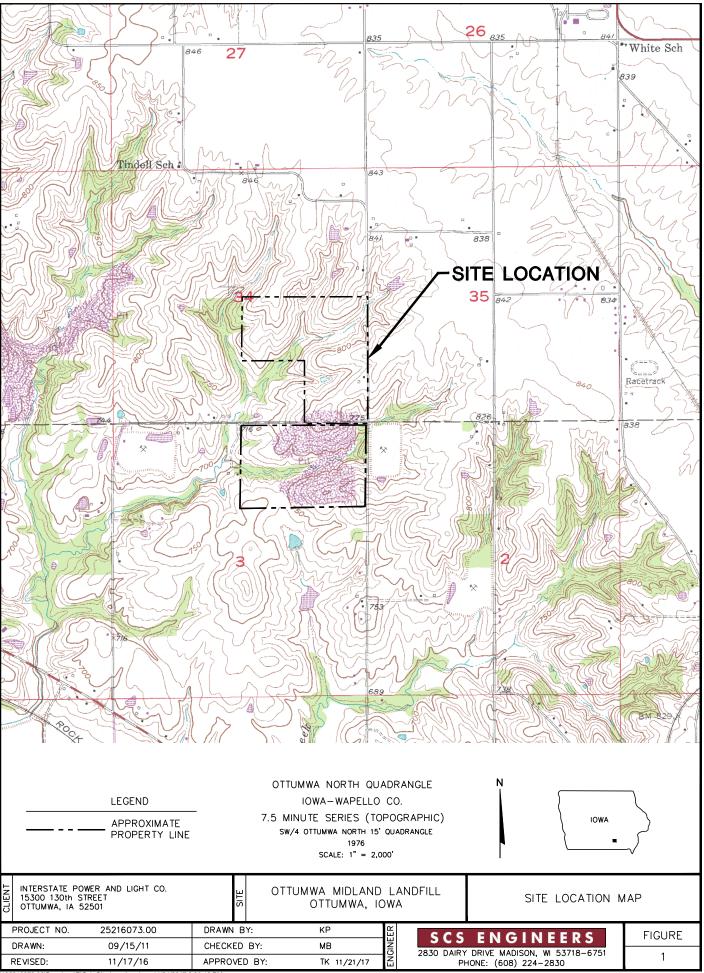
NOTES:

MCL = Maximum Contaminant Level

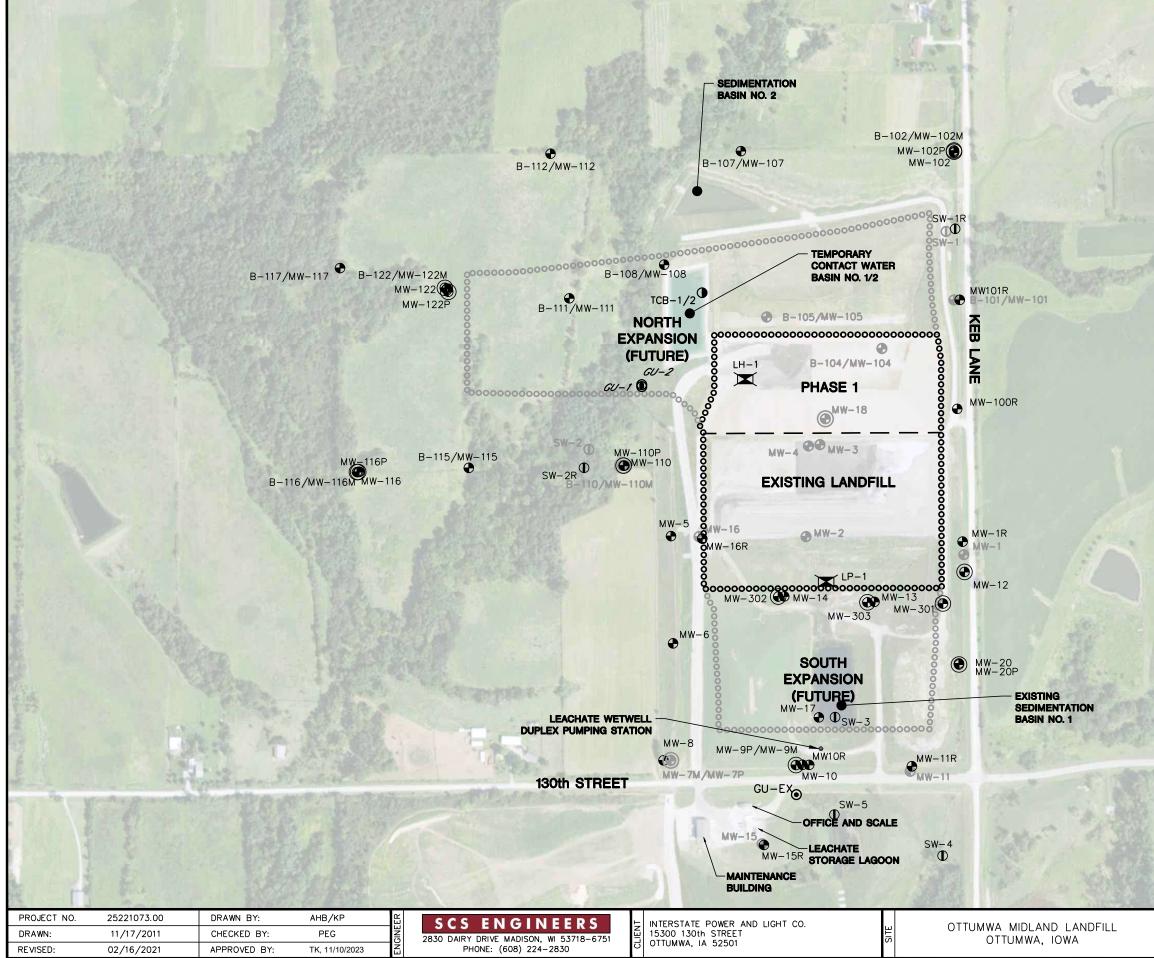
J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

SWS = Statewide Standard for Groundwater

-- = Not Applicable

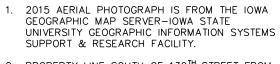

 Updated by:
 LH
 Date:
 9/26/2024

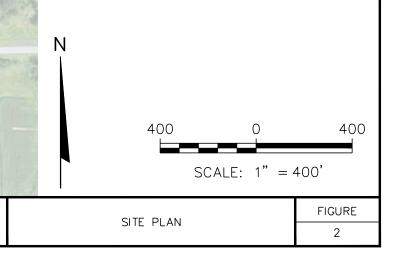
 Checked by:
 RM
 Date:
 11/5/2024

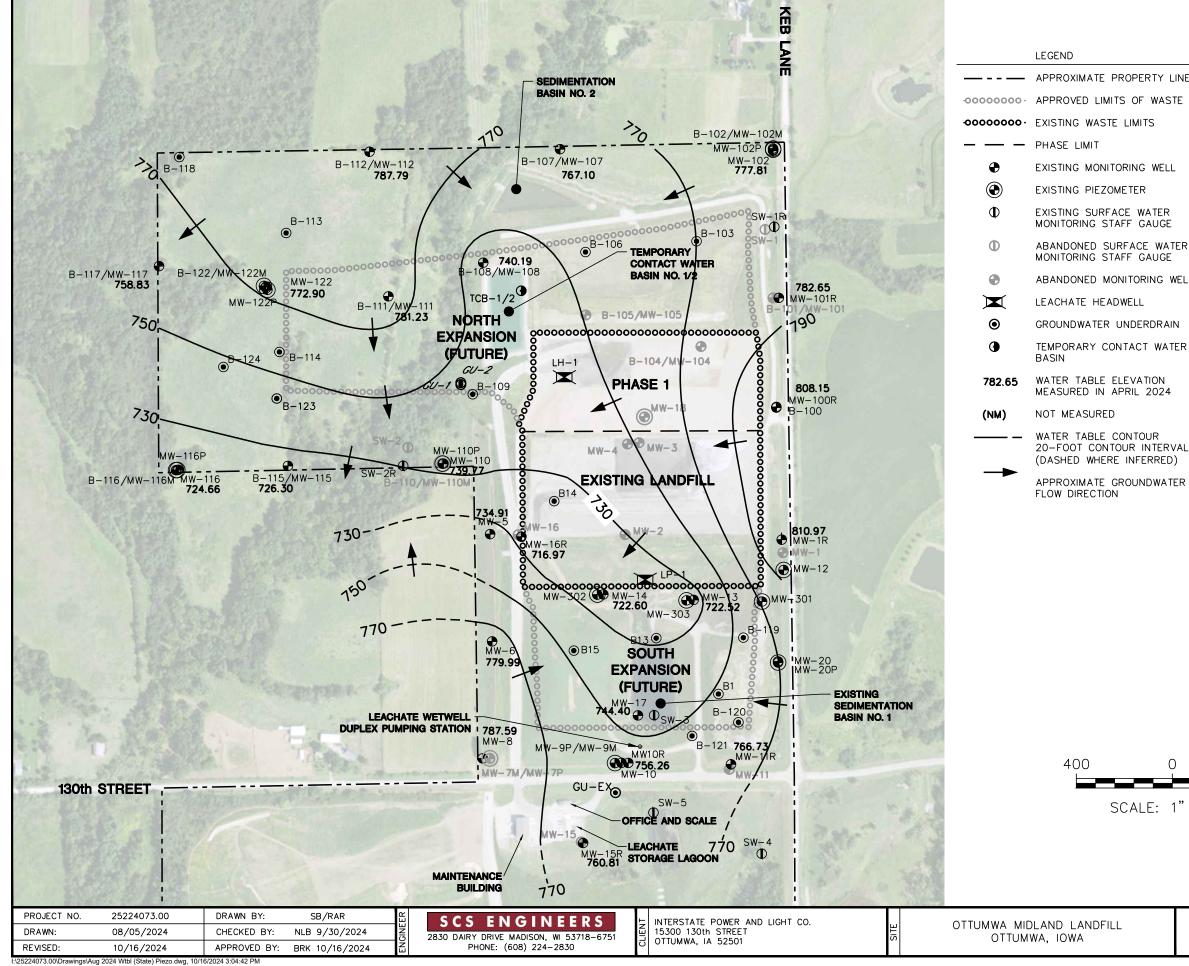

I:\25224073.00\Deliverables\2024 AWQR\Tables\[AWQR_OML_Tables_241104.xlsx]11-Additional Points

Figures

- 1 Site Location Map
- 2 Site Plan
- 3 Water Table Map April 2, 2024
- 4 Water Table Map August 6-8, 2024
- 5 Potentiometric Surface Map Pennsylvanian April 2, 2024
- 6 Potentiometric Surface Map Pennsylvanian August 6-8, 2024

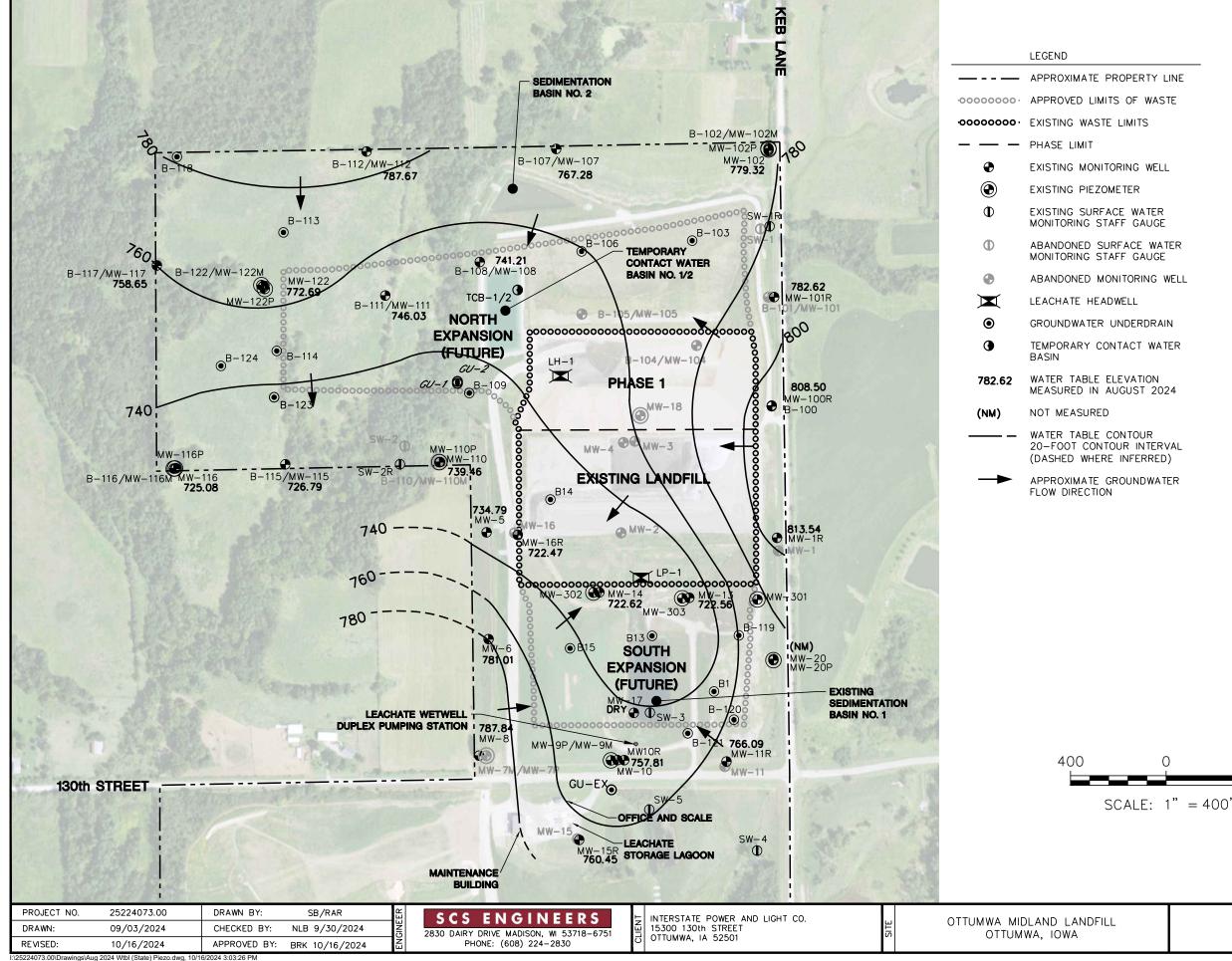

I:\25216073.00\Drawings\FIG 1 Site Location.dwg, 11/21/2017 3:30:42 PM


I:\25221073.00\Drawings\Phasing-Monitoring Network.dwg, 10/28/2021 8:18:09 AM


	LEGEND
	APPROXIMATE PROPERTY LINE
00000000	APPROVED WASTE LIMITS
00000000	EXISTING WASTE LIMITS
	PHASE LIMIT
	EXISTING SOIL BORING
•	EXISTING MONITORING WELL
۲	EXISTING PIEZOMETER
Ф	EXISTING SURFACE WATER MONITORING STAFF GAUGE
•	ABANDONED MONITORING WELL
Ф	ABANDONED SURFACE WATER MONITORING STAFF GAUGE
\mathbf{X}	LEACHATE HEADWELL
۲	GROUNDWATER UNDERDRAIN
•	TEMPORARY CONTACT WATER BASIN

NOTES:

- PROPERTY LINE SOUTH OF 130TH STREET FROM SURVEY MAP PREPARED BY GARDEN & ASSOCIATES, OSKALOOSA, IOWA, DATED DECEMBER 20, 1988.
- PROPERTY LINE NORTH OF 130TH STREET FROM PLAT OF SURVEY MAP PREPARED BY SCS ENGINEERS, MADISON, WISCONSIN, DATED FEBRUARY 20, 2013.
- 4. EXISTING LIMITS OF WASTE ARE APPROXIMATE.

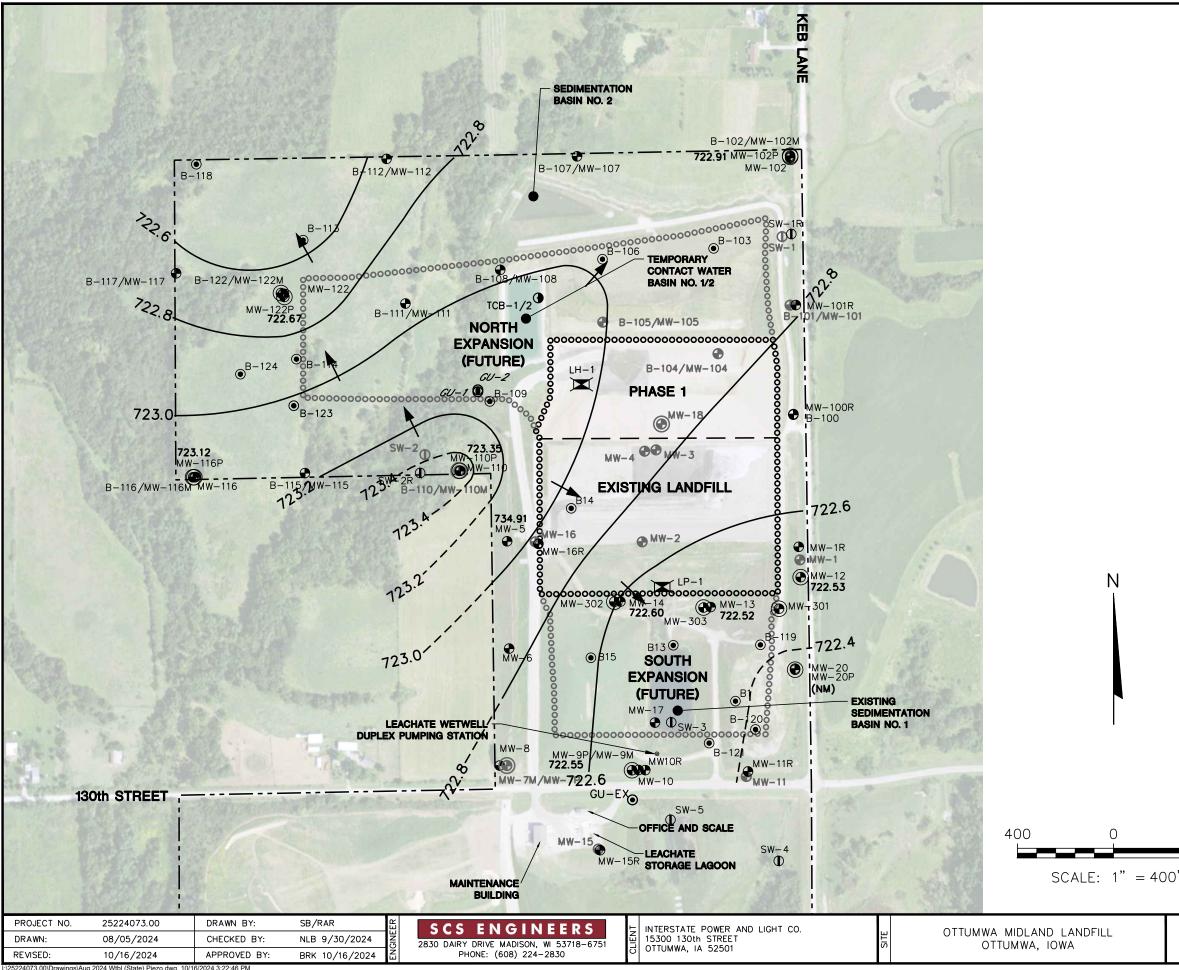


LINE
STE
ILL
R GE
ATER Ge
WELL

NOTES:

- 2015 AERIAL PHOTOGRAPH IS FROM THE IOWA 1 GEOGRAPHIC MAP SERVER-IOWA STATE UNIVERSITY GEOGRAPHIC INFORMATION SYSTEMS SUPPORT & RESEARCH FACILITY.
- PROPERTY LINE SOUTH OF 130TH STREET FROM 2 SURVEY MAP PREPARED BY GARDEN & ASSOCIATES, OSKALOOSA, IOWA, DATED DECEMBER 20, 1988.
- PROPERTY LINE NORTH OF 130TH STREET FROM 3. PLAT OF SURVEY MAP PREPARED BY SCS ENGINEERS, MADISON, WISCONSIN, DATED FEBRUARY 20, 2013.
- 4. EXISTING LIMITS OF WASTE ARE APPROXIMATE.
- 5. MW-13 AND MW-14 ARE USED IN THE INTERPRETATION OF BOTH THE WATER TABLE MAP AND THE POTENTIOMETRIC SURFACE MAP BECAUSE THEY ARE SCREENED IN THE PENNSYLVANIAN UNIT AND ACROSS WHAT COULD BE INTERPRETED AS THE WATER TABLE (1ST OCCURRENCE OF GROUNDWATER AT THE WELL LOCATIONS).
- 6. A GROUNDWATER UNDERDRAIN SYSTEM IS PRESENT BELOW THE BASE OF THE CURRENT FILL AREA. ELEVATIONS IN THE BASE UNDERDRAIN SYSTEM RANGE FROM 748' TO 762'. ADDITIONALLY, FINGER DRAINS WERE INSTALLED ALONG THE EASTERN EDGE OF THE FILL AREA AT THE AN ELEVATION OF APPROXIMATELY 795'. THESE FINGER DRAINS ARE TIED TO THE UNDERDRAIN SYSTEM.

Ν


	NO	TES:
RTY LINE	1.	2015 AERIAL PHOTOGRAPH IS FROM THE IOWA GEOGRAPHIC MAP SERVER-IOWA STATE
WASTE		UNIVERSITY GEOGRAPHIC INFORMATION SYSTEMS SUPPORT & RESEARCH FACILITY.
WELL	2.	PROPERTY LINE SOUTH OF 130 TH STREET FROM SURVEY MAP PREPARED BY GARDEN & ASSOCIATES, OSKALOOSA, IOWA, DATED DECEMBER 20, 1988.
A TER AUGE	3.	PROPERTY LINE NORTH OF 130 TH STREET FROM PLAT OF SURVEY MAP PREPARED BY SCS ENGINEERS, MADISON, WISCONSIN, DATED FEBRUARY 20, 2013.
WATER AUGF	4.	EXISTING LIMITS OF WASTE ARE APPROXIMATE.
ING WELL	5.	MW-13 AND MW-14 ARE USED IN THE INTERPRETATION OF BOTH THE WATER TABLE MAP AND THE POTENTIOMETRIC SURFACE MAP BECAUSE THEY ARE SCREENED IN THE PENNSYLVANIAN UNIT AND ACROSS WHAT
		COULD BE INTERPRETED AS THE WATER TABLE (1ST OCCURRENCE OF GROUNDWATER AT THE
WATER		WELL LOCATIONS).
TION T 2024	6.	A GROUNDWATER UNDERDRAIN SYSTEM IS PRESENT BELOW THE BASE OF THE CURRENT FILL AREA. ELEVATIONS IN THE BASE UNDERDRAIN SYSTEM RANGE FROM 748' TO 762'. ADDITIONALLY, FINGER DRAINS WERE
UR NTERVAL RRED)		INSTALLED ALONG THE EASTERN EDGE OF THE FILL AREA AT THE AN ELEVATION OF APPROXIMATELY 795'. THESE FINGER DRAINS ARE TIED TO THE UNDERDRAIN SYSTEM.

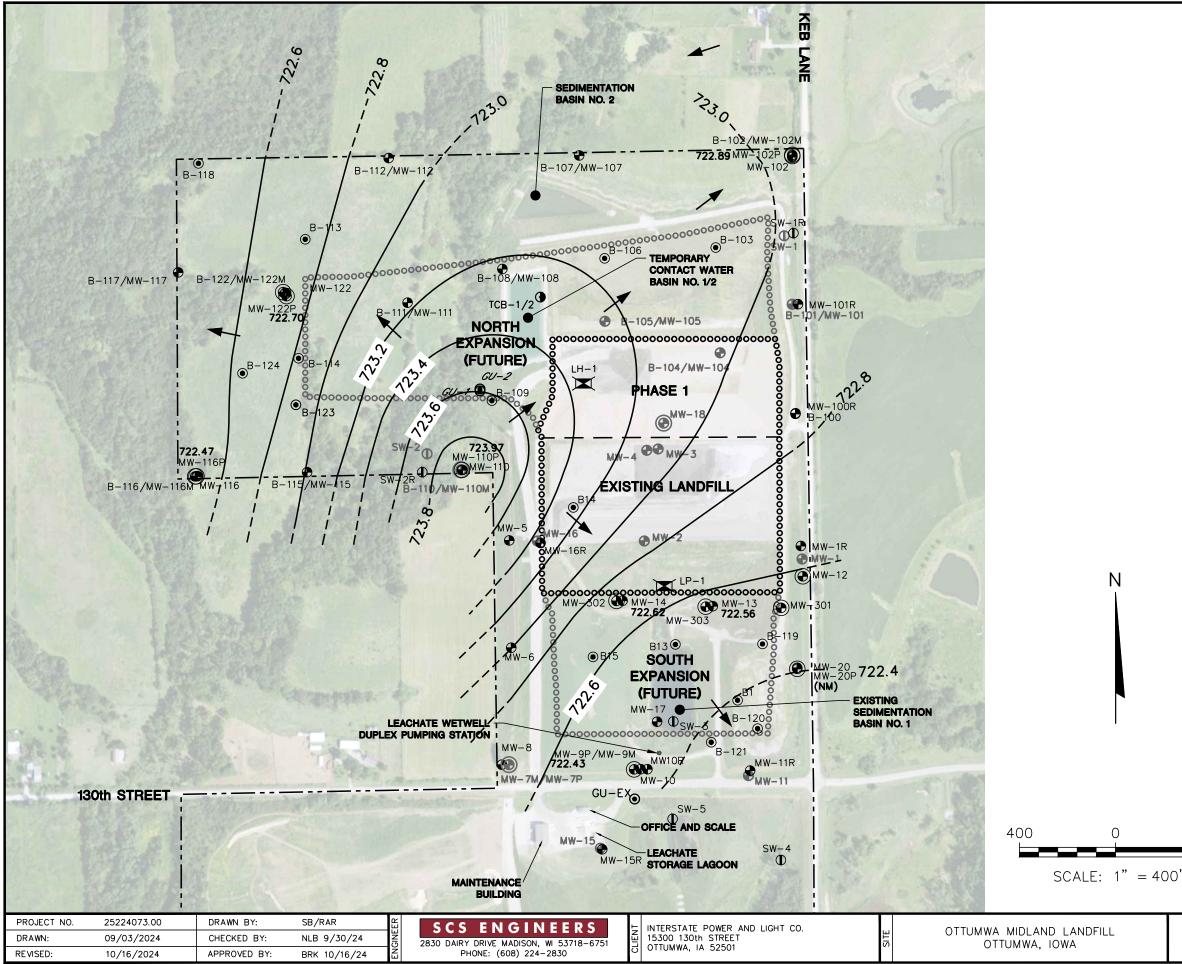
400 \cap

WATER	TABLE	MAP
AUGUST	6-8,	2024

Ν

FIGURE

25224073.00\Drawings\Aug 2024 Wtbl (State) Piezo.dwg /16/2024 3:22:46 PM


	LEGEND
	APPROXIMATE PROPERTY LINE
.0000000	APPROVED WASTE LIMITS
.0000000	EXISTING WASTE LIMITS
	PHASE LIMIT
Ð	EXISTING MONITORING WELL
۲	EXISTING PIEZOMETER
Ф	EXISTING SURFACE WATER MONITORING STAFF GAUGE
Φ	ABANDONED SURFACE WATER MONITORING STAFF GAUGE
•	ABANDONED MONITORING WELL
\mathbf{X}	LEACHATE HEADWELL
۲	GROUNDWATER UNDERDRAIN
•	TEMPORARY CONTACT WATER BASIN
722.52	POTENTIOMETRIC GROUNDWATER SURFACE ELEVATION MEASURED ON APRIL 2024
(NM)	NOT MEASURED
	POTENTIOMETRIC SURFACE CONTOUR 0.2-FOOT CONTOUR INTERVAL (DASHED WHERE INFERRED)
-	APPROXIMATE GROUNDWATER FLOW DIRECTION

NOTES:

- 2015 AERIAL PHOTOGRAPH IS FROM THE IOWA 1. GEOGRAPHIC MAP SERVER-IOWA STATE UNIVERSITY GEOGRAPHIC INFORMATION SYSTEMS SUPPORT & RESEARCH FACILITY.
- 2. PROPERTY LINE SOUTH OF 130TH STREET FROM SURVEY MAP PREPARED BY GARDEN & ASSOCIATES, OSKALOOSA, IOWA, DATED DECEMBER 20, 1988.
- 3. PROPERTY LINE NORTH OF 130TH STREET FROM PLAT OF SURVEY MAP PREPARED BY SCS ENGINEERS, MADISON, WISCONSIN, DATED FEBRUARY 20, 2013.
- 4. EXISTING LIMITS OF WASTE ARE APPROXIMATE.
- MW-13 AND MW-14 ARE USED IN THE 5. INTERPRETATION OF BOTH THE WATER TABLE MAP AND THE POTENTIOMETRIC SURFACE MAP BECAUSE THEY ARE SCREENED IN THE PENNSYLVANIAN UNIT (UPPERMOST AQUIFER) AND ACROSS WHAT COULD BE INTERPRETED AS THE WATER TABLE (1ST OCCURRENCE OF GROUNDWATER AT THE WELL LOCATIONS).

400

POTENTIOMETRIC GROUNDWATER SURFACE	FIGURE
APRIL 2, 2024	5

25224073.00\Drawings\Aug 2024 Wtbl (State) Piezo dwg 16/2024 3:47:44 PM

	LE	GEND
	— AP	PROXIMATE PROPERTY LINE
00000	DOO AP	PROVED WASTE LIMITS
00000	000 . EX	ISTING WASTE LIMITS
	• — РН	ASE LIMIT
Ð	EX	ISTING MONITORING WELL
۲	EX	ISTING PIEZOMETER
Ф		ISTING SURFACE WATER NITORING STAFF GAUGE
Φ		ANDONED SURFACE WATER NITORING STAFF GAUGE
•	AB	ANDONED MONITORING WELL
	LE	ACHATE HEADWELL
۲	GR	OUNDWATER UNDERDRAIN
•	TE	MPORARY CONTACT WATER BASIN
722	SU	TENTIOMETRIC GROUNDWATER RFACE ELEVATION MEASURED ON IGUST 2024
(NM	I) NC	T MEASURED
	SU 0.2	TENTIOMETRIC GROUNDWATER RFACE CONTOUR 2-FOOT CONTOUR INTERVAL ASHED WHERE INFERRED)
		PROXIMATE GROUNDWATER FLOW RECTION
NOTES:		
GEC UNI)GRAPHIC VERSITY	PHOTOGRAPH IS FROM THE IOWA MAP SERVER-IOWA STATE GEOGRAPHIC INFORMATION SYSTEMS RESEARCH FACILITY.
SUR ASS	EVEY MAR	INE SOUTH OF 130 TH STREET FROM P PREPARED BY GARDEN & , OSKALOOSA, IOWA, DATED 20, 1988.
PLA ENG	T OF SU SINEERS,	INE NORTH OF 130 TH STREET FROM RVEY MAP PREPARED BY SCS MADISON, WISCONSIN, DATED 20, 2013.
4. EXIS	STING LIN	IITS OF WASTE ARE APPROXIMATE.
IN TE MAF BEC PEN AND THE	ERPRETA P AND TH AUSE TH INSYLVAN D ACROSS WATER	MW-14 ARE USED IN THE TION OF BOTH THE WATER TABLE HE POTENTIOMETRIC SURFACE MAP IEY ARE SCREENED IN THE IIAN UNIT (UPPERMOST AQUIFER) S WHAT COULD BE INTERPRETED AS TABLE (1ST OCCURRENCE OF ER AT THE WELL LOCATIONS).

POTENTIOMETRIC GROUNDWATER SURFACE	FIGURE
AUGUST 6-8, 2024	6

Appendix A

Groundwater Sampling Field Sheets

Environmental Consultants & Contractors

Groundwater Sampling Log

Project No	. 252	25224073.00 Site <u>GML</u>									
Well No.		-15R			Date 8/6	124					
Sampling	Personnel	<i>hichae</i>)	Morgan	1							
Total Well			J	pH/tem	pH/temp/cond/DO/ORP meter model & unit ID # Date/time pH Calibration Last						
Depth to W	Vater <u>-</u> 4-8	.04			into pri ouni	Checked	8/6/24	7:30 AM			
Well Volun					meter model	& unit ID #	ŧ				
Sampling (Bladde) Peristaltic Other: Device: (Pump) Pump Pump Pump Pump Pump Pump Pump Pump											
Water Cold	-	clear	/ MOI	人已		_		1 - 11			
Wind Temperature: 64°F Direction: (N) E S (W) Precip: None (ight) Heavy Sky: Cloudy Sunny Partly											
Temperate		2	Sur								
Time	Depth to Water (ft)	Temp. (deg. C)	pH (standard units)	DO (mg/L)	Cond. (µs/cm)	ORP (mV)	Turbidity (NTU)	Notes			
Stability Req last 3 conse- readings mu	uirements – cutive	+/- 3%	+/- 0.1 unit	+/- 10% or 3 readings <0.5 mg/L	+/- 3%	+/- 10mV	+/- 10% or 3 readings <5 NTU				
8:10	48.12	16.5	6.15	5.22	2455	198.2	8.36				
8:15	48:28	15.0	6.29	2.15	2448	84.8	7.16				
8:20	48.37	14.9	6.25	1.12	2420	67.4	5.95				
8:25	48,47	14.7	6.24	0.78	2389	66.3	6-21				
8:70	48.53	15.5	6-24	0.69	1365	68-1	6-11				
	48.64	15.7	6-26	0.68	2352	69.1	5.54				
8:40	48.74	i 5.6	6.26	0.63	2322	69.4	6.25				
	48.86	15.1	6- 1 7	0.58	2263	69.5	5.50				
	49.23	14.0	6.27	0.45	2122	76.4	5.90				
	49.55	14.0	6.27	0.46	2092	72.3	6.13				
	49.71	14.0	6.27	0.42	2101	74.9	5.74	SAMPLE			

Sample Bottles Collected:

Sample Date /Time: Additional Notes:

*: Volume in a 2-inch well = 617 ml/ft

S:\1_Scientist Log Forms\LOG FORMS\Groundwater Sampling Log_v3.docx

3.3 9.3

*

Environmental Consultants & Contractors

Groundwater Sampling Log

Project No. 25224073-00	Site OML
Well No. MW-IR	Date 8/6/24
Sampling Personnel Michael Morgan	
Total Well Depth	pH/temp/cond/DO/ORP meter model & unit ID #
Depth to Water 9.77	Date/time pH Calibration Last Checked: 8/6/24 7:30
Well Volume*	Turbidity meter model & unit ID #
Sampling Bladder Peristaltic Oth Device: Pump Pump	Pumping Rate: _ ifoo w 1/ win
Water Color/Odor dew / von	
Temperature: 6 5 후 Direction: (N) E S	(W) Precip: (None) Light Heavy Sky: (Cloud) Sunny Partly

Time	Depth to Water (ft)	Temp. (deg. C)	pH (standard units)	DO (mg/L)	Cond. (µs/cm)	ORP (mV)	Turbidity (NTU)	Notes
Stability Req last 3 conse readings mu		+/- 3%	+/- 0.1 unit	+/- 10% or 3 readings <0.5 mg/L	+/- 3%	+/- 10mV	+/- 10% or 3 readings <5 NTU	
10:06	10.06	13.6	7.38	2.52	833	99.4	11.11	
10 11	10.52	13.3	7.13	1.25	827	102.6	7.56	
10.16	10.98	13.6	7.06	1.13	825	103.0	6.23	
10:21	11.22	14.4	7.13	3.50	786	104.8	7.23	
10:26	11;48	14.4	7.08	3.67	796	109.5	7.30	
10 31	11:55	14.8	7.04	3.10	208	111-4	7.74	
10:36	11:56	14.5	7.02	2.47	809	111.7	6.93	
10:41	11:62	14.4	7.00	1.94	810	111.0	6.85	
10:46	11.71	14.4	6.99	1.72	808	110.2	6.70	
10:51	11:79	14.4	6.98	1.58	806	109.4	6.48	
10:56	11,96	14.4	6.98	1.47	802	108.5	7.18	
	12-22	14.3	6.97	1.42	795	107.9	6.71	
	12:39	14.4	6.97	1.40	191	107.8	6.59	

Sample Bottles Collected:

Sample Date /Time: Additional Notes:

1 ft it' tubing used

*: Volume in a 2-inch well = 617 ml/ft

S:\1_Scientist Log Forms\LOG FORMS\Groundwater Sampling Log_v3.docx

5,5 5,5 5,5 4 5,5

Environmental Consultants & Contractors

Groundwater Sampling Log

Project No.						Site							
	NW-1					Date	2/13	5/21	+				
Sampling Person	nel Min	Lue	L	Mo	vqa	~							
Total Well Depth) p	H/temp/co Date/time	model	& unit pration	ID # Last				
Depth to Water			_		-			Chec	3			_	
Well Volume*					Tur	bidity met	er model	& unit	ID #				
Sampling Device:	Bladder Pump	Peris Pur		Ot	her:		Pumpir	ng Rate	:				
Water Color/Odd	or		/				Pump S	tart/St	op Time		/	/	
Temperature:	Wind Direc		N	E S	w	Precip:	None	Light	Heavy	Sky:	Cloudy	Sunny	Partly

Time	Depth to Water (ft)	Temp. (deg. C)	pH (standard units)	DO (mg/L)	Cond. (µs/cm)	ORP (mV)	Turbidity (NTU)	Notes
Stability Red last 3 conse	quirements –	+/- 3%	+/- 0.1 unit	+/- 10% or 3 readings <0.5 mg/L	+/- 3%	+/- 10mV	+/- 10% or 3 readings <5 NTU	
n: ŋ	12.53	14.4	6.97	1.38	787	107.2	6-46	SAMPLE
						-		

Sample Bottles Collected:

Sample Date /Time: Additional Notes:

*: Volume in a 2-inch well = 617 ml/ft

S:\1_Scientist Log Forms\LOG FORMS\Groundwater Sampling Log_v3.docx

Environmental Consultants & Contractors

			0.001							
Project No	25)	24073	· 00		Site OM	4				
Well No.	Mar	- 100R			Date 8/6/	124				
Sampling I	Personnel /	ricinal	Morgan							
Total Well	Depth		U.		pH/temp/cond/D0/ORP meter model & unit ID # Date/time pH Calibration Last Checked: 8/6/24 7:30 AM					
Depth to W	2	OP		-						
Well Volun Sampling	ne*	der Pe	ristaltic Ot	her:	meter model					
Device:	Pur		Pump		Pumpi	ng Rate: _	350 -1/			
Water Cold	or/Odor	tear	/ 100	ie i	Pump S	itart/Stop	rime 11:43	/ 12:45		
Temperatu	ire: 65°F	Wind Direction	: (N) E S	(W) Pred	ip: None	Light He	avy Sky:	Cloudy, Sunny Partly		
Temperato		Direction			$- \bigcirc$			\bigcirc		
Time	Depth to Water (ft)	Temp. (deg. C)	pH (standard units)	DO (mg/L)	Cond. (µs/cm)	ORP (mV)	Turbidity (NTU)	Notes		
Stability Req last 3 conserved readings mu	uirements – cutive	+/- 3%	+/- 0.1 unit	+/- 10% or 3 readings <0.5 mg/L	+/- 3%	+/- 10mV	+/- 10% or 3 readings <5 NTU			
11:43	14:12	15.2	7.49	6.81	966	131.1	6.48			
11 48	14:52	13.1	7.15	4.50	942	130-1	5.39			
11:53	14.69	13.9	7.11	4.73	938	128.5	5-79			
11:58	14.73	14.1	7.08	4.59	963	127.9	6.02			
12:03	14.76	14.0	7.06	4.43	978	127.1	5.55			
12:08	14.80	14.0	7.06	4.38	987	126.1	5.38			
12:13	14. 83	14.0	7.05	4.36	993	125.2	5.05			
12:18	14.92	13.9	7.05	4.34	998	124.5	6.53			
12:23	14.96	14.0	7.05	4.34	1001	124.1	5.97			
12:28	14.97	14.0	7.05	4.33	1005	123.8	5.64			
12:33	14.97	14.0	7.05	4.33	1007	123.3	5.77	Sou ple		

Groundwater Sampling Log

Sample Bottles Collected:

Sample Date /Time: Additional Notes:

*: Volume in a 2-inch well = 617 ml/ft

S:\1_Scientist Log Forms\LOG FORMS\Groundwater Sampling Log_v3.docx

0

-3,00 Ur • O

2.9

Environmental Consultants & Contractors

					amping	_		
Project No	. 252	24073	- 00		Site _ Oハ			
Well No.	NV	5-101	R		Date 8/6/	24		
Sampling	Personnel							
Total Well	Depth		1			& unit ID #	ŧ	
Depth to V	Vater 16.	73		Date/t	ime pH Calik	Checked	8/6/24	7:30 Aug
Well Volum	ne*			Turbidity	meter model	& unit ID #	ŧ	
Sampling Device:	Blad		ristaltic Ot Pump	her:			300 m1/1	
Water Col	or/Odor C	lear	/ no	she	Pump S	tart/Stop	Time (3:12	14:10
Temperati	ire: 66°F	Wind Direction	: (N) E S	W Pred	ip: (None))Light He	avy Sky:	Floudy Sunny Partly
								\smile
	Depth to Water	Temp. (deg.	pH (standard	DO	Cond.	ORP (mV)	Turbidity (NTU)	Notes
Time Stability Reg	(ft)	C)	units)	(mg/L) +/- 10% or	(µs/cm)		+/- 10% or	Roles
last 3 conse		+/- 3%	+/- 0.1 unit	3 readings <0.5 mg/L	+/- 3%	+/- 10mV	3 readings <5 NTU	
13:12	17.05	15.6	7.29	83.3	1429	138.8	8.56	
13:17	17.44	13.0	6.84	1.04	1497	139.8	6.28	· · · · · ·
13:22	17.51	13-3	18.0	08.0	1503	135.1	6.22	
13:27	17.82	13.3	6-80	0.68	1502	130.4	7.74	
13:32	17,97	13.5	6.80	0.73	1502	125.2	7.95	
	18.18	13.5	6.80	0-79	1511	122.3	15-49	
13:42	18.27	13.9	6.80	0.80	1525	8.811	13.89	
13:47	18:42	13.9	08.3	0.72	1532	116.5	10.31	
13:52	18:56	13.9	6-80	0.73	1534	113.9	10.87	
	18.64	13.8	6.80	0.70	1533	112.2	9.94	Sample

Groundwater Sampling Log

Sample Bottles Collected:

Sample Date /Time:

Additional Notes:

Some ants & other detritos present

*: Volume in a 2-inch well = 617 ml/ft

S:\1_Scientist Log Forms\LOG FORMS\Groundwater Sampling Log_v3.docx

 \mathbf{G}

3.0 2.7

Environmental Consultants & Contractors

Project No	252	24073	- 00		Site ()/	UL		
Well No.		- 108				1/24		
1		V	Morgan	^		/		
Total Well			0	pH/tem	p/cond/DO/ model ime pH Calik	& unit ID #	PRO USS	
Well Volun		Q.		Turbidity	meter model	& unit ID #	ŧ	
Sampling Device:	Blad	np) F	Pump	her:		_	300m1/4	
	or/Odor bro	Wind	-	my simel		tart/Stop	5.90	
Temperatu	ire: 62° F	Direction	: (N) E S	W Pred	ip: (None)	Light He	avy Sky:	Cloudy Sunny Partly
	Depth	Temp.	рH					
Time	to Water (ft)	(deg. C)	(standard units)	DO (mg/L)	Cond. (µs/cm)	ORP (mV)	Turbidity (NTU)	Notes
Stability Req last 3 conse	uirements –	+/- 3%	+/- 0.1 unit	+/- 10% or 3 readings <0.5 mg/L	+/- 3%	+/- 10mV	+/- 10% or 3 readings <5 NTU	
7:57	24.52	14.2	6.49	5.13	716	174.2	48.11	
8:02	24.78	13.6	6-57	i. 58	794	78.7	55.29	
8:07	1.4.94	13.4	6.59	1.16	53 ר	40.8	27.20	
8:12	25.05	13.4	6.57	1.02	678	-1.8	14-4-3	
8:17	25.09	13.6	6.42	1.59	557	16.6	6.86	
8:22	25.08	13.6	6-36	1.73	552	16.5	6.56	
8:27	25.12	13.7	6.39	1.59	565	8.7	5.04	
8:32	25.14	13.8	6-44	1.39	583	-1.2	5.10	1 ar
8:37	25.18	13-7	6.47	1.27	591	-8.7	5.14-	
8:42	25.18		6.50	1.15	603	-14.3	4.49	
	25-14	14.0	6.52	1.04	609	-18.9	4.26	
	25-17	14.0	6.54	0.94	617	-23:1	4.38	

Groundwater Sampling Log

Sample Bottles Collected:

Sample Date /Time:

Additional Notes:

clear after ~ 15 min become

*: Volume in a 2-inch well = 617 ml/ft

S:\1_Scientist Log Forms\LOG FORMS\Groundwater Sampling Log_v3.docx

Sample

3.1 3.2 3.5

Environmental Consultants & Contractors

Groundwater Sampling Log

Project No						Sit	e0				
Well No.	MU	8-108				Dat	e 8/7	124			
Sampling	Personnel)	richa	Mb	ovq							
Total Well Depth to V				0			mode	ORP met & unit ID bration La Checke	# st		
Well Volur	ne*				Turb	idity me	ter mode	l & unit ID	#		
Sampling Device:	Blac Pur	2,25	eristaltic Pump	Oth	ner:		Pumpi	ng Rate:			
Water Col	or/Odor		/				Pump S	Start/Stop	Time	/	
Temperat	ıre:	Wind Direction	n: N	ΕS	W	Precip:	None	Light H	leavy Sky:	Cloudy St	unny Partly
	Depth to Water	Temp. (deg.	pH (stande	ard	DC	>	Cond.	ORP	Turbidity		

Time	to Water (ft)	(deg. C)	(standard units)	DO (mg/L)	Cond. (µs/cm)	ORP (mV)	Turbidity (NTU)	Notes
last 3 conse	uirements – cutive ust be within:	+/- 3%	+/- 0.1 unit	+/- 10% or 3 readings <0.5 mg/L	+/- 3%	+/- 10mV	+/- 10% or 3 readings <5 NTU	
8.57	25.15	14.1	6-55	0.98	619	-25.2	4.11	
9:02	25.13	14.2	6.55	0.97	621	-27-3	3.86	SAMPLE
	· · · · · · · · · · · · · · · · · · ·							

Sample Bottles Collected:

Sample Date /Time: _____ Additional Notes:

*: Volume in a 2-inch well = 617 ml/ft

S:\1_Scientist Log Forms\LOG FORMS\Groundwater Sampling Log_v3.docx

Environmental Consultants & Contractors

Groundwater	Sampling	g Log
-------------	----------	-------

Project No.	25224073-00	Site OML
Well No.	MW-14	Date 8/7/24
Sampling Person	nel Michael Morga	any and a second s
Total Well Depth	0	pH/temp/cond/D0/0RP meter model & unit ID #
Depth to Water	38.40	Date/time pH Calibration Last Checked: $8/7/24$ 7:00 AM
Well Volume*		Turbidity meter model & unit ID #
Sampling Device:	Bladder Peristaltic Oth Pump Pump	Pumping Rate: _250 ml / mm
Water Color/Odd	or dear / non	e Pump Start/Stop Time ۹: 37 /
Temperature: つ	Wind	W Precip: None Light Heavy Sky: Cloudy Sunoy Partly

2.8

2.1

Time	Depth to Water (ft)	Temp. (deg. C)	pH (standard units)	DO (mg/L)	Cond. (µs/cm)	ORP (mV)	Turbidity (NTU)	Notes
Stability Req last 3 conse readings mu	uirements –	+/- 3%	+/- 0.1 unit	+/- 10% or 3 readings <0.5 mg/L	+/- 3%	+/- 10mV	+/- 10% or 3 readings <5 NTU	
9:37	38.48	26.1	7.05	7.64	2.7	79.2	13.00	
9:42	39.22	14.8	7.13	3.20	3215	48.0	6-55	
9:47	39:58	15.5	7.15	0.82	3196	39.8	4.86	
9:52	39:74	18.0	7.12	0.99	3216	37.3	4.23	
9:57	40.25	15.6	7.14	0.48	3196	37.2	5.50	
10:02	40.32	17-1	7.14	0.40	3177	36.6	5.68	
10:07	40,34	18.5	7.11	0-52	3203	37.8	6.42	
10:12	40.47	19.4	7.09	0.68	3220	39-1	7-29	
10:17	40.53	19.7	7.09	0.83	3223	40.8	8.64	
10:22	40.61	19.9	7.09	0.86	3226	42.4	9.63	
10:27	40.62	19.9	7.09	0.85	3226	43-6	9-26	
10:32	40.47	17.0	7.11	0.78	3225	45.3	1.68	

Sample Bottles Collected:

Sample Date /Time:

Additional Notes: 7

2 Ft 1/4" tubing used

*: Volume in a 2-inch well = 617 ml/ft

S:\1_Scientist Log Forms\LOG FORMS\Groundwater Sampling Log_v3.docx

Environmental Consultants & Contractors

Groundwater Sampling Log

Project No.							Site	01	1L					
Well No.	MW-1	4 0	ion	۶.			Date	8/	7/2	4				
Sampling Person	nel MC	cho	e	У	lov	ys	~				_			
Total Well Depth							H/temp/c Date/time	model	& unit	ID #				
Depth to Water					_			pri Cali	Chec					
Well Volume*						Tur	bidity met	er model	& unit	ID #				
Sampling Device:	Bladder Pump	0.12401525	staltic mp	6	Oth	er:		Pumpir	ng Rate	:				
Water Color/Odo	r		/	/				Pump S	itart/St	op Time		/	/	
Temperature:	Wine Dire	d ction:	N	E	s	w	Precip:	None	Light	Heavy	Sky:	Cloudy	Sunny	Partly

Time	Depth to Water (ft)	Temp. (deg. C)	pH (standard units)	DO (mg/L)	Cond. (µs/cm)	ORP (mV)	Turbidity (NTU)	Notes
last 3 conse	uirements –	+/- 3%	+/- 0.1 unit	+/- 10% or 3 readings <0.5 mg/L	+/- 3%	+/- 10mV	+/- 10% or 3 readings <5 NTU	
10:37	41.01	17.5	7.12	6. SN	3182	45.2	10.90	
10:42	41.04	17.2	7.11	0.62	3189	45.3	10.92	
10:47	41.09	17.0	7.10	0.56	3214	46.0	10.87	SAMPLE
		5						

Sample	Bottles	Collected:

Sample Date / Time: _____ Additional Notes: _____

*: Volume in a 2-inch well = 617 ml/ft

S:\1_Scientist Log Forms\LOG FORMS\Groundwater Sampling Log_v3.docx

63

Environmental Consultants & Contractors

Groundwater Sampling Log

Project No	. 252	124073	- 00		Site OA	nh				
Well No.	phis	- 102 1	2		Date 8/7	24				
Sampling	Personnel)	Micha	el Morg	an						
Total Well	Depth		0		pH/temp/cond/D0/ORP meter model & unit ID # Date/time pH Calibration Last					
Depth to V	Vater 74	F.75				Checked	8/7/24	7:00 AM		
Well Volum					meter model	& unit ID a	#			
Sampling Device:	Blac	2010-00-00 D.120	eristaltic Ot Pump	her:	Pumpii	ng Rate: 1	+00 ml /	un		
Water Col	or/Odor Cl	ear	1 no	he		itart/Stop		1		
	re: דר"	348-4	C		ip: None)	Light He	eavy Sky:	Cloudy Sunny Partly		
Time	Depth to Water (ft)	Temp. (deg. C)	pH (standard units)	DO (mg/L)	Cond. (µs/cm)	ORP (mV)	Turbidity (NTU)	Notes		
Stability Req last 3 conse readings mu		+/- 3%	+/- 0.1 unit	+/- 10% or 3 readings <0.5 mg/L	+/- 3%	+/- 10mV	+/- 10% or 3 readings <5 NTU			
13:12	74.79	19.4	7.14	8.61	3113	41.4	8.79			
13:17	74.82	14.2	6.52	1.44	3359	- Si.6	36.02			
13:22	74.72	13.9	6.51	0-31	3547	-44.5	23.86			
13.27	74.71	14.0	6.51	0.16	3564	-44.0	24.08			
13:32	74:71	13.9	6.50	0.11	3553	-43.9	29.81			
13: 37	74.71	14.0	6.50	80.0	3551	-43.8	33.59			
13:42	74.71	14.0	6.50	0.04	3555	-439	31.36			
	74.71		6.49	0.02	3556	-44.0	33.20	SAMPLE		

3.0 3.2 3.7 107

Sample Bottles Collected:

Sample Date /Time:		/USE		1.00	
		required	netor ol	to work	regular perto
- If+ 1/4" tubin Turbishity re.	1 1 - 1	Mow work			0

*: Volume in a 2-inch well = 617 ml/ft ' S:\1_Scientist Log Forms\LOG FORMS\Groundwater Sampling Log_v3.docx

Environmental Consultants & Contractors

Project No.	2512 4073.00	Site OML
Well No.	MW - 16 R	Date 8/ 9/24
Sampling Perso	nnel Michael Morgo	duy .
Total Well Depth	0	pH/temp/cond/DO/ORP meter model & unit ID #
Depth to Water	91.66	Date/time pH Calibration Last Checked: 8/7/24 7:00 AM
Well Volume*	~	Turbidity meter model & unit ID #
Sampling Device:	Bladder Peristaltic Oth Pump Pump	Pumping Rate: 300 ml / min
Water Color/Od		Pump Start/Stop Time 14:30 /15:21
Temperature:	Wind 17°⊬ Direction: N (E)S	W Precip: None Light Heavy Sky: Cloudy Sunny Partly

Groundwater Sampling Log

1.6	
ົງ	

Time	Depth to Water (ft)	Temp. pH (deg. (standard C) units)		DO (mg/L)	Cond. (µs/cm)	ORP (mV)	Turbidity (NTU)	Notes
Stability Requirements – last 3 consecutive readings must be within:		+/- 3%	+/- 0.1 unit	+/- 10% or 3 readings <0.5 mg/L	+/- 3%	+/- 10mV	+/- 10% or 3 readings <5 NTU	
14:30	91.91	2104	7.60	7.09	3538	- 51-1	4.83	
14 55	91.93	15.2	7.16	3.55	3401	-9.5	15.68	
14:40	91.95	15.1	7.01	0.92	3403	=4.4	9.48	
14:45	91.95	15.0	6.98	0.50	3448	-22.4	8.02	
14:50	91,95	14.9	6.96	0.37	3468	-30.6	6.34	
14:55	91.94	15.0	6.95	0.28	3480	-344	7.70	
15:00	91.95	15.1	6.94	0.24	3492	- 40.4	7.93	
15:05	91.95	15.0	6.94	0.20	3511	-44.9	7.43	SAMPLE

Sample Bottles Collected:

Sample Date /Time:

Additional Notes:

Canarator required / used

*: Volume in a 2-inch well = 617 ml/ft S:\1_Scientist Log Forms\LOG FORMS\Groundwater Sampling Log_v3.docx

 \mathbf{O}

Environmental Consultants & Contractors

٦

Groundwater Sampling Log

Project No.	25224073.00	Site OML				
Well No.	MW-12	Date Purged 8/7/24				
Sampling Perso	nnel Michael Morgan	sample 8/8/24				
Total Well Dept	V	pH/temp/cond/DO/ORP meter model & unit ID #				
Depth to Water						
Well Volume* Sampling	Bladder Peristaltic Oth	Turbidity meter model & unit ID #				
Device:	(Pump) Pump	Pumping Rate:				
Water Color/Od	for dear / no	Pump Start/Stop Time 7:37 / 7:53				
Temperature: G	Wind	(W) Precip: (None) Light Heavy Sky: (Cloud) Sunny Partly				

uirements – cutive st be within:	C) +/- 3%		(mg/L) +/- 10% or		(mV)	(NTU)	Notes
		+/- 0.1 unit	3 readings <0.5 mg/L	+/- 3%	+/- 10mV	+/- 10% or 3 readings <5 NTU	
101.66	17.1	7.23	8.03	2369	145.3	10.98	SAMPLE
							÷
							Image: series of the series

		-	
Sample Date /Time:	8		
Additional Notes: Water not flowing when pump on	. Purge d	lbu	on 87
Depth to world' at sumpling = 101.66 Ft			
*: Volume in a 2-inch well = 617 ml/ft			

2830 Dairy Drive, Madison. WI 53718-6751 | 608-224-2830 | eFax 608-224-2839 🦷 🛟

Environmental Consultants & Contractors

Project No	. 252	12407	3.00		Site () /	NL				
Well No.	5	J ~ 13				1/24				
Sampling Personnel Mithuel Morgan										
Total Well Depth pH/temp/cond/D0/ORP meter model & unit ID # Depth to Water 39-92 Depth to Water 39-92										
Well Volume* Turbidity meter model & unit ID # Sampling Device: Bladder / Peristaltic Pump Other: Pump Water Color/Odor Clear / Mane Pump Start/Stop Time 8:21 / 9:39										
Water Col	or/Odor C ure: フ(°F	Vind Direction		() (W) Pred	-	Light He		Cloudy Sunny Partly		
Time	Depth to Water (ft)	Temp. (deg. C)	pH (standard units)	DO (mg/L)	Cond. (µs/cm)	ORP (mV)	Turbidity (NTU)	Notes		
Stability Rea last 3 conse	uirements –	+/- 3%	+/- 0.1 unit	+/- 10% or 3 readings <0.5 mg/L	+/- 3%	+/- 10mV	+/- 10% or 3 readings <5 NTU			
8:21	40.22	17.0	7.24	8.28	3140	143.9	2.96			
8:26	40.23	14.2	6.97	0.86	3202	146.9	4.91			
8:31	40.18	14.7	7.02	0.37	3205	133.7	3.64	-		
8:36	40.12	14.7	7.02	0.27	3202	106.9	5.45			
8:41	40.23	14.3	7.02	0.18	3198	ר-רוך	9.05			
8:46		14.3	7.01	0.08	3190	50.2	6.60			
8:51		14.3	7.01	0.06	3188	19.4	6.25			
8:56		15.5	6.99	0.12	3184	1.6	6.39			
9:01		15.7	6.98	0-18	3195	-9.9	5-84			
9:06		15.8	6-97	0.20	3196	-17.9	6.97			
9:11		15.7	6-98	0-19	3199	-23.8	4.86			

Sample Bottles Collected:

9:16 40.03 15.7

Sample Date /Time:		dujung								
Additional Notes:	Ballories	in	water	measure	tope	and a	during	stabelization		

0.17

6.97

3195

-28-1

5.87

*: Volume in a 2-inch well = 617 ml/ft

S:\1_Scientist Log Forms\LOG FORMS\Groundwater Sampling Log_v3.docx

3.3 2.4 59

Environmental Consultants & Contractors

Groundwater Sampling Log

Project No.	252240	73.00			Site		NL					
Well No.	MW-13	cont.			Date	8/8	124					
Sampling Persor	nel Mich	al Mon	you									
Total Well Depth					H/temp/co Date/time	model	& unit ration	ID # Last				
Depth to Water							Chec	ked:				
Well Volume*				Tur	bidity met	er model	& unit	ID #				
Sampling Device:	Bladder Pump	Peristaltic Pump	Oth	ner:		Pumpir	ng Rate	:				
Water Color/Odor /						Pump S	tart/St	op Time			/	
Temperature:	Wind Directi	on: N	E S	w	Precip:	None	Light	Heavy	Sky:	Cloudy	Sunny	Partly

Time	Depth to Water (ft)	Temp. (deg. C)	pH (standard units)	DO (mg/l)	Cond. (µs/cm)	ORP (mV)	Turbidity (NTU)	Notes
Stability Req last 3 conse	uirements –	+/- 3%	+/- 0.1 unit	+/- 10% or 3 readings <0.5 mg/L	+/- 3%	+/≞ 10mV	+/- 10% or 3 readings <5 NTU	
9:21		15.8	6.97	0-16	3194	-31.9	6.36	
9:26	40.05	15.9	6.97	0.15	3194	34.4	6.06	SAMPLE
					(
		1						
×.								

Sample Bottles Collected:

Sample Date /Time: Additional Notes:

*: Volume in a 2-inch well = 617 ml/ft

S:\1_Scientist Log Forms\LOG FORMS\Groundwater Sampling Log_v3.docx

43

Environmental Consultants & Contractors

Groundwater Sampling Log

Project No. 25	:224073.00	Site	U.ML		
Well No. ML	v-17	Date	8/8/24		
Sampling Personnel	Michael Morgan				
Total Well Depth	19.37	pH/temp/co	nd/DO/ORP meter model & unit ID #	8	
Depth to Water 19.03		Date/time p	oH Calibration Last Checked:		7:00 AM
Well Volume*	-	Turbidity mete	r model & unit ID #		
1 • • • • • • • • • • • • • • • • • • •	adder Peristàltic Oth ump Pump	ner:	Pumping Rate:		
Water Color/Odor Se		ne	Pump Start/Stop Ti	ime 10;05	/:0120
Temperature: 74-°	Wind F Direction: N E S	Precip:	None Light Hea	avy Sky : Cloud	dy Sunny (Partly,

Time	Depth to Water (ft)	Temp. (deg. C)	pH (standard units)	DO (mg/L)	Cond. (µs/cm)	ORP (mV)	Turbidity (NIU)	Notes
Stability Req last 3 conse readings mu	juirements – cutive	+/- 3%	+/- 0.1 unit	+/- 10% or 3 readings <0.5 mg/L	+/- 3%	+/- 10mV	+/- 10% or 3 readings <5 NTU	
10:05	19.30	29.2	7014	6.69	19.4	90.8	58.10	
10:10	19.32	26.7	6.77	5.94	2501	-86.4	48.75	
10:15	19:37	27.0	6.78	5.95	2499	-86.8	4-2078	

Sample Bottles Collected:

Sample Date /Time:					
Additional Notes:	Now	went	dry	pring	stabalization
# clear with	the second se	2.3 1		inlates)	
to lock reple			1		
*: Volume in a 2-inch		.7 ml/ft			

SURFACE WATER SAMPLING FORM

	Demitable			
Site Name OML	Permit No.			
Surface Monitoring Point No. $SW - 1R$	Date/Time 8/6/24 14:30			
Name of person sampling Michael Morgen				
0				
A. TYPE OF MONITORING POINT				
Stream	Open Tile			
Road Ditch	Tile with Riser			
☑ Drainage Ditch	Other (describe)			
B. PURPOSE OF MONITORING POINT				
Upstream	Downstream			
Within Landfill	Other (describe) Drain age			
C. MONITORING POINT CONDITIONS				
General description/condition of monitoring point				
Monitaing point among shoulds, ready & toll grass. Monitaing point was day				
Was monitoring point dry? Yes	Too little water to sample?			
Was water flowing?				
If yes, estimate quantity	If yes, estimate depth			
Was water discolored?				
If yes, describe				
Does water have odor?				
If yes, describe				
Was ground discolored?				
If yes, describe				
Litter present?				
If yes, describe				

D. FIELD MEASUREMENT				
Weather Conditions 65 Fo, doudy, wh	ind N			
	rements (after stabilization):			
Temperature	Units			
Equipment Used				
D. FIELD MEASUREMENT (continued)				
рН				
Equipment Used	1			
Specific Conditions	Units			
Equipment Used				

	Comments	
Montoring paint day		
ALL AND THE REAL AND	CERTIFICATION	N
I certify under penalty of law I	believe the information reporte	ed above is true, accurate and complete.
Signature		Date 8/12/24
relephone 515-631-0778	Fax	Email MAMorgan @ Scs engineers surface and groundwater monitoring points.
NOTE: Attach 8 1/2" x 11" site pla	an showing locations of all s One map per sampling ro	surface and groundwater monitoring points.

SURFACE WATER SAMPLING FORM

Site Name (G1)1	Permit No.			
Site Name GML Surface Monitoring Point No. Sພ- 5	Date/Time 8/7/24 16:10			
Name of person sampling Michael Morgan				
A. TYPE OF MONITORING POINT				
☐ Stream	🗌 Open Tile			
Road Ditch	Tile with Riser			
Drainage Ditch	S Other (describe) Withlem &			
B. PURPOSE OF MONITORING POINT				
Upstream	Downstream			
Within Landfill	Other (describe)			
C. MONITORING POINT CONDITIONS				
General description/condition of monitoring point				
Weltland assigned area with reedy & forber. Muddy underfoot. Monitoring				
part was dry				
Was monitoring point dry? Yes	Too little water to sample?			
Was water flowing?				
If yes, estimate quantity	If yes, estimate depth			
Was water discolored?				
If yes, describe				
Does water have odor?				
If yes, describe Was ground discolored?				
If yes, describe				
Litter present?				
If yes, describe				

D. FIELD MEASUREMENT	
Weather Conditions 77°F Survey, Wind E	
Field Measurements	a (after stabilization):
Temperature	Units
Equipment Used	
D. FIELD MEASUREMENT (continued)	
рН	
Equipment Used	
Specific Conditions	Units
Equipment Used	

Comments	
CERTIFICATIO	N
I certify under penalty of law I believe the information report	
Signature / 4 4	Date 8/12/24
Telephone 515-631-0778 Fax	Email MANorgan Oscsengineers, cou
NOTE: Attach 8 ½" x 11" site plan showing locations of all One map per sampling	surface and groundwater monitoring points.

SURFACE WATER SAMPLING FORM

Site Name OML	Permit No.			
Surface Monitoring Point No. 50-4	Date/Time 8/7/24 16:20			
Name of person sampling Michael Morgan				
U				
A. TYPE OF MONITORING POINT				
Stream	Open Tile			
Road Ditch	➢ Tile with Riser			
Drainage Ditch	Other (describe)			
B. PURPOSE OF MONITORING POINT				
Upstream	Downstream			
U Within Landfill	Other (describe)			
C. MONITORING POINT CONDITIONS				
General description/condition of monitoring point	a = a = a = b = a = b			
outlet areas in good condition, avoi	morge stream morting any is few surfam.			
outlet apears in good condition, drainage stream mostly dry is few small publies. Monitoring point was dry				
Was monitoring point dry? Yes	Too little water to sample?			
Was water flowing?				
If yes, estimate quantity	If yes, estimate depth			
Was water discolored?				
If yes, describe				
Does water have odor?				
If yes, describe	1			
Was ground discolored?				
If yes, describe				
Litter present?				
If yes, describe				

D. FIELD MEASUREMENT	
Weather Conditions 77°F, Sunny (suid E
	rements (after stabilization):
	rements (alter stabilization).
Temperature	Units
Equipment Used	
D. FIELD MEASUREMENT (continued)	
pH	
Equipment Used	
Specific Conditions	Units
Equipment Used	

	Com	ments		
* culvat mouth to we	week water	(Atreaser)	manued	ot 32-25 ft
	CERTIE			
I certify under penalty of law I	believe the informa	tion reported abo	ve is true, accura	ate and complete.
Signature Myru			Date	8/12/24
alanhona 515-631-0778	Fax	Emai	MAMorgan	Sesengineers.c
NOTE: Attach 8 1/2" x 11" site pl	an showing locati One map per	ons of all surfact sampling round.	e and groundwa	ter monitoring points.

Site Name Stars OML	Permit No.
Surface Monitoring Point No. $5W-3$	Date/Time 8/8/24 10:40
Name of person sampling Michael Margan	
Name of person sampling / to tage / to get	
A. TYPE OF MONITORING POINT	فالحركيات وجرائي والجروم الترجي فيكالكو أفكر المحر
Stream	Open Tile
Road Ditch	Tile with Riser
Drainage Ditch	Other (describe) Sedimant basin
B. PURPOSE OF MONITORING POINT	
Upstream	Downstream
🖂 Within Landfill	Other (describe)
C. MONITORING POINT CONDITIONS	
General description/condition of monitoring point	t
Dents at sample point ~ 3.5 in	-
ogues a sample pour	
Was monitoring point dry? No	Too little water to sample? No
Was water flowing?	
If yes, estimate quantity	If yes, estimate depth
Was water discolored?	□ YES ▷ NO
If yes, describe	
Does water have odor?	
If yes, describe	
Was ground discolored?	
If yes, describe	
Litter present?	
If yes, describe	

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u>

DNR Form 542-1324

à

D. FIELD MEASUREMENT		
Weather Conditions Payfly Cloudy, 7	6°F, wind Juph W	
Field Measurements (after stabilization):		
Temperature 28.1	Units	
Equipment Used		
D. FIELD MEASUREMENT (continued)	그는 말 같은 것이 같은 것이 같은 것이 없는 것이 없다. 것이 같이 많이 많이 없는 것이	
рН 8.96		
Equipment Used		
Specific Conditions	Units	
Equipment Used		

	Comments	
DO = 8.94 mg/L	× tota perto	ERA.
DO = 8.94 mg/L SPC= 651 45/cm	1	
ORP = 18.0 mV		
NTO = 4.35		
L certify under penalty of law I be	CERTIFICATION	ed above is true, accurate and complete.
NII		Date 8/12/24
Signature		
Telephone 515-631-0778 F	ax	Email MAMorgan @Scsengineers.
NOTE: Attach 8 1/2" x 11" site plan	showing locations of all s One map per sampling ro	surface and groundwater monitoring points.

Please mail completed form to: lowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u>

Site Name ONL	Permit No.
Surface Monitoring Point No. GU-2	Date/Time 8/8/24 11:35
Name of person sampling Michael Margan	
Name of person sampling / (Coold - 1000000)	
A. TYPE OF MONITORING POINT	1997년 - 1998년 - 1997년 1997년 - 1 1997년 - 1997년 - 1997년 - 1997년 -
Stream	🗌 Open Tile
Road Ditch	Tile with Riser
Drainage Ditch	Other (describe) Underdiain
B. PURPOSE OF MONITORING POINT	
Upstream	Downstream
Within Landfill	Other (describe)
C. MONITORING POINT CONDITIONS	
General description/condition of monitoring point	
Anthe time righ grass in some	identify and a present provide
Was monitoring point dry? $\mathcal{M}_{\mathfrak{S}}$	Too little water to sample? NA
Was water flowing?	
If yes, estimate quantity	If yes, estimate depth
Was water discolored?	
If yes, describe	
Does water have odor?	
If yes, describe	
Was ground discolored?	
If yes, describe Dug out UV-1 on Tuc	6/8/24
Litter present?	
If yes, describe	

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u>

D. FIELD MEASUREMENT		
Weather Conditions Mostly cloudy, 77°F, wind W 8 uph		
Field Measurements (after stabilization):		
Temperature	Units	
Equipment Used		
D. FIELD MEASUREMENT (continued)		
рН		
Equipment Used		
Specific Conditions	Units	
Equipment Used		

Comme	nts
* ru-1 & ru-2 share antet pool, o sta 8/5/24 - 8/8/24. Posted wort Ans somp didn't sample at cu	uly av-1 flasing whither on up most whely from av-1 2-2
CERTIFIC. I certify under penalty of law I believe the information	reported above is true, accurate and complete.
Signature Malu	Date 8/12/24
Telephone 515-631-0778 Fax	Email MAMorgan@Scsengineers.co
NOTE: Attach 8 ½" x 11" site plan showing locations One map per san	of all surface and groundwater monitoring points.

Please mail completed form to: lowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u> 5

Site Name OML	Permit No.	
Surface Monitoring Point No. $40 - 1$	Date/Time 8/8/24 11:50	
Name of person sampling Michael Margo		
	,	
A. TYPE OF MONITORING POINT		
Stream	🗌 Open Tile	
Road Ditch	Tile with Riser	
Drainage Ditch	Dether (describe) Under durain	
B. PURPOSE OF MONITORING POINT		
Upstream	Downstream	
S-Within Landfill	Other (describe)	
C. MONITORING POINT CONDITIONS		
General description/condition of monitoring point		
Antile / knee high grass to roday or		
france france of grand for the sound of		
Was monitoring point dry? No	Too little water to sample? No	
Was water flowing?		
If yes, estimate quantity 350 ml / min	If yes, estimate depth	
Was water discolored?		
If yes, describe		
Does water have odor?		
If yes, describe		
Was ground discolored?		
If yes, describe cleared out roch & regetation on The 8/6/24		
Litter present?		
If yes, describe		

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u>

D. FIELD MEASUREMENT			
Weather Conditions Marthy cludy, 77°F, wind W 8 mph			
Field Measurements (after stabilization):			
Temperature 😹: 20.7 °c	emperature 😹: 20.7 °c Units		
Equipment Used			
D. FIELD MEASUREMENT (continued)			
pH 😂 6.73			
Equipment Used			
Specific Conditions	Units		
Equipment Used			

Comments
D0=6.66 mg/L
D0 = 6.66 mg/L Spc = 1438 4m/cm
0RP=83.1 mV
$y_{7} = 2.92$
CERTIFICATION
I certify under penalty of law I believe the information reported above is true, accurate and complete.
Signature May Date 8/12/24
Telephone 515-631-0778 Fax EmailMAMorgan@scsengineers.co
NOTE: Attach 8 ½" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u>

Site Name IML	Permit No.
Surface Monitoring Point No. CいーEX	Date/Time 8/8/24 13:15
Name of person sampling Michael Movie	M
A. TYPE OF MONITORING POINT	
Stream	Open Tile
Road Ditch	Tile with Riser
Drainage Ditch	S Other (describe) Underdrow
B. PURPOSE OF MONITORING POINT	
Upstream	⊠ Downstream
Within Landfill	Other (describe)
C. MONITORING POINT CONDITIONS	
General description/condition of monitoring point	
Storm water outfull - concrete o	ut let structure
350 cool / min	
Was monitoring point dry? \mathcal{N}_0	Too little water to sample? N
Was water flowing?	
If yes, estimate quantity 350 car frim	If yes, estimate depth ~ 4 m
Was water discolored?	
If yes, describe	
Does water have odor?	
If yes, describe	
Was ground discolored?	
If yes, describe	1
Litter present?	
If yes, describe	

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina koger@dnr.iowa.gov</u>

D. FIELD MEASUREMENT	
Weather Conditions Overcoff 77°F, wind	17 upt NW
Field Measurements	
Temperature 23.3 °C	Units
Equipment Used	
D. FIELD MEASUREMENT (continued)	
pH 7.70	
Equipment Used	
Specific Conditions	Units
Equipment Used	

Comme	nts
D0=7.22 mg/L	
SPC = 1281 um/en	
SRP = 55.2 mV	
$v_{T}v = 3.45$	
# discharge on a timer or can b	e manually turned on/off
J	3
CERTIFIC	
I certify under penalty of law I believe the information	reported above is true, accurate and complete.
Signature May M	Date 8/12/24
Talanhana S.C. (31-0779 Fax	Email MAMorgon@scs engineers, con
NOTE: Attach 8 ½" x 11" site plan showing locations One map per sam	of all surface and groundwater monitoring points.

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319, Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u>

Site Name OML	Permit No.		
Surface Monitoring Point No. 5W - 2R	Date/Time 8/8/24	13:30	
Name of norman compling Milling Milling March			

Name of person sampling Michael Morgan

A. TYPE OF MONITORING POINT	
Stream	Open Tile
Road Ditch	Tile with Riser
Drainage Ditch	Other (describe)

B. PURPOSE OF MONITORING POINT	
Upstream	⊠′Downstream
Within Landfill	Other (describe)

C. MONITORING POINT CONDITIONS	
General description/condition of monitoring po	int
some evosion around stat a gaugare	. In wooded area
0.0	
	-
Was monitoring point dry? Yes	Too little water to sample?
Was water flowing?	
If yes, estimate quantity	If yes, estimate depth
Was water discolored?	
If yes, describe	
Does water have odor?	
If yes, describe	
Was ground discolored?	
If yes, describe	
Litter present?	
If yes, describe	

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u>

D. FIELD MEASUREMENT	
Weather Conditions 77°F over	ast, wind NW - 15 aget
	easurements (after stabilization):
Temperature	Units
Equipment Used	
D. FIELD MEASUREMENT (continued)	
рН	
Equipment Used	
Specific Conditions	Units
Equipment Used	

	Comments	
l certify under penalty of law l	CERTIFICATION believe the information reported	Ned above is true, accurate and complete.
Signature Man		Date 8/12/24
Telephone 515-631-0778	Fax	EmailMAMorgan @ Scs engineers - cor
NOTE: Attach 8 ½" x 11" site pla	an showing locations of all s One map per sampling re	surface and groundwater monitoring points.

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319, Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u>

Site Name OML	Permit No.
Surface Monitoring Point No. TCB 12	Date/Time 8/8/24 13:50
Name of person sampling Michael Morgan	
A. TYPE OF MONITORING POINT	
Stream	Open Tile
Road Ditch	Tile with Riser
Drainage Ditch	Dther (describe) Contact water basin
B. PURPOSE OF MONITORING POINT	Downotroam
Upstream	Downstream
😡 Within Landfill	Other (describe)
C. MONITORING POINT CONDITIONS	
General description/condition of monitoring point	
Contrast water process in the langed	. Some Algae an around share
	J
Was monitoring point dry? $\mathcal{N}_{\mathfrak{S}}$	Too little water to sample? \mathcal{N}_{0}
Was water flowing?	
If yes, estimate quantity	If yes, estimate depth
Was water discolored?	
If yes, describe	
Does water have odor?	
If yes, describe	
Was ground discolored?	
If yes, describe	
Litter present?	
If yes, describe	

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u>

DNR Form 542-1324

D. FIELD MEASUREMENT	
Weather Conditions 79°F, OVercay	It, ward NW ~15 uph
	rements (after stabilization):
Temperature 28,3°c	Units
Equipment Used	
D. FIELD MEASUREMENT (continued)	그는 그렇다는 것이 많은 것을 깨끗한 것이 같아요. 이 것이 것을 것을
pH 8.06	
Equipment Used	
Specific Conditions	Units
Equipment Used	

	Comm	ents	
00 = 8.39 mg/L			
5pc = 863 ym/cm			
RP= 71.9 mV			
0 = 8.39 mg/L 5pc = 863 um/cm pcp = 11.9 mV 0 = 3.69			
			The Horas Articles
I certify under penalty of law I	CERTIFIC believe the information	on reported above is	true, accurate and complete.
ignature Magn			Date 8/12/24
alanhana 515-671-0778	Fax	Email MA	Morgan @ scsengineers.
NOTE: Attach 8 1/2" x 11" site pl	an showing locatior One map per sa	ns of all surface and	d groundwater monitoring points.

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u>

Site Name CML	Permit No.		
Surface Monitoring Point No. LP-1	Date/Time 8 (8/24 14-15		
Name of person sampling Michael Margar			
Name of person sumpling , could and	~		
A. TYPE OF MONITORING POINT			
Stream	Open Tile		
Road Ditch	Tile with Riser		
Drainage Ditch	S Other (describe) Mont any well		
B. PURPOSE OF MONITORING POINT			
Upstream			
🗹 Within Landfill	Other (describe)		
C. MONITORING POINT CONDITIONS			
General description/condition of monitoring point			
Hill stope bottom of stope extremen	al weltand - mix of grass a reedy		
	1 0		
Was monitoring point dry? Yes	Too little water to sample?		
Was water flowing?			
If yes, estimate quantity	If yes, estimate depth		
Was water discolored?			
If yes, describe			
Does water have odor?			
If yes, describe			
Was ground discolored?			
If yes, describe			
Litter present?			
If yes, describe			

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. **Questions? Call or Email:** Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u>

D. FIELD MEASUREMENT	
Weather Conditions 75°F, over cash,	wind MU 19 uph
	nents (after stabilization):
Temperature	Units
Equipment Used	
D. FIELD MEASUREMENT (continued)	
рН	
Equipment Used	
Specific Conditions	Units
Equipment Used	

	Comments	
* Bring Levelhate Measo - bring Bailer if well * Wosp neet present a	has liquid in order to somple	
L certify under penalty of law l	CERTIFICATION believe the information reported above is true, accurate and comple	te.
Signature Marc	Date 8/12/24	
Telephone 515-631-0778	Fax EmailMAMorgan@scsengi	reers.cou
NOTE: Attach 8 ½" x 11" site pl	an showing locations of all surface and groundwater monitoring One map per sampling round.	points.

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319, Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u>

Site Name O.ML	Permit No.
	Date/Time 8/8/24 14:25
Surface Monitoring Point No. Leachate Bay Name of person sampling Michael Morga	
Walle of person sampling / (ccodo) / office	
A. TYPE OF MONITORING POINT	
Stream	🗌 Open Tile
Road Ditch	Tile with Riser
Drainage Ditch	X Other (describe) Born (lagoon
	1 0
B. PURPOSE OF MONITORING POINT	
Upstream	Downstream
🔀 Within Landfill	Other (describe)
C. MONITORING POINT CONDITIONS	
General description/condition of monitoring point	
beachate starage hagoon, canard	
,	
Was monitoring point dry? No	Too little water to sample? No
Was water flowing?	
If yes, estimate quantity	If yes, estimate depth
Was water discolored?	
If yes, describe blue green color, light	4
Does water have odor?	
If yes, describe	
Was ground discolored?	
If yes, describe	
Litter present?	
If yes, describe	

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u>

D. FIELD MEASUREMENT	
Weather Conditions 75°F, overcent, we	ind NW
Field Measurements	(after stabilization):
Temperature 25.8°c	Units
Equipment Used	
D. FIELD MEASUREMENT (continued)	승규는 것이 아니는 것이 같이 같이 많이
pH 8.60	
Equipment Used	
Specific Conditions	Units
Equipment Used	

DO = 12.64 mg/L SPC = 6769 um/cm	
SRC = 6760 under	
orp = 63.7 mV	
NTO = 7.03	
CERTIFICATION	
I certify under penalty of law I believe the information reported above is true, accurate and complete.	
Signature Myren Date 8/12/24	
Telephone 515-631-0778 Fax Email MAMoregour & SCS engineer NOTE: Attach 8 ½" x 11" site plan showing locations of all surface and groundwater monitoring point	5.00
NOTE: Attach 8 ½" x 11" site plan showing locations of all surface and groundwater monitoring point One map per sampling round.	S.

Please mail completed form to: lowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Koger Environmental Engineer Sr., 515-725-8309, <u>nina.koger@dnr.iowa.gov</u> Appendix B

Laboratory Analytical Reports

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Meghan Blodgett SCS Engineers 2830 Dairy Drive Madison, Wisconsin 53718 Generated 8/23/2024 12:57:06 PM Revision 1

JOB DESCRIPTION

Ottumwa Midland LF - 25224073.00 25224073.00

JOB NUMBER

310-287904-1

Eurofins Cedar Falls 3019 Venture Way Cedar Falls IA 50613

See page two for job notes and contact information.

Eurofins Cedar Falls

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

and m.

Generated 8/23/2024 12:57:06 PM Revision 1 1

5

Authorized for release by Sandie Fredrick, Senior Project Manager Sandra.Fredrick@et.eurofinsus.com (920)261-1660

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Detection Summary	6
Client Sample Results	11
Definitions	22
QC Sample Results	23
QC Association	27
Chronicle	30
Certification Summary	34
Method Summary	35
Chain of Custody	36
Receipt Checklists	47
Field Data Sheets	48

Job ID: 310-287904-1

Eurofins Cedar Falls

Job Narrative 310-287904-1

Revision

The report being provided is a revision of the original report sent on 8/23/2024. The report (revision 1) is being revised due to: Removal of erroneous F1 Flag for revised report.

Receipt

The samples were received on 8/9/2024 4:40 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 0.4° C and 0.8° C.

HPLC/IC

Method 9056A: The following samples were diluted due to the nature of the sample matrix: MW-15R (310-287904-5), MW-100R (310-287904-7) and MW-101R (310-287904-8). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00 Job ID: 310-287904-1 SDG: 25224073.00

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
310-287904-1	MW-1R	Water	08/06/24 11:11	08/09/24 16:40
310-287904-2	MW-12	Water	08/08/24 07:40	08/09/24 16:40
310-287904-3	MW-13	Water	08/08/24 09:26	08/09/24 16:40
310-287904-4	MW-14	Water	08/07/24 10:47	08/09/24 16:40
310-287904-5	MW-15R	Water	08/06/24 09:00	08/09/24 16:40
310-287904-6	MW-16R	Water	08/07/24 15:05	08/09/24 16:40
310-287904-7	MW-100R	Water	08/06/24 12:33	08/09/24 16:40
310-287904-8	MW-101R	Water	08/06/24 13:57	08/09/24 16:40
310-287904-9	MW-102P	Water	08/07/24 13:47	08/09/24 16:40
310-287904-10	MW-108	Water	08/07/24 09:02	08/09/24 16:40
310-287904-11	Field Blank	Water	08/08/24 14:45	08/09/24 16:40

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Client Sample ID: MW-1R

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chloride	29		5.0	2.3	mg/L	5	9056A	Total/NA
Fluoride	0.46	J	1.0	0.38	mg/L	5	9056A	Total/NA
Sulfate	80		5.0	2.1	mg/L	5	9056A	Total/NA
Barium	71		2.0	0.66	ug/L	1	6020B	Total/NA
Calcium	90		0.50	0.19	mg/L	1	6020B	Total/NA
Iron	46	J	100	36	ug/L	1	6020B	Total/NA
Lithium	23		10	2.5	ug/L	1	6020B	Total/NA
Magnesium	28000		500	150	ug/L	1	6020B	Total/NA
Molybdenum	1.6	J	2.0	1.3	ug/L	1	6020B	Total/NA
Total Suspended Solids	1.6	J	1.9	1.4	mg/L	1	I-3765-85	Total/NA
Total Dissolved Solids	470		50	42	mg/L	1	SM 2540C	Total/NA
Groundwater Elevation	813.54				ft	1	Field Sampling	Total/NA
Field pH	6.97				SU	1	Field Sampling	Total/NA
Field Conductivity	787				umhos/cm	1	Field Sampling	Total/NA
Field Temperature	14.4				Degrees C	1	Field Sampling	Total/NA

Client Sample ID: MW-12

Analyte **Result Qualifier** RL MDL Unit Dil Fac D Method Prep Type Chloride 9056A Total/NA 49 5.0 2.3 mg/L 5 Fluoride 2.6 5 Total/NA 1.0 0.38 mg/L 9056A Sulfate 720 50 50 9056A Total/NA 21 mg/L Barium 15 2.0 0.66 ug/L 1 6020B Total/NA Boron 1400 100 76 ug/L 1 6020B Total/NA Calcium 14 0.50 0.19 mg/L 1 6020B Total/NA Iron 43 100 36 1 6020B Total/NA ug/L Lithium 10 2.5 ug/L 6020B Total/NA 110 1 Magnesium 6400 500 150 ug/L 6020B Total/NA 1 10 3.6 ug/L 1 6020B Total/NA Manganese 140 **Total Suspended Solids** 2.0 1.9 1.4 mg/L 1 I-3765-85 Total/NA Total Dissolved Solids 1700 250 210 mg/L 1 SM 2540C Total/NA Groundwater Elevation 722.63 ft 1 **Field Sampling** Total/NA Field pH 7.23 SU 1 Field Sampling Total/NA **Field Conductivity** 2369 umhos/cm **Field Sampling** 1 Total/NA **Field Temperature** Degrees C **Field Sampling** 17.1 1 Total/NA

Client Sample ID: MW-13

Lab Sample ID: 310-287904-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	DM	ethod	Prep Type
Chloride	13		5.0	2.3	mg/L	5	- 90)56A	Total/NA
Fluoride	0.68	J	1.0	0.38	mg/L	5	90	056A	Total/NA
Sulfate	1200		50	21	mg/L	50	90	056A	Total/NA
Barium	18		2.0	0.66	ug/L	1	60	020B	Total/NA
Boron	1800		100	76	ug/L	1	60	020B	Total/NA
Calcium	120		0.50	0.19	mg/L	1	60	020B	Total/NA
Cobalt	1.1		0.50	0.17	ug/L	1	60	020B	Total/NA
Iron	130		100	36	ug/L	1	60	020B	Total/NA
Lithium	160		10	2.5	ug/L	1	60	020B	Total/NA
Magnesium	60000		500	150	ug/L	1	60	020B	Total/NA
Manganese	250		10	3.6	ug/L	1	60)20B	Total/NA
Total Suspended Solids	1.4	J	1.9	1.4	mg/L	1	I-3	3765-85	Total/NA
Total Dissolved Solids	2300		250	210	mg/L	1	S	M 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Cedar Falls

5

Job ID: 310-287904-1

Lab Sample ID: 310-287904-1

Lab Sample ID: 310-287904-2

SDG: 25224073.00

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Client Sample ID: MW-13 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Groundwater Elevation	722.56				ft	1 _	Field Sampling	Total/NA
Field pH	6.97				SU	1	Field Sampling	Total/NA
Field Conductivity	3194				umhos/cm	1	Field Sampling	Total/NA
Field Temperature	15.9				Degrees C	1	Field Sampling	Total/NA

Client Sample ID: MW-14

Analyte **Result Qualifier** RL MDL Unit Dil Fac D Method Prep Type Chloride 20 5.0 mg/L 5 2.3 9056A Total/NA Fluoride 0.70 J 1.0 0.38 mg/L 5 9056A Total/NA Sulfate 670 50 21 mg/L 50 9056A Total/NA 2.6 2.0 6020B Total/NA Arsenic 0.53 ug/L 1 Barium 2.0 0.66 ug/L 6020B Total/NA 23 1 Boron 1900 100 76 Total/NA ug/L 1 6020B Calcium 76 0.50 0.19 mg/L 1 6020B Total/NA 0.56 Cobalt 0.50 0.17 ug/L 1 6020B Total/NA Copper 2.1 J 5.0 1.8 ug/L 1 6020B Total/NA Iron 47 100 36 ug/L 1 6020B Total/NA .1 Lithium 140 10 2.5 ug/L 1 6020B Total/NA Magnesium 34000 500 150 ug/L 1 6020B Total/NA 3.6 ug/L 1 Total/NA Manganese 160 10 6020B 2.0 6020B Total/NA Molybdenum 16 1.3 ug/L 1 **Total Suspended Solids** 6.0 1.9 1.4 mg/L 1 I-3765-85 Total/NA **Total Dissolved Solids** 2000 50 42 mg/L 1 SM 2540C Total/NA Groundwater Elevation 722.62 ft 1 **Field Sampling** Total/NA Field pH 7.10 SU Field Sampling Total/NA 1 Field Conductivity 3214 umhos/cm **Field Sampling** Total/NA 1 **Field Temperature** 17.0 Degrees C 1 **Field Sampling** Total/NA

Client Sample ID: MW-15R

Lab Sample ID: 310-287904-5

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	10	5.0	2.3	mg/L	5	_	9056A	Total/NA
Sulfate	440	5.0	2.1	mg/L	5		9056A	Total/NA
Barium	36	2.0	0.66	ug/L	1		6020B	Total/NA
Boron	380	100	76	ug/L	1		6020B	Total/NA
Calcium	300	0.50	0.19	mg/L	1		6020B	Total/NA
Cobalt	1.1	0.50	0.17	ug/L	1		6020B	Total/NA
Copper	1.8 J	5.0	1.8	ug/L	1		6020B	Total/NA
Iron	310	100	36	ug/L	1		6020B	Total/NA
Lithium	42	10	2.5	ug/L	1		6020B	Total/NA
Magnesium	100000	2000	600	ug/L	4		6020B	Total/NA
Manganese	440	10	3.6	ug/L	1		6020B	Total/NA
Molybdenum	5.2	2.0	1.3	ug/L	1		6020B	Total/NA
Selenium	1.4 J	5.0	1.4	ug/L	1		6020B	Total/NA
Total Suspended Solids	2.5	1.9	1.4	mg/L	1		I-3765-85	Total/NA
Total Dissolved Solids	1500	50	42	mg/L	1		SM 2540C	Total/NA
Groundwater Elevation	760.45			ft	1		Field Sampling	Total/NA
Field pH	6.27			SU	1		Field Sampling	Total/NA
Field Conductivity	2101			umhos/cm	1		Field Sampling	Total/NA
Field Temperature	14.0			Degrees C	1		Field Sampling	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Cedar Falls

Job ID: 310-287904-1 SDG: 25224073.00

Lab Sample ID: 310-287904-3

Lab Sample ID: 310-287904-4

SDG:

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Client Sample ID: MW-16R

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac I	D Method	Prep Type
Chloride	22		5.0	2.3	mg/L	5	9056A	Total/NA
Fluoride	0.45	J	1.0	0.38	mg/L	5	9056A	Total/NA
Sulfate	790		50	21	mg/L	50	9056A	Total/NA
Barium	38		2.0	0.66	ug/L	1	6020B	Total/NA
Boron	2000		100	76	ug/L	1	6020B	Total/NA
Calcium	81		0.50	0.19	mg/L	1	6020B	Total/NA
Cobalt	0.93		0.50	0.17	ug/L	1	6020B	Total/NA
Iron	480		100	36	ug/L	1	6020B	Total/NA
Lithium	110		10	2.5	ug/L	1	6020B	Total/NA
Magnesium	39000		500	150	ug/L	1	6020B	Total/NA
Manganese	270		10	3.6	ug/L	1	6020B	Total/NA
Total Suspended Solids	2.9		1.9	1.4	mg/L	1	I-3765-85	Total/NA
Total Dissolved Solids	2200		250	210	mg/L	1	SM 2540C	Total/NA
Groundwater Elevation	722.47				ft	1	Field Sampling	Total/NA
Field pH	6.94				SU	1	Field Sampling	Total/NA
Field Conductivity	3511				umhos/cm	1	Field Sampling	Total/NA
Field Temperature	15.0				Degrees C	1	Field Sampling	Total/NA

Client Sample ID: MW-100R

Lab Sample ID: 310-287904-7

Lab Sample ID: 310-287904-8

Analyte	Result Quali	ifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	28	5.0	2.3	mg/L	5	_	9056A	Total/NA
Sulfate	180	5.0	2.1	mg/L	5		9056A	Total/NA
Barium	44	2.0	0.66	ug/L	1		6020B	Total/NA
Calcium	130	0.50	0.19	mg/L	1		6020B	Total/NA
Lithium	21	10	2.5	ug/L	1		6020B	Total/NA
Magnesium	40000	500	150	ug/L	1		6020B	Total/NA
Molybdenum	2.2	2.0	1.3	ug/L	1		6020B	Total/NA
Total Dissolved Solids	640	50	42	mg/L	1		SM 2540C	Total/NA
Groundwater Elevation	808.50			ft	1		Field Sampling	Total/NA
Field pH	7.05			SU	1		Field Sampling	Total/NA
Field Conductivity	1007			umhos/cm	1		Field Sampling	Total/NA
Field Temperature	14.0			Degrees C	1		Field Sampling	Total/NA

Client Sample ID: MW-101R

Analyte	Result G	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	6.7		5.0	2.3	mg/L	5		9056A	Total/NA
Sulfate	480		5.0	2.1	mg/L	5		9056A	Total/NA
Barium	37		2.0	0.66	ug/L	1		6020B	Total/NA
Boron	720		100	76	ug/L	1		6020B	Total/NA
Calcium	220		0.50	0.19	mg/L	1		6020B	Total/NA
Cobalt	0.22 J	J	0.50	0.17	ug/L	1		6020B	Total/NA
Copper	2.0 J	J	5.0	1.8	ug/L	1		6020B	Total/NA
Iron	82 J	J	100	36	ug/L	1		6020B	Total/NA
Lithium	84		10	2.5	ug/L	1		6020B	Total/NA
Magnesium	71000		500	150	ug/L	1		6020B	Total/NA
Manganese	180		10	3.6	ug/L	1		6020B	Total/NA
Molybdenum	6.5		2.0	1.3	ug/L	1		6020B	Total/NA
Selenium	5.2		5.0	1.4	ug/L	1		6020B	Total/NA
Total Suspended Solids	5.0		1.9	1.4	mg/L	1		I-3765-85	Total/NA
Total Dissolved Solids	1100		50	42	mg/L	1		SM 2540C	Total/NA

Page 8 of 48

This Detection Summary does not include radiochemical test results.

Eurofins Cedar Falls

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Client Sample ID: MW-101R (Continued)

Analyte Groundwater Elevation	Result Qualifier	RL	MDL	Unit ft	Dil Fac	D	Method Field Sampling	Prep Type Total/NA
Field pH	6.80			SU	1		Field Sampling	Total/NA
Field Conductivity	1533			umhos/cm	1		Field Sampling	Total/NA
Field Temperature	13.8			Degrees C	1		Field Sampling	Total/NA

Client Sample ID: MW-102P

Analyte **Result Qualifier** RL MDL Unit Dil Fac D Method Prep Type Chloride 5.0 mg/L 5 9.4 2.3 9056A Total/NA Fluoride 0.53 J 1.0 0.38 mg/L 5 9056A Total/NA Sulfate 1400 50 21 mg/L 50 9056A Total/NA 23 2.0 Barium 0.66 ug/L 1 6020B Total/NA Boron 1700 100 6020B 76 ug/L 1 Total/NA 430 2.0 Calcium 0.76 mg/L 4 6020B Total/NA Cobalt 0.74 0.50 0.17 ug/L 1 6020B Total/NA Copper 4.3 . 5.0 1.8 ug/L 1 6020B Total/NA Iron 5500 100 36 ug/L 1 6020B Total/NA Lithium 230 10 2.5 ug/L 1 6020B Total/NA Magnesium 150000 2000 600 ug/L 4 6020B Total/NA Manganese 10 3.6 ug/L 1 6020B Total/NA 530 20 9.7 ug/L Zinc 12 1 6020B Total/NA J 3.8 Total/NA Total Suspended Solids 12 2.8 mg/L 1 I-3765-85 250 **Total Dissolved Solids** 2800 210 mg/L 1 SM 2540C Total/NA Groundwater Elevation 722.89 ft 1 **Field Sampling** Total/NA Field pH 6.49 SU **Field Sampling** Total/NA 1 Field Conductivity 3556 umhos/cm Field Sampling Total/NA 1 Field Temperature Field Sampling Degrees C Total/NA 14.0 1

Client Sample ID: MW-108

Lab Sample ID: 310-287904-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	2.6	J	5.0	2.3	mg/L	5	_	9056A	Total/NA
Fluoride	0.43	J	1.0	0.38	mg/L	5		9056A	Total/NA
Sulfate	130		5.0	2.1	mg/L	5		9056A	Total/NA
Arsenic	4.1		2.0	0.53	ug/L	1		6020B	Total/NA
Barium	34		2.0	0.66	ug/L	1		6020B	Total/NA
Boron	300		100	76	ug/L	1		6020B	Total/NA
Calcium	75		0.50	0.19	mg/L	1		6020B	Total/NA
Cobalt	5.0		0.50	0.17	ug/L	1		6020B	Total/NA
Iron	4300		100	36	ug/L	1		6020B	Total/NA
Lithium	49		10	2.5	ug/L	1		6020B	Total/NA
Magnesium	16000		500	150	ug/L	1		6020B	Total/NA
Manganese	920		10	3.6	ug/L	1		6020B	Total/NA
Molybdenum	3.0		2.0	1.3	ug/L	1		6020B	Total/NA
Zinc	43		20	9.7	ug/L	1		6020B	Total/NA
Total Suspended Solids	6.8		3.8	2.8	mg/L	1		I-3765-85	Total/NA
Total Dissolved Solids	390		50	42	mg/L	1		SM 2540C	Total/NA
Groundwater Elevation	741.21				ft	1		Field Sampling	Total/NA
Field pH	6.56				SU	1		Field Sampling	Total/NA
Field Conductivity	621				umhos/cm	1		Field Sampling	Total/NA
Field Temperature	14.2				Degrees C	1		Field Sampling	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Cedar Falls

Lab Sample ID: 310-287904-9

Lab Sample ID: 310-287904-8

Detection	Summary
-----------	---------

Client Sample ID: Field Blank

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins Cedar Falls

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00 Job ID: 310-287904-1 SDG: 25224073.00

Matrix: Water

5

6

Lab Sample ID: 310-287904-1

Client Sample ID: MW-1R Date Collected: 08/06/24 11:11 Date Received: 08/09/24 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	29		5.0	2.3	mg/L			08/16/24 14:47	5
Fluoride	0.46	J	1.0	0.38	mg/L			08/16/24 14:47	5
Sulfate	80		5.0	2.1	mg/L			08/16/24 14:47	5
Method: SW846 6020B - Metals ((ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.53		2.0	0.53	ug/L		08/13/24 09:00	08/14/24 13:22	1
Barium	71		2.0	0.66	ug/L		08/13/24 09:00	08/14/24 13:22	1
Beryllium	<0.33		1.0	0.33	ug/L		08/13/24 09:00	08/14/24 13:22	1
Boron	<76		100	76	ug/L		08/13/24 09:00	08/14/24 13:22	1
Calcium	90		0.50	0.19	mg/L		08/13/24 09:00	08/14/24 13:22	1
Cobalt	<0.17		0.50	0.17	ug/L		08/13/24 09:00	08/14/24 13:22	1
Copper	<1.8		5.0	1.8	ug/L		08/13/24 09:00	08/14/24 13:22	1
Iron	46	J	100	36	ug/L		08/13/24 09:00	08/14/24 13:22	1
Lead	<0.26		0.50	0.26	ug/L		08/13/24 09:00	08/14/24 13:22	1
Lithium	23		10	2.5	ug/L		08/13/24 09:00	08/14/24 13:22	1
Magnesium	28000		500	150	ug/L		08/13/24 09:00	08/14/24 13:22	1
Manganese	<3.6		10	3.6	ug/L		08/13/24 09:00	08/14/24 13:22	1
Molybdenum	1.6	J	2.0	1.3	ug/L		08/13/24 09:00	08/14/24 13:22	1
Selenium	<1.4		5.0	1.4	ug/L		08/13/24 09:00	08/14/24 13:22	1
Zinc	<9.7		20	9.7	ug/L		08/13/24 09:00	08/14/24 13:22	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS	1.6	J	1.9	1.4	mg/L			08/12/24 15:46	1
Total Dissolved Solids (SM 2540C)	470		50	42	mg/L			08/12/24 16:27	1
Method: EPA Field Sampling - Fi	ield Sam	oling							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Groundwater Elevation	813.54				ft			08/06/24 11:11	1
Field pH	6.97				SU			08/06/24 11:11	1
Field Conductivity	787				umhos/cm			08/06/24 11:11	1
Field Temperature	14.4				Degrees C			08/06/24 11:11	1

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00 Job ID: 310-287904-1 SDG: 25224073.00

Matrix: Water

Client Sample ID: MW-12 Date Collected: 08/08/24 07:40 Date Received: 08/09/24 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	49		5.0	2.3	mg/L			08/16/24 14:59	5
Fluoride	2.6		1.0	0.38	mg/L			08/16/24 14:59	5
Sulfate	720		50	21	mg/L			08/19/24 09:05	50
Method: SW846 6020B - Metals ((ICP/MS)								
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Arsenic	<0.53		2.0	0.53	ug/L		08/13/24 09:00	08/14/24 13:24	1
Barium	15		2.0	0.66	ug/L		08/13/24 09:00	08/14/24 13:24	1
Beryllium	<0.33		1.0	0.33	ug/L		08/13/24 09:00	08/14/24 13:24	1
Boron	1400		100	76	ug/L		08/13/24 09:00	08/14/24 13:24	1
Calcium	14		0.50	0.19	mg/L		08/13/24 09:00	08/14/24 13:24	1
Cobalt	<0.17		0.50	0.17	ug/L		08/13/24 09:00	08/14/24 13:24	1
Copper	<1.8		5.0	1.8	ug/L		08/13/24 09:00	08/14/24 13:24	1
ron	43	J	100	36	ug/L		08/13/24 09:00	08/14/24 13:24	1
ead	<0.26		0.50	0.26	ug/L		08/13/24 09:00	08/14/24 13:24	1
_ithium	110		10	2.5	ug/L		08/13/24 09:00	08/14/24 13:24	1
Magnesium	6400		500	150	ug/L		08/13/24 09:00	08/14/24 13:24	1
langanese	140		10	3.6	ug/L		08/13/24 09:00	08/14/24 13:24	1
Nolybdenum	<1.3		2.0	1.3	ug/L		08/13/24 09:00	08/14/24 13:24	1
Selenium	<1.4		5.0	1.4	ug/L		08/13/24 09:00	08/14/24 13:24	1
Zinc	<9.7		20	9.7	ug/L		08/13/24 09:00	08/14/24 13:24	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fotal Suspended Solids (USGS -3765-85)	2.0		1.9	1.4	mg/L			08/12/24 15:46	1
otal Dissolved Solids (SM 2540C)	1700		250	210	mg/L			08/13/24 15:37	1
lethod: EPA Field Sampling - Fi	ield Sam	oling							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Groundwater Elevation	722.63				ft			08/08/24 07:40	1
Field pH	7.23				SU			08/08/24 07:40	1
Field Conductivity	2369				umhos/cm			08/08/24 07:40	1
Field Temperature	17.1				Degrees C			08/08/24 07:40	1

Eurofins Cedar Falls

5

6

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00 Job ID: 310-287904-1 SDG: 25224073.00

Matrix: Water

5

6

Lab Sample ID: 310-287904-3

Client Sample ID: MW-13 Date Collected: 08/08/24 09:26 Date Received: 08/09/24 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	13		5.0	2.3	mg/L			08/16/24 15:11	5
Fluoride	0.68	J	1.0	0.38	mg/L			08/16/24 15:11	5
Sulfate	1200		50	21	mg/L			08/19/24 09:17	50
Method: SW846 6020B - Metals	(ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.53		2.0	0.53	ug/L		08/13/24 09:00	08/14/24 13:27	1
Barium	18		2.0	0.66	ug/L		08/13/24 09:00	08/14/24 13:27	1
Beryllium	<0.33		1.0	0.33	ug/L		08/13/24 09:00	08/14/24 13:27	1
Boron	1800		100	76	ug/L		08/13/24 09:00	08/14/24 13:27	1
Calcium	120		0.50	0.19	mg/L		08/13/24 09:00	08/14/24 13:27	1
Cobalt	1.1		0.50	0.17	ug/L		08/13/24 09:00	08/14/24 13:27	1
Copper	<1.8		5.0	1.8	ug/L		08/13/24 09:00	08/14/24 13:27	1
ron	130		100	36	ug/L		08/13/24 09:00	08/14/24 13:27	1
ead	<0.26		0.50	0.26	ug/L		08/13/24 09:00	08/14/24 13:27	1
_ithium	160		10	2.5	ug/L		08/13/24 09:00	08/14/24 13:27	1
Magnesium	60000		500	150	ug/L		08/13/24 09:00	08/14/24 13:27	1
Vanganese	250		10	3.6	ug/L		08/13/24 09:00	08/14/24 13:27	1
Molybdenum	<1.3		2.0	1.3	ug/L		08/13/24 09:00	08/14/24 13:27	1
Selenium	<1.4		5.0	1.4	ug/L		08/13/24 09:00	08/14/24 13:27	1
Zinc	<9.7		20	9.7	ug/L		08/13/24 09:00	08/14/24 13:27	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS -3765-85)	1.4	J	1.9	1.4	mg/L			08/13/24 07:57	1
Total Dissolved Solids (SM 2540C)	2300		250	210	mg/L			08/13/24 15:37	1
Method: EPA Field Sampling - F	ield Sam	oling							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Groundwater Elevation	722.56				ft			08/08/24 09:26	1
Field pH	6.97				SU			08/08/24 09:26	1
Field Conductivity	3194				umhos/cm			08/08/24 09:26	1
Field Temperature	15.9				Degrees C			08/08/24 09:26	1

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00 Job ID: 310-287904-1 SDG: 25224073.00

Matrix: Water

Client Sample ID: MW-14 Date Collected: 08/07/24 10:47 Date Received: 08/09/24 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	20		5.0	2.3	mg/L			08/16/24 15:23	5
Fluoride	0.70	J	1.0	0.38	mg/L			08/16/24 15:23	5
Sulfate	670		50	21	mg/L			08/19/24 09:29	50
Method: SW846 6020B - Metals ((ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.6		2.0	0.53	ug/L		08/13/24 09:00	08/14/24 13:29	1
Barium	23		2.0	0.66	ug/L		08/13/24 09:00	08/14/24 13:29	1
Beryllium	<0.33		1.0	0.33	ug/L		08/13/24 09:00	08/14/24 13:29	1
Boron	1900		100	76	ug/L		08/13/24 09:00	08/14/24 13:29	1
Calcium	76		0.50	0.19	mg/L		08/13/24 09:00	08/14/24 13:29	1
Cobalt	0.56		0.50	0.17	ug/L		08/13/24 09:00	08/14/24 13:29	1
Copper	2.1	J	5.0	1.8	ug/L		08/13/24 09:00	08/14/24 13:29	1
ron	47	J	100	36	ug/L		08/13/24 09:00	08/14/24 13:29	1
ead	<0.26		0.50	0.26	ug/L		08/13/24 09:00	08/14/24 13:29	1
_ithium	140		10	2.5	ug/L		08/13/24 09:00	08/14/24 13:29	1
Magnesium	34000		500	150	ug/L		08/13/24 09:00	08/14/24 13:29	1
Manganese	160		10	3.6	ug/L		08/13/24 09:00	08/14/24 13:29	1
Molybdenum	16		2.0	1.3	ug/L		08/13/24 09:00	08/14/24 13:29	1
Selenium	<1.4		5.0	1.4	ug/L		08/13/24 09:00	08/14/24 13:29	1
Zinc	<9.7		20	9.7	ug/L		08/13/24 09:00	08/14/24 13:29	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS -3765-85)	6.0		1.9	1.4	mg/L			08/13/24 06:36	1
Fotal Dissolved Solids (SM 2540C)	2000		50	42	mg/L			08/12/24 16:27	1
Method: EPA Field Sampling - Fi	ield Sam	oling							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Groundwater Elevation	722.62				ft			08/07/24 10:47	1
Field pH	7.10				SU			08/07/24 10:47	1
Field Conductivity	3214				umhos/cm			08/07/24 10:47	1
Field Temperature	17.0				Degrees C			08/07/24 10:47	1

Eurofins Cedar Falls

5

6

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00 Job ID: 310-287904-1 SDG: 25224073.00

Matrix: Water

Client Sample ID: MW-15R Date Collected: 08/06/24 09:00 Date Received: 08/09/24 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	10		5.0	2.3	mg/L			08/16/24 15:59	5
Fluoride	<0.38		1.0	0.38	mg/L			08/16/24 15:59	5
Sulfate	440		5.0	2.1	mg/L			08/16/24 15:59	5
Method: SW846 6020B - Metals	(ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.53		2.0	0.53	ug/L		08/13/24 09:00	08/14/24 13:40	1
Barium	36		2.0	0.66	ug/L		08/13/24 09:00	08/14/24 13:40	1
Beryllium	<0.33		1.0	0.33	ug/L		08/13/24 09:00	08/14/24 13:40	1
Boron	380		100	76	ug/L		08/13/24 09:00	08/14/24 13:40	1
Calcium	300		0.50	0.19	mg/L		08/13/24 09:00	08/14/24 13:40	1
Cobalt	1.1		0.50	0.17	ug/L		08/13/24 09:00	08/14/24 13:40	1
Copper	1.8	J	5.0	1.8	ug/L		08/13/24 09:00	08/14/24 13:40	1
Iron	310		100	36	ug/L		08/13/24 09:00	08/14/24 13:40	1
Lead	<0.26		0.50	0.26	ug/L		08/13/24 09:00	08/14/24 13:40	1
Lithium	42		10	2.5	ug/L		08/13/24 09:00	08/14/24 13:40	1
Magnesium	100000		2000		ug/L		08/13/24 09:00	08/20/24 22:15	4
Manganese	440		10	3.6	ug/L		08/13/24 09:00	08/14/24 13:40	1
Molybdenum	5.2		2.0	1.3	ug/L		08/13/24 09:00	08/14/24 13:40	1
Selenium	1.4	J	5.0		ug/L		08/13/24 09:00	08/14/24 13:40	1
Zinc	<9.7		20		ug/L		08/13/24 09:00	08/14/24 13:40	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS -3765-85)	2.5		1.9	1.4	mg/L			08/12/24 15:46	1
Total Dissolved Solids (SM 2540C)	1500		50	42	mg/L			08/12/24 16:27	1
Method: EPA Field Sampling - F	ield Sam	oling							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Groundwater Elevation	760.45				ft			08/06/24 09:00	1
Field pH	6.27				SU			08/06/24 09:00	1
Field Conductivity	2101				umhos/cm			08/06/24 09:00	1
Field Temperature	14.0				Degrees C			08/06/24 09:00	1

Eurofins Cedar Falls

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00 Job ID: 310-287904-1 SDG: 25224073.00

Matrix: Water

5

6

Lab Sample ID: 310-287904-6

Client Sample ID: MW-16R Date Collected: 08/07/24 15:05 Date Received: 08/09/24 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	22		5.0	2.3	mg/L			08/16/24 16:36	5
Fluoride	0.45	J	1.0	0.38	mg/L			08/16/24 16:36	5
Sulfate	790		50	21	mg/L			08/19/24 09:41	50
Method: SW846 6020B - Metals ((ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.53		2.0	0.53	ug/L		08/13/24 09:00	08/14/24 13:42	1
Barium	38		2.0	0.66	ug/L		08/13/24 09:00	08/14/24 13:42	1
Beryllium	<0.33		1.0	0.33	ug/L		08/13/24 09:00	08/14/24 13:42	1
Boron	2000		100	76	ug/L		08/13/24 09:00	08/14/24 13:42	1
Calcium	81		0.50	0.19	mg/L		08/13/24 09:00	08/14/24 13:42	1
Cobalt	0.93		0.50	0.17	ug/L		08/13/24 09:00	08/14/24 13:42	1
Copper	<1.8		5.0	1.8	ug/L		08/13/24 09:00	08/14/24 13:42	1
ron	480		100	36	ug/L		08/13/24 09:00	08/14/24 13:42	1
_ead	<0.26		0.50	0.26	ug/L		08/13/24 09:00	08/14/24 13:42	1
_ithium	110		10	2.5	ug/L		08/13/24 09:00	08/14/24 13:42	1
Magnesium	39000		500	150	ug/L		08/13/24 09:00	08/14/24 13:42	1
Manganese	270		10	3.6	ug/L		08/13/24 09:00	08/14/24 13:42	1
Molybdenum	<1.3		2.0	1.3	ug/L		08/13/24 09:00	08/14/24 13:42	1
Selenium	<1.4		5.0	1.4	ug/L		08/13/24 09:00	08/14/24 13:42	1
Zinc	<9.7		20	9.7	ug/L		08/13/24 09:00	08/14/24 13:42	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS -3765-85)	2.9		1.9	1.4	mg/L			08/13/24 06:36	1
Total Dissolved Solids (SM 2540C)	2200		250	210	mg/L			08/12/24 16:27	1
Method: EPA Field Sampling - Fi	ield Sam	oling							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Groundwater Elevation	722.47				ft			08/07/24 15:05	1
Field pH	6.94				SU			08/07/24 15:05	1
Field Conductivity	3511				umhos/cm			08/07/24 15:05	1
Field Temperature	15.0				Degrees C			08/07/24 15:05	1

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00 Job ID: 310-287904-1 SDG: 25224073.00

Matrix: Water

5

6

Lab Sample ID: 310-287904-7

Client Sample ID: MW-100R Date Collected: 08/06/24 12:33 Date Received: 08/09/24 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	28		5.0	2.3	mg/L			08/16/24 17:12	5
Fluoride	<0.38		1.0	0.38	mg/L			08/16/24 17:12	5
Sulfate	180		5.0	2.1	mg/L			08/16/24 17:12	5
Method: SW846 6020B - Metals (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.53		2.0	0.53	ug/L		08/13/24 09:00	08/14/24 13:44	1
Barium	44		2.0	0.66	ug/L		08/13/24 09:00	08/14/24 13:44	1
Beryllium	<0.33		1.0	0.33	ug/L		08/13/24 09:00	08/14/24 13:44	1
Boron	<76		100	76	ug/L		08/13/24 09:00	08/14/24 13:44	1
Calcium	130		0.50	0.19	mg/L		08/13/24 09:00	08/14/24 13:44	1
Cobalt	<0.17		0.50	0.17	ug/L		08/13/24 09:00	08/14/24 13:44	1
Copper	<1.8		5.0	1.8	ug/L		08/13/24 09:00	08/14/24 13:44	1
ron	<36		100	36	ug/L		08/13/24 09:00	08/14/24 13:44	1
ead	<0.26		0.50	0.26	ug/L		08/13/24 09:00	08/14/24 13:44	1
_ithium	21		10	2.5	ug/L		08/13/24 09:00	08/14/24 13:44	1
Magnesium	40000		500	150	ug/L		08/13/24 09:00	08/14/24 13:44	1
Vanganese	<3.6		10	3.6	ug/L		08/13/24 09:00	08/14/24 13:44	1
Molybdenum	2.2		2.0	1.3	ug/L		08/13/24 09:00	08/14/24 13:44	1
Selenium	<1.4		5.0	1.4	ug/L		08/13/24 09:00	08/14/24 13:44	1
Zinc	<9.7		20	9.7	ug/L		08/13/24 09:00	08/14/24 13:44	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS -3765-85)	<1.4		1.9	1.4	mg/L			08/12/24 15:46	1
Total Dissolved Solids (SM 2540C)	640		50	42	mg/L			08/12/24 16:27	1
Method: EPA Field Sampling - Fi	eld Sam	oling							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Groundwater Elevation	808.50				ft			08/06/24 12:33	1
Field pH	7.05				SU			08/06/24 12:33	1
Field Conductivity	1007				umhos/cm			08/06/24 12:33	1
Field Temperature	14.0				Degrees C			08/06/24 12:33	1

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00 Job ID: 310-287904-1 SDG: 25224073.00

Matrix: Water

Lab Sample ID: 310-287904-8

Client Sample ID: MW-101R Date Collected: 08/06/24 13:57 Date Received: 08/09/24 16:40

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.7		5.0	2.3	mg/L			08/16/24 17:24	5
luoride	<0.38		1.0	0.38	mg/L			08/16/24 17:24	5
Sulfate	480		5.0	2.1	mg/L			08/16/24 17:24	5
Method: SW846 6020B - Metals	(ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.53		2.0	0.53	ug/L		08/13/24 09:00	08/14/24 13:48	1
Barium	37		2.0	0.66	ug/L		08/13/24 09:00	08/14/24 13:48	1
Beryllium	<0.33		1.0	0.33	ug/L		08/13/24 09:00	08/14/24 13:48	1
Boron	720		100	76	ug/L		08/13/24 09:00	08/14/24 13:48	1
Calcium	220		0.50		mg/L		08/13/24 09:00	08/14/24 13:48	1
Cobalt	0.22	J	0.50	0.17	ug/L		08/13/24 09:00	08/14/24 13:48	1
Copper	2.0	J	5.0	1.8	ug/L		08/13/24 09:00	08/14/24 13:48	1
ron	82	J	100	36	ug/L		08/13/24 09:00	08/14/24 13:48	1
_ead	<0.26		0.50	0.26	ug/L		08/13/24 09:00	08/14/24 13:48	1
_ithium	84		10	2.5	ug/L		08/13/24 09:00	08/14/24 13:48	1
Magnesium	71000		500	150	ug/L		08/13/24 09:00	08/14/24 13:48	1
Manganese	180		10	3.6	ug/L		08/13/24 09:00	08/14/24 13:48	1
Molybdenum	6.5		2.0	1.3	ug/L		08/13/24 09:00	08/14/24 13:48	1
Selenium	5.2		5.0	1.4	ug/L		08/13/24 09:00	08/14/24 13:48	1
Zinc	<9.7		20	9.7	ug/L		08/13/24 09:00	08/14/24 13:48	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS -3765-85)	5.0		1.9	1.4	mg/L			08/12/24 15:46	1
Total Dissolved Solids (SM 2540C)	1100		50	42	mg/L			08/12/24 16:27	1
Method: EPA Field Sampling - F	ield Sam	oling							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Groundwater Elevation	782.62				ft			08/06/24 13:57	1
Field pH	6.80				SU			08/06/24 13:57	1
Field Conductivity	1533				umhos/cm			08/06/24 13:57	1
Field Temperature	13.8				Degrees C			08/06/24 13:57	1

Eurofins Cedar Falls

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00 Job ID: 310-287904-1 SDG: 25224073.00

Matrix: Water

5

6

Lab Sample ID: 310-287904-9

Client Sample ID: MW-102P Date Collected: 08/07/24 13:47 Date Received: 08/09/24 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9.4		5.0	2.3	mg/L			08/16/24 17:36	5
Fluoride	0.53	J	1.0	0.38	mg/L			08/16/24 17:36	5
Sulfate	1400		50	21	mg/L			08/19/24 09:53	50
Method: SW846 6020B - Metals (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.53		2.0	0.53	ug/L		08/13/24 09:00	08/14/24 13:51	1
Barium	23		2.0	0.66	ug/L		08/13/24 09:00	08/14/24 13:51	1
Beryllium	<0.33		1.0	0.33	ug/L		08/13/24 09:00	08/14/24 13:51	1
Boron	1700		100	76	ug/L		08/13/24 09:00	08/14/24 13:51	1
Calcium	430		2.0	0.76	mg/L		08/13/24 09:00	08/20/24 22:26	4
Cobalt	0.74		0.50	0.17	ug/L		08/13/24 09:00	08/14/24 13:51	1
Copper	4.3	J	5.0	1.8	ug/L		08/13/24 09:00	08/14/24 13:51	1
ron	5500		100	36	ug/L		08/13/24 09:00	08/14/24 13:51	1
₋ead	<0.26		0.50	0.26	ug/L		08/13/24 09:00	08/14/24 13:51	1
_ithium	230		10	2.5	ug/L		08/13/24 09:00	08/14/24 13:51	1
Magnesium	150000		2000	600	ug/L		08/13/24 09:00	08/20/24 22:26	4
Manganese	530		10	3.6	ug/L		08/13/24 09:00	08/14/24 13:51	1
Molybdenum	<1.3		2.0	1.3	ug/L		08/13/24 09:00	08/14/24 13:51	1
Selenium	<1.4		5.0	1.4	ug/L		08/13/24 09:00	08/14/24 13:51	1
Zinc	12	J	20	9.7	ug/L		08/13/24 09:00	08/14/24 13:51	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fotal Suspended Solids (USGS -3765-85)	12		3.8	2.8	mg/L			08/13/24 06:36	1
Total Dissolved Solids (SM 2540C)	2800		250	210	mg/L			08/12/24 16:27	1
Method: EPA Field Sampling - Fi	eld Sam	oling							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Groundwater Elevation	722.89				ft			08/07/24 13:47	1
Field pH	6.49				SU			08/07/24 13:47	1
Field Conductivity	3556				umhos/cm			08/07/24 13:47	1
Field Temperature	14.0				Degrees C			08/07/24 13:47	1

Client Sample Results

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00 Job ID: 310-287904-1 SDG: 25224073.00

Matrix: Water

5

6

Lab Sample ID: 310-287904-10

Client Sample ID: MW-108 Date Collected: 08/07/24 09:02 Date Received: 08/09/24 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2.6	J	5.0	2.3	mg/L			08/16/24 17:48	5
Fluoride	0.43	J	1.0	0.38	mg/L			08/16/24 17:48	5
Sulfate	130		5.0	2.1	mg/L			08/16/24 17:48	5
Method: SW846 6020B - Metals ((ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.1		2.0	0.53	ug/L		08/13/24 09:00	08/14/24 13:53	1
Barium	34		2.0	0.66	ug/L		08/13/24 09:00	08/14/24 13:53	1
Beryllium	<0.33		1.0	0.33	ug/L		08/13/24 09:00	08/14/24 13:53	1
Boron	300		100	76	ug/L		08/13/24 09:00	08/14/24 13:53	1
Calcium	75		0.50	0.19	mg/L		08/13/24 09:00	08/14/24 13:53	1
Cobalt	5.0		0.50	0.17	ug/L		08/13/24 09:00	08/14/24 13:53	1
Copper	<1.8		5.0	1.8	ug/L		08/13/24 09:00	08/14/24 13:53	1
ron	4300		100	36	ug/L		08/13/24 09:00	08/14/24 13:53	1
_ead	<0.26		0.50	0.26	ug/L		08/13/24 09:00	08/14/24 13:53	1
_ithium	49		10	2.5	ug/L		08/13/24 09:00	08/14/24 13:53	1
Magnesium	16000		500	150	ug/L		08/13/24 09:00	08/14/24 13:53	1
Manganese	920		10	3.6	ug/L		08/13/24 09:00	08/14/24 13:53	1
Molybdenum	3.0		2.0	1.3	ug/L		08/13/24 09:00	08/14/24 13:53	1
Selenium	<1.4		5.0	1.4	ug/L		08/13/24 09:00	08/14/24 13:53	1
Zinc	43		20	9.7	ug/L		08/13/24 09:00	08/14/24 13:53	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS -3765-85)	6.8		3.8	2.8	mg/L			08/13/24 06:36	1
Total Dissolved Solids (SM 2540C)	390		50	42	mg/L			08/12/24 16:27	1
Method: EPA Field Sampling - Fi	ield Sam	oling							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Groundwater Elevation	741.21				ft			08/07/24 09:02	1
Field pH	6.56				SU			08/07/24 09:02	1
Field Conductivity	621				umhos/cm			08/07/24 09:02	1
Field Temperature	14.2				Degrees C			08/07/24 09:02	1

Client Sample Results

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Client Sample ID: Field Blank Date Collected: 08/08/24 14:45 Date Received: 08/09/24 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.45		1.0	0.45	mg/L			08/16/24 18:00	1
Fluoride	<0.075		0.20	0.075	mg/L			08/16/24 18:00	1
Sulfate	<0.42		1.0	0.42	mg/L			08/16/24 18:00	1
Method: SW846 6020B - Met	als (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
rsenic	<0.53		2.0	0.53	ug/L		08/13/24 09:00	08/14/24 13:55	1
Barium	<0.66		2.0	0.66	ug/L		08/13/24 09:00	08/14/24 13:55	
Beryllium	<0.33		1.0	0.33	ug/L		08/13/24 09:00	08/14/24 13:55	
Boron	<76		100	76	ug/L		08/13/24 09:00	08/14/24 13:55	
Calcium	<0.19		0.50	0.19	mg/L		08/13/24 09:00	08/14/24 13:55	
Cobalt	<0.17		0.50	0.17	ug/L		08/13/24 09:00	08/14/24 13:55	
Copper	<1.8		5.0	1.8	ug/L		08/13/24 09:00	08/14/24 13:55	
ron	<36		100	36	ug/L		08/13/24 09:00	08/14/24 13:55	
ead	<0.26		0.50	0.26	ug/L		08/13/24 09:00	08/14/24 13:55	
ithium	<2.5		10	2.5	ug/L		08/13/24 09:00	08/14/24 13:55	
lagnesium	<150		500	150	ug/L		08/13/24 09:00	08/14/24 13:55	
langanese	<3.6		10	3.6	ug/L		08/13/24 09:00	08/14/24 13:55	
<i>l</i> olybdenum	<1.3		2.0	1.3	ug/L		08/13/24 09:00	08/14/24 13:55	
Selenium	<1.4		5.0	1.4	ug/L		08/13/24 09:00	08/14/24 13:55	
Zinc	<9.7		20	9.7	ug/L		08/13/24 09:00	08/14/24 13:55	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
otal Suspended Solids (USGS -3765-85)	<1.4		1.9	1.4	mg/L			08/13/24 07:57	
Total Dissolved Solids (SM 2540C)	<42		50	42	mg/L			08/13/24 15:37	

Matrix: Water

Lab Sample ID: 310-287904-11

Definitions/Glossary

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Qualifiers

Qualifiers	
HPLC/IC	
Qualifier	Qualifier Description
	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Vetals	
Qualifier	Qualifier Description
	Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
General Cher	
Qualifier	Qualifier Description Result is less than the PL but greater than or equal to the MDL and the concentration is an enprovimete value.
	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
1	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
_OD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
NCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
NDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 310-43076 Matrix: Water	9/3								C	lie	nt Sam	ple ID: Me Prep Typ		
Analysis Batch: 430769														
Analyta		MB MB sult Qualifier		RL		MDL U	Init		D	Dr	epared	Analya	od	Dil Fa
Analyte Chloride).45		1.0		0.45 r			<u> </u>	FI	epareu	_ Analyz		DIIFa
Fluoride		075		0.20		.075 r	-					08/16/24 (
Sulfate).42		1.0		0.42 r	-					08/16/24 (
	-0			1.0		0.72 1	ng/∟					00/10/24	00.07	
Lab Sample ID: LCS 310-4307 Matrix: Water	69/4							Clie	ent S	San	nple ID:	Lab Con Prep Typ		
Analysis Batch: 430769														
			Spike		LCS	LCS						%Rec		
Analyte			Added		Result	Quali	fier	Unit		D	%Rec	Limits		
Chloride			10.0		10.9			mg/L		_	109	90 - 110		
Fluoride			2.00		2.03			mg/L			102	90 - 110		
Sulfate			10.0		10.2			mg/L			102	90 - 110		
-								Ū.						
Lab Sample ID: MB 310-43078 Matrix: Water	2/3								C	lie	nt Sam	ple ID: Me Prep Typ		
Analysis Batch: 430782														
-		MB MB												
Analyte	Res	sult Qualifier		RL	I	MDL (Jnit		D	Pr	epared	Analyz	ed	Dil Fa
Chloride	<().45		1.0	-	0.45 r	ng/L					08/16/24	15:35	
Fluoride	<0.	075		0.20	0	.075 r	ng/L					08/16/24	15:35	
Sulfate	<0).42		1.0		0.42 r	ng/L					08/16/24	15:35	
Matrix: Water	82/4							Clie	ent S	San	nple ID:	: Lab Con Prep Typ		
Matrix: Water	82/4		Snike		LCS	LCS		Clie	ent S	San	nple ID:	Prep Typ		
Lab Sample ID: LCS 310-4307 Matrix: Water Analysis Batch: 430782 Analyte	82/4		Spike Added		LCS Result		fier		ent S		-	Prep Typ %Rec		
Matrix: Water Analysis Batch: 430782 Analyte	82/4		Added		Result		fier	Unit	ent S	San D	%Rec	Prep Typ %Rec Limits		
Matrix: Water Analysis Batch: 430782 Analyte Chloride	82/4		Added 10.0		Result 9.97		fier	Unit mg/L	ent S		%Rec 100	Prep Tyr %Rec Limits 90 - 110		
Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride	82/4		Added 10.0 2.00		Result 9.97 2.07		fier	Unit mg/L mg/L	ent S		%Rec 100 103	Prep Typ %Rec Limits 90 - 110 90 - 110		
Matrix: Water Analysis Batch: 430782 Analyte Chloride	82/4		Added 10.0		Result 9.97		fier	Unit mg/L	ent S		%Rec 100	Prep Tyr %Rec Limits 90 - 110		
Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride Sulfate Lab Sample ID: 310-287904-5 Matrix: Water			Added 10.0 2.00		Result 9.97 2.07		fier	Unit mg/L mg/L	ent S		%Rec 100 103 103	Prep Typ %Rec Limits 90 - 110 90 - 110	De: To 	tal/N/
Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride Sulfate Lab Sample ID: 310-287904-5	MS		Added 10.0 2.00 10.0		Result 9.97 2.07 10.3	Quali	fier	Unit mg/L mg/L	ent S		%Rec 100 103 103	Prep Typ %Rec Limits 90 - 110 90 - 110 90 - 110 t Sample Prep Typ	De: To 	tal/N/
Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride Sulfate Lab Sample ID: 310-287904-5 Matrix: Water Analysis Batch: 430782	MS Sample		Added 10.0 2.00 10.0 Spike		Result 9.97 2.07 10.3	<u>Quali</u> MS		Unit mg/L mg/L mg/L	ent S	D	%Rec 100 103 103 Client	Prep Typ %Rec Limits 90 - 110 90 - 110 90 - 110 t Sample Prep Typ %Rec	De: To 	tal/N/
Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride Sulfate Lab Sample ID: 310-287904-5 Matrix: Water Analysis Batch: 430782 Analyte	MS Sample Result	Sample Qualifier	Added 10.0 2.00 10.0 Spike Added		Result 9.97 2.07 10.3 MS Result	<u>Quali</u> MS		Unit mg/L mg/L mg/L	ent S		%Rec 100 103 103 Client	Prep Typ %Rec Limits 90 - 110 90 - 110 90 - 110 t Sample Prep Typ %Rec Limits	De: To 	tal/N
Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride Sulfate Lab Sample ID: 310-287904-5 Matrix: Water Analysis Batch: 430782 Analyte Chloride	MS Sample Result 10		Added 10.0 2.00 10.0 Spike Added 25.0		Result 9.97 2.07 10.3 MS Result 33.6	<u>Quali</u> MS		Unit mg/L mg/L mg/L	ent S	D	%Rec 100 103 103 Client %Rec 93	Prep Typ %Rec Limits 90 - 110 90 - 110 90 - 110 t Sample Prep Typ %Rec Limits 80 - 120	De: To 	tal/N/
Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride Sulfate Lab Sample ID: 310-287904-5 Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride	MS Sample Result 10 <0.38		Added 10.0 2.00 10.0 Spike Added 25.0 5.00		Mesult 9.97 2.07 10.3 MS Result 33.6 5.14	Quali MS Quali		Unit mg/L mg/L mg/L Unit mg/L mg/L	ent S	D	%Rec 100 103 103 Client %Rec 93 103	Prep Typ %Rec Limits 90 - 110 90 - 110 90 - 110 t Sample Prep Typ %Rec Limits 80 - 120 80 - 120	De: To 	tal/N/
Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride Sulfate Lab Sample ID: 310-287904-5 Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride	MS Sample Result 10		Added 10.0 2.00 10.0 Spike Added 25.0		Result 9.97 2.07 10.3 MS Result 33.6	Quali MS Quali		Unit mg/L mg/L mg/L	ent S	D	%Rec 100 103 103 Client %Rec 93	Prep Typ %Rec Limits 90 - 110 90 - 110 90 - 110 t Sample Prep Typ %Rec Limits 80 - 120	De: To 	tal/N/
Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride Sulfate Lab Sample ID: 310-287904-5 Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride Sulfate Lab Sample ID: 310-287904-5 Matrix: Water	MS Sample Result 10 <0.38 440		Added 10.0 2.00 10.0 Spike Added 25.0 5.00		Mesult 9.97 2.07 10.3 MS Result 33.6 5.14	Quali MS Quali		Unit mg/L mg/L mg/L Unit mg/L mg/L	ent S	D	%Rec 100 103 103 Client %Rec 93 103 67	Prep Typ %Rec Limits 90 - 110 90 - 110 90 - 110 t Sample Prep Typ %Rec Limits 80 - 120 80 - 120	ID: MV De: To ID: MV	W-15i tal/N/
Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride Sulfate Lab Sample ID: 310-287904-5 Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride Sulfate Lab Sample ID: 310-287904-5	MS Sample Result 10 <0.38 440 MSD	Qualifier	Added 10.0 2.00 10.0 Spike Added 25.0 5.00 25.0		Mesult 9.97 2.07 10.3 MS Result 33.6 5.14 460	Quali MS Quali		Unit mg/L mg/L mg/L Unit mg/L mg/L	ent S	D	%Rec 100 103 103 Client %Rec 93 103 67	Prep Typ %Rec Limits 90 - 110 90 - 110 90 - 110 t Sample Prep Typ %Rec Limits 80 - 120 80 - 120 80 - 120 80 - 120	ID: MV De: To ID: MV	V-15I tal/N/
Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride Sulfate Lab Sample ID: 310-287904-5 Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride Sulfate Lab Sample ID: 310-287904-5 Matrix: Water Analysis Batch: 430782	MS Sample Result 10 <0.38 440 MSD Sample	Qualifier	Added 10.0 2.00 10.0 Spike Added 25.0 5.00 25.0 Spike		Result 9.97 2.07 10.3 MS Result 33.6 5.14 460 MSD	Quali MS Quali 4	fier	Unit mg/L mg/L mg/L mg/L mg/L mg/L	ent S	D	%Rec 100 103 103 Client %Rec 93 103 67 Client	Prep Typ %Rec Limits 90 - 110 90 - 110 90 - 110 t Sample Prep Typ %Rec Limits 80 - 120 80 - 120 80 - 120 80 - 120 t Sample Prep Typ	ID: MV De: Tot	V-15I tal/N/ W-15I tal/N/ RP
Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride Sulfate Lab Sample ID: 310-287904-5 Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride Sulfate Lab Sample ID: 310-287904-5 Matrix: Water Analysis Batch: 430782 Analyte	MS Sample Result 10 <0.38 440 MSD Sample Result	Qualifier	Added 10.0 2.00 10.0 Spike Added 25.0 5.00 25.0 Spike Added		Result 9.97 2.07 10.3 MS Result 33.6 5.14 460 MSD Result	Quali MS Quali 4	fier	Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L	ent S	D	%Rec 100 103 103 Client %Rec 93 103 67 Client %Rec	Prep Typ %Rec Limits 90 - 110 90 - 110 90 - 110 t Sample Prep Typ %Rec Limits 80 - 120 80 - 120 80 - 120 80 - 120 t Sample Prep Typ %Rec Limits	ID: MV De: To ID: MV pe: To RPD	V-15I tal/N/ V-15I tal/N/ RP Lim
Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride Sulfate Lab Sample ID: 310-287904-5 Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride Sulfate Lab Sample ID: 310-287904-5 Matrix: Water Analysis Batch: 430782 Analysis Batch: 430782 Analyte Chloride	MS Sample Result 10 <0.38 440 MSD Sample Result 10	Qualifier	Added 10.0 2.00 10.0 Spike Added 25.0 25.0 Spike Added 25.0		Result 9.97 2.07 10.3 MS Result 33.6 5.14 460 MSD Result 33.3	Quali MS Quali 4	fier	Unit mg/L mg/L mg/L mg/L mg/L mg/L	ent S	D	%Rec 100 103 103 Client %Rec 93 103 67 Client %Rec 92	Prep Typ %Rec Limits 90 - 110 90 - 110 90 - 110 t Sample Prep Typ %Rec Limits 80 - 120 80 - 120 80 - 120 t Sample Prep Typ %Rec Limits 80 - 120	ID: MV pe: To ID: MV pe: To Pe: To 1	N-15F tal/N/ V-15F tal/N/ RPI Lim 1
Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride Sulfate Lab Sample ID: 310-287904-5 Matrix: Water Analysis Batch: 430782 Analyte Chloride Fluoride Sulfate Lab Sample ID: 310-287904-5 Matrix: Water	MS Sample Result 10 <0.38 440 MSD Sample Result	Qualifier	Added 10.0 2.00 10.0 Spike Added 25.0 5.00 25.0 Spike Added		Result 9.97 2.07 10.3 MS Result 33.6 5.14 460 MSD Result	Quali MS Quali 4 MSD Quali	fier	Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L	ent S	D	%Rec 100 103 103 Client %Rec 93 103 67 Client %Rec	Prep Typ %Rec Limits 90 - 110 90 - 110 90 - 110 t Sample Prep Typ %Rec Limits 80 - 120 80 - 120 80 - 120 80 - 120 t Sample Prep Typ %Rec Limits	ID: MV De: To ID: MV pe: To RPD	W-15F tal/N/

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 310-430125/1-A Matrix: Water Analysis Batch: 430374

	MB	MB							
Analyte R	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.53		2.0	0.53	ug/L		08/13/24 09:00	08/14/24 12:53	1
Barium	<0.66		2.0	0.66	ug/L		08/13/24 09:00	08/14/24 12:53	1
Beryllium	<0.33		1.0	0.33	ug/L		08/13/24 09:00	08/14/24 12:53	1
Boron	<76		100	76	ug/L		08/13/24 09:00	08/14/24 12:53	1
Calcium	<0.19		0.50	0.19	mg/L		08/13/24 09:00	08/14/24 12:53	1
Cobalt	<0.17		0.50	0.17	ug/L		08/13/24 09:00	08/14/24 12:53	1
Copper	<1.8		5.0	1.8	ug/L		08/13/24 09:00	08/14/24 12:53	1
Iron	<36		100	36	ug/L		08/13/24 09:00	08/14/24 12:53	1
Lead	<0.26		0.50	0.26	ug/L		08/13/24 09:00	08/14/24 12:53	1
Lithium	<2.5		10	2.5	ug/L		08/13/24 09:00	08/14/24 12:53	1
Magnesium	<150		500	150	ug/L		08/13/24 09:00	08/14/24 12:53	1
Manganese	<3.6		10	3.6	ug/L		08/13/24 09:00	08/14/24 12:53	1
Molybdenum	<1.3		2.0	1.3	ug/L		08/13/24 09:00	08/14/24 12:53	1
Selenium	<1.4		5.0	1.4	ug/L		08/13/24 09:00	08/14/24 12:53	1
Zinc	<9.7		20	9.7	ug/L		08/13/24 09:00	08/14/24 12:53	1

Lab Sample ID: LCS 310-430125/2-A Matrix: Water Analysis Batch: 430374

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	200	214		ug/L		107	80 - 120
Barium	100	109		ug/L		109	80 - 120
Beryllium	100	101		ug/L		101	80 - 120
Boron	200	191		ug/L		95	80 - 120
Calcium	2.00	2.03		mg/L		102	80 - 120
Cobalt	100	113		ug/L		113	80 - 120
Copper	200	217		ug/L		108	80 - 120
Iron	200	226		ug/L		113	80 - 120
Lead	200	212		ug/L		106	80 - 120
Lithium	200	209		ug/L		104	80 - 120
Magnesium	2000	2180		ug/L		109	80 - 120
Manganese	100	104		ug/L		104	80 - 120
Molybdenum	200	206		ug/L		103	80 - 120
Selenium	400	401		ug/L		100	80 - 120
Zinc	200	204		ug/L		102	80 - 120

Lab Sample ID: 310-287904-7 DU **Matrix: Water** Analysis Batch: 430374

Analysis Batch: 430374							Prep Batch: 43	30125
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	<0.53		<0.53		ug/L		NC	20
Barium	44		44.0		ug/L		0.8	20
Beryllium	<0.33		<0.33		ug/L		NC	20
Boron	<76		<76		ug/L		NC	20
Calcium	130		130		mg/L		1	20
Cobalt	<0.17		<0.17		ug/L		NC	20
Copper	<1.8		<1.8		ug/L		NC	20

Eurofins Cedar Falls

Client Sample ID: MW-100R

Prep Type: Total/NA

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 430125

5 8

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 430125

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: 310-287904 Matrix: Water	I-7 DU							Client	Sample ID: MW Prep Type: To	
Analysis Batch: 430374									Prep Batch: 4	30125
	Sample S	Sample		DU	DU					RPD
Analyte	Result C	Qualifier		Result	Qualifier	Unit	D		RPD	Limi
Iron	<36			<36		ug/L			NC	20
Lead	<0.26			<0.26		ug/L			NC	20
Lithium	21			20.6		ug/L			0.1	20
Magnesium	40000			39900		ug/L			1	2
Manganese	<3.6			<3.6		ug/L			NC	2
Molybdenum	2.2			2.21		ug/L			2	20
Selenium	<1.4			<1.4		ug/L			NC	20
Zinc	<9.7			<9.7		ug/L			NC	2
Lab Sample ID: 310-287904 Matrix: Water	I-7 DU							Client	Sample ID: MW Prep Type: To	tal/N/
Analysis Batch: 430986									Prep Batch: 4	
	Sample S				DU					RPI
Analyte	Result C				Qualifier	Unit	D		RPD	Limi
Beryllium	<0.33	+		<0.33	^+	ug/L			NC	20
	0112/1						Clie	nt Sam	ple ID: Method Prep Type: To	
Matrix: Water Analysis Batch: 430112	N	/IB MB							Prep Type: To	tal/NA
Matrix: Water Analysis Batch: 430112 ^{Analyte}	N Resi	ult Qualifier			MDL Unit	C		nt Sam epared	Prep Type: To Analyzed	tal/N/ Dil Fa
Matrix: Water Analysis Batch: 430112 ^{Analyte}	N Resi			RL	MDL Unit	<u>C</u>			Prep Type: To	tal/N/ Dil Fa
Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: LCS 310-43 Matrix: Water	N Resi <3	ult Qualifier) Pr	epared	Prep Type: To Analyzed	Dil Fa
Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: LCS 310-43 Matrix: Water	N Resi <3	ult Qualifier		5.0	3.7 mg/L) Pr	epared	Prep Type: To Analyzed 08/12/24 15:46 Lab Control Sa Prep Type: To	Dil Fa
Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: LCS 310-43 Matrix: Water Analysis Batch: 430112	N Resi <3	ult Qualifier	Spike	5.0	3.7 mg/L	Clier) Pro	epared nple ID:	Prep Type: To Analyzed 08/12/24 15:46 Lab Control Sa Prep Type: To %Rec	Dil Fa
Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: LCS 310-43 Matrix: Water Analysis Batch: 430112 Analyte	N Resi <3	ult Qualifier	Added	5.0 LCS Result	3.7 mg/L	Clier) Pro	epared nple ID %Rec	Prep Type: To Analyzed 08/12/24 15:46 Lab Control Sa Prep Type: To %Rec Limits	Dil Fa
Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: LCS 310-43 Matrix: Water Analysis Batch: 430112 Analyte	N Resi <3	ult Qualifier	•	5.0	3.7 mg/L	Clier) Pro	epared nple ID:	Prep Type: To Analyzed 08/12/24 15:46 Lab Control Sa Prep Type: To %Rec	Dil Fa
Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: LCS 310-43 Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids	M Resi <3 30112/2	ult Qualifier	Added	5.0 LCS Result	3.7 mg/L	Clier) Pri nt San	epared hple ID %Rec 99 -	Prep Type: To Analyzed 08/12/24 15:46 Lab Control Sa Prep Type: To %Rec Limits	tal/N/ Dil Fa ample tal/N/
Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: LCS 310-43 Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: MB 310-430	M Resi <3 30112/2	ult Qualifier	Added	5.0 LCS Result	3.7 mg/L	Clier) Pri nt San	epared hple ID %Rec 99 -	Analyzed 08/12/24 15:46 : Lab Control Sa Prep Type: Tot %Rec Limits 81 - 116	Dil Fa ample tal/N/
Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: LCS 310-43 Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: MB 310-430 Matrix: Water	M Resi <3 30112/2	ult Qualifier	Added	5.0 LCS Result	3.7 mg/L	Clier) Pri nt San	epared hple ID %Rec 99 -	Prep Type: To Analyzed 08/12/24 15:46 Lab Control Sa Prep Type: To %Rec Limits 81 - 116 ple ID: Method	Dil Fa ample tal/N/
Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: LCS 310-43 Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: MB 310-430 Matrix: Water	N Resi 30112/2	ult Qualifier	Added	5.0 LCS Result	3.7 mg/L	Clier) Pri nt San	epared hple ID %Rec 99 -	Prep Type: To Analyzed 08/12/24 15:46 Lab Control Sa Prep Type: To %Rec Limits 81 - 116 ple ID: Method	Dil Faa ample tal/NA
Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: LCS 310-43 Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: MB 310-430 Matrix: Water Analysis Batch: 430134	N Resi 30112/2 0134/1	ult Qualifier	Added 100	5.0 LCS Result 99.0	3.7 mg/L	Clier	o Pro nt Sam D Clier	epared hple ID %Rec 99 -	Prep Type: To Analyzed 08/12/24 15:46 Lab Control Sa Prep Type: To %Rec Limits 81 - 116 ple ID: Method Prep Type: To	Dil Fa ample tal/N/ Blani tal/N/
Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: LCS 310-43 Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: MB 310-430 Matrix: Water Analysis Batch: 430134 Analyte	N Res 30112/2 0134/1	AB MB	Added 100	5.0 LCS Result 99.0	3.7 mg/L LCS Qualifier	Clier Unit mg/L	o Pro nt Sam D Clier	epared nple ID: <u>%Rec</u> 99 -	Prep Type: To Analyzed 08/12/24 15:46 Lab Control Sa Prep Type: To %Rec Limits 81 - 116 ple ID: Method Prep Type: To	Dil Fa ample tal/N/ Blani tal/N/ Dil Fa
Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: LCS 310-43 Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: MB 310-430 Matrix: Water Analysis Batch: 430134 Analyte Total Suspended Solids Lab Sample ID: LCS 310-43	M Resi 30112/2 0134/1 M Resi <	AB MB ult Qualifier	Added 100	5.0 LCS Result 99.0	3.7 mg/L LCS Qualifier MDL Unit	Clier Unit mg/L) Pro nt Sam Clien	epared nple ID: <u>%Rec</u> <u>99</u> - nt Sam epared	Analyzed 08/12/24 15:46 : Lab Control Sa Prep Type: Tor %Rec Limits 81 - 116 ple ID: Method Prep Type: Tor 08/13/24 06:36 : Lab Control Sa	Dil Fa amplo tal/N/ Blant tal/N/ Dil Fa
Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: LCS 310-43 Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: MB 310-430 Matrix: Water Analysis Batch: 430134 Analyte Total Suspended Solids Lab Sample ID: LCS 310-43 Matrix: Water	M Resi 30112/2 0134/1 M Resi <	AB MB ult Qualifier	Added 100	5.0 LCS Result 99.0	3.7 mg/L LCS Qualifier MDL Unit	Clier Unit mg/L) Pro nt Sam Clien	epared nple ID: <u>%Rec</u> <u>99</u> - nt Sam epared	Analyzed 08/12/24 15:46 : Lab Control Sa Prep Type: To %Rec Limits 81 - 116 ple ID: Method Prep Type: To 08/13/24 06:36	Dil Fa ample tal/N/ Blani tal/N/ Dil Fa
Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: LCS 310-43 Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: MB 310-430 Matrix: Water Analysis Batch: 430134 Analyte Total Suspended Solids Lab Sample ID: LCS 310-43 Matrix: Water	M Resi 30112/2 0134/1 M Resi <	AB MB ult Qualifier	Added 100	5.0 LCS Result 99.0 RL 5.0	3.7 mg/L LCS Qualifier MDL Unit	Clier Unit mg/L) Pro nt Sam Clien	epared nple ID: <u>%Rec</u> <u>99</u> - nt Sam epared	Analyzed 08/12/24 15:46 : Lab Control Sa Prep Type: Tor %Rec Limits 81 - 116 ple ID: Method Prep Type: Tor 08/13/24 06:36 : Lab Control Sa	Dil Fa ample tal/N/ Blani tal/N/ Dil Fa
Lab Sample ID: MB 310-430 Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: LCS 310-43 Matrix: Water Analysis Batch: 430112 Analyte Total Suspended Solids Lab Sample ID: MB 310-430 Matrix: Water Analysis Batch: 430134 Analyte Total Suspended Solids Lab Sample ID: LCS 310-43 Matrix: Water Analysis Batch: 430134 Analysis Batch: 430134	M Resi 30112/2 0134/1 M Resi <	AB MB ult Qualifier	Added 100	5.0 LCS Result 99.0 RL 5.0	3.7 mg/L LCS Qualifier 3.7 Unit mg/L	Clier Unit mg/L) Pro nt Sam D Clien 0 Pro nt Sam	epared nple ID: <u>%Rec</u> <u>99</u> - nt Sam epared	Prep Type: To Analyzed 08/12/24 15:46 Lab Control Sa Prep Type: To %Rec Limits 81 - 116 ple ID: Method Prep Type: To Analyzed 08/13/24 06:36 Lab Control Sa Prep Type: To	Dil Fa ample tal/N/ Blani tal/N/ Dil Fa

QC Sample Results

Method: I-3765-85 - Residue, Non-filterable (TSS) (Continued)

Lab Sample ID: MB 310-430158/1									C	lien	t Sam	ple ID: Metho	
Matrix: Water												Prep Type: T	otal/N
Analysis Batch: 430158													
	MB												
Analyte		Qualifier		RL			Unit		<u>D</u>	Pre	pared	Analyzed	Dil Fa
Total Suspended Solids	<3.7			5.0		3.7	mg/L					08/13/24 07:57	
Lab Sample ID: LCS 310-430158/2								Clie	nt S	Sam	ple ID:	: Lab Control	Sampl
Matrix: Water												Prep Type: T	
Analysis Batch: 430158													
			Spike		LCS	LCS	;					%Rec	
Analyte			Added		Result	Qua	lifier	Unit		D %	∕₀Rec	Limits	
Total Suspended Solids			100		99.0			mg/L			99	81 - 116	
lethod: SM 2540C - Solids, To	otal D	issolve	d (TDS	5)									
Lab Sample ID: MB 310-430117/1									С	lien	t Sam	ple ID: Metho	d Blan
Matrix: Water												Prep Type: T	
Analysis Batch: 430117													
	MB	МВ											
Analyte	Result	Qualifier		RL		MDL	Unit		D	Pre	pared	Analyzed	Dil Fa
Total Dissolved Solids	<42			50		42	mg/L					08/12/24 16:27	
Lab Sample ID: LCS 310-430117/2 Matrix: Water								Clie	nt S	Sam	ple ID:	: Lab Control : Prep Type: T	
Analysis Batch: 430117													
Analysis Batch: 430117			Spike		LCS	LCS	;					%Rec	
			Spike Added					Unit		D %	%Rec	%Rec Limits	
Analyte			Spike Added 1000		LCS Result 980			Unit mg/L		<u>D</u> 9	% Rec 98		
Analyte Total Dissolved Solids Lab Sample ID: MB 310-430251/1 Matrix: Water			Added		Result				 C		98	Limits	
Analyte Total Dissolved Solids Lab Sample ID: MB 310-430251/1 Matrix: Water	 MB		Added		Result				C		98	Limits 88 - 110	
Analysis Batch: 430117 Analyte Total Dissolved Solids Lab Sample ID: MB 310-430251/1 Matrix: Water Analysis Batch: 430251 Analyte	Result	MB Qualifier	Added	RL	Result 980	Qua	<u>lifier</u> Unit	mg/L	C	lien	98	Limits 88 - 110 Ple ID: Metho Prep Type: T Analyzed	
Analyte Total Dissolved Solids Lab Sample ID: MB 310-430251/1 Matrix: Water Analysis Batch: 430251 Analyte			Added	RL 50	Result 980	Qua	lifier	mg/L		lien	98 t Sam	Limits 88 - 110 Ple ID: Metho Prep Type: T	otal/N
Analyte Total Dissolved Solids Lab Sample ID: MB 310-430251/1 Matrix: Water Analysis Batch: 430251 Analyte Total Dissolved Solids Lab Sample ID: LCS 310-430251/2 Matrix: Water	Result		Added		Result 980	Qua	<u>lifier</u> Unit	mg/L	D	Clien Pre	98 t Sam pared	Limits 88 - 110 Ple ID: Metho Prep Type: T Analyzed	otal/N Dil Fa
Analyte Total Dissolved Solids Lab Sample ID: MB 310-430251/1 Matrix: Water Analysis Batch: 430251 Analyte Total Dissolved Solids Lab Sample ID: LCS 310-430251/2 Matrix: Water	Result		Added 1000		Result 980	Qua MDL 42	Unit mg/L	mg/L	D	Clien Pre	98 t Sam pared	Limits 88 - 110 Prep Type: T Analyzed 08/13/24 15:37 : Lab Control 3 Prep Type: T	Dil Fa
Analyte Total Dissolved Solids Lab Sample ID: MB 310-430251/1 Matrix: Water Analysis Batch: 430251	Result		Added		Result 980	Qua MDL 42	Unit mg/L	mg/L	D	Pre Sam	98 t Sam pared	Limits 88 - 110 Prep Type: T Analyzed 08/13/24 15:37 : Lab Control	Dil Fa

QC Association Summary

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Job ID: 310-287904-1 SDG: 25224073.00

> 9

HPLC/IC

Analysis Batch: 430769

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
310-287904-1	MW-1R	Total/NA	Water	9056A	
310-287904-2	MW-12	Total/NA	Water	9056A	
310-287904-2	MW-12	Total/NA	Water	9056A	
310-287904-3	MW-13	Total/NA	Water	9056A	
310-287904-3	MW-13	Total/NA	Water	9056A	
310-287904-4	MW-14	Total/NA	Water	9056A	
310-287904-4	MW-14	Total/NA	Water	9056A	
MB 310-430769/3	Method Blank	Total/NA	Water	9056A	
LCS 310-430769/4	Lab Control Sample	Total/NA	Water	9056A	

Analysis Batch: 430782

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-287904-5	MW-15R	Total/NA	Water	9056A	
310-287904-6	MW-16R	Total/NA	Water	9056A	
310-287904-6	MW-16R	Total/NA	Water	9056A	
310-287904-7	MW-100R	Total/NA	Water	9056A	
310-287904-8	MW-101R	Total/NA	Water	9056A	
310-287904-9	MW-102P	Total/NA	Water	9056A	
310-287904-9	MW-102P	Total/NA	Water	9056A	
310-287904-10	MW-108	Total/NA	Water	9056A	
310-287904-11	Field Blank	Total/NA	Water	9056A	
MB 310-430782/3	Method Blank	Total/NA	Water	9056A	
LCS 310-430782/4	Lab Control Sample	Total/NA	Water	9056A	
310-287904-5 MS	MW-15R	Total/NA	Water	9056A	
310-287904-5 MSD	MW-15R	Total/NA	Water	9056A	

Metals

Prep Batch: 430125

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-287904-1	MW-1R	Total/NA	Water	3005A	
310-287904-2	MW-12	Total/NA	Water	3005A	
310-287904-3	MW-13	Total/NA	Water	3005A	
310-287904-4	MW-14	Total/NA	Water	3005A	
310-287904-5	MW-15R	Total/NA	Water	3005A	
310-287904-6	MW-16R	Total/NA	Water	3005A	
310-287904-7	MW-100R	Total/NA	Water	3005A	
310-287904-8	MW-101R	Total/NA	Water	3005A	
310-287904-9	MW-102P	Total/NA	Water	3005A	
310-287904-10	MW-108	Total/NA	Water	3005A	
310-287904-11	Field Blank	Total/NA	Water	3005A	
MB 310-430125/1-A	Method Blank	Total/NA	Water	3005A	
LCS 310-430125/2-A	Lab Control Sample	Total/NA	Water	3005A	
310-287904-7 DU	MW-100R	Total/NA	Water	3005A	

Analysis Batch: 430374

Lab Sample	D Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
310-287904	-1 MW-1R	Total/NA	Water	6020B	430125
310-287904	-2 MW-12	Total/NA	Water	6020B	430125
310-287904	-3 MW-13	Total/NA	Water	6020B	430125
310-287904	-4 MW-14	Total/NA	Water	6020B	430125

QC Association Summary

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Job ID: 310-287904-1 SDG: 25224073.00

Metals (Continued)

Analysis Batch: 430374 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
310-287904-5	MW-15R	Total/NA	Water	6020B	430125
310-287904-6	MW-16R	Total/NA	Water	6020B	430125
310-287904-7	MW-100R	Total/NA	Water	6020B	430125
310-287904-8	MW-101R	Total/NA	Water	6020B	430125
310-287904-9	MW-102P	Total/NA	Water	6020B	430125
310-287904-10	MW-108	Total/NA	Water	6020B	430125
310-287904-11	Field Blank	Total/NA	Water	6020B	430125
MB 310-430125/1-A	Method Blank	Total/NA	Water	6020B	430125
LCS 310-430125/2-A	Lab Control Sample	Total/NA	Water	6020B	430125
310-287904-7 DU	MW-100R	Total/NA	Water	6020B	430125

Analysis Batch: 430986

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
310-287904-5	MW-15R	Total/NA	Water	6020B	430125	
310-287904-9	MW-102P	Total/NA	Water	6020B	430125	
310-287904-7 DU	MW-100R	Total/NA	Water	6020B	430125	

General Chemistry

Analysis Batch: 430112

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
310-287904-1	MW-1R	Total/NA	Water	I-3765-85	
310-287904-2	MW-12	Total/NA	Water	I-3765-85	
310-287904-5	MW-15R	Total/NA	Water	I-3765-85	
310-287904-7	MW-100R	Total/NA	Water	I-3765-85	
310-287904-8	MW-101R	Total/NA	Water	I-3765-85	
MB 310-430112/1	Method Blank	Total/NA	Water	I-3765-85	
LCS 310-430112/2	Lab Control Sample	Total/NA	Water	I-3765-85	

Analysis Batch: 430117

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-287904-1	MW-1R	Total/NA	Water	SM 2540C	
310-287904-4	MW-14	Total/NA	Water	SM 2540C	
310-287904-5	MW-15R	Total/NA	Water	SM 2540C	
310-287904-6	MW-16R	Total/NA	Water	SM 2540C	
310-287904-7	MW-100R	Total/NA	Water	SM 2540C	
310-287904-8	MW-101R	Total/NA	Water	SM 2540C	
310-287904-9	MW-102P	Total/NA	Water	SM 2540C	
310-287904-10	MW-108	Total/NA	Water	SM 2540C	
MB 310-430117/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 310-430117/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 430134

Lab Sample ID 310-287904-4	Client Sample ID MW-14	Prep Type Total/NA	Matrix Water	Method I-3765-85	Prep Batch
310-287904-6	MW-16R	Total/NA	Water	I-3765-85	
310-287904-9	MW-102P	Total/NA	Water	I-3765-85	
310-287904-10	MW-108	Total/NA	Water	I-3765-85	
MB 310-430134/1	Method Blank	Total/NA	Water	I-3765-85	
LCS 310-430134/2	Lab Control Sample	Total/NA	Water	I-3765-85	

Eurofins Cedar Falls

QC Association Summary

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Job ID: 310-287904-1 SDG: 25224073.00

9

General Chemistry

Analysis Batch: 430158

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-287904-3	MW-13	Total/NA	Water	I-3765-85	
310-287904-11	Field Blank	Total/NA	Water	I-3765-85	
MB 310-430158/1	Method Blank	Total/NA	Water	I-3765-85	
LCS 310-430158/2	Lab Control Sample	Total/NA	Water	I-3765-85	
nalysis Batch: 430					
	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batc
Lab Sample ID		Prep Type Total/NA	Matrix Water	Method SM 2540C	Prep Batc
nalysis Batch: 430 Lab Sample ID 310-287904-2 310-287904-3	Client Sample ID				Prep Batcl
Lab Sample ID 310-287904-2 310-287904-3	Client Sample ID MW-12	Total/NA	Water	SM 2540C	_ Prep Batcl
Lab Sample ID 310-287904-2	Client Sample ID MW-12 MW-13	Total/NA Total/NA	Water Water	SM 2540C SM 2540C	Prep Batcl

Field Service / Mobile Lab

Analysis Batch: 430803

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
310-287904-1	MW-1R	Total/NA	Water	Field Sampling	
310-287904-2	MW-12	Total/NA	Water	Field Sampling	
310-287904-3	MW-13	Total/NA	Water	Field Sampling	
310-287904-4	MW-14	Total/NA	Water	Field Sampling	
310-287904-5	MW-15R	Total/NA	Water	Field Sampling	
310-287904-6	MW-16R	Total/NA	Water	Field Sampling	
310-287904-7	MW-100R	Total/NA	Water	Field Sampling	
310-287904-8	MW-101R	Total/NA	Water	Field Sampling	
310-287904-9	MW-102P	Total/NA	Water	Field Sampling	
310-287904-10	MW-108	Total/NA	Water	Field Sampling	

Job ID: 310-287904-1 SDG: 25224073.00

Matrix: Water

Matrix: Water

Lab Sample ID: 310-287904-1

Lab Sample ID: 310-287904-2

Client Sample ID: MW-1R Date Collected: 08/06/24 11:11 Date Received: 08/09/24 16:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	430769	QTZ5	EET CF	08/16/24 14:47
Total/NA	Prep	3005A			430125	DHM5	EET CF	08/13/24 09:00
Total/NA	Analysis	6020B		1	430374	NFT2	EET CF	08/14/24 13:22
Total/NA	Analysis	I-3765-85		1	430112	HE7K	EET CF	08/12/24 15:46
Total/NA	Analysis	SM 2540C		1	430117	MDU9	EET CF	08/12/24 16:27
Total/NA	Analysis	Field Sampling		1	430803	DN	EET CF	08/06/24 11:11

Client Sample ID: MW-12 Date Collected: 08/08/24 07:40

Date Received: 08/09/24 16:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	430769	QTZ5	EET CF	08/16/24 14:59
Total/NA	Analysis	9056A		50	430769	QTZ5	EET CF	08/19/24 09:05
Total/NA	Prep	3005A			430125	DHM5	EET CF	08/13/24 09:00
Total/NA	Analysis	6020B		1	430374	NFT2	EET CF	08/14/24 13:24
Total/NA	Analysis	I-3765-85		1	430112	HE7K	EET CF	08/12/24 15:46
Total/NA	Analysis	SM 2540C		1	430251	MDU9	EET CF	08/13/24 15:37
Total/NA	Analysis	Field Sampling		1	430803	DN	EET CF	08/08/24 07:40

Client Sample ID: MW-13 Date Collected: 08/08/24 09:26 Date Received: 08/09/24 16:40

Lab Sample ID: 310-287904-3

Lab Sample ID: 310-287904-4

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	430769	QTZ5	EET CF	08/16/24 15:11
Total/NA	Analysis	9056A		50	430769	QTZ5	EET CF	08/19/24 09:17
Total/NA	Prep	3005A			430125	DHM5	EET CF	08/13/24 09:00
Total/NA	Analysis	6020B		1	430374	NFT2	EET CF	08/14/24 13:27
Total/NA	Analysis	I-3765-85		1	430158	DGU1	EET CF	08/13/24 07:57
Total/NA	Analysis	SM 2540C		1	430251	MDU9	EET CF	08/13/24 15:37
Total/NA	Analysis	Field Sampling		1	430803	DN	EET CF	08/08/24 09:26

Client Sample ID: MW-14 Date Collected: 08/07/24 10:47 Date Received: 08/09/24 16:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	430769	QTZ5	EET CF	08/16/24 15:23
Total/NA	Analysis	9056A		50	430769	QTZ5	EET CF	08/19/24 09:29
Total/NA	Prep	3005A			430125	DHM5	EET CF	08/13/24 09:00
Total/NA	Analysis	6020B		1	430374	NFT2	EET CF	08/14/24 13:29
Total/NA	Analysis	I-3765-85		1	430134	DGU1	EET CF	08/13/24 06:36

Job ID: 310-287904-1 SDG: 25224073.00

Client Sample ID: MW-14 Date Collected: 08/07/24 10:47 Date Received: 08/09/24 16:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	SM 2540C		1	430117	MDU9	EET CF	08/12/24 16:27
Total/NA	Analysis	Field Sampling		1	430803	DN	EET CF	08/07/24 10:47

Client Sample ID: MW-15R Date Collected: 08/06/24 09:00 Date Received: 08/09/24 16:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	430782	QTZ5	EET CF	08/16/24 15:59
Total/NA	Prep	3005A			430125	DHM5	EET CF	08/13/24 09:00
lotal/NA	Analysis	6020B		4	430986	NFT2	EET CF	08/20/24 22:15
Total/NA	Prep	3005A			430125	DHM5	EET CF	08/13/24 09:00
otal/NA	Analysis	6020B		1	430374	NFT2	EET CF	08/14/24 13:40
Total/NA	Analysis	I-3765-85		1	430112	HE7K	EET CF	08/12/24 15:46
Fotal/NA	Analysis	SM 2540C		1	430117	MDU9	EET CF	08/12/24 16:27
otal/NA	Analysis	Field Sampling		1	430803	DN	EET CF	08/06/24 09:00

Client Sample ID: MW-16R Date Collected: 08/07/24 15:05 Date Received: 08/09/24 16:40

Batch Dilution Batch Prepared Batch Prep Type Туре Method Run Factor Number Analyst or Analyzed Lab Total/NA 9056A 430782 QTZ5 08/16/24 16:36 Analysis 5 EET CF Total/NA 08/19/24 09:41 Analysis 9056A 50 430782 QTZ5 EET CF Total/NA 3005A 430125 DHM5 EET CF 08/13/24 09:00 Prep Total/NA Analysis 6020B 1 430374 NFT2 EET CF 08/14/24 13:42 Total/NA I-3765-85 430134 DGU1 EET CF 08/13/24 06:36 Analysis 1 Total/NA Analysis SM 2540C 430117 MDU9 EET CF 08/12/24 16:27 1 Total/NA 430803 DN EET CF 08/07/24 15:05 Analysis **Field Sampling** 1

Client Sample ID: MW-100R Date Collected: 08/06/24 12:33 Date Received: 08/09/24 16:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	430782	QTZ5	EET CF	08/16/24 17:12
Total/NA	Prep	3005A			430125	DHM5	EET CF	08/13/24 09:00
Total/NA	Analysis	6020B		1	430374	NFT2	EET CF	08/14/24 13:44
Total/NA	Analysis	I-3765-85		1	430112	HE7K	EET CF	08/12/24 15:46
Total/NA	Analysis	SM 2540C		1	430117	MDU9	EET CF	08/12/24 16:27
Total/NA	Analysis	Field Sampling		1	430803	DN	EET CF	08/06/24 12:33

Lab Sample ID: 310-287904-4 Matrix: Water

Lab Sample ID: 310-287904-5

Matrix: Water

10

Lab Sample ID: 310-287904-6

Lab Sample ID: 310-287904-7

Matrix: Water

Eurofins Cedar Falls

Matrix: Water

Job ID: 310-287904-1 SDG: 25224073.00

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 310-287904-8

Lab Sample ID: 310-287904-9

Lab Sample ID: 310-287904-10

Lab Sample ID: 310-287904-11

Client Sample ID: MW-101R Date Collected: 08/06/24 13:57 Date Received: 08/09/24 16:40

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type Total/NA	Type Analysis	Method 9056A	Run	Factor 5	Number 430782		EET CF	- or Analyzed 08/16/24 17:24
Total/NA	Prep	3005A		0	430125		EET CF	08/13/24 09:00
Total/NA	Analysis	6020B		1	430374	NFT2	EET CF	08/14/24 13:48
Total/NA	Analysis	I-3765-85		1	430112	HE7K	EET CF	08/12/24 15:46
Total/NA	Analysis	SM 2540C		1	430117	MDU9	EET CF	08/12/24 16:27
Total/NA	Analysis	Field Sampling		1	430803	DN	EET CF	08/06/24 13:57

Client Sample ID: MW-102P

Date Collected: 08/07/24 13:47 Date Received: 08/09/24 16:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	430782	QTZ5	EET CF	08/16/24 17:36
Total/NA	Analysis	9056A		50	430782	QTZ5	EET CF	08/19/24 09:53
Total/NA	Prep	3005A			430125	DHM5	EET CF	08/13/24 09:00
Total/NA	Analysis	6020B		4	430986	NFT2	EET CF	08/20/24 22:26
Total/NA	Prep	3005A			430125	DHM5	EET CF	08/13/24 09:00
otal/NA	Analysis	6020B		1	430374	NFT2	EET CF	08/14/24 13:51
Total/NA	Analysis	I-3765-85		1	430134	DGU1	EET CF	08/13/24 06:36
Total/NA	Analysis	SM 2540C		1	430117	MDU9	EET CF	08/12/24 16:27
otal/NA	Analysis	Field Sampling		1	430803	DN	EET CF	08/07/24 13:47

Client Sample ID: MW-108 Date Collected: 08/07/24 09:02 Date Received: 08/09/24 16:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	430782	QTZ5	EET CF	08/16/24 17:48
Total/NA	Prep	3005A			430125	DHM5	EET CF	08/13/24 09:00
Total/NA	Analysis	6020B		1	430374	NFT2	EET CF	08/14/24 13:53
Total/NA	Analysis	I-3765-85		1	430134	DGU1	EET CF	08/13/24 06:36
Total/NA	Analysis	SM 2540C		1	430117	MDU9	EET CF	08/12/24 16:27
Total/NA	Analysis	Field Sampling		1	430803	DN	EET CF	08/07/24 09:02

Client Sample ID: Field Blank Date Collected: 08/08/24 14:45 Date Received: 08/09/24 16:40

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		1	430782	QTZ5	EET CF	08/16/24 18:00
Total/NA	Prep	3005A			430125	DHM5	EET CF	08/13/24 09:00
Total/NA	Analysis	6020B		1	430374	NFT2	EET CF	08/14/24 13:55
Total/NA	Analysis	I-3765-85		1	430158	DGU1	EET CF	08/13/24 07:57
Total/NA	Analysis	SM 2540C		1	430251	MDU9	EET CF	08/13/24 15:37

Lab Chronicle

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Accreditation/Certification Summary

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Laboratory: Eurofins Cedar Falls

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
lowa	State	007	12-01-25

	1
Job ID: 310-287904-1 SDG: 25224073.00	
te	
	5
	8
	9
	11
	13

Method Summary

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Job ID: 310-287904-1 SDG: 25224073.00

Method	Method Description	Protocol	Laboratory
9056A	Anions, Ion Chromatography	SW846	EET CF
6020B	Metals (ICP/MS)	SW846	EET CF
-3765-85	Residue, Non-filterable (TSS)	USGS	EET CF
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET CF
ield Sampling	Field Sampling	EPA	EET CF
3005A	Preparation, Total Metals	SW846	EET CF

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

USGS = "Methods For Analysis Of Water And Fluvial Sediments", USGS, 1989

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Environment Testing America

310-287904 Chain of Custody

Cooler/Sample Receipt and Tempera

Client Information	·····		· · · · · · · · · · · · · · · · · · ·					
Client: $\mathcal{L} \mathcal{L} \mathcal{L}$								
City/State.	STATE	Project:						
Receipt Information								
Date/Time DATE Received: DATE	I GEIO	Received B	y.YR					
Delivery Type: UPS	dEx	🗌 FedEx Gr	ound	US Mail	🗌 Spee-Dee			
🖾 Lab Courier 🔲 Lal	b Field Services	: 🗌 Client Dro	p-off	Other:				
Condition of Cooler/Containers	· · · · · · · · · · · · · · · · · · ·							
Sample(s) received in Cooler?	/es 🗌 No	<i>If yes:</i> Coo	oler ID:	L.XB				
Multiple Coolers?	res 🗌 No	If yes: Coo	oler # c	of	2			
Cooler Custody Seals Present? Yes No If yes: Cooler custody seals intact? Yes No								
Sample Custody Seals Present? Yes No If yes: Sample custody seals intact? Yes No								
Trip Blank Present? □ Yes □ No If yes: Which VOA samples are in cooler? ↓								
	t							
					······································			
Temperature Record								
Coolant: 🛛 Wet ice 🗌 Blue ice	e 🗌 Dry ice	e 🗌 Other	•	N	ONE			
Thermometer ID:		Correction I	Factor (°C):	0				
• Temp Blank Temperature - If no temp bla	nk, or temp blank te	emperature above	criteria, proceed	to Sample Con	tainer Temperature			
Uncorrected Temp (°C):	1	Corrected T	emp (°C):	04				
Sample Container Temperature				·····				
Container(s) used:			CONTAINER 2					
Uncorrected Temp (°C):	den Additionen en al analytica e d'incernance anno anno anno a		***************************************					
Corrected Temp (°C):					and the second			
Exceptions Noted				han , , , , , , , , , , , , , , , , , , ,				
 If temperature exceeds criteria, was a) <i>If yes:</i> Is there evidence that th 	• • •		y of sampling'	? 🗌 Yes 🗌 Yes	□ No □ No			
 If temperature is <0°C, are there of (e.g., bulging septa, broken/cracker) 			of sample con	tainers is co Ves	mpromised?			
NOTE If yes, contact PM before proceed	eding If no, proc	eed with login		·····				
Additional Comments								

General temperature criteria is 0 to 6°C Bacteria temperature criteria is 0 to 10°C

Environment Testing America

Place COC scanning label here

Cooler/Sample Receipt and Temperature Log Form

Client Information				······				
Client: $\leq \leq \leq >$	······							
City/State:		STATE	Project:					
Receipt Information		8						
Date/Time Date/Time Received:	14/24	1640	Received B	y: XB				
Delivery Type: DUPS	/ 🗌 FedE	x	🗌 FedEx Gr	ound 🗌 l	JS Mail	🗌 Spee-Dee		
Lab C	Courier 🗌 Lab F	ield Services	Client Dro	p-off 🗌 🗌	Other:			
Condition of Cooler/Conta	ainers							
Sample(s) received in Co	ooler? 🗡 Yes	s 🗌 No	If yes: Coo	bler ID:				
Multiple Coolers?	Yes	s 🗌 No	<i>If yes:</i> Cod	oler # 🧾 of	2			
Cooler Custody Seals Present? Yes No If yes: Cooler custody seals intact? Yes								
Sample Custody Seals Present? Yes No If yes: Sample custody seals intact? Yes No								
Trip Blank Present?	🗌 Yes	s 🗋 No	<i>lf yes:</i> Wh	ich VOA sample	es are in co	oler? ↓		
- 400 P								
Temperature Record								
Coolant: 🕅 Wet ice	Blue ice	Dry ice	e 🗌 Other	۰ ۲	N	ONE		
Thermometer ID	X		Correction	Factor (°C):	0			
Temp Blank Temperature	e – If no temp blank,	or temp blank te	mperature above	e criteria, proceed to	o Sample Con	tainer Temperature		
Uncorrected Temp (°C):	08		Corrected T	emp (°C): 🔿	3			
Sample Container Temp								
Container(s) used.	CONTAINER 1			CONTAINER 2				
Uncorrected Temp (°C):					-			
Corrected Temp (°C):								
Exceptions Noted			· · · · · · · · · · · · · · · · · · ·	L				
 If temperature exceed a) If yes: Is there ex 	-	• • •		y of sampling?	☐ Yes ☐ Yes	□ No □ No		
2) If temperature is <0°((e.g., bulging septa, I				of sample conta	ainers is co Yes	mpromised?		
NOTE: If yes, contact P	M before proceedi	ng If no, proc	eed with login					
Additional Comments				······				
			Wetter			· · · · · · · · · · · · · · · · · · ·		
		·						

Page 37 of 48

General temperature criteria is 0 to 6°C Bacteria temperature criteria is 0 to 10°C

Eurofins Cedar Falls 3019 Venture Way Cedar Falls IA 50613 Phone (2410) 277, 2401 Phone (2410)

Chain of Custody Record

🐝 eurofins 🗧 。

Tes b

ø

Phone (319) 277-2401 Phone (319) 277-2425											
	A- ر	MUZU	26	Lab PM: Sandie	M: Ile Fredr	\delta		Carrier Tracking No(s):	I No(s):	COC No:	
Client Contact Meghan Blodgett	Phone:	0		E-Mai Sano	l lie Fredr	ick@	E-Mail Sandie Fredrick@et.eurofinsus com	State of Origin.		Page: 1 of 2	
		<u>u.</u>	PWSID [.]				<u>.s</u>	Requested		# qor	
Address. 2830 Dairy Dr	Due Date Requested:				<i></i>		•			Preservation Codes. M	
City Madison	TAT Requested (days)									A - HCL B - NaOH C - Zn Acetate	N - None O - AsNaO2 D N22025
lp: 3718	Compliance Project:	∆Yes ∆	∆ No			98				D - Nitric Acid E NaHSO4	
Phone: 608-345-9221	¥04				(0	975 1				G - Amchlor H - Ascorbic Ac	
sengineers com	# OM					086 1	'aaz-''				
	Project #: 25224073 00					Nagar				1777 (S. 10) (Y Trizma Z - other (specify)
	SSOW#:				r) asi					of coi	
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (w=water S=solid, O=wastoioli, BT=Tissue, A=Air)	Field Filtered N/SM monse	2540C_Calcd, 9	6 'pairo_oscoz			Total Number S S S S S S S S S S S S S S S S S S S	Special Instructions/Note.
	()	V	Preserva	Preservation Code:	Ŷ	Z				// X	
MW-1R			υ	Water	z	_×	×				
MW-12			υ	Water	z	×	×				
MW-13			U	Water	z	×	×				
MW-14			U	Water	z	^ ×	×				
MW-15R			უ	Water	z	×	×				
MW-16R			9	Water	z	×	×				
			U	Water	z	×	×			0 2	TOWN O
MW-100R			υ	Water	z	^ ×	×				
MW-101R			U	Water	z	×	×				
MW-102P			υ	Water	z	$\frac{1}{\times}$	×				
MW-108			ს	Water	z	××					
			lociololio		Sam	ole D	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	assessed if sam	amples are r	etained longer tha	n 1 month) Months
			Lauronyra	-	Spec	ial Inst	Special Instructions/QC Requirements	ents.	2		SILIOMI
Inquished by	Date	e.			Time			Method of	Method of Shipment		
Mozura Maler	Date/Time:	σ	5	Company SCS Engineers	<u>~</u>	Received by	d by:		Date/Time:		Сотрапу
Relinquished by	Date/Time [.]		-	Company	<u>e</u>	Received by	d by		Date/Time:		Company
Relinquished by	Date/Time [.]		-	Company	<u>.</u>	Received By	AR .		Devery CUPS	4 164 R	Company
Custody Seals Intact: Custody Seal No					0	ooler T	Cooler Temperature(s) °C and Other Remarks:	emarks:	2.7		
											Ver 01/12/2023

Eurofins Cedar Falls 3019 Venture Way Cedar Falls, 1A 50613

Chain of Custody Record

🐝 eurofins E

ہ در ۲

> а Е о

Phone (319) 277-2401 Phone (319) 277-2425													
	Sampler	ļ	Norcan		Lab PM Sandie Fredrick	×			Carrier Tracking No(s)	No(s)	<u> </u>	COC No	
Client Contact Meghan Blodgett	Phone:	5	35-1-2		e Fredric	k@et.eur	E-Mail: Sandie Fredrick@et eurofinsus com		State of Origin			Page: 2 of 2	
Company SCS Enviroers			PWSID [.]				Analveis		Regisered		Í	:# qof	
Address: 2020 Dour Dr	Due Date Requested											Preservation Codes	des.
City Madison	TAT Requested (days)	(1			63							A HCL B - NaOH C 7n Acetate	M - None O AsNaO2
State Zp WI 53718	Compliance Project:	∆ Yes	∆ No			98						D - Nitric Acid E NaHSO4	P Na204S Q - Na2SO3 R - Na2S2O3
Phone: 608-345-9221	PO#					9976_1						F MeUH G Amchlor H - Ascorbic Acid	S H2SO4 T - TSP Dodecahydrate
Email: mblodgett@scsengineers com	# OM					-28D,						I Ice J - DI Water	U - Acetone V MCAA W - pH 4-5
Project Name: Ottumwa Midland LF	Project #: 25224073 00					маря					serve draw	K - EDTA L - EDA	Y Trizma Z - other (specify)
Site Ottumwa Midland LF	SSOW#:				v) as						2022 (2270)	Other-	
		Sample			eld Filtered arform MS/M 120B Metals (40C_Calcd, 9					tedmuN leto		
sample identification	sample Uate	ŧX	Preservation Code:	3	٩X						л×	Special I	special instructions/Note:
Field Blank			υ		z								
Possible Hazard Identification			locizologia (Samp	le Disposal (A f	al (A fee I	nay be ass	essed if s	amples an	e retained long	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	(month)
1			adioiogical		Specia	al Instructi	ons/QC Re	Special Instructions/QC Requirements.	ents.			5	
Empty Kit Relinquished by		Date.			Time				Method of	Method of Shipment			
Relinquished by Wurtchan Maria	Date/Time:	Ţ		Company SCS Engineers	Re	Received by [.]				Date/Time:			Сотралу
			Ō	Company	Re	Received by ⁻				Date/Time:			Company
Reinquished by	Date/Time:		ŏ	Company	Re	Received by ^r				Date/Time:			Company
Custody Seals Intact: Custody Seal No Δ Yes Δ No					ð	oler Temper	ature(s) °C an	Cooler Temperature(s) °C and Other Remarks.	rks				
													Ver- 01/12/2023

Environment Testing America

Cooler/Sample Receipt and Tempera

Client Information		
Client: SCS		
City/State:	STATE	Project:
Receipt Information		
Date/Time DATE Received: 8/9/2-4	D GGIO	Received By
, ,,		FedEx Ground US Mail Spee-Dee
🕅 Lab Courier 🔲 I	ab Field Services.	Client Drop-off
Condition of Cooler/Containers		
Sample(s) received in Cooler?	Yes 🗌 No	If yes: Cooler ID:
Multiple Coolers?]Yes 🗌 No	If yes: Cooler # of Z
Cooler Custody Seals Present?	Yes 🛛 No	If yes: Cooler custody seals intact? Yes
	Yes 🔲 No	If yes: Sample custody seals intact? Yes
Trip Blank Present?]Yes II No	If yes: Which VOA samples are in cooler? 1
Temperature Record		
Coolant: 🖾 Wet ice 🗌 Blue	ice Dry ice	Other: NONE
Thermometer ID:	· · · ·	Correction Factor (°C):
(%)	blänk, or temp blank tei	mperature above criteria, proceed to Sample Container Temperature
Uncorrected Temp (°C):	4	Corrected Temp (°C):
Sample Container Temperature		
Container(s) used:	<u>{1</u>	CONTAINER 2
Uncorrected Temp (°C):		
Corrected Temp (°C):		
Exceptions Noted		
 If temperature exceeds criteria, w a) <i>If yes:</i> Is there evidence that 		, , , ,
(e.g., bulging septa, broken/crack	ked bottles, frozen	,
NOTE [•] If yes, contact PM before proc Additional Comments	ceeding If no, proce	ed with login
		·····

Document CED-P-SAM-FRM45521 Revision 26 Date 27 Jan 2022

Eurofins Cedar Falls Bacteria

General temperature criteria is 0 to 6°C Bacteria temperature criteria is 0 to 10°C

🔅 eurofins	
S. Curonnis	Environment Testing
	America

Place COC scanning label here

Cooler/Sample Receipt and Temperature Log Form

Client Information					
Client: SC S					
City/State: CITY		STATE	Project:		
Receipt Information Date/Time Received:	14/24	TIME 640	Received B	y: XB	
Delivery Type: UPS	/ 🗌 FedEx		🗌 FedEx Gr	ound 🗌 US I	Mail 🗌 Spee-Dee
💭 Lab C	ourier 🗌 Lab Fi	eld Services	Client Dro	p-off 🗌 Oth	er
Condition of Cooler/Conta	iners				
Sample(s) received in Co	oler? 🖄 Yes	🗌 No	If yes: Coo	oler ID:	
Multiple Coolers?	🗹 Yes	🗌 No	If yes: Coo	oler # of	2
Cooler Custody Seals Pre	esent? 🗌 Yes	I No	If yes: Coo	ler custody seals i	ntact? 🗌 Yes 📋
Sample Custody Seals Pr No	resent? 🗌 Yes	D No	<i>If yes:</i> Sar	nple custody seals	intact? Yes
Trip Blank Present?	🗌 Yes	🗋 No	<i>lf yes:</i> Wh	ch VOA samples a	are in cooler? 1
Temperature Record					
Coolant. 🔟 Wet ice	Blue ice	🗌 Dry ice	e 🗌 Other	·	
Thermometer ID.	X		Correction I	Factor (°C):	\supset
 Temp Blank Temperature 	- If no temp blank, o	or temp blank te		0 0	mple Container Temperature
Uncorrected Temp (°C):	O 8		Corrected T	emp (°C): 🔿 👌	}
Sample Container Tempe				CONTAINED A	
Container(s) used:	CONTAINER 1			CONTAINER 2	
Uncorrected Temp (°C):					
Corrected Temp (°C):	-/				
Exceptions Noted					
 If temperature exceeds a) <i>If yes</i>: Is there ev 				y of sampling?] Yes 🗌 No] Yes 🗌 No
 If temperature is <0°C (e.g , bulging septa, b 	roken/cracked be	ottles, frozen	solid?)		rs is compromised?] Yes
NOTE If yes, contact PM Additional Comments	A before proceedin	g If no, proce	ed with login		
Additional Comments			· · · · · · · · · · · · · · · · · · ·		
					,

Eurofins Cedar Falls

Document CED-P-SAM-FRM45521 Revision 26 Date 27 Jan 2022

General temperature criteria is 0 to 6°C Bacteria temperature criteria is 0 to 10°C

Eurofins Cedar Falls	3019 Venture Way	Cedar Falls IA 50613	
Eur	3019	Cedar	ċ

Chain of Custody Record

ω 🛟 eurofins

LIINIE (213) Z/1-Z401 LIINE (213) Z/1-Z4Z2															
	ler			Lab PA					Car	Carrier Tracking No(s)	ng No(s)		COC No:		
Client Information	1 V AT U	NUZURA	781	Sandi	e Fredr	÷			-						
Client Contact Meghan Blodgett	Phone:		2220-	E-Mail Sandi	e.Fredr	ck@e	E-Mail Sandie. Fredrick@et.eurofinsus com	com	Stat	State of Origin.	e.		Page: 1 of 2		
Company ⁻ SCS Engineers			-QISMd				Aná	Analysis Requested	Seque	sted			i# qor		
Address. 2830 Dairy Dr	Due Date Requested	p			Ċ.	-		_	-				Preserva	Code	
iy ladison	TAT Requested (days)	ys):			~ <u>*</u> *								A - HCL B - NaOH C - Zn Acetate		M - None O AsNaO2
State, Zip WI 53718	Compliance Project: Δ Yes Δ No	t:∆Yes /	No No		j. I	98							D - Nitric		- Na2045 2 - Na2S03 2 - Na2S03
Phone: 608-345-9221	#0#				2.2	9976							F - MeOH G Amchlor H - Ascorbic Acid	T	S H2SO4 - TSP Dodecahyd
Email mblodgett@scsengineers com	# OM					280.1									U - Acetone V MCAA W - nH 4-5
Project Name Ottumwa Midland LF	Project #: 25224073 00					NIOR									(- Trizma other (specify)
site Otturmwa Midland LF	SSOW#:				r) as								of cother		
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (www.atar S=solid, O=wassuloli, BT=Tissue, AmAir)	Field Fileid M/2M miored	2540C_Calcd, 90							Total Number	ecial Inst	Special Instructions/Note.
	X	X		ion Code.	Ķ	Z								A	V
MW-1R			υ	1	z	××			-		-	-			
MW-12			υ	Water	z	×						-			
MW-13			υ	Water	z	××					_				
MW-14			σ	Water	z	××									
MVV-15R			σ	Water	z	××									
MW-16R			υ	Water	z	××			-						
			υ	Water	z	××			-				32	Ş	* < 5
MW-100R			υ	Water		×									5
MW-101R			υ	Water	z	×									
MW-102P			υ	Water	z	××		-							
MW-108			υ	Water	z	××									
ait [Poison B Unknown		Radiological			le Di Retu	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) — Retirm To Client Disposal By I ab	e may t	Disp(ssed if .	samples	ae e	ined longer	than 1 m	onth) Months
I III IV Other (specify)					Speci	al Ins	Special Instructions/QC Requirements	Require	ments.						
Empty Kit Reinquished by		Date.			Time.					Method	Method of Shipment	ų			
Relinquished by March Power March	Date/Time 8/9 +	σ	52	Company SCS Engineers	ά.	Received by	by'				Date/Time	â		0	Company
elinquished by-	Date/Time:		0	Company	ά.	Received by	à				Date/Time:	ë		0	Company
	Date/Time			Company	ŭ	Received By	in .				R	SUCH CH	160	6 %	Company
Custody Seals Intact Custody Seal No					č	- Inter	Cooler Temperature(s) °C and Other Remarks.	and Other	r Remark						

Chain of Custody Record

Client Information	Compar								ŀ						
	N LAN	J	WOLCAN		Lab PM: Sandie Fredrick	ð			<u> </u>	arrier Tra	Carrier Tracking No(s)	(8	COC No:	
			12						0	State of Origin	gin.		E .	Page:	
Meghan Blodgett	"	2	ρ	Sand	Sandle Fredrick@et.eurofinsus com	ck@et.e	urofinsus	COM					N	ot 2	
company SCS Engineers			-OIS/Md				A	alysis	s Requ	Analysis Requested			0	100 #:	
Address. 2830 Dairy Dr	Due Date Requested:												۲. ۲.	Preservation Codes	codes M - Hexane
City Madison	TAT Requested (days):	ä											< α ∪	A - HCL B NaOH C - Zn Acetate	N - None O - AsNaO2
State, Zp WI 53718	Compliance Project: ∆ Yes ∆ No	∆ Yes ∆	No		di ser se	98							οwi	Nitric Acid - NaHSO4	r - Na2045 Q Na2SO3 R - Na2S2O3
Phone: 608-345-9221	PO#				(9946							LOI	MeOH - Amchlor - Ascorbic Aci	S - H2SO4 T - TSP Dode
Email mblodgett@scsengineers com	#OM				vo) vo)	- 58 D'							5	Ice Di Water	U Acetone V - MCAA W - pH 4-5
Project Name: Ottumwa Midland LF	Project #: 25224073 00				ea ot 10 ee	извя							enistr 	EDA	Y Trizma Z other (sper
Site [.] Ottumwa Midland LF	SSOW#:				1100									Other-	
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=crab)	Matrix (w=water S=solid, O=wasaloli, BT=Tasus, A=Air)	Perform MSM micered	2540C_Calcd, 91							Total Number	Special	Special Instructions/Note:
			Preservation Code:		aXX	z				-	-		X	ľ	
Field Blank			υ		z	××		\vdash			-				
											-				
						_				_					
					_						_				
												_			
											-				
											-				
					_	_									
					_			+		_					
	_				4		-	-		_	-				1 F
Possible hazard loenuncauon	Poison B		Badiological			Return	To Clien	ree maj		sessed .	rr samp viah	es ale		Sample Disposal (A fee may be assessed if samples are retained longer trian 1 monut) — Return To Client Discossal Rv Lab — Archive For Mon	Months
sted I II III IV Of			0		Speci	al Instru	Special Instructions/QC Requirements.	C Requi	rements						
Empty Kit Relinquished by	ä	Date.			Time.					Metho	Method of Shipment	ment			
elinquished by We zuan Maria	Date/Time	5	NZ 3	Company SCS Engineers		Received by					Dat	Date/Time:			Company
telinquished by	Date/Time:			Company	ά.	Received by					Dat	Date/Time.		2 -	Company
telinquished by	Date/Time:			Company	a.	Received by					Dat	Date/Time:			Company
Custody Seals Intact: Custody Seal No			1		0	ooler Temp	Cooler Temperature(s) °C and Other Remarks.	°C and O	ther Rem	rks.					

Table 1. Sampling Points and Parameters Groundwater Monitoring - Ottumwa Midland CCR Landfill / SCS Engineers Project #25223073

																Gr	oundwa	iter Mo	nitorir	ıg Wel	ls														
	Parameter	MW- 1R	MW- 5	MW- 6	MW- 8	MW- 9P	MW- 9M	MW- 10	MW- 10R	MW- 11R		MW- 13	MW- 14	MW- 15R	MW- 16R	MW- 17	MW- 100R	MW- 101R	MW- 102			MW- 107				MW- 111							MW- 122		MW- 122M
	Arsenic, Total (Unfiltered)	x						1			x	x	х	x	×	×	×	x		x			x												
	Barium, Total (Unfiltered)	X									x	×	x	x	x	x	X	x		x			x												
	Beryllium, Total (Unfiltered)	×									х	x	x	x	x	x	x	x		x			x												
	Boron, Total (Unfiltered)	X									х	X	х	x	x	x	x	х		х			x												
s	Calcium, Total (Unfiltered)	x									х	×	х	x	x	X	х	х		х			x												
Metals	Cobalt, Total (Unfiltered)	X									х	X	x	x	x	X	х	х		х			X												
ž	Copper, Total (Unfiltered)	X									х	X	x	x	x	X	х	х		X			X												
ed	Iron, Total (Unfiltered)	X									х	X	x	x	х	x	х	х		х			x												
Unfilter	Lead, Total (Unfiltered)	X									х	×	x	x	х	X	х	х		x			X												
μ	Lithium, Total (Unfiltered)	X									x	х	x	x	x	X	х	х		x			×												
	Magnesium, Total (Unfiltered)	х									х	x	x	x	х	x	х	х		x			x												
	Manganese, Total (Unfiltered)	х									х	x	x	x	X	X	х	х		х			x												
	Molybdenum, Total (Unfiltered)	х									x	х	x	x	X	X	x	х		x			x												
	Selenium, Total (Unfiltered)	х									x	x	x	x	X	x	х	х		x			x												
	Zinc, Total (Unfiltered)	х									x	x	x	x	x	x	x	х		x			x												
å °	Chloride, Total (Unfiltered)	х									x	x	x	X	X	X	X	х		х			X												
ter	Sulfate, Total (Unfiltered)	x									x	x	x	x	x	x	x	х		x			x												
me	Fluoride, Total (Unfiltered)	x									x	x	x	x	х	x	x	x		x			x												
ara	Total Dissolved Solids	x									×	x	x	×	x	x	x	x		x			×												
Additional Lab Parameters	Total Suspended Solids	х									х	x	х	×	x	x	x	x		x			x												
	Field Parameters																																		
	pH	x			1						x	x	x	x	×	x	x	x		x			x												
	Conductance	x									x	x	x	x	x	x	x	x		x			x												
	Temperature	x									x	x	x	x	x	x	x	x		x	1		x												
	Turbidity, Field	x		1							x	x	x	x	x	x	x	x		x			x												
	Color, Field	x	1	1	1	1	1	1	1	1	x	x	x	x	x	x	x	x	1	x	1		x												
	Odor, Field	x									x	x	x	x	x	x	x	x		x			x		<u> </u>										
	Water Elevation	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	×	x	x	x	×	x	x	х	x	x	x	x	x	х	х	x	x	x	x
	Well Depth**	1	x	x	x	x	x	х	x	x						x			x			x		х	x	x	x	х	x	x	x	x	x	x	
	Surface Water Depth*	1		1			1		1			1		1								1	1												

Updated 7/20/2023

I.\25223073 00\Data and Calculations\Field Work Requests\August 2023\[State_Sampling_Points_Parameters_OML_Aug_Table for Lab xls]Sampling

		-	roundwa rdrain Di		Contact Water	Surfac	e Water Mo	onitoring	Points	6	Le	achate		
	Parameter	GU-1 Temp	GU-2 Temp	GU-EX	TCB-1/2**	SW-01R	SW-02R	SW-03	SW- 04	SW- 05	LP-1	Leachate Basin	Field Blank	TOTAL
	Arsenic, Total (Unfiltered)	х	х	x	х	x	x	х	x	х	х	х	x	23
	Barium, Total (Unfiltered)	х	х	х	x	x	x	х	x	x	x	x	x	23
	Beryllium, Total (Unfiltered)	x	х	x	x	x	x	х	х	x	X	x	x	23
	Boron, Total (Unfiltered)	X	х	х	x	x	х	х	х	x	X	x	x	23
<u>s</u>	Calcium, Total (Unfiltered)	x	х	х	x	x	x	х	x	x	X	x	x	23
eta	Cobalt, Total (Unfiltered)	х	х	х	x	x	x	х	х	x	x	x	x	23
Unfiltered Metals	Copper, Total (Unfiltered)	x	х	х	x	x	x	х	x	x	x	x	x	23
pa	Iron, Total (Unfiltered)	x	х	х	x	x	x	x	х	X	x	x	x	23
Ite	Lead, Total (Unfiltered)	x	х	х	x	x	х	x	х	x	x	x	x	23
iju	Lithium, Total (Unfiltered)	x	x	x	x	x	x	x	x	x	x	x	x	23
2	Magnesium, Total (Unfiltered)	x	x	x	x	x	×	x	x	x	x	×	x	23
	Manganese, Total (Unfiltered)	x	x	x	x	x	×	x	x	x	x	×	x	23
	Molybdenum, Total (Unfiltered)	x	x	x	x	x	×	x	x	x	x	x	x	23
	Selenium, Total (Unfiltered)	х	x	x	x	x	x	x	x	x	x	x	x	23
	Zinc, Total (Unfiltered)	x	х	x	x	x	x	x	X	X	x	х	x	23
de s	Chloride, Total (Unfiltered)	X	х	X	x	x	x	x	x	х	х	x	x	23
ter	Sulfate, Total (Unfiltered)	x	x	X	x	x	x	X	X	х	x	x	x	23
u ou	Fluoride, Total (Unfiltered)	×	x	x	x	x	x	x	×	x	×	x	×	23
Additional Lab Parameters	Total Dissolved Solids	×	х	x	х	x	x	х	×	×	x	x	x	23
PA q	Total Suspended Solids	x	х	x	х	x	х	х	x	x	х	x	x	23
	Field Parameters													
	рН	×	х	x	x	x	x	x	×	×	x	x	x	23
	Conductance	х	х	х	x	x	х	х	х	х	х	х	x	23
	Temperature	х	x	x	x	х	x	х	x	x	x	x	x	23
	Turbidity, Field	x	×	x	x	x	x	х	x	x	x	x	x	23
	Color, Field	х	x	x	x	х	x	x	x	x			x	21
	Odor, Field	х	x	x	x	x	x	х	х	x			x	21
	Water Elevation													36
	Well Depth**													24
	Surface Water Depth*					х	х	х	х	Х				5

** Total depth measurements not required at wells with dedicated pumps

Updated 7/20/2023 | \25223073.00\Data and Calculatio

Groundwater Monitoring Results - Sample Date and Time Ottumwa Midland Landfill / SCS Engineers Project #25224073.00 August 2024

	Date	Time
MW-1R	8/6/2024	11:11
MW-12	8/8/2024	7:40
MW-13	8/8/2024	9:26
MW-14	8/7/2024	10:47
MW-15R	8/6/2024	9:00
MW-16R	8/7/2024	15:05
MW-100R	8/6/2024	12:33
MW-101R	8/6/2024	13:57
MW-102P	8/7/2024	13:47
MW-108	8/7/2024	9:02
Field Blank	8/8/2024	14:45
SW-2R	No Sample	Monitoring point dry
SW-3	8/8/2024	10:40
TCB-1/2	8/8/2024	13:50
GU-1 Temp	8/8/2024	11:50
GU-EX	8/8/2024	13:15
Leachate Basin	8/8/2024	14:25

Table 1, Page 1 of 1

Login Sample Receipt Checklist

Client: SCS Engineers

Login Number: 287904 List Number: 1 Creator: Mathews, Emily A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	No sample date and/or time on COC
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 310-287904-1 SDG Number: 25224073.00

List Source: Eurofins Cedar Falls

Eurofins Report Number	Sample	Date	Temperature (Deg. C)	pH (Std. Units)	Specific Conductivity (µmhos/cm)	GW Elevation (feet)
	MW-1R	08/06/24	14.4	6.97	787	813.54
	MW-12	08/08/24	17.1	7.23	2369	722.63
	MW-13	08/08/24	15.9	6.97	3194	722.56
	MW-14	08/07/24	17.0	7.10	3214	722.62
210 007004 1	MW-15R	08/06/24	14.0	6.27	2101	760.45
310-287904-1	MW-16R	08/07/24	15.0	6.94	3511	722.47
	MW-100R	08/06/24	14.0	7.05	1007	808.50
	MW-101R	08/06/24	13.8	6.80	1533	782.62
	MW-102P	08/07/24	14.0	6.49	3556	722.89
	MW-108	08/07/24	14.2	6.56	621	741.21
	SW-3	08/08/24	28.1	8.56	651	
	TCB-1/2	08/08/24	28.3	8.06	863	
310-287906-1	GU-1 Temp	08/08/24	20.7	6.73	1438	
	GU-EX	08/08/24	23.3	7.70	1281	
	Leachate Basin	08/08/24	25.8	8.60	6769	

Groundwater Monitoring Results - Field Parameters Ottumwa Midland Landfill / SCS Engineers Project #25224073.00 August 2024

Abbreviations: amsl = above mean sea level µmhos/cm = microSiemens per centimeter

NM = Not Measured

Created by:	AJR	Date: 08/15/19
Last revision by:	RM	Date: 08/19/24
Checked by:	NLB	Date: 08/19/24

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Meghan Blodgett SCS Engineers 2830 Dairy Drive Madison, Wisconsin 53718 Generated 8/23/2024 5:02:29 PM

JOB DESCRIPTION

Ottumwa Midland LF - 25224073.00

JOB NUMBER

310-287906-1

Eurofins Cedar Falls 3019 Venture Way Cedar Falls IA 50613

Eurofins Cedar Falls

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

anda

Generated 8/23/2024 5:02:29 PM 1

Authorized for release by Sandie Fredrick, Senior Project Manager Sandra.Fredrick@et.eurofinsus.com (920)261-1660

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Detection Summary	6
Client Sample Results	8
Definitions	13
QC Sample Results	14
QC Association	18
Chronicle	20
Certification Summary	22
Method Summary	23
Chain of Custody	24
Receipt Checklists	27
Field Data Sheets	28

Job ID: 310-287906-1

Eurofins Cedar Falls

Job Narrative 310-287906-1

Receipt

The samples were received on 8/9/2024 4:40 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.7° C.

Receipt Exceptions

The following samples were listed on the Chain of Custody (COC); however, no samples were received: SW-02R GU-1 (310-287906-1), GU-EX (310-287906-2), TCB-1/2 (310-287906-3), SW-03 (310-287906-4) and Leachate Basin (310-287906-5).

HPLC/IC

Method 9056A: The following samples were diluted due to the nature of the sample matrix: TCB-1/2 (310-287906-3), SW-03 (310-287906-4) and Leachate Basin (310-287906-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Job ID: 310-287906-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
310-287906-1	GU-1	Water	08/08/24 11:50	08/09/24 16:40
310-287906-2	GU-EX	Water	08/08/24 13:15	08/09/24 16:40
310-287906-3	TCB-1/2	Water	08/08/24 13:50	08/09/24 16:40
310-287906-4	SW-03	Water	08/08/24 10:40	08/09/24 16:40
310-287906-5	Leachate Basin	Water	08/08/24 14:25	08/09/24 16:40

Detection Summary

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Client Sample ID: GU-1

Lab Sample ID: 310-287906-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Chloride	20		5.0	2.3	mg/L	5	9056A	Total/NA
Fluoride	0.42	J	1.0	0.38	mg/L	5	9056A	Total/NA
Sulfate	390		5.0	2.1	mg/L	5	9056A	Total/NA
Barium	38		2.0	0.66	ug/L	1	6020B	Total/NA
Boron	270		100	76	ug/L	1	6020B	Total/NA
Calcium	230		0.50	0.19	mg/L	1	6020B	Total/NA
Cobalt	11		0.50	0.17	ug/L	1	6020B	Total/NA
Lithium	48		10	2.5	ug/L	1	6020B	Total/NA
Magnesium	61000		500	150	ug/L	1	6020B	Total/NA
Manganese	2000		10	3.6	ug/L	1	6020B	Total/NA
Molybdenum	2.2		2.0	1.3	ug/L	1	6020B	Total/NA
Selenium	1.4	J	5.0	1.4	ug/L	1	6020B	Total/NA
Zinc	29		20	9.7	ug/L	1	6020B	Total/NA
Total Dissolved Solids	1100		50	42	mg/L	1	SM 2540C	Total/NA
Field pH	6.73				SU	1	Field Sampling	Total/NA
Field Conductivity	1438				umhos/cm	1	Field Sampling	Total/NA
Field Temperature	20.7				Degrees C	1	Field Sampling	Total/NA

Client Sample ID: GU-EX

Lab Sample ID: 310-287906-2

Lab Sample ID: 310-287906-3

1

6020B

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	32		5.0	2.3	mg/L	5	_	9056A	Total/NA
Fluoride	0.46	J	1.0	0.38	mg/L	5		9056A	Total/NA
Sulfate	460		5.0	2.1	mg/L	5		9056A	Total/NA
Arsenic	0.70	J	2.0	0.53	ug/L	1		6020B	Total/NA
Barium	35		2.0	0.66	ug/L	1		6020B	Total/NA
Boron	900		100	76	ug/L	1		6020B	Total/NA
Calcium	150		0.50	0.19	mg/L	1		6020B	Total/NA
Cobalt	3.5		0.50	0.17	ug/L	1		6020B	Total/NA
Iron	260		100	36	ug/L	1		6020B	Total/NA
Lithium	26		10	2.5	ug/L	1		6020B	Total/NA
Magnesium	36000		500	150	ug/L	1		6020B	Total/NA
Manganese	250		10	3.6	ug/L	1		6020B	Total/NA
Molybdenum	48		2.0	1.3	ug/L	1		6020B	Total/NA
Selenium	4.7	J	5.0	1.4	ug/L	1		6020B	Total/NA
Zinc	39		20	9.7	ug/L	1		6020B	Total/NA
Total Suspended Solids	2.5		1.9	1.4	mg/L	1		I-3765-85	Total/NA
Total Dissolved Solids	930		50	42	mg/L	1		SM 2540C	Total/NA
Field pH	7.70				SU	1		Field Sampling	Total/NA
Field Conductivity	1281				umhos/cm	1		Field Sampling	Total/NA
Field Temperature	23.3				Degrees C	1		Field Sampling	Total/NA

Client Sample ID: TCB-1/2

Analyte

Chloride

Sulfate

Arsenic

Barium

Boron

Calcium

Lithium

Result Qualifier RL MDL Unit Dil Fac D Method Prep Type 12 5.0 2.3 mg/L 5 9056A Total/NA 380 5 9056A 5.0 2.1 mg/L Total/NA 0.95 2.0 0.53 ug/L 1 6020B Total/NA J 76 2.0 0.66 ug/L 6020B Total/NA 1 430 100 76 ug/L 1 6020B Total/NA 130 0.50 0.19 mg/L 6020B Total/NA 1

This Detection Summary does not include radiochemical test results.

3.3 J

Eurofins Cedar Falls

Total/NA

10

2.5 ug/L

Client Sample ID: TCB-1/2 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Magnesium	14000		500	150	ug/L	1	6020B	Total/NA
Manganese	6.0	J	10	3.6	ug/L	1	6020B	Total/NA
Molybdenum	3.9		2.0	1.3	ug/L	1	6020B	Total/NA
Total Suspended Solids	3.9		1.9	1.4	mg/L	1	I-3765-85	Total/NA
Total Dissolved Solids	590		50	42	mg/L	1	SM 2540C	Total/NA
Field pH	8.06				SU	1	Field Sampling	Total/NA
Field Conductivity	863				umhos/cm	1	Field Sampling	Total/NA
Field Temperature	28.3				Degrees C	1	Field Sampling	Total/NA

Client Sample ID: SW-03

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chloride	4.6	J	5.0	2.3	mg/L	5	9056A	Total/NA
Sulfate	250		5.0	2.1	mg/L	5	9056A	Total/NA
Arsenic	2.0		2.0	0.53	ug/L	1	6020B	Total/NA
Barium	52		2.0	0.66	ug/L	1	6020B	Total/NA
Boron	560		100	76	ug/L	1	6020B	Total/NA
Calcium	61		0.50	0.19	mg/L	1	6020B	Total/NA
Cobalt	0.20	J	0.50	0.17	ug/L	1	6020B	Total/NA
Iron	76	J	100	36	ug/L	1	6020B	Total/NA
Lithium	8.7	J	10	2.5	ug/L	1	6020B	Total/NA
Magnesium	23000		500	150	ug/L	1	6020B	Total/NA
Manganese	26		10	3.6	ug/L	1	6020B	Total/NA
Molybdenum	9.9		2.0	1.3	ug/L	1	6020B	Total/NA
Selenium	1.9	J	5.0	1.4	ug/L	1	6020B	Total/NA
Total Suspended Solids	8.3		1.9	1.4	mg/L	1	I-3765-85	Total/NA
Total Dissolved Solids	410		50	42	mg/L	1	SM 2540C	Total/NA
Field pH	8.56				SU	1	Field Samplin	g Total/NA
Field Conductivity	651				umhos/cm	1	Field Samplin	g Total/NA
Field Temperature	28.1				Degrees C	1	Field Samplin	g Total/NA

Client Sample ID: Leachate Basin

Result Qualifier Analyte RL MDL Unit Dil Fac D Method Prep Type Chloride 1000 50 23 mg/L 50 9056A Total/NA Sulfate 1900 50 21 mg/L 50 9056A Total/NA Arsenic 9.7 2.0 0.53 ug/L 1 6020B Total/NA Barium 2.0 0.66 ug/L 6020B Total/NA 72 1 Boron 2100 100 76 ug/L 1 6020B Total/NA Calcium 260 0.50 mg/L 6020B Total/NA 0.19 1 Cobalt 0.50 0.17 ug/L 1 6020B Total/NA 0.68 Lithium 10 6020B 43 2.5 ug/L 1 Total/NA Magnesium 28000 500 150 ug/L 1 6020B Total/NA 86 10 3.6 ug/L 1 6020B Total/NA Manganese Molybdenum 680 2.0 1.3 ug/L 1 6020B Total/NA Selenium 76 5.0 1.4 ug/L 1 6020B Total/NA **Total Suspended Solids** 6.0 5.0 3.7 mg/L 1 I-3765-85 Total/NA **Total Dissolved Solids** 5000 250 210 mg/L 1 SM 2540C Total/NA Field pH 8.60 SU **Field Sampling** Total/NA 1 **Field Conductivity** 6769 umhos/cm 1 Field Sampling Total/NA **Field Temperature** 25.8 Degrees C 1 Field Sampling Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Cedar Falls

Job ID: 310-287906-1

Lab Sample ID: 310-287906-3

Lab Sample ID: 310-287906-5

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00 Job ID: 310-287906-1

Lab Sample ID: 310-287906-1 Matrix: Water

Date Collected: 08/08/24 11:50 Date Received: 08/09/24 16:40

Client Sample ID: GU-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	20		5.0	2.3	mg/L			08/16/24 18:12	5
Fluoride	0.42	J	1.0	0.38	mg/L			08/16/24 18:12	5
Sulfate	390		5.0	2.1	mg/L			08/16/24 18:12	5
Method: SW846 6020B - Metals	s (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.53		2.0	0.53	ug/L		08/13/24 09:00	08/15/24 15:46	1
Barium	38		2.0	0.66	ug/L		08/13/24 09:00	08/15/24 15:46	1
Beryllium	<0.33		1.0	0.33	ug/L		08/13/24 09:00	08/15/24 15:46	1
Boron	270		100	76	ug/L		08/13/24 09:00	08/16/24 12:35	1
Calcium	230		0.50	0.19	mg/L		08/13/24 09:00	08/15/24 15:46	1
Cobalt	11		0.50	0.17	ug/L		08/13/24 09:00	08/15/24 15:46	1
Copper	<1.8		5.0	1.8	ug/L		08/13/24 09:00	08/15/24 15:46	1
Iron	<36		100	36	ug/L		08/13/24 09:00	08/15/24 15:46	1
_ead	<0.26		0.50	0.26	ug/L		08/13/24 09:00	08/15/24 15:46	1
Lithium	48		10	2.5	ug/L		08/13/24 09:00	08/15/24 15:46	1
Magnesium	61000		500	150	ug/L		08/13/24 09:00	08/15/24 15:46	1
Manganese	2000		10	3.6	ug/L		08/13/24 09:00	08/15/24 15:46	1
Molybdenum	2.2		2.0	1.3	ug/L		08/13/24 09:00	08/15/24 15:46	1
Selenium	1.4	J	5.0	1.4	ug/L		08/13/24 09:00	08/15/24 15:46	1
Zinc	29		20	9.7	ug/L		08/13/24 09:00	08/15/24 15:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS -3765-85)	<1.4		1.9	1.4	mg/L			08/12/24 15:46	1
Total Dissolved Solids (SM 2540C)	1100		50	42	mg/L			08/13/24 15:37	1
Method: EPA Field Sampling -	Field Samp	oling							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.73				SU			08/08/24 11:50	1
Field Conductivity	1438				umhos/cm			08/08/24 11:50	1
Field Temperature	20.7				Degrees C			08/08/24 11:50	1

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Client Sample ID: GU-EX Date Collected: 08/08/24 13:15 Date Received: 08/09/24 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	32		5.0	2.3	mg/L			08/16/24 18:25	5
Fluoride	0.46	J	1.0	0.38	mg/L			08/16/24 18:25	5
Sulfate	460		5.0	2.1	mg/L			08/16/24 18:25	5
Method: SW846 6020B - Metals	(ICP/MS)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.70	J	2.0	0.53	ug/L		08/13/24 09:00	08/15/24 15:56	1
Barium	35		2.0	0.66	ug/L		08/13/24 09:00	08/15/24 15:56	1
Beryllium	<0.33		1.0	0.33	ug/L		08/13/24 09:00	08/15/24 15:56	1
Boron	900		100	76	ug/L		08/13/24 09:00	08/16/24 12:50	1
Calcium	150		0.50	0.19	mg/L		08/13/24 09:00	08/15/24 15:56	1
Cobalt	3.5		0.50	0.17	ug/L		08/13/24 09:00	08/15/24 15:56	1
Copper	<1.8		5.0	1.8	ug/L		08/13/24 09:00	08/15/24 15:56	1
Iron	260		100	36	ug/L		08/13/24 09:00	08/15/24 15:56	1
Lead	<0.26		0.50	0.26	ug/L		08/13/24 09:00	08/15/24 15:56	1
Lithium	26		10	2.5	ug/L		08/13/24 09:00	08/15/24 15:56	1
Magnesium	36000		500	150	ug/L		08/13/24 09:00	08/15/24 15:56	1
Manganese	250		10	3.6	ug/L		08/13/24 09:00	08/15/24 15:56	1
Molybdenum	48		2.0	1.3	ug/L		08/13/24 09:00	08/15/24 15:56	1
Selenium	4.7	J	5.0	1.4	ug/L		08/13/24 09:00	08/15/24 15:56	1
Zinc	39		20	9.7	ug/L		08/13/24 09:00	08/15/24 15:56	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS I-3765-85)	2.5		1.9	1.4	mg/L			08/12/24 15:46	1
Total Dissolved Solids (SM 2540C)	930		50	42	mg/L			08/13/24 15:37	1
- Method: EPA Field Sampling - F	ield Sam	oling							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	7.70				SU			08/08/24 13:15	1
Field Conductivity	1281				umhos/cm			08/08/24 13:15	1
Field Temperature	23.3				Degrees C			08/08/24 13:15	1

Job ID: 310-287906-1

Matrix: Water

Lab Sample ID: 310-287906-2

1 2 3 4 5 6 7 8 9 10 11

Eurofins Cedar Falls

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Client Sample ID: TCB-1/2 Date Collected: 08/08/24 13:50 Date Received: 08/09/24 16:40

Method: SW846 9056A - Anions			y							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	12		5.0	2.3	0			08/16/24 18:37	5	ŝ
Fluoride	<0.38		1.0	0.38	mg/L			08/16/24 18:37	5	
Sulfate	380		5.0	2.1	mg/L			08/16/24 18:37	5	i
	(ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Arsenic	0.95	J	2.0	0.53	ug/L		08/13/24 09:00	08/15/24 15:58	1	
Barium	76		2.0	0.66	ug/L		08/13/24 09:00	08/15/24 15:58	1	
Beryllium	<0.33		1.0	0.33	ug/L		08/13/24 09:00	08/15/24 15:58	1	
Boron	430		100	76	ug/L		08/13/24 09:00	08/16/24 12:52	1	
Calcium	130		0.50	0.19	mg/L		08/13/24 09:00	08/15/24 15:58	1	
Cobalt	<0.17		0.50	0.17	ug/L		08/13/24 09:00	08/15/24 15:58	1	
Copper	<1.8		5.0	1.8	ug/L		08/13/24 09:00	08/15/24 15:58	1	
Iron	<36		100	36	ug/L		08/13/24 09:00	08/15/24 15:58	1	
Lead	<0.26		0.50	0.26	ug/L		08/13/24 09:00	08/15/24 15:58	1	
Lithium	3.3	J	10	2.5	ug/L		08/13/24 09:00	08/15/24 15:58	1	2
Magnesium	14000		500	150	ug/L		08/13/24 09:00	08/15/24 15:58	1	
Manganese	6.0	J	10	3.6	ug/L		08/13/24 09:00	08/15/24 15:58	1	2
Molybdenum	3.9		2.0	1.3	ug/L		08/13/24 09:00	08/15/24 15:58	1	
Selenium	<1.4		5.0	1.4	ug/L		08/13/24 09:00	08/15/24 15:58	1	
Zinc	<9.7		20	9.7	ug/L		08/13/24 09:00	08/15/24 15:58	1	
 General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Suspended Solids (USGS I-3765-85)	3.9		1.9	1.4	mg/L			08/12/24 15:46	1	
Total Dissolved Solids (SM 2540C)	590		50	42	mg/L			08/13/24 15:37	1	
	Field Sam	oling								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Field pH	8.06				SU			08/08/24 13:50	1	
Field Conductivity	863				umhos/cm			08/08/24 13:50	1	
Field Temperature	28.3				Degrees C			08/08/24 13:50	1	

Matrix: Water

5 6

Job ID: 310-287906-1

Lab Sample ID: 310-287906-3

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00 Job ID: 310-287906-1

Matrix: Water

Lab Sample ID: 310-287906-4

Client Sample ID: SW-03 Date Collected: 08/08/24 10:40 Date Received: 08/09/24 16:40

nalyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Chloride	4.6	J	5.0	2.3	mg/L			08/16/24 18:49	5
Fluoride	<0.38		1.0	0.38	mg/L			08/16/24 18:49	5
Sulfate	250		5.0	2.1	mg/L			08/16/24 18:49	5
Method: SW846 6020B - Metals	s (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Arsenic	2.0		2.0	0.53	-		08/13/24 09:00	08/15/24 16:01	1
Barium	52		2.0		ug/L		08/13/24 09:00	08/15/24 16:01	1
Beryllium	<0.33		1.0	0.33	-		08/13/24 09:00	08/15/24 16:01	1
Boron	560		100		ug/L		08/13/24 09:00		1
Calcium	61		0.50		mg/L		08/13/24 09:00	08/15/24 16:01	1
Cobalt	0.20	J	0.50	0.17			08/13/24 09:00	08/15/24 16:01	1
Copper	<1.8		5.0		ug/L		08/13/24 09:00	08/15/24 16:01	1
Iron	76	J	100		ug/L		08/13/24 09:00	08/15/24 16:01	1
Lead	<0.26		0.50	0.26			08/13/24 09:00	08/15/24 16:01	1
Lithium	8.7	J	10		ug/L		08/13/24 09:00	08/15/24 16:01	1
Magnesium	23000		500		ug/L		08/13/24 09:00	08/15/24 16:01	1
Manganese	26		10		ug/L		08/13/24 09:00	08/15/24 16:01	1
Molybdenum	9.9		2.0		ug/L		08/13/24 09:00	08/15/24 16:01	1
Selenium	1.9	J	5.0		ug/L		08/13/24 09:00	08/15/24 16:01	1
Zinc	<9.7		20	9.7	ug/L		08/13/24 09:00	08/15/24 16:01	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Total Suspended Solids (USGS	8.3		1.9	1.4	mg/L			08/12/24 15:46	1
Total Dissolved Solids (SM 2540C)	410		50	42	mg/L			08/13/24 15:37	1
Method: EPA Field Sampling -	Field Sam	oling							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	8.56				SU			08/08/24 10:40	1
Field Conductivity	651				umhos/cm			08/08/24 10:40	1
Field Temperature	28.1				Degrees C			08/08/24 10:40	1

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Client Sample ID: Leachate Basin Date Collected: 08/08/24 14:25 Date Received: 08/09/24 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	1000		50	23	mg/L			08/19/24 10:05	50	2
Fluoride	<0.38		1.0	0.38	mg/L			08/16/24 19:01	5	
Sulfate	1900		50	21	mg/L			08/19/24 10:05	50	Ē
Method: SW846 6020B - Metals	(ICP/MS)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Arsenic	9.7		2.0	0.53	ug/L		08/13/24 09:00	08/15/24 16:11	1	
Barium	72		2.0	0.66	ug/L		08/13/24 09:00	08/15/24 16:11	1	
Beryllium	<0.33		1.0	0.33	ug/L		08/13/24 09:00	08/15/24 16:11	1	
Boron	2100		100	76	ug/L		08/13/24 09:00	08/16/24 12:57	1	
Calcium	260		0.50	0.19	mg/L		08/13/24 09:00	08/15/24 16:11	1	
Cobalt	0.68		0.50	0.17	ug/L		08/13/24 09:00	08/15/24 16:11	1	
Copper	<1.8		5.0	1.8	ug/L		08/13/24 09:00	08/15/24 16:11	1	
Iron	<36		100	36	ug/L		08/13/24 09:00	08/15/24 16:11	1	
Lead	<0.26		0.50	0.26	ug/L		08/13/24 09:00	08/15/24 16:11	1	
Lithium	43		10	2.5	ug/L		08/13/24 09:00	08/15/24 16:11	1	-
Magnesium	28000		500	150	ug/L		08/13/24 09:00	08/15/24 16:11	1	
Manganese	86		10	3.6	ug/L		08/13/24 09:00	08/15/24 16:11	1	2
Molybdenum	680		2.0	1.3	ug/L		08/13/24 09:00	08/15/24 16:11	1	
Selenium	76		5.0	1.4	ug/L		08/13/24 09:00	08/15/24 16:11	1	
Zinc	<9.7		20	9.7	ug/L		08/13/24 09:00	08/15/24 16:11	1	
General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Suspended Solids (USGS I-3765-85)	6.0		5.0	3.7	mg/L			08/12/24 15:46	1	
Total Dissolved Solids (SM 2540C)	5000		250	210	mg/L			08/13/24 15:37	1	
Method: EPA Field Sampling - F	Field Sam	oling								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Field pH	8.60				SU			08/08/24 14:25	1	
Field Conductivity	6769				umhos/cm			08/08/24 14:25	1	
Field Temperature	25.8				Degrees C			08/08/24 14:25	1	

8/23/2024

Job ID: 310-287906-1

Matrix: Water

Lab Sample ID: 310-287906-5

5 6

Definitions/Glossary

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Job ID: 310-287906-1

Qualifiers

Qualifiers		
HPLC/IC		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Metals		5
Qualifier	Qualifier Description	
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not	
	applicable.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	7
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	8
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	9
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	-
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	

Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
~~	

QC Quality Control RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

Relative Percent Difference, a measure of the relative difference between two points RPD

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count Method: 9056A - Anions, Ion Chromatography

Job ID: 310-287906-1

Prep Type: Total/NA

Client Sample ID: Method Blank

5 8

	MB	MB											
Analyte	Result	Qualifier		RL	r	MDL	Unit		D	Pr	epared	Analyzed	Dil Fac
Chloride	<0.45			1.0		0.45	mg/L		_			08/16/24 15:35	1
Fluoride	<0.075			0.20	0	.075	mg/L					08/16/24 15:35	1
Sulfate	<0.42			1.0		0.42	mg/L					08/16/24 15:35	1
Lab Sample ID: LCS 310-430782/4								Cli	ent	San	nple ID:	Lab Control	Sample
Matrix: Water												Prep Type: T	
Analysis Batch: 430782													
-			Spike		LCS	LCS	6					%Rec	
Analyte			Added		Result	Qua	alifier	Unit		D	%Rec	Limits	
Chloride			10.0		9.97			mg/L			100	90 - 110	
Fluoride			2.00		2.07			mg/L			103	90 - 110	
Sulfate			10.0		10.3			mg/L			103	90 - 110	
Method: 6020B - Metals (ICP/I	MS)												
`````````````````````````````````										Clie	nt Com		d Dlank
Lab Sample ID: MB 310-430126/1-	•									Cile	ni Samp	Die ID: Metho	
Matrix: Water												Prep Type: T	
Analysis Batch: 430554	MD	МВ										Prep Batch:	430120
Analyta				ы			11		•	Π.	a marrad	A maluma d	
Analyte Arsenic	<0.53	Qualifier		<b>RL</b> 2.0			Unit ug/L		D		repared 3/24 09:00	Analyzed 08/15/24 15:41	Dil Fac
Barium	< 0.55						-						
	< 0.66			2.0			ug/L				3/24 09:00		1
Beryllium				1.0			ug/L				3/24 09:00		1
Calcium	<0.19			0.50			mg/L					08/15/24 15:41	1
Cobalt	<0.17			0.50			ug/L				3/24 09:00		1
Copper	<1.8			5.0			ug/L					08/15/24 15:41	1
Iron	<36			100			ug/L					08/15/24 15:41	1
Lead	<0.26			0.50			ug/L					08/15/24 15:41	1
Lithium	<2.5			10			ug/L					08/15/24 15:41	1
Magnesium	<150			500			ug/L					08/15/24 15:41	1
Manganese	<3.6			10			ug/L					08/15/24 15:41	1
Molybdenum	<1.3			2.0			ug/L					08/15/24 15:41	1
	<1.4			5.0			ug/L					08/15/24 15:41	1
Zinc	<9.7			20		9.7	ug/L			08/13	3/24 09:00	08/15/24 15:41	1
Lab Sample ID: MB 310-430126/1-/	Α									Clie	nt Samp	ole ID: Metho	
Matrix: Water												Prep Type: T	
Analysis Batch: 430653												Prep Batch:	430126
		MB											
Analyte		Qualifier		RL			Unit		D		epared	Analyzed	Dil Fac
Boron	<76			100		76	ug/L			08/13	3/24 09:00	08/16/24 12:31	1
Lab Sample ID: LCS 310-430126/2	- <b>A</b>							Cli	ent	San	nple ID:	Lab Control	
Matrix: Water												Prep Type: T	
Analysis Batch: 430554			Spike		LCS	1.09						Prep Batch: %Rec	430126
Analyte			Added		Result			Unit		D	%Rec	Limits	
Arsenic			200		206	Qua	annei	ug/L			103	80 - 120	
Barium			100		104			ug/L ug/L			103	80 - 120 80 - 120	
Beryllium			100		104			ug/L			104	80 - 120 80 - 120	
Dorymum			100		103			uy/L			105	00-120	

**Eurofins Cedar Falls** 

**Matrix: Water** Analysis Batch: 430782

Analysis Datch. 400702									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.45		1.0	0.45	mg/L			08/16/24 15:35	1
Fluoride	<0.075		0.20	0.075	mg/L			08/16/24 15:35	1
Sulfate	<0.42		1.0	0.42	mg/L			08/16/24 15:35	1
	Analyte Chloride Fluoride	AnalyteMBChloride<0.45	AnalyteMBAnalyteResultChloride<0.45	MB         MB           Analyte         Result         Qualifier         RL           Chloride         <0.45	MB         MB           Analyte         Result         Qualifier         RL         MDL           Chloride         <0.45	MB         MB           Analyte         Result         Qualifier         RL         MDL         Unit           Chloride         <0.45	MB         MB           Analyte         Result         Qualifier         RL         MDL         Unit         D           Chloride         <0.45	MBMBAnalyteResultQualifierRLMDLUnitDPreparedChloride<0.45	MB         MB           Analyte         Result         Qualifier         RL         MDL         Unit         D         Prepared         Analyzed           Chloride         <0.45

## La Ma A

Lab Sample ID: MB 310-430782/3

Analysis Batch: 430/82								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	9.97		mg/L		100	90 - 110	
Fluoride	2.00	2.07		mg/L		103	90 - 110	
Sulfate	10.0	10.3		mg/L		103	90 - 110	

# Me

#### La Ma Ar

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.53		2.0	0.53	ug/L		08/13/24 09:00	08/15/24 15:41	1
Barium	<0.66		2.0	0.66	ug/L		08/13/24 09:00	08/15/24 15:41	1
Beryllium	<0.33		1.0	0.33	ug/L		08/13/24 09:00	08/15/24 15:41	1
Calcium	<0.19		0.50	0.19	mg/L		08/13/24 09:00	08/15/24 15:41	1
Cobalt	<0.17		0.50	0.17	ug/L		08/13/24 09:00	08/15/24 15:41	1
Copper	<1.8		5.0	1.8	ug/L		08/13/24 09:00	08/15/24 15:41	1
Iron	<36		100	36	ug/L		08/13/24 09:00	08/15/24 15:41	1
Lead	<0.26		0.50	0.26	ug/L		08/13/24 09:00	08/15/24 15:41	1
Lithium	<2.5		10	2.5	ug/L		08/13/24 09:00	08/15/24 15:41	1
Magnesium	<150		500	150	ug/L		08/13/24 09:00	08/15/24 15:41	1
Manganese	<3.6		10	3.6	ug/L		08/13/24 09:00	08/15/24 15:41	1
Molybdenum	<1.3		2.0	1.3	ug/L		08/13/24 09:00	08/15/24 15:41	1
Selenium	<1.4		5.0	1.4	ug/L		08/13/24 09:00	08/15/24 15:41	1
Zinc	<9.7		20	9.7	ug/L		08/13/24 09:00	08/15/24 15:41	1
Lab Sample ID: MB 310-43012	26/1-A						Client Samp	le ID: Metho	
Matrix: Water								Prep Type: T	
Analysis Batch: 430653								Prep Batch:	430126
		ИB							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	200	206		ug/L		103	80 - 120	
Barium	100	104		ug/L		104	80 - 120	
Beryllium	100	103		ug/L		103	80 - 120	

Page 14 of 28

# **QC Sample Results**

# **Client: SCS Engineers** Project/Site: Ottumwa Midland LF - 25224073.00

**Client Sample ID: Lab Control Sample** 

Method: 6020B - Metals (ICP/MS) (Continued) Lab Sample ID: LCS 310-430126/2-A

Matrix: Water Analysis Batch: 430554						1	Prep Type: Total/NA Prep Batch: 430126
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Calcium	2.00	2.02		mg/L		101	80 - 120
Cobalt	100	113		ug/L		113	80 - 120
Copper	200	219		ug/L		109	80 - 120
Iron	200	218		ug/L		109	80 - 120
Lead	200	222		ug/L		111	80 - 120
Lithium	200	216		ug/L		108	80 - 120
Magnesium	2000	2130		ug/L		107	80 - 120
Manganese	100	99.2		ug/L		99	80 - 120
Molybdenum	200	197		ug/L		99	80 - 120
Selenium	400	392		ug/L		98	80 - 120
Zinc	200	200		ug/L		100	80 - 120

# Lab Sample ID: LCS 310-430126/2-A

Matrix: Water								Prep Type: Total/N	Α
Analysis Batch: 430653								Prep Batch: 43012	26
		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Boron		200	202		ug/L		101	80 - 120	

#### Lab Sample ID: 310-287906-1 MS Matrix: Water

Analysis Batch: 430554	Sample	Sample	Spike	MS	MS				Prep Batch: 430126 %Rec
Analyta	•	Qualifier	Added		Qualifier	11	D	%Rec	Limits
Analyte		Quaimer			Quaimer	Unit			
Arsenic	<0.53		200	225		ug/L		113	75 - 125
Barium	38		100	145		ug/L		108	75 - 125
Beryllium	<0.33		100	111		ug/L		111	75 - 125
Calcium	230		2.00	235	4	mg/L		410	75 - 125
Cobalt	11		100	121		ug/L		111	75 - 125
Copper	<1.8		200	212		ug/L		106	75 - 125
Iron	<36		200	240		ug/L		120	75 - 125
Lead	<0.26		200	214		ug/L		107	75 - 125
Lithium	48		200	278		ug/L		115	75 - 125
Magnesium	61000		2000	64700	4	ug/L		199	75 - 125
Manganese	2000		100	2120	4	ug/L		152	75 - 125
Molybdenum	2.2		200	214		ug/L		106	75 - 125
Selenium	1.4	J	400	428		ug/L		107	75 - 125
Zinc	29		200	237		ug/L		104	75 - 125
Lab Sample ID: 310-287906	-1 MS							С	lient Sample ID: GU-1

Matrix: Water									Prep Ty	pe: Total/NA
Analysis Batch: 430653									Prep Ba	atch: 430126
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Boron	270		200	494		ug/L		111	75 - 125	

**Client Sample ID: GU-1** Prep Type: Total/NA

**Eurofins Cedar Falls** 

8

# Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Job ID: 310-287906-1

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: 310-287906	-1 MSD							С	lient Sam	ple ID:	GU-1
Matrix: Water									Prep Ty	pe: Tot	al/NA
Analysis Batch: 430554									Prep Ba	itch: 43	30126
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	<0.53		200	226		ug/L		113	75 - 125	0	20
Barium	38		100	147		ug/L		109	75 - 125	1	20
Beryllium	<0.33		100	112		ug/L		112	75 - 125	1	20
Calcium	230		2.00	237	4	mg/L		529	75 - 125	1	20
Cobalt	11		100	123		ug/L		112	75 - 125	1	20
Copper	<1.8		200	212		ug/L		106	75 - 125	0	20
Iron	<36		200	241		ug/L		120	75 - 125	0	20
Lead	<0.26		200	215		ug/L		108	75 - 125	0	20
Lithium	48		200	279		ug/L		115	75 - 125	1	20
Magnesium	61000		2000	65500	4	ug/L		243	75 - 125	1	20
Manganese	2000		100	2140	4	ug/L		168	75 - 125	1	20
Molybdenum	2.2		200	217		ug/L		107	75 - 125	1	20
Selenium	1.4	J	400	430		ug/L		107	75 - 125	0	20
Zinc	29		200	238		ug/L		104	75 - 125	0	20
Lab Sample ID: 310-287906 Matrix: Water	6-1 MSD							С	lient Sam Prep Ty Prep Ba	pe: Tot	al/NA

Analysis Batch: 430653			Prep Ba	atch: 4	30126
Sample Sample Spike MSD MSD			%Rec		RPD
Analyte Result Qualifier Added Result Qualifier Unit	D %	%Rec	Limits	RPD	Limit
Boron 270 200 516 ug/L		122	75 - 125	4	20

# Method: I-3765-85 - Residue, Non-filterable (TSS)

Lab Sample ID: MB 310-430112/1 Matrix: Water Analysis Batch: 430112									С	lie	nt Sam	ple ID: Method Prep Type: T	
-	МВ	MB											
Analyte	Result	Qualifier		RL	Ν	/IDL U	Unit		D	Pr	epared	Analyzed	Dil Fac
Total Suspended Solids	<3.7			5.0		3.7 n	mg/L					08/12/24 15:46	1
	0.1						0						
Lab Sample ID: LCS 310-430112/2 Matrix: Water Analysis Batch: 430112							5	Cli	ient S	an	nple ID:	Lab Control S Prep Type: T	
Lab Sample ID: LCS 310-430112/2 Matrix: Water			Spike		LCS		5	Cli	ient S	an	nple ID:		
Lab Sample ID: LCS 310-430112/2 Matrix: Water			Spike Added	R	LCS Result	LCS	U	Cli Unit			nple ID: %Rec	Prep Type: T	

# Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 310-430251/1 Matrix: Water Analysis Batch: 430251						Client Sample ID: Method Bla Prep Type: Total/				
	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Dissolved Solids	<42		50	42	mg/L			08/13/24 15:37	1	

**Eurofins Cedar Falls** 

5

**8** 9

# **QC Sample Results**

Job ID: 310-287906-1

5

# Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 310-430251/2 Matrix: Water Analysis Batch: 430251		Client Sample ID: Lab Control Sampl Prep Type: Total/N						
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids	1000	996		mg/L		100	88 - 110	

**Eurofins Cedar Falls** 

# **QC Association Summary**

# Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Job ID: 310-287906-1

# HPLC/IC

# Analysis Batch: 430782

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-287906-1	GU-1	Total/NA	Water	9056A	
310-287906-2	GU-EX	Total/NA	Water	9056A	
310-287906-3	TCB-1/2	Total/NA	Water	9056A	
310-287906-4	SW-03	Total/NA	Water	9056A	
310-287906-5	Leachate Basin	Total/NA	Water	9056A	
310-287906-5	Leachate Basin	Total/NA	Water	9056A	
MB 310-430782/3	Method Blank	Total/NA	Water	9056A	
LCS 310-430782/4	Lab Control Sample	Total/NA	Water	9056A	

# **Metals**

# Prep Batch: 430126

Lab Sample ID	Client Sample ID		Matrix	Method	Prep Batch
310-287906-1	GU-1	Total/NA	Water	3005A	
310-287906-2	GU-EX	Total/NA	Water	3005A	
310-287906-3	TCB-1/2	Total/NA	Water	3005A	
310-287906-4	SW-03	Total/NA	Water	3005A	
310-287906-5	Leachate Basin	Total/NA	Water	3005A	
MB 310-430126/1-A	Method Blank	Total/NA	Water	3005A	
LCS 310-430126/2-A	Lab Control Sample	Total/NA	Water	3005A	
310-287906-1 MS	GU-1	Total/NA	Water	3005A	
310-287906-1 MSD	GU-1	Total/NA	Water	3005A	

# Analysis Batch: 430554

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-287906-1	GU-1	Total/NA	Water	6020B	430126
310-287906-2	GU-EX	Total/NA	Water	6020B	430126
310-287906-3	TCB-1/2	Total/NA	Water	6020B	430126
310-287906-4	SW-03	Total/NA	Water	6020B	430126
310-287906-5	Leachate Basin	Total/NA	Water	6020B	430126
MB 310-430126/1-A	Method Blank	Total/NA	Water	6020B	430126
LCS 310-430126/2-A	Lab Control Sample	Total/NA	Water	6020B	430126
310-287906-1 MS	GU-1	Total/NA	Water	6020B	430126
310-287906-1 MSD	GU-1	Total/NA	Water	6020B	430126

# Analysis Batch: 430653

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-287906-1	GU-1	Total/NA	Water	6020B	430126
310-287906-2	GU-EX	Total/NA	Water	6020B	430126
310-287906-3	TCB-1/2	Total/NA	Water	6020B	430126
310-287906-4	SW-03	Total/NA	Water	6020B	430126
310-287906-5	Leachate Basin	Total/NA	Water	6020B	430126
MB 310-430126/1-A	Method Blank	Total/NA	Water	6020B	430126
LCS 310-430126/2-A	Lab Control Sample	Total/NA	Water	6020B	430126
310-287906-1 MS	GU-1	Total/NA	Water	6020B	430126
310-287906-1 MSD	GU-1	Total/NA	Water	6020B	430126

# **General Chemistry**

# Analysis Batch: 430112

Lab Sample ID	Client Sample ID	Prep Туре	Matrix	Method	Prep Batch
310-287906-1	GU-1	Total/NA	Water	I-3765-85	

**Eurofins Cedar Falls** 

# **QC Association Summary**

# Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

# General Chemistry (Continued)

# Analysis Batch: 430112 (Continued)

Lab Sample ID 310-287906-2	Client Sample ID GU-EX	Prep Type Total/NA	Matrix Water	Method	Prep Batch
310-287906-3	TCB-1/2	Total/NA	Water	I-3765-85	
310-287906-4	SW-03	Total/NA	Water	I-3765-85	
310-287906-5	Leachate Basin	Total/NA	Water	I-3765-85	
MB 310-430112/1	Method Blank	Total/NA	Water	I-3765-85	
LCS 310-430112/2	Lab Control Sample	Total/NA	Water	I-3765-85	

# Analysis Batch: 430251

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
310-287906-1	GU-1	Total/NA	Water	SM 2540C	
310-287906-2	GU-EX	Total/NA	Water	SM 2540C	
310-287906-3	TCB-1/2	Total/NA	Water	SM 2540C	
310-287906-4	SW-03	Total/NA	Water	SM 2540C	
310-287906-5	Leachate Basin	Total/NA	Water	SM 2540C	
MB 310-430251/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 310-430251/2	Lab Control Sample	Total/NA	Water	SM 2540C	

# Field Service / Mobile Lab

# Analysis Batch: 430803

Lab Sample ID 310-287906-1	Client Sample ID GU-1	Prep Type Total/NA	Matrix Water	Method Field Sampling	Prep Batch
310-287906-2	GU-EX	Total/NA	Water	Field Sampling	
310-287906-3	TCB-1/2	Total/NA	Water	Field Sampling	
310-287906-4	SW-03	Total/NA	Water	Field Sampling	
310-287906-5	Leachate Basin	Total/NA	Water	Field Sampling	

8/23/2024

# Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Matrix: Water

Matrix: Water

# Lab Sample ID: 310-287906-1 Matrix: Water

Lab Sample ID: 310-287906-3

Lab Sample ID: 310-287906-4

Date Collected: 08/08/24 11:50 Date Received: 08/09/24 16:40

**Client Sample ID: GU-1** 

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
otal/NA	Analysis	9056A		5	430782	QTZ5	EET CF	08/16/24 18:12
otal/NA	Prep	3005A			430126	DHM5	EET CF	08/13/24 09:00
otal/NA	Analysis	6020B		1	430554	NFT2	EET CF	08/15/24 15:46
otal/NA	Prep	3005A			430126	DHM5	EET CF	08/13/24 09:00
otal/NA	Analysis	6020B		1	430653	NFT2	EET CF	08/16/24 12:35
otal/NA	Analysis	I-3765-85		1	430112	HE7K	EET CF	08/12/24 15:46
otal/NA	Analysis	SM 2540C		1	430251	MDU9	EET CF	08/13/24 15:37
otal/NA	Analysis	Field Sampling		1	430803	DN	EET CF	08/08/24 11:50

# Client Sample ID: GU-EX Date Collected: 08/08/24 13:15 Date Received: 08/09/24 16:40

-	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	430782	QTZ5	EET CF	08/16/24 18:25
Total/NA	Prep	3005A			430126	DHM5	EET CF	08/13/24 09:00
Total/NA	Analysis	6020B		1	430554	NFT2	EET CF	08/15/24 15:56
Total/NA	Prep	3005A			430126	DHM5	EET CF	08/13/24 09:00
lotal/NA	Analysis	6020B		1	430653	NFT2	EET CF	08/16/24 12:50
Total/NA	Analysis	I-3765-85		1	430112	HE7K	EET CF	08/12/24 15:46
Total/NA	Analysis	SM 2540C		1	430251	MDU9	EET CF	08/13/24 15:37
lotal/NA	Analysis	Field Sampling		1	430803	DN	EET CF	08/08/24 13:15

# Client Sample ID: TCB-1/2 Date Collected: 08/08/24 13:50 Date Received: 08/09/24 16:40

#### Dilution Batch Batch Batch Prepared Ргер Туре Method Factor Number Analyst or Analyzed Туре Run Lab Total/NA 08/16/24 18:37 9056A 430782 QTZ5 Analysis 5 EET CF Total/NA Prep 3005A 430126 DHM5 EET CF 08/13/24 09:00 Total/NA 08/15/24 15:58 6020B 430554 NFT2 EET CF Analysis 1 Total/NA 3005A 430126 DHM5 EET CF 08/13/24 09:00 Prep 6020B Total/NA 430653 NFT2 EET CF 08/16/24 12:52 Analysis 1 Total/NA Analysis I-3765-85 430112 HE7K EET CF 08/12/24 15:46 1 Total/NA 08/13/24 15:37 Analysis SM 2540C 430251 MDU9 EET CF 1 Total/NA 430803 DN EET CF 08/08/24 13:50 Analysis Field Sampling 1

# Client Sample ID: SW-03 Date Collected: 08/08/24 10:40 Date Received: 08/09/24 16:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	430782	QTZ5	EET CF	08/16/24 18:49

Matrix: Water

# Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

# Lab Sample ID: 310-287906-4 Matrix: Water

Date Collected: 08/08/24 10:40 Date Received: 08/09/24 16:40

**Client Sample ID: SW-03** 

	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3005A			430126	DHM5	EET CF	08/13/24 09:00
Total/NA	Analysis	6020B		1	430554	NFT2	EET CF	08/15/24 16:01
Total/NA	Prep	3005A			430126	DHM5	EET CF	08/13/24 09:00
Total/NA	Analysis	6020B		1	430653	NFT2	EET CF	08/16/24 12:54
Total/NA	Analysis	I-3765-85		1	430112	HE7K	EET CF	08/12/24 15:46
Total/NA	Analysis	SM 2540C		1	430251	MDU9	EET CF	08/13/24 15:37
Total/NA	Analysis	Field Sampling		1	430803	DN	EET CF	08/08/24 10:40

# Client Sample ID: Leachate Basin Date Collected: 08/08/24 14:25 Date Received: 08/09/24 16:40

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	430782	QTZ5	EET CF	08/16/24 19:01
Total/NA	Analysis	9056A		50	430782	QTZ5	EET CF	08/19/24 10:05
Total/NA	Prep	3005A			430126	DHM5	EET CF	08/13/24 09:00
Total/NA	Analysis	6020B		1	430554	NFT2	EET CF	08/15/24 16:11
Total/NA	Prep	3005A			430126	DHM5	EET CF	08/13/24 09:00
Total/NA	Analysis	6020B		1	430653	NFT2	EET CF	08/16/24 12:57
Total/NA	Analysis	I-3765-85		1	430112	HE7K	EET CF	08/12/24 15:46
Total/NA	Analysis	SM 2540C		1	430251	MDU9	EET CF	08/13/24 15:37
Total/NA	Analysis	Field Sampling		1	430803	DN	EET CF	08/08/24 14:25

#### Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Matrix: Water

8/23/2024

# Accreditation/Certification Summary

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

# Laboratory: Eurofins Cedar Falls

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
lowa	State	007	12-01-25

Job ID: 310-287906-1

# **Method Summary**

# Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25224073.00

Method	Method Description	Protocol	Laboratory
9056A	Anions, Ion Chromatography	SW846	EET CF
6020B	Metals (ICP/MS)	SW846	EET CF
-3765-85	Residue, Non-filterable (TSS)	USGS	EET CF
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET CF
ield Sampling	Field Sampling	EPA	EET CF
3005A	Preparation, Total Metals	SW846	EET CF

#### **Protocol References:**

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

USGS = "Methods For Analysis Of Water And Fluvial Sediments", USGS, 1989

#### Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

**Eurofins Cedar Falls** 



# Environment Testing America



310-287906 Chain of Custody

# Cooler/Sample Receipt and Temperature Log Form

Client Information		
Client: $5 < 5$		
City/State:	STATE	Project:
Receipt Information		
Date/Time $B/9/24$	IG40	Received By:
Delivery Type: UPS ¹	FedEx	FedEx Ground US Mail Spee-Dee
Lab Courier	Lab Field Services	Client Drop-off Other
Condition of Cooler/Containers		
Sample(s) received in Cooler?	Yes 🗌 No	If yes: Cooler ID:
	Yes No	If yes: Cooler # of
Cooler Custody Seals Present?	]Yes    No	If yes: Cooler custody seals intact? 🗌 Yes 🗌
Sample Custody Seals Present?	]Yes []No	If yes: Sample custody seals intact? Yes
Trip Blank Present?	]Yes 🗍 No	If yes: Which VOA samples are in cooler? 1
	)	
Temperature Record		• • • • • • • • • • • • • • • • • • •
Coolant. 🕅 Wet ice 🗌 Blue	ice 🗌 Dry ice	Other NONE
Thermometer ID:		Correction Factor (°C):
• Temp Blank Temperature - If no temp	blank, or temp blank te	emperature above criteria, proceed to Sample Container Temperature
Uncorrected Temp (°C):	7	Corrected Temp (°C):
Sample Container Temperature		
Container(s) used:	<u> </u>	CONTAINER 2
Uncorrected Temp (°C):		
Corrected Temp (°C):		
Exceptions Noted		,
<ol> <li>If temperature exceeds criteria, w a) If yes. Is there evidence that</li> </ol>		
(e.g., bulging septa, broken/crac	ked bottles, frozen	·
NOTE If yes, contact PM before pro	ceeding If no, proc	eed with login
Additional Comments		
Missing s	3W-02	<u>-</u> K
0		

General temperature criteria is 0 to 6°C Bacteria temperature criteria is 0 to 10°C

≣s	
alle	
-	
dar	
Š	ģ
	Venture Me
ins	4
Æ	/90
Ĕ	0
Ш	3010 \

# **Chain of Custody Record**

3019 Venture Way	C			-		-						🏅 eurofine	31
Cedar Falls IA 50613 Phone (319) 277-2401 Phone (319) 277-2425	5		I CUSI	ain of Custody Record	SCOL	Ø							ی علا کا
Client Information	Sampler	1 - ·· / Y		Lab PN Sand	e Fredri	*	Lab PM Sandie Fredrick		Carrier Tra	Carrier Tracking No(s)		COC No.	
Client Contact	Phone:	?		E-Mail		5	,		State of Origin.	igin.		Page:	
Megnan blodgett Comeany		)   	D UISMd	Sand	e. Fredri	ck@et.e	urotinsus.c	E				.lob#	
SCS Engineers							Ana	lysis Re	Analysis Requested			. <u>.</u>	
Address. 2830 Dairy Dr	Due Date Requested	_										Preservation Codes	
City Madison	TAT Requested (days):	s):			2,5						a.v.a. 1.a	A - NUL B - NaOH C - Zn Acetate	
State Zp. WI 53718	Compliance Project:	∆ Yes	Δ No			98						D Nitric Acid E - NaHSO4	
Phone 608-345-9221	#Od					`\$92E  I						F MeUH G Amchlor H - Ascorbic Ac	
Email [*] mblodgett@scsengineers.com	#OM	2 				( <u></u> 28D,					51	I Ice J - DI Water	U - Acetone V MCAA W pH 4-5
Project Name Ottumwa Midland LF	Project #: 25224073 00					ИЗВЯС					enlstr		
Site: Ottumwa Midland LF	SSOW#:				Y) asi						100 10	Other-	
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, 6=grab) ₈	Matrix (w=water S=solid. O=waste/oli. BT=Tissuo, A=Air)	Field Filtered Perform MSM	2540C_Calcd, 9					Total Number		Special Instructions/Note.
	N	X		Longo Longo	Ň	-							
GU-1			υ	Water	z	××							
			υ	Water	z	××						2	N CAN V
GU-EX			υ	Water	z	××							
TCB-1/2			U	Water	z	××							
			υ	Water	z	××						v 2	m June :
SW-02R			υ	Water	z	××							
SW-03			υ	Water	z	××							
			υ	Water	z	××						) 2.	イントン
			ъ	Water	z	x x						) 2.	
			U	Water	z	x x						2 2	mile
Leachate Basin	-		U	Water	z	××							
Possible Hazard Identification			Padiological		Sam	le Disp   _{Detum}	le Disposal ( A fee Petrim To Chant	e may be	assessed if sam	if samples	are retain	Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)	n 1 month) Months
			000000		Speci	al Instru	Special Instructions/QC Requirements.	sequireme	nts.	7 - 442	5	0.124	2000
Empty Kit Relinquished by:		Date			Time:				Meth	Method of Shipment:			
Relinquisted by	Date/Time Date/Time	3	2	Company SCS Engineers	Å.	Received by				Date/Time	ė		Company
	Date/Time			Company		Received by				Date/Time:	iai		Company
	Date/Time		0	Company	Å.	Received by	ß			Datefrime	"[ZY	1640	Company
Custody Seals Intact: Custody Seal No. Δ Yes Δ No					Ŭ Ŭ	ooler fem	Cooler temperative(s) °C and Other Remarks	and Other Re	emarks:	5	1		
													Ver 01/12/2023
						14	12 13			8		5 6	
										l		l	

# Groundwater Monitoring Results - Sample Date and Time Ottumwa Midland Landfill / SCS Engineers Project #25224073.00 August 2024

	Date	Time
MW-1R	8/6/2024	11:11
MW-12	8/8/2024	7:40
MW-13	8/8/2024	9:26
MW-14	8/7/2024	10:47
MW-15R	8/6/2024	9:00
MW-16R	8/7/2024	15:05
MW-100R	8/6/2024	12:33
MW-101R	8/6/2024	13:57
MW-102P	8/7/2024	13:47
MW-108	8/7/2024	9:02
Field Blank	8/8/2024	14:45
SW-2R	No Sample	Monitoring point dry
SW-3	8/8/2024	10:40
TCB-1/2	8/8/2024	13:50
GU-1 Temp	8/8/2024	11:50
GU-EX	8/8/2024	13:15
Leachate Basin	8/8/2024	14:25

Table 1, Page 1 of 1

# Login Sample Receipt Checklist

# **Client: SCS Engineers**

# Login Number: 287906 List Number: 1 Creator: Mathews, Emily A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	No sample date and/or time on COC
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	No SW-02R sample received
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 310-287906-1 SDG Number:

List Source: Eurofins Cedar Falls

Eurofins Report Number	Sample	Date	Temperature (Deg. C)	pH (Std. Units)	Specific Conductivity (µmhos/cm)	GW Elevation (feet)
	MW-1R	08/06/24	14.4	6.97	787	813.54
	MW-12	08/08/24	17.1	7.23	2369	722.63
	MW-13	08/08/24	15.9	6.97	3194	722.56
	MW-14	08/07/24	17.0	7.10	3214	722.62
210 007004 1	MW-15R	08/06/24	14.0	6.27	2101	760.45
310-287904-1	MW-16R	08/07/24	15.0	6.94	3511	722.47
	MW-100R	08/06/24	14.0	7.05	1007	808.50
	MW-101R	08/06/24	13.8	6.80	1533	782.62
	MW-102P	08/07/24	14.0	6.49	3556	722.89
	MW-108	08/07/24	14.2	6.56	621	741.21
	SW-3	08/08/24	28.1	8.56	651	
	TCB-1/2	08/08/24	28.3	8.06	863	
310-287906-1	GU-1 Temp	08/08/24	20.7	6.73	1438	
	GU-EX	08/08/24	23.3	7.70	1281	
	Leachate Basin	08/08/24	25.8	8.60	6769	

# Groundwater Monitoring Results - Field Parameters Ottumwa Midland Landfill / SCS Engineers Project #25224073.00 August 2024

Abbreviations: amsl = above mean sea level µmhos/cm = microSiemens per centimeter

NM = Not Measured

Created by:	AJR	Date: 08/15/19
Last revision by:	RM	Date: 08/19/24
Checked by:	NLB	Date: 08/19/24

Appendix C

Summary of Historical Groundwater Chemistry

#### ARSENIC UNITS: UG/L

CHEMICAL PARAMETER	EVENT	MW-01	MW-01R	MW-12	MW-13	MW-14	MW-15	MW-15R	MW-16	MW-16R	MW-17	MW-18	MW-100R	MW-101R	MW-102P	MW-108
ARSENIC, DISSOLVED	1995-Aug	<5			<5	5.9										
ARSENIC, DISSOLVED	1995-Oct	<5		<5	<5	11.7			<5		<5	<5				
ARSENIC, DISSOLVED	1996-Apr	<1		<1	1	11			<1		<1	<1				
ARSENIC, DISSOLVED	1996-Jan	<1		<1	<1	9			<1			<1				
ARSENIC, DISSOLVED	1996-Jul	<5		<5	<5	15			<5		<5	<5				
ARSENIC, DISSOLVED	1996-Oct					8										
ARSENIC, DISSOLVED	1997-Apr					8.6										
ARSENIC, DISSOLVED	1997-Oct					5.3					<1					
ARSENIC, DISSOLVED	1998-Apr					2.6										
ARSENIC, DISSOLVED	1998-Oct					3.7	<1									
ARSENIC, DISSOLVED	1999-Sep				<1	2.3	3.4									
ARSENIC, DISSOLVED	2000-Sep	<1		<1	<1	2.7	<1		<1		1.3	<1				
ARSENIC, DISSOLVED	2001-Sep	<1	1	<1 NS	<1	<1	<1	l	<1	1	<1	<1	1	1	1	İ
ARSENIC, DISSOLVED	2002-Sep	<1	1	<1	<1	<1	<1	l	<1	1	<1	<1	1	1	1	İ
ARSENIC, DISSOLVED	2003-Sep	<1		<1	<1	1.7	<1		<2 R,N,S		<1	<1				
ARSENIC, DISSOLVED	2004-Oct															
ARSENIC, DISSOLVED	2004-Sep	<1		<1	<2 R	<1	<1		<2 R			<2 R				
ARSENIC, DISSOLVED	2005-Sep	<1 WT		<1 WT	<1 WT	1.2 WT	1.1 WT		<1 WT		<1 WT	<1 WT				
ARSENIC, DISSOLVED	2006-Sep	<1		<1	<2 RL1	<1	<1		<1		<1	<1				
ARSENIC, DISSOLVED	2007-Sep	<1		<1	<1	<1	<1		<1			<1				
ARSENIC, DISSOLVED	2008-Sep	<1		<1	<1	<1 pH>2	<1		<1		<1	<1				
ARSENIC, DISSOLVED	2009-Sep	<1		<1	<2	<1	<2		<2		<1	<2				
ARSENIC, DISSOLVED	2010-Aug	<2 RL1														
ARSENIC, DISSOLVED	2010-Sep			<1	<2 RL1	9.36	<4 RL1		<2		<2 RL1	<1				
ARSENIC, DISSOLVED	2011-Sep	<6 RL1		<1	<2 RL1	2.86	<12 RL1		<2 RL1			<2 RL1				
ARSENIC, DISSOLVED	2012-Sep	<3 RL1		<1	<2 RL1	<1	<2 RL1		<2 RL1			<1				
ARSENIC	2013-Sep															
ARSENIC, DISSOLVED	2013-Sep	<1		<1	<1	5.9	<1		<1		<1	<1				
ARSENIC	2014-Sep															
ARSENIC, DISSOLVED	2014-Sep	< 0.05		0.071 J	< 0.05	2.3	0.48		< 0.05		< 0.05					
ARSENIC	2015-Dec															
ARSENIC, DISSOLVED	2015-Dec												<4.5	<4.5	<4.5	<4.5
ARSENIC	2015-Sep															
ARSENIC, DISSOLVED	2015-Sep	<4.5		<4.5	<4.5	<4.5		<4.5		<4.5			<4.5	<4.5	6.9	<4.5
ARSENIC	2016-Jun															
ARSENIC, DISSOLVED	2016-Jun		1							1	1	1	0.21	0.37	1.2	0.93
ARSENIC	2016-Mar		1							1	1					
ARSENIC, DISSOLVED	2016-Mar		1							1	1	1	<3.9	<3.9	<3.9	<3.9
ARSENIC	2016-Sep		1							1	1	1				
ARSENIC, DISSOLVED	2016-Sep	0.12		0.46	<0.21 D3	0.4		0.43		0.4	<0.1		0.15	<0.1	0.86	0.5
ARSENIC	2017-Aug	0.2		0.19	0.12	6.9		0.55		0.21	0.052		0.18	0.25	0.61	1.1
ARSENIC	2018-Aug			0.17	0.12	13.7		1		0.35	0.31		0.10	0.44	0.66	1.7
ARSENIC	2019-Apr	<0.75														
ARSENIC	2019-Aug		<0.75	<0.75	<0.75	21		<0.75		<0.75	<0.75		<0.75	<0.75	<0.75	3

GW Standard:

MCL = 10

# ARSENIC

UNITS: UG/L

		GU-1				UNDERDRAIN								LEACHATE	LEACHATE LIFT		FIELD
CHEMICAL PARAMETER	EVENT	TEMP	GU-2	GU-EX	GW GCS	LIFT STATION	SW-1	SW-1R	SW-2	SW-2R	SW-3	SW-4	SW-5	BASIN	STATION	TCB-1/2	BLANK
ARSENIC, DISSOLVED	1995-Aug										<5						
ARSENIC, DISSOLVED	1995-Oct										<5						
ARSENIC, DISSOLVED	1996-Apr						<1		<1		<1						
ARSENIC, DISSOLVED	1996-Jan																
ARSENIC, DISSOLVED	1996-Jul						<5		<5		<5		<5				
ARSENIC, DISSOLVED	1996-Oct																
ARSENIC, DISSOLVED	1997-Apr																
ARSENIC, DISSOLVED	1997-Oct																
ARSENIC, DISSOLVED	1998-Apr						<1		<1				<1				
ARSENIC, DISSOLVED	1998-Oct						1.8		1.7				1				
ARSENIC, DISSOLVED	1999-Sep										1.8		<1				
ARSENIC, DISSOLVED	2000-Sep										<1		<1				
ARSENIC, DISSOLVED	2001-Sep						<1				<1		<1				
ARSENIC, DISSOLVED	2002-Sep										<1		<1				
ARSENIC, DISSOLVED	2003-Sep										<1		<1				
ARSENIC, DISSOLVED	2004-Oct							1									1
ARSENIC, DISSOLVED	2004-Sep						2.2	1					<1				1
ARSENIC, DISSOLVED	2005-Sep										< WT		<1				
ARSENIC, DISSOLVED	2006-Sep										1.45		<1				
ARSENIC, DISSOLVED	2007-Sep						1.72		<1		1.53		1.14				
ARSENIC, DISSOLVED	2008-Sep						1.5		1.25		2.94	2	<1				
ARSENIC, DISSOLVED	2009-Sep						1.14				<1		<1				
ARSENIC, DISSOLVED	2010-Aug																
ARSENIC, DISSOLVED	2010-Sep					1 1	1.74		<1		1.35	<1	1.63				
ARSENIC, DISSOLVED	2011-Sep												5.83				
ARSENIC, DISSOLVED	2012-Sep				<2						<1		7.19				
ARSENIC	2012-Sep					1 1							,,	21			
ARSENIC, DISSOLVED	2013-Sep										<1	3.3	1.8				<1
ARSENIC	2014-Sep					0.76						0.0		2.8	5.8		<0.18
ARSENIC, DISSOLVED	2014-Sep					01/ 0	2	<15	1.3	<15	0.3 J	1.9	0.31 J	2.0	0.0		
ARSENIC	2015-Dec	<4.5					2	515	1.0	10	0.0 5	1.7	0.01 3			<4.5	<4.5
ARSENIC, DISSOLVED	2015-Dec	<4.5														-+.5	
ARSENIC	2015-Dec 2015-Sep	<4.5		<4.5							<4.5	4.7	<4.5	<4.5		<4.5	<4.5
ARSENIC, DISSOLVED	2015-Sep	<4.5			1			1			-+.5	/	-4.5	-4.5			
ARSENIC	2016-Jun	0.12														1.6	<0.1
ARSENIC, DISSOLVED	2016-Jun	0.12														1.0	~0.1
ARSENIC	2016-Mar	<3.9														<3.9	<3.9
ARSENIC, DISSOLVED	2016-Mar	<3.9				<del>   </del>										~3.7	~3.7
ARSENIC, DISSOLVED	2016-Sep	<0.1		0.34		<del>   </del>					1.6		2.8	2.1		2	<0.1
ARSENIC, DISSOLVED	2016-Sep	<b>\U.1</b>		0.34		<u> </u>		1			1.0		2.0	2.1		2	<u> </u>
ARSENIC, DISSOLVED	2016-Sep 2017-Aug	0.079		0.68		<u> </u>		1			1.7		4.1	2.8		1.4	< 0.052
		0.079		0.68		<u> </u>		1			<4.9		4.1	3.1		1.4	< 0.052
ARSENIC ARSENIC	2018-Aug 2019-Apr	0.27		1		├					<u></u> ~4.∀		4./	3.1		1.8	<0.15
		<0.75	<0.75	101		<u>├</u>					101	7.0	1.5.1	4.4		2.5	
ARSENIC	2019-Aug	<0.75	<0.75	1.9 J	1			1			1.9 J	7.3	1.5 J	4.6		3.5	<0.75

GW Standard:

MCL = 10

#### BARIUM UNITS: UG/L

CHEMICAL PARAMETER	EVENT	MW-01	MW-01R	MW-12	MW-13	MW-14	MW-15	MW-15R	MW-16	MW-16R	MW-17	MW-18	MW-100R	MW-101R	MW-102P	MW-108
BARIUM, DISSOLVED	1995-Aug	184			58	152										
BARIUM, DISSOLVED	1995-Oct	183		37	43	105			104		53	119				
BARIUM, DISSOLVED	1996-Apr	142		40	33	59			77		34	76				
BARIUM, DISSOLVED	1996-Jan	192		60	62	114			74			93				
BARIUM, DISSOLVED	1996-Jul	156		29	32	74			63		120	55				
BARIUM, DISSOLVED	1997-Oct										60					
BARIUM, DISSOLVED	1998-Apr										27					
BARIUM, DISSOLVED	1998-Oct						28									
BARIUM, DISSOLVED	1999-Sep	92		43	21	53	25		42		53	36				
BARIUM, DISSOLVED	2000-Sep	70		33	17	49	24		33		74	34				
BARIUM, DISSOLVED	2001-Sep	59		45	21	42	13		34		64	38				
BARIUM, DISSOLVED	2002-Sep	71		44	23	46	28		33		38	32				
BARIUM, DISSOLVED	2003-Sep	64		39	19	38	24		29		37	34				
BARIUM, DISSOLVED	2004-Oct															
BARIUM, DISSOLVED	2004-Sep	57		36	21	39	22		32			31				
BARIUM, DISSOLVED	2005-Sep	80		23	20	36	25		28		39	29				
BARIUM, DISSOLVED	2006-Sep	62.7		28.2	18.1	39.9	14.3		27.1		33.4	27.8				
BARIUM, DISSOLVED	2007-Sep	60.3		22.3	22.2	29.4	28		22.2			26.3				
BARIUM, DISSOLVED	2008-Sep	86.9		30.3	20.2	34.3 pH>2	21.2		40.9		34.8	25.5				
BARIUM, DISSOLVED	2009-Sep	163		26	19	32.4	16.1		20.7		32.3	22.9				
BARIUM, DISSOLVED	2010-Aug	77.4														
BARIUM, DISSOLVED	2010-Sep			24.7	15.1	21.2	<10		20.9 S3		27	23.9				
BARIUM, DISSOLVED	2011-Sep	73.3		22.6	13.9	26.4	14		22.9			22.1				
BARIUM, DISSOLVED	2012-Sep	70.3		23.6	17.1	38.3	24.5		21.8			26.8				
BARIUM	2013-Sep															
BARIUM, DISSOLVED	2013-Sep	70		23	19	27	31		24		35	25				
BARIUM	2014-Sep			-			-									
BARIUM, DISSOLVED	2014-Sep	50		24 B	24 B	36 B	37 B		23 B		32 B					
BARIUM	2015-Dec															
BARIUM, DISSOLVED	2015-Dec												62	66	27	89
BARIUM	2015-Sep												-			
BARIUM, DISSOLVED	2015-Sep	82.6		31.2	17.9	39.4		37.7		90.5			79.4	74.4	33.9	97.5
BARIUM	2016-Jun															
BARIUM, DISSOLVED	2016-Jun	1								1			54.5	49.5	35.3	73.9
BARIUM	2016-Mar	1								1						
BARIUM, DISSOLVED	2016-Mar	1				1				1			59	59	38	92
BARIUM	2016-Sep	1				1				1						
BARIUM, DISSOLVED	2016-Sep	69.5		25.7	17.4	35.1		29.5		80.6	23.3		67.2	50.2	30.4	79.3
BARIUM	2017-Aug	61		21	18.2	26.8		40.6		49.7	19.4		54.2	40	22.7	35.4
BARIUM	2018-Aug			15.5	19.9	19.3		80.5		46.4	20.2		58.4	75.9	25.2	37.1
BARIUM	2019-Apr	81														
BARIUM	2019-Aug	1	75	32	19	12		37	1	44	47		50	28	24	34

GW Standard: MCL = 2000

#### BARIUM UNITS: UG/L

															LEACHATE		
		GU-1				UNDERDRAIN								LEACHATE	LIFT		FIELD
CHEMICAL PARAMETER	EVENT	TEMP	GU-2	GU-EX	GW GCS	LIFT STATION	SW-1	SW-1R	SW-2	SW-2R	SW-3	SW-4	SW-5	BASIN	STATION	TCB-1/2	BLANK
BARIUM, DISSOLVED	1995-Aug										46						I
BARIUM, DISSOLVED	1995-Oct										75						
BARIUM, DISSOLVED	1996-Apr						97		64		33						
BARIUM, DISSOLVED	1996-Jan																
BARIUM, DISSOLVED	1996-Jul						124		101		59		59				
BARIUM, DISSOLVED	1997-Oct																
BARIUM, DISSOLVED	1998-Apr						95		67		58		47				
BARIUM, DISSOLVED	1998-Oct						95		78		82		47				
BARIUM, DISSOLVED	1999-Sep										99		81				
BARIUM, DISSOLVED	2000-Sep										133		54				
BARIUM, DISSOLVED	2001-Sep						196				110		147				
BARIUM, DISSOLVED	2002-Sep										92		101				
BARIUM, DISSOLVED	2003-Sep										58		167				
BARIUM, DISSOLVED	2004-Oct										87						
BARIUM, DISSOLVED	2004-Sep						169						114				
BARIUM, DISSOLVED	2005-Sep										83		162				
BARIUM, DISSOLVED	2006-Sep										65.7		109				
BARIUM, DISSOLVED	2007-Sep						160		53.8		80.6		85.4				
BARIUM, DISSOLVED	2008-Sep						196		105		79	105	35.3				
BARIUM, DISSOLVED	2009-Sep						133				95.6		21.7				
BARIUM, DISSOLVED	2010-Aug																
BARIUM, DISSOLVED	2010-Sep						142		64.8		109	106	121				
BARIUM, DISSOLVED	2011-Sep												52.3				
BARIUM, DISSOLVED	2012-Sep				35.9						79.3		25.7				
BARIUM	2013-Sep													34			
BARIUM, DISSOLVED	2013-Sep										43	130	230				<10
BARIUM	2014-Sep					26								46	34		<0.61
BARIUM, DISSOLVED	2014-Sep						100		52		60	56	48				
BARIUM	2015-Dec	42						<15		<15						69	< 0.52
BARIUM, DISSOLVED	2015-Dec	49 D9															
BARIUM	2015-Sep	49.2		27							54.7	272	115	69.5		140	< 0.52
BARIUM, DISSOLVED	2015-Sep	53 D9															
BARIUM	2016-Jun	61														138	0.31 B
BARIUM, DISSOLVED	2016-Jun	61.5 D9															
BARIUM	2016-Mar	39.7														72.4	<0.58
BARIUM, DISSOLVED	2016-Mar	43															
BARIUM	2016-Sep	41.1		28.3							63.7	1	44.7	8.8		72.4	< 0.14
BARIUM, DISSOLVED	2016-Sep																
BARIUM	2017-Aug	40.1		33.8							54.8	1	195	12.5		98.5	0.17 B
BARIUM	2018-Aug	38.3		34.2		1					65.1		116	10.1		77	< 0.34
BARIUM	2019-Apr	2.510															<0.84
BARIUM	2019-Aug	30	50	37						t	60	140	120	93		77	<0.84

GW Standard: MCL = 2000

Note: August 2018 data for GU-1 Temp were listed under GU-2 in previous AWQR appendices.

#### BERYLLIUM UNITS: UG/L

	EVENT	MUW 01	MW 01 D	MW-12	MW-13			MW-15R	MW-16	MW- 16R	AAW 17	MAN 10	MW 1000	MW 101D	MW 1000	MW 100
CHEMICAL PARAMETER BERYLLIUM, DISSOLVED	1999-Sep	<b>MW-01</b>	MW-01R	<10	<10	MW-14 <10	<10	MW-ISK	<10	IOK	MW-17 <10	<10	MW-TOOK	MW-101R	MW-102P	MW-108
BERYLLIUM, DISSOLVED	2000-Sep	<10		<10	<10	<10	<10		<10		<10	<10				
		<10		<10	<10	<10	<10		<10		<10	<10				
BERYLLIUM, DISSOLVED BERYLLIUM, DISSOLVED	2001-Sep 2002-Sep	<10		<10	<10	<10	<10		<10		<10	<10				<u> </u>
		-		-	-				-							
BERYLLIUM, DISSOLVED	2003-Sep	<10		<10	<10	<10	<10		<10		<10	<10				ļ'
BERYLLIUM, DISSOLVED	2004-Oct															
BERYLLIUM, DISSOLVED	2004-Sep	<10		<10	<10	<10	<10		<10			<10				<b></b>
BERYLLIUM, DISSOLVED	2005-Sep	<10		<10	<10	<10	<10		<10		<10	<10				ļ'
BERYLLIUM, DISSOLVED	2006-Sep	<10		<10	<10	<10	<10		<10		<10	<10				<b> </b>
BERYLLIUM, DISSOLVED	2007-Sep	<10		<10	<10	<10	<10		<10			<10				L
BERYLLIUM, DISSOLVED	2008-Sep	<10		<10	<10	<10 pH>2	<10		<10		<10	<10				
BERYLLIUM, DISSOLVED	2009-Sep	<10		<10	<10	<10	<10		<10		<10	<10				
BERYLLIUM, DISSOLVED	2010-Aug	11														
BERYLLIUM, DISSOLVED	2010-Sep			<10	<10	<10	34.8		<10 \$3		<10	<10				
BERYLLIUM, DISSOLVED	2011-Sep	<10		<10	<10	<10	<10		<10			<10				
BERYLLIUM, DISSOLVED	2012-Sep	<1		<1	<1	1.92	<1		<1			<1				
BERYLLIUM	2013-Sep															
BERYLLIUM, DISSOLVED	2013-Sep	<1		<1	<1	<1	<1		<1		<1	<1				
BERYLLIUM	2014-Sep															
BERYLLIUM, DISSOLVED	2014-Sep	<0.3		<0.3	< 0.3	< 0.3	< 0.3		<0.3		< 0.3					
BERYLLIUM	2015-Dec															
BERYLLIUM, DISSOLVED	2015-Dec												<0.17	0.18	<0.17	<0.17
BERYLLIUM	2015-Sep															
BERYLLIUM, DISSOLVED	2015-Sep	0.34		0.74	<0.17	0.18		< 0.17		< 0.17			< 0.17	<0.17	< 0.17	< 0.17
BERYLLIUM	2016-Jun															
BERYLLIUM, DISSOLVED	2016-Jun					1							<0.08	<0.08	<0.08	<0.08
BERYLLIUM	2016-Mar															
BERYLLIUM, DISSOLVED	2016-Mar												<0.26	<0.26	<0.26	<0.26
BERYLLIUM	2016-Sep	1			1			1		1	1					
BERYLLIUM, DISSOLVED	2016-Sep	<0.08		<0.08	<0.08	<0.08		<0.08		< 0.08	<0.08		<0.08	<0.08	<0.16 D3	<0.08
BERYLLIUM	2017-Aug	< 0.012		0.019	< 0.012	< 0.012		< 0.012		0.016	< 0.012		< 0.012	0.02	0.013 M1	0.025
BERYLLIUM	2018-Aug			<0.12	<0.12	<0.12		<0.12		< 0.12	<0.12		<0.12	<0.12	<0.12	< 0.12
BERYLLIUM	2019-Apr	<0.27														
BERYLLIUM	2019-Aug		<0.27	<0.27	<0.27	<0.27		<0.27		< 0.27	<0.27		<0.27	<0.27	<0.27	<0.27

GW Standard:

MCL = 4

#### BERYLLIUM UNITS: UG/L

		GU-1			GW	UNDERDRAIN								LEACHATE	LEACHATE LIFT		FIELD
CHEMICAL PARAMETER	EVENT	TEMP	GU-2	GU-EX	GCS	LIFT STATION	SW-1	SW-1R	SW-2	SW-2R	SW-3	SW-4	SW-5	BASIN	STATION	TCB-1/2	BLANK
BERYLLIUM, DISSOLVED	1999-Sep										<10		<10				
BERYLLIUM, DISSOLVED	2000-Sep										<10		<10				
BERYLLIUM, DISSOLVED	2001-Sep				-		<10				<10		<10				
BERYLLIUM, DISSOLVED	2002-Sep				-						<10		<10				
BERYLLIUM, DISSOLVED	2003-Sep										<10		<10				
BERYLLIUM, DISSOLVED	2004-Oct										<10						
BERYLLIUM, DISSOLVED	2004-Sep						<10						<10				
BERYLLIUM, DISSOLVED	2005-Sep										<10		<10				
BERYLLIUM, DISSOLVED	2006-Sep										<10		<10				
BERYLLIUM, DISSOLVED	2007-Sep						<10		<10		<10		<10				
BERYLLIUM, DISSOLVED	2008-Sep						<10		<10		<10	<10	<10				
BERYLLIUM, DISSOLVED	2009-Sep						<10				<10		<10				
BERYLLIUM, DISSOLVED	2010-Aug																
BERYLLIUM, DISSOLVED	2010-Sep						<10		<10		<10	<10	<10				
BERYLLIUM, DISSOLVED	2011-Sep												<10				
BERYLLIUM, DISSOLVED	2012-Sep				1.19						<1		<1				
BERYLLIUM	2013-Sep													<1			
BERYLLIUM, DISSOLVED	2013-Sep										<1	<1	<1				<1
BERYLLIUM	2014-Sep					<0.3								<0.3	< 0.3		<0.3
BERYLLIUM, DISSOLVED	2014-Sep						< 0.3		< 0.3		< 0.3	< 0.3	< 0.3				
BERYLLIUM	2015-Dec	<0.17														<0.17	<0.17
BERYLLIUM, DISSOLVED	2015-Dec	< 0.17															
BERYLLIUM	2015-Sep	< 0.17		<0.17							< 0.17	< 0.17	< 0.17	<0.17		<0.17	<0.17
BERYLLIUM, DISSOLVED	2015-Sep	< 0.17						<15		<15							
BERYLLIUM	2016-Jun	<0.08														<0.08	<0.08
BERYLLIUM, DISSOLVED	2016-Jun	<0.08															
BERYLLIUM	2016-Mar	<0.26														< 0.26	<0.26
BERYLLIUM, DISSOLVED	2016-Mar	<0.26															
BERYLLIUM	2016-Sep	<0.08	1	<0.08				1			<0.08	1	<0.08	<0.08		<0.08	<0.08
BERYLLIUM, DISSOLVED	2016-Sep																
BERYLLIUM	2017-Aug	< 0.012		< 0.012							< 0.012		< 0.012	< 0.012		< 0.012	< 0.012
BERYLLIUM	2018-Aug	< 0.12		< 0.12							< 0.16		< 0.12	< 0.12		< 0.12	< 0.12
BERYLLIUM	2019-Apr																<0.27
BERYLLIUM	2019-Aug	<0.27	<0.27	<0.27							< 0.27	< 0.27	< 0.27	<0.27		<0.27	<0.27

GW Standard:

Note: August 2018 data for GU-1 Temp were listed under GU-2 in previous AWQR appendices.

MCL = 4

#### BORON UNITS: UG/L

																	1
CHEMICAL PARAMETER	EVENT	MW-01	MW-01R	MW-07P	MW-12	MW-13	MW-14	MW-15	MW-15R	MW-16	MW-16R	MW-17	MW-18	MW-100R	MW-101R	MW-102P	MW-1
BORON, DISSOLVED	2007-Sep	<100			1550	1740	1750	1060		1550			1460				ł
BORON, DISSOLVED	2008-Sep	100			1670	1950	2070 pH>2	1090		1660		1160	1580				l
BORON, DISSOLVED	2009-Sep	<100		866	1470	1860	1840	1070		1520		1130	1460				1
BORON, DISSOLVED	2010-Aug	123															
BORON, DISSOLVED	2010-Sep			507	1410	1880	1900	1060		1600		1590	1470				1
BORON, DISSOLVED	2011-Sep	<100			1440	1820	1860	1230		1480			1400				1
BORON, DISSOLVED	2012-Sep	104		1100	1590	2010	2020	800		1680			1630				1
BORON	2013-Sep																
BORON, DISSOLVED	2013-Sep	<100			1400	1800	1800	550		1500		1200	1500				
BORON	2014-Sep																1
BORON, DISSOLVED	2014-Sep	120			1400	1800	1800	520		1500		740					1
BORON	2015-Dec																1
BORON, DISSOLVED	2015-Dec													51	630	2000	47
BORON	2015-Sep																
BORON, DISSOLVED	2015-Sep	75.6			1530	1840	1950		1380		2260			62.5	660	1880	74
BORON	2016-Jun																1
BORON, DISSOLVED	2016-Jun													<50	535	1880	38
BORON	2016-Mar																1
BORON, DISSOLVED	2016-Mar													<50	580	2000	53
BORON	2016-Sep															i l	1
BORON, DISSOLVED	2016-Sep	84			1450	1920	1890		1450		2260	931		56.6	622	1890	48
BORON	2017-Aug	76			1430	2000	2010		1380		2130	1170		51.8	733	1770	30
BORON	2018-Aug				1530	2090	2160		1310		2140	1110		64.2	855	1920	33
BORON	2019-Apr	110 J														í l	
BORON	2019-Aug		110 J,B		1600 B	1700 B	1700 B		1000		1700	580		<110	660	1400 B	31
Boron	2-Year Avg.	80			1480	2045	2085		1345		2135	1140		58	794	1845	32

None

Note: Average of previous 2 years (2016-2017) is calculated for parameters that do not have an MCL, SMCL, or HAL. For parameters that were not detected, the detection limit is used in the calculation.

#### BORON UNITS: UG/L

CHEMICAL PARAMETER	EVENT	GU-1 TEMP	GU-2	GU-EX	GW GCS	UNDERD RAIN LIFT STATION	SW-1	SW-1R	SW-2	SW-2R	SW-3	SW-4	SW-5	LEACHATE BASIN	LEACHATE LIFT STATION	
BORON, DISSOLVED	2007-Sep						<100		178		1220		468			
BORON, DISSOLVED	2008-Sep						<100		<100		1570	<100	1120			
BORON, DISSOLVED	2009-Sep						<100				1120		1270			
BORON, DISSOLVED	2010-Aug															
BORON, DISSOLVED	2010-Sep						<100		<100		857	<100	240			
BORON, DISSOLVED	2011-Sep												1740			
BORON, DISSOLVED	2012-Sep				1860						2180		1570			
BORON	2013-Sep													3700		
BORON, DISSOLVED	2013-Sep										820	250	850			
BORON	2014-Sep					1600								2400	3300	
BORON, DISSOLVED	2014-Sep						<50		<50		510	<50	300			
BORON	2015-Dec	240														460
BORON, DISSOLVED	2015-Dec	250 D9														
BORON	2015-Sep	425		952							846	62.1	802	1350		679
BORON, DISSOLVED	2015-Sep	442 D9														
BORON	2016-Jun	610														455
BORON, DISSOLVED	2016-Jun	629 D9														
BORON	2016-Mar	223														422
BORON, DISSOLVED	2016-Mar	220														
BORON	2016-Sep	520		820							846		597	4550		570
BORON, DISSOLVED	2016-Sep															
BORON	2017-Aug	660		862							1120		852	5330		820
BORON	2018-Aug	1020		867							1010		703	5440		127
BORON	2019-Apr															
BORON	2019-Aug	260 B	330 B	830 B							530 B	<110	780 B	1900 B		1400
Boron	2-Year Avg.	590		864.5							1065		777.5	5385		104

None

Note: August 2018 data for GU-1 Temp were listed under GU-2 in previous AWQR appendices.

#### COBALT UNITS: UG/L

	EVENT	MW-01 <20	MW-01R	MW-12 <20	MW-13 <20	MW-14 <20	<u>ww-15</u> <20	MW-15R		MW-16R	MW-17 <20	MW-18	MW-TOOK	MW-101R	MW-102P	MW-108
COBALT, DISSOLVED	1999-Sep	<20		<20	<20	<20	<20		<20 <20		<20 <20	<20 <20				<u> </u>
COBALT, DISSOLVED	2000-Sep	-		-	-	-			-		-	-				
COBALT, DISSOLVED	2001-Sep	<20 <20		<20 <20	<20 <20	<20 <20	<20 <20		<20		<20 <20	<20 <20				
COBALT, DISSOLVED	2002-Sep	-		-	-	-	-		<20		-	-				
COBALT, DISSOLVED	2003-Sep	<20		<20	<20	<20	<20		<20		24	<20				
COBALT, DISSOLVED	2004-Oct															
COBALT, DISSOLVED	2004-Sep	<20	-	<20	<20	<20	<20		<20			<20				
COBALT, DISSOLVED	2005-Sep	<20	-	<20	<20	<20	25		<20		22	<20				
COBALT, DISSOLVED	2006-Sep	<20		<20	<20	<20	<20		<20		31.4	<20				
COBALT, DISSOLVED	2007-Sep	<20		<20	<20	<20	<20		<20			<20				
COBALT, DISSOLVED	2008-Sep	<20		<20	<20	<20 pH>2	<20		<20		<20	<20				
COBALT, DISSOLVED	2009-Sep	<20		<20	<20	<20	<20		<20		<20	<20				L
COBALT, DISSOLVED	2010-Aug	2.72 J														L
COBALT, DISSOLVED	2010-Sep			3.01 J	5.31 J	6.23 J	11.4 J		3.94 J		<1.55	<1.55				Ļ
COBALT, DISSOLVED	2011-Sep	<1.55		<1.55	<1.55	<1.55	<1.55		<1.55			<1.55				Ļ
COBALT, DISSOLVED	2012-Sep	<1.55			<1.55	2.71 J	<1.55		<1.55			<1.55				
COBALT	2013-Sep															Ļ
COBALT, DISSOLVED	2013-Sep	<5		<5	<5	<5	<5		<5		<5	<5				Ļ
COBALT	2014-Sep															
COBALT, DISSOLVED	2014-Sep	1.3 J		<0.79	1.2 J	1.4 J	<0.79		1.7 J		0.81 J					
COBALT	2015-Dec															
COBALT, DISSOLVED	2015-Dec												<0.1	0.35	0.46	6.6
COBALT	2015-Sep															
COBALT, DISSOLVED	2015-Sep	0.16		0.39	0.64	1.7		3		1.3			<0.1	0.47	1.1	2.5
COBALT	2016-Jun															
COBALT, DISSOLVED	2016-Jun												<0.5	<0.5	0.91	5.3
COBALT	2016-Mar															
COBALT, DISSOLVED	2016-Mar												<0.5	<0.5	<0.5	2.8
COBALT	2016-Sep															
COBALT, DISSOLVED	2016-Sep	<0.5		<1 D3	1.3	1.9		2.8		<1.5 D3	<0.5		<0.5	<0.5	<1.5 D3	2.6
COBALT	2017-Aug	0.049		0.36	1.3	1.4		2.6		0.92	0.054		0.028	0.26	0.86	11.1
COBALT	2018-Aug			0.19	1.3	0.47		3.6		0.97	0.22		<0.15	1.5	1.1	10.6
COBALT	2019-Apr	0.37 J														
COBALT	2019-Aug		<0.091	1.3	1.1	0.41 J		3.5		0.84	1.4		<0.091	0.13 J	1.3 J	7.9
Cobalt	2-Year Avg.	0.27		0.275	1.3	0.935		3.1		0.945	0.137		0.09	0.88	0.98	10.85

GW Standard:

None

Note: Average of previous 2 years (2016-2017) is calculated for parameters that do not have an MCL, SMCL, or HAL. For parameters that were not detected, the detection limit is used in the calculation.

#### COBALT UNITS: UG/L

															LEACHATE		
		GU-1				UNDERDRAIN								LEACHATE	LIFT		FIELD
CHEMICAL PARAMETER	EVENT	TEMP	GU-2	GU-EX	GW GCS	LIFT STATION	SW-1	SW-1R	SW-2	SW-2R	SW-3	SW-4	SW-5	BASIN	STATION	TCB-1/2	BLANK
COBALT, DISSOLVED	1999-Sep										<20		<20				
COBALT, DISSOLVED	2000-Sep										<20		<20				
COBALT, DISSOLVED	2001-Sep						<20				<20		<20				
COBALT, DISSOLVED	2002-Sep										<20		<20				
COBALT, DISSOLVED	2003-Sep										<20		<20				
COBALT, DISSOLVED	2004-Oct										<20						
COBALT, DISSOLVED	2004-Sep						<20						<20				
COBALT, DISSOLVED	2005-Sep										<20		<20				
COBALT, DISSOLVED	2006-Sep										<20		<20				
COBALT, DISSOLVED	2007-Sep						<20		<20		<20		<20				
COBALT, DISSOLVED	2008-Sep						<20		<20		<20	<20	<20				
COBALT, DISSOLVED	2009-Sep						<20				<20		<20				
COBALT, DISSOLVED	2010-Aug																
COBALT, DISSOLVED	2010-Sep						1.61 J		6.22 J		2.25 J	2.24 J	3.47 J				
COBALT, DISSOLVED	2011-Sep												<1.55			1	
COBALT, DISSOLVED	2012-Sep				2.76 J						<1.55		<1.55			1	
COBALT	2013-Sep													<5			
COBALT, DISSOLVED	2013-Sep										<5	<5	<5			1	<5
COBALT	2014-Sep					4.1								<0.79	2.4		<0.79
COBALT, DISSOLVED	2014-Sep						<0.79		<0.79		<0.79	<0.79	<0.79			1	
COBALT	2015-Dec	0.14														<0.1	<0.1
COBALT, DISSOLVED	2015-Dec	0.24														1	
COBALT	2015-Sep	4.1		8.8							0.32	3.1	0.45	0.19		0.12	<0.1
COBALT, DISSOLVED	2015-Sep	3.4															
COBALT	2016-Jun	2.7														< 0.5	<0.5
COBALT, DISSOLVED	2016-Jun	2.5														1	
COBALT	2016-Mar	<0.5														< 0.5	<0.5
COBALT, DISSOLVED	2016-Mar	<0.5														1	
COBALT	2016-Sep	4.6		1.1							<0.5		< 0.5	<0.5		< 0.5	<0.5
COBALT, DISSOLVED	2016-Sep			1		1			l I	İ	l I	1	1			1	1
COBALT	2017-Aug	10.2		1.3	1						0.21	1	0.74	0.18	1	0.12	< 0.014
COBALT	2018-Aug	6.5		2.3							<0.87		0.25	0.2		<0.15	<0.15
COBALT	2019-Apr				1							1			1		< 0.091
COBALT	2019-Aug	8.4	16	3.4	1						0.22 J	1.3	0.26 J	0.23 J	1	0.37 J	< 0.091
Cobalt	2-Year Avg.	7.4		1.8							0.54		0.495	0.19		0.135	0.12

GW Standard:

Note: August 2018 data for GU-1 Temp were listed under GU-2 in previous AWQR appendices.

None

#### COPPER UNITS: UG/L

CHEMICAL PARAMETER	EVENT	MW-01	MW-01R	MW-12	MW-13	MW-14	MW-15	MW-15R	MW-16	MW-16R	MW-17	MW-18	MW-100R	MW-101R	MW-102P	MW-108
COPPER, DISSOLVED	1995-Aug	<20			<20	<20										
COPPER, DISSOLVED	1995-Oct	<20		<20	<20	<20			<20		<20	<20				
COPPER, DISSOLVED	1996-Apr	<30		<30	<30	<30			<30		<30	<30				
COPPER, DISSOLVED	1996-Jan	<30		<30	<30	<30			<30			<30				
COPPER, DISSOLVED	1996-Jul	<30	1	<30	<30	<30			<30		<30	<30				
COPPER, DISSOLVED	1997-Oct		1								<20					
COPPER, DISSOLVED	1998-Apr		1													
COPPER, DISSOLVED	1998-Oct		1				<20									
COPPER, DISSOLVED	1999-Sep						<20									
COPPER, DISSOLVED	2000-Sep						<20									
COPPER, DISSOLVED	2001-Sep		1				<20									
COPPER, DISSOLVED	2004-Oct		1													
COPPER, DISSOLVED	2004-Sep	<20		<20	<20	<20	<20		<20			<20				
COPPER, DISSOLVED	2005-Sep	<20		<20	<20	<20	<20		<20		<20	<20				
COPPER, DISSOLVED	2006-Sep	<20		<20	<20	<20	<20		<20		<20	<20				
COPPER, DISSOLVED	2007-Sep	<20		<20	<20	<20	<20		<20			<20				
COPPER, DISSOLVED	2008-Sep	<20		<20	<20	<20 pH>2	<20		<20		<20	<20				
COPPER, DISSOLVED	2009-Sep	<20		<20	<20	<20	<20		<20		<20	<20				
COPPER, DISSOLVED	2010-Aug	<20														
COPPER, DISSOLVED	2010-Sep			<20	<20	<20	<20		<20		<20	<20				
COPPER, DISSOLVED	2011-Sep	<20		<20	<20	<20	<20		<20			<20				
COPPER, DISSOLVED	2012-Sep	<20		<20	<20	<20	<20		<20			<20				
COPPER	2013-Sep															
COPPER, DISSOLVED	2013-Sep	<10		<10	<10	<10	<10		<10		<10	<10				
COPPER	2014-Sep															
COPPER, DISSOLVED	2014-Sep	15 J,B		4.1 J,B	6.7 J,B	3.9 J,B	4.6 J,B		4.2 J,B		3.6 J,B					
COPPER	2015-Dec															
COPPER, DISSOLVED	2015-Dec												1.4	1	<0.83	< 0.83
COPPER	2015-Sep															
COPPER, DISSOLVED	2015-Sep	3.6 B		3.3 B	5.5 B	3.4 B		3 B		3.9 B			3.1 B	3.8 B	3.4 B	4.6 B
COPPER	2016-Jun															
COPPER, DISSOLVED	2016-Jun												2.2	0.94 B	2.1	3.5
COPPER	2016-Mar															
COPPER, DISSOLVED	2016-Mar												<1.1	<1.1	<1.1	<1.1
COPPER	2016-Sep															
COPPER, DISSOLVED	2016-Sep	1.1 B		0.49 B	0.73 B	0.64 B		0.53 B		0.51 B	1.5		0.85 B	1.1 B	1 B	1.2 B
COPPER	2017-Aug	0.99		0.94 B	0.62 B	0.54 B		0.38 B		0.97	0.52 B		0.32 B	0.92 B	0.23 B	0.61 B
COPPER	2018-Aug			<0.48	<0.48	0.6		2.7		<0.48	0.66		0.74	2.6	<0.48	0.57
COPPER	2019-Apr	2.1 J														
COPPER	2019-Aug		<2	<2	<2	<2		<2		<2	<2		<2	<2	<2	<2

GW Standard:

SMCL = 1000

#### COPPER UNITS: UG/L

															LEACHATE		
		GU-1				UNDERDRAIN						<b>.</b>		LEACHATE	LIFT		FIELD
CHEMICAL PARAMETER	EVENT	TEMP	GU-2	GU-EX	GW GCS	LIFT STATION	SW-1	SW-1R	SW-2	SW-2R	SW-3	SW-4	SW-5	BASIN	STATION	TCB-1/2	BLANK
COPPER, DISSOLVED	1995-Aug										<20						
COPPER, DISSOLVED	1995-Oct										210						
COPPER, DISSOLVED	1996-Apr						<30		<30		<30						
COPPER, DISSOLVED	1996-Jan																
COPPER, DISSOLVED	1996-Jul						<30		<30		<30		<30				
COPPER, DISSOLVED	1997-Oct																<u> </u>
COPPER, DISSOLVED	1998-Apr						<20		<20		<20		<20				<u> </u>
COPPER, DISSOLVED	1998-Oct						<20		<20		<20		<20				<u> </u>
COPPER, DISSOLVED	1999-Sep										<20		<20				
COPPER, DISSOLVED	2000-Sep																
COPPER, DISSOLVED	2001-Sep																
COPPER, DISSOLVED	2004-Oct										<20						
COPPER, DISSOLVED	2004-Sep						<20						<20				
COPPER, DISSOLVED	2005-Sep										<20		<20				
COPPER, DISSOLVED	2006-Sep										<20		<20				
COPPER, DISSOLVED	2007-Sep						<20		<20		<20		<20				
COPPER, DISSOLVED	2008-Sep						<20		<20		<20	<20	<20				
COPPER, DISSOLVED	2009-Sep						<20				<20		<20				
COPPER, DISSOLVED	2010-Aug																
COPPER, DISSOLVED	2010-Sep						<20		<20		<20	<20	<20				
COPPER, DISSOLVED	2011-Sep												<20				
COPPER, DISSOLVED	2012-Sep				<20						<20		<20				
COPPER	2013-Sep													13			T
COPPER, DISSOLVED	2013-Sep										<10	<10	<10				<10
COPPER	2014-Sep					1.5 J,B								8.7 J	8.2 J,B		<0.85
COPPER, DISSOLVED	2014-Sep						4.1 J,B		4.9 J,B		4.3 J,B	3.7 J,B	3.7 J,B				
COPPER	2015-Dec	2														1.7	8.2
COPPER, DISSOLVED	2015-Dec	1.2															
COPPER	2015-Sep	6.8 B		6.2 B							9.2 B	6.7 B	7.3 B	9.1 B		5.4 B	2.2 B
COPPER, DISSOLVED	2015-Sep	6.1 B															
COPPER	2016-Jun	0.37														0.66	<0.11
COPPER, DISSOLVED	2016-Jun	2.6 D9															
COPPER	2016-Mar	<1.1														<1.1	<1.1
COPPER, DISSOLVED	2016-Mar	<1.1															1
COPPER	2016-Sep	0.25		0.74							1.1		0.28	1		0.52	<0.11
COPPER, DISSOLVED	2016-Sep	1	1	İ	1						İ						1
COPPER	2017-Aug	0.3 B	1	1	1						0.55 B		0.64 B	1 B		0.38 B	0.073 B
COPPER	2018-Aug	0.8	1	1.6	1						4.5 B		<0.48	1		<0.48	<0.48
COPPER	2019-Apr	1		İ	1						1						<2
COPPER	2019-Aug	<2	<2	<2	1	İ					<2	<2	<2	<2		<2	<2

GW Standard:

Note: August 2018 data for GU-1 Temp were listed under GU-2 in previous AWQR appendices.

SMCL = 1000

#### FLUORIDE UNITS: MG/L

CHEMICAL PARAMETER	EVENT	MW-01	MW-01R	MW-12	MW-13	MW-14	MW-15	MW-15R	MW-16	MW-16R	MW-17	MW-18	MW-100R	MW-101R	MW-102P	MW-108
FLUORIDE	1995-Aug	0.38			0.7	0.76										
FLUORIDE	1995-Oct	0.4		2.7	0.76	0.86			0.76		0.22	0.7				
FLUORIDE	1996-Apr	<0.2		<0.2	<0.2	<0.2			<0.2		<0.2	<0.2				
FLUORIDE	1996-Jan	<0.2		<0.2	<0.2	<0.2			<0.2			<0.2				
FLUORIDE	1996-Oct	<0.2		<0.2	<0.2	<0.2			<0.2		<0.2	<0.2				
FLUORIDE	2014-Sep	0.67		2.4	0.81	0.81	0.28									
FLUORIDE	2014-Sep								0.88		0.79					
FLUORIDE	2015-Dec												0.44	0.34	0.85	0.47
FLUORIDE	2015-Sep	0.45		2	0.68	0.7		0.22		0.48			0.36	0.26	0.44	0.32
FLUORIDE	2016-Jun												0.38	0.23	0.79	0.51
FLUORIDE	2016-Mar												0.51	0.35	0.75	0.67
FLUORIDE	2016-Sep	0.48		2.4	0.83	0.96		0.4		0.69	0.89		0.53	0.45	0.84	0.59
FLUORIDE	2017-Aug	0.58		2.5	0.71	0.89		0.39		0.58	0.78		0.53	0.44	0.74	0.61
FLUORIDE	2018-Aug			2.8	0.94	0.98		0.32		0.68	0.62		0.49	0.49	0.69	0.68
FLUORIDE	2019-Apr	0.35 J														
FLUORIDE	2019-Aug		0.85	0.76	<0.23	0.64		<0.23		<0.23	0.72	ater than or	equal to the	<0.23	<0.23	0.9

GW Standard:

SMCL = 2

#### FLUORIDE UNITS: MG/L

															LEACHATE		
CHEMICAL PARAMETER	EVENT	GU-1 TEMP	GU-2	GU-EX	GW GCS	UNDERDRAIN	SW-1	SW-1R	SW-2	SW-2R	SW-3	SW-4	SW-5	LEACHATE BASIN	LIFT STATION	TCB-1/2	FIELD BLANK
FLUORIDE	1995-Aug																
FLUORIDE	1995-Oct																
FLUORIDE	1996-Apr																
FLUORIDE	1996-Jan																
FLUORIDE	1996-Oct																
FLUORIDE	2014-Sep					0.67	0.32		0.34		0.59	0.3	0.47	0.45	0.64		<0.1
FLUORIDE	2014-Sep																
FLUORIDE	2015-Dec	0.53														0.25	<0.066
FLUORIDE	2015-Sep	0.41		0.68							0.53	0.31	0.56	0.35		0.31	<0.066
FLUORIDE	2016-Jun	0.44														0.21	< 0.073
FLUORIDE	2016-Mar	0.54														0.25	< 0.073
FLUORIDE	2016-Sep	0.61		0.7							0.49		0.52	0.87		0.19	< 0.027
FLUORIDE	2017-Aug	0.61		0.62							0.59		0.78	0.78		0.24	<0.1
FLUORIDE	2018-Aug	0.61		0.55							0.59		0.81	0.65		0.28	< 0.063
FLUORIDE	2019-Apr																0.75
FLUORIDE	2019-Aug	0.55	< 0.23	< 0.23							0.62	< 0.23	0.8	<0.23		< 0.23	< 0.045

GW Standard: SMCL = 2

Note: August 2018 data for GU-1 Temp were listed under GU-2 in previous AWQR appendices.

### IRON UNITS: UG/L

CHEMICAL PARAMETER	EVENT	MW-01	MW-01R	MW-12	MW-13	MW-14	MW-15	MW-15R	MW-16	MW-16R	MW-17	MW-18	MW-100R	MW-101R	MW-102P	MW-108
IRON, DISSOLVED	1995-Apr															
IRON, DISSOLVED	1995-Aug	<100			<100	<100										
IRON, DISSOLVED	1995-Oct	<100		110	140	<100			<100		330	<100				
IRON, DISSOLVED	1996-Apr	317		129	406	31			<30		<30	74				
IRON, DISSOLVED	1996-Jan	<30		53	<30	87			40			<30				
IRON, DISSOLVED	1996-Jul	<30		73	322	<30			<30		<30	83				
IRON, DISSOLVED	1996-Oct	<30		157	<30	48			<30		321	<30				
IRON, DISSOLVED	1997-Apr	<100		170	110	<100			190		<100	100				
IRON, DISSOLVED	1997-Oct	<100		180	120	<100			<100		<100	<100				
IRON, DISSOLVED	1998-Apr	<100		<100	120	<100					<100	500				
IRON, DISSOLVED	1998-Oct	<100		730	310	<100	<100		240			590				
IRON, DISSOLVED	1999-Sep	<100		<100	260	<100	<100		<100		140	320				
IRON, DISSOLVED	2000-Sep	<100		<100	270	110	<100		<100		540	<100				
IRON, DISSOLVED	2001-Sep	<100		<100	120	<100	<100		<100		<100	<100				
IRON, DISSOLVED	2002-Sep	<100		160	150	<100	<100		<100		<100	170				
IRON, DISSOLVED	2003-Sep	<100		100	230	<100	<100		100		800	110				
IRON, DISSOLVED	2004-Oct															
IRON, DISSOLVED	2004-Sep	<100		<100	120	<100	<100		180			<100				
IRON, DISSOLVED	2005-Sep	<100		<100	170	<100	160		<100		<100	<100				
IRON, DISSOLVED	2006-Sep	<100		686	<100	<100	<100		<100		<100	<100				
IRON, DISSOLVED	2007-Sep	<100		111	<100	<100	102		<100			<100				
IRON, DISSOLVED	2008-Sep	<100		670	176	<100 pH>2	<100		1040		<100	<100				
IRON, DISSOLVED	2009-Sep	6300		331	<100	<100	<100		<100		<100	<100				
IRON, DISSOLVED	2010-Aug	<100														
IRON, DISSOLVED	2010-Sep			1440	317	131	<100		<100		<100	182				
IRON, DISSOLVED	2011-Sep	<100		<100	156	<100	<100		<100			<100				
IRON, DISSOLVED	2012-Sep	<100		<100	238	<100	<100		<100			<100				
IRON	2013-Sep															
IRON, DISSOLVED	2013-Sep	<50		<50	110	<50	64		<50		<50	120				
IRON	2014-Sep															
IRON, DISSOLVED	2014-Sep	<24		<24	110	81	<24		<24		<24					
IRON	2015-Dec															
IRON, DISSOLVED	2015-Dec												16	20	23000	430
IRON	2015-Sep															
IRON, DISSOLVED	2015-Sep	16.4		20.4	310	32.2		1880		91.7			11.3	<9	5680	158
IRON	2016-Jun															
IRON, DISSOLVED	2016-Jun												<12.8	<12.8	9810	370
IRON	2016-Mar															
IRON, DISSOLVED	2016-Mar												<8.8	<8.8	16300	250
IRON	2016-Sep															
IRON, DISSOLVED	2016-Sep	<12.8		<25.5 D3	300	<25.5 D3		1980		273	20.4		22	231	14900	182
IRON	2017-Aug	12.5		473	324	91.5		2410		365	<9.6		16.2	140	5230	983
IRON	2018-Aug	1		27.1 B	155 B	81.8 B		5580		266	<14.9		86.3 B	949	5330	1300
IRON	2019-Apr	380														
IRON	2019-Aug		<66	180	290	230		2600		430	160		<66	<66	5200	3500

GW Standard: SMCL = 300

### IRON UNITS: UG/L

															LEACHATE		
		GU-1				UNDERDRAIN								LEACHATE	LIFT		FIELD
	EVENT	TEMP	GU-2	GU-EX	GW GCS	LIFT STATION	SW-1	SW-1R	SW-2	SW-2R	SW-3	SW-4	SW-5	BASIN	STATION	TCB-1/2	BLANK
IRON, DISSOLVED IRON, DISSOLVED	1995-Apr 1995-Aug										<100						┥───┤
	Ŷ										(100						
IRON, DISSOLVED	1995-Oct			-			<20		< 20		<100						
IRON, DISSOLVED	1996-Apr			-			<30		<30		<30						
IRON, DISSOLVED	1996-Jan			-			-00		(00		-00		-00				4ł
IRON, DISSOLVED	1996-Jul			-			<30		430		<30		<30				<i>!</i>
IRON, DISSOLVED	1996-Oct										123		115				l
IRON, DISSOLVED	1997-Apr						<100		<100		<100						l
IRON, DISSOLVED	1997-Oct										<100						l
IRON, DISSOLVED	1998-Apr						<100		<100		<100		<100				
IRON, DISSOLVED	1998-Oct						170		170		<100		<100				
IRON, DISSOLVED	1999-Sep										<100		<100				/
IRON, DISSOLVED	2000-Sep										<100		<100				
IRON, DISSOLVED	2001-Sep						<100				<100		<100				
IRON, DISSOLVED	2002-Sep										<100		<100				
IRON, DISSOLVED	2003-Sep										<100		<100				
IRON, DISSOLVED	2004-Oct										<100						
IRON, DISSOLVED	2004-Sep						<100						<100				
IRON, DISSOLVED	2005-Sep										<100		740				
IRON, DISSOLVED	2006-Sep										<100		<100				1
IRON, DISSOLVED	2007-Sep						<100		<100		<100		<100				1
IRON, DISSOLVED	2008-Sep						<100		<100		<100	<100	<100				1
IRON, DISSOLVED	2009-Sep						<100				<100		101				1
IRON, DISSOLVED	2010-Aug																
IRON, DISSOLVED	2010-Sep						<100		<100		<100	<100	<100				1 1
IRON, DISSOLVED	2011-Sep												<100				1 1
IRON, DISSOLVED	2012-Sep				153						<100		<100				1
IRON	2013-Sep													140			1
IRON, DISSOLVED	2013-Sep										<50	100	<50	-			<50
IRON	2014-Sep					260								960	2400		<24
IRON, DISSOLVED	2014-Sep						130		170		<24	100	25				++
IRON	2015-Dec	13														41	<9
IRON, DISSOLVED	2015-Dec	<9															
IRON	2015-Sep	140		1570							196	806	233	84.5		<9	<9
IRON, DISSOLVED	2015-Sep	37.8											200	00		.,	
IRON	2015-Sep 2016-Jun	<12.8	<u> </u>	1						<u> </u>						42.8	<12.8
IRON, DISSOLVED	2016-Jun	<12.8	<u> </u>	1						<u> </u>						72.0	12.0
IRON, DISSOLVED	2016-Mar	<8.8											<u> </u>			<8.8	<8.8
IRON, DISSOLVED	2016-Mar	<8.8											<u> </u>			~0.0	<u>\0.0</u>
IRON, DISSOLVED	2016-Sep	<12.8		1570							228		85.9	29.7		49.6	13.5
IRON, DISSOLVED	2016-Sep	~12.0		1370							220		03.7	27./		47.0	13.5
		<9.6	<u> </u>	1370		+				<u> </u>	52.0		581	20.0		<9.6	<9.6
IRON	2017-Aug	< 9.6									52.9 59.8	<u> </u>	186 B	38.8			<9.6
IRON	2018-Aug	<14.9		4690							37.8	<u> </u>	180 8	31.3 B,M1		6.2	
IRON	2019-Apr		510	1700							77	1200	110	(7)		270	<66
IRON	2019-Aug	<66	510	4700						1	77 J	1300	110	67 J		370	<66

GW Standard:

Note: August 2018 data for GU-1 Temp were listed under GU-2 in previous AWQR appendices.

### LEAD UNITS: UG/L

CHEMICAL PARAMETER	EVENT	MW-01	MW-01R	MW-12	MW-13	MW-14	MW-15	MW-15R	MW-16	MW-16R	MW-17	MW-18	MW-100R	MW-101R	MW-102P	MW-108
LEAD, DISSOLVED	1995-Aug	<5			<5	<5										
LEAD, DISSOLVED	1995-Oct	<5		<5	<5	<5			<5		<5	<5				
LEAD, DISSOLVED	1996-Apr	<5		<5	<5	<5			<5		<5	<5				
LEAD, DISSOLVED	1996-Jan	<5		<5	<5	<5			<5			<5				
LEAD, DISSOLVED	1996-Jul	<5		<5	<5	<5			<5		<5	<5				
LEAD, DISSOLVED	1997-Oct										<4					
LEAD, DISSOLVED	1998-Apr															
LEAD, DISSOLVED	1998-Oct	1					<4									
LEAD, DISSOLVED	1999-Sep						<4									
LEAD, DISSOLVED	2000-Sep						<4									
LEAD, DISSOLVED	2001-Sep						<4									
LEAD, DISSOLVED	2004-Oct															
LEAD, DISSOLVED	2004-Sep	<4		<4	<4	<4	<4		<4			<4				
LEAD, DISSOLVED	2005-Sep	<4 WT		<4 WT	<4 WT	<4 WT	<4 WT		<4 WT		<4 WT	<4 WT				
LEAD, DISSOLVED	2006-Sep	<4		<4	<4	<4	<4		<4		<4	<4				
LEAD, DISSOLVED	2007-Sep	<4		<4	<4	<4	<4		<4			<4				
LEAD, DISSOLVED	2008-Sep	<4		<4	<4	<4 pH>2	<4		<4		<4	<4				
LEAD, DISSOLVED	2009-Sep	<4		<4	<4	<4	<4		<4		<4	<4				
LEAD, DISSOLVED	2010-Aug	<4														
LEAD, DISSOLVED	2010-Sep			<4	<4	<4	<4		<4		<4	<4				
LEAD, DISSOLVED	2011-Sep	<4		<4	<4	<4	<4		<4			<4				
LEAD, DISSOLVED	2012-Sep	<4		<4	<4	<4	<4		<4			<4				
LEAD	2013-Sep															
LEAD, DISSOLVED	2013-Sep	<1		<1	<1	<1	<1		<1		<1	<1				
LEAD	2014-Sep															
LEAD, DISSOLVED	2014-Sep	0.19 J,B		0.18 J,B	0.22 J,B	0.2 J,B	0.17 J,B		0.17 J,B		0.17 J,B					
LEAD	2015-Dec															
LEAD, DISSOLVED	2015-Dec												2	<1.9	<1.9	<1.9
LEAD	2015-Sep															
LEAD, DISSOLVED	2015-Sep	<1.9		<1.9	<1.9	<1.9		<1.9		<1.9			2.4	<1.9	<1.9	<1.9
LEAD	2016-Jun															
LEAD, DISSOLVED	2016-Jun												<0.19	<0.19	<0.19	<0.19
LEAD	2016-Mar															
LEAD, DISSOLVED	2016-Mar												<2.5	<2.5	<2.5	<2.5
LEAD	2016-Sep															
LEAD, DISSOLVED	2016-Sep	<0.19		<0.19	<0.19	<0.19		<0.19		<0.39 D3	<0.19		<0.19	0.2	<0.39 D3	<0.19
LEAD	2017-Aug	0.18		0.38	<0.033	0.22		0.24		0.4	<0.033		0.039	0.41	0.036	0.041
LEAD	2018-Aug			<0.12	<0.12	0.12		0.63		<0.12	<0.12		<0.12	0.6	<0.12	<0.12
LEAD	2019-Apr	0.71														
LEAD	2019-Aug		<0.27	0.31 J	<0.27	<0.27		<0.27		<0.27	<0.27		<0.27	<0.27	<1.1	<0.27

GW Standard:

Action Level: 15

### LEAD UNITS: UG/L

															LEACHATE		
		GU-1				UNDERDRAIN								LEACHATE	LIFT		FIELD
CHEMICAL PARAMETER	EVENT	TEMP	GU-2	GU-EX	GW GCS	LIFT STATION	SW-1	SW-1R	SW-2	SW-2R	SW-3	SW-4	SW-5	BASIN	STATION	TCB-1/2	BLANK
LEAD, DISSOLVED	1995-Aug										<5						
LEAD, DISSOLVED	1995-Oct										<5						
LEAD, DISSOLVED	1996-Apr						<5		<5		<5						
LEAD, DISSOLVED	1996-Jan																
LEAD, DISSOLVED	1996-Jul						<5		<5		<5		<5				
LEAD, DISSOLVED	1997-Oct																
LEAD, DISSOLVED	1998-Apr						<4		<4				<4				
LEAD, DISSOLVED	1998-Oct						<4		<4				<4				
LEAD, DISSOLVED	1999-Sep												<4				
LEAD, DISSOLVED	2000-Sep												<4				
LEAD, DISSOLVED	2001-Sep												<4				
LEAD, DISSOLVED	2004-Oct										<4						
LEAD, DISSOLVED	2004-Sep						<4						<4				
LEAD, DISSOLVED	2005-Sep										<4 WT		<4				
LEAD, DISSOLVED	2006-Sep										<4		<4				
LEAD, DISSOLVED	2007-Sep						<4		<4		<4		<4				
LEAD, DISSOLVED	2008-Sep						<4		<4		<4	<4	<4				
LEAD, DISSOLVED	2009-Sep						<4				<4		<4				
LEAD, DISSOLVED	2010-Aug																
LEAD, DISSOLVED	2010-Sep						<4		<4		<4	<4	<4				
LEAD, DISSOLVED	2011-Sep												<4				
LEAD, DISSOLVED	2012-Sep				<4						<4		<4				
LEAD	2013-Sep													<2 D3			
LEAD, DISSOLVED	2013-Sep										<1	<1	<1				<1
LEAD	2014-Sep					0.16 J,B								0.78 J,B	6.2		0.12 J,B
LEAD, DISSOLVED	2014-Sep						0.22 J,B		0.32 J,B		0.17 J,B	0.22 J,B	0.18 J,B				
LEAD	2015-Dec	<1.9														<1.9	<1.9
LEAD, DISSOLVED	2015-Dec	<1.9															
LEAD	2015-Sep	3.8 B		3.3 B							<1.9	<1.9	3.2 B	3.2 B		<1.9	<1.9
LEAD, DISSOLVED	2015-Sep	2.6															
LEAD	2016-Jun	< 0.19														< 0.19	< 0.19
LEAD, DISSOLVED	2016-Jun	< 0.19															
LEAD	2016-Mar	<2.5														<2.5	<2.5
LEAD, DISSOLVED	2016-Mar	<2.5															
LEAD	2016-Sep	< 0.19		<0.19							0.23		< 0.19	<0.19		< 0.19	< 0.19
LEAD, DISSOLVED	2016-Sep																
LEAD	2017-Aug	< 0.033		0.33							0.1		0.33	<0.066 D3		< 0.033	< 0.033
LEAD	2018-Aug	< 0.12		0.66							<3		< 0.12	<0.24 D3		< 0.12	< 0.12
LEAD	2019-Apr																<0.27
LEAD	2019-Aug	<1.1	0.34 J	<0.27							< 0.27	<0.27	< 0.27	<0.27		0.42 J	<0.27

GW Standard:

Note: August 2018 data for GU-1 Temp were listed under GU-2 in previous AWQR appendices.

Action Level: 15

#### MAGNESIUM UNITS: UG/L

CHEMICAL PARAMETER	EVENT	MW-01	MW-01R	MW-12	MW-13	MW-14	MW-15	MW-15R	MW-16	MW-16R	MW-17	MW-18	MW-100R	MW-101R	MW-102P	MW-108
MAGNESIUM, DISSOLVED	1995-Aug	58000			87000	31000										
MAGNESIUM, DISSOLVED	1995-Oct	56000		7800	82000	29000			33000		140000	43000				
MAGNESIUM, DISSOLVED	1996-Apr	50300		8230	76400	28200			35700		97000	43100				
MAGNESIUM, DISSOLVED	1996-Jan	60100		10300	83100	32300			29300			31200				
MAGNESIUM, DISSOLVED	1996-Jul	57300		6790	73000	29800			29400		<100	39700				
MAGNESIUM, DISSOLVED	1996-Oct					30600										
MAGNESIUM, DISSOLVED	1997-Apr	51000			62000	29000			31000		78000	36000				
MAGNESIUM, DISSOLVED	1997-Oct	56000			59000	30000			29000		62000	39000				
MAGNESIUM, DISSOLVED	1998-Apr	62000			54000	29000					42000	37000				[
MAGNESIUM, DISSOLVED	1998-Oct	59000			55000	29000	200000		25000			39000				[
MAGNESIUM, DISSOLVED	1999-Sep	60000		9500	50000	29000	190000		29000		47000	36000				[
MAGNESIUM, DISSOLVED	2000-Sep	47000		9600	50000	31000	200000		29000		25000	34000				[
MAGNESIUM, DISSOLVED	2001-Sep	35000		14800	49400	31400	186000		29500		40600	1900 *MS	0			[
MAGNESIUM, DISSOLVED	2002-Sep	40000		24000	47000	31000	200000		27000		48000	36000				
MAGNESIUM, DISSOLVED	2003-Sep	41300		22700	47800	30700	203000		32100		86600	31600				[
MAGNESIUM, DISSOLVED	2004-Oct															[
MAGNESIUM, DISSOLVED	2004-Sep	29000		19000 N*	46000	32000	200000		31000			31000				[
MAGNESIUM, DISSOLVED	2005-Sep	41000		11000	50000 N*	33000	210000		31000		69000	35000				[
MAGNESIUM, DISSOLVED	2006-Sep	29500		11300	44900	34800	200000		30600		104000	32000				[
MAGNESIUM, DISSOLVED	2007-Sep	28700		9990	44400	30600	199000		33900			28600				[
MAGNESIUM, DISSOLVED	2008-Sep	45400		10900 MHA	50600	85100 pH>	204000		30600		29300	30700				
MAGNESIUM, DISSOLVED	2009-Sep	50100		9170	48900	34200	208000		34200		17600	29900				
MAGNESIUM, DISSOLVED	2010-Aug	64300														
MAGNESIUM, DISSOLVED	2010-Sep			7430	51400	31700	211000		33000		21400	26900				
MAGNESIUM, DISSOLVED	2011-Sep	61800		9310	50300	34300	237000		32000			26400				
MAGNESIUM, DISSOLVED	2012-Sep	52600		9420	52400	36100	121000		35400			28500				
MAGNESIUM	2013-Sep															
MAGNESIUM, DISSOLVED	2013-Sep	44600		8100	45200	31000	106000		32800		66000	28600				
MAGNESIUM	2014-Sep															
MAGNESIUM, DISSOLVED	2014-Sep	25600		7900	41700	30300	104000		22600		32800					
MAGNESIUM	2015-Dec															
MAGNESIUM, DISSOLVED	2015-Dec												39100	116000	242000	25000
MAGNESIUM	2015-Sep															
MAGNESIUM, DISSOLVED	2015-Sep	46300		7320	47000	31300		150000		71000			35300	92900	171000	22500
MAGNESIUM	2016-Jun															
MAGNESIUM, DISSOLVED	2016-Jun												33900 M1	88700	174000	18900
MAGNESIUM	2016-Mar															
MAGNESIUM, DISSOLVED	2016-Mar												37200	101000	205000	23400
MAGNESIUM	2016-Sep															
MAGNESIUM, DISSOLVED	2016-Sep	49500		8300	65400	32300		146000		85500	49200		36000	92600	198000	21500
MAGNESIUM	2017-Aug	48100		7830	61700	30400		139000		41700	58100		37000	72300	157000	17700
MAGNESIUM	2018-Aug			7230	60700	34200		146000		40400	84000		39600	70400	170000	20100
MAGNESIUM, DISSOLVED	2018-Aug															
MAGNESIUM	2019-Apr	31000														
MAGNESIUM	2019-Aug		14000	17000	60000	30000		140000		35000	24000		35000	59000	170000	14000
Magnesium	2-Year Avg.	48800		7530	61200	32300		142500		41050	71050		38300	71350	163500	18900

GW Standard:

None

Note: Average of previous 2 years (2016-2017) is calculated for parameters that do not have an MCL, SMCL, or HAL. For parameters that were not detected, the detection limit is used in the calculation.

#### MAGNESIUM UNITS: UG/L

CHEMICAL PARAMETER	EVENT	GU-1 TEMP	GU-2	GU-EX	GW GCS	UNDERDRAIN	SW-1	SW-1R	SW-2	SW-2R	SW-3	SW-4	SW-5	LEACHATE BASIN	LEACHATE LIFT STATION		FIELD BLANK
MAGNESIUM, DISSOLVED	1995-Aug	TEMP	G0-2	GO-EA	GW GC3	LIFT STATION	3W-1	3W-1K	5W-2	3W-2K	36000	3W-4	3W-3	DASIN	STATION	ICD-I/Z	DLAINK
MAGNESIUM, DISSOLVED	1995-Oct	-				ł			1		32000						
		-				ł	24000		34400		20900						
MAGNESIUM, DISSOLVED	1996-Apr			-	-		24000		34400		20900			-	-		-
MAGNESIUM, DISSOLVED	1996-Jan			-	-		10500		2 (000		1 (000		00500	-	-		
MAGNESIUM, DISSOLVED	1996-Jul			-	-		18500		34200		14800		29500	-	-		+
MAGNESIUM, DISSOLVED MAGNESIUM, DISSOLVED	1996-Oct 1997-Apr						18000		18000		28000						
MAGNESIUM, DISSOLVED	1997-Apr 1997-Oct						18000		18000		27000						
MAGNESIUM, DISSOLVED	1997-Oct 1998-Apr	-				ł	17000		17000		2/000		33000				<u> </u>
		-				ł	14000		14000		13000		23000				<u> </u>
MAGNESIUM, DISSOLVED	1998-Oct						14000		14000				37000				
MAGNESIUM, DISSOLVED	1999-Sep										25000						
MAGNESIUM, DISSOLVED	2000-Sep						29300				17000 13800		27000 18800				
MAGNESIUM, DISSOLVED	2001-Sep						29300										
MAGNESIUM, DISSOLVED	2002-Sep										22000 N*		28000				
MAGNESIUM, DISSOLVED	2003-Sep										42500		42600				
MAGNESIUM, DISSOLVED	2004-Oct					-					22900						<u> </u>
MAGNESIUM, DISSOLVED	2004-Sep						27000						26000				
MAGNESIUM, DISSOLVED	2005-Sep	-				-					36000		48000				
MAGNESIUM, DISSOLVED	2006-Sep	-				-					37900		49200				
MAGNESIUM, DISSOLVED	2007-Sep	-				-	28600		28200		23300		27800				
MAGNESIUM, DISSOLVED	2008-Sep						23800		21800 MHA		20400	12400	34300				
MAGNESIUM, DISSOLVED	2009-Sep	-				-	27000				16300 S3		25900				
MAGNESIUM, DISSOLVED	2010-Aug	-				-											
MAGNESIUM, DISSOLVED	2010-Sep	-					24900		12700		8710	14900	15200				<b></b>
MAGNESIUM, DISSOLVED	2011-Sep												28400				<u> </u>
MAGNESIUM, DISSOLVED	2012-Sep				67400						47000		46500				
MAGNESIUM	2013-Sep	-							-					74400 M1			<u> </u>
MAGNESIUM, DISSOLVED	2013-Sep	-							-		26200	18500	30400				<50
MAGNESIUM	2014-Sep					73700								45600	54200		<17
MAGNESIUM, DISSOLVED	2014-Sep						9300		7700		17200	5200	13900				<u> </u>
MAGNESIUM	2015-Dec	42500														8500	14
MAGNESIUM, DISSOLVED	2015-Dec	45800 D9															<u> </u>
MAGNESIUM	2015-Sep	58800		38600							35000	31200	36200	29800		8460	<13.3
MAGNESIUM, DISSOLVED	2015-Sep	58700															<u> </u>
MAGNESIUM	2016-Jun	72500				l			L		l					9930	<15.8
MAGNESIUM, DISSOLVED	2016-Jun	67000		l	l									L	L		───
MAGNESIUM	2016-Mar	44200		l	l									L	L	9740	<15.8
MAGNESIUM, DISSOLVED	2016-Mar	44600				ļ											<u> </u>
MAGNESIUM	2016-Sep	63600		82600		l			L		38300		33500	89200		9160	<15.8
MAGNESIUM, DISSOLVED	2016-Sep			L		l			L								+
MAGNESIUM	2017-Aug	76100		81400		ļ					47800		47900	82600		14700	<15.4
MAGNESIUM	2018-Aug	114000		103000							36500		51400	88700		22400	<14
MAGNESIUM, DISSOLVED	2018-Aug															20200	<u> </u>
MAGNESIUM	2019-Apr					ļ											120 J
MAGNESIUM	2019-Aug	51000	64000	33000							22000	18000	32000	25000		12000	<29
Magnesium	2-Year Avg.	69850		92200							42150		49650	85650		21300	15.6

GW Standard:

None

Note: August 2018 data for GU-1 Temp were listed under GU-2 in previous AWQR appendices.

### MANGANESE UNITS: UG/L

	EVENT	MW-01	MW 01 B	MW-12	MW-13	MW-14	MW-15	MW 150	MW-16	MW-16R	MW-17	MW-18	MW 1000	MW-101R	MW 1000	MW 100
CHEMICAL PARAMETER MANGANESE, DISSOLVED	1999-Sep	<10	MW-01R	546	234	286	3400	MW-15R	267	MW-IOK	3700	166	MW-TOOR	MW-TUTK	MW-102P	MW-108
MANGANESE, DISSOLVED	2000-Sep	<10		329	177	338	3400		180		5900	170				
MANGANESE, DISSOLVED	2000-Sep 2001-Sep	<10		529	278	238	1700		180		7070	192				
MANGANESE, DISSOLVED	2001-Sep 2002-Sep	31		697	278	238	1000		212		8300	192				
MANGANESE, DISSOLVED	2002-Sep	<10		588	187	227	1400		156		8610	128				
		<10		288	187	22/	1400		100		8010	185				
MANGANESE, DISSOLVED	2004-Oct	<10			015	0.07	0/7		170			100				
MANGANESE, DISSOLVED	2004-Sep	18		555 280	215 182	207 230	967 1900		170 226		0.400	109				
MANGANESE, DISSOLVED	2005-Sep	-			-				-		8400	173				
MANGANESE, DISSOLVED	2006-Sep	15		387 S	191	246	1080		235		12900	171				
MANGANESE, DISSOLVED	2007-Sep	15.1		249	157	142	2880		173	-		103	-			
MANGANESE, DISSOLVED	2008-Sep	<10		273	164	219 pH>2	1130		220	-	411	102	-			
MANGANESE, DISSOLVED	2009-Sep	515		249	215	243	1180		142	-	15.9	83.1	-			
MANGANESE, DISSOLVED	2010-Aug	<10														
MANGANESE, DISSOLVED	2010-Sep			170	137	165	930		93.8 S3		<10	127				
MANGANESE, DISSOLVED	2011-Sep	<10		347	144	192	343		153			91				
MANGANESE, DISSOLVED	2012-Sep	30.1		66.1	140	316	305		118			120				
MANGANESE	2013-Sep															
MANGANESE, DISSOLVED	2013-Sep	6.6		250	140	180	240		140		1600	160				
MANGANESE	2014-Sep															
MANGANESE, DISSOLVED	2014-Sep	18		55	130	280	270		270		280					
MANGANESE	2015-Dec															
MANGANESE, DISSOLVED	2015-Dec												<2.4	390	1600	1100
MANGANESE	2015-Sep															
MANGANESE, DISSOLVED	2015-Sep	11.1		362	104	435		4570		777			8.8	658	714	1100
MANGANESE	2016-Jun															
MANGANESE, DISSOLVED	2016-Jun												3.4 B	120	986	965
MANGANESE	2016-Mar															
MANGANESE, DISSOLVED	2016-Mar												7.2	310	1300	990
MANGANESE	2016-Sep															
MANGANESE, DISSOLVED	2016-Sep	10.7		319	136	408		3160		583	28.6		4.9	48	1250	880
MANGANESE	2017-Aug	2		176	170	213		2990		415	10.8		0.9 B	74.1	558 M1	1150
MANGANESE	2018-Aug			114	178	93.7		3010		329	170		5.6	210	574	1100
MANGANESE	2019-Apr	20														
MANGANESE	2019-Aug		2.8 J	370	180	87		2600		330	440		<2.5	44	550	970

GW Standard:

### MANGANESE UNITS: UG/L

CHEMICAL PARAMETER	EVENT	GU-1 TEMP	GU-2	GU-EX	GW GCS	UNDERDRAIN	SW-1	SW-1R	SW-2	SW-2R	SW-3	SW-4	SW-5	LEACHATE BASIN	LEACHATE LIFT STATION		FIELD BLANK
MANGANESE, DISSOLVED	1999-Sep										<10		42				
MANGANESE, DISSOLVED	2000-Sep										<10		281				
MANGANESE, DISSOLVED	2001-Sep						1870				<10		50				
MANGANESE, DISSOLVED	2002-Sep										<10		62				
MANGANESE, DISSOLVED	2003-Sep									1	<10		52				1
MANGANESE, DISSOLVED	2004-Oct									1	<10						1
MANGANESE, DISSOLVED	2004-Sep						2300			1			135				1
MANGANESE, DISSOLVED	2005-Sep									1	11		335				1
MANGANESE, DISSOLVED	2006-Sep										11.3		66.8				
MANGANESE, DISSOLVED	2007-Sep						1370		<10	1	30.3		49.8				1
MANGANESE, DISSOLVED	2008-Sep						350		35.6	1	<10	55	118				1
MANGANESE, DISSOLVED	2009-Sep						646			1	<10		36.8				1
MANGANESE, DISSOLVED	2010-Aug																
MANGANESE, DISSOLVED	2010-Sep						1150		69.3		<10	185	86.9				
MANGANESE, DISSOLVED	2011-Sep												<10				
MANGANESE, DISSOLVED	2012-Sep				192						<10		10.8				
MANGANESE	2013-Sep													160			
MANGANESE, DISSOLVED	2013-Sep										84	310	38				<5
MANGANESE	2014-Sep					470								53	270		<2.5
MANGANESE, DISSOLVED	2014-Sep						85		84		14	24	49				
MANGANESE	2015-Dec	38														<2.4	<2.4
MANGANESE, DISSOLVED	2015-Dec	54 le															
MANGANESE	2015-Sep	2950		1030							36.9	4020	330	56.8		<2.4	<2.4
MANGANESE, DISSOLVED	2015-Sep	2570															
MANGANESE	2016-Jun	2590														4.2	<0.19
MANGANESE, DISSOLVED	2016-Jun	2530															
MANGANESE	2016-Mar	503														< 0.25	<0.25
MANGANESE, DISSOLVED	2016-Mar	500															
MANGANESE	2016-Sep	2740		156							54.3		295	110		6.4	0.2
MANGANESE, DISSOLVED	2016-Sep																
MANGANESE	2017-Aug	3260		104							27.3		477	9 B		5.3 B	0.31 B
MANGANESE	2018-Aug	5540		219							24		583	3.9 M1		7.5	< 0.33
MANGANESE	2019-Apr																23
MANGANESE	2019-Aug	4700	3900	340							8.2 J	2000	170	13		23	<2.5

GW Standard:

Note: August 2018 data for GU-1 Temp were listed under GU-2 in previous AWQR appendices.

### SELENIUM UNITS: UG/L

CHEMICAL PARAMETER	EVENT	MW-01	MW-01R	MW-12	MW-13	MW-14	MW-15	MW-15R	MW-16	MW-16R	MW-17	MW-18	MW-100P	MW-101R	MW-102P	MW-108
SELENIUM, DISSOLVED	1995-Aug	<5	-01K	////·/2	<5	<5	-1 <b>5</b>	MW-ISK	1111-10	MW-TOK	MW-17	MW-10	MW-TOOK	MW-IOIK	MW-1021	-100
SELENIUM, DISSOLVED	1995-Oct	<5		<5	<5	<5			<5		<5	<5				
SELENIUM, DISSOLVED	1996-Apr	<5		<5	<5	<5			<5		11	<5				
SELENIUM, DISSOLVED	1996-Jan	<5		<5	<5	<5			<5			<5				
SELENIUM, DISSOLVED	1996-Jul	<5		<5	<5	<5			<5		<5	<5				
SELENIUM, DISSOLVED	1996-Oct															
SELENIUM, DISSOLVED	1997-Apr										13.3					
SELENIUM, DISSOLVED	1997-Oct										<5					
SELENIUM, DISSOLVED	1998-Apr										<5					
SELENIUM, DISSOLVED	1998-Oct						<5									
SELENIUM, DISSOLVED	1999-Sep						<5				<5					
SELENIUM, DISSOLVED	2000-Sep	<5		<5	<5	<5	<5		<5		<5	<5				
SELENIUM, DISSOLVED	2001-Sep	<5		<5 NS+	<5	<5	<5		<5		<5	<5				
SELENIUM, DISSOLVED	2002-Sep	<5		<5	<5	<5	<5		<5		<5	<5				
SELENIUM, DISSOLVED	2003-Sep	<5		<5	<5	<5	<5		<5		<5	<5				
SELENIUM, DISSOLVED	2004-Oct															
SELENIUM, DISSOLVED	2004-Sep	<10 R		<5	<5	<5	<5		<5			<5				
SELENIUM, DISSOLVED	2005-Sep	<5		<5 NS	<5	<5	<5		<5		<5	<5				
SELENIUM, DISSOLVED	2006-Sep	<5		<5	<5	<5	<5		<5		<5	<5				
SELENIUM, DISSOLVED	2007-Sep	<5		<5	<5	<5	<20 RL1		<5			<5				
SELENIUM, DISSOLVED	2008-Sep	<5		<5 S	<5	<5 pH>2	<5		<5		<5	<5				
SELENIUM, DISSOLVED	2009-Sep	<5		<5	<5	<5	<5		<5		<5	<5				
SELENIUM, DISSOLVED	2010-Aug	<5														
SELENIUM, DISSOLVED	2010-Sep			<5 S, S3	<5	<5	<5		<5		<5	<5				
SELENIUM, DISSOLVED	2011-Sep	<5		<5	<5	<5 S S3	<5		<5			<5				
SELENIUM, DISSOLVED	2012-Sep	<5		<5	<5	<5	<5		<5 S,S3			<5				
SELENIUM	2013-Sep															
SELENIUM, DISSOLVED	2013-Sep	1		<1	<1	<1	<1		<1		<1	<1				
SELENIUM	2014-Sep															
SELENIUM, DISSOLVED	2014-Sep	0.41		<0.14	<0.14	<0.14	0.41 J		<0.14		0.52 J					
SELENIUM	2015-Dec															
SELENIUM, DISSOLVED	2015-Dec												<5.8	<5.8	<5.8	<5.8
SELENIUM	2015-Sep															
SELENIUM, DISSOLVED	2015-Sep	<5.8		<5.8	<5.8	<5.8		<5.8		<5.8			<5.8	7.2	<5.8	<5.8
SELENIUM	2016-Jun															
SELENIUM, DISSOLVED	2016-Jun												0.95	4.8	<0.18	0.21
SELENIUM	2016-Mar															L
SELENIUM, DISSOLVED	2016-Mar												<5.4	<5.4	<5.4	<5.4
SELENIUM	2016-Sep															L
SELENIUM, DISSOLVED	2016-Sep	1.1		<0.37 D3	<0.37 D3	<0.37 D3		<0.18		<0.55 D3	<0.18		0.68	6.1	<0.55 D3	<0.18
SELENIUM	2017-Aug	1.1		<0.086	<0.086	0.16		<0.086		0.099	0.25		0.95	4	<0.086	0.089
SELENIUM	2018-Aug			<0.16	<0.16	<0.16		0.4		<0.16	<0.16		0.95	3.7	<0.16	<0.16
SELENIUM	2019-Apr	<1														
SELENIUM	2019-Aug		1.4 J	<1	<1	<1		<1	1	<1	<1		<1	jual to the A	<1	<1

GW Standard:

### SELENIUM UNITS: UG/L

		GU-1				UNDERDRAIN								LEACHATE			FIELD
	EVENT	TEMP	GU-2	GU-EX	GW GCS	LIFT STATION	SW-1	SW-1R	SW-2	SW-2R	SW-3	SW-4	SW-5	BASIN	STATION	TCB-1/2	BLANK
SELENIUM, DISSOLVED SELENIUM, DISSOLVED	1995-Aug 1995-Oct										<5 <5						
SELENIUM, DISSOLVED	1995-Ocf 1996-Apr						<5		<5		26						-
SELENIUM, DISSOLVED	1996-Apr 1996-Jan						15		< <u>5</u>		20						-
SELENIUM, DISSOLVED	1996-Jul						<5		<5		13		<5				-
SELENIUM, DISSOLVED	1996-Jui 1996-Oct						15		< <u>5</u>		6		<b>~</b> 5				
SELENIUM, DISSOLVED	1996-Ocf 1997-Apr										13						
SELENIUM, DISSOLVED	1997-Apr 1997-Oct									-	10.5						
SELENIUM, DISSOLVED	1997-Oci 1998-Apr						<5		<5		7		55				+
SELENIUM, DISSOLVED	1998-Oct						<5		<5 <5		<5		<5				+
SELENIUM, DISSOLVED	1998-Ocf 1999-Sep						10		< <u>5</u>	-	<5		<5				+
											<5		<5				
SELENIUM, DISSOLVED SELENIUM, DISSOLVED	2000-Sep 2001-Sep					ł	<5			<u> </u>	<5		<5 <5	<u> </u>		<u> </u>	+
SELENIUM, DISSOLVED	2001-Sep 2002-Sep					ł	<b>~</b> 5			<u> </u>	<5		<5 NS	<u> </u>		<u> </u>	+
SELENIUM, DISSOLVED	2002-Sep 2003-Sep										<5		<5				
SELENIUM, DISSOLVED	2003-3ep										<5		<b>~</b> 5				
SELENIUM, DISSOLVED	2004-Ocf 2004-Sep						<5				< <u>5</u>		<5				+
SELENIUM, DISSOLVED	2004-Sep						15				<5		<5				
SELENIUM, DISSOLVED	2005-Sep										<5		<5				+
SELENIUM, DISSOLVED	2008-Sep						<5		<5		<5		<5				+
SELENIUM, DISSOLVED	2007-Sep 2008-Sep						<5		<5		5.96	<5	<5				+
SELENIUM, DISSOLVED	2008-Sep						<5		< <u>5</u>		<5	<b>~</b> 5	<5				
SELENIUM, DISSOLVED	2009-3ep						~5				~5		~5				+
SELENIUM, DISSOLVED	2010-A0g 2010-Sep						<5		<5		<5	<5	<5				
SELENIUM, DISSOLVED	2010-3ep						~5		~5		~5	~5	<5				+
SELENIUM, DISSOLVED	2011-Sep				<5 S S3						<5		<5				-
SELENIUM	2012-3ep				~5 3 33						~5		~5	39			+
SELENIUM, DISSOLVED	2013-Sep										3.4	<1	<1	- 57			<1
SELENIUM	2013-Sep 2014-Sep					3.6					3.4	~1	~1	13	16		<0.23
SELENIUM, DISSOLVED	2014-Sep					5.0	0.69 J		0.92 J		3.9	0.43 J	0.55 J	15	10		~0.25
SELENIUM	2014-Sep 2015-Dec	<5.8					0.07 J		0.72 5		5.7	0.43 J	0.55 5			<5.8	<5.8
SELENIUM, DISSOLVED	2015-Dec	<5.8														~3.0	~5.0
SELENIUM	2015-Dec 2015-Sep	<5.8		<5.8							<5.8	<5.8	<5.8	9.9		<5.8	<5.8
SELENIUM, DISSOLVED	2015-Sep	<5.8		<b>~</b> J.0							<b>~3.</b> 0	<b>~3</b> .0	~3.0	7.7		~3.0	~5.0
SELENIUM	2015-3ep 2016-Jun	1.3														1.8	<0.18
SELENIUM, DISSOLVED	2016-Jun	1.3										-				1.0	~0.10
SELENIUM	2016-Mar	<5.4								<u> </u>	<u> </u>			<u> </u>		<5.4	<5.4
SELENIUM, DISSOLVED	2016-Mar	<5.4														~5.4	~3.4
SELENIUM	2016-Sep	1.3		2.6						<u> </u>	2.8		0.38	37.6		1.7	<0.18
SELENIUM, DISSOLVED	2016-Sep	1.5		2.0							2.0		0.50	57.0		1.7	~0.10
SELENIUM	2017-Aug	0.77		2.4						<u> </u>	1.6		0.56	52		0.9	<0.086
SELENIUM	2017-Aug 2018-Aug	0.85		2.4						<u> </u>	<6.1		0.55	70.7		1.6	< 0.16
SELENIUM	2019-Apr	0.05		2.1							~0.1		0.55	/ 0./		1.0	1 J
SELENIUM	2019-Apr 2019-Aug	<1	<1	2.1 J							1.1 J	<1	<1	52		2.3 J	<1
SELEINIUM	2017-Aug			2.I J						1	1.1 J	~	~1	J2		2.3 J	

GW Standard:

MCL = 50

Note: August 2018 data for GU-1 Temp were listed under GU-2 in previous AWQR appendices.

### ZINC UNITS: UG/L

CHEMICAL PARAMETER	EVENT	MW-01	MW-01R	MW-12	MW-13	MW-14	MW-15	MW-15R	MW-16	MW-16R	MW-17	MW-18	MW-100R	MW-101R	MW-102P	MW-108
ZINC, DISSOLVED	1995-Aug	<20			<20	<20										
ZINC, DISSOLVED	1995-Oct	<20		<20	<20	<20			<20		<20	<20				
ZINC, DISSOLVED	1996-Apr	<30		<30	<30	<30			<30		<30	<30				
ZINC, DISSOLVED	1996-Jan	<20		<20	<20	<20			<20			<20				
ZINC, DISSOLVED	1996-Jul	<30		<30	<30	<30			<30		<30	<30				
ZINC, DISSOLVED	1997-Oct										<20					
ZINC, DISSOLVED	1998-Apr															
ZINC, DISSOLVED	1998-Oct						<20									
ZINC, DISSOLVED	1999-Sep						32									
ZINC, DISSOLVED	2000-Sep						<20									
ZINC, DISSOLVED	2001-Sep						<20									
ZINC, DISSOLVED	2002-Sep						<20									
ZINC, DISSOLVED	2003-Sep						<20									
ZINC, DISSOLVED	2004-Oct															
ZINC, DISSOLVED	2004-Sep	<20		<40 IE	<40 IE	<40 IE	<20		<40 IE			<20				
ZINC, DISSOLVED	2005-Sep	29		<100 IE	<100 IE	<100 IE	87		<100 IE		41	<100 IE				
ZINC, DISSOLVED	2006-Sep	25.4		<60	118	<60 IE	29.1		<60 IE		45.1	<60 IE				
ZINC, DISSOLVED	2007-Sep	29.1		<100 IE,MI	<100 IE	<100 IE	183		<40 IE			<40 IE				
ZINC, DISSOLVED	2008-Sep	22.2		<100 IE	<100 IE	<100 IEpH>	91.3		<100 IE		28.3	<100 IE				
ZINC, DISSOLVED	2009-Sep	45.5		<60 IE	<60 IE	<60 IE	183		<60 IE		25.4	<60 IE				
ZINC, DISSOLVED	2010-Aug	<20														
ZINC, DISSOLVED	2010-Sep			<60 IE	<60 IE	<60 IE	<20		<60 IE		<20	<20				
ZINC, DISSOLVED	2011-Sep	<20		<100 IE	<100 IE	<100 IE	<20		<60 IE			<60 IE				
ZINC, DISSOLVED	2012-Sep	<20		<60 IE	<60 IE	<60 IE	<20		133			<60 IE				
ZINC	2013-Sep															
ZINC, DISSOLVED	2013-Sep	<50		<50	<50	<50	<50		<50		100	<50				
ZINC	2014-Sep															
ZINC, DISSOLVED	2014-Sep	22		<12	15	<12	<12		<12		28					
ZINC	2015-Dec															
ZINC, DISSOLVED	2015-Dec												2.8	<2.6	11	35
ZINC	2015-Sep															
ZINC, DISSOLVED	2015-Sep	<2.6		<2.6	5.9	3.3		<2.6		4.1			<2.6	<2.6	5.9	7.6
ZINC	2016-Jun															
ZINC, DISSOLVED	2016-Jun												3.3 B	4.1 B	14.6 B	22.7
ZINC	2016-Mar															
ZINC, DISSOLVED	2016-Mar												<7.1	<7.1	<7.1	<7.1
ZINC	2016-Sep															
ZINC, DISSOLVED	2016-Sep	3.7 B		2.7 B	4.2 B	2.8 B		3.2 B		3.2 B	11.6		6.2 B	3.9 B	28.5 B	6.3 B
ZINC	2017-Aug	2.4		3.7	2 B	1.7 B		1.5 B		1 B	10.4		0.88	1.8	3.6 M1	87.8
ZINC	2018-Aug			<3.7	<3.7	<3.7		6		<3.7	31.4		<3.7	6.7	4.3	88.1
ZINC	2019-Apr	<10														
ZINC	2019-Aug		<10	<10	<10	<10	ter than or e	equal to the	MDL and the	<10	<10		<10	<10	<10	86

GW Standard: SMCL = 5000

ZINC UNITS: UG/L

															LEACHATE		
CHEMICAL PARAMETER	EVENT	GU-1 TEMP	GU-2	GU-EX	GW GCS	UNDERDRAIN	SW-1	SW-1R	SW-2	SW-2R	SW-3	SW-4	SW-5	LEACHATE BASIN	LIFT STATION	TCB-1/2	FIELD BLANK
ZINC, DISSOLVED	1995-Aug	T EMI	00-2	OO-LA	011 003		511-1	JW-IK	511-2	<b>JW-</b> 2R	<20	511-4	511-5	DAJIN	JIANON	100-1/2	DEANK
ZINC, DISSOLVED	1995-Oct										<20						
ZINC, DISSOLVED	1996-Apr						<30		<30		<30						
ZINC, DISSOLVED	1996-Jan						~30		~30		~30						
ZINC, DISSOLVED	1996-Jul						<30		33		<30						
ZINC, DISSOLVED	1997-Oct						~30				~30						
ZINC, DISSOLVED	1998-Apr						<20		<20				<20				+
ZINC, DISSOLVED	1998-Apr						<20		<20				<20				
ZINC, DISSOLVED	1999-Sep						~20		~20				<20				+
ZINC, DISSOLVED	2000-Sep												<20				┼────
ZINC, DISSOLVED	2000-Sep 2001-Sep												<20				┼────
ZINC, DISSOLVED	2001-Sep					-		-					~20				───
ZINC, DISSOLVED	2002-Sep 2003-Sep					-		-									───
ZINC, DISSOLVED	2003-3ep					-		-			<20						───
ZINC, DISSOLVED	2004-Oct 2004-Sep						<20				<20		<20				───
ZINC, DISSOLVED	2004-Sep 2005-Sep						<20				24		<20				
ZINC, DISSOLVED	2005-Sep 2006-Sep										24		23.7				ł
							22.0		(2)				31.1				
ZINC, DISSOLVED	2007-Sep						33.2		62.6		26.7	057					ł
ZINC, DISSOLVED	2008-Sep						<20		<20		<20	35.7	<20				───
ZINC, DISSOLVED	2009-Sep						38.9				21.9		25.5				───
ZINC, DISSOLVED	2010-Aug								- 00		-00	0.4.0					ł
ZINC, DISSOLVED	2010-Sep						<20		<20		<20	34.3	<20				───
ZINC, DISSOLVED	2011-Sep												<20				<u> </u>
ZINC, DISSOLVED	2012-Sep				37.8			-			<20		<20			-	───
ZINC	2013-Sep							-						<50			<u> </u>
ZINC, DISSOLVED	2013-Sep							-			<50	<50	<50				<50
ZINC	2014-Sep					27								<12	<12		<12
ZINC, DISSOLVED	2014-Sep						<12		<12		<12	<12	<12				<u> </u>
ZINC	2015-Dec	4.9						-								<2.6	4.7
ZINC, DISSOLVED	2015-Dec	7.1															<u> </u>
ZINC	2015-Sep	21.8		21.9							6.2	14.7	6.5	4.6		3.1	<2.6
ZINC, DISSOLVED	2015-Sep	22.5															
ZINC	2016-Jun	23.8														1.7	1.5
ZINC, DISSOLVED	2016-Jun	25.6 D9															───
ZINC	2016-Mar	<7.1										ļ				<7.1	<7.1
ZINC, DISSOLVED	2016-Mar	<7.1															
ZINC	2016-Sep	17.2		15.9							2.9	ļ	2.6	2		10.1	4.1
ZINC, DISSOLVED	2016-Sep															ļ	Ļ
ZINC	2017-Aug	26.2		14.5		L					1.4 B		2.5 B	1.8 B		1.2 B	2 B
ZINC	2018-Aug	166		23.6		ļ					<3.5		<3.7	<3.7		<3.7	<3.7
ZINC	2019-Apr																<10
ZINC	2019-Aug	36	91	15 J							<10	<10	<10	<10		<10	<10

GW Standard: SMCL = 5000 Note: August 2018 data for GU-1 Temp were listed under GU-2 in previous AWQR appendices.

### CHLORIDE UNITS: MG/L

CHEMICAL PARAMETER	EVENT	MW-01	MW-01R	MW-12	MW-13	MW-14	MW-15	MW-15R	MW-16	MW-16R	MW-17	MW-18	MW-100R	MW-101R	MW-102P	MW-108
CHLORIDE	1995-Aug	170			14	13										
CHLORIDE	1995-Oct	150		48	<5	<5			16		66	<5				
CHLORIDE	1996-Apr	121		48	17	18			16		19	22				
CHLORIDE	1996-Jan	174		54	32	35			21			20				
CHLORIDE	1996-Jul	138.3		46.6	17.5	18.1			16.2		9.9	21.7				
CHLORIDE	1996-Oct	106		53	27	25			26		21	31				
CHLORIDE	1997-Apr	98		49	19	19			18		9.5	22				
CHLORIDE	1997-Oct	120		50	18	19			18		8.9	23				
CHLORIDE	1998-Apr	120		51	19	23			19		6	24				
CHLORIDE	1998-Oct	580		50	18	20	8.6		18			22				
CHLORIDE	1999-Sep	110		49	17	22			20		5.6	24				
CHLORIDE	2000-Sep	89.6		52.1	16.8	24.4	7.4		20.2		<5	22.1				
CHLORIDE	2001-Sep	53.3		59.7	15.6	21	8.7		18.6		5.6	19.7				
CHLORIDE	2002-Sep	59.5		76.9	14.3	25	7.6		19.3		<5	22.9				
CHLORIDE	2003-Sep	64.8		71.8	13.6	21.6	7.5		18.3		5.6	20.4				
CHLORIDE	2004-Oct															
CHLORIDE	2004-Sep	37.9		63.9	13.5	21.7	7.7		18.9			18.5				
CHLORIDE	2005-Sep	60		55	13.4	21.6	6.9		18.8		5.8	20.2				
CHLORIDE	2006-Sep	35.9		55.3	14.1	22.6	7.08		19		5.88	20.5				
CHLORIDE	2007-Sep	34.5		53.5	13.6	22	7.49		17.9			17.2				
CHLORIDE	2008-Sep	70.4		56.9	13	20.5	6.51		17.8		5.51	16.2				
CHLORIDE	2009-Sep	84.9		53.2	14.2	21.6	6.92		17.9		<5	16.3				
CHLORIDE	2010-Aug	164														
CHLORIDE	2010-Sep			49.2	11.5	19.5	<10 RL1		17		4.73	16.5				
CHLORIDE	2011-Sep	113		51	13.1	21.8	5.98		17			16.5				-
CHLORIDE	2012-Sep	74.4			12.7	22.4	<5 RL1		18.1			17.1				
CHLORIDE	2013-Sep	54.7		46.1	11.5	18.9	3.9		16.4		3.2	14.8				
CHLORIDE	2014-Sep	26.6		47.8	11.5	20.9	4		18.9		2.8					
CHLORIDE	2015-Dec												21.1	4.3	8.6	1.9
CHLORIDE	2015-Sep	62.4		47.7	11.2	19.4		10.9		28.5			26.5	3.8	8.6	2.3
CHLORIDE	2016-Jun												24.8	4.7	8.5	1.8
CHLORIDE	2016-Mar												22.7	4.6	9.3	1.9
CHLORIDE	2016-Sep	64.9		44.5	12.1	19.3		7.4		19.2	6.7		27.4	4.3	8.8	2
CHLORIDE	2017-Aug	60.6		47.4	11.5	17.7		5.6		20.7	7		26.4	5.3	8.6	2.1
CHLORIDE	2018-Aug			47.2	11.9	18.9		5.5		20.4	8		26.4	5.3	8.8	2.1
CHLORIDE	2019-Apr	24														
CHLORIDE	2019-Aug	1	25	50	13	18		6.3		22	aual to the	MDL and the	27	6.7	9.1	2.7 J

GW Standard:

### CHLORIDE UNITS: MG/L

															LEACHATE		Т
CHEMICAL PARAMETER	EVENT	GU-1 TEMP	GU-2	GU-EX	GW GCS	UNDERDRAIN	SW-1	SW-1R	SW-2	SW-2R	SW-3	SW-4	SW-5	LEACHATE BASIN	LIFT STATION	TCB-1/2	FIELD BLANK
CHLORIDE	1995-Aug										30						
CHLORIDE	1995-Oct										36						
CHLORIDE	1996-Apr						20		20		17						
CHLORIDE	1996-Jan								-								
CHLORIDE	1996-Jul						30.4		7.5		9		35.6				
CHLORIDE	1996-Oct			1							18		106	1			-
CHLORIDE	1997-Apr			1			56		23		12			1			-
CHLORIDE	1997-Oct			1							8.1			1			-
CHLORIDE	1998-Apr						13		14		5.8		6.4				
CHLORIDE	1998-Oct						8.8		10		<5		<5				
CHLORIDE	1999-Sep										4.3		6.2				
CHLORIDE	2000-Sep										<5		<5				
CHLORIDE	2001-Sep						23.4				5.4		5.5				
CHLORIDE	2002-Sep										<5		<5				
CHLORIDE	2003-Sep										7		33.1				
CHLORIDE	2004-Oct										<5 MSO						
CHLORIDE	2004-Sep						18.5						<5				
CHLORIDE	2005-Sep										5.2		16.2				
CHLORIDE	2006-Sep										6.18		13.7				
CHLORIDE	2007-Sep						23.1		16.8		6.3		8.33				
CHLORIDE	2008-Sep						20.7		18.6		<5	10.2	9.39				
CHLORIDE	2009-Sep						17.2				<5		5.19				
CHLORIDE	2010-Aug																
CHLORIDE	2010-Sep						16.2		9.25		3.31	6.24	5.07				
CHLORIDE	2011-Sep												16.1				
CHLORIDE	2012-Sep				16.5						10.1		30.6				
CHLORIDE	2013-Sep										2.8	6.3	6.4	123			<1
CHLORIDE	2014-Sep					15.4	8.4		6.3		2.7	3.6	4.9	29.7	31.6		<0.5
CHLORIDE	2015-Dec	17.5														5	<0.5
CHLORIDE	2015-Sep	17.5		5.8							5.3	19.6	8.5	24		10.2	<0.5
CHLORIDE	2016-Jun	16														5.8	<0.5
CHLORIDE	2016-Mar	18.8														4.9	<0.5
CHLORIDE	2016-Sep	17.2		19.4							9.2		14.1	127		5.6	<0.5
CHLORIDE	2017-Aug	16.7		14.8							7		32.9	138		8.5	0.67
CHLORIDE	2018-Aug	12.8		16.4							11		38.8	147		8.1	<0.46
CHLORIDE	2019-Apr																25
CHLORIDE	2019-Aug	18	19	10							3.7 J	16	8.1	180		18	< 0.29

GW Standard:

Note: August 2018 data for GU-1 Temp were listed under GU-2 in previous AWQR appendices.

#### SULFATE UNITS: MG/L

CHEMICAL PARAMETER	EVENT	MW-01	MW-01R	MW-07P	MW-12	MW-13	MW-14	MW-15	MW-15R	MW-16	MW-16R	MW-17	MW-18	MW-100R	MW-101R	MW-102P	MW-108
SULFATE	1999-Sep	350			440	640	510			550		390	440				
SULFATE	2000-Sep	340			740	840	610	2400		680		370	530				
SULFATE	2001-Sep	210 SA			880 SA	1100 SA	540 SA	1700 SA		570 SA		430 SA	450 SA				
SULFATE	2002-Sep	320 SA			710 SA	1000 SA	660 SA	2200 SA		690 SA		600 SA	600 SA				
SULFATE	2003-Sep	260 SA			760 SA	1000 SA	640 SA	1700 SA		820 SA		1300 SA	490 SA				
SULFATE	2004-Oct																
SULFATE	2004-Sep	160 SA			770 SA	920 SA	630 SA	2300 SA		850 SA			530 SA				
SULFATE	2005-Sep	260			840	1000	740	2100		810		900	590				
SULFATE	2006-Sep	157			930	645	970	3440		960		542	656				
SULFATE	2007-Sep	138			814	1040	694	1910		784			552				
SULFATE	2008-Sep	291			724	929	657	1850		716		561	493				
SULFATE	2009-Sep	298		845	726	921	638	1820		688		296	476				
SULFATE	2010-Aug	403															
SULFATE	2010-Sep			293	713	942	648	1820		697		381	481				
SULFATE	2011-Sep	374			733	1070	602	1830		642			431				
SULFATE	2012-Sep	318		705	752	961	692	762		734			507				
SULFATE	2013-Sep	264			680	966	646	707		783		1110	507				
SULFATE	2014-Sep	97.8			747	922	728	607		719		568					
SULFATE	2015-Dec													151	1020	2070	192
SULFATE	2015-Sep	312			759	982	667		1280		1170			154	931	1690	193
SULFATE	2016-Jun													153	942	1840	179
SULFATE	2016-Mar													146	922	1860	173
SULFATE	2016-Sep	323			821	1150	764 M1		1020		1470	881		170	883	1920	175
SULFATE	2017-Aug	346			710	1240	628		874		850	1060		176	607	1540	140
SULFATE	2018-Aug				782	1210	684		990		786	1360		169	526	1690	155
SULFATE	2019-Apr	190															
SULFATE	2019-Aug		60	1	810	1200	710		980		800	260		160	440	1600	99

GW Standard:

#### SULFATE UNITS: MG/L

		GU-1				UNDERD RAIN LIFT								LEACHATE	LEACHATE LIFT	
CHEMICAL PARAMETER	EVENT	TEMP	GU-2	GU-EX	GW GCS	STATION	SW-1	SW-1R	SW-2	SW-2R	SW-3	SW-4	SW-5	BASIN	STATION	TCB-1/2
SULFATE	1999-Sep										460		390			
SULFATE	2000-Sep										300		310			
SULFATE	2001-Sep						40 SA				330 SA		380 SA			
SULFATE	2002-Sep										460 SA		310 SA			
SULFATE	2003-Sep										880 SA		380 SA			
SULFATE	2004-Oct										390					
SULFATE	2004-Sep						20 SA						390 SA			
SULFATE	2005-Sep										610		400			
SULFATE	2006-Sep										644		428			
SULFATE	2007-Sep						36		328		403		283			
SULFATE	2008-Sep						23.4		35.6		457	21.8	463			
SULFATE	2009-Sep						30.6				289		447			
SULFATE	2010-Aug															
SULFATE	2010-Sep						30.8		37.6		221	45.1	104			
SULFATE	2011-Sep												489			
SULFATE	2012-Sep				948						901		598			
SULFATE	2013-Sep										380	36.3	276	4060		
SULFATE	2014-Sep					1170	14.1		17.1		298	10.3	175	1390	1360	
SULFATE	2015-Dec	249														242
SULFATE	2015-Sep	432		691							576	162	527	1060		287
SULFATE	2016-Jun	622														223
SULFATE	2016-Mar	241														229
SULFATE	2016-Sep	514		905						1	688		356	5000		240
SULFATE	2017-Aug	561		771		1				1	631		362	5290		411
SULFATE	2018-Aug	959		962							624		363	5920		549
SULFATE	2019-Apr									1						
SULFATE	2019-Aug	350	450	520							260	5.6	180	1800		750

GW Standard:

SMCL = 250

Note: August 2018 data for GU-1 Temp were listed under GU-2 in previous AWQR appendices.

# TOTAL DISSOLVED SOLIDS UNITS: MG/L

CHEMICAL PARAMETER	EVENT	MW-01	MW-01R	MW-12	MW-13	MW-14	MW-15R	MW-16R	MW-17	MW-100R	MW-101R	MW-102P	MW-108
TOTAL DISSOLVED SOLIDS	2015-Sep	929		1930	1940	2000	2480	2830		637	1900	3560	520
TOTAL DISSOLVED SOLIDS	2015-Dec									589	1880	3140	484
TOTAL DISSOLVED SOLIDS	2016-Mar									606	1760	3380	490
TOTAL DISSOLVED SOLIDS	2016-Jun									622	1780	2990	476
TOTAL DISSOLVED SOLIDS	2016-Sep	808		1560	2100	1850	2050	2830	1440	601	1510	2890	432
TOTAL DISSOLVED SOLIDS	2017-Aug	887		1700	2170	1820	2050	2340	1560	633	1290	2760	420
TOTAL DISSOLVED SOLIDS	2018-Aug			1860	2430	2090	2030	2320	2160	644	1160	2730	448
TOTAL DISSOLVED SOLIDS	2019-Apr	640											
TOTAL DISSOLVED SOLIDS	2019-Aug		530	1800	2400	2000	2300	2300	600	630	1100	3100	430

GW Standard:

SMCL = 500 mg/L

# TOTAL DISSOLVED SOLIDS UNITS: MG/L

						UNDERDR									LEACHAT		
		GU-1				AIN LIFT								LEACHATE	E LIFT		FIELD
CHEMICAL PARAMETER	EVENT	TEMP	GU-2	GU-EX	GW GCS	STATION	SW-1	SW-1R	SW-2	SW-2R	SW-3	SW-4	SW-5	BASIN	STATION	TCB-1/2	BLANK
TOTAL DISSOLVED SOLIDS	2015-Sep	1150		1170							939	558	927	1750		471	<5
TOTAL DISSOLVED SOLIDS	2015-Dec	792														423	10
TOTAL DISSOLVED SOLIDS	2016-Mar	828														383	16
TOTAL DISSOLVED SOLIDS	2016-Jun	1420														391	7
TOTAL DISSOLVED SOLIDS	2016-Sep	1110		1550							964		544	6730		334	<5
TOTAL DISSOLVED SOLIDS	2017-Aug	1270		1480							973		682	8340		611	<5
TOTAL DISSOLVED SOLIDS	2018-Aug	1710		1630							937		725	8850		791	10 H1
TOTAL DISSOLVED SOLIDS	2019-Apr																370
TOTAL DISSOLVED SOLIDS	2019-Aug	1100	1200	970							460	320	720	3100		1200	24 J

GW Standard:

Note: August 2018 data for GU-1 Temp were listed under GU-2 in previous AWQR appendices.

SMCL = 500 mg/L

### PH, LAB UNITS: STD. UNITS

																					1
				MW-			MW-											MW-	MW-	MW-	
CHEMICAL PARAMETER	EVENT	MW-01	MW-01R	07M	MW-07P	MW-08	09M	MW-09P	MW-12	MW-13	MW-14	MW-15	MW-15R	MW-16	MW-16R	MW-17	MW-18	100R	101R	102P	MW-108
PH, LAB	2018-Aug																				L
PH, FIELD	1995-Aug	7.15								7.03	7.17										
PH, FIELD	1995-Oct	6.95							6.43	6.9	6.96			6.67		6.94	7.29				
PH, FIELD	1996-Jan	7.88							8.28	8.18	7.47			7.94			7.83				
PH, FIELD	1996-Apr	7.5							8	7.3	7.4			7.7		7.2	7.1				
PH, FIELD	1996-Jul	7.3							8.1	7.2	7.5			7.8		7.4	7.3				
PH, FIELD	1996-Oct	7							8.1	6.9	7.1			7.5		6.8	7.2				
PH, FIELD	1997-Apr	7.4							8	7.2	7.4			7.4		7.4	7.3				
PH, FIELD	1997-Oct	7.4							8.2	7.3	7.5			7.7		7.5	7.3				1
PH, FIELD	1998-Apr	6.82							7.47	6.79	7.09			7.11		6.9	7.07				1
PH, FIELD	1998-Oct	6.7							7.4	7	6.7	6.4		7			6.5				
PH, FIELD	1999-Sep	7.1							7.6	6.8	6.7	6.4		7.2		6.9	6.9				
PH, FIELD	2000-Sep	7.11							7.87	7.13	7.47	6.53		7.4		7.03	7.03				
PH, FIELD	2001-Sep	7.33							7.82	7.07	7.23	6.67		7.4		7.04	7.04				
PH, FIELD	2002-Sep	7.15							7.5	7.03	7.12	6.83		7.16		7.35	6.98				1
PH, FIELD	2003-Sep	7.33							7.31	7	7.3	5.83		6.97		7.06	7.29				1
PH, FIELD	2004-Sep	7.23							7.68	7.11	7.4	6.48		7.25			7.1				
PH, FIELD	2004-Oct																				
PH, FIELD	2005-Sep	6.59							7.65	6.89	7.06	6.4		6.82		6.91	6.94				
PH, FIELD	2006-Sep	7.61							7.8	6.67	7.06	6.63		6.8		6.73	7.35				
PH, FIELD	2007-Sep	6.08							7.44	6.58	7.03			6.53			6.43				
PH, FIELD	2008-Sep	6.98							7.65	6.71	7.09	6.8		7.4		7.46	7.07				
PH, FIELD	2009-Sep	7			6.82				7.54	6.85	7.02	6.41		6.75		6.77	6.9				
PH, FIELD	2010-Aug	7.24																			
PH, FIELD	2010-Sep	, .= .			6.79				7.71	7.16	7.15	6.76		7.31		7.19	7.26				1
PH, FIELD	2011-Sep	8.5							8.09	7.57	7.73	6.84		7.24			7.55				
PH, FIELD	2012-Sep	8.23			7.53				6.72	6.94	7.23	5.47		7.41			7.27				1
PH, FIELD	2013-Sep	00							<b>.</b>												-
PH, FIELD	2013-Sep	7.44		7.45		7.12			7.75	7.32	7.48	7		7.53		7	7.46				-
PH, FIELD	2014-Sep	7.56			7,94	6.85	7.08	5.35	8.15	7.23	7.37	6.65		7.36		7.2					-
PH. FIELD	2015-Sep	7.38				2.00		2.00	7.9	7.16	7.28		6.74		6.95				7.07	6.55	<u> </u>
PH, FIELD	2015-Dec	/.00						1		/	/.20		<b>0</b>		0.70			6.78	6.84	6.12	6.87
PH. FIELD	2016-Mar																	7.27	6.93	6.5	7.09
PH, FIELD	2016-Jun							1										7.17	7.29	7.01	7.25
PH, FIELD	2016-Sep	7.76							7.91	7.63	7.14		7.05		7.11	6.97		7.83	7.19	6.38	7.09
PH, FIELD	2017-Aug	7.27							7.7	6.97	7.14		6.44		6.84	6.87		7.07	6.73	6.26	6.62
PH, FIELD	2017-Aug 2018-Aug	/.2/	<u> </u>						8.18	7.33	7.45		6.8		7.2	6.89		7.47	7.22	6.63	6.95
PH, FIELD	2019-Aug 2019-Apr	7.36	<u> </u>						0.10	7.55	7.45		0.0		1.2	0.07	<u> </u>	/.4/	1.22	0.03	0.75
PH, FIELD	2019-Apr 2019-Aug	7.30	7.65					+	7.61	6.98	7.04		6.41		6.74	7.15		7.28	7.33	6.39	6.37
	2019-AUG		7.05				I	1	/.01	0.90	7.04	I	0.41		0./4	7.15		/.20	1.33	0.39	0.37

GW Standard: SMCL = 8.5

### PH, LAB UNITS: STD. UNITS

						UNDERDR									LEACHATE	
CHEMICAL PARAMETER	EVENT	GU-1 TEMP	GU-2	GU-EX	GW GCS	AIN LIFT STATION	SW-1	SW-1R	SW-2	SW-2R	SW-3	SW-4	SW-5	LEACHATE BASIN	LIFT STATION	TCR 1/0
PH, LAB	2018-Aug	TEMP	60-2	GO-EA	GW GC3	STATION	344-1	JW-IK	344-2	JW-2K	314-3	314-4	314-3	DAJIN	STATION	8.4 H6
PH, FIELD	1995-Aug										9.13					0.4110
PH, FIELD	1995-Oct										6.05					
PH, FIELD	1996-Jan										0.05					
PH, FIELD	1996-Apr						8.2		8		8.8					
PH, FIELD	1996-Jul						8.3		7.1		8.5		9			
PH, FIELD	1996-Oct						0.5		7.1		8.1		8.1			
PH, FIELD	1997-Apr						7.8		8.2		8.8		0.1			
PH, FIELD	1997-Oct						7.0		0.2		8.7					
PH, FIELD	1998-Apr						7.96		8.19		7.41		7.48			
PH, FIELD	1998-Oct						7.1		7.4		6.9		7.1			
PH, FIELD	1999-Sep						7.1		7.4		8.1		8.1			
PH, FIELD	2000-Sep										7.7		7.67			
PH, FIELD	2000-66p						7.6				7.31		7.47			
PH, FIELD	2002-Sep						7.0				8.34		7.5			
PH, FIELD	2002-5cp										8.02		7.2			
PH, FIELD	2000-0cp						8.15				0.02		7.87			
PH, FIELD	2004-Oct			1	1		0.1.0			1	6.8		, 10,	1	1	
PH, FIELD	2005-Sep										7.97		7.72			
PH, FIELD	2006-Sep										7.53		7.59			
PH, FIELD	2000-0cp						7.88		7.36		7.68		8.05			
PH, FIELD	2008-Sep						7.7		7.84		8.34	7.92	7.66			
PH, FIELD	2009-Sep						7.82		/ 10 1		7.02	7.7.2	8.48			
PH, FIELD	2010-Aug						7102				, 102		0110			
PH, FIELD	2010-Sep						7.37		8.4		8.1	7.9	8.11			
PH, FIELD	2011-Sep							1	<b>.</b>		<b>.</b>		9.11			
PH, FIELD	2012-Sep							1			8.62		8.55			
PH, FIELD	2013-Sep							1						7.56		
PH, FIELD	2013-Sep							1			8.01	7.48	7.49			
PH, FIELD	2014-Sep					6.89	7.59		8.02		7.81	7.68	8.09	7.68	6.98	
PH, FIELD	2015-Sep	6.85		6.91					7.81	1	8.23	7.57	7.54	7.39		1
PH, FIELD	2015-Dec	6.94								1						7.28
PH, FIELD	2016-Mar	6.43														8.48
PH, FIELD	2016-Jun	7.09														7.92
PH, FIELD	2016-Sep	8.1		6.8						1	7.61		8.23	7.13		8.89
PH, FIELD	2017-Aug	7.13		7.09						1	8.32		8.33	6.71		7.8
PH, FIELD	2018-Aug	6.94		7.15						1	7.5		7.99	8.1		8.81
PH, FIELD	2019-Apr															
PH, FIELD	2019-Aug			7.94	1					1	8.03	7.59	7.64	8.43	1	9.22

GW Standard: SMCL = 8.5 Note: August 2018 data for GU-1 Temp were listed under GU-2 in previous AWQR appendices.

### TEMPERATURE UNITS: DEG C

CHEMICAL PARAMETER	EVENT	MW-01	MW-01R	MW- 07M	MW-07P	MW-08	MW- 09M	MW-09P	MW-12	MW-13	MW-14	MW-15	MW-15R	MW-16	MW-16R	MW-17	MW-18	MW- 100R	MW- 101R	MW- 102P	MW-108
TEMPERATURE	1995-Aug	27.8								20.9	21.1										
TEMPERATURE	1995-Oct	11.3							8.5	8.6	8.6			10.4		13.7	8.8				
TEMPERATURE	1996-Jan	6.47							6.1	6.31	6.9			5.36			5				
TEMPERATURE	1996-Apr	8.5							11.5	9.5	10.5			11.7		6	9				
TEMPERATURE	1996-Jul	17							16	18.7	14			20.5		20.1	13.5				
TEMPERATURE	1996-Oct	14.4							12.8	12.2	12.8			12.2		14.4	11.7				
TEMPERATURE	1997-Apr	10							13	13	13			13		9	12				
TEMPERATURE	1997-Oct	17							15	14	13			15		20	14				
TEMPERATURE	1998-Apr	12							13	12	9			9		13.5	13.5				
TEMPERATURE	1998-Oct	14.4							12.5	15	13.2	12		12.6			12.5				
TEMPERATURE	1999-Sep	14							12.5	14.1	12	13		12.5		14.5	12.4				
TEMPERATURE	2000-Sep	21.5							16.1	15.1	16.7	16.8		12.8		22.7	12.9				
TEMPERATURE	2001-Sep	16.7							16.1	15.1	14.2	16.8		14.2		19.2	12.9				
TEMPERATURE	2002-Sep	17.2							24.1	17.6	16.5	15.2		16.1		21.1	19.4				
TEMPERATURE	2003-Sep	17.1							15.9	15.4	23.2	13.4		16.7		22.3	15.9				
TEMPERATURE	2004-Sep	16.8							15.9	16.7	16.1	15.8		17.5			15.8				
TEMPERATURE	2004-Oct																				
TEMPERATURE	2005-Sep	15.3							13.3	15.2	15.1	15.8		14.5		21.4	14.6				
TEMPERATURE	2006-Sep	17.4							18	16.6	19.2	16.3		17.2		21.5	14.5				
TEMPERATURE	2007-Sep	15.1							13.8	14.6	14.3			13			12.7				
TEMPERATURE	2008-Sep	18							17.1	14.8	14.8	21.1		16		25.4	15				
TEMPERATURE	2009-Sep	15.4			14				13.9	16.4	15.8	15.1		17.1		21.3	16.4				
TEMPERATURE	2010-Aug	17.6																			
TEMPERATURE	2010-Sep				16.8				16.6	15.8	16.1	18		15.9		21.4	15.2				
TEMPERATURE	2011-Sep	18.1							12.6	15.5	15.8	12.3		12.8			12.4				
TEMPERATURE	2012-Sep	16.8			15.1				15.2	12.5	11.8	10.5		14.3							
TEMPERATURE	2013-Sep	16.5		15.9		14.7			14.7	15.5	16.3	14.7		17.3		22.3	15.6				
TEMPERATURE	2014-Sep	17.6			13.1	14.3	16.3	14.5	15.8	14.6	15.3	13.5		14.4		24.5					
TEMPERATURE	2015-Sep	17							14.5	13.6	14		14.1		13.9				12.5	13.2	
TEMPERATURE	2015-Dec																	12.7	12.4	13.8	12.1
TEMPERATURE	2016-Mar																	11.5	12.2	13.8	12.8
TEMPERATURE	2016-Jun																	11.3	12	14.8	13.1
TEMPERATURE	2016-Sep	15.8							13.9	13.9	13.6		12.9		13.8	21		12.7	12.6	14.5	12.8
TEMPERATURE	2017-Aug	19.5							15.2	14.2	16.3		17.7		14.3	19.8		13.6	15	13.3	13.2
TEMPERATURE	2018-Aug								13.9	14.6	13.7		16.6		14	19.2		13.2	12.3	14.1	13.9
TEMPERATURE	2019-Apr	8.87					1		1	1											1
TEMPERATURE	2019-Aug		13.8		1		1		15.6	14.3	15.5		16.7		15	25.9		12.7	11.8	13.5	13.7

GW Standard:

None

### TEMPERATURE UNITS: DEG C

						UNDERDR									LEACHATE	
		GU-1				AIN LIFT								Leachate	LIFT	
CHEMICAL PARAMETER	EVENT	TEMP	GU-2	GU-EX	GW GCS	STATION	SW-1	SW-1R	SW-2	SW-2R	SW-3	SW-4	SW-5	Basin	STATION	TCB-1/2
TEMPERATURE	1995-Aug										35.5					
TEMPERATURE	1995-Oct										11.4					
TEMPERATURE	1996-Jan										8.6					
TEMPERATURE	1996-Apr						13		12.2		9					
TEMPERATURE	1996-Jul						24.5		29.5		28.3		36			
TEMPERATURE	1996-Oct										12.2		13.3			
TEMPERATURE	1997-Apr						9		9		17					
TEMPERATURE	1997-Oct										23					
TEMPERATURE	1998-Apr						18.5		18.5		17		17			
TEMPERATURE	1998-Oct						14		13.2		15.5		15.5			
TEMPERATURE	1999-Sep										18		19			
TEMPERATURE	2000-Sep										17.5		22.5			
TEMPERATURE	2001-Sep						16.8				17.9		17.9			
TEMPERATURE	2002-Sep										26		25.1			
TEMPERATURE	2003-Sep										23.2		21.5			
TEMPERATURE	2004-Sep						21.4						23.5			
TEMPERATURE	2004-Oct										13.8					
TEMPERATURE	2005-Sep										22.2		19.7			
TEMPERATURE	2006-Sep										20.7		21.9			
TEMPERATURE	2007-Sep						16.5		15		22.4		22.1			
TEMPERATURE	2008-Sep						20.9		21.4		21.8	19.4	19.2			
TEMPERATURE	2009-Sep						19.5				21.9		23.6			
TEMPERATURE	2010-Aug															
TEMPERATURE	2010-Sep						25.1		22.5		24.6	23.8	26.9			
TEMPERATURE	2011-Sep						12.4						24.1			
TEMPERATURE	2012-Sep				16.33						18.44		21.13			
TEMPERATURE	2013-Sep										24.2	24.6	19.9	21.2		
TEMPERATURE	2014-Sep					18.1	20.3		21.7		23.1	20.8	22.5	21.6	18.7	
TEMPERATURE	2015-Sep	16.8		22					21		25.6	21.7	25.1	23.1		
TEMPERATURE	2015-Dec	9.8														1
TEMPERATURE	2016-Mar	11														10.5
TEMPERATURE	2016-Jun	15.6														29
TEMPERATURE	2016-Sep	17.2		15							26.9		27	18		27.2
TEMPERATURE	2017-Aug	18.5		15.4							23.4		21.7	18		22.8
TEMPERATURE	2018-Aug	19.9		13.8							24.7		25.3	22		28
TEMPERATURE	2019-Apr													1		
TEMPERATURE	2019-Aug										27.8	21.8	25.4	23.8		25.2

GW Standard:

None

Note: August 2018 data for GU-1 Temp were listed under GU-2 in previous AWQR appendices.

### CONDUCTANCE, SPECIFIC UNITS: UMHOS/CM

CHEMICAL PARAMETER	EVENT	MW-01	MW-01R	MW- 07M	MW-07P	MW-08	MW- 09M	MW-09P	MW-12	MW-13	MW-14	MW-15	MW-15R	MW-16	MW-16R	MW-17	MW-18	MW- 100R	MW- 101R	MW- 102P	MW-108
CONDUCTANCE, SPECIFIC	1995-Aug	1510	- <b>0</b> 1K	07 m			07/m		1	3990	2660	1	1111-10K	1111-10	mm-rok	1		TOOK	TOTA	1021	
CONDUCTANCE, SPECIFIC	1995-Oct	2180							4140	6460	4320			3200		4920	4880				
CONDUCTANCE, SPECIFIC	1996-Jan	1950	1						2880	4290	3040			2380			2160				
CONDUCTANCE, SPECIFIC	1996-Apr	1540							2700	3900	2800			2000		2300	2500				
CONDUCTANCE, SPECIFIC	1996-Jul	1340							2000	3200	2000			1700		1240	2000				
CONDUCTANCE, SPECIFIC	1996-Oct	1770							2600	3500	2600			2000		1490	2500				
CONDUCTANCE, SPECIFIC	1997-Apr	1570							2600	3200	2400			2100		1700	2400				
CONDUCTANCE, SPECIFIC	1997-Oct	1790							2400	2900	2600			2000		1940	2300				
CONDUCTANCE, SPECIFIC	1998-Apr	1460							2460	2860	2590			2090		1280	2370				
CONDUCTANCE, SPECIFIC	1998-Oct	1440							2370	2780	2390	2790		1900			2300				
CONDUCTANCE, SPECIFIC	1999-Sep	1520							2370	2840	2660	3180		2100		1630	2570				
CONDUCTANCE, SPECIFIC	2000-Sep	1374	1						2700	3030	2850	3530		2420		1042	2390				
CONDUCTANCE, SPECIFIC	2001-Sep	1015	1						2610	2970	2860	2610		2280		1366	2150				
CONDUCTANCE, SPECIFIC	2002-Sep	1179	1						2650	2990	3030	3490		2490		1564	2540				
CONDUCTANCE, SPECIFIC	2003-Sep	993							2310	2570	2970	3160		2070		2410	2380				
CONDUCTANCE, SPECIFIC	2004-Sep	830	1						1168	2610	3050	3470		2460			2100				
CONDUCTANCE, SPECIFIC	2004-Oct																				
CONDUCTANCE, SPECIFIC	2005-Sep	1531							2650	2850	2900	3480		2210		2050	2340				
CONDUCTANCE, SPECIFIC	2006-Sep	827							2540	2560	2600	3510		2380		2620	2340				
CONDUCTANCE, SPECIFIC	2007-Sep	834							2590	2580	2970			2290			2020				
CONDUCTANCE, SPECIFIC	2008-Sep	1297							2640	2910	3050	3520		2510		1353	1971				
CONDUCTANCE, SPECIFIC	2009-Sep	1340			2320				2740	2960	3020	3510		2300		830	1935				
CONDUCTANCE, SPECIFIC	2010-Aug	1618																			
CONDUCTANCE, SPECIFIC	2010-Sep				1409				2680	2840	3020	3380		2230		1103	1896				
CONDUCTANCE, SPECIFIC	2011-Sep	1507							2690	2520	2540	3780		2350			1917				
CONDUCTANCE, SPECIFIC	2012-Sep	1332			2117				2696	2813	3063	2372		2260			2045				
CONDUCTANCE, SPECIFIC	2013-Sep	923		2970		1893			2580	2680	2810	1657		1879		1411	1495				
CONDUCTANCE, SPECIFIC	2014-Sep	470			2520	2890	7440	7420	2890	3050	3240	1259		2600		1204					
CONDUCTANCE, SPECIFIC	2015-Sep	1139							2790	2830	3040		2530		3460				1804	3450	
CONDUCTANCE, SPECIFIC	2015-Dec																	880	2310	4480	739
CONDUCTANCE, SPECIFIC	2016-Mar																	815	1775	3860	652
CONDUCTANCE, SPECIFIC	2016-Jun																	865	1952	3602	715.9
CONDUCTANCE, SPECIFIC	2016-Sep	1263							2920	3330	3240		2590		4290	1677		933	1874	3980	714
CONDUCTANCE, SPECIFIC	2017-Aug	1663							3380	4121	3734		3360		4198	2482		1221	2087	4362	857
CONDUCTANCE, SPECIFIC	2018-Aug								2617	3149	2778		2633		3155	2394		907	1438	3291	673
CONDUCTANCE, SPECIFIC	2019-Apr	951																			
CONDUCTANCE, SPECIFIC	2019-Aug		791						2577	3103	2741		2640		3152	806		927	1425	3558	517

GW Standard:

None

I:\25219073.00\Data and Calculations\Graphs\Hist Results_2019_lab and field Cond 10/28/2022

### CONDUCTANCE, SPECIFIC UNITS: UMHOS/CM

CHEMICAL PARAMETER	EVENT	GU-1 TEMP	GU-2	GU-EX	GW GCS	UNDERDRAIN LIFT STATION	SW-1	SW-1R	SW-2	SW-2R	SW-3	SW-4	SW-5	LEACHATE BASIN	LEACHATE LIFT STATION	TCB-1/2
CONDUCTANCE, SPECIFIC	1995-Aug										900					· · · ·
CONDUCTANCE, SPECIFIC	1995-Oct			1							1350					1
CONDUCTANCE, SPECIFIC	1996-Jan															1
CONDUCTANCE, SPECIFIC	1996-Apr						650		1180		880					1
CONDUCTANCE, SPECIFIC	1996-Jul						650		1170		620		950			1
CONDUCTANCE, SPECIFIC	1996-Oct										750		1480			1
CONDUCTANCE, SPECIFIC	1997-Apr						680		730		1110					
CONDUCTANCE, SPECIFIC	1997-Oct										1150					
CONDUCTANCE, SPECIFIC	1998-Apr						410		440		890		1000			1
CONDUCTANCE, SPECIFIC	1998-Oct						320		370		510		730			1
CONDUCTANCE, SPECIFIC	1999-Sep										980		900			
CONDUCTANCE, SPECIFIC	2000-Sep										782		901			
CONDUCTANCE, SPECIFIC	2001-Sep						783				904		911			
CONDUCTANCE, SPECIFIC	2002-Sep										978		922			
CONDUCTANCE, SPECIFIC	2003-Sep										1550		1126			1
CONDUCTANCE, SPECIFIC	2004-Sep						721						959			
CONDUCTANCE, SPECIFIC	2004-Oct										896					
CONDUCTANCE, SPECIFIC	2005-Sep										1220		997			
CONDUCTANCE, SPECIFIC	2006-Sep										1335		1168			
CONDUCTANCE, SPECIFIC	2007-Sep						704		891		1000		841			
CONDUCTANCE, SPECIFIC	2008-Sep						536		549		1027	363	1180			
CONDUCTANCE, SPECIFIC	2009-Sep						678				738		1063			
CONDUCTANCE, SPECIFIC	2010-Aug															
CONDUCTANCE, SPECIFIC	2010-Sep						606		374		569	410	431			
CONDUCTANCE, SPECIFIC	2011-Sep						1917						1194			
CONDUCTANCE, SPECIFIC	2012-Sep				2088						1699		810			
CONDUCTANCE, SPECIFIC	2013-Sep										669	505	667	6240		
CONDUCTANCE, SPECIFIC	2014-Sep					2630	278		242		649	713	513	2970	3360	
CONDUCTANCE, SPECIFIC	2015-Sep	1324		1268					813		1021	738	1051	2280		
CONDUCTANCE, SPECIFIC	2015-Dec	1144														660
CONDUCTANCE, SPECIFIC	2016-Mar	1093														532
CONDUCTANCE, SPECIFIC	2016-Jun	1627														550
CONDUCTANCE, SPECIFIC	2016-Sep	1461		1660							1156		802	7800		550
CONDUCTANCE, SPECIFIC	2017-Aug	2258		2437							1672		1324	12257		1126
CONDUCTANCE, SPECIFIC	2018-Aug	2144		2450							1172		1024	9518		1070
CONDUCTANCE, SPECIFIC	2019-Apr															
CONDUCTANCE, SPECIFIC	2019-Aug			1735							624	533	1123	3933		1546

GW Standard:

None

Note: August 2018 data for GU-1 Temp were listed under GU-2 in previous AWQR appendices.

# Appendix D

Statistical Evaluation of Groundwater Monitoring Results

November 27, 2024 File No. 25224073.00

## TECHNICAL MEMORANDUM

- SUBJECT: Statistical Evaluation of Groundwater Monitoring Results Ottumwa Midland Landfill, Shallow and Pennsylvanian Units, August 2024 Monitoring Event
- PREPARED BY: Lindsey Hawksworth
- CHECKED BY: Ryan Matzuk

# STATISTICAL METHOD

The statistical analysis uses a prediction interval approach as recommended for detection monitoring in the March 2009 U.S. Environmental Protection Agency (U.S. EPA) Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at Resource Conservation and Recovery Act (RCRA) Facilities. For the prediction interval evaluation, interwell testing was selected based on the considerations outlined in Chapter 6 of the Unified Guidance. The statistical program used to calculate the interwell prediction interval is Sanitas[™] (Version 10.0.16 and 10.0.23).

The Ottumwa Midland Landfill (OML) monitoring data are evaluated in two well groups, representing the shallow (water table) and mid-depth (Pennsylvanian) hydrogeologic units. For the shallow hydrogeologic unit, monitoring well MW-1/MW-1R is used as the background well. Monitoring well MW-1R replaced MW-1 beginning with the August 2019 sampling event. The combined historical results for MW-1 and MW-1R are shown under the MW-1R label in the Sanitas[™] output. For the mid-depth hydrogeologic unit, piezometer MW-102P is used as the background well.

# TIME SERIES PLOTS

Time series plots are prepared for the required monitoring parameters to show the concentration variations over time. Time series graphs are included in **Attachments D1** (shallow) and **D2** (Pennsylvanian). For metals, the time series plots only show monitoring results since August 2017, when the monitoring program transitioned from dissolved metals to total metals analysis. For sulfate, which is not typically affected by filtering, older historical results for background wells are included in the time series plots and are used in the determination of background for the statistical evaluation.

# **OUTLIER ANALYSIS**

An outlier analysis is performed for background monitoring results at upgradient wells. A statistical outlier is a value that is extremely different from the other values in the data set. The Sanitas[™] outlier tests identify data points that do not appear to fit the distribution of the rest of the data set and determine if they differ significantly from the rest of the data. The outlier analysis performed in Sanitas[™] includes the following steps:



- 1) Run normality test (Shapiro Wilk/Francia).
- 2) If normally distributed, run U.S. EPA's 1989 Outlier Test to identify suspected outliers.
  - a) If number of background samples is less than or equal to 25, run Dixon's test for suspected outliers.
  - b) If number of background samples is more than 25, run Rosner's test for suspected outliers.
- 3) If not normally distributed, run Tukey's test for outliers.
- 4) Review data flagged as possible outliers to evaluate whether they should be removed from the background data set. Also review time series plots for possible outliers that were not picked up in the statistical evaluation (e.g., outlier test may not identify outliers when two values are similar to each other, but very different from all other data).

Results identified as statistical outliers are checked for possible lab instrument failure, field collection problems, or data entry errors; however, outliers may exist naturally in the data if there is an extremely wide inherent or temporal variability in the data. The Unified Guidance states that unless a likely error can be identified, the outlier should not be removed.

For the August 2024 sampling event, the following background values were identified as potential outliers and handled as described:

## Shallow Hydrogeologic Unit

- **Barium (MW-1/MW-1R).** One low result from the August 2017 event was flagged as a statistical outlier. This result was kept in the dataset because there was no known explanation for the lower result, and it appeared to be within the range of potential natural variation relative to the other observed barium concentrations.
- Beryllium (MW-1/MW-1R). One low result below the limit of detection from the August 2017 event and one high result below the limit of quantitation from the August 2023 event were flagged as statistical outliers. The low non-detect result reflects a change in minimum detect limits by the laboratory. Both results were kept in the dataset because they appeared to be within the range of potential natural variation relative to the other observed beryllium concentrations.
- Fluoride (MW-1/MW-1R). One low result from the August 2022 event was flagged as a statistical outlier. This result was kept in the dataset because there was no known explanation for the lower result, and it appeared to be within the range of potential natural variation relative to the other observed fluoride concentrations.
- **Magnesium (MW-1/MW-1R)**. One high result from the August 2017 event was flagged as a statistical outlier. This result was kept in the dataset because there was no known explanation for the higher result, and it appeared to be within the range of potential natural variation relative to the other observed magnesium concentrations.
- Manganese (MW-1/MW-1R). One high result from the April 2019 event was flagged as a statistical outlier. This result was kept in the dataset because there was no known

explanation for the higher result, and it appeared to be within the range of potential natural variation relative to the other observed manganese concentrations. Iron was also high for this event, but not flagged as an outlier, suggesting that the high result could be due to a change in redox conditions or in suspended solids.

## Pennsylvanian Unit

- **Beryllium (MW-102P).** One high result from the August 2023 event was flagged as a statistical outlier. This result was kept in the dataset because there it appeared to be within the range of potential natural variation relative to the other observed beryllium concentrations. The high non-detect value reflects an elevated minimum limit of detection from the laboratory caused by a 4X dilution factor applied to this parameter.
- Sulfate (MW-102P). One low result from the August 2023 event was flagged as a statistical outlier. This result was kept in the dataset because there was no known explanation for the lower result, and it appeared to be within the range of potential natural variation relative to the other observed sulfate concentrations.
- Total Dissolved Solids (MW-102P). One low result from the August 2021 event was flagged as a statistical outlier. The result was removed from the dataset during the 2021 data analysis because it appeared likely to represent a laboratory error. The result was approximately 10 percent of previous values, suggesting a possible calculation error. The total dissolved solids (TDS) result was approximately 20 percent of the sulfate value, which also suggested an erroneous result since the TDS should be greater than the sulfate result.

Outlier analysis results are included in Attachments D3 (Shallow) and D4 (Pennsylvanian).

# **INTERWELL PREDICTION LIMITS**

Interwell prediction limits for each hydrogeologic unit are calculated using background data from the upgradient monitoring wells (MW-1/1R and MW-102P) for each monitored constituent, with outliers removed as noted above. The prediction limit analysis performed in Sanitas[™] includes the following steps:

- 1) If 100 percent of the background values are non-detect, the Double Quantification rule applies and no prediction limit is calculated.
- 2) If 50 percent or more of results are non-detect, then a non-parametric prediction limit is calculated.
- 3) If fewer than 50 percent of the results are non-detect, run normality test (Shapiro Wilk/Francia) to assess whether the data fit a normal distribution or can be transformed to fit a normal distribution (e.g., lognormal).
- 4) If normal or transformed normal, calculate parametric prediction limit.
- 5) If not normal or transformed normal, calculate non-parametric prediction limit.

TECHNICAL MEMORANDUM November 27, 2024 Page 4

Consistent with the Unified Guidance, parametric prediction limits are calculated based on a 1-of-2 retesting protocol and a 10 percent site-wide false positive rate. Sanitas[™] establishes the per-test significance level based on user inputs of the number of events per year, number of constituents being evaluated, and number of compliance wells. For the 2024 event, the following values were used:

Parameter	Value	Comments		
Evaluations per year	1	August event		
Constituents analyzed	15	Shallow: 20 constituents sampled. Beryllium not counted because all but one background results were non- detect. Calcium, lithium, molybdenum, and total suspended solids were added to program in 2023 and do not meet the minimum requirement of 4 samples for prediction limit statistical analysis. Pennsylvanian: 20 constituents, selenium not counted because all background results were non-detect. Calcium, lithium, molybdenum, and total suspended solids were added to program in 2023 and do not meet the minimum requirement of 4 samples for prediction limit statistical analysis.		
Compliance wells	9	5 Shallow, 4 Pennsylvanian		

Non-parametric prediction limits are also based on a 1-of-2 retesting protocol. The non-parametric limit is the highest value in the background dataset. Due to the small sample size, the false positive rate for the non-parametric tests is higher than for the parametric tests, but will go down as more background data are obtained.

For results with 100 percent non-detects in the background data, evaluation under the Double Quantification Rule means that a statistically significant increase (SSI) has not occurred for a compliance well unless two sample results from the well exceed the laboratory's reporting limit or quantification limit. For evaluation of parameters with less than 100 percent non-detects in the background sampling, the non-detects were replaced with the detection limit, unless the non-detects represent less than 15 percent of the total samples, in which case one-half of the detection limit was used.

Interwell prediction limit analysis results for 2024 are included in **Attachments D5** (Shallow) and **D6** (Pennsylvanian).

## LH/RM//

I:\25224073.00\Deliverables\2024 AWQR\App D - Stats\231130_Appendix D - Memo_Draft_2024.docx

D1 – Times Series Graphs - Shallow

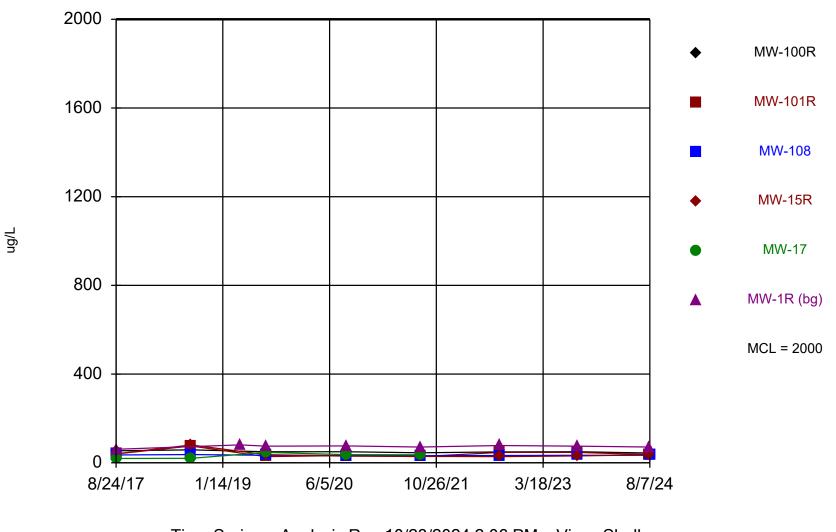
Sanitas[™] v.10.0.16 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

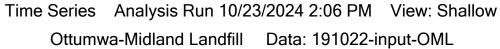
## Arsenic



Time Series Analysis Run 10/23/2024 2:06 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML

ng/L


## **Time Series**


Constituent: Arsenic (ug/L) Analysis Run 10/23/2024 2:20 PM View: Shallow

Ottumwa-Midland Landfill Data: 191022-input-OML

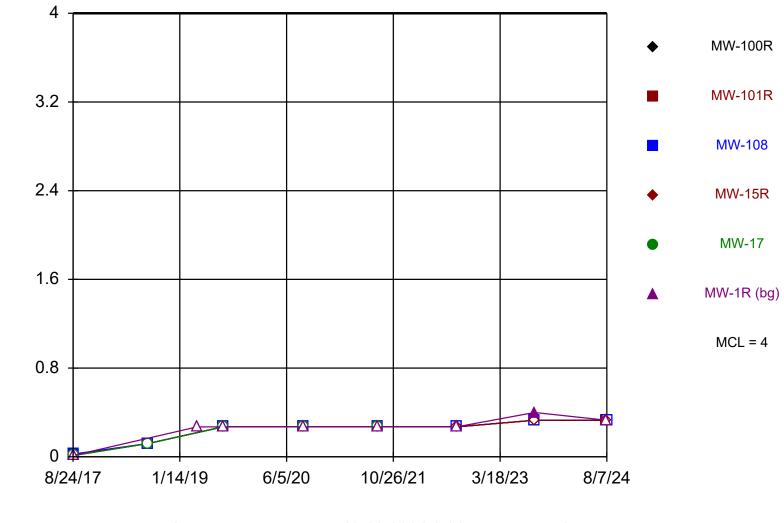
						•
	MW-100R	MW-101R	MW-108	MW-15R	MW-17	MW-1R (bg)
8/24/2017	0.18 (J)	0.25 (J)	1.1	0.55 (J)	0.052 (J)	0.2 (J)
8/16/2018	0.27 (J)	0.44 (J)	1.7	1	0.31 (J)	
4/6/2019						<0.75
8/7/2019	<0.75	<0.75	3	<0.75	<0.75	<0.75
8/24/2020	<0.88	<0.88	2.8		<0.88	<0.88
8/25/2020				<0.88		
8/10/2021					<0.75	<0.75
8/11/2021	<0.75	<0.75	3.3			
8/12/2021				<0.75		
8/23/2022						<0.75 (U)
8/24/2022	<0.75 (U)	<0.75 (U)	1.9 (J)	<0.75 (U)		
8/29/2023	<0.53 (U)	<0.53 (U)				<0.53 (U)
8/30/2023			1.7 (J)	<0.53 (U)		
8/6/2024	<0.53	<0.53		<0.53		<0.53
8/7/2024			4.1			

Barium





## **Time Series**


Constituent: Barium (ug/L) Analysis Run 10/23/2024 2:20 PM View: Shallow

Ottumwa-Midland Landfill Data: 191022-input-OML

	MW-100R	MW-101R	MW-108	MW-15R	MW-17	MW-1R (bg)
8/24/2017	54.2	40	35.4	40.6	19.4	61
8/16/2018	58.4	75.9	37.1	80.5	20.2	
4/6/2019						81
8/7/2019	50	28	34	37	47	75
8/24/2020	50	33	33		37	76
8/25/2020				30		
8/10/2021					36 (B)	71 (B)
8/11/2021	45 (B)	28 (B)	32 (B)			
8/12/2021				29 (B)		
8/23/2022						78
8/24/2022	49	47	33	28		
8/29/2023	50	47				75
8/30/2023			34	31		
8/6/2024	44	37		36		71
8/7/2024			34			

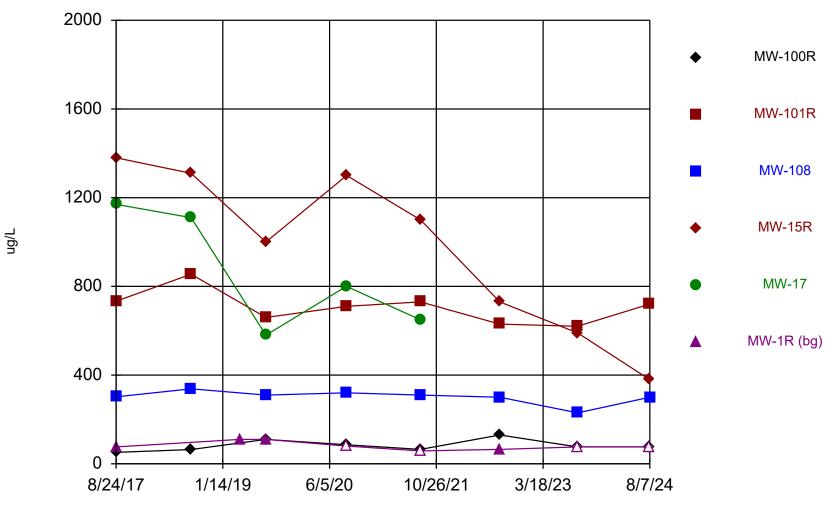
Sanitas[™] v.10.0.16 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

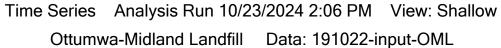




Time Series Analysis Run 10/23/2024 2:06 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML

ng/L

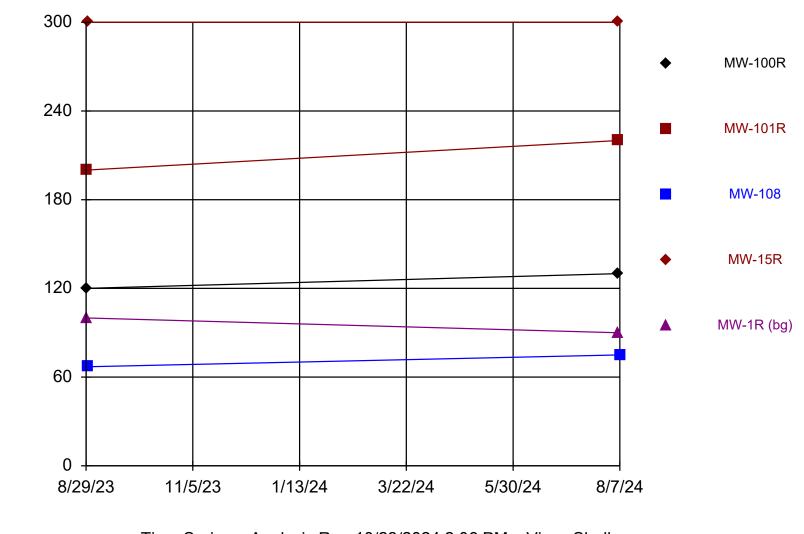

## **Time Series**


Constituent: Beryllium (ug/L) Analysis Run 10/23/2024 2:20 PM View: Shallow

Ottumwa-Midland Landfill Data: 191022-input-OML

	MW-100R	MW-101R	MW-108	MW-15R	MW-17	MW-1R (bg)
8/24/2017	<0.012	0.02 (J)	0.025 (J)	<0.012	<0.012	<0.012
8/16/2018	<0.12	<0.12	<0.12	<0.12	<0.12	
4/6/2019						<0.27
8/7/2019	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27
8/24/2020	<0.27	<0.27	<0.27		<0.27	<0.27
8/25/2020				<0.27		
8/10/2021					<0.27	<0.27
8/11/2021	<0.27	<0.27	<0.27			
8/12/2021				<0.27		
8/23/2022						<0.27 (U)
8/24/2022	<0.27 (U)	<0.27 (U)	<0.27 (U)	<0.27 (U)		
8/29/2023	<0.33 (U)	<0.33 (U)				0.4 (J)
8/30/2023			<0.33 (U)	<0.33 (U)		
8/6/2024	<0.33	<0.33		<0.33		<0.33
8/7/2024			<0.33			

#### Boron



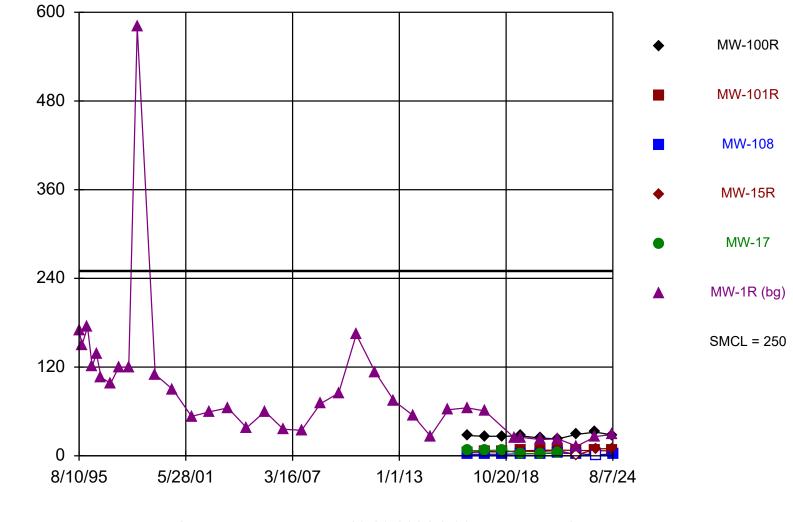



Constituent: Boron (ug/L) Analysis Run 10/23/2024 2:20 PM View: Shallow

	MW-100R	MW-101R	MW-108	MW-15R	MW-17	MW-1R (bg)
8/24/2017	51.8 (J)	733	302	1380	1170	76 (J)
8/16/2018	64.2 (J)	855	338	1310	1110	
4/6/2019						110 (J)
8/7/2019	<110	660 (B)	310 (B)	1000 (B)	580 (B)	110 (J,B)
8/24/2020	86 (J)	710	320		800	<80
8/25/2020				1300		
8/10/2021					650	<58
8/11/2021	65 (J)	730	310			
8/12/2021				1100		
8/23/2022						65 (J)
8/24/2022	130	630	300	730		
8/29/2023	<76 (U)	620				<76 (U)
8/30/2023			230	590		
8/6/2024	<76	720		380		<76
8/7/2024			300			

Calcium




Time Series Analysis Run 10/23/2024 2:06 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML

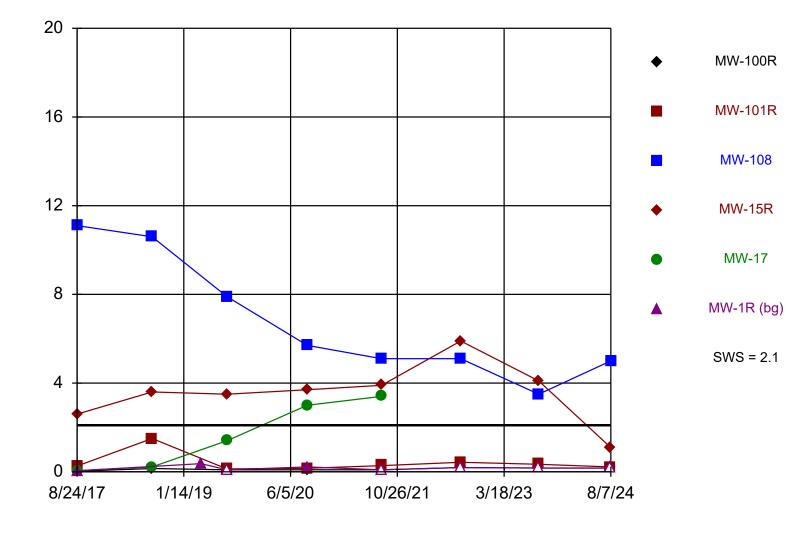
mg/L

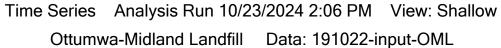
Constituent: Calcium (mg/L) Analysis Run 10/23/2024 2:20 PM View: Shallow

	MW-100R	MW-101R	MW-108	MW-15R	MW-1R (bg)
8/29/2023	120	200			100
8/30/2023			67	300	
8/6/2024	130	220		300	90
8/7/2024			75		

### Chloride




Time Series Analysis Run 10/23/2024 2:06 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML


mg/L

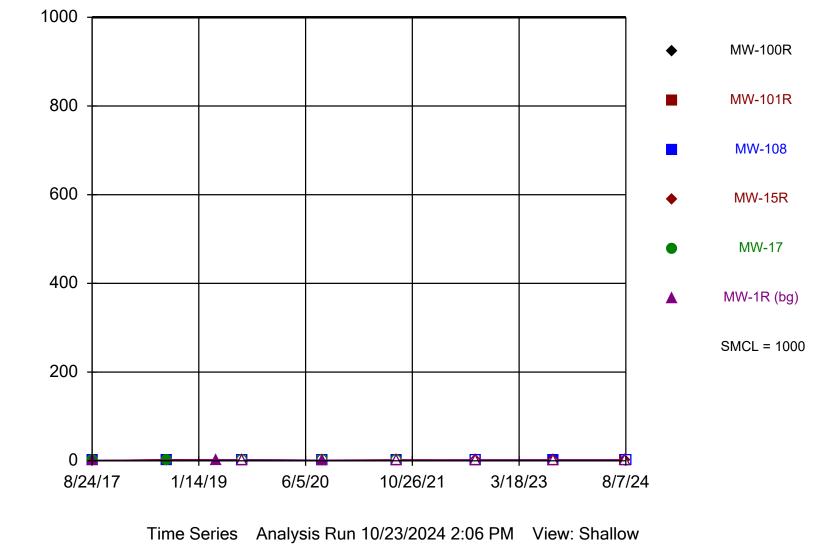
Constituent: Chloride (mg/L) Analysis Run 10/23/2024 2:20 PM View: Shallow

				Ottumwa-Midlan	d Landfill Data: 1	191022-input-UML
	MW-100R	MW-101R	MW-108	MW-15R	MW-17	MW-1R (bg)
8/10/1995						170
10/6/1995						150
1/25/1996						174
4/26/1996						121
7/19/1996						138.3
10/21/1996						106
4/28/1997						98
10/6/1997						120
4/22/1998						120
10/7/1998						580 (X)
9/29/1999						110
9/13/2000						89.6
9/19/2001						53.3
9/11/2002						59.5
9/10/2003						64.8
9/15/2004						37.9
9/14/2005						60
9/13/2006						35.9
9/12/2007						34.5
9/17/2008						70.4
9/16/2009						84.9
8/31/2010						164
9/13/2011						113
9/18/2012						74.4
9/27/2013						54.7
9/10/2014						26.6
9/2/2015						62.4
9/7/2016	27.4	4.3	2	7.4	6.7	64.9
8/24/2017	26.4	5.3	2.1	5.6	7	60.6
8/16/2018	26.4	5.3	2.1	5.5	8	
4/6/2019						24
8/7/2019	27	6.7	2.7 (J)	6.3	3.2 (J)	25
8/24/2020	24	7.5	2.8 (J)		3.1 (J)	22
8/25/2020				5.7		
8/10/2021					4.4 (J)	23
8/11/2021	23	7.7	3.9 (J)			
8/12/2021				7.3		
8/23/2022						13
8/24/2022	29	7.3	2.8 (J)	<2.3 (U)		
8/29/2023	32	6.9				26
8/30/2023			<2.3 (U)	9.2		
8/6/2024	28	6.7		10		29
8/7/2024			2.6 (J)			
			• •			

# Cobalt



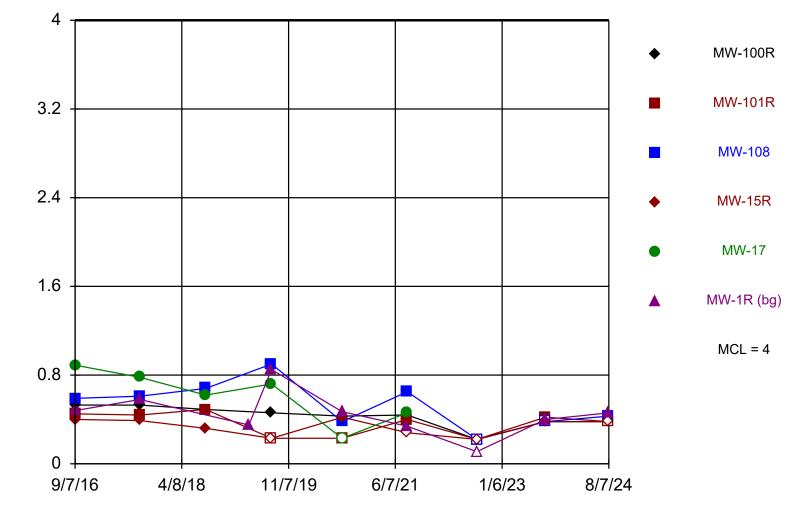



ng/L

Constituent: Cobalt (ug/L) Analysis Run 10/23/2024 2:20 PM View: Shallow

	MW-100R	MW-101R	MW-108	MW-15R	MW-17	MW-1R (bg)
8/24/2017	0.028 (J)	0.26 (J)	11.1	2.6	0.054 (J)	0.049 (J)
8/16/2018	<0.15	1.5	10.6	3.6	0.22 (J)	
4/6/2019						0.37 (J)
8/7/2019	<0.091	0.13 (J)	7.9	3.5	1.4	<0.091
8/24/2020	<0.091	0.16 (J)	5.7		3	0.22 (J)
8/25/2020				3.7		
8/10/2021					3.4	<0.091
8/11/2021	<0.091	0.28 (J)	5.1			
8/12/2021				3.9		
8/23/2022						<0.19 (U)
8/24/2022	<0.19 (U)	0.43 (J)	5.1	5.9		
8/29/2023	<0.17 (U)	0.34 (J)				<0.17 (U)
8/30/2023			3.5	4.1		
8/6/2024	<0.17	0.22 (J)		1.1		<0.17
8/7/2024			5			

ng/L


# Copper

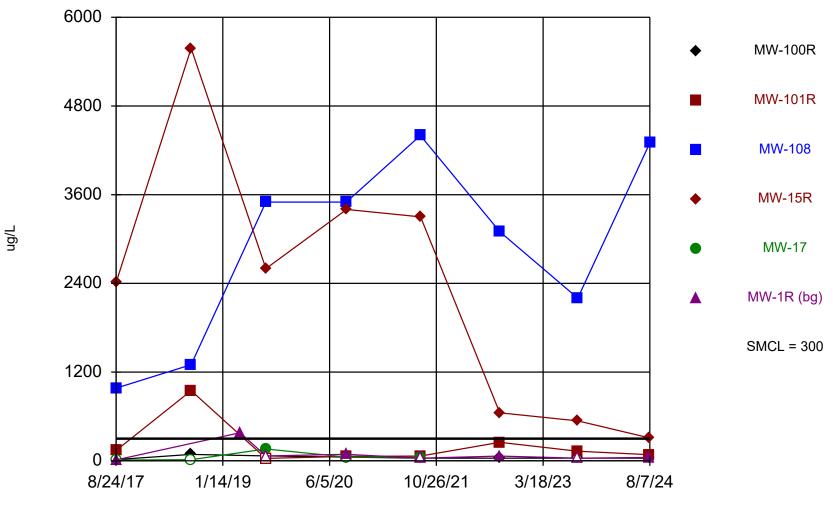


Constituent: Copper (ug/L) Analysis Run 10/23/2024 2:20 PM View: Shallow

	MW-100R	MW-101R	MW-108	MW-15R	MW-17	MW-1R (bg)
8/24/2017	0.32 (J)	0.92 (J)	0.61 (J)	0.38 (J)	0.52 (J)	0.99 (J)
8/16/2018	0.74 (J)	2.6	0.57 (J)	2.7	0.66 (J)	
4/6/2019						2.1 (J)
8/7/2019	<2	<2	<2	<2	<2	<2
8/24/2020	<1.5	<1.5	<1.5		<1.5	1.6 (J)
8/25/2020				<1.5		
8/10/2021					<1.4	<1.4
8/11/2021	<1.4	<1.4	1.7 (J)			
8/12/2021				2.5 (J)		
8/23/2022						<1.8 (U)
8/24/2022	<1.8 (U)	<1.8 (U)	<1.8 (U)	<1.8 (U)		
8/29/2023	1.8 (J)	<1.8 (U)				<1.8 (U)
8/30/2023			2 (J)	<1.8 (U)		
8/6/2024	<1.8	2 (J)		1.8 (J)		<1.8
8/7/2024			<1.8			





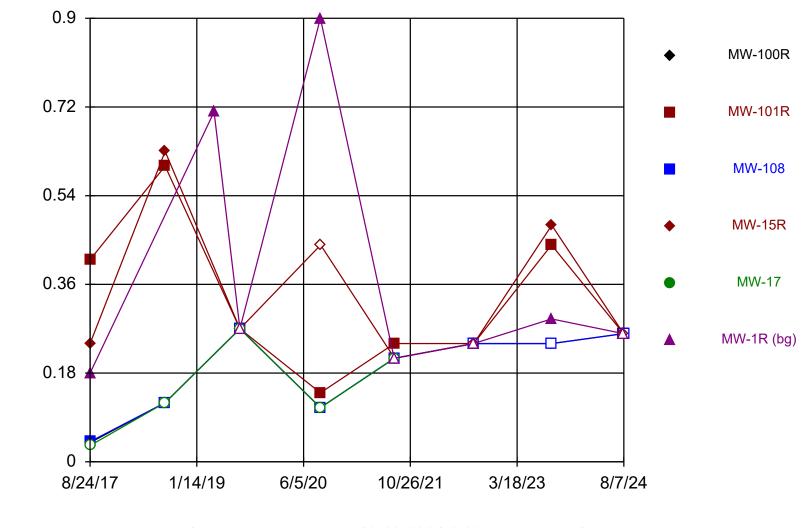

Time Series Analysis Run 10/23/2024 2:06 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML

mg/L

Constituent: Fluoride (mg/L) Analysis Run 10/23/2024 2:20 PM View: Shallow

	MW-100R	MW-101R	MW-108	MW-15R	MW-17	MW-1R (bg)
9/7/2016	0.53	0.45	0.59	0.4	0.89	0.48
8/24/2017	0.53	0.44	0.61	0.39	0.78	0.58
8/16/2018	0.49	0.49	0.68	0.32	0.62	
4/6/2019						0.35 (J)
8/7/2019	0.46 (J)	<0.23	0.9	<0.23	0.72	0.85
8/24/2020	0.43 (J)	<0.23	0.38 (J)		<0.23	0.47 (J)
8/25/2020				0.42 (J)		
8/10/2021					0.46 (J)	0.34 (J)
8/11/2021	0.44 (J)	0.4 (J)	0.65			
8/12/2021				<0.28		
8/23/2022						<0.22 (U)
8/24/2022	<0.22 (U)	<0.22 (U)	<0.22 (U)	<0.22 (U)		
8/29/2023	<0.38 (U)	0.42 (J)				0.4 (J)
8/30/2023			<0.38 (U)	<0.38 (U)		
8/6/2024	<0.38	<0.38		<0.38		0.46 (J)
8/7/2024			0.43 (J)			

#### Iron

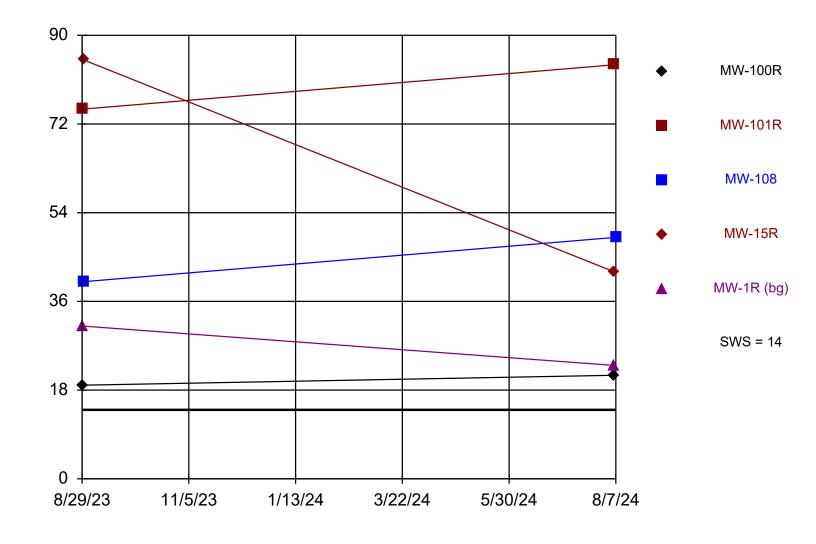



Time Series Analysis Run 10/23/2024 2:06 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML

Constituent: Iron (ug/L) Analysis Run 10/23/2024 2:20 PM View: Shallow

	MW-100R	MW-101R	MW-108	MW-15R	MW-17	MW-1R (bg)
8/24/2017	16.2 (J)	140	983	2410	<9.6	12.5 (J)
8/16/2018	86.3	949	1300	5580	<14.9	
4/6/2019						380
8/7/2019	<66	<66	3500	2600	160	<66
8/24/2020	<50	60 (J)	3500		<50	88 (J)
8/25/2020				3400		
8/10/2021					48 (J)	<36
8/11/2021	<36	64 (J)	4400			
8/12/2021				3300		
8/23/2022						64 (J)
8/24/2022	<36 (U)	250	3100	650		
8/29/2023	<36 (U)	130				<36 (U)
8/30/2023			2200	540		
8/6/2024	<36	82 (J)		310		46 (J)
8/7/2024			4300			






Time Series Analysis Run 10/23/2024 2:06 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML

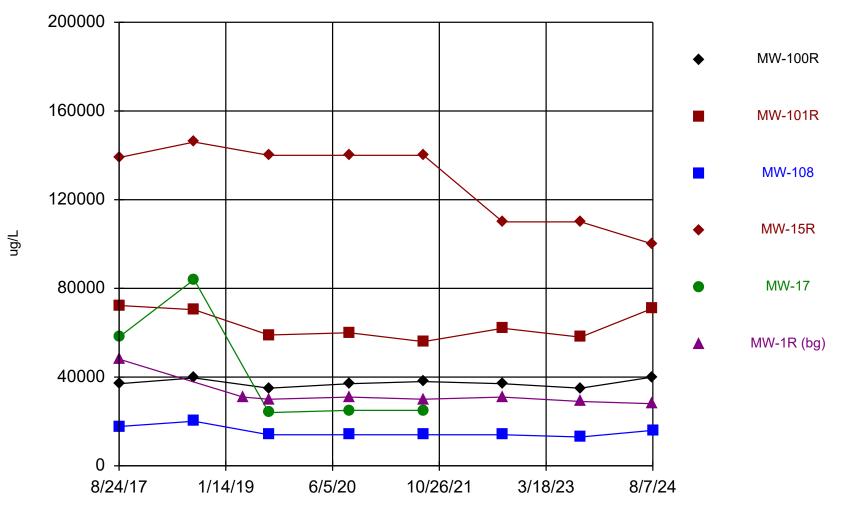
ng/L

Constituent: Lead (ug/L) Analysis Run 10/23/2024 2:20 PM View: Shallow

			-			P. C. C.
	MW-100R	MW-101R	MW-108	MW-15R	MW-17	MW-1R (bg)
8/24/2017	0.039 (J)	0.41 (J)	0.041 (J)	0.24 (J)	<0.033	0.18 (J)
8/16/2018	<0.12	0.6 (J)	<0.12	0.63 (J)	<0.12	
4/6/2019						0.71
8/7/2019	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27
8/24/2020	<0.11	0.14 (J)	<0.11		<0.11	0.9
8/25/2020				<0.44		
8/10/2021					<0.21	<0.21
8/11/2021	<0.21	0.24 (J)	<0.21			
8/12/2021				<0.21		
8/23/2022						<0.24 (U)
8/24/2022	<0.24 (U)	<0.24 (U)	<0.24 (U)	<0.24 (U)		
8/29/2023	0.24 (JB)	0.44 (JB)				0.29 (JB)
8/30/2023			<0.24 (U)	0.48 (JB)		
8/6/2024	<0.26	<0.26		<0.26		<0.26
8/7/2024			<0.26			



Time Series Analysis Run 10/23/2024 2:06 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML

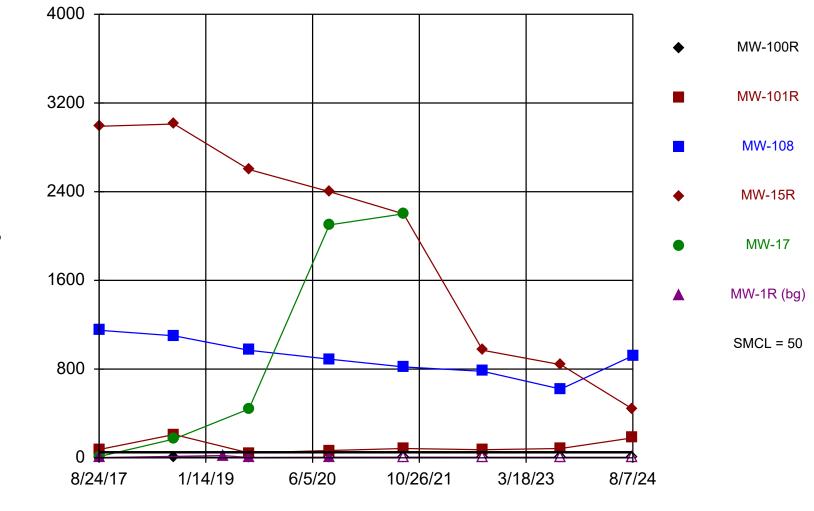

Lithium

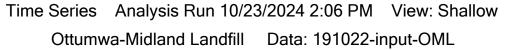
ng/L

Constituent: Lithium (ug/L) Analysis Run 10/23/2024 2:20 PM View: Shallow

		MW-100R	MW-101R	MW-108	MW-15R	MW-1R (bg)
8	3/29/2023	19	75			31
8	3/30/2023			40	85	
8	3/6/2024	21	84		42	23
8	3/7/2024			49		

Magnesium

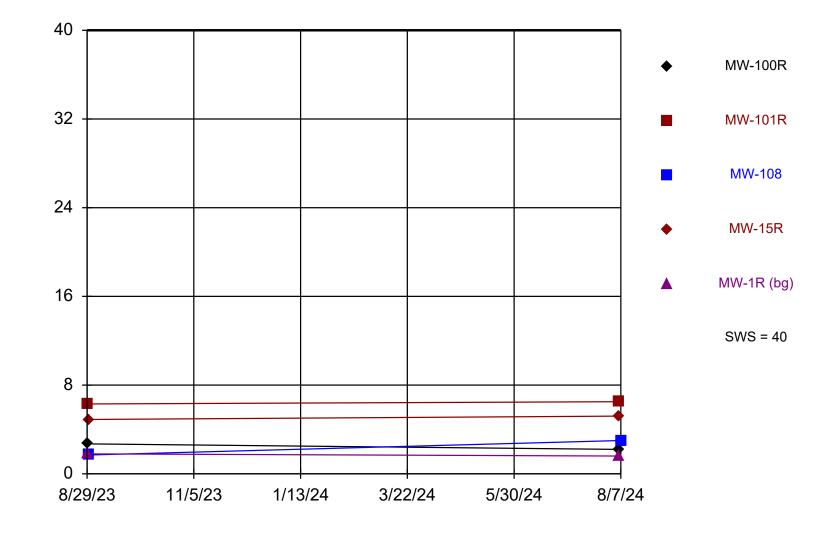




Time Series Analysis Run 10/23/2024 2:06 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML

Constituent: Magnesium (ug/L) Analysis Run 10/23/2024 2:20 PM View: Shallow

	MW-100R	MW-101R	MW-108	MW-15R	MW-17	MW-1R (bg)
8/24/2017	37000	72300	17700	139000	58100	48100
8/16/2018	39600	70400	20100	146000	84000	
4/6/2019						31000
8/7/2019	35000	59000	14000	140000	24000	30000
8/24/2020	37000	60000	14000		25000	31000
8/25/2020				140000		
8/10/2021					25000	30000
8/11/2021	38000	56000	14000			
8/12/2021				140000		
8/23/2022						31000
8/24/2022	37000	62000	14000	110000		
8/29/2023	35000	58000				29000
8/30/2023			13000	110000		
8/6/2024	40000	71000		100000		28000
8/7/2024			16000			

# Manganese





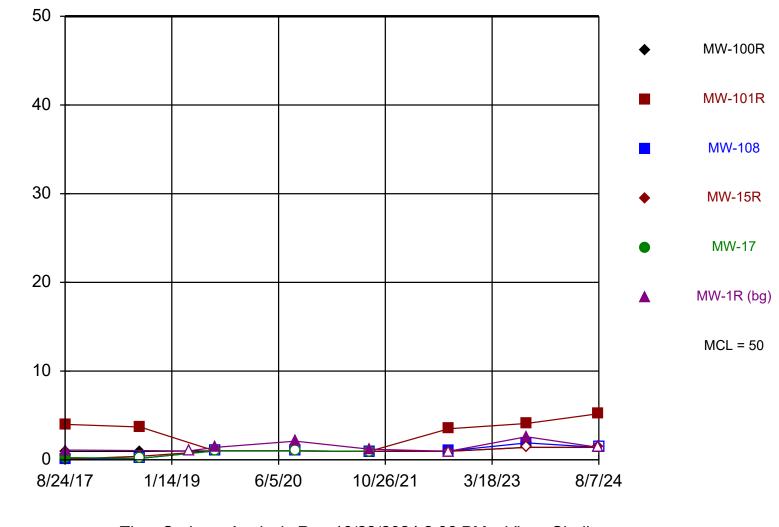

ng/L

Constituent: Manganese (ug/L) Analysis Run 10/23/2024 2:20 PM View: Shallow

	MW-100R	MW-101R	MW-108	MW-15R	MW-17	MW-1R (bg)
8/24/2017	0.9 (J)	74.1	1150	2990	10.8	2
8/16/2018	5.6	210	1100	3010	170	
4/6/2019						20
8/7/2019	<2.5	44	970	2600	440	2.8 (J)
8/24/2020	<4	66	890		2100	4.7 (J)
8/25/2020				2400		
8/10/2021					2200	<4.4
8/11/2021	<4.4	84	820			
8/12/2021				2200		
8/23/2022						<3.6 (U)
8/24/2022	<3.6 (U)	73	780	970		
8/29/2023	<3.6 (U)	84				<3.6 (U)
8/30/2023			620	840		
8/6/2024	<3.6	180		440		<3.6
8/7/2024			920			



Molybdenum


Time Series Analysis Run 10/23/2024 2:06 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML

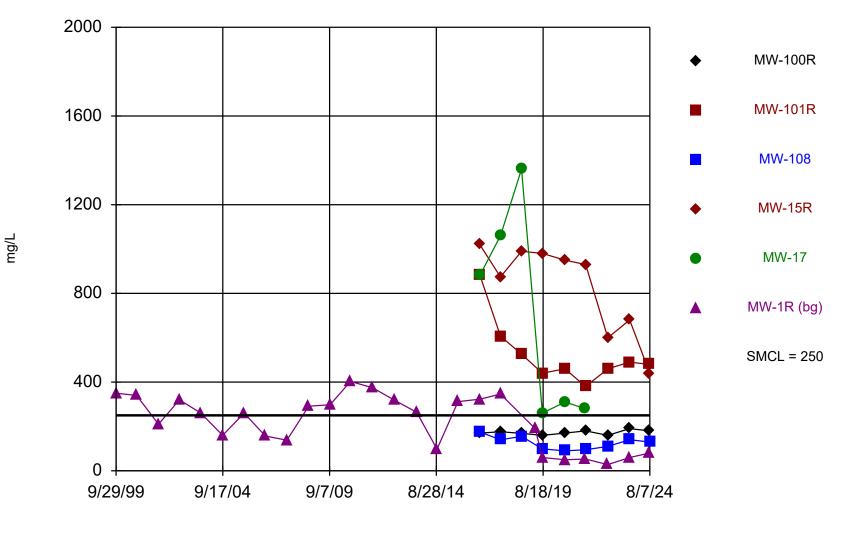
ng/L

Constituent: Molybdenum (ug/L) Analysis Run 10/23/2024 2:20 PM View: Shallow

	MW-100R	MW-101R	MW-108	MW-15R	MW-1R (bg)
8/29/2023	2.7	6.3			1.8 (J)
8/30/2023			1.7 (J)	4.9	
8/6/2024	2.2	6.5		5.2	1.6 (J)
8/7/2024			3		

### Selenium

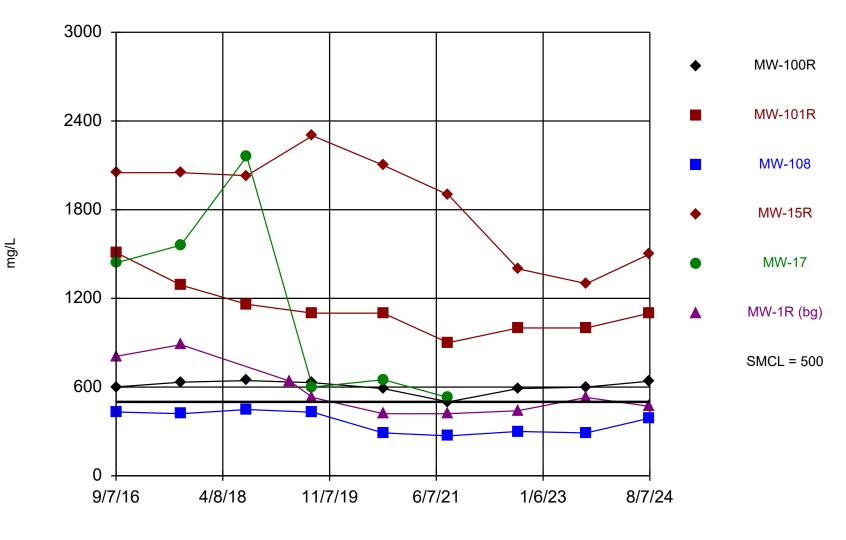



Time Series Analysis Run 10/23/2024 2:06 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML

ng/L

Constituent: Selenium (ug/L) Analysis Run 10/23/2024 2:20 PM View: Shallow

						•
	MW-100R	MW-101R	MW-108	MW-15R	MW-17	MW-1R (bg)
8/24/2017	0.95 (J)	4	0.089 (J)	<0.086	0.25 (J)	1.1
8/16/2018	0.95 (J)	3.7	<0.16	0.4 (J)	<0.16	
4/6/2019						<1
8/7/2019	<1	1 (J)	<1	<1	<1	1.4 (J)
8/24/2020	<1	<1	<1		<1	2.1 (J)
8/25/2020				<1		
8/10/2021					<0.96	1.2 (J)
8/11/2021	<0.96	<0.96	<0.96			
8/12/2021				<0.96		
8/23/2022						<0.96 (U)
8/24/2022	0.97 (J)	3.5 (J)	1 (J)	<0.96 (U)		
8/29/2023	1.4 (J)	4.1 (J)				2.6 (J)
8/30/2023			1.9 (J)	<1.4 (U)		
8/6/2024	<1.4	5.2		1.4 (J)		<1.4
8/7/2024			<1.4			


Sulfate



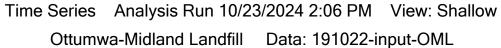
Time Series Analysis Run 10/23/2024 2:06 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML

Constituent: Sulfate (mg/L) Analysis Run 10/23/2024 2:20 PM View: Shallow

	Ottumwa-Midland Landfill Data: 191022-input-OML							
	MW-100R	MW-101R	MW-108	MW-15R	MW-17	MW-1R (bg)		
9/29/1999						350		
9/13/2000						340		
9/19/2001						210		
9/11/2002						320		
9/10/2003						260		
9/15/2004						160		
9/14/2005						260		
9/13/2006						157		
9/12/2007						138		
9/17/2008						291		
9/16/2009						298		
8/31/2010						403		
9/13/2011						374		
9/18/2012						318		
9/27/2013						264		
9/10/2014						97.8		
9/2/2015						312		
9/7/2016	170	883	175	1020	881	323		
8/24/2017	176	607	140	874	1060	346		
8/16/2018	169	526	155	990	1360			
4/6/2019						190		
8/7/2019	160	440	99	980	260	60		
8/24/2020	170	460	90		310	50		
8/25/2020				950				
8/10/2021					280	53		
8/11/2021	180	380	95					
8/12/2021				930				
8/23/2022						28		
8/24/2022	160	460	110	600				
8/29/2023	190	490				60		
8/30/2023			140	680				
8/6/2024	180	480		440		80		
8/7/2024			130					



### **Total Dissolved Solids**

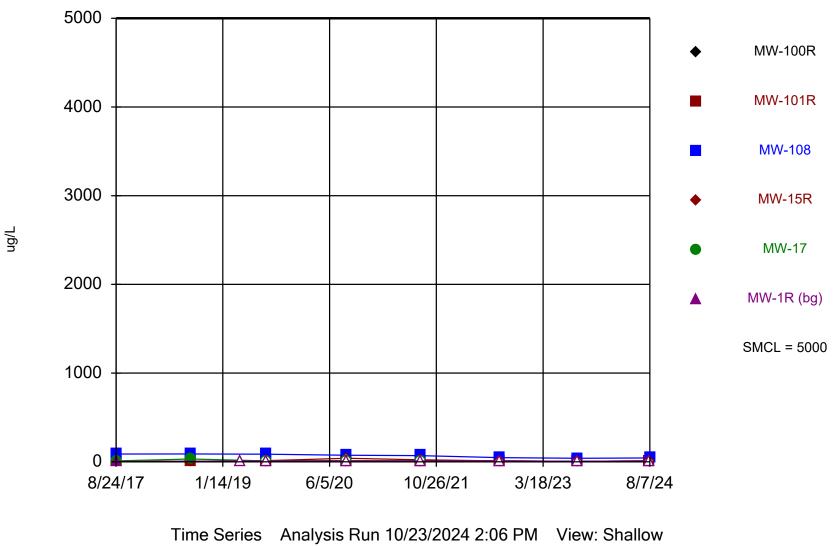

Time Series Analysis Run 10/23/2024 2:06 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML

Constituent: Total Dissolved Solids (mg/L) Analysis Run 10/23/2024 2:20 PM View: Shallow

	MW-100R	MW-101R	MW-108	MW-15R	MW-17	MW-1R (bg)
9/7/2016	601	1510	432	2050	1440	808
8/24/2017	633	1290	420	2050	1560	887
8/16/2018	644	1160	448	2030	2160	
4/6/2019						640
8/7/2019	630	1100	430	2300	600	530
8/24/2020	590	1100	290		650	420
8/25/2020				2100		
8/10/2021					530	420
8/11/2021	500	900	270			
8/12/2021				1900		
8/23/2022						440
8/24/2022	590	1000	300	1400		
8/29/2023	600	1000				530
8/30/2023			290	1300		
8/6/2024	640	1100		1500		470
8/7/2024			390			

# **Total Suspended Solids**





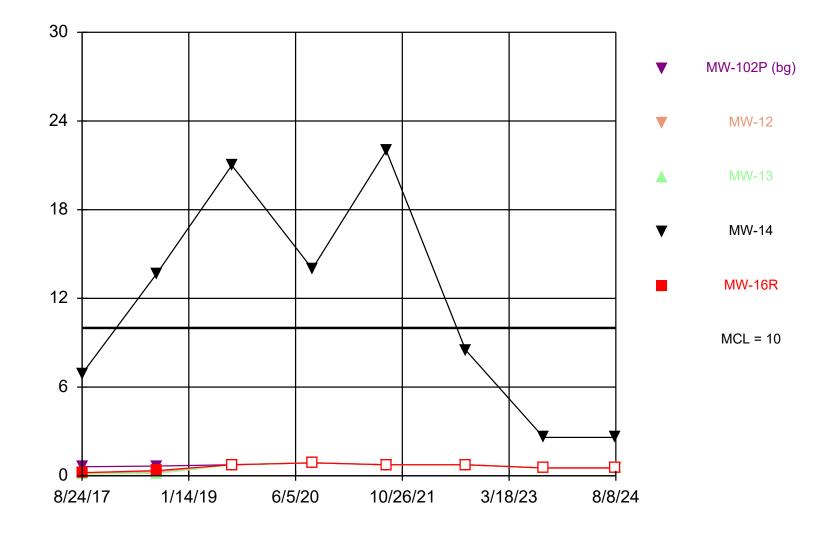

mg/L

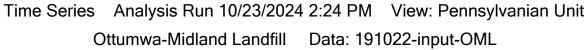
Constituent: Total Suspended Solids (mg/L) Analysis Run 10/23/2024 2:20 PM View: Shallow

	MW-100R	MW-101R	MW-108	MW-15R	MW-1R (bg)	
8/29/2023	1.4 (J)	15			7.4	
8/30/2023			4.2	1.5 (J)		
8/6/2024	<1.4	5		2.5	1.6 (J)	
8/7/2024			6.8			

#### Zinc




Ottumwa-Midland Landfill Data: 191022-input-OML

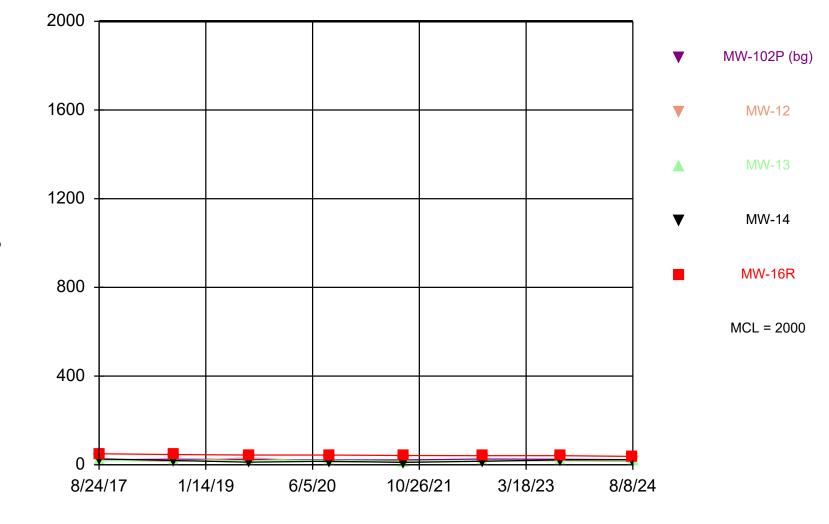

Constituent: Zinc (ug/L) Analysis Run 10/23/2024 2:20 PM View: Shallow

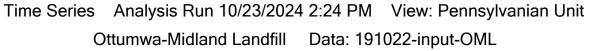
	MW-100R	MW-101R	MW-108	MW-15R	MW-17	MW-1R (bg)
8/24/2017	0.88 (J)	1.8 (J)	87.8	1.5 (J)	10.4	2.4 (J)
8/16/2018	<3.7	6.7 (J)	88.1	6 (J)	31.4	
4/6/2019						<10
8/7/2019	<10	<10	86	13 (J)	<10	<10
8/24/2020	<10	<10	74		<10	<10
8/25/2020				<40		
8/10/2021					<10	<10
8/11/2021	<10	<10	70			
8/12/2021				23		
8/23/2022						<10 (U)
8/24/2022	<10 (U)	<10 (U)	47	<10 (U)		
8/29/2023	<6.4 (U)	<6.4 (U)				<6.4 (U)
8/30/2023			40	<6.4 (U)		
8/6/2024	<9.7	<9.7		<9.7		<9.7
8/7/2024			43			

D2 – Times Series Graphs - Pennsylvanian

### Arsenic



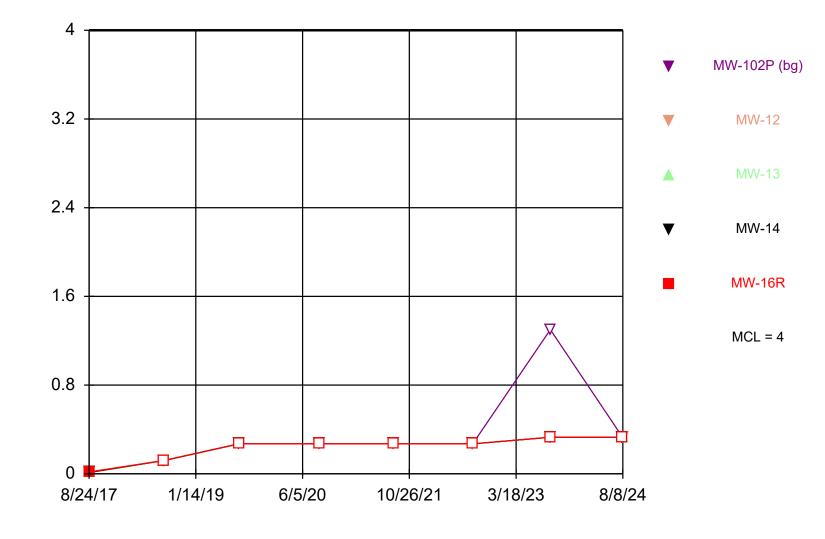


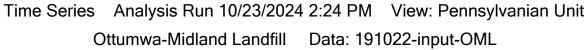


ng/L

Constituent: Arsenic (ug/L) Analysis Run 10/23/2024 3:19 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-12	MW-13	MW-14	MW-16R
8/24/2017	0.61 (J)	0.19 (J)	0.12 (J)	6.9	0.21 (J)
8/16/2018	0.66 (J)	0.27 (J)	0.16 (J)	13.7	0.35 (J)
8/7/2019	<0.75	<0.75	<0.75	21	<0.75
8/24/2020	<0.88	<0.88	<0.88	14	
8/25/2020					<0.88
8/10/2021		<0.75			
8/11/2021	<0.75		<0.75	22	<0.75
8/24/2022	<0.75 (U)	<0.75 (U)	<0.75 (U)	8.5	<0.75 (U)
8/29/2023	<0.53 (U)	<0.53 (U)			<0.53 (U)
8/30/2023			<0.53 (U)	2.6	
8/7/2024	<0.53			2.6	<0.53
8/8/2024		<0.53	<0.53		

Barium

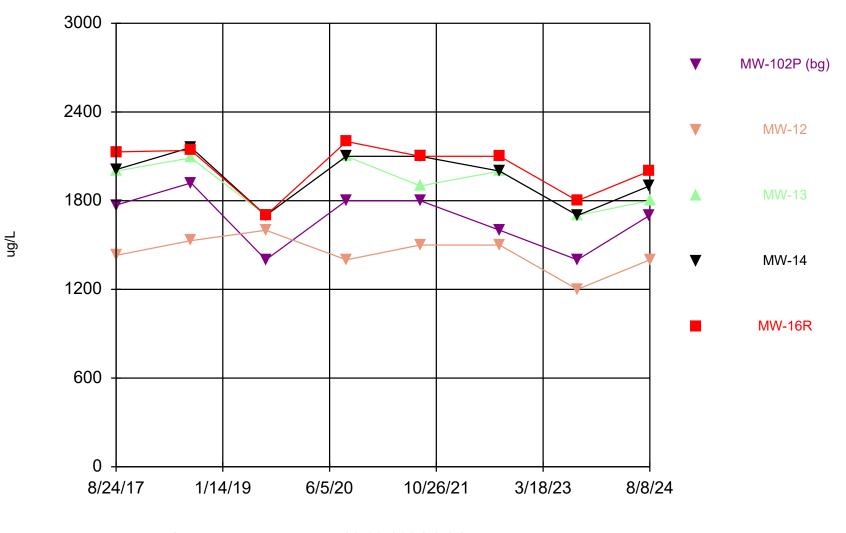



Constituent: Barium (ug/L) Analysis Run 10/23/2024 3:19 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-12	MW-13	MW-14	MW-16R
8/24/2017	22.7	21	18.2	26.8	49.7
8/16/2018	25.2	15.5	19.9	19.3	46.4
8/7/2019	24	32	19	12	44
8/24/2020	22	12	20	16	
8/25/2020					44
8/10/2021		15 (B)			
8/11/2021	22 (B)		16 (B)	11 (B)	42 (B)
8/24/2022	26	17	19	16	41
8/29/2023	25	18			41
8/30/2023			19	22	
8/7/2024	23			23	38
8/8/2024		15	18		



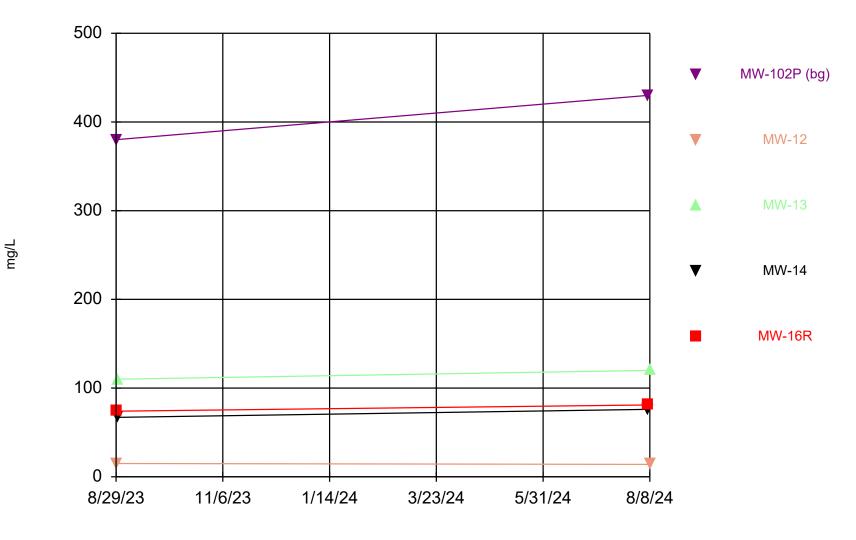


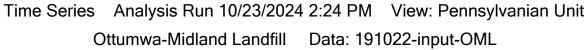



Constituent: Beryllium (ug/L) Analysis Run 10/23/2024 3:19 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-12	MW-13	MW-14	MW-16R
8/24/2017	0.013 (J)	0.019 (J)	<0.012	<0.012	0.016 (J)
8/16/2018	<0.12	<0.12	<0.12	<0.12	<0.12
8/7/2019	<0.27	<0.27	<0.27	<0.27	<0.27
8/24/2020	<0.27	<0.27	<0.27	<0.27	
8/25/2020					<0.27
8/10/2021		<0.27			
8/11/2021	<0.27		<0.27	<0.27	<0.27
8/24/2022	<0.27 (U)	<0.27 (U)	<0.27 (U)	<0.27 (U)	<0.27 (U)
8/29/2023	<1.3 (U)	<0.33 (U)			<0.33 (U)
8/30/2023			<0.33 (U)	<0.33 (U)	
8/7/2024	<0.33			<0.33	<0.33
8/8/2024		<0.33	<0.33		

Boron

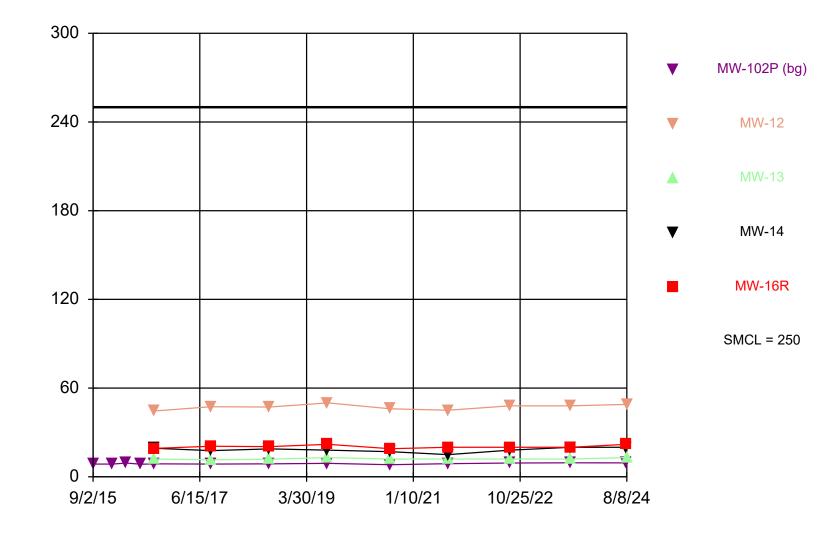


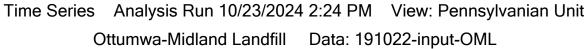


Time Series Analysis Run 10/23/2024 2:24 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Data: 191022-input-OML

Constituent: Boron (ug/L) Analysis Run 10/23/2024 3:19 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-12	MW-13	MW-14	MW-16R
8/24/2017	1770	1430	2000	2010	2130
8/16/2018	1920	1530	2090	2160	2140
8/7/2019	1400 (B)	1600 (B)	1700 (B)	1700 (B)	1700 (B)
8/24/2020	1800	1400	2100	2100	
8/25/2020					2200
8/10/2021		1500			
8/11/2021	1800		1900	2100	2100
8/24/2022	1600	1500	2000	2000	2100
8/29/2023	1400	1200			1800
8/30/2023			1700	1700	
8/7/2024	1700			1900	2000
8/8/2024		1400	1800		

Calcium



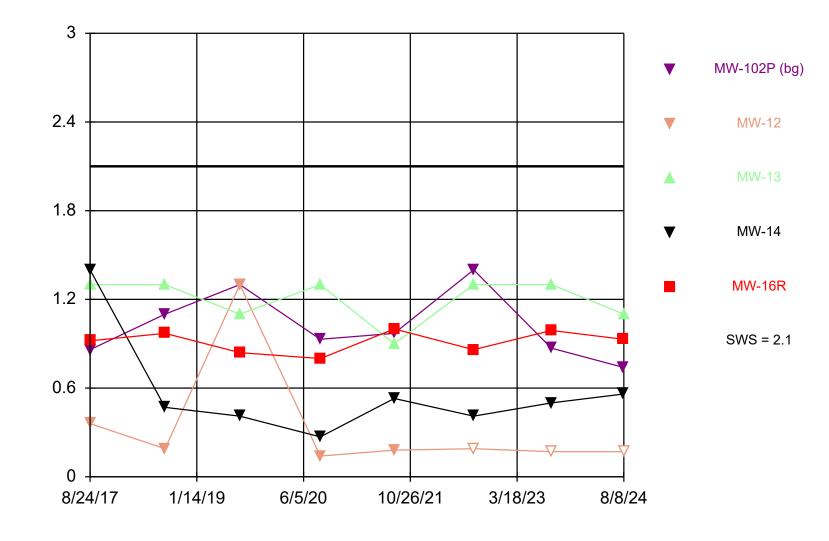




Constituent: Calcium (mg/L) Analysis Run 10/23/2024 3:19 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-12	MW-13	MW-14	MW-16R
8/29/2023	380	15			74
8/30/2023			110	67	
8/7/2024	430			76	81
8/8/2024		14	120		

Chloride



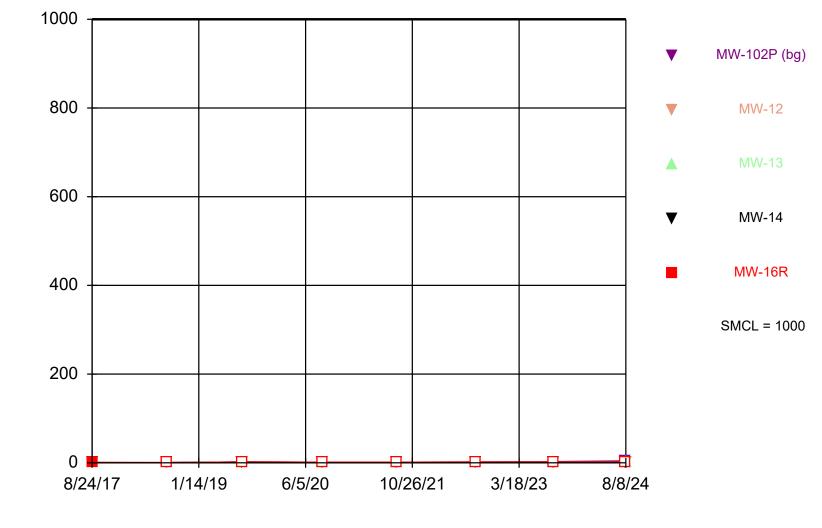



mg/L

Constituent: Chloride (mg/L) Analysis Run 10/23/2024 3:19 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-12	MW-13	MW-14	MW-16R
9/2/2015	8.6				
12/30/2015	8.6				
3/23/2016	9.3				
6/21/2016	8.5				
9/7/2016	8.8	44.5	12.1	19.3	19.2
8/24/2017	8.6	47.4	11.5	17.7	20.7
8/16/2018	8.8	47.2	11.9	18.9	20.4
8/7/2019	9.1	50	13	18	22
8/24/2020	8.2	46	12	17	
8/25/2020					19
8/10/2021		45			
8/11/2021	8.9		12	15	20
8/24/2022	9.3	48	12	18	20
8/29/2023	9.5	48			20
8/30/2023			12	20	
8/7/2024	9.4			20	22
8/8/2024		49	13		

## Cobalt

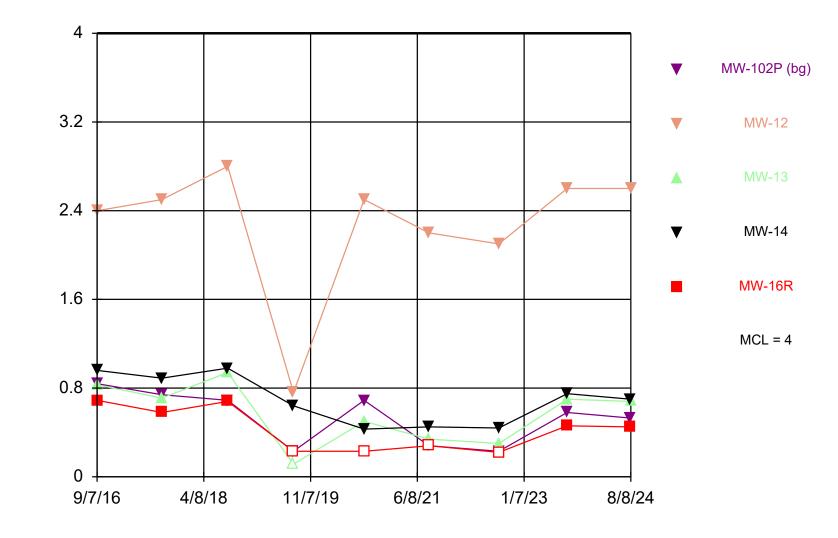



Time Series Analysis Run 10/23/2024 2:24 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Data: 191022-input-OML

Constituent: Cobalt (ug/L) Analysis Run 10/23/2024 3:19 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-12	MW-13	MW-14	MW-16R
8/24/2017	0.86 (J)	0.36 (J)	1.3	1.4	0.92 (J)
8/16/2018	1.1	0.19 (J)	1.3	0.47 (J)	0.97 (J)
8/7/2019	1.3 (J)	1.3	1.1	0.41 (J)	0.84
8/24/2020	0.93	0.14 (J)	1.3	0.27 (J)	
8/25/2020					0.8
8/10/2021		0.18 (J)			
8/11/2021	0.97		0.9	0.53	1
8/24/2022	1.4	<0.19 (U)	1.3	0.41 (J)	0.86
8/29/2023	0.87	<0.17 (U)			0.99
8/30/2023			1.3	0.5	
8/7/2024	0.74			0.56	0.93
8/8/2024		<0.17	1.1		

## Copper



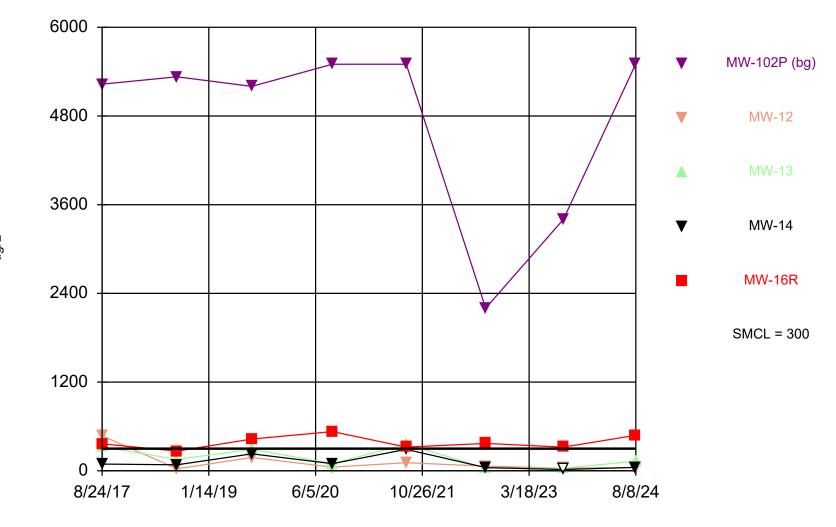

Time Series Analysis Run 10/23/2024 2:24 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Data: 191022-input-OML

Constituent: Copper (ug/L) Analysis Run 10/23/2024 3:19 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-12	MW-13	MW-14	MW-16R
8/24/2017	0.23 (J)	0.94 (J)	0.62 (J)	0.54 (J)	0.97 (J)
8/16/2018	<0.48	<0.48	<0.48	0.6 (J)	<0.48
8/7/2019	<2	<2	<2	<2	<2
8/24/2020	<1.5	<1.5	<1.5	<1.5	
8/25/2020					<1.5
8/10/2021		<1.4			
8/11/2021	<1.4		<1.4	<1.4	<1.4
8/24/2022	<1.8 (U)	<1.8 (U)	<1.8 (U)	<1.8 (U)	<1.8 (U)
8/29/2023	2.7 (J)	<1.8 (U)			<1.8 (U)
8/30/2023			<1.8 (U)	<1.8 (U)	
8/7/2024	4.3 (J)			2.1 (J)	<1.8
8/8/2024		<1.8	<1.8		

#### Fluoride



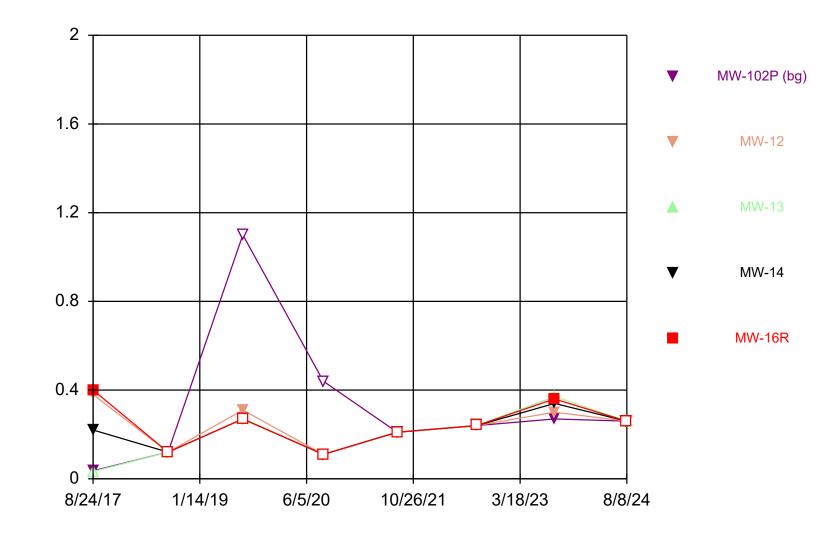

Time Series Analysis Run 10/23/2024 2:24 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Data: 191022-input-OML

mg/L

Constituent: Fluoride (mg/L) Analysis Run 10/23/2024 3:19 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-12	MW-13	MW-14	MW-16R
9/7/2016	0.84	2.4	0.83	0.96	0.69
8/24/2017	0.74	2.5	0.71	0.89	0.58
8/16/2018	0.69	2.8	0.94	0.98	0.68
8/7/2019	<0.23	0.76	<0.23	0.64	<0.23
8/24/2020	0.69	2.5	0.5	0.43 (J)	
8/25/2020					<0.23
8/10/2021		2.2			
8/11/2021	<0.28		0.34 (J)	0.45 (J)	<0.28
8/24/2022	0.23 (J)	2.1	0.3 (J)	0.44 (J)	<0.22 (U)
8/29/2023	0.58 (J)	2.6			0.46 (J)
8/30/2023			0.7 (J)	0.75 (J)	
8/7/2024	0.53 (J)			0.7 (J)	0.45 (J)
8/8/2024		2.6	0.68 (J)		



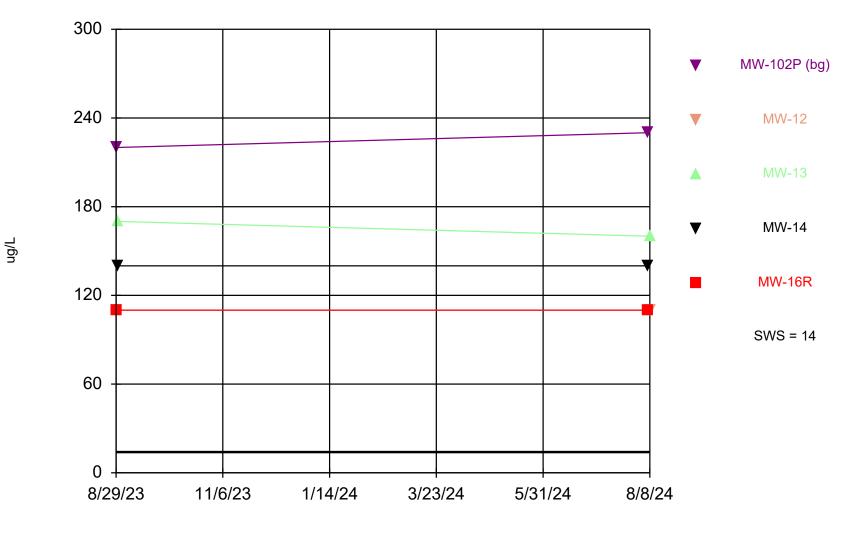


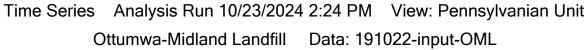

Time Series Analysis Run 10/23/2024 2:24 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Data: 191022-input-OML

Constituent: Iron (ug/L) Analysis Run 10/23/2024 3:19 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-12	MW-13	MW-14	MW-16R
8/24/2017	5230	473	324	91.5	365
8/16/2018	5330	27.1 (J)	155	81.8	266
8/7/2019	5200	180	290	230	430
8/24/2020	5500	<50	98 (J)	97 (J)	
8/25/2020					530
8/10/2021		110			
8/11/2021	5500		360	290	320
8/24/2022	2200	63 (J)	<36 (U)	43 (J)	370
8/29/2023	3400	<36 (U)			320
8/30/2023			<36 (U)	<36 (U)	
8/7/2024	5500			47 (J)	480
8/8/2024		43 (J)	130		



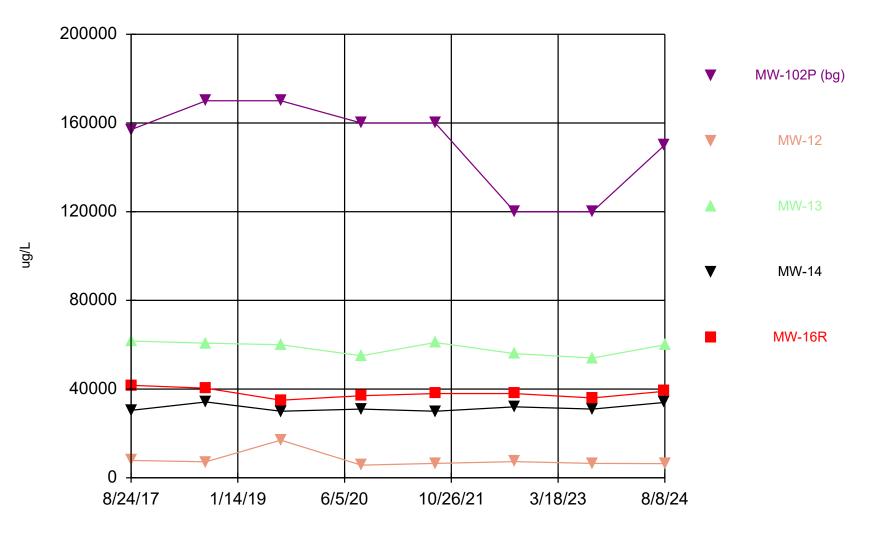




Time Series Analysis Run 10/23/2024 2:24 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Data: 191022-input-OML

Constituent: Lead (ug/L) Analysis Run 10/23/2024 3:19 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-12	MW-13	MW-14	MW-16R
8/24/2017	0.036 (J)	0.38 (J)	<0.033	0.22 (J)	0.4 (J)
8/16/2018	<0.12	<0.12	<0.12	0.12 (J)	<0.12
8/7/2019	<1.1	0.31 (J)	<0.27	<0.27	<0.27
8/24/2020	<0.44	<0.11	<0.11	<0.11	
8/25/2020					<0.11
8/10/2021		0.21 (J)			
8/11/2021	<0.21		<0.21	<0.21	<0.21
8/24/2022	<0.24 (U)	<0.24 (U)	<0.24 (U)	<0.24 (U)	<0.24 (U)
8/29/2023	0.27 (JB)	0.3 (JB)			0.36 (JB)
8/30/2023			0.37 (JB)	0.34 (JB)	
8/7/2024	<0.26			<0.26	<0.26
8/8/2024		<0.26	<0.26		

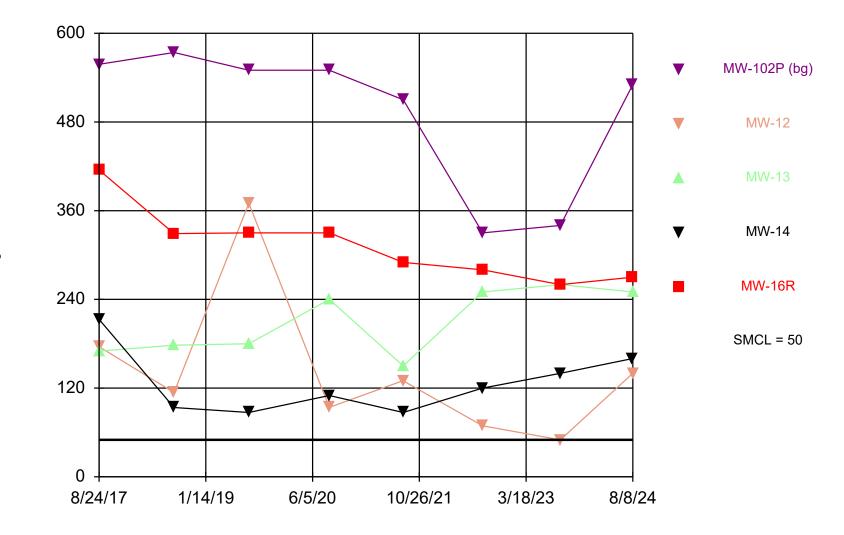
Lithium






Constituent: Lithium (ug/L) Analysis Run 10/23/2024 3:19 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-12	MW-13	MW-14	MW-16R
8/29/2023	220	110			110
8/30/2023			170	140	
8/7/2024	230			140	110
8/8/2024		110	160		


Magnesium

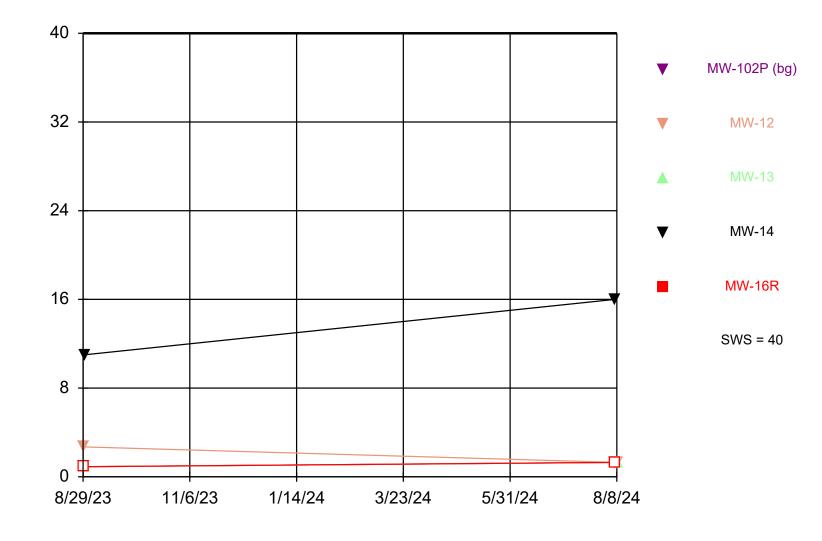


Time Series Analysis Run 10/23/2024 2:25 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Data: 191022-input-OML

Constituent: Magnesium (ug/L) Analysis Run 10/23/2024 3:19 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-12	MW-13	MW-14	MW-16R
8/24/2017	157000	7830	61700	30400	41700
8/16/2018	170000	7230	60700	34200	40400
8/7/2019	170000	17000	60000	30000	35000
8/24/2020	160000	5700	55000	31000	
8/25/2020					37000
8/10/2021		6500			
8/11/2021	160000		61000	30000	38000
8/24/2022	120000	7300	56000	32000	38000
8/29/2023	120000	6500			36000
8/30/2023			54000	31000	
8/7/2024	150000			34000	39000
8/8/2024		6400	60000		



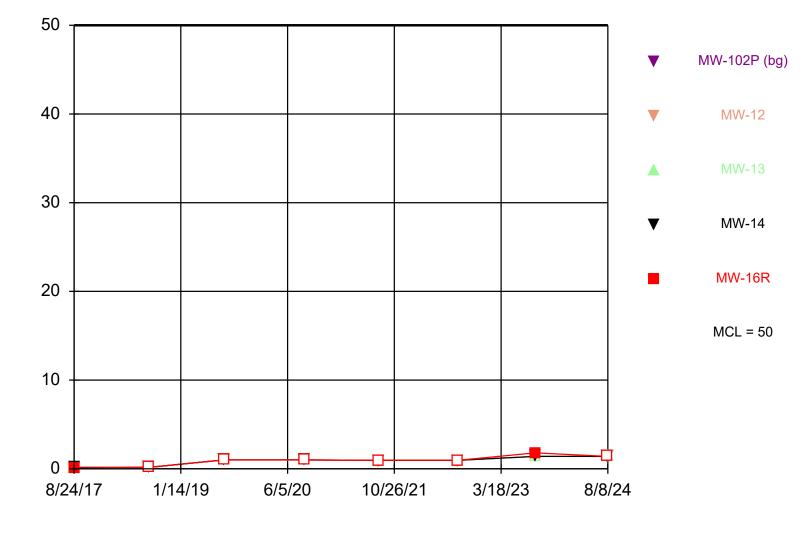

Manganese

Time Series Analysis Run 10/23/2024 2:25 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Data: 191022-input-OML

Constituent: Manganese (ug/L) Analysis Run 10/23/2024 3:19 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-12	MW-13	MW-14	MW-16R
8/24/2017	558	176	170	213	415
8/16/2018	574	114	178	93.7	329
8/7/2019	550	370	180	87	330
8/24/2020	550	94	240	110	
8/25/2020					330
8/10/2021		130			
8/11/2021	510		150	87	290
8/24/2022	330	69	250	120	280
8/29/2023	340	50			260
8/30/2023			260	140	
8/7/2024	530			160	270
8/8/2024		140	250		

# Molybdenum

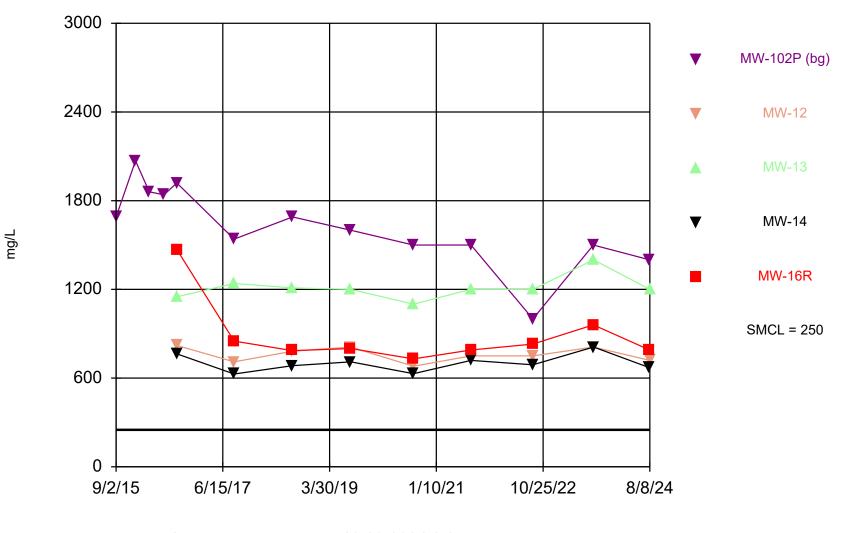


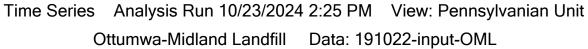

Time Series Analysis Run 10/23/2024 2:25 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Data: 191022-input-OML

Constituent: Molybdenum (ug/L) Analysis Run 10/23/2024 3:19 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-12	MW-13	MW-14	MW-16R
8/29/2023	<0.91 (U)	2.7			<0.91 (U)
8/30/2023			<0.91 (U)	11	
8/7/2024	<1.3			16	<1.3
8/8/2024		<1.3	<1.3		

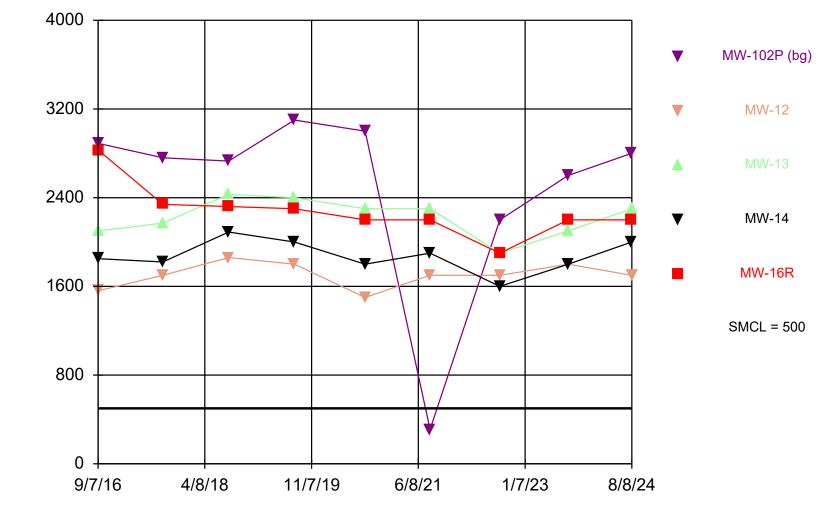
#### Selenium



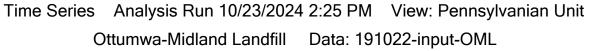


Time Series Analysis Run 10/23/2024 2:25 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Data: 191022-input-OML

Constituent: Selenium (ug/L) Analysis Run 10/23/2024 3:19 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-12	MW-13	MW-14	MW-16R
8/24/2017	<0.086	<0.086	<0.086	0.16 (J)	0.099 (J)
8/16/2018	<0.16	<0.16	<0.16	<0.16	<0.16
8/7/2019	<1	<1	<1	<1	<1
8/24/2020	<1	<1	<1	<1	
8/25/2020					<1
8/10/2021		<0.96			
8/11/2021	<0.96		<0.96	<0.96	<0.96
8/24/2022	<0.96 (U)	<0.96 (U)	<0.96 (U)	<0.96 (U)	<0.96 (U)
8/29/2023	<1.4 (U)	1.4 (J)			1.8 (J)
8/30/2023			<1.4 (U)	<1.4 (U)	
8/7/2024	<1.4			<1.4	<1.4
8/8/2024		<1.4	<1.4		


Sulfate



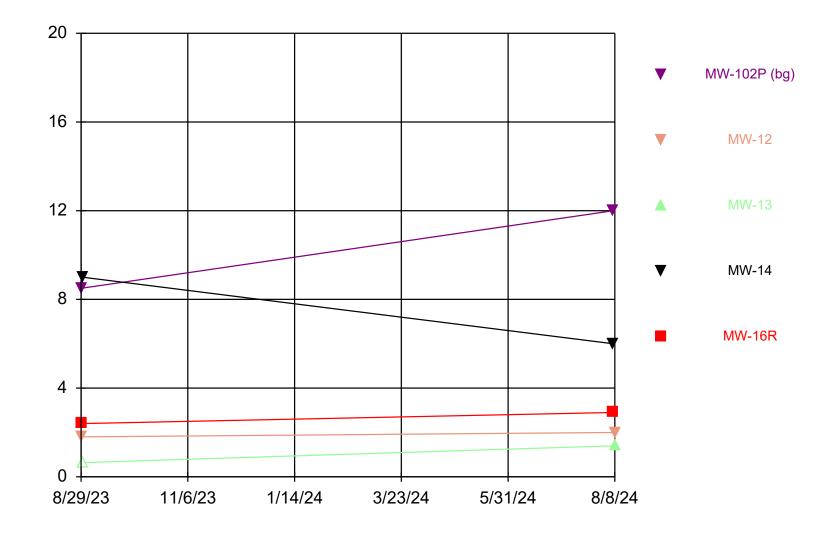



Constituent: Sulfate (mg/L) Analysis Run 10/23/2024 3:19 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-12	MW-13	MW-14	MW-16R
9/2/2015	1690				
12/30/2015	2070				
3/23/2016	1860				
6/21/2016	1840				
9/7/2016	1920	821	1150	764	1470
8/24/2017	1540	710	1240	628	850
8/16/2018	1690	782	1210	684	786
8/7/2019	1600	810	1200	710	800
8/24/2020	1500	680	1100	630	
8/25/2020					730
8/10/2021		750			
8/11/2021	1500		1200	720	790
8/24/2022	1000	750	1200	690	830
8/29/2023	1500	810			960
8/30/2023			1400	810	
8/7/2024	1400			670	790
8/8/2024		720	1200		



#### **Total Dissolved Solids**




mg/L

Constituent: Total Dissolved Solids (mg/L) Analysis Run 10/23/2024 3:19 PM View: Pennsylvanian Unit

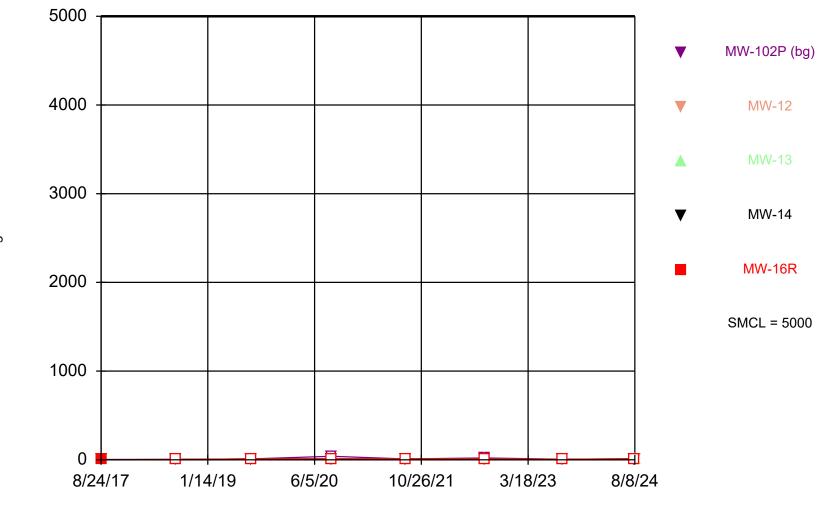
	MW-102P (bg)	MW-12	MW-13	MW-14	MW-16R
9/7/2016	2890	1560	2100	1850	2830
8/24/2017	2760	1700	2170	1820	2340
8/16/2018	2730	1860	2430	2090	2320
8/7/2019	3100	1800	2400	2000	2300
8/24/2020	3000	1500	2300	1800	
8/25/2020					2200
8/10/2021		1700			
8/11/2021	310 (X)		2300	1900	2200
8/24/2022	2200	1700	1900	1600	1900
8/29/2023	2600	1800			2200
8/30/2023			2100	1800	
8/7/2024	2800			2000	2200
8/8/2024		1700	2300		

## **Total Suspended Solids**



Time Series Analysis Run 10/23/2024 2:25 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Data: 191022-input-OML

mg/L


#### **Time Series**

Constituent: Total Suspended Solids (mg/L) Analysis Run 10/23/2024 3:19 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-12	MW-13	MW-14	MW-16R
8/29/2023	8.5	1.8 (J)			2.4
8/30/2023			<0.64 (U)	9	
8/7/2024	12			6	2.9
8/8/2024		2	1.4 (J)		

Sanitas[™] v.10.0.16 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

#### Zinc

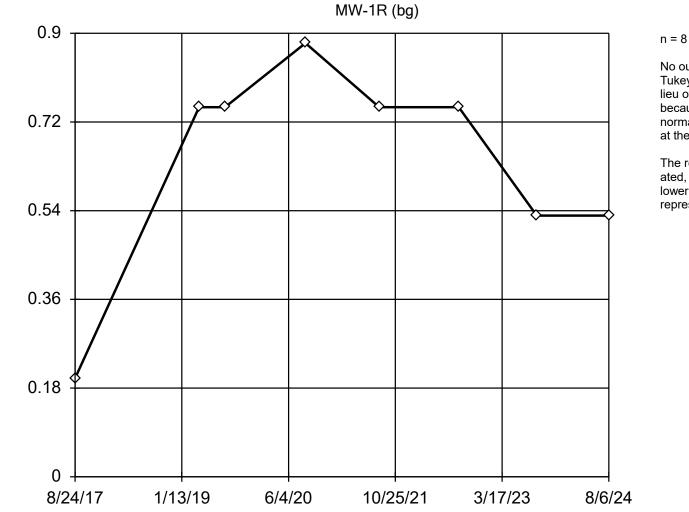


Time Series Analysis Run 10/23/2024 2:25 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Data: 191022-input-OML

#### **Time Series**

Constituent: Zinc (ug/L) Analysis Run 10/23/2024 3:19 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-12	MW-13	MW-14	MW-16R
8/24/2017	3.6 (J)	3.7 (J)	2 (J)	1.7 (J)	1 (J)
8/16/2018	4.3 (J)	<3.7	<3.7	<3.7	<3.7
8/7/2019	<10	<10	<10	<10	<10
8/24/2020	<40	<10	<10	<10	
8/25/2020					<10
8/10/2021		<10			
8/11/2021	<10		<10	<10	<10
8/24/2022	21	<10 (U)	<10 (U)	<10 (U)	<10 (U)
8/29/2023	6.9 (J)	<6.4 (U)			<6.4 (U)
8/30/2023			<6.4 (U)	<6.4 (U)	
8/7/2024	12 (J)			<9.7	<9.7
8/8/2024		<9.7	<9.7		


D3 – Outlier Analysis Results - Shallow

# **Outlier Analysis**

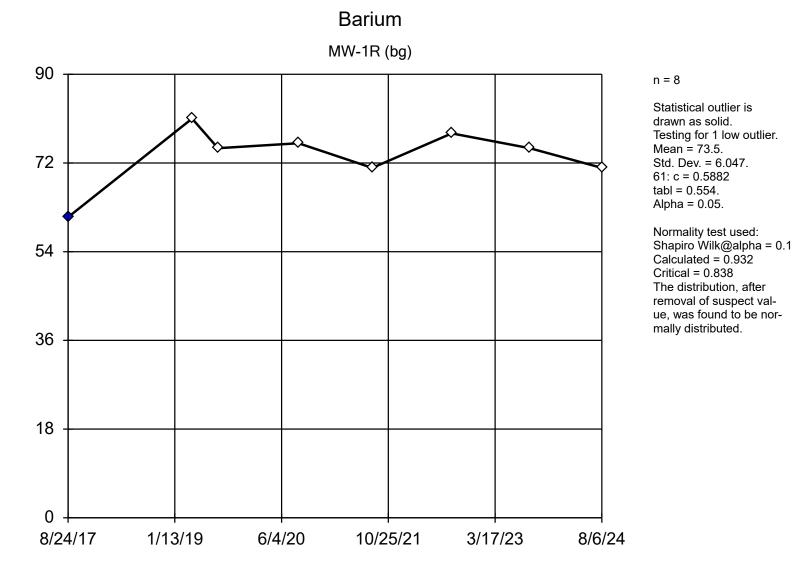
Ottumwa-Midland Landfill Data: 191022-input-OML Printed 10/21/2024, 12:33 PM

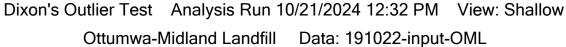
Constituent	Well	<u>Outlier</u>	<u>Value(s)</u>	Date(s)	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	<b>Distribution</b>	Normality Test
Arsenic (ug/L)	MW-1R (bg)	n/a	n/a	n/a	NP (nrm)	NaN	8	0.6425	0.2151	unknown	ShapiroWilk
Barium (ug/L)	MW-1R (bg)	Yes	61	8/24/2017	Dixon`s	0.05	8	73.5	6.047	normal	ShapiroWilk
Beryllium (ug/L)	MW-1R (bg)	Yes	0.012,0.4	8/24/2017	NP (nrm)	NaN	8	0.2615	0.1112	unknown	ShapiroWilk
Boron (ug/L)	MW-1R (bg)	No	n/a	n/a	EPA 1989	0.05	8	81.38	19.06	ln(x)	ShapiroWilk
Chloride (mg/L)	MW-1R (bg)	No	n/a	n/a	EPA 1989	0.05	36	90.58	95.78	ln(x)	ShapiroWilk
Cobalt (ug/L)	MW-1R (bg)	No	n/a	n/a	EPA 1989	0.05	8	0.1689	0.1	normal	ShapiroWilk
Copper (ug/L)	MW-1R (bg)	No	n/a	n/a	Dixon`s	0.05	8	1.686	0.3551	normal	ShapiroWilk
Fluoride (mg/L)	MW-1R (bg)	Yes	0.11	8/23/2022	Dixon`s	0.05	9	0.4489	0.1995	ln(x)	ShapiroWilk
Iron (ug/L)	MW-1R (bg)	No	n/a	n/a	EPA 1989	0.05	8	91.06	119	ln(x)	ShapiroWilk
Lead (ug/L)	MW-1R (bg)	No	n/a	n/a	NP (nrm)	NaN	8	0.3825	0.2679	unknown	ShapiroWilk
Magnesium (ug/L)	MW-1R (bg)	Yes	48100	8/24/2017	Dixon`s	0.05	8	32263	6488	normal	ShapiroWilk
Manganese (ug/L)	MW-1R (bg)	Yes	20	4/6/2019	Dixon`s	0.05	8	5.587	5.885	normal	ShapiroWilk
Selenium (ug/L)	MW-1R (bg)	No	n/a	n/a	EPA 1989	0.05	8	1.47	0.5824	ln(x)	ShapiroWilk
Sulfate (mg/L)	MW-1R (bg)	No	n/a	n/a	NP (nrm)	NaN	26	220.9	119	unknown	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-1R (bg)	No	n/a	n/a	EPA 1989	0.05	9	571.7	172.2	ln(x)	ShapiroWilk
Zinc (ug/L)	MW-1R (bg)	No	n/a	n/a	NP (nrm)	NaN	8	8.562	2.785	unknown	ShapiroWilk

#### Arsenic



No outliers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

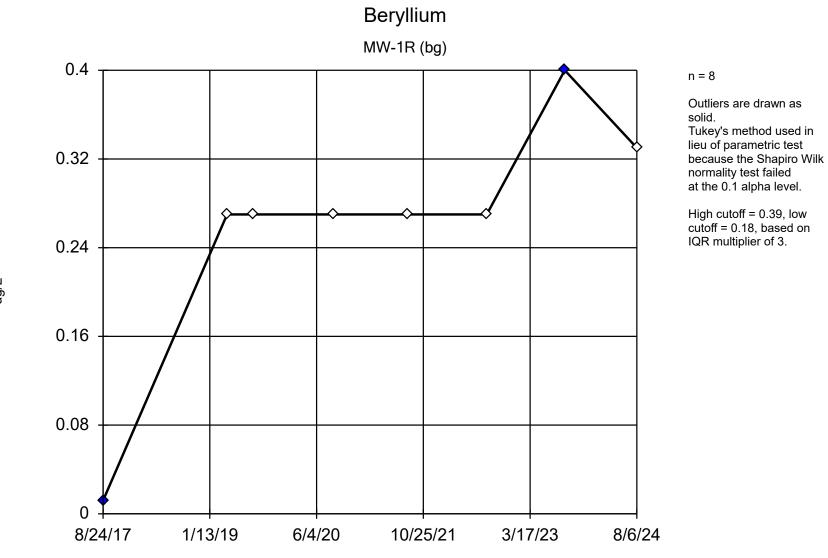

The results were invalidated, because both the lower and upper quartiles represent reporting limits.




# **Tukey's Outlier Screening**

Constituent: Arsenic (ug/L) Analysis Run 10/21/2024 12:33 PM View: Shallow

		MW-1R (bg)
8/24/2	017	0.2 (J)
4/6/20	19	<0.75
8/7/20	19	<0.75
8/24/2	020	<0.88
8/10/2	021	<0.75
8/23/2	022	<0.75 (U)
8/29/2	023	<0.53 (U)
8/6/20	24	<0.53

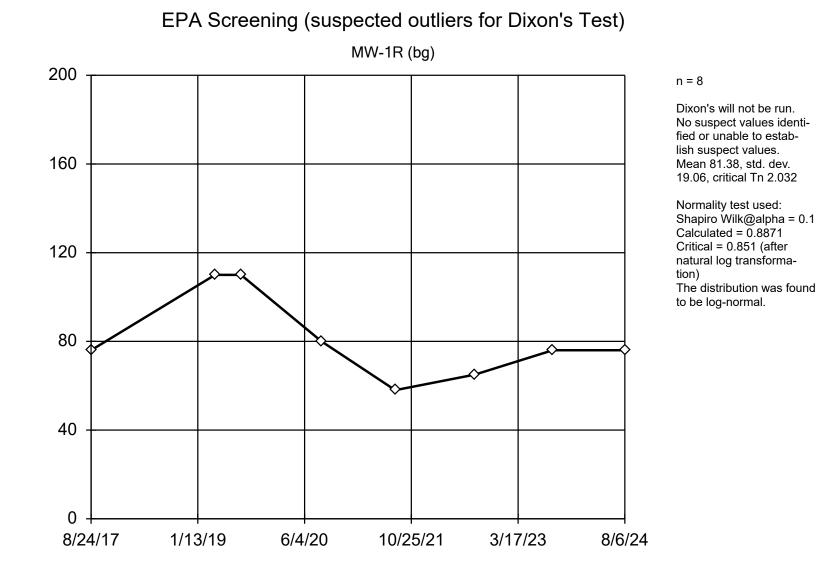


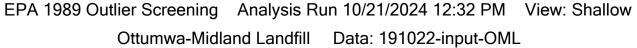



#### **Dixon's Outlier Test**

Constituent: Barium (ug/L) Analysis Run 10/21/2024 12:33 PM View: Shallow

	MW-1R (bg)
8/24/2017	61 (O)
4/6/2019	81
8/7/2019	75
8/24/2020	76
8/10/2021	71 (B)
8/23/2022	78
8/29/2023	75
8/6/2024	71



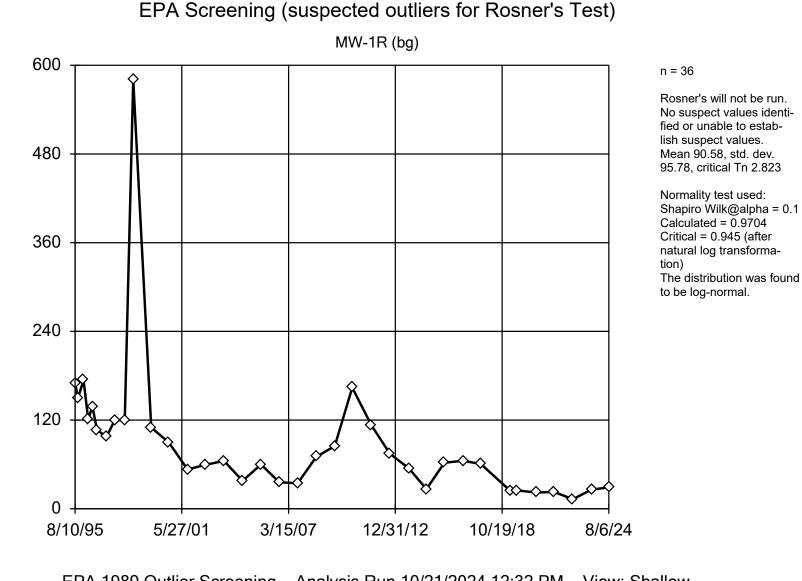


# Tukey's Outlier Screening Analysis Run 10/21/2024 12:32 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML

# **Tukey's Outlier Screening**

Constituent: Beryllium (ug/L) Analysis Run 10/21/2024 12:33 PM View: Shallow

	MW-1R (bg)
8/24/2017	<0.012 (O)
4/6/2019	<0.27
8/7/2019	<0.27
8/24/2020	<0.27
8/10/2021	<0.27
8/23/2022	<0.27 (U)
8/29/2023	0.4 (JO)
8/6/2024	<0.33



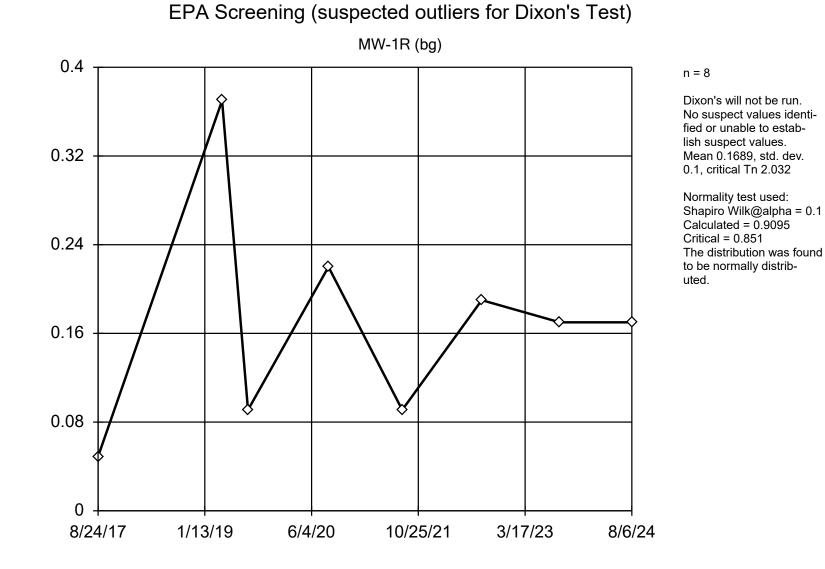



## **EPA 1989 Outlier Screening**

Constituent: Boron (ug/L) Analysis Run 10/21/2024 12:33 PM View: Shallow

	MW-1R (bg)
8/24/2017	76 (J)
4/6/2019	110 (J)
8/7/2019	110 (J,B)
8/24/2020	<80
8/10/2021	<58
8/23/2022	65 (J)
8/29/2023	<76 (U)
8/6/2024	

mg/L

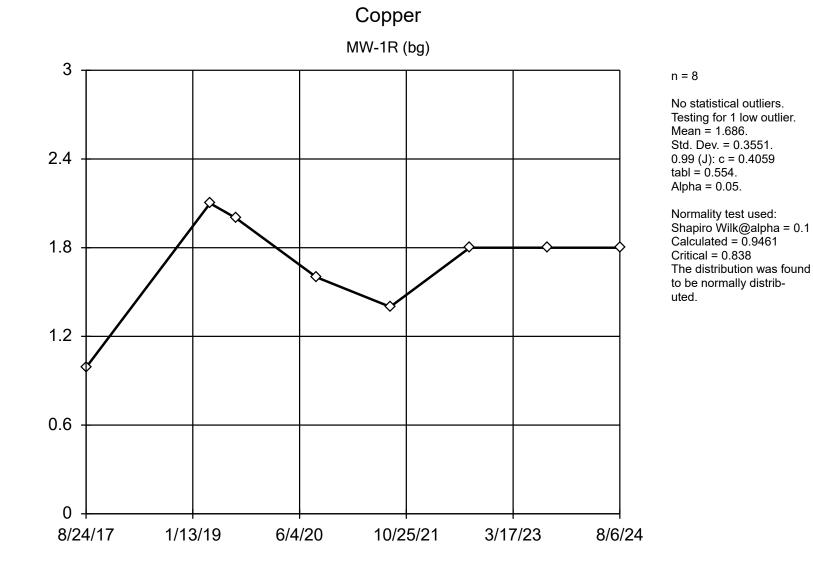


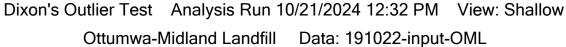

EPA 1989 Outlier Screening Analysis Run 10/21/2024 12:32 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML

# **EPA 1989 Outlier Screening**

Constituent: Chloride (mg/L) Analysis Run 10/21/2024 12:33 PM View: Shallow

	MW-1R (bg)
8/10/1995	170
10/6/1995	150
1/25/1996	174
4/26/1996	121
7/19/1996	138.3
10/21/1996	106
4/28/1997	98
10/6/1997	120
4/22/1998	120
10/7/1998	580 (X)
9/29/1999	110
9/13/2000	89.6
9/19/2001	53.3
9/11/2002	59.5
9/10/2003	64.8
9/15/2004	37.9
9/14/2005	60
9/13/2006	35.9
9/12/2007	34.5
9/17/2008	70.4
9/16/2009	84.9
8/31/2010	164
9/13/2011	113
9/18/2012	74.4
9/27/2013	54.7
9/10/2014	26.6
9/2/2015	62.4
9/7/2016	64.9
8/24/2017	60.6
4/6/2019	24
8/7/2019	25
8/24/2020	22
8/10/2021	23
8/23/2022	13
8/29/2023	26
8/6/2024	
	29
	29

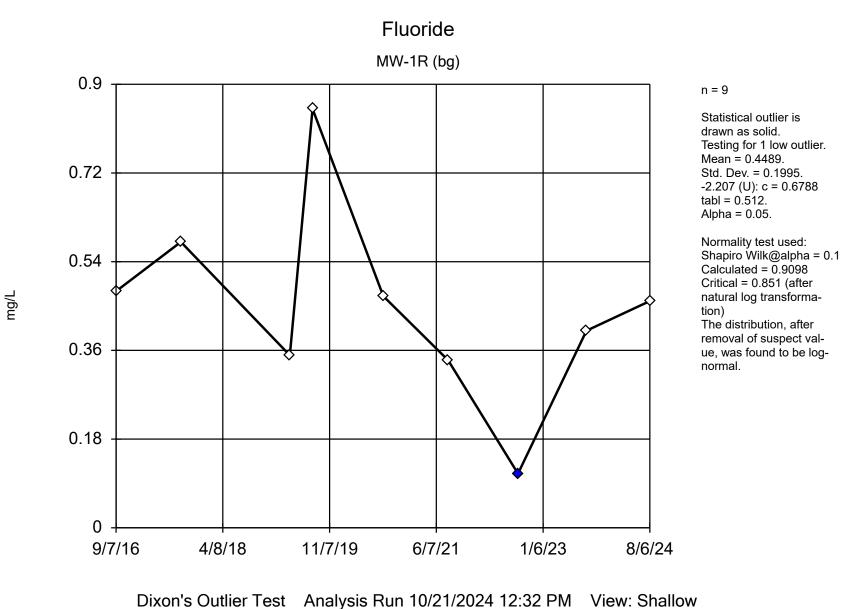




# EPA 1989 Outlier Screening Analysis Run 10/21/2024 12:32 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML

## **EPA 1989 Outlier Screening**

Constituent: Cobalt (ug/L) Analysis Run 10/21/2024 12:33 PM View: Shallow

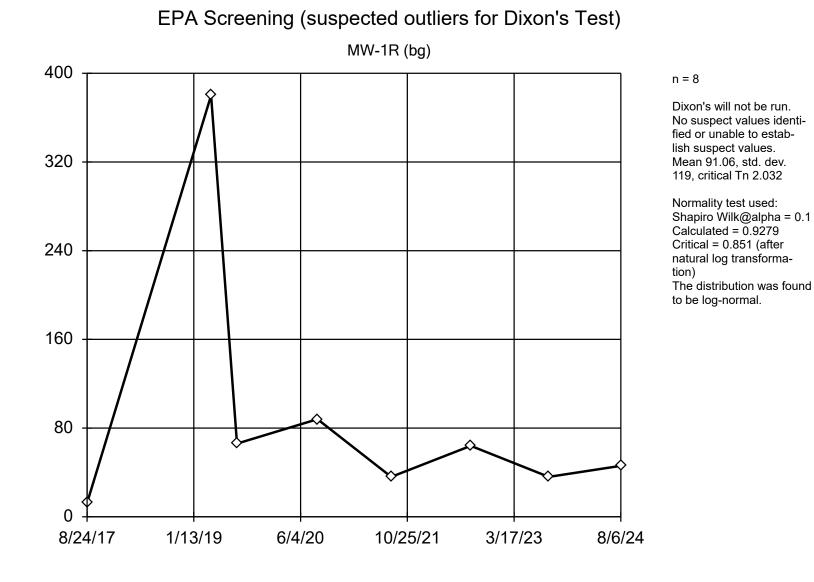
	MW-1R (bg)
8/24/2017	0.049 (J)
4/6/2019	0.37 (J)
8/7/2019	<0.091
8/24/2020	0.22 (J)
8/10/2021	<0.091
8/23/2022	<0.19 (U)
8/29/2023	<0.17 (U)
8/6/2024	<0.17

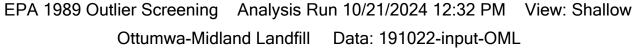





#### **Dixon's Outlier Test**

Constituent: Copper (ug/L) Analysis Run 10/21/2024 12:33 PM View: Shallow

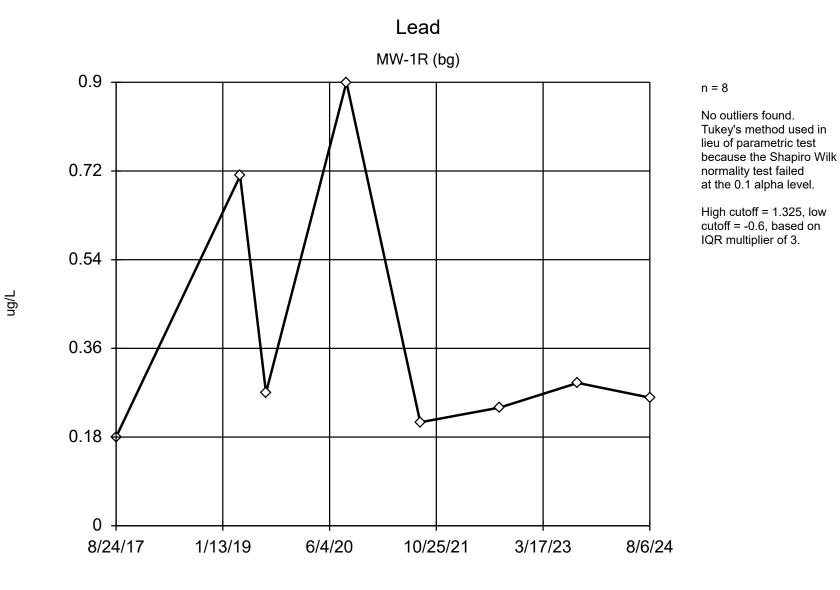

	MW-1R (bg)
8/24/2017	0.99 (J)
4/6/2019	2.1 (J)
8/7/2019	<2
8/24/2020	1.6 (J)
8/10/2021	<1.4
8/23/2022	<1.8 (U)
8/29/2023	<1.8 (U)
8/6/2024	<1.8




#### **Dixon's Outlier Test**

Constituent: Fluoride (mg/L) Analysis Run 10/21/2024 12:33 PM View: Shallow

	MW-1R (bg)
9/7/2016	0.48
8/24/2017	0.58
4/6/2019	0.35 (J)
8/7/2019	0.85
8/24/2020	0.47 (J)
8/10/2021	0.34 (J)
8/23/2022	<0.22 (UO)
8/29/2023	0.4 (J)

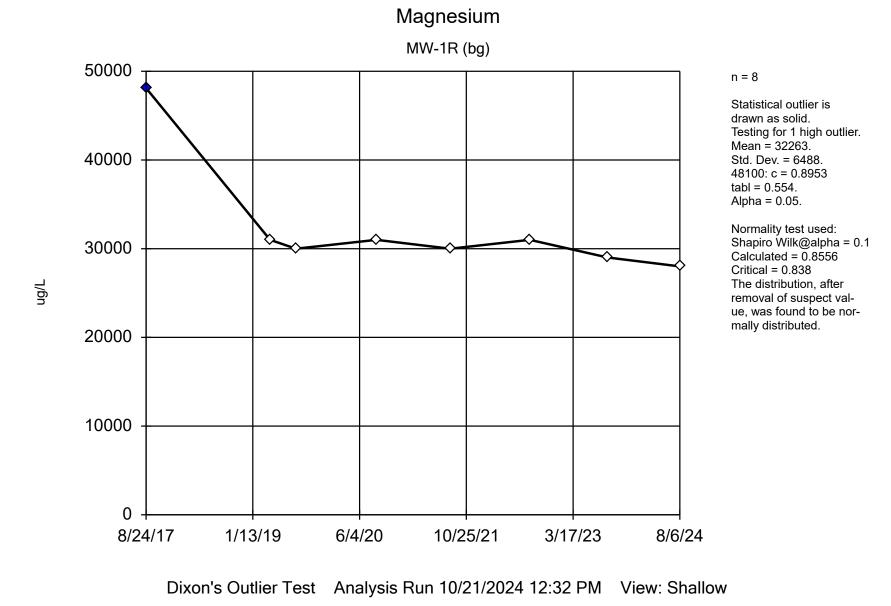





## **EPA 1989 Outlier Screening**

Constituent: Iron (ug/L) Analysis Run 10/21/2024 12:33 PM View: Shallow

	MW-1R (bg)
8/24/2017	12.5 (J)
4/6/2019	380
8/7/2019	<66
8/24/2020	88 (J)
8/10/2021	<36
8/23/2022	64 (J)
8/29/2023	<36 (U)
8/6/2024	46 (J)



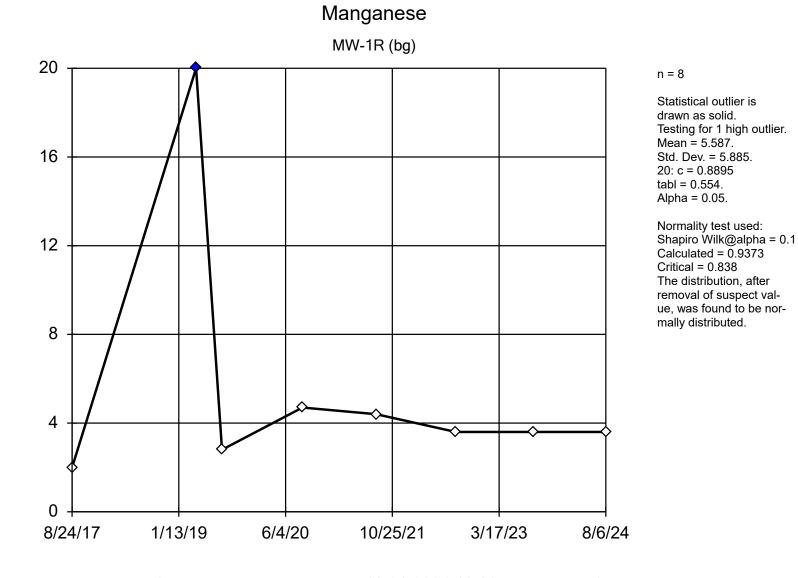

Tukey's Outlier Screening Analysis Run 10/21/2024 12:32 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML

# **Tukey's Outlier Screening**

Constituent: Lead (ug/L) Analysis Run 10/21/2024 12:33 PM View: Shallow

	MW-1R (bg)
	www-rk (bg)
8/24/2017	7 0.18 (J)
4/6/2019	0.71
8/7/2019	<0.27
8/24/2020	0.9
8/10/2021	1 <0.21
8/23/2022	2 <0.24 (U)
8/29/2023	3 0.29 (JB)
8/6/2024	<0.26



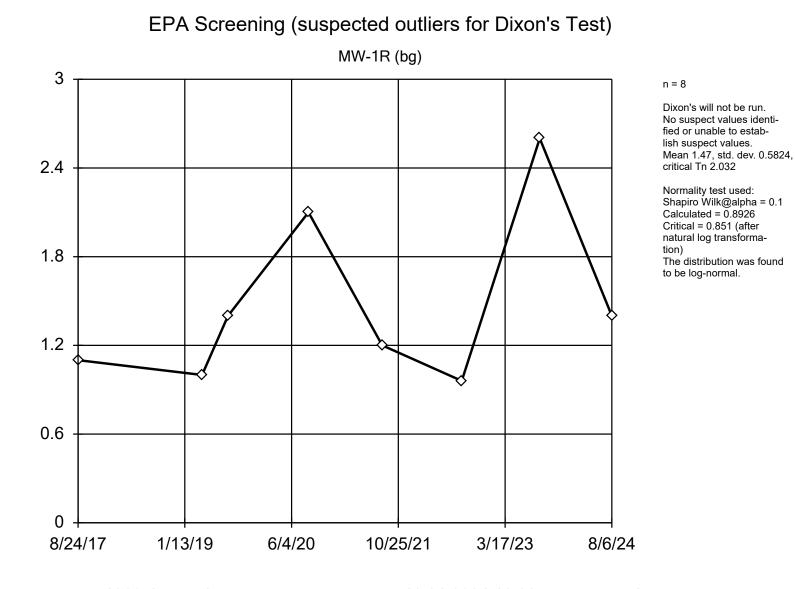

Data: 191022-input-OML

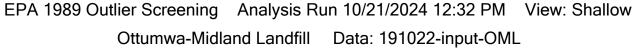
Ottumwa-Midland Landfill

#### **Dixon's Outlier Test**

Constituent: Magnesium (ug/L) Analysis Run 10/21/2024 12:33 PM View: Shallow

	MW-1R (bg)
8/24/2017	48100 (O)
4/6/2019	31000
8/7/2019	30000
8/24/2020	31000
8/10/2021	30000
8/23/2022	31000
8/29/2023	29000
8/6/2024	28000





Dixon's Outlier Test Analysis Run 10/21/2024 12:32 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML

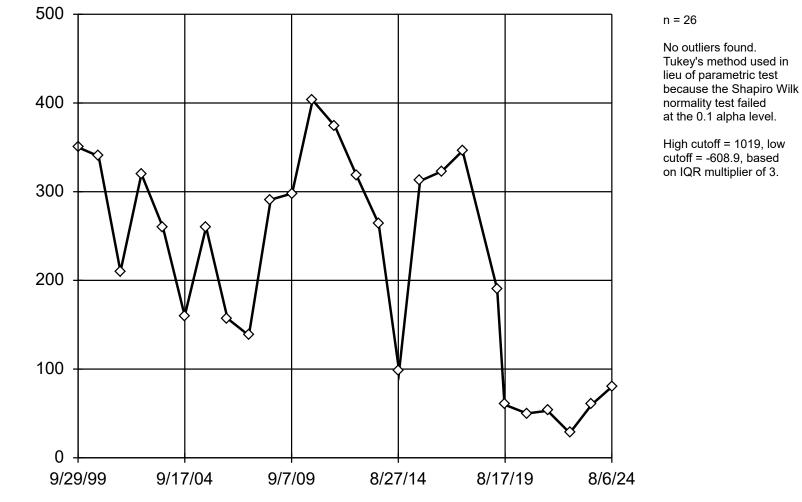
#### **Dixon's Outlier Test**

Constituent: Manganese (ug/L) Analysis Run 10/21/2024 12:33 PM View: Shallow

	MW-1R (bg)
8/24/2017	2
4/6/2019	20 (O)
8/7/2019	2.8 (J)
8/24/2020	4.7 (J)
8/10/2021	<4.4
8/23/2022	<3.6 (U)
8/29/2023	<3.6 (U)
8/6/2024	






#### **EPA 1989 Outlier Screening**

Constituent: Selenium (ug/L) Analysis Run 10/21/2024 12:33 PM View: Shallow

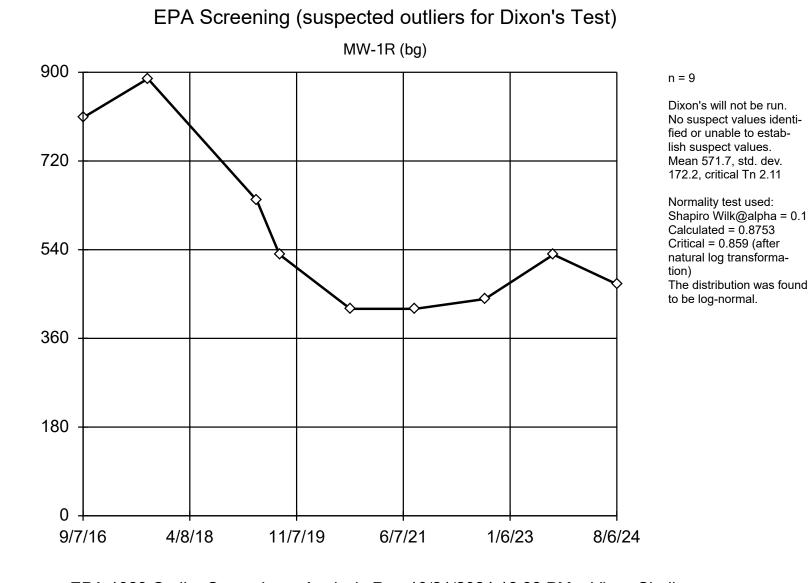
	MW-1R (bg)
8/24/2017	1.1
4/6/2019	<1
8/7/2019	1.4 (J)
8/24/2020	2.1 (J)
8/10/2021	1.2 (J)
8/23/2022	<0.96 (U)
8/29/2023	2.6 (J)
8/6/2024	<1.4

#### Sulfate





Tukey's Outlier Screening Analysis Run 10/21/2024 12:32 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML

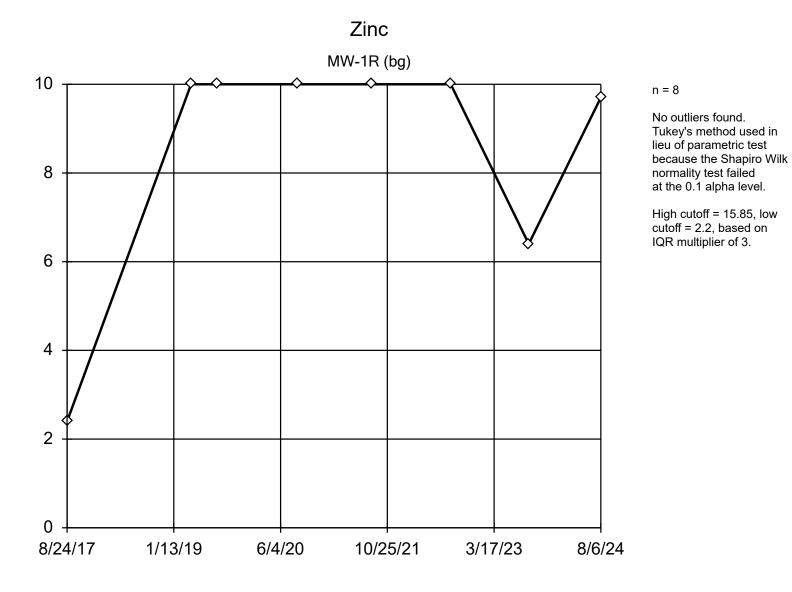

mg/L

# **Tukey's Outlier Screening**

Constituent: Sulfate (mg/L) Analysis Run 10/21/2024 12:33 PM View: Shallow

	MW-1R (bg)
9/29/1999	350
9/13/2000	340
9/19/2001	210
9/11/2002	320
9/10/2003	260
9/15/2004	160
9/14/2005	260
9/13/2006	157
9/12/2007	138
9/17/2008	291
9/16/2009	298
8/31/2010	403
9/13/2011	374
9/18/2012	318
9/27/2013	264
9/10/2014	97.8
9/2/2015	312
9/7/2016	323
8/24/2017	346
4/6/2019	190
8/7/2019	60
8/24/2020	50
8/10/2021	53
8/23/2022	28
8/29/2023	60
8/6/2024	80

mg/L




EPA 1989 Outlier Screening Analysis Run 10/21/2024 12:32 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML

## **EPA 1989 Outlier Screening**

Constituent: Total Dissolved Solids (mg/L) Analysis Run 10/21/2024 12:33 PM View: Shallow

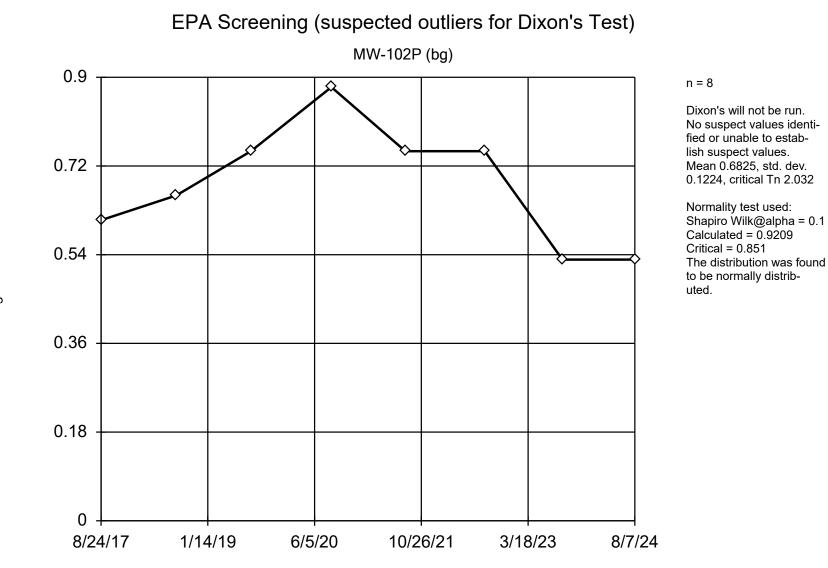
	MW-1R (bg)
9/7/2016	808
8/24/2017	887
4/6/2019	640
8/7/2019	530
8/24/2020	420
8/10/2021	420
8/23/2022	440
8/29/2023	530
8/6/2024	470



Tukey's Outlier Screening Analysis Run 10/21/2024 12:32 PM View: Shallow Ottumwa-Midland Landfill Data: 191022-input-OML

## **Tukey's Outlier Screening**

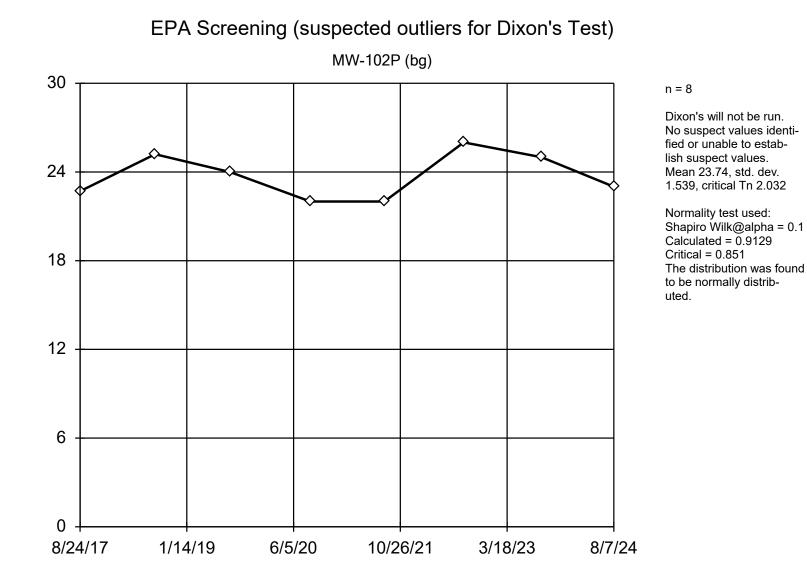
Constituent: Zinc (ug/L) Analysis Run 10/21/2024 12:33 PM View: Shallow

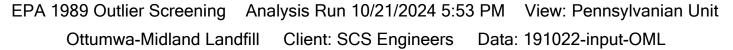

Ottumwa-Midland Landfill Data: 191022-input-OML

	MW-1R (bg)
8/24/2017	2.4 (J)
4/6/2019	<10
8/7/2019	<10
8/24/2020	<10
8/10/2021	<10
8/23/2022	<10 (U)
8/29/2023	<6.4 (U)

D4 – Outlier Analysis Results - Pennsylvanian

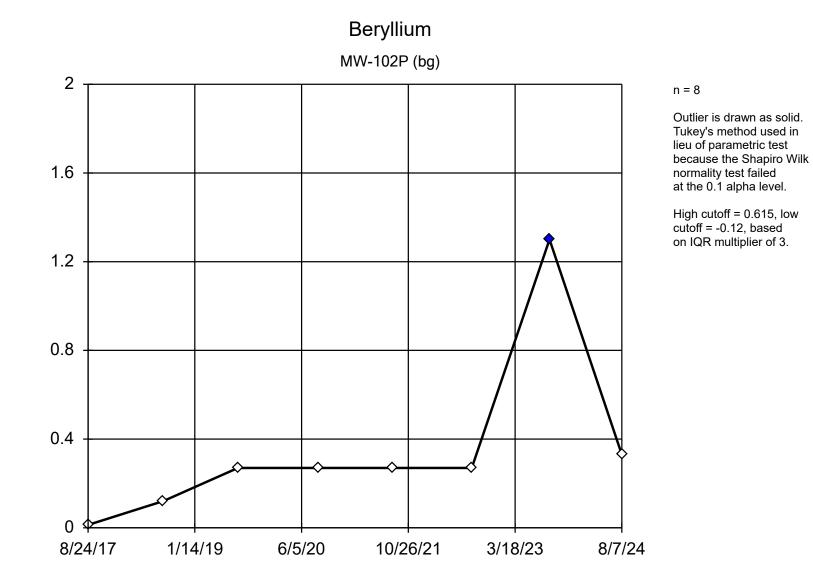
# Outlier Analysis


		Ottumwa-Midla	nd Landfill	Client: SCS Engine	ers Data: 191022-input-OML	Printed 1	0/21/202	24, 5:56 PM			
<u>Constituent</u>	Well	<u>Outlier</u>	<u>Value(s)</u>	Date(s)	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	<b>Distribution</b>	Normality Test
Arsenic (ug/L)	MW-102P (bg)	No	n/a	n/a	EPA 1989	0.05	8	0.6825	0.1224	normal	ShapiroWilk
Barium (ug/L)	MW-102P (bg)	No	n/a	n/a	EPA 1989	0.05	8	23.74	1.539	normal	ShapiroWilk
Beryllium (ug/L)	MW-102P (bg)	Yes	1.3	8/29/2023	NP (nrm)	NaN	8	0.3554	0.3955	unknown	ShapiroWilk
Boron (ug/L)	MW-102P (bg)	No	n/a	n/a	EPA 1989	0.05	8	1674	191.9	normal	ShapiroWilk
Chloride (mg/L)	MW-102P (bg)	No	n/a	n/a	EPA 1989	0.05	13	8.892	0.3989	normal	ShapiroWilk
Cobalt (ug/L)	MW-102P (bg)	No	n/a	n/a	EPA 1989	0.05	8	1.021	0.2288	normal	ShapiroWilk
Copper (ug/L)	MW-102P (bg)	No	n/a	n/a	EPA 1989	0.05	8	1.801	1.285	normal	ShapiroWilk
Fluoride (mg/L)	MW-102P (bg)	No	n/a	n/a	EPA 1989	0.05	9	0.5344	0.2335	normal	ShapiroWilk
Iron (ug/L)	MW-102P (bg)	No	n/a	n/a	NP (nrm)	NaN	8	4733	1241	unknown	ShapiroWilk
Lead (ug/L)	MW-102P (bg)	No	n/a	n/a	EPA 1989	0.05	8	0.3345	0.3309	ln(x)	ShapiroWilk
Magnesium (ug/L)	MW-102P (bg)	No	n/a	n/a	NP (nrm)	NaN	8	150875	20153	unknown	ShapiroWilk
Manganese (ug/L)	MW-102P (bg)	No	n/a	n/a	NP (nrm)	NaN	8	492.8	99.23	unknown	ShapiroWilk
Selenium (ug/L)	MW-102P (bg)	No	n/a	n/a	NP (nrm)	NaN	8	0.8707	0.4972	unknown	ShapiroWilk
Sulfate (mg/L)	MW-102P (bg)	Yes	1000	8/24/2022	Dixon`s	0.05	13	1624	272.5	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-102P (bg)	Yes	310	8/11/2021	Dixon`s	0.05	9	2488	856.4	normal	ShapiroWilk
Zinc (ug/L)	MW-102P (bg)	No	n/a	n/a	EPA 1989	0.05	8	13.48	12.02	ln(x)	ShapiroWilk




EPA 1989 Outlier Screening Analysis Run 10/21/2024 5:53 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML

Constituent: Arsenic (ug/L) Analysis Run 10/21/2024 5:55 PM View: Pennsylvanian Unit

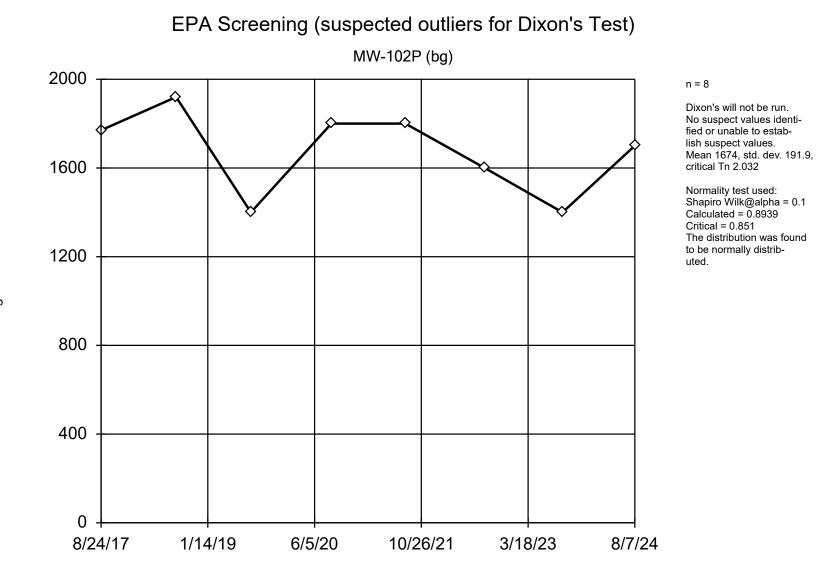

	MW-102P (bg)
8/24/2017	0.61 (J)
8/16/2018	0.66 (J)
8/7/2019	<0.75
8/24/2020	<0.88
8/11/2021	<0.75
8/24/2022	<0.75 (U)
8/29/2023	<0.53 (U)
8/7/2024	<0.53





Constituent: Barium (ug/L) Analysis Run 10/21/2024 5:55 PM View: Pennsylvanian Unit

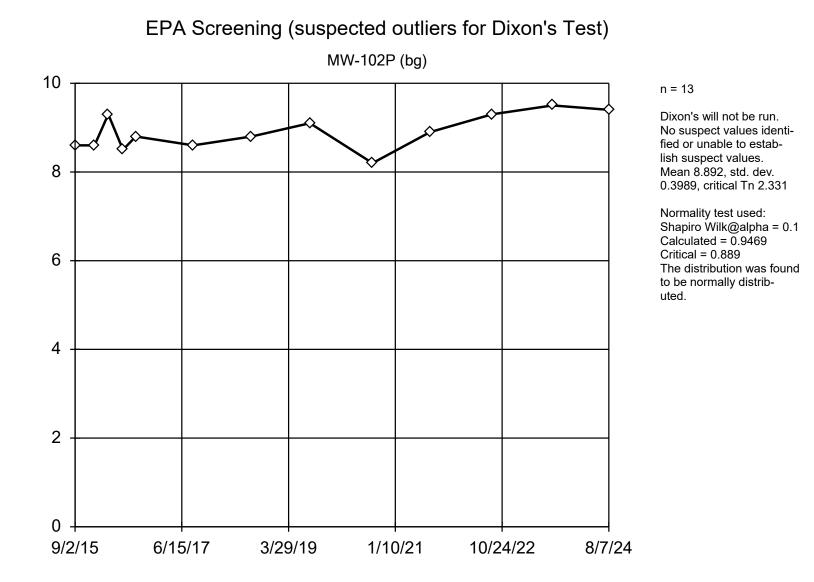
	MW-102P (bg)			
8/24/2017	22.7			
8/16/2018	25.2			
8/7/2019	24			
8/24/2020	22			
8/11/2021	22 (B)			
8/24/2022	26			
8/29/2023	25			
8/7/2024	23			

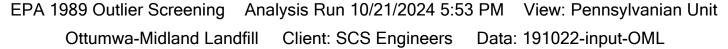



Tukey's Outlier Screening Analysis Run 10/21/2024 5:53 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML

## **Tukey's Outlier Screening**

Constituent: Beryllium (ug/L) Analysis Run 10/21/2024 5:55 PM View: Pennsylvanian Unit

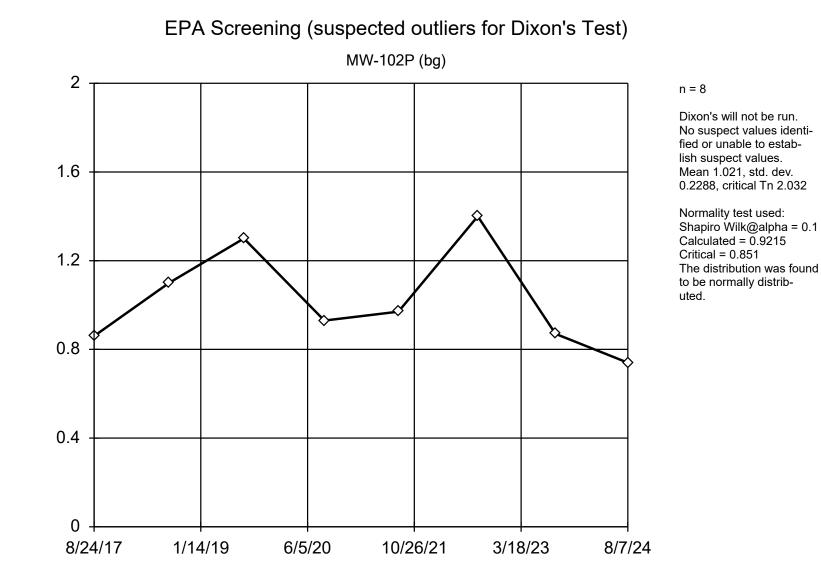

	MW-102P (bg)
8/24/2017	0.013 (J)
8/16/2018	<0.12
8/7/2019	<0.27
8/24/2020	<0.27
8/11/2021	<0.27
8/24/2022	<0.27 (U)
8/29/2023	<1.3 (UO)
8/7/2024	<0.33




## EPA 1989 Outlier Screening Analysis Run 10/21/2024 5:53 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML

Constituent: Boron (ug/L) Analysis Run 10/21/2024 5:55 PM View: Pennsylvanian Unit

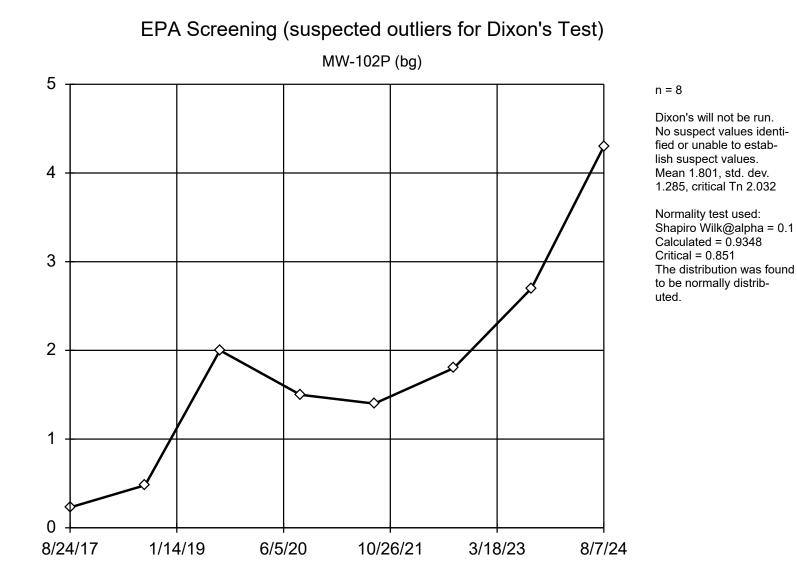
	MW-102P (bg)		
8/24/2017	1770		
8/16/2018	1920		
8/7/2019	1400 (B)		
8/24/2020	1800		
8/11/2021	1800		
8/24/2022	1600		
8/29/2023	1400		
8/7/2024	1700		






mg/L

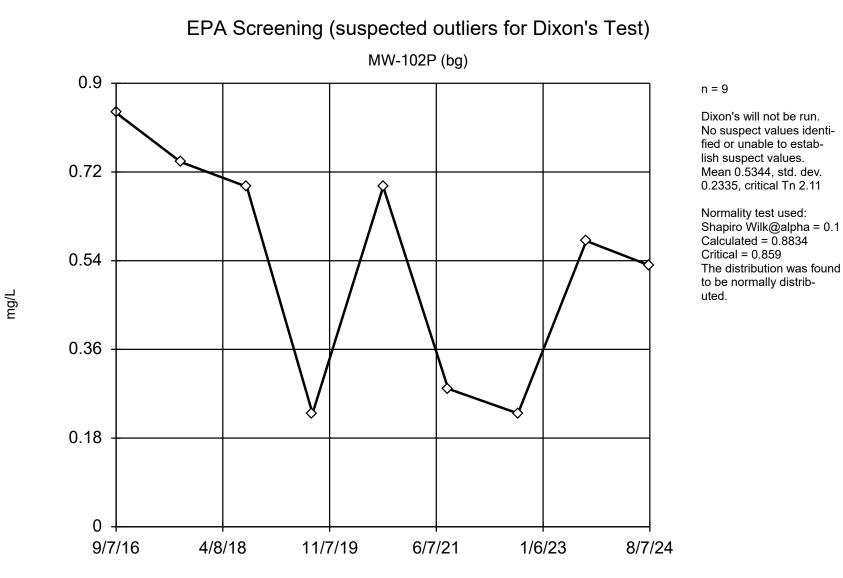
Constituent: Chloride (mg/L) Analysis Run 10/21/2024 5:55 PM View: Pennsylvanian Unit


MW-102P (bg)
8.6
8.6
9.3
8.5
8.8
8.6
8.8
9.1
8.2
8.9
9.3
9.5
9.5 9.4



EPA 1989 Outlier Screening Analysis Run 10/21/2024 5:53 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML

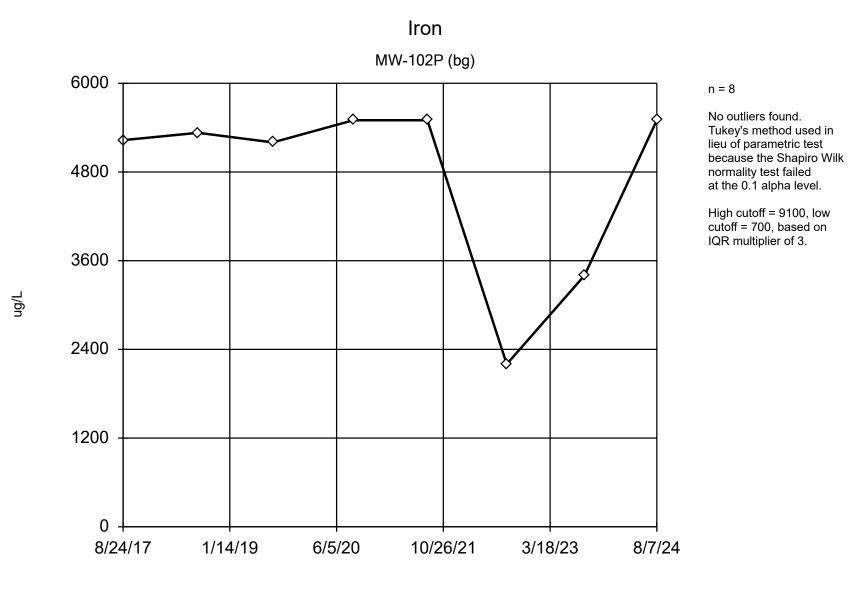
Constituent: Cobalt (ug/L) Analysis Run 10/21/2024 5:55 PM View: Pennsylvanian Unit


	MW-102P (bg)
8/24/2017	0.86 (J)
8/16/2018	3 1.1
8/7/2019	1.3 (J)
8/24/2020	0.93
8/11/2021	0.97
8/24/2022	2. 1.4
8/29/2023	0.87
8/7/2024	0.74



EPA 1989 Outlier Screening Analysis Run 10/21/2024 5:53 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML

Constituent: Copper (ug/L) Analysis Run 10/21/2024 5:56 PM View: Pennsylvanian Unit

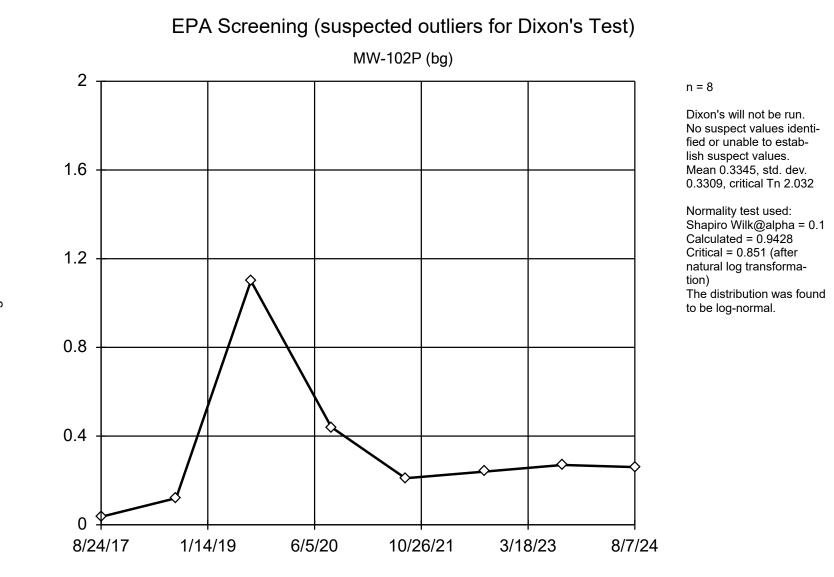

	MW-102P (bg)
8/24/2017	0.23 (J)
8/16/2018	<0.48
8/7/2019	<2
8/24/2020	<1.5
8/11/2021	<1.4
8/24/2022	<1.8 (U)
8/29/2023	2.7 (J)
8/7/2024	4.3 (J)
0.772021	



EPA 1989 Outlier Screening Analysis Run 10/21/2024 5:53 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML

Constituent: Fluoride (mg/L) Analysis Run 10/21/2024 5:56 PM View: Pennsylvanian Unit

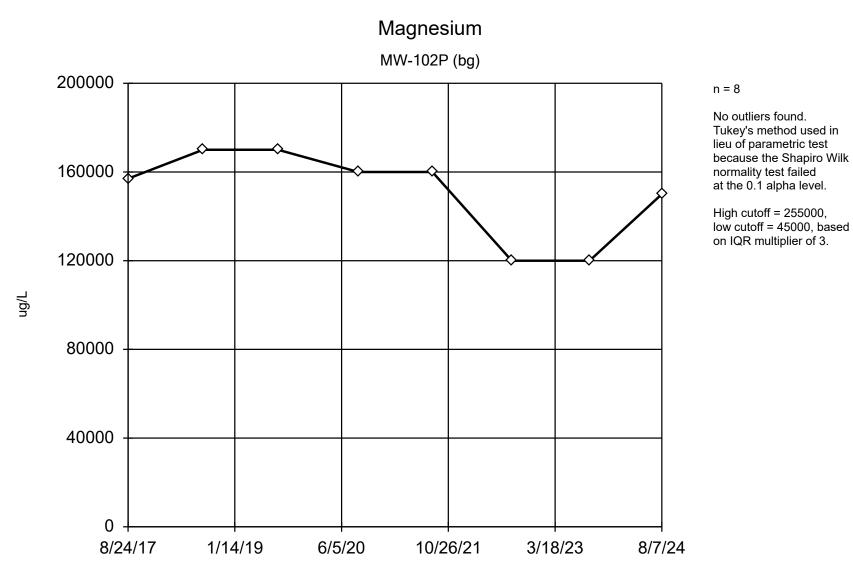
	MW-102P (bg)
9/7/2016	0.84
8/24/2017	0.74
8/16/2018	0.69
8/7/2019	<0.23
8/24/2020	0.69
8/11/2021	<0.28
8/24/2022	0.23 (J)
8/29/2023	0.58 (J)
8/7/2024	0.53 (J)




## Tukey's Outlier Screening Analysis Run 10/21/2024 5:53 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML

## **Tukey's Outlier Screening**

Constituent: Iron (ug/L) Analysis Run 10/21/2024 5:56 PM View: Pennsylvanian Unit

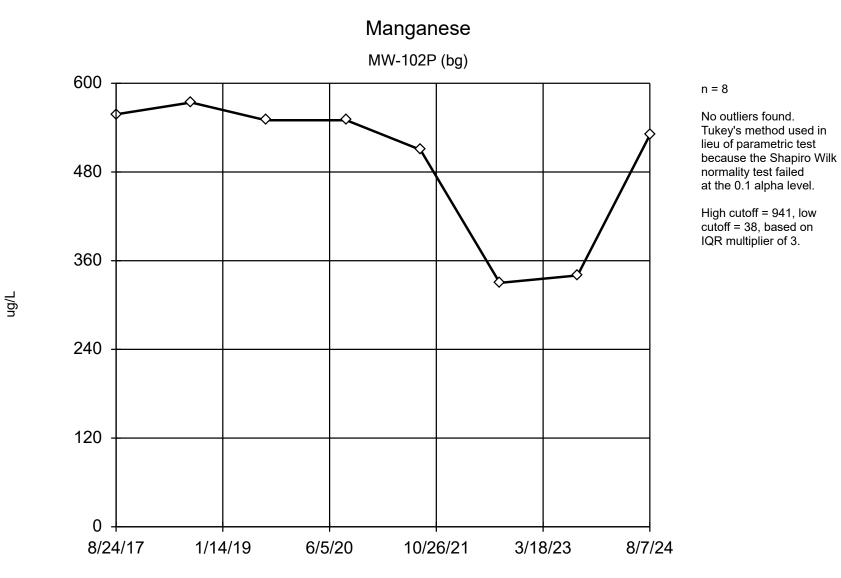

8/24/2017     5230       8/16/2018     5330       8/7/2019     5200       8/24/2020     5500       8/11/2021     5500       8/24/2022     2200
8/7/201952008/24/202055008/11/20215500
8/24/2020 5500 8/11/2021 5500
8/11/2021 5500
8/24/2022 2200
0/24/2022 2200
8/29/2023 3400
8/7/2024 5500



EPA 1989 Outlier Screening Analysis Run 10/21/2024 5:53 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML

Constituent: Lead (ug/L) Analysis Run 10/21/2024 5:56 PM View: Pennsylvanian Unit

	MW-102P (bg)
8/24/2017	0.036 (J)
8/16/2018	<0.12
8/7/2019	<1.1
8/24/2020	<0.44
8/11/2021	<0.21
8/24/2022	<0.24 (U)
8/29/2023	0.27 (JB)



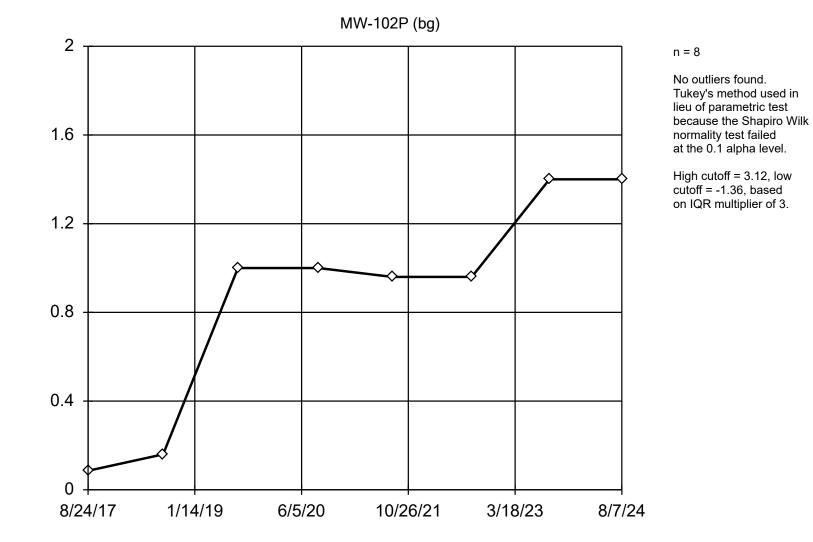

Tukey's Outlier Screening Analysis Run 10/21/2024 5:53 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML

## **Tukey's Outlier Screening**

Constituent: Magnesium (ug/L) Analysis Run 10/21/2024 5:56 PM View: Pennsylvanian Unit

	MW-102P (bg)			
8/24/2017	157000			
8/16/2018	170000			
8/7/2019	170000			
8/24/2020	160000			
8/11/2021	160000			
8/24/2022	120000			
8/29/2023	120000			
8/7/2024	150000			




Tukey's Outlier Screening Analysis Run 10/21/2024 5:53 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML

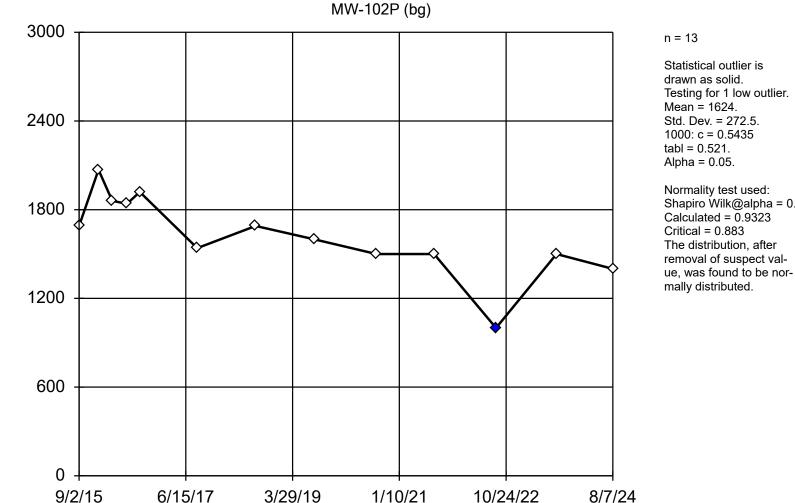
## **Tukey's Outlier Screening**

Constituent: Manganese (ug/L) Analysis Run 10/21/2024 5:56 PM View: Pennsylvanian Unit

	MW-102P (bg)
8/24/2017	558
8/16/2018	574
8/7/2019	550
8/24/2020	550
8/11/2021	510
8/24/2022	330
8/29/2023	340
8/7/2024	530

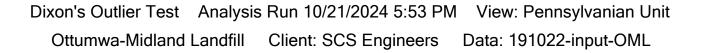
#### Selenium




Tukey's Outlier Screening Analysis Run 10/21/2024 5:53 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML

## **Tukey's Outlier Screening**

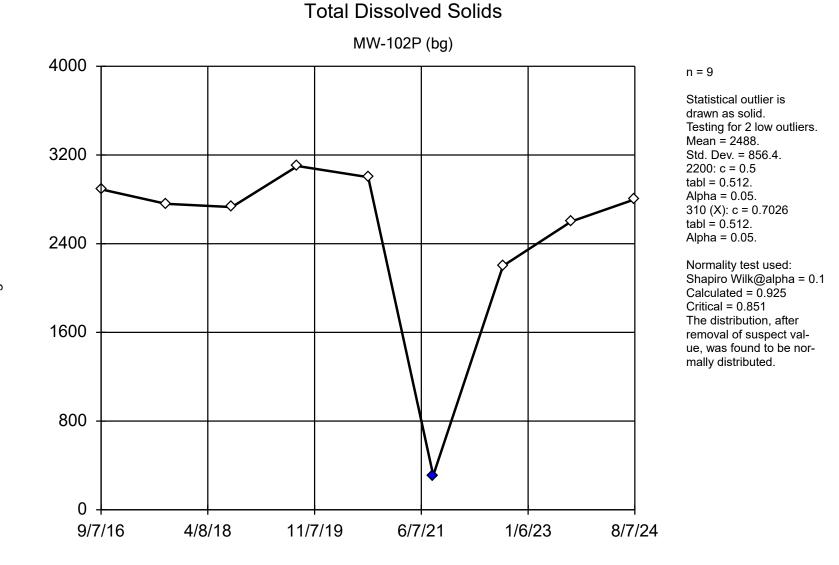
Constituent: Selenium (ug/L) Analysis Run 10/21/2024 5:56 PM View: Pennsylvanian Unit


	MW-102P (bg)
8/24/2017	<0.086
8/16/2018	<0.16
8/7/2019	<1
8/24/2020	<1
8/11/2021	<0.96
8/24/2022	<0.96 (U)
8/29/2023	<1.4 (U)
8/7/2024	<1.4

#### Sulfate



Testing for 1 low outlier. Mean = 1624. Std. Dev. = 272.5. 1000: c = 0.5435 tabl = 0.521. Alpha = 0.05. Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9323 Critical = 0.883 The distribution, after


mg/L

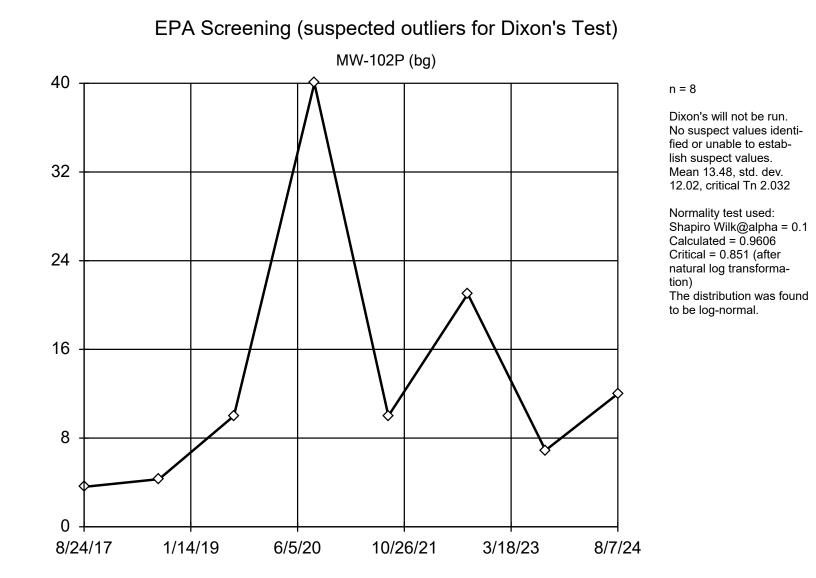


#### **Dixon's Outlier Test**

Constituent: Sulfate (mg/L) Analysis Run 10/21/2024 5:56 PM View: Pennsylvanian Unit

	MW-102P (bg)
9/2/2015	1690
12/30/2015	5 2070
3/23/2016	1860
6/21/2016	1840
9/7/2016	1920
8/24/2017	1540
8/16/2018	1690
8/7/2019	1600
8/24/2020	1500
8/11/2021	1500
8/24/2022	1000 (O)
8/29/2023	1500
8/7/2024	1400




## Dixon's Outlier Test Analysis Run 10/21/2024 5:53 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML

mg/L

#### **Dixon's Outlier Test**

Constituent: Total Dissolved Solids (mg/L) Analysis Run 10/21/2024 5:56 PM View: Pennsylvanian Unit

	MW-102P (bg)
9/7/2016	2890
8/24/2017	2760
8/16/2018	2730
8/7/2019	3100
8/24/2020	3000
8/11/2021	310 (XO)
8/24/2022	2200
8/29/2023	2600
8/7/2024	2800



EPA 1989 Outlier Screening Analysis Run 10/21/2024 5:54 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML

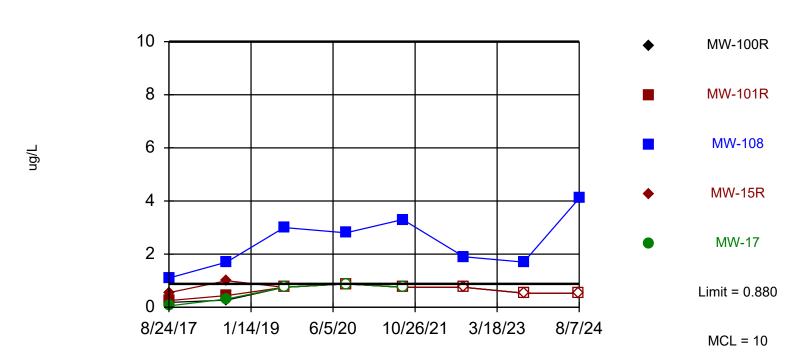
Constituent: Zinc (ug/L) Analysis Run 10/21/2024 5:56 PM View: Pennsylvanian Unit

	MW-102P (bg)
8/24/2017	3.6 (J)
8/16/2018	4.3 (J)
8/7/2019	<10
8/24/2020	<40
8/11/2021	<10
8/24/2022	21
8/29/2023	6.9 (J)

D5 – Interwell Prediction Limit Analysis Results - Shallow

Ottumwa-Midland Landfill Data: 191022-input-OML Printed 10/21/2024, 12:57 PM

				onanna			2010								
<u>Constituent</u>	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	-	<u>N Bg Wells</u>	<u>Bg Mean</u>	Std. Dev.	<u>%NDs</u>	<u>ND Adj.</u>	Transform	<u>Alpha</u>	Method
Arsenic (ug/L)	MW-100R	0.880	n/a	8/6/2024	0.53ND	No	8	MW-1R	n/a	n/a	87.5	n/a	n/a	0.01952	NP Inter (NDs) 1 of 2
Arsenic (ug/L)	MW-101R	0.880	n/a	8/6/2024	0.53ND	No	8	MW-1R	n/a	n/a	87.5	n/a	n/a	0.01952	NP Inter (NDs) 1 of 2
Arsenic (ug/L)	MW-108	0.880	n/a	8/7/2024	4.1	Yes	8	MW-1R	n/a	n/a	87.5	n/a	n/a	0.01952	NP Inter (NDs) 1 of 2
Arsenic (ug/L)	MW-15R	0.880	n/a	8/6/2024	0.53ND	No	8	MW-1R	n/a	n/a	87.5	n/a	n/a	0.01952	NP Inter (NDs) 1 of 2
Arsenic (ug/L)	MW-17	0.880	n/a	8/10/2021	0.75ND	No	8	MW-1R	n/a	n/a	87.5	n/a	n/a	0.01952	NP Inter (NDs) 1 of 2
Barium (ug/L)	MW-100R	90.1	n/a	8/6/2024	44	No	8	MW-1R	73.5	6.047	0	None	No	0.001404	Param Inter 1 of 2
Barium (ug/L)	MW-101R	90.1	n/a	8/6/2024	37	No	8	MW-1R	73.5	6.047	0	None	No	0.001404	Param Inter 1 of 2
Barium (ug/L)	MW-108	90.1	n/a	8/7/2024	34	No	8	MW-1R	73.5	6.047	0	None	No	0.001404	Param Inter 1 of 2
Barium (ug/L)	MW-15R	90.1	n/a	8/6/2024	36	No	8	MW-1R	73.5	6.047	0	None	No	0.001404	Param Inter 1 of 2
Barium (ug/L)	MW-17	90.1	n/a	8/10/2021	36	No	8	MW-1R	73.5	6.047	0	None	No	0.001404	Param Inter 1 of 2
Boron (ug/L)	MW-100R	116	n/a	8/6/2024	76ND	No	8	MW-1R	71.79	16.02	50	Kapla	No	0.001404	Param Inter 1 of 2
Boron (ug/L)	MW-101R	116	n/a	8/6/2024	720	Yes	8	MW-1R	71.79	16.02	50	Kapla	. No	0.001404	Param Inter 1 of 2
Boron (ug/L)	MW-108	116	n/a	8/7/2024	300	Yes	8	MW-1R	71.79	16.02	50	Kapla	. No	0.001404	Param Inter 1 of 2
Boron (ug/L)	MW-15R	116	n/a	8/6/2024	380	Yes	8	MW-1R	71.79	16.02	50	Kapla	. No	0.001404	Param Inter 1 of 2
Boron (ug/L)	MW-17	116	n/a	8/10/2021	650	Yes	8	MW-1R	71.79	16.02	50	Kapla	. No	0.001404	Param Inter 1 of 2
Chloride (mg/L)	MW-100R	298	n/a	8/6/2024	28	No	36	MW-1R	4.19	0.7801	0	None	ln(x)	0.001404	Param Inter 1 of 2
Chloride (mg/L)	MW-101R	298	n/a	8/6/2024	6.7	No	36	MW-1R	4.19	0.7801	0	None	ln(x)	0.001404	Param Inter 1 of 2
Chloride (mg/L)	MW-108	298	n/a	8/7/2024	2.6J	No	36	MW-1R	4.19	0.7801	0	None	ln(x)	0.001404	Param Inter 1 of 2
Chloride (mg/L)	MW-15R	298	n/a	8/6/2024	10	No	36	MW-1R	4.19	0.7801	0	None	ln(x)	0.001404	Param Inter 1 of 2
Chloride (mg/L)	MW-17	298	n/a	8/10/2021	4.4J	No	36	MW-1R	4.19	0.7801	0	None	ln(x)	0.001404	Param Inter 1 of 2
Cobalt (ug/L)	MW-100R	0.370	n/a	8/6/2024	0.17ND	No	8	MW-1R	n/a	n/a	62.5	n/a	n/a	0.01952	NP Inter (NDs) 1 of 2
Cobalt (ug/L)	MW-101R	0.370	n/a	8/6/2024	0.22J	No	8	MW-1R	n/a	n/a	62.5	n/a	n/a	0.01952	NP Inter (NDs) 1 of 2
Cobalt (ug/L)	MW-108	0.370	n/a	8/7/2024	5	Yes	8	MW-1R	n/a	n/a	62.5	n/a	n/a	0.01952	NP Inter (NDs) 1 of 2
Cobalt (ug/L)	MW-15R	0.370	n/a	8/6/2024	1.1	Yes	8	MW-1R	n/a	n/a	62.5	n/a	n/a	0.01952	NP Inter (NDs) 1 of 2
Cobalt (ug/L)	MW-17	0.370	n/a	8/10/2021	3.4	Yes	8	MW-1R	n/a	n/a	62.5	n/a	n/a	0.01952	NP Inter (NDs) 1 of 2
Copper (ug/L)	MW-100R	2.10	n/a	8/6/2024	1.8ND	No	8	MW-1R	n/a	n/a	62.5	n/a	n/a	0.01952	NP Inter (NDs) 1 of 2
Copper (ug/L)	MW-101R	2.10	n/a	8/6/2024	2J	No	8	MW-1R	n/a	n/a	62.5	n/a	n/a	0.01952	NP Inter (NDs) 1 of 2
Copper (ug/L)	MW-108	2.10	n/a	8/7/2024	1.8ND	No	8	MW-1R	n/a	n/a	62.5	n/a	n/a	0.01952	NP Inter (NDs) 1 of 2
Copper (ug/L)	MW-15R	2.10	n/a	8/6/2024	1.8J	No	8	MW-1R	n/a	n/a	62.5	n/a	n/a	0.01952	NP Inter (NDs) 1 of 2
Copper (ug/L)	MW-17	2.10	n/a	8/10/2021	1.4ND	No	8	MW-1R	n/a	n/a	62.5	n/a	n/a	0.01952	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	MW-100R	0.972	n/a	8/6/2024	0.19ND	No	9	MW-1R	0.4489	0.1995	11.11	None	No	0.001404	Param Inter 1 of 2
Fluoride (mg/L)	MW-101R	0.972	n/a	8/6/2024	0.19ND	No	9	MW-1R	0.4489	0.1995	11.11	None	No	0.001404	Param Inter 1 of 2
Fluoride (mg/L)	MW-108	0.972	n/a	8/7/2024	0.43J	No	9	MW-1R	0.4489	0.1995	11.11	None	No	0.001404	Param Inter 1 of 2
Fluoride (mg/L)	MW-15R	0.972	n/a	8/6/2024	0.19ND	No	9	MW-1R	0.4489	0.1995	11.11	None	No	0.001404	Param Inter 1 of 2
Fluoride (mg/L)	MW-17	0.972	n/a	8/10/2021	0.46J	No	9	MW-1R	0.4489	0.1995	11.11	None	No	0.001404	Param Inter 1 of 2
Iron (ug/L)	MW-100R	931	n/a	8/6/2024	36ND	No	8	MW-1R	3.637	1.163	37.5	Kapla	ln(x)	0.001404	Param Inter 1 of 2
lron (ug/L)	MW-101R	931	n/a	8/6/2024	82J	No	8	MW-1R	3.637	1.163	37.5	Kapla	ln(x)	0.001404	Param Inter 1 of 2
lron (ug/L)	MW-108	931	n/a	8/7/2024	4300	Yes	8	MW-1R	3.637	1.163	37.5	Kapla	. In(x)	0.001404	Param Inter 1 of 2
Iron (ug/L)	MW-15R	931	n/a	8/6/2024	310	No	8	MW-1R	3.637	1.163	37.5	Kapla	ln(x)	0.001404	Param Inter 1 of 2
Iron (ug/L)	MW-17	931	n/a	8/10/2021	48J	No	8	MW-1R	3.637	1.163	37.5	Kapla	ln(x)	0.001404	Param Inter 1 of 2
Lead (ug/L)	MW-100R	1.58	n/a	8/6/2024	0.26ND	No	8	MW-1R	-1.282	0.633	50	Kapla	ln(x)	0.001404	Param Inter 1 of 2
Lead (ug/L)	MW-101R	1.58	n/a	8/6/2024	0.26ND	No	8	MW-1R	-1.282	0.633	50	Kapla	ln(x)	0.001404	Param Inter 1 of 2
Lead (ug/L)	MW-108	1.58	n/a	8/7/2024	0.26ND	No	8	MW-1R	-1.282	0.633	50	Kapla	ln(x)	0.001404	Param Inter 1 of 2
		1.58	n/a	8/6/2024	0.26ND	No	8	MW-1R	-1.282	0.633	50	Kapla	ln(x)	0.001404	Param Inter 1 of 2
Lead (ug/L)	MW-15R	1.50	n/a	0/0/2024											
Lead (ug/L) Lead (ug/L)	MW-15R MW-17	1.58	n/a n/a	8/10/2021	0.21ND	No	8	MW-1R	-1.282	0.633	50	Kapla		0.001404	Param Inter 1 of 2
						No No		MW-1R MW-1R	-1.282 n/a	0.633 n/a	50 0	Kapla n/a		0.001404 0.01952	Param Inter 1 of 2 NP Inter (normality)
Lead (ug/L)	MW-17	1.58	n/a	8/10/2021	0.21ND		8						ln(x)		
Lead (ug/L) Magnesium (ug/L)	MW-17 MW-100R	1.58 48100	n/a n/a	8/10/2021 8/6/2024	0.21ND 40000	No	8 <b>8</b>	MW-1R	n/a	n/a	0	n/a	ln(x) n/a	0.01952	NP Inter (normality)
Lead (ug/L) Magnesium (ug/L) <b>Magnesium (ug/L)</b>	MW-17 MW-100R <b>MW-101R</b>	1.58 48100 <b>48100</b>	n/a n/a <b>n/a</b>	8/10/2021 8/6/2024 <b>8/6/2024</b>	0.21ND 40000 <b>71000</b>	No Yes	8 <b>8</b> 8	MW-1R <b>MW-1R</b>	n/a <b>n/a</b>	n/a <b>n/a</b>	0 <b>0</b>	n/a <b>n/a</b>	ln(x) n/a <b>n/a</b>	0.01952 <b>0.01952</b>	NP Inter (normality) <b>NP Inter (normality)</b>
Lead (ug/L) Magnesium (ug/L) <b>Magnesium (ug/L)</b> Magnesium (ug/L)	MW-17 MW-100R <b>MW-101R</b> MW-108	1.58 48100 <b>48100</b> 48100	n/a n/a n/a n/a	8/10/2021 8/6/2024 <b>8/6/2024</b> 8/7/2024	0.21ND 40000 <b>71000</b> 16000	No <b>Yes</b> No	8 8 8 8	MW-1R <b>MW-1R</b> MW-1R	n/a <b>n/a</b> n/a	n/a <b>n/a</b> n/a	0 <b>0</b> 0	n/a <b>n/a</b> n/a	ln(x) n/a n/a n/a	0.01952 <b>0.01952</b> 0.01952	NP Inter (normality) <b>NP Inter (normality)</b> NP Inter (normality)


Ottumwa-Midland Landfill Data: 191022-input-OML Printed 10/21/2024, 12:57 PM

				Ottainwa-				T HILEG I	0/21/2024,	12.07 11	*1		
<u>Constituent</u>	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u> B	<u>g N Bg Wells</u>	<u>Bg Mean</u>	Std. Dev.	<u>%NDs</u>	ND Adj. Transform	<u>Alpha</u>	Method
Manganese (ug/L)	MW-100R	24.7	n/a	8/6/2024	3.6ND	No 8	MW-1R	1.214	0.7247	50	Kapla ln(x)	0.001404	Param Inter 1 of 2
Manganese (ug/L)	MW-101R	24.7	n/a	8/6/2024	180	Yes 8	MW-1R	1.214	0.7247	50	Kapla In(x)	0.001404	Param Inter 1 of 2
Manganese (ug/L)	MW-108	24.7	n/a	8/7/2024	920	Yes 8	MW-1R	1.214	0.7247	50	Kapla In(x)	0.001404	Param Inter 1 of 2
Manganese (ug/L)	MW-15R	24.7	n/a	8/6/2024	440	Yes 8	MW-1R	1.214	0.7247	50	Kapla In(x)	0.001404	Param Inter 1 of 2
Manganese (ug/L)	MW-17	24.7	n/a	8/10/2021	2200	Yes 8	MW-1R	1.214	0.7247	50	Kapla In(x)	0.001404	Param Inter 1 of 2
Selenium (ug/L)	MW-100R	2.98	n/a	8/6/2024	1.4ND	No 8	MW-1R	1.422	0.5671	37.5	Kapla No	0.001404	Param Inter 1 of 2
Selenium (ug/L)	MW-101R	2.98	n/a	8/6/2024	5.2	Yes 8	MW-1R	1.422	0.5671	37.5	Kapla No	0.001404	Param Inter 1 of 2
Selenium (ug/L)	MW-108	2.98	n/a	8/7/2024	1.4ND	No 8	MW-1R	1.422	0.5671	37.5	Kapla No	0.001404	Param Inter 1 of 2
Selenium (ug/L)	MW-15R	2.98	n/a	8/6/2024	1.4J	No 8	MW-1R	1.422	0.5671	37.5	Kapla No	0.001404	Param Inter 1 of 2
Selenium (ug/L)	MW-17	2.98	n/a	8/10/2021	0.96ND	No 8	MW-1R	1.422	0.5671	37.5	Kapla No	0.001404	Param Inter 1 of 2
Sulfate (mg/L)	MW-100R	459	n/a	8/6/2024	180	No 26	6 MW-1R	220.9	119	0	None No	0.001404	Param Inter 1 of 2
Sulfate (mg/L)	MW-101R	459	n/a	8/6/2024	480	Yes 26	6 MW-1R	220.9	119	0	None No	0.001404	Param Inter 1 of 2
Sulfate (mg/L)	MW-108	459	n/a	8/7/2024	130	No 26	6 MW-1R	220.9	119	0	None No	0.001404	Param Inter 1 of 2
Sulfate (mg/L)	MW-15R	459	n/a	8/6/2024	440	No 26	6 MW-1R	220.9	119	0	None No	0.001404	Param Inter 1 of 2
Sulfate (mg/L)	MW-17	459	n/a	8/10/2021	280	No 26	6 MW-1R	220.9	119	0	None No	0.001404	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	MW-100R	1020	n/a	8/6/2024	640	No 9	MW-1R	571.7	172.2	0	None No	0.001404	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	MW-101R	1020	n/a	8/6/2024	1100	Yes 9	MW-1R	571.7	172.2	0	None No	0.001404	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	MW-108	1020	n/a	8/7/2024	390	No 9	MW-1R	571.7	172.2	0	None No	0.001404	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	MW-15R	1020	n/a	8/6/2024	1500	Yes 9	MW-1R	571.7	172.2	0	None No	0.001404	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	MW-17	1020	n/a	8/10/2021	530	No 9	MW-1R	571.7	172.2	0	None No	0.001404	Param Inter 1 of 2
Zinc (ug/L)	MW-100R	10.0	n/a	8/6/2024	9.7ND	No 8	MW-1R	n/a	n/a	87.5	n/a n/a	0.01952	NP Inter (NDs) 1 of 2
Zinc (ug/L)	MW-101R	10.0	n/a	8/6/2024	9.7ND	No 8	MW-1R	n/a	n/a	87.5	n/a n/a	0.01952	NP Inter (NDs) 1 of 2
Zinc (ug/L)	MW-108	10.0	n/a	8/7/2024	43	Yes 8	MW-1R	n/a	n/a	87.5	n/a n/a	0.01952	NP Inter (NDs) 1 of 2
Zinc (ug/L)	MW-15R	10.0	n/a	8/6/2024	9.7ND	No 8	MW-1R	n/a	n/a	87.5	n/a n/a	0.01952	NP Inter (NDs) 1 of 2
Zinc (ug/L)	MW-17	10.0	n/a	8/10/2021	10ND	No 8	MW-1R	n/a	n/a	87.5	n/a n/a	0.01952	NP Inter (NDs) 1 of 2

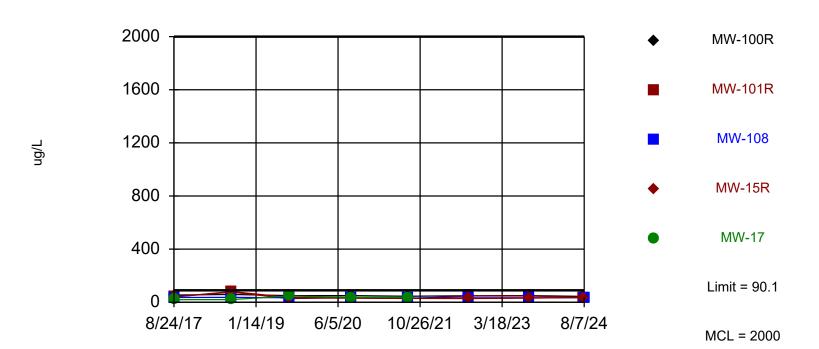
#### Exceeds Limit: MW-108

#### Arsenic

Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 87.5% NDs. Annual per-constituent alpha = 0.09387. Individual comparison alpha = 0.01952 (1 of 2). Comparing 5 points to limit.


Constituent: Arsenic (ug/L) Analysis Run 10/21/2024 12:57 PM View: Shallow

	MW-100R	MW-17	MW-15R	MW-108	MW-101R	MW-1R (bg)
8/24/2017	0.18 (J)	0.052 (J)	0.55 (J)	1.1	0.25 (J)	0.2 (J)
8/16/2018	0.27 (J)	0.31 (J)	1	1.7	0.44 (J)	
4/6/2019						<0.75
8/7/2019	<0.75	<0.75	<0.75	3	<0.75	<0.75
8/24/2020	<0.88	<0.88		2.8	<0.88	<0.88
8/25/2020			<0.88			
8/10/2021		<0.75				<0.75
8/11/2021	<0.75			3.3	<0.75	
8/12/2021			<0.75			
8/23/2022						<0.75 (U)
8/24/2022	<0.75 (U)		<0.75 (U)	1.9 (J)	<0.75 (U)	
8/29/2023	<0.53 (U)				<0.53 (U)	<0.53 (U)
8/30/2023			<0.53 (U)	1.7 (J)		
8/6/2024	<0.53		<0.53		<0.53	<0.53
8/7/2024				4.1		

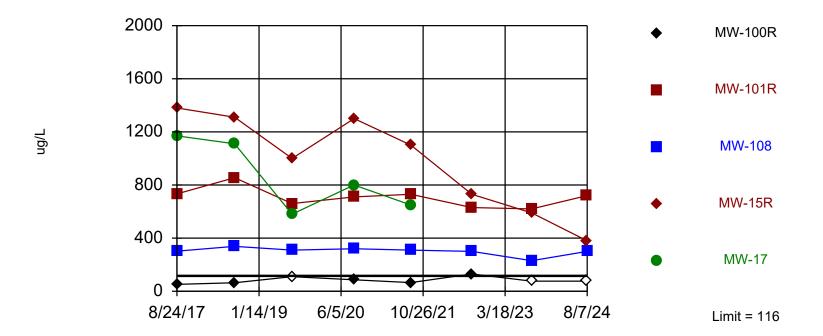
#### Within Limit

#### Barium

Interwell Parametric



Background Data Summary: Mean=73.5, Std. Dev.=6.047, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9013, critical = 0.749. Kappa = 2.75 (c=15, w=5, 1 of 2, event alpha = 0.1). Report alpha = 0.006999. Individual comparison alpha = 0.001404. Comparing 5 points to limit.


Constituent: Barium (ug/L) Analysis Run 10/21/2024 12:57 PM View: Shallow

	MW-100R	MW-17	MW-15R	MW-108	MW-101R	MW-1R (bg)
8/24/2017	54.2	19.4	40.6	35.4	40	61
8/16/2018	58.4	20.2	80.5	37.1	75.9	
4/6/2019						81
8/7/2019	50	47	37	34	28	75
8/24/2020	50	37		33	33	76
8/25/2020			30			
8/10/2021		36 (B)				71 (B)
8/11/2021	45 (B)			32 (B)	28 (B)	
8/12/2021			29 (B)			
8/23/2022						78
8/24/2022	49		28	33	47	
8/29/2023	50				47	75
8/30/2023			31	34		
8/6/2024	44		36		37	71
8/7/2024				34		

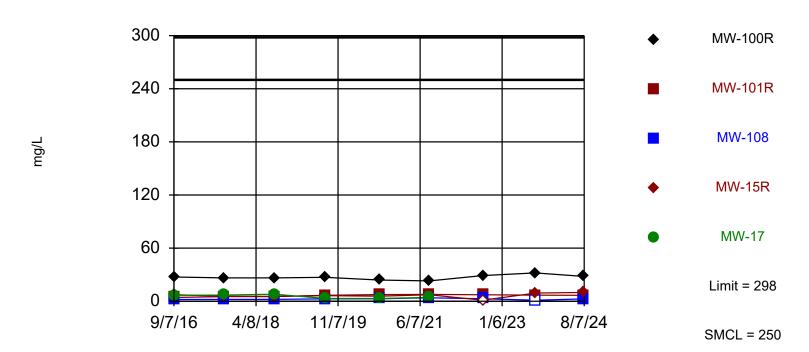
Exceeds Limit: MW-101R, MW-108, MW-15R, MW-17

#### Boron





Background Data Summary (after Kaplan-Meier Adjustment): Mean=71.79, Std. Dev.=16.02, n=8, 50% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8472, critical = 0.749. Kappa = 2.75 (c=15, w=5, 1 of 2, event alpha = 0.1). Report alpha = 0.006999. Individual comparison alpha = 0.001404. Comparing 5 points to limit.


Constituent: Boron (ug/L) Analysis Run 10/21/2024 12:57 PM View: Shallow

	MW-100R	MW-17	MW-15R	MW-108	MW-101R	MW-1R (bg)
8/24/2017	51.8 (J)	1170	1380	302	733	76 (J)
8/16/2018	64.2 (J)	1110	1310	338	855	
4/6/2019						110 (J)
8/7/2019	<110	580 (B)	1000 (B)	310 (B)	660 (B)	110 (J,B)
8/24/2020	86 (J)	800		320	710	<80
8/25/2020			1300			
8/10/2021		650				<58
8/11/2021	65 (J)			310	730	
8/12/2021			1100			
8/23/2022						65 (J)
8/24/2022	130		730	300	630	
8/29/2023	<76 (U)				620	<76 (U)
8/30/2023			590	230		
8/6/2024	<76		380		720	<76
8/7/2024				300		

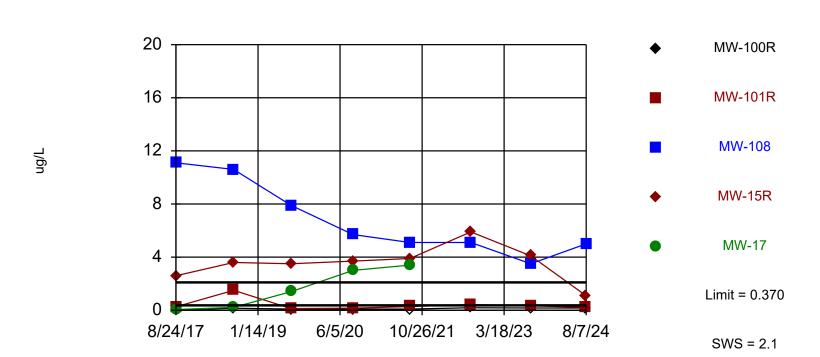
Within Limit

#### Chloride

Interwell Parametric



Background Data Summary (based on natural log transformation): Mean=4.19, Std. Dev.=0.7801, n=36. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9704, critical = 0.912. Kappa = 1.93 (c=15, w=5, 1 of 2, event alpha = 0.1). Report alpha = 0.006999. Individual comparison alpha = 0.001404. Comparing 5 points to limit.


Constituent: Chloride (mg/L) Analysis Run 10/21/2024 12:57 PM View: Shallow

				Citumwa-Iwiulai		TOZZ-III PUT-OWE	
	MW-1R (bg)	MW-17	MW-100R	MW-15R	MW-108	MW-101R	
8/10/1995	170						
10/6/1995	150						
1/25/1996	174						
4/26/1996	121						
7/19/1996	138.3						
10/21/1996	6 106						
4/28/1997	98						
10/6/1997	120						
4/22/1998	120						
10/7/1998	580 (X)						
9/29/1999	110						
9/13/2000	89.6						
9/19/2001	53.3						
9/11/2002	59.5						
9/10/2003	64.8						
9/15/2004	37.9						
9/14/2005	60						
9/13/2006	35.9						
9/12/2007	34.5						
9/17/2008	70.4						
9/16/2009	84.9						
8/31/2010	164						
9/13/2011							
9/18/2012	74.4						
9/27/2013							
9/10/2014							
9/2/2015	62.4						
9/7/2016	64.9	6.7	27.4	7.4	2	4.3	
8/24/2017		7	26.4	5.6	2.1	5.3	
8/16/2018		8	26.4	5.5	2.1	5.3	
4/6/2019	24						
8/7/2019	25	3.2 (J)	27	6.3	2.7 (J)	6.7	
8/24/2020		3.1 (J)	24		2.8 (J)	7.5	
8/25/2020				5.7			
8/10/2021		4.4 (J)					
8/11/2021			23		3.9 (J)	7.7	
8/12/2021				7.3	. ,		
8/23/2022							
8/24/2022			29	<2.3 (U)	2.8 (J)	7.3	
8/29/2023			32	- ( - /	<b>\</b> - <i>\</i>	6.9	
8/30/2023			-	9.2	<2.3 (U)		
8/6/2024	29		28	10	- (-/	6.7	
8/7/2024	-		-	-	2.6 (J)		
					- \/		

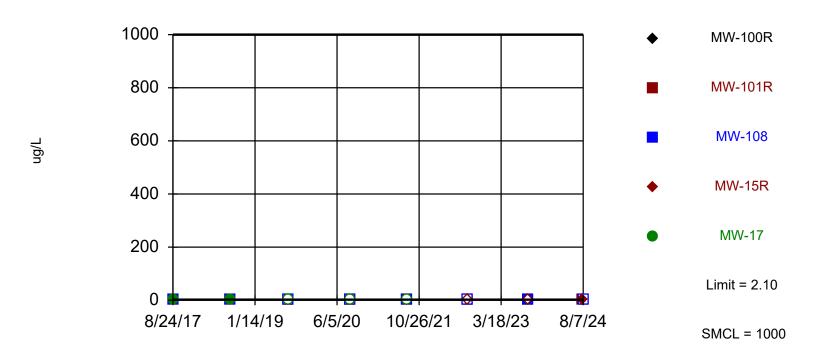
Exceeds Limit: MW-108, MW-15R, MW-17

#### Cobalt

Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 62.5% NDs. Annual per-constituent alpha = 0.09387. Individual comparison alpha = 0.01952 (1 of 2). Comparing 5 points to limit.


Constituent: Cobalt (ug/L) Analysis Run 10/21/2024 12:57 PM View: Shallow

	MW-100R	MW-17	MW-15R	MW-108	MW-101R	MW-1R (bg)
8/24/2017	0.028 (J)	0.054 (J)	2.6	11.1	0.26 (J)	0.049 (J)
8/16/2018	<0.15	0.22 (J)	3.6	10.6	1.5	
4/6/2019						0.37 (J)
8/7/2019	<0.091	1.4	3.5	7.9	0.13 (J)	<0.091
8/24/2020	<0.091	3		5.7	0.16 (J)	0.22 (J)
8/25/2020			3.7			
8/10/2021		3.4				<0.091
8/11/2021	<0.091			5.1	0.28 (J)	
8/12/2021			3.9			
8/23/2022						<0.19 (U)
8/24/2022	<0.19 (U)		5.9	5.1	0.43 (J)	
8/29/2023	<0.17 (U)				0.34 (J)	<0.17 (U)
8/30/2023			4.1	3.5		
8/6/2024	<0.17		1.1		0.22 (J)	<0.17
8/7/2024				5		

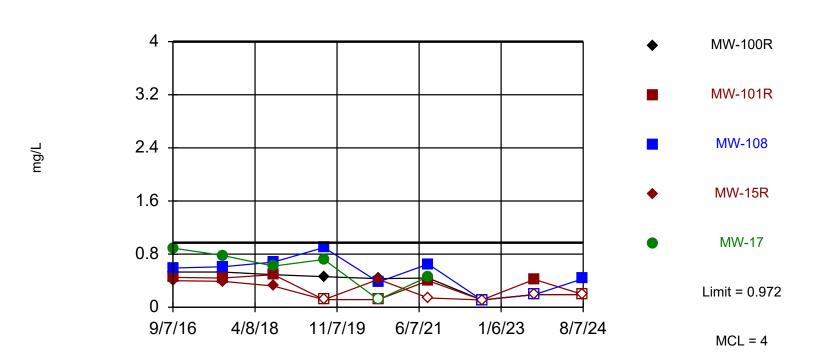
Within Limit

### Copper

Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 62.5% NDs. Annual per-constituent alpha = 0.09387. Individual comparison alpha = 0.01952 (1 of 2). Comparing 5 points to limit.


Constituent: Copper (ug/L) Analysis Run 10/21/2024 12:57 PM View: Shallow

	MW-100R	MW-17	MW-15R	MW-108	MW-101R	MW-1R (bg)
8/24/2017	0.32 (J)	0.52 (J)	0.38 (J)	0.61 (J)	0.92 (J)	0.99 (J)
8/16/2018	0.74 (J)	0.66 (J)	2.7	0.57 (J)	2.6	
4/6/2019						2.1 (J)
8/7/2019	<2	<2	<2	<2	<2	<2
8/24/2020	<1.5	<1.5		<1.5	<1.5	1.6 (J)
8/25/2020			<1.5			
8/10/2021		<1.4				<1.4
8/11/2021	<1.4			1.7 (J)	<1.4	
8/12/2021			2.5 (J)			
8/23/2022						<1.8 (U)
8/24/2022	<1.8 (U)		<1.8 (U)	<1.8 (U)	<1.8 (U)	
8/29/2023	1.8 (J)				<1.8 (U)	<1.8 (U)
8/30/2023			<1.8 (U)	2 (J)		
8/6/2024	<1.8		1.8 (J)		2 (J)	<1.8
8/7/2024				<1.8		

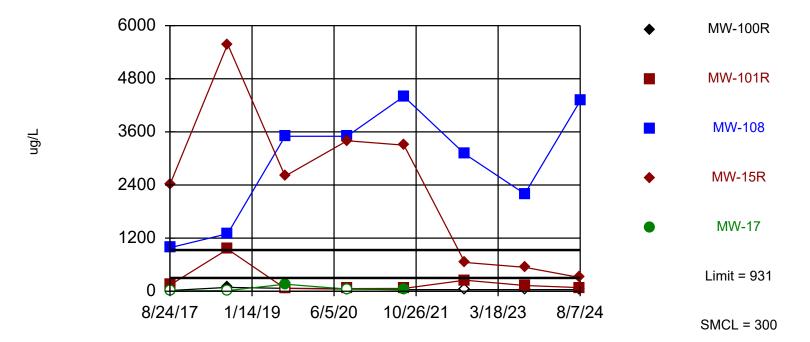
Within Limit

### Fluoride

Interwell Parametric



Background Data Summary: Mean=0.4489, Std. Dev.=0.1995, n=9, 11.11% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9356, critical = 0.764. Kappa = 2.62 (c=15, w=5, 1 of 2, event alpha = 0.1). Report alpha = 0.006999. Individual comparison alpha = 0.001404. Comparing 5 points to limit.


Constituent: Fluoride (mg/L) Analysis Run 10/21/2024 12:57 PM View: Shallow

	MW-100R	MW-17	MW-15R	MW-1R (bg)	MW-108	MW-101R
9/7/2016	0.53	0.89	0.4	0.48	0.59	0.45
8/24/2017	0.53	0.78	0.39	0.58	0.61	0.44
8/16/2018	0.49	0.62	0.32		0.68	0.49
4/6/2019				0.35 (J)		
8/7/2019	0.46 (J)	0.72	<0.23	0.85	0.9	<0.23
8/24/2020	0.43 (J)	<0.23		0.47 (J)	0.38 (J)	<0.23
8/25/2020			0.42 (J)			
8/10/2021		0.46 (J)		0.34 (J)		
8/11/2021	0.44 (J)				0.65	0.4 (J)
8/12/2021			<0.28			
8/23/2022				<0.22 (U)		
8/24/2022	<0.22 (U)		<0.22 (U)		<0.22 (U)	<0.22 (U)
8/29/2023	<0.38 (U)			0.4 (J)		0.42 (J)
8/30/2023			<0.38 (U)		<0.38 (U)	
8/6/2024	<0.38		<0.38	0.46 (J)		<0.38
8/7/2024					0.43 (J)	

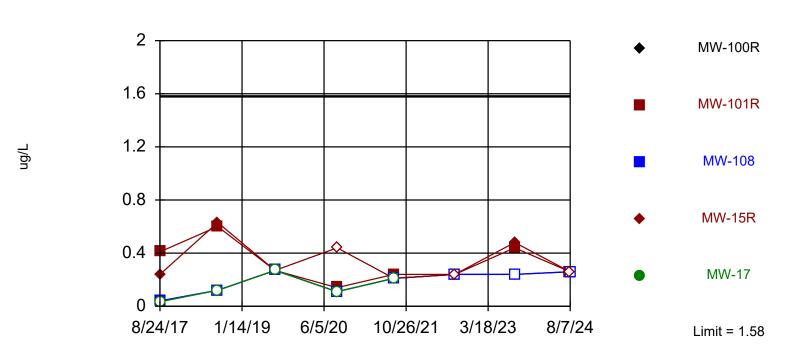
#### Exceeds Limit: MW-108

#### Iron





Background Data Summary (based on natural log transformation) (after Kaplan-Meier Adjustment): Mean=3.637, Std. Dev.=1.163, n=8, 37.5% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9279, critical = 0.749. Kappa = 2.75 (c=15, w=5, 1 of 2, event alpha = 0.1). Report alpha = 0.006999. Individual comparison alpha = 0.001404. Comparing 5 points to limit.


Constituent: Iron (ug/L) Analysis Run 10/21/2024 12:57 PM View: Shallow

	MW-100R	MW-17	MW-15R	MW-108	MW-101R	MW-1R (bg)
8/24/2017	16.2 (J)	<9.6	2410	983	140	12.5 (J)
8/16/2018	86.3	<14.9	5580	1300	949	
4/6/2019						380
8/7/2019	<66	160	2600	3500	<66	<66
8/24/2020	<50	<50		3500	60 (J)	(J) 88
8/25/2020			3400			
8/10/2021		48 (J)				<36
8/11/2021	<36			4400	64 (J)	
8/12/2021			3300			
8/23/2022						64 (J)
8/24/2022	<36 (U)		650	3100	250	
8/29/2023	<36 (U)				130	<36 (U)
8/30/2023			540	2200		
8/6/2024	<36		310		82 (J)	46 (J)
8/7/2024				4300		

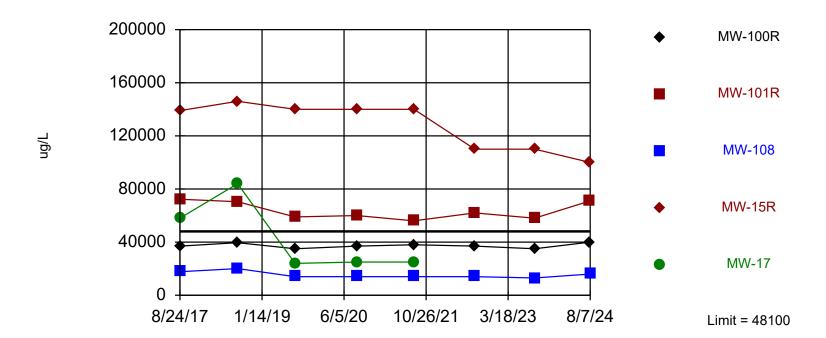
Within Limit

#### Lead

Interwell Parametric



Background Data Summary (based on natural log transformation) (after Kaplan-Meier Adjustment): Mean=-1.282, Std. Dev.=0.633, n=8, 50% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8183, critical = 0.749. Kappa = 2.75 (c=15, w=5, 1 of 2, event alpha = 0.1). Report alpha = 0.006999. Individual comparison alpha = 0.001404. Comparing 5 points to limit.


Constituent: Lead (ug/L) Analysis Run 10/21/2024 12:57 PM View: Shallow

	MW-100R	MW-17	MW-15R	MW-108	MW-101R	MW-1R (bg)
8/24/2017	0.039 (J)	<0.033	0.24 (J)	0.041 (J)	0.41 (J)	0.18 (J)
8/16/2018	<0.12	<0.12	0.63 (J)	<0.12	0.6 (J)	
4/6/2019						0.71
8/7/2019	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27
8/24/2020	<0.11	<0.11		<0.11	0.14 (J)	0.9
8/25/2020			<0.44			
8/10/2021		<0.21				<0.21
8/11/2021	<0.21			<0.21	0.24 (J)	
8/12/2021			<0.21			
8/23/2022						<0.24 (U)
8/24/2022	<0.24 (U)		<0.24 (U)	<0.24 (U)	<0.24 (U)	
8/29/2023	0.24 (JB)				0.44 (JB)	0.29 (JB)
8/30/2023			0.48 (JB)	<0.24 (U)		
8/6/2024	<0.26		<0.26		<0.26	<0.26
8/7/2024				<0.26		

Sanitas™ v.10.0.16 Software licensed to SCS Engineers. UG

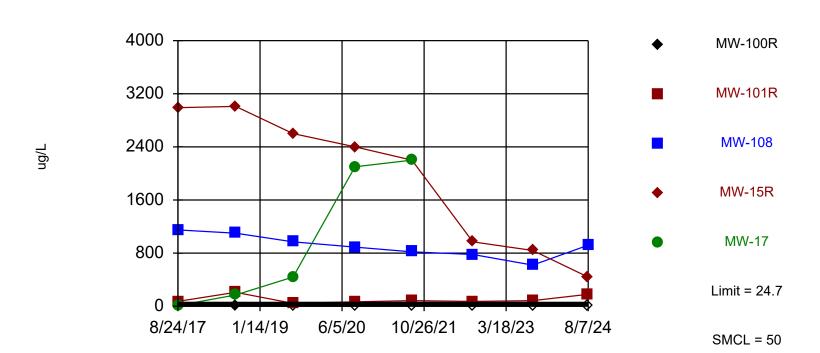
Exceeds Limit: MW-101R, MW-15R

### Magnesium



Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Annual per-constituent alpha = 0.09387. Individual comparison alpha = 0.01952 (1 of 2). Comparing 5 points to limit.


Constituent: Magnesium (ug/L) Analysis Run 10/21/2024 12:57 PM View: Shallow

	MW-100R	MW-17	MW-15R	MW-108	MW-101R	MW-1R (bg)
8/24/2017	37000	58100	139000	17700	72300	48100
8/16/2018	39600	84000	146000	20100	70400	
4/6/2019						31000
8/7/2019	35000	24000	140000	14000	59000	30000
8/24/2020	37000	25000		14000	60000	31000
8/25/2020			140000			
8/10/2021		25000				30000
8/11/2021	38000			14000	56000	
8/12/2021			140000			
8/23/2022						31000
8/24/2022	37000		110000	14000	62000	
8/29/2023	35000				58000	29000
8/30/2023			110000	13000		
8/6/2024	40000		100000		71000	28000
8/7/2024				16000		

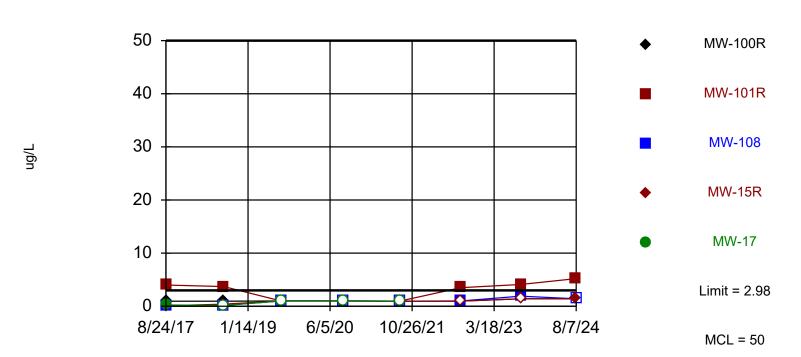
Exceeds Limit: MW-101R, MW-108, MW-15R, MW-17

#### Manganese

Interwell Parametric



Background Data Summary (based on natural log transformation) (after Kaplan-Meier Adjustment): Mean=1.214, Std. Dev.=0.7247, n=8, 50% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7838, critical = 0.749. Kappa = 2.75 (c=15, w=5, 1 of 2, event alpha = 0.1). Report alpha = 0.006999. Individual comparison alpha = 0.001404. Comparing 5 points to limit.


Constituent: Manganese (ug/L) Analysis Run 10/21/2024 12:57 PM View: Shallow

						•
	MW-100R	MW-17	MW-15R	MW-108	MW-101R	MW-1R (bg)
8/24/2017	0.9 (J)	10.8	2990	1150	74.1	2
8/16/2018	5.6	170	3010	1100	210	
4/6/2019						20
8/7/2019	<2.5	440	2600	970	44	2.8 (J)
8/24/2020	<4	2100		890	66	4.7 (J)
8/25/2020			2400			
8/10/2021		2200				<4.4
8/11/2021	<4.4			820	84	
8/12/2021			2200			
8/23/2022						<3.6 (U)
8/24/2022	<3.6 (U)		970	780	73	
8/29/2023	<3.6 (U)				84	<3.6 (U)
8/30/2023			840	620		
8/6/2024	<3.6		440		180	<3.6
8/7/2024				920		

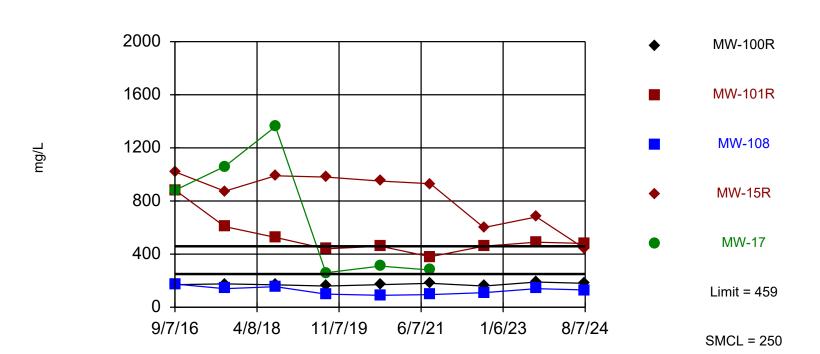
#### Exceeds Limit: MW-101R

#### Selenium

Interwell Parametric



Background Data Summary (after Kaplan-Meier Adjustment): Mean=1.422, Std. Dev.=0.5671, n=8, 37.5% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8303, critical = 0.749. Kappa = 2.75 (c=15, w=5, 1 of 2, event alpha = 0.1). Report alpha = 0.006999. Individual comparison alpha = 0.001404. Comparing 5 points to limit.


Constituent: Selenium (ug/L) Analysis Run 10/21/2024 12:57 PM View: Shallow

	MW-100R	MW-17	MW-15R	MW-108	MW-101R	MW-1R (bg)
8/24/2017	0.95 (J)	0.25 (J)	<0.086	0.089 (J)	4	1.1
8/16/2018	0.95 (J)	<0.16	0.4 (J)	<0.16	3.7	
4/6/2019						<1
8/7/2019	<1	<1	<1	<1	1 (J)	1.4 (J)
8/24/2020	<1	<1		<1	<1	2.1 (J)
8/25/2020			<1			
8/10/2021		<0.96				1.2 (J)
8/11/2021	<0.96			<0.96	<0.96	
8/12/2021			<0.96			
8/23/2022						<0.96 (U)
8/24/2022	0.97 (J)		<0.96 (U)	1 (J)	3.5 (J)	
8/29/2023	1.4 (J)				4.1 (J)	2.6 (J)
8/30/2023			<1.4 (U)	1.9 (J)		
8/6/2024	<1.4		1.4 (J)		5.2	<1.4
8/7/2024				<1.4		

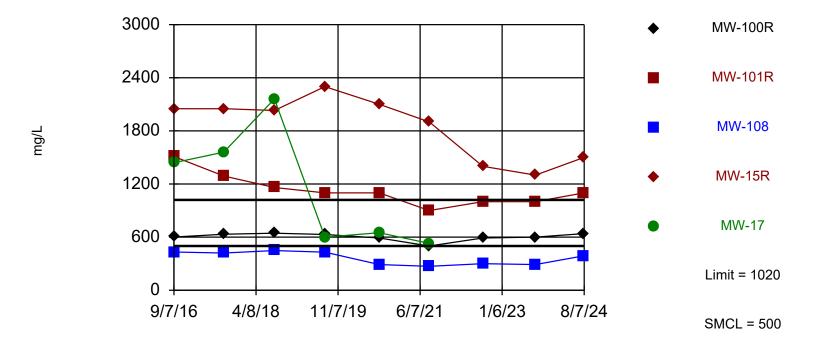
#### Exceeds Limit: MW-101R

# Sulfate

Interwell Parametric



Background Data Summary: Mean=220.9, Std. Dev.=119, n=26. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9115, critical = 0.891. Kappa = 2 (c=15, w=5, 1 of 2, event alpha = 0.1). Report alpha = 0.006999. Individual comparison alpha = 0.001404. Comparing 5 points to limit.


Constituent: Sulfate (mg/L) Analysis Run 10/21/2024 12:57 PM View: Shallow

	Ottumwa-Midland Landfill Data: 191022-input-OML											
	MW-1R (bg) MW-100R MW-15R MW-17 MW-101R MW-108											
9/29/1999	350											
9/13/2000	340											
9/19/2001	210											
9/11/2002	320											
9/10/2003	260											
9/15/2004	160											
9/14/2005	260											
9/13/2006	157											
9/12/2007	138											
9/17/2008	291											
9/16/2009	298											
8/31/2010	403											
9/13/2011	374											
9/18/2012	318											
9/27/2013	264											
9/10/2014	97.8											
9/2/2015	312											
9/7/2016	323	170	1020	881	883	175						
8/24/2017	346	176	874	1060	607	140						
8/16/2018		169	990	1360	526	155						
4/6/2019	190											
8/7/2019	60	160	980	260	440	99						
8/24/2020	50	170		310	460	90						
8/25/2020			950									
8/10/2021	53			280								
8/11/2021		180			380	95						
8/12/2021			930									
8/23/2022	28											
8/24/2022		160	600		460	110						
8/29/2023	60	190			490							
8/30/2023			680			140						
8/6/2024	80	180	440		480							
8/7/2024						130						

Exceeds Limit: MW-101R, MW-15R

# **Total Dissolved Solids**





Background Data Summary: Mean=571.7, Std. Dev.=172.2, n=9. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8391, critical = 0.764. Kappa = 2.62 (c=15, w=5, 1 of 2, event alpha = 0.1). Report alpha = 0.006999. Individual comparison alpha = 0.001404. Comparing 5 points to limit.

Constituent: Total Dissolved Solids (mg/L) Analysis Run 10/21/2024 12:57 PM View: Shallow

	MW-100R	MW-17	MW-15R	MW-1R (bg)	MW-108	MW-101R
9/7/2016	601	1440	2050	808	432	1510
8/24/2017	633	1560	2050	887	420	1290
8/16/2018	644	2160	2030		448	1160
4/6/2019				640		
8/7/2019	630	600	2300	530	430	1100
8/24/2020	590	650		420	290	1100
8/25/2020			2100			
8/10/2021		530		420		
8/11/2021	500				270	900
8/12/2021			1900			
8/23/2022				440		
8/24/2022	590		1400		300	1000
8/29/2023	600			530		1000
8/30/2023			1300		290	
8/6/2024	640		1500	470		1100
8/7/2024					390	

#### Exceeds Limit: MW-108

#### Zinc

Interwell Non-parametric

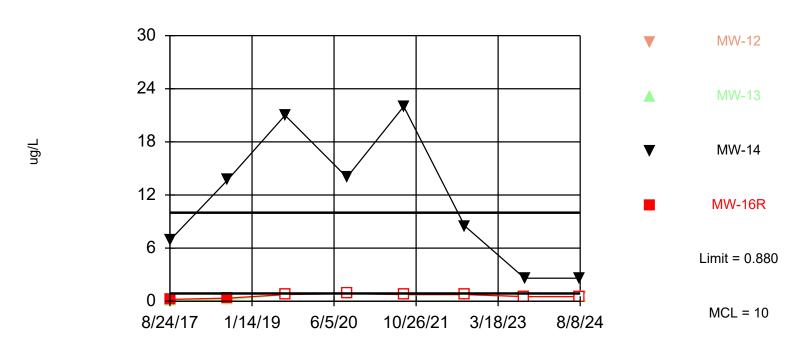


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 87.5% NDs. Annual per-constituent alpha = 0.09387. Individual comparison alpha = 0.01952 (1 of 2). Comparing 5 points to limit.

Constituent: Zinc (ug/L) Analysis Run 10/21/2024 12:57 PM View: Shallow

	MW-100R	MW-17	MW-15R	MW-108	MW-101R	MW-1R (bg)
8/24/2017	0.88 (J)	10.4	1.5 (J)	87.8	1.8 (J)	2.4 (J)
8/16/2018	<3.7	31.4	6 (J)	88.1	6.7 (J)	
4/6/2019						<10
8/7/2019	<10	<10	13 (J)	86	<10	<10
8/24/2020	<10	<10		74	<10	<10
8/25/2020			<40			
8/10/2021		<10				<10
8/11/2021	<10			70	<10	
8/12/2021			23			
8/23/2022						<10 (U)
8/24/2022	<10 (U)		<10 (U)	47	<10 (U)	
8/29/2023	<6.4 (U)				<6.4 (U)	<6.4 (U)
8/30/2023			<6.4 (U)	40		
8/6/2024	<9.7		<9.7		<9.7	<9.7
8/7/2024				43		

D6 – Interwell Prediction Limit Analysis Results - Pennsylvanian


Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML Printed 10/30/2024, 12:09 PM

ConstanciChannelDateDateDateDateDateNo.No.AppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAppendixAp			Ottumwa-Midland	Landfill Client: S	SCS Engineers	Data: 19102	22-input	-OML	Printed 10/	30/2024, 12:09 PM		
Assence (upl)MeVa0.830na0.820240.870Na87na0.0201Ne here (NDs) of 2Assence (upl)MM-1680.830na0.702040.63N0Na80Na0.0017Ne here (NDs) of 2Assence (upl)MM-132.73na0.82011.50Na80Na0.0017Ne here (NDs) of 2Baram (upl)MM-142.73na0.820241.50Na80Na0.0017Param Interior 2Baram (upl)MM-142.73na0.820240.80Na80Na0.0017Param Interior 2Baram (upl)MM-141.30na0.820240.33N0Na80Na0.0017Param Interior 12Beylinn (upl)MM-141.30na0.820241.001Na80Na0.0017Param Interior 12Beylinn (upl)MM-132.100na0.820241.001Na80Na0.0017Param Interior 12Beylinn (upl)MM-132.100na0.820241.001Na80Na0.0017Param Interior 12Beylinn (upl)MM-142.100na0.820241.001Na800Na0.0017Param Interior 12Beylinn (upl)MM-142.100na0.820241.001Na800NaNaNaNaNaNaNa<	<u>Constituent</u>	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Assence (api)MM: 490.80no0.702340.50No87no0.000No leart (NDs) of 2Baram (api.)MM: 402.78no0.880241.60No80.0No0.00174Param Interi of 2Baram (api.)MM: 412.78no0.7722542.80No80.0No0.00174Param Interi of 2Baram (api.)MM: 422.78no0.7722542.80No80.0No0.00174Param Interi of 2Baram (api.)MM: 431.30no0.828240.32N0No80.75na0.0201Ni Param Interi of 2Baryline (api.)MM: 411.30no0.7702240.32N0No80.75na0.0201Ni Param Interi of 2Baryline (api.)MM: 411.30no0.872240.3N0No80.75na0.0211Ni Param Interi of 2Baryline (api.)MM: 411.30no0.872240.301No80.00174Param Interi of 2Baryline (api.)MM: 412.80no0.872240.80No80.8No0.00174Param Interi of 2Baryline (api.)MM: 412.80no0.872240.80No80.8No0.00174Param Interi of 2Baryline (api.)MM: 410.87na0.822240.80No80.8No0.00174Param Interi of 2<	Arsenic (ug/L)	MW-12	0.880	n/a	8/8/2024	0.53ND	No	8	75	n/a	0.0201	NP Inter (NDs) 1 of 2
inventicityMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMindMind <td>Arsenic (ug/L)</td> <td>MW-13</td> <td>0.880</td> <td>n/a</td> <td>8/8/2024</td> <td>0.53ND</td> <td>No</td> <td>8</td> <td>75</td> <td>n/a</td> <td>0.0201</td> <td>NP Inter (NDs) 1 of 2</td>	Arsenic (ug/L)	MW-13	0.880	n/a	8/8/2024	0.53ND	No	8	75	n/a	0.0201	NP Inter (NDs) 1 of 2
Intern (ap1)MM-12MPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMPMP <th< td=""><td>Arsenic (ug/L)</td><td>MW-14</td><td>0.880</td><td>n/a</td><td>8/7/2024</td><td>2.6</td><td>Yes</td><td>8</td><td>75</td><td>n/a</td><td>0.0201</td><td>NP Inter (NDs) 1 of 2</td></th<>	Arsenic (ug/L)	MW-14	0.880	n/a	8/7/2024	2.6	Yes	8	75	n/a	0.0201	NP Inter (NDs) 1 of 2
Bartorn (sql.)MM-13ZP3ninMP3020413No80No0.00716Peram Inter 12 2Bartorn (sql.)MM-168ZP3ninMP7020438YP30No80No0.00715Peram Inter 172 2Bartorn (sql.)MM-1681.30ninMP702040.33MNo887.6nin0.0001MP10167 102Beryllum (sgl.)MM-1611.30ninMP702040.33MNo887.6nin0.0001MP10167 102Beryllum (sgl.)MM-1681.30ninMP702040.33MNo887.6nin0.0001Peram Inter 172Beryllum (sgl.)MM-1682.100ninMP702040.33MNo880.No0.00174Param Inter 172Born (spl.)MM-1682.100ninMP702041.800No80.No0.00174Param Inter 172Born (spl.)MM-1682.100ninMP702042.000No80.No0.00174Param Inter 172Born (spl.)MM-1680.77ninM820241.800No80.No0.00174Param Inter 172Born (spl.)MM-1680.77ninM820241.800No80.No0.00174Param Inter 172Born (spl.)MM-1680.77ninM820241.800No80.No0.00174	Arsenic (ug/L)	MW-16R	0.880	n/a	8/7/2024	0.53ND	No	8	75	n/a	0.0201	NP Inter (NDs) 1 of 2
Baram (upL)NN-1427.8ria67.20242.3N80No00175Param Inter 1 of 2Barylinn (up())NN-121.30ruf69.023400.33NDN88.75ruf0.0211N Pinter (NDs) 1 of 2Barylinn (up())NN-141.30ruf69.023400.33NDN887.5ruf0.0211N Pinter (NDs) 1 of 2Barylinn (up())NN-141.30ruf67.20240.33NDN887.5ruf0.0211N Pinter (NDs) 1 of 2Barylinn (up())NN-142.180ruf68.02041.000N800.00174Param Inter 1 of 2Barylinn (up())NN-142.180ruf68.02041.000N800.00174Param Inter 1 of 2Barylinn (up())NN-142.180ruf67.20242.000N800.00174Param Inter 1 of 2Barylinn (up())NN-142.180ruf67.20242.000N800.00174Param Inter 1 of 2Chortel (rup())NN-149.77ruf68.02241.01N800.00174Param Inter 1 of 2Chortel (rup())NN-149.77ruf68.02241.02N800.00174Param Inter 1 of 2Chortel (rup())NN-149.77ruf68.02241.02N800.00174Param Inter 1 of 2Chortel (rup())NN	Barium (ug/L)	MW-12	27.8	n/a	8/8/2024	15	No	8	0	No	0.001754	Param Inter 1 of 2
Bardmingul)MW-16827.2n/a67.2243.8N80No0.00175Peraminator of 2Berghum (ug)MW-131.30n/a68/32240.33NDN87.5n/a0.2011NP hier (NDs) 1 of 2Berghum (ug)MW-141.30n/a68/32240.33NDN887.5n/a0.2011NP hier (NDs) 1 of 2Berghum (ug)MW-1681.30n/a68/32241000No8600.00176Param (net r 0.2Born (ug)MW-1682.180n/a68/32241000No800.00176Param (net r 0.2Born (ug)MW-1642.180n/a68/72241500No800.00176Param (net r 1.02Born (ug)MW-1642.180n/a68/72241500No800.00176Param (net r 1.02Chicke (mgL)MW-149.77n/a86/72242.00No80No0.00176Param (net r 1.02Chicke (mgL)MW-149.77n/a86/72242.02Ye130No0.00176Param (net r 1.02Chicke (mgL)MW-149.77n/a86/72242.02Ye130No0.00176Param (net r 1.02Chicke (mgL)MW-149.77n/a86/72242.04Ye130No0.00176Param (net r 1.02Chicke (mgL)MW-149.77	Barium (ug/L)	MW-13	27.8	n/a	8/8/2024	18	No	8	0	No	0.001754	Param Inter 1 of 2
Berylam (aph)         MM-12         1 30         n/n         68/8224         0 33ND         N         8         67.5         n/n         0 0201         MP Inter (NDs) 1 of 2           Berylam (aph)         MM-14         1 30         n/n         68/8224         0 33ND         N         8         87.5         n/n         0 0201         NP Inter (NDs) 1 of 2           Berylam (aph)         MM-12         2180         n/n         68/8224         100         N         8         0         No         0.00174         Param Inter 1 of 2           Berrylam (aph)         MM-12         2180         n/n         68/8224         100         N         8         0         No         0.01774         Param Inter 1 of 2           Berrylam (aph)         MM-14         2180         n/n         68/8224         100         N         8         0         No         0.01774         Param Inter 1 of 2           Choride tergel,         MM-14         877         n/n         68/8224         100         No         8.0         0         No         6.01774         Param Inter 1 of 2           Choride tergel,         MM-14         877         n/n         68/8224         0.02817         No         0.00174         Param	Barium (ug/L)	MW-14	27.8	n/a	8/7/2024	23	No	8	0	No	0.001754	Param Inter 1 of 2
Berglinn (agl.)         MV-13         1.30         n'a         87.82         0.333D         No         8         87.5         n'a         0.201         NP Inter (Do) 1 of 2           Berglinn (agl.)         MV-18R         1.30         n'a         87.72244         0.333D         No         8         87.5         n'a         0.0201         NP Inter (Do) 1 of 2           Berglinn (agl.)         MV-13         2180         n'a         68.02244         1400         No         8         0         No         0.01754         Param Inter 1 of 2           Boron (agl.)         MM-13         2170         n'a         68.7224         200         No         8         0         No         0.01754         Param Inter 1 of 2           Chorde (mgl.)         MM-13         3.77         n'a         68.7224         2.0         No         8         0         No         0.01754         Param Inter 1 of 2           Chorde (mgl.)         MM-14         3.77         n'a         68.7224         2.0         No         8         0         No         0.01754         Param Inter 1 of 2           Chorde (mgl.)         MM-14         1.62         n'a         68.7224         0.0         0.0         0.0         0.01754 <td>Barium (ug/L)</td> <td>MW-16R</td> <td>27.8</td> <td>n/a</td> <td>8/7/2024</td> <td>38</td> <td>Yes</td> <td>8</td> <td>0</td> <td>No</td> <td>0.001754</td> <td>Param Inter 1 of 2</td>	Barium (ug/L)	MW-16R	27.8	n/a	8/7/2024	38	Yes	8	0	No	0.001754	Param Inter 1 of 2
Bergelmin (opt.)         MW-14         1.30         n'a         87.2224         0.33BU         No         8         87.5         n'a         0.020         NP Inter (Doh) 1 of 2           Bergelmin (opt.)         MM-12         2180         n'a         887.2224         1.00         No         8         67.5         n'a         0.001754         Param Inter 1 of 2           Born (opt.)         MM-14         2180         n'a         887.2224         1.000         No         8         0         No         0.001754         Param Inter 1 of 2           Born (opt.)         MM-13         2180         n'a         87.2224         2000         No         8         0         No         0.001754         Param Inter 1 of 2           Chorde (mgt.)         MM-13         9.77         n'a         88.2224         13         Yes         13         0         No         0.001754         Param Inter 1 of 2           Chorde (mgt.)         MM-14         9.77         n'a         88.2224         1.30         No         8         0         No         0.001754         Param Inter 1 of 2           Chorde (mgt.)         MM-14         1.62         n'a         88.224         1.30         No         8         8	Beryllium (ug/L)	MW-12	1.30	n/a	8/8/2024	0.33ND	No	8	87.5	n/a	0.0201	NP Inter (NDs) 1 of 2
İspinu (ngi),         MW-16R         1.30         n'a         672024         0.310         No         8         7.5         n'a         0.0201         NPInter (ND) 1/2           Börnn (ugi,)         MW-13         2180         n'a         882024         1800         No         8         0         No         0.00175         Param Inter 1.07           Börnn (ugi,)         MW-14         2180         n'a         8772024         1800         No         8         0         No         0.00175         Param Inter 1.07           Börnn (ugi,)         MW-14         2170         n'a         872224         200         No         8         0         No         0.001754         Param Inter 1.07           Cholotde (mgi,)         MW-12         5.7         n'a         872024         12         Ves         13         0         No         0.001754         Param Inter 1.07           Cholotde (mgi, L)         MW-14         1.7         n'a         872024         1.8         No         No         0.001754         Param Inter 1.07           Cobalt (ugi, L)         MW-12         1.62         n'a         872024         1.8         No         No         8.0         No         0.001754         Param Int	Beryllium (ug/L)	MW-13	1.30	n/a	8/8/2024	0.33ND	No	8	87.5	n/a	0.0201	NP Inter (NDs) 1 of 2
Been rug1,         MW-12         2190         na         88/2024         1400         No         8         0         No         0.001754         Param Inter 1.07.2           Born rug1,         MW-14         2190         na         88/2024         1800         No         8         0         No         0.001754         Param Inter 1.07.2           Born rug1,         MW-16R         2180         na         87/2024         2000         No         8         0         No         0.001754         Param Inter 1.07.2           Chorde (mg1,)         MW-16R         2.17         na         88/2024         24         Yos         13         0         No         0.001754         Param Inter 1.07.2           Chorde (mg1,)         MW-14         9.77         na         88/2024         20         Yos         13         0         No         0.001754         Param Inter 1.07.2           Chorde (mg1,)         MW-16R         9.77         na         88/2024         20         Yos         13         0         No         0.001754         Param Inter 1.07.2           Cobalt (ug1,)         MW-16R         1.67         na         88/2024         0.0501764         0.001754         Param Inter 1.07.2	Beryllium (ug/L)	MW-14	1.30	n/a	8/7/2024	0.33ND	No	8	87.5	n/a	0.0201	NP Inter (NDs) 1 of 2
Born (upL)MW-132180niaBi820241000No80No0.001754Param Inter 1.072Born (upL)MW-16R2180na87/20242000No80No0.001754Param Inter 1.072Chiorde (mgL)MW-125.77na86/202449Yos130.0No0.001754Param Inter 1.072Chiorde (mgL)MW-145.77na86/202413Yos130.0No0.001754Param Inter 1.072Chiorde (mgL)MW-145.77na86/202422Yos130.0No0.001754Param Inter 1.072Cobalt (upL)MW-121.62na86/20241.1No80No0.001754Param Inter 1.072Cobalt (upL)MW-121.62na86/20241.1No80No0.001754Param Inter 1.072Cobalt (upL)MW-141.62na86/20241.81No80No0.001754Param Inter 1.072Cobalt (upL)MW-141.62na86/20241.81No80No0.001754Param Inter 1.072Cobalt (upL)MW-144.30na86/20241.81No80No0.001754Param Inter 1.072Cobalt (upL)MW-164.30na86/20241.81No800.001754Param Inter 1.072Cobalt (upL)MW-16 <td< td=""><td>Beryllium (ug/L)</td><td>MW-16R</td><td>1.30</td><td>n/a</td><td>8/7/2024</td><td>0.33ND</td><td>No</td><td>8</td><td>87.5</td><td>n/a</td><td>0.0201</td><td>NP Inter (NDs) 1 of 2</td></td<>	Beryllium (ug/L)	MW-16R	1.30	n/a	8/7/2024	0.33ND	No	8	87.5	n/a	0.0201	NP Inter (NDs) 1 of 2
Born (m)L)         MM-14         2180         na         B/72024         2000         No         8         0         No         0.00174         Param Inter 1of 2           Born (m)L)         MM-14         2180         na         867/2024         49         No         0         0.001734         Param Inter 1of 2           Chlorde (mp)L)         MM-14         9.77         na         88/2024         13         0         No         0.001734         Param Inter 1of 2           Chlorde (mp)L)         MM-14         9.77         na         88/2024         20         Yes         13         0         No         0.001734         Param Inter 1of 2           Cholide (mp)L)         MM-14         9.77         na         88/2024         0.08         0         No         0.001734         Param Inter 1of 2           Cobalt (up)L)         MM-14         162         na         88/2024         0.8         0         No         0.001734         Param Inter 1of 2           Cobalt (up)L)         MM-14         162         na         87/2024         0.80         8         0.8         0.001734         Param Inter 1of 2           Cobalt (up)L)         MM-14         4.30         na         87/2024 <th< td=""><td>Boron (ug/L)</td><td>MW-12</td><td>2180</td><td>n/a</td><td>8/8/2024</td><td>1400</td><td>No</td><td>8</td><td>0</td><td>No</td><td>0.001754</td><td>Param Inter 1 of 2</td></th<>	Boron (ug/L)	MW-12	2180	n/a	8/8/2024	1400	No	8	0	No	0.001754	Param Inter 1 of 2
İson         MV-16R         2180         n'a         M7/224         2000         No         8         0         No         0.00174         Param Inter of 2           Chiorde (mg/L)         MW-12         9.77         n'a         88/2024         13         Ves         13         0         No         0.001734         Param Inter of 2           Chiorde (mg/L)         MW-14         9.77         n'a         88/2024         120         Yes         13         0         No         0.001734         Param Inter 1 of 2           Choirde (mg/L)         MW-14         9.77         n'a         87/2024         22         Yes         13         0         No         0.001734         Param Inter 1 of 2           Cobali (ug/L)         MW-14         162         n'a         88/2024         1.80         No         8         0         No         0.00174         Param Inter 1 of 2           Cobali (ug/L)         MW-14         1.62         n'a         88/2024         1.80         No         8         0         No         0.00174         Param Inter 1 of 2           Cobali (ug/L)         MW-14         1.62         n'a         88/2024         1.80         No         8         0         No	Boron (ug/L)	MW-13	2180	n/a	8/8/2024	1800	No	8	0	No	0.001754	Param Inter 1 of 2
Choirds (mg/L)NM-129.77n/a8/82/2413Ves130No0.00178Param Inter 1 of 2Choirds (mg/L)MM-149.77n/a8/82/2420Yes130No0.0178Param Inter 1 of 2Choirds (mg/L)MM-169.77n/a8/72/2420Yes130No0.00178Param Inter 1 of 2Cobati (ug/L)MM-131.62n/a8/82/240.085NDNo80No0.00174Param Inter 1 of 2Cobati (ug/L)MM-141.62n/a8/82/240.56No80No0.00174Param Inter 1 of 2Cobati (ug/L)MM-161.62n/a8/82/241.8NNo80.0No0.00174Param Inter 1 of 2Cobati (ug/L)MM-161.62n/a8/82/241.8NNo86.25n/a0.00174Param Inter 1 of 2Copper (ug/L)MM-164.30n/a8/82/241.8NNo86.25n/a0.0201N Pinter (NDs) 1 of 2Copper (ug/L)MM-164.30n/a8/82/241.8NNo86.25n/a0.0211NP Inter (NDs) 1 of 2Flooride (mg/L)MM-161.07n/a8/82/241.8NNo86.25n/a0.0211NP Inter (NDs) 1 of 2Copper (ug/L)MM-161.07n/a8/82/241.8NNo86.25n/a0.0211NP Inter	Boron (ug/L)	MW-14	2180	n/a	8/7/2024	1900	No	8	0	No	0.001754	Param Inter 1 of 2
Choirds (mgL)         NW-14         3.77         n/a         8/8/2024         13         ves         13         0         No         0.00175         Param Inter 102           Choirds (mgL)         NW-16R         3.77         n/a         8/8/2024         22         Yes         13         0         No         0.00175         Param Inter 102           Cobalt (ugL)         MW-13         1.62         n/a         8/8/2024         1.1         No         8         0         No         0.00174         Param Inter 102           Cobalt (ugL)         MW-13         1.62         n/a         8/8/2024         0.56         No         8         0         No         0.00174         Param Inter 102           Cobalt (ugL)         MW-168         1.62         n/a         8/8/2024         1.8ND         No         8         6.25         n/a         0.00174         Param Inter 102           Copper (ugL)         MW-13         3.03         n/a         8/8/2024         1.8ND         No         8         6.25         n/a         0.00174         Param Inter 102           Copper (ugL)         MW-164         1.07         n/a         8/8/2024         0.81N         9         2.22         No         0.00176 </td <td>Boron (ug/L)</td> <td>MW-16R</td> <td>2180</td> <td>n/a</td> <td>8/7/2024</td> <td>2000</td> <td>No</td> <td>8</td> <td>0</td> <td>No</td> <td>0.001754</td> <td>Param Inter 1 of 2</td>	Boron (ug/L)	MW-16R	2180	n/a	8/7/2024	2000	No	8	0	No	0.001754	Param Inter 1 of 2
Choirde (mg/L)NW-149.77n/a9/820249.7130No0.00174Param Inter 1072Choirde (mg/L)NW-1688.77n/a8/7202422Yes130No0.00174Param Inter 1072Cobalt (ug/L)NW-131.62n/a8/820240.085NDNo80No0.00174Param Inter 1072Cobalt (ug/L)NW-141.62n/a8/820240.56No80No0.00174Param Inter 1072Cobalt (ug/L)NW-1681.62n/a8/720240.56No80No0.00174Param Inter 1072Cobalt (ug/L)NW-1641.62n/a8/820241.8NDNo80No0.00174Param Inter 1072Copper (ug/L)NW-1641.62n/a8/820241.8NDNo80.25n/a0.0201NP Inter (NDs) 1072Copper (ug/L)NW-1644.30n/a8/820241.8NDNo80.21.4NDNONDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND <td>Chloride (mg/L)</td> <td>MW-12</td> <td>9.77</td> <td>n/a</td> <td>8/8/2024</td> <td>49</td> <td>Yes</td> <td>13</td> <td>0</td> <td>No</td> <td>0.001754</td> <td>Param Inter 1 of 2</td>	Chloride (mg/L)	MW-12	9.77	n/a	8/8/2024	49	Yes	13	0	No	0.001754	Param Inter 1 of 2
Choirde (mgL)WW-149.77n/a97/202420Ye130No0.00174Param Inter 1 of 2Cholide (mgL)WM-121.62n/a88/20240.085N8.80No0.00174Param Inter 1 of 2Cobal (ugL)WM-131.62n/a88/20240.055NNo8.80No0.00174Param Inter 1 of 2Cobal (ugL)WM-141.62n/a88/20241.14No8.0.No0.00174Param Inter 1 of 2Cobal (ugL)WM-1681.62n/a88/20241.8NDNo8.6.25n/a0.00174Param Inter 1 of 2Copper (ugL)MM-1644.30n/a88/20241.8NDNo8.6.25n/a0.00174Param Inter 1 of 2Copper (ugL)MM-144.30n/a88/20241.8NDNo8.6.25n/a0.00174Param Inter 1 of 2Copper (ugL)MM-144.30n/a88/20241.8NDNo8.6.25n/a0.00174Param Inter 1 of 2Copper (ugL)MM-1641.07n/a88/20240.81JNo9.2.22No0.00174Param Inter 1 of 2Fluoride (mgL)MM-141.07n/a88/20240.51JNo8.0.2n/a0.00174Param Inter 1 of 2Fluoride (mgL)MM-135.00n/a88/20240.51JNo8.0.0n/a0.00174Param Inte							Yes	13	0		0.001754	Param Inter 1 of 2
Choole (mg/L)MW-1257.2na87.2026278130No00.00175Paraminet of 2Cobalt (ug/L)MW-1316.2na88/20240.085NDNo80No0.00175Paraminet of 2Cobalt (ug/L)MW-1416.2na87/20240.56No80No0.00175Paraminet of 2Cobalt (ug/L)MW-16R16.2na87/20240.56No80No0.00175Paraminet of 2Copper (ug/L)MW-16R16.2na88/20241.8NDNo86.25na0.00174Paraminet of 2Copper (ug/L)MW-144.30na88/20241.8NDNo86.25na0.0201NP Inter (Nb)1 of 2Copper (ug/L)MW-144.30na88/20241.8NDNo86.25na0.0201NP Inter (Nb)1 of 2Copper (ug/L)MW-144.30na88/20241.8NDNo86.25na0.0201NP Inter (Nb)1 of 2Fluorde (mg/L)MW-141.07na88/20241.8NDNo86.25na0.0201NP Inter (Nb)1 of 2Fluorde (mg/L)MW-161.07na88/20240.8N80na0.0211NP Inter (Nb)1 of 2Fluorde (mg/L)MW-161.07na88/20240.8N80na0.00174Paraminet of 2Fluorde (mg/L)MW-16 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>13</td><td>0</td><td></td><td></td><td></td></td<>								13	0			
Cobalt (ug/L)         MW-13         1.62         n/a         8/8/2024         1.1         No         8         0         No         0.001754         Param Inter1 of 2           Cobalt (ug/L)         MW-14         1.62         n/a         8/8/2024         0.56         No         8         0         No         0.001754         Param Inter1 of 2           Cobalt (ug/L)         MW-164         1.62         n/a         8/8/2024         0.56         No         8         0.0         No         0.001754         Param Inter1 of 2           Copper (ug/L)         MW-124         4.30         n/a         8/8/2024         1.81N         No         8         6.2.5         n/a         0.0201         NP Inter (NDs) 1 of 2           Copper (ug/L)         MW-144         4.30         n/a         8/72024         1.81N         No         8         6.2.5         n/a         0.0201         NP Inter (NDs) 1 of 2           Copper (ug/L)         MW-144         1.07         n/a         8/8/2024         0.61N         No         9         2.2.2         No         0.001754         Param Inter1 of 2           Fluoride (mg/L)         MW-14         1.07         n/a         8/8/2024         0.7L         No         9									0		0.001754	Param Inter 1 of 2
Cobalt (ugL)         MW-13         1.62         n'a         8/8/2024         1.1         No         8         0         No         0.001754         Param Inter 1 of 2           Cobalt (ugL)         MW-16         1.62         n'a         8/7/2024         0.56         No         8         0         No         0.00175         Param Inter 1 of 2           Copper (ugL)         MW-16         1.62         n'a         8/7/2024         1.8ND         No         8         6.2.5         n'a         0.02017         Param Inter 1 of 2           Copper (ugL)         MW-14         4.30         n'a         8/7/2024         1.8ND         No         8         6.2.5         n'a         0.0201         NP Inter (NDs) 1 of 2           Copper (ugL)         MW-16         4.30         n'a         8/7/2024         1.8ND         No         8         6.2.5         n'a         0.0201         NP Inter (NDs) 1 of 2           Copper (ugL)         MW-16         1.07         n'a         8/8/2024         0.7.1         No         9         2.2.2         No         0.001754         Param Inter 1 of 2           Fluoride (mg/L)         MW-16         1.07         n'a         8/8/2024         0.6.1         No         8									0			
Cobalt (ug1.)         MW-14         1.62         n/a         8/7/2024         0.56         No         8         0         No         0.001754         Param Inter 1 of 2           Cobalt (ug1.)         MW-16R         1.62         n/a         8/8/2024         1.8ND         No         8         6.2         n/a         0.001754         Param Inter 1 of 2           Copper (ug1.)         MW-13         4.30         n/a         8/8/2024         1.8ND         No         8         6.2.5         n/a         0.0201         NP Inter (NDs) 1 of 2           Copper (ug1.)         MW-14         4.30         n/a         8/7/2024         1.8ND         No         8         6.2.5         n/a         0.0201         NP Inter (NDs) 1 of 2           Copper (ug1.)         MW-16R         4.30         n/a         8/7/2024         2.6         Yes         9         2.2.2         No         0.001754         Param Inter 1 of 2           Fluoride (mg1.)         MW-14         1.07         n/a         8/7/2024         0.451         No         9         2.2.2         No         0.001754         Param Inter 1 of 2           Fluoride (mg1.)         MW-16R         1.07         n/a         8/7/2024         0.411         No <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td></td<>									0			
Cobalt (ug1.)         MW-16R         1.62         n'a         8/72024         0.93         No         8         0         No         0.001754         Param Inter 1 of 2           Copper (ug1.)         MW-12         4.30         n/a         8/8/2024         1.8ND         No         8         62.5         n/a         0.0201         NP Inter (NDs) 1 of 2           Copper (ug1.)         MW-14         4.30         n/a         8/7/2024         2.1J         No         8         62.5         n/a         0.0201         NP Inter (NDs) 1 of 2           Copper (ug1.)         MW-16R         4.30         n/a         8/7/2024         2.1J         No         8         62.5         n/a         0.0201         NP Inter (NDs) 1 of 2           Fluoride (mg1.)         MW-16R         4.30         n/a         8/7/2024         0.45         No         9         22.22         No         0.001754         Param Inter 1 of 2           Fluoride (mg1.)         MW-16         1.07         n/a         8/7/2024         0.45         No         9         22.22         No         0.001754         Param Inter 1 of 2           Fluoride (mg1.)         MW-16         500         n/a         8/7/2024         431         No         8 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>0.001754</td> <td></td>									0		0.001754	
Copper (ugL)         MW-12         4.30         n/a         8/8/2024         1.8ND         No         8         62.5         n/a         0.0201         NP Inter (NDs) 1 of 2           Copper (ugL)         MW-13         4.30         n/a         8/8/2024         1.8ND         No         8         62.5         n/a         0.0201         NP Inter (NDs) 1 of 2           Copper (ugL)         MW-16R         4.30         n/a         8/7/2024         1.8ND         No         8         62.5         n/a         0.0201         NP Inter (NDs) 1 of 2           Fluoride (mgL)         MW-16R         4.30         n/a         8/7/2024         0.64         Yes         9         22.22         No         0.001754         Param Inter 1 of 2           Fluoride (mgL)         MW-13         1.07         n/a         8/7/2024         0.63         No         9         22.22         No         0.001754         Param Inter 1 of 2           Fluoride (mgL)         MW-16R         1.07         n/a         8/8/2024         43.1         No         8         0         n/a         0.0201         NP Inter (nomailty)           Iron (ugL)         MW-16R         5500         n/a         8/8/2024         43.0         No         8 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td>									0			
Copper (ug/L)         MW-13         4.30         n/a         8/8/2024         1.8ND         No         8         62.5         n/a         0.0201         NP Inter (NDs) 1 of 2           Copper (ug/L)         MW-14         4.30         n/a         8/7/2024         2.10         No         8         62.5         n/a         0.0201         NP Inter (NDs) 1 of 2           Copper (ug/L)         MW-16R         4.30         n/a         8/7/2024         1.8ND         No         8         62.5         n/a         0.0201         NP Inter (NDs) 1 of 2           Fluoride (mg/L)         MW-13         1.07         n/a         8/8/2024         0.68J         No         9         2.2.22         No         0.001754         Param Inter 1 of 2           Fluoride (mg/L)         MW-14         1.07         n/a         8/7/2024         0.7J         No         9         2.2.22         No         0.001754         Param Inter 1 of 2           Fluoride (mg/L)         MW-14         500         n/a         8/7/2024         4.3J         No         8         0         n/a         0.0201         NP Inter (nomality)           Iron (ug/L)         MW-12         5500         n/a         8/7/2024         43J         No												
Copper (ug/L)         MW-14         4.30         n/a         8/7/2024         2.1J         No         8         62.5         n/a         0.0201         NP Inter (NDs) 1 of 2           Copper (ug/L)         MW-16R         4.30         n/a         8/7/2024         1.8ND         No         8         62.5         n/a         0.0201         NP Inter (NDs) 1 of 2           Fluoride (mg/L)         MW-13         1.07         n/a         8/7/2024         0.68J         No         9         22.22         No         0.001754         Param Inter 1 of 2           Fluoride (mg/L)         MW-14         1.07         n/a         8/7/2024         0.7J         No         9         22.22         No         0.001754         Param Inter 1 of 2           Fluoride (mg/L)         MW-14         5500         n/a         8/7/2024         0.45J         No         8         0         n/a         0.0201         NP Inter (normality)           Iron (ug/L)         MW-16R         5500         n/a         8/7/2024         47J         No         8         0         n/a         0.0201         NP Inter (normality)           Iron (ug/L)         MW-16R         5500         n/a         8/7/2024         0.20N         No												( <i>)</i>
Copper (ugL)         MW-16R         4.30         n/a         8/7/2024         1.8ND         No         8         62.5         n/a         0.0201         NP Inter (NDs)1 of 2           Fluoride (mg/L)         MW-12         1.07         n/a         8/8/2024         0.68J         No         9         22.22         No         0.001754         Param Inter 1 of 2           Fluoride (mg/L)         MW-13         1.07         n/a         8/7/2024         0.45J         No         9         22.22         No         0.001754         Param Inter 1 of 2           Fluoride (mg/L)         MW-14         1.07         n/a         8/7/2024         0.45J         No         9         22.22         No         0.001754         Param Inter 1 of 2           Iron (ug/L)         MW-16R         1.07         n/a         8/7/2024         0.45J         No         8         0         n/a         0.001754         Param Inter 1 of 2           Iron (ug/L)         MW-12         5500         n/a         8/8/2024         43J         No         8         0         n/a         0.0201         NP Inter (normainty)           Iron (ug/L)         MW-13         1.10         n/a         8/7/2024         0.26ND         No         8 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
Fluoride (mg/L)NW-121.07n/a8/8/20242.6Yes92.2.22No0.001754Param Inter 1 of 2Fluoride (mg/L)MW-131.07n/a8/8/20240.68JNo922.22No0.001754Param Inter 1 of 2Fluoride (mg/L)MW-141.07n/a8/7/20240.45JNo922.22No0.001754Param Inter 1 of 2Iron (ug/L)MW-161.07n/a8/8/20244.3JNo80n/a0.0201NP Inter (normality)Iron (ug/L)MW-135500n/a8/8/2024130No80n/a0.0201NP Inter (normality)Iron (ug/L)MW-145500n/a8/7/202447JNo80n/a0.0201NP Inter (normality)Iron (ug/L)MW-165500n/a8/8/20240.26NDNo875n/a0.0201NP Inter (normality)Iron (ug/L)MW-161.10n/a8/8/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-131.10n/a8/8/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-161.10n/a8/8/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-161.10n/a8/8/20246000No80No												
Fluoride (mg/L)MW-131.07n/a8/8/20240.68JNo922.22No0.001754Param Inter 1 of 2Fluoride (mg/L)MW-141.07n/a8/7/20240.7JNo922.22No0.001754Param Inter 1 of 2Fluoride (mg/L)MW-16R1.07n/a8/7/20240.45JNo922.22No0.001754Param Inter 1 of 2Fluoride (mg/L)MW-16R5000n/a8/7/202443JNo80n/a0.0201NP Inter (normality)Iron (ug/L)MW-145500n/a8/8/2024130No80n/a0.0201NP Inter (normality)Iron (ug/L)MW-16R5500n/a8/7/202447JNo80n/a0.0201NP Inter (normality)Iron (ug/L)MW-16R5500n/a8/7/2024480No80n/a0.0201NP Inter (normality)Iron (ug/L)MW-16R1.10n/a8/7/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-16R1.10n/a8/7/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-16R1.10n/a8/7/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-16R1.00n/a8/7/20240.26NDNo80No0.00												· · · ·
Fluoride (mg/L)MW-141.07n/a8/7/20240.7JNo922.22No0.001754Param Inter 1 of 2Fluoride (mg/L)MW-16R1.07n/a8/7/20240.45JNo922.22No0.001754Param Inter 1 of 2Iron (ug/L)MW-125500n/a8/8/202443JNo80n/a0.0201NP Inter (normality)Iron (ug/L)MW-135500n/a8/8/2024130No80n/a0.0201NP Inter (normality)Iron (ug/L)MW-145500n/a8/7/202447JNo80n/a0.0201NP Inter (normality)Iron (ug/L)MW-16R5500n/a8/7/2024480No80n/a0.0201NP Inter (normality)Iron (ug/L)MW-16R1.10n/a8/7/20240.26NDNo875n/a0.0201NP Inter (normality)Icod (ug/L)MW-131.10n/a8/7/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-16R1.10n/a8/7/20240.26NDNo875n/a0.0211NP Inter (NDs) 1 of 2Magnesium (ug/L)MW-16R1.10n/a8/7/20240.26NDNo80No0.001754Param Inter 1 of 2Magnesium (ug/L)MW-16R1.00n/a8/7/20240.26NDNo80 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
Fluoride (mg/L)         MW-16R         1.07         n/a         8/7/2024         0.45J         No         9         22.22         No         0.001754         Param Inter 1 of 2           Iron (ug/L)         MW-12         5500         n/a         8/8/2024         43J         No         8         0         n/a         0.0201         NP Inter (normality)           Iron (ug/L)         MW-13         5500         n/a         8/8/2024         47J         No         8         0         n/a         0.0201         NP Inter (normality)           Iron (ug/L)         MW-14         5500         n/a         8/7/2024         47J         No         8         0         n/a         0.0201         NP Inter (normality)           Iron (ug/L)         MW-16R         5500         n/a         8/7/2024         4.26ND         No         8         75         n/a         0.0201         NP Inter (NDs) 1 of 2           Lead (ug/L)         MW-13         1.10         n/a         8/7/2024         0.26ND         No         8         75         n/a         0.0201         NP Inter (NDs) 1 of 2           Lead (ug/L)         MW-16R         1.10         n/a         8/7/2024         0.26ND         No         8												
Iron (ug/L)MW-125500n/a8/8/202443JNo80n/a0.0201NP Inter (normality)Iron (ug/L)MW-135500n/a8/8/2024130No80n/a0.0201NP Inter (normality)Iron (ug/L)MW-145500n/a8/7/202447JNo80n/a0.0201NP Inter (normality)Iron (ug/L)MW-16R5500n/a8/7/202447JNo80n/a0.0201NP Inter (normality)Iron (ug/L)MW-16R5500n/a8/7/2024480No80n/a0.0201NP Inter (normality)Iron (ug/L)MW-121.10n/a8/8/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-131.10n/a8/8/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-16R1.10n/a8/7/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-16R1.10n/a8/7/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-16R1.10n/a8/7/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Magnesium (ug/L)MW-16R1.10n/a8/7/20240.26NDNo80No0												
Iron (ug/L)MW-135500n/a8/8/2024130No80n/a0.0201NP Inter (normalify)Iron (ug/L)MW-145500n/a8/7/202447JNo80n/a0.0201NP Inter (normalify)Iron (ug/L)MW-16R5500n/a8/7/2024480No80n/a0.0201NP Inter (normalify)Lead (ug/L)MW-121.10n/a8/8/20240.26NDNo875n/a0.0201NP Inter (normalify)Lead (ug/L)MW-131.10n/a8/8/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-141.10n/a8/7/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-16R1.10n/a8/7/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Magnesium (ug/L)MW-16R1.10n/a8/7/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Magnesium (ug/L)MW-13204000n/a8/7/20246400No80No0.01754Param Inter 1 of 2Magnesium (ug/L)MW-13204000n/a8/7/202434000No80No0.001754Param Inter 1 of 2Magnese (ug/L)MW-16R204000n/a8/7/202439000No80n												
Iron (ug/L)MW-145500n/a8/7/202447JNo80n/a0.0201NP Inter (normality)Iron (ug/L)MW-16R5500n/a8/7/2024480No80n/a0.0201NP Inter (normality)Lead (ug/L)MW-121.10n/a8/8/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-131.10n/a8/8/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-141.10n/a8/7/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-16R1.10n/a8/7/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-16R1.10n/a8/7/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Magnesium (ug/L)MW-16R204000n/a8/7/20240.26NDNo875n/a0.001754Param Inter 1 of 2Magnesium (ug/L)MW-14204000n/a8/8/202460000No80No0.001754Param Inter 1 of 2Magnesium (ug/L)MW-16R204000n/a8/7/202439000No80No0.001754Param Inter 1 of 2Magnese (ug/L)MW-16R204000n/a8/8/202439000No80 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Iron (ug/L)MW-16R5500n/a8/7/2024480No80n/a0.0201NP Inter (normality)Lead (ug/L)MW-121.10n/a8/8/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-131.10n/a8/8/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-141.10n/a8/7/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-16R1.10n/a8/7/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-16R1.10n/a8/7/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Magnesium (ug/L)MW-13204000n/a8/7/20240.26NDNo80No0.001754Param Inter 1 of 2Magnesium (ug/L)MW-14204000n/a8/8/202460000No80No0.001754Param Inter 1 of 2Magnesium (ug/L)MW-16R204000n/a8/7/202434000No80No0.001754Param Inter 1 of 2Magnese (ug/L)MW-16R204000n/a8/7/202434000No80No0.001754Param Inter 1 of 2Magnese (ug/L)MW-16R204000n/a8/8/2024140No80n												
Lead (ug/L)         MW-12         1.10         n/a         8/8/2024         0.26ND         No         8         75         n/a         0.0201         NP Inter (NDs) 1 of 2           Lead (ug/L)         MW-13         1.10         n/a         8/8/2024         0.26ND         No         8         75         n/a         0.0201         NP Inter (NDs) 1 of 2           Lead (ug/L)         MW-14         1.10         n/a         8/7/2024         0.26ND         No         8         75         n/a         0.0201         NP Inter (NDs) 1 of 2           Lead (ug/L)         MW-14         1.10         n/a         8/7/2024         0.26ND         No         8         75         n/a         0.0201         NP Inter (NDs) 1 of 2           Magnesium (ug/L)         MW-12         204000         n/a         8/8/2024         6400         No         8         0         No         0.001754         Param Inter 1 of 2           Magnesium (ug/L)         MW-14         204000         n/a         8/7/2024         30000         No         8         0         No         0.001754         Param Inter 1 of 2           Magnesium (ug/L)         MW-16R         204000         n/a         8/7/2024         39000         No         8 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
Lead (ug/L)MW-131.10n/a8/8/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-141.10n/a8/7/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Lead (ug/L)MW-16R1.10n/a8/7/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Magnesium (ug/L)MW-12204000n/a8/8/20246400No80No0.001754Param Inter 1 of 2Magnesium (ug/L)MW-13204000n/a8/8/202460000No80No0.001754Param Inter 1 of 2Magnesium (ug/L)MW-14204000n/a8/7/202434000No80No0.001754Param Inter 1 of 2Magnesium (ug/L)MW-16R204000n/a8/7/202439000No80No0.001754Param Inter 1 of 2Magnese (ug/L)MW-16R204000n/a8/7/202439000No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/8/2024140No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-14574n/a8/7/2024250No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/7/2024270No8 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
Lead (ug/L)         MW-14         1.10         n/a         8/7/2024         0.26ND         No         8         75         n/a         0.0201         NP Inter (NDs) 1 of 2           Lead (ug/L)         MW-16R         1.10         n/a         8/7/2024         0.26ND         No         8         75         n/a         0.0201         NP Inter (NDs) 1 of 2           Magnesium (ug/L)         MW-12         204000         n/a         8/8/2024         6400         No         8         0         No         0.001754         Param Inter 1 of 2           Magnesium (ug/L)         MW-13         204000         n/a         8/8/2024         60000         No         8         0         No         0.001754         Param Inter 1 of 2           Magnesium (ug/L)         MW-14         204000         n/a         8/7/2024         34000         No         8         0         No         0.001754         Param Inter 1 of 2           Magnesium (ug/L)         MW-16R         204000         n/a         8/7/2024         39000         No         8         0         No         0.001754         Param Inter 1 of 2           Magnese (ug/L)         MW-16R         574         n/a         8/8/2024         140         No         8 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>· · · ·</td>												· · · ·
Lead (ug/L)MW-16R1.10n/a8/7/20240.26NDNo875n/a0.0201NP Inter (NDs) 1 of 2Magnesium (ug/L)MW-12204000n/a8/8/20246400No80No0.001754Param Inter 1 of 2Magnesium (ug/L)MW-13204000n/a8/8/202460000No80No0.001754Param Inter 1 of 2Magnesium (ug/L)MW-14204000n/a8/7/202434000No80No0.001754Param Inter 1 of 2Magnesium (ug/L)MW-16R204000n/a8/7/202434000No80No0.001754Param Inter 1 of 2Magnese (ug/L)MW-16R204000n/a8/7/202439000No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/8/2024140No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/7/2024250No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/7/2024270No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/7/2024270No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/7/2024270No												( )
Magnesium (ug/L)MW-12204000n/a8/8/20246400No80No0.001754Param Inter 1 of 2Magnesium (ug/L)MW-13204000n/a8/8/202460000No80No0.001754Param Inter 1 of 2Magnesium (ug/L)MW-14204000n/a8/7/202434000No80No0.001754Param Inter 1 of 2Magnesium (ug/L)MW-16R204000n/a8/7/202439000No80No0.001754Param Inter 1 of 2Magnesium (ug/L)MW-16R204000n/a8/7/202439000No80No0.001754Param Inter 1 of 2Magnese (ug/L)MW-16R574n/a8/8/2024140No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-14574n/a8/7/2024160No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/7/2024160No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/7/2024270No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/7/2024270No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/7/2024720No13<								-				
More Magnesium (ug/L)MW-13204000n/a8/8/202460000No80No0.001754Param Inter 1 of 2Magnesium (ug/L)MW-14204000n/a8/7/202434000No80No0.001754Param Inter 1 of 2Magnesium (ug/L)MW-16R204000n/a8/7/202439000No80No0.001754Param Inter 1 of 2Magnesium (ug/L)MW-16R204000n/a8/7/202439000No80No0.001754Param Inter 1 of 2Manganese (ug/L)MW-12574n/a8/8/2024140No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-14574n/a8/7/2024160No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/7/2024270No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/7/2024270No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/7/2024270No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/7/2024270No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/7/2024720No												
Magnesium (ug/L)MW-14204000n/a8/7/202434000No80No0.001754Param Inter 1 of 2Magnesium (ug/L)MW-16R204000n/a8/7/202439000No80No0.001754Param Inter 1 of 2Manganese (ug/L)MW-12574n/a8/8/2024140No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-13574n/a8/8/2024250No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-14574n/a8/7/2024160No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/7/2024270No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/7/2024270No80n/a0.0201NP Inter (normality)Sulfate (mg/L)MW-12230n/a8/8/2024720No130No0.001754Param Inter 1 of 2												
Magnesium (ug/L)MW-16R204000n/a8/7/202439000No80No0.001754Param Inter 1 of 2Manganese (ug/L)MW-12574n/a8/8/2024140No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-13574n/a8/8/2024250No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-14574n/a8/7/2024160No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/7/2024270No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/7/2024270No80n/a0.0201NP Inter (normality)Sulfate (mg/L)MW-12230n/a8/8/2024720No130No0.001754Param Inter 1 of 2												
Manganese (ug/L)MW-12574n/a8/8/2024140No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-13574n/a8/8/2024250No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-14574n/a8/7/2024160No80n/a0.0201NP Inter (normality)Manganese (ug/L)MW-16R574n/a8/7/2024270No80n/a0.0201NP Inter (normality)Sulfate (mg/L)MW-122230n/a8/8/2024720No130No0.01754Param Inter 1 of 2												
Manganese (ug/L)         MW-13         574         n/a         8/8/2024         250         No         8         0         n/a         0.0201         NP Inter (normality)           Manganese (ug/L)         MW-14         574         n/a         8/7/2024         160         No         8         0         n/a         0.0201         NP Inter (normality)           Manganese (ug/L)         MW-16R         574         n/a         8/7/2024         270         No         8         0         n/a         0.0201         NP Inter (normality)           Sulfate (mg/L)         MW-12         2230         n/a         8/8/2024         720         No         13         0         No         0.001754         Param Inter 1 of 2												
Manganese (ug/L)         MW-14         574         n/a         8/7/2024         160         No         8         0         n/a         0.0201         NP Inter (normality)           Manganese (ug/L)         MW-16R         574         n/a         8/7/2024         270         No         8         0         n/a         0.0201         NP Inter (normality)           Sulfate (mg/L)         MW-12         2230         n/a         8/8/2024         720         No         13         0         No         0.001754         Param Inter 1 of 2												
Manganese (ug/L)         MW-16R         574         n/a         8/7/2024         270         No         8         0         n/a         0.0201         NP Inter (normality)           Sulfate (mg/L)         MW-12         2230         n/a         8/8/2024         720         No         13         0         No         0.001754         Param Inter 1 of 2												
Sulfate (mg/L)         MW-12         2230         n/a         8/8/2024         720         No         13         0         No         0.001754         Param Inter 1 of 2												
Suirate (mg/L) MVV-13 2230 n/a 8/8/2024 1200 No 13 0 No 0.001754 Param Inter 1 of 2												
	Sunale (mg/L)	11111-13	2230	n/a	0/0/2024	1200	INO	13	U	INO	0.001754	Param Inter 1 of 2

Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML Printed 10/30/2024, 12:09 PM Well **Constituent** Upper Lim. Lower Lim. Observ. <u>%NDs</u> **Transform** Alpha Method <u>Date</u> <u>Sig.</u> <u>Bg N</u> Sulfate (mg/L) MW-14 2230 n/a 8/7/2024 670 13 0 No 0.001754 Param Inter 1 of 2 No Sulfate (mg/L) MW-16R 2230 n/a 8/7/2024 790 13 0 No 0.001754 Param Inter 1 of 2 No Total Dissolved Solids (mg/L) MW-12 8/8/2024 1700 9 0 3100 n/a n/a 0.01707 NP Inter (normality) ... No Total Dissolved Solids (mg/L) MW-13 3100 n/a 8/8/2024 2300 No 9 0 n/a 0.01707 NP Inter (normality) ... Total Dissolved Solids (mg/L) MW-14 3100 n/a 8/7/2024 2000 9 0 0.01707 NP Inter (normality) ... No n/a Total Dissolved Solids (mg/L) MW-16R 3100 8/7/2024 2200 9 0 0.01707 NP Inter (normality) ... n/a No n/a Zinc (ug/L) MW-12 23.7 n/a 8/8/2024 9.7ND No 8 37.5 No 0.001754 Param Inter 1 of 2 Zinc (ug/L) MW-13 23.7 n/a 8/8/2024 9.7ND 8 37.5 No 0.001754 Param Inter 1 of 2 No Zinc (ug/L) MW-14 23.7 n/a 8/7/2024 9.7ND No 8 37.5 No 0.001754 Param Inter 1 of 2 Zinc (ug/L) MW-16R 23.7 n/a 8/7/2024 9.7ND No 8 37.5 No 0.001754 Param Inter 1 of 2

#### Exceeds Limit: MW-14

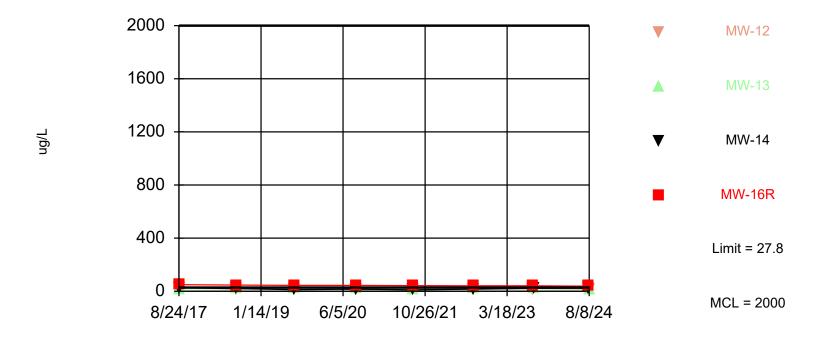
#### Arsenic



Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 75% NDs. Annual per-constituent alpha = 0.07802. Individual comparison alpha = 0.0201 (1 of 2). Comparing 4 points to limit.

Prediction Limit Analysis Run 10/30/2024 12:05 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML


Constituent: Arsenic (ug/L) Analysis Run 10/30/2024 12:09 PM View: Pennsylvanian Unit

		MW-102P (bg)	MW-16R	MW-12	MW-14	MW-13
8	8/24/2017	0.61 (J)	0.21 (J)	0.19 (J)	6.9	0.12 (J)
8	8/16/2018	0.66 (J)	0.35 (J)	0.27 (J)	13.7	0.16 (J)
8	8/7/2019	<0.75	<0.75	<0.75	21	<0.75
8	8/24/2020	<0.88		<0.88	14	<0.88
8	8/25/2020		<0.88			
8	8/10/2021			<0.75		
8	8/11/2021	<0.75	<0.75		22	<0.75
8	8/24/2022	<0.75 (U)	<0.75 (U)	<0.75 (U)	8.5	<0.75 (U)
8	8/29/2023	<0.53 (U)	<0.53 (U)	<0.53 (U)		
8	8/30/2023				2.6	<0.53 (U)
8	8/7/2024	<0.53	<0.53		2.6	
8	8/8/2024			<0.53		<0.53

### Exceeds Limit: MW-16R

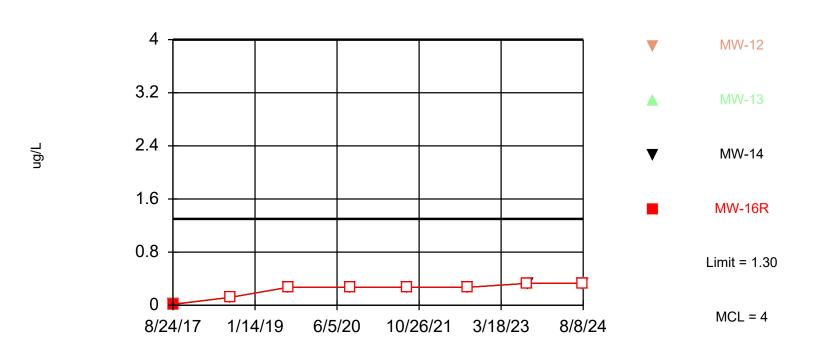
## Barium





Background Data Summary: Mean=23.74, Std. Dev.=1.539, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9129, critical = 0.749. Kappa = 2.63 (c=15, w=4, 1 of 2, event alpha = 0.1). Report alpha = 0.006999. Individual comparison alpha = 0.001754. Comparing 4 points to limit.

Constituent: Barium (ug/L) Analysis Run 10/30/2024 12:09 PM View: Pennsylvanian Unit


	MW-102P (bg)	MW-16R	MW-12	MW-14	MW-13
8/24/2017	7 22.7	49.7	21	26.8	18.2
8/16/2018	3 25.2	46.4	15.5	19.3	19.9
8/7/2019	24	44	32	12	19
8/24/2020	) 22		12	16	20
8/25/2020	)	44			
8/10/2021	I		15 (B)		
8/11/2021	1 22 (B)	42 (B)		11 (B)	16 (B)
8/24/2022	2 26	41	17	16	19
8/29/2023	3 25	41	18		
8/30/2023	3			22	19
8/7/2024	23	38		23	
8/8/2024			15		18

Sanitas[™] v.10.0.23 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

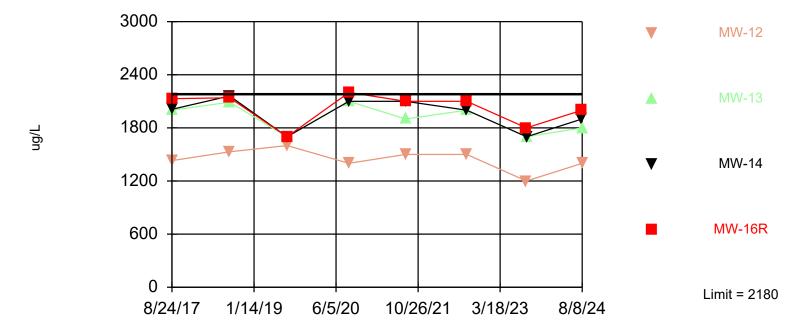
Within Limit

## Beryllium

Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 87.5% NDs. Annual per-constituent alpha = 0.07802. Individual comparison alpha = 0.0201 (1 of 2). Comparing 4 points to limit.


Constituent: Beryllium (ug/L) Analysis Run 10/30/2024 12:09 PM View: Pennsylvanian Unit

					-
	MW-102P (bg)	MW-16R	MW-12	MW-14	MW-13
8/24/2017	0.013 (J)	0.016 (J)	0.019 (J)	<0.012	<0.012
8/16/2018	<0.12	<0.12	<0.12	<0.12	<0.12
8/7/2019	<0.27	<0.27	<0.27	<0.27	<0.27
8/24/2020	<0.27		<0.27	<0.27	<0.27
8/25/2020		<0.27			
8/10/2021			<0.27		
8/11/2021	<0.27	<0.27		<0.27	<0.27
8/24/2022	<0.27 (U)	<0.27 (U)	<0.27 (U)	<0.27 (U)	<0.27 (U)
8/29/2023	<1.3 (U)	<0.33 (U)	<0.33 (U)		
8/30/2023				<0.33 (U)	<0.33 (U)
8/7/2024	<0.33	<0.33		<0.33	
8/8/2024			<0.33		<0.33

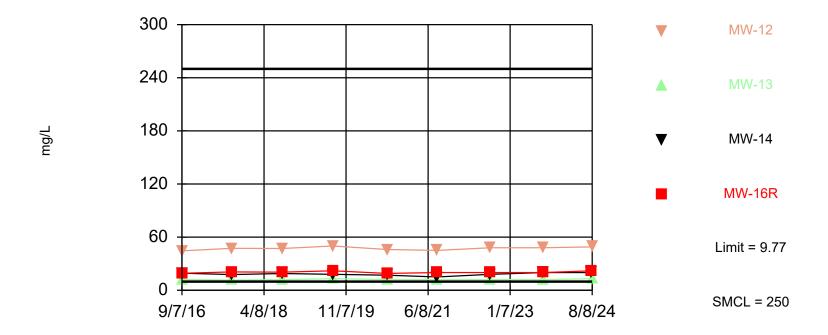
#### Within Limit

### Boron





Background Data Summary: Mean=1674, Std. Dev.=191.9, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8939, critical = 0.749. Kappa = 2.63 (c=15, w=4, 1 of 2, event alpha = 0.1). Report alpha = 0.006999. Individual comparison alpha = 0.001754. Comparing 4 points to limit.


Constituent: Boron (ug/L) Analysis Run 10/30/2024 12:09 PM View: Pennsylvanian Unit

MW-102P (bg)	MW-16R	MW-12	MW-14	MW-13
1770	2130	1430	2010	2000
1920	2140	1530	2160	2090
1400 (B)	1700 (B)	1600 (B)	1700 (B)	1700 (B)
1800		1400	2100	2100
	2200			
		1500		
1800	2100		2100	1900
1600	2100	1500	2000	2000
1400	1800	1200		
			1700	1700
1700	2000		1900	
		1400		1800
-	1770 1920 1400 (B) 1800 1800 1600 1400	1770       2130         1920       2140         1400 (B)       1700 (B)         1800       2200         1800       2100         1600       2100         1400       1800	1770     2130     1430       1920     2140     1530       1400 (B)     1700 (B)     1600 (B)       1800     2200     1500       1800     2100     1500       1600     2100     1500       1400     2000     1500       1700     2000     1500	1770     2130     1430     2010       1920     2140     1530     2160       1400 (B)     1700 (B)     1600 (B)     1700 (B)       1800     1700 (B)     1600 (B)     1700 (B)       1800     2200     1500     1       1800     2100     1500     2100       1800     2100     1500     2000       1400     1800     1200     1700       1700     2000     1900     1900

Exceeds Limit: MW-12, MW-13, MW-14, MW-16R

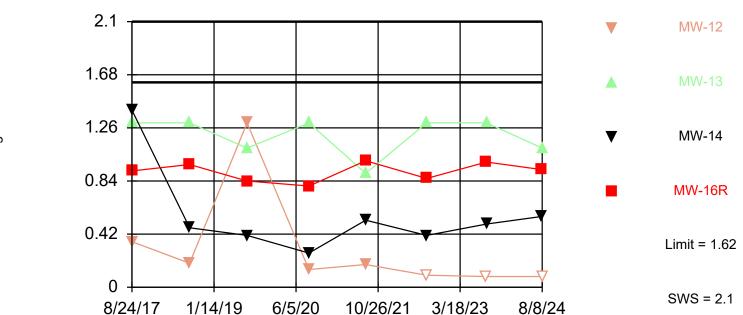






Background Data Summary: Mean=8.892, Std. Dev.=0.3989, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9469, critical = 0.814. Kappa = 2.21 (c=15, w=4, 1 of 2, event alpha = 0.1). Report alpha = 0.006999. Individual comparison alpha = 0.001754. Comparing 4 points to limit.

Constituent: Chloride (mg/L) Analysis Run 10/30/2024 12:09 PM View: Pennsylvanian Unit


	MW-102P (bg)	MW-16R	MW-14	MW-12	MW-13
9/2/2015	8.6				
12/30/2015	8.6				
3/23/2016	9.3				
6/21/2016	8.5				
9/7/2016	8.8	19.2	19.3	44.5	12.1
8/24/2017	8.6	20.7	17.7	47.4	11.5
8/16/2018	8.8	20.4	18.9	47.2	11.9
8/7/2019	9.1	22	18	50	13
8/24/2020	8.2		17	46	12
8/25/2020		19			
8/10/2021				45	
8/11/2021	8.9	20	15		12
8/24/2022	9.3	20	18	48	12
8/29/2023	9.5	20		48	
8/30/2023			20		12
8/7/2024	9.4	22	20		
8/8/2024				49	13

Sanitas[™] v.10.0.23 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

#### Within Limit

## Cobalt

Interwell Parametric

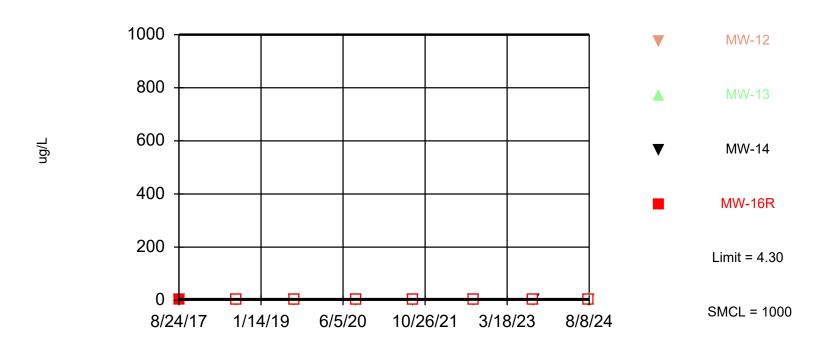


Background Data Summary: Mean=1.021, Std. Dev.=0.2288, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9215, critical = 0.749. Kappa = 2.63 (c=15, w=4, 1 of 2, event alpha = 0.1). Report alpha = 0.006999. Individual comparison alpha = 0.001754. Comparing 4 points to limit.

Prediction Limit Analysis Run 10/30/2024 12:05 PM View: Pennsylvanian Unit Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML

# ng/L

Constituent: Cobalt (ug/L) Analysis Run 10/30/2024 12:09 PM View: Pennsylvanian Unit


	MW-102P (bg)	MW-16R	MW-12	MW-14	MW-13
8/24/2017	0.86 (J)	0.92 (J)	0.36 (J)	1.4	1.3
8/16/2018	1.1	0.97 (J)	0.19 (J)	0.47 (J)	1.3
8/7/2019	1.3 (J)	0.84	1.3	0.41 (J)	1.1
8/24/2020	0.93		0.14 (J)	0.27 (J)	1.3
8/25/2020		0.8			
8/10/2021			0.18 (J)		
8/11/2021	0.97	1		0.53	0.9
8/24/2022	1.4	0.86	<0.19 (U)	0.41 (J)	1.3
8/29/2023	0.87	0.99	<0.17 (U)		
8/30/2023				0.5	1.3
8/7/2024	0.74	0.93		0.56	
8/8/2024			<0.17		1.1

Sanitas[™] v.10.0.23 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

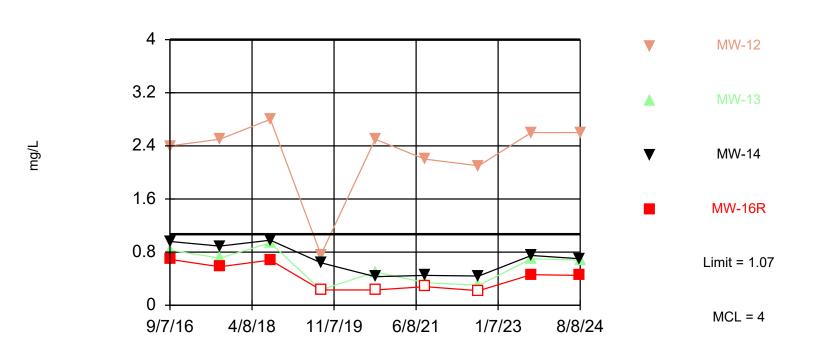
### Copper

Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 62.5% NDs. Annual per-constituent alpha = 0.07802. Individual comparison alpha = 0.0201 (1 of 2). Comparing 4 points to limit.

Constituent: Copper (ug/L) Analysis Run 10/30/2024 12:09 PM View: Pennsylvanian Unit


					•	
	MW-102P (bg)	MW-16R	MW-12	MW-14	MW-13	
8/24/2017	0.23 (J)	0.97 (J)	0.94 (J)	0.54 (J)	0.62 (J)	
8/16/2018	<0.48	<0.48	<0.48	0.6 (J)	<0.48	
8/7/2019	<2	<2	<2	<2	<2	
8/24/2020	<1.5		<1.5	<1.5	<1.5	
8/25/2020		<1.5				
8/10/2021			<1.4			
8/11/2021	<1.4	<1.4		<1.4	<1.4	
8/24/2022	<1.8 (U)	<1.8 (U)	<1.8 (U)	<1.8 (U)	<1.8 (U)	
8/29/2023	2.7 (J)	<1.8 (U)	<1.8 (U)			
8/30/2023				<1.8 (U)	<1.8 (U)	
8/7/2024	4.3 (J)	<1.8		2.1 (J)		
8/8/2024			<1.8		<1.8	

Sanitas[™] v.10.0.23 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

#### Exceeds Limit: MW-12

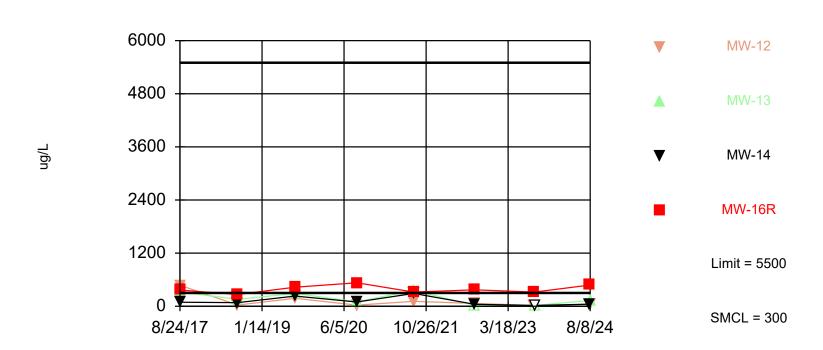
### Fluoride

Interwell Parametric



Background Data Summary (after Kaplan-Meier Adjustment): Mean=0.4922, Std. Dev.=0.2309, n=9, 22.22% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8834, critical = 0.764. Kappa = 2.51 (c=15, w=4, 1 of 2, event alpha = 0.1). Report alpha = 0.006999. Individual comparison alpha = 0.001754. Comparing 4 points to limit.

Constituent: Fluoride (mg/L) Analysis Run 10/30/2024 12:09 PM View: Pennsylvanian Unit


	MW-102P (bg)	MW-13	MW-14	MW-12	MW-16R
9/7/2016	0.84	0.83	0.96	2.4	0.69
8/24/2017	0.74	0.71	0.89	2.5	0.58
8/16/2018	0.69	0.94	0.98	2.8	0.68
8/7/2019	<0.23	<0.23	0.64	0.76	<0.23
8/24/2020	0.69	0.5	0.43 (J)	2.5	
8/25/2020					<0.23
8/10/2021				2.2	
8/11/2021	<0.28	0.34 (J)	0.45 (J)		<0.28
8/24/2022	0.23 (J)	0.3 (J)	0.44 (J)	2.1	<0.22 (U)
8/29/2023	0.58 (J)			2.6	0.46 (J)
8/30/2023		0.7 (J)	0.75 (J)		
8/7/2024	0.53 (J)		0.7 (J)		0.45 (J)
8/8/2024		0.68 (J)		2.6	

Sanitas[™] v.10.0.23 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Within Limit

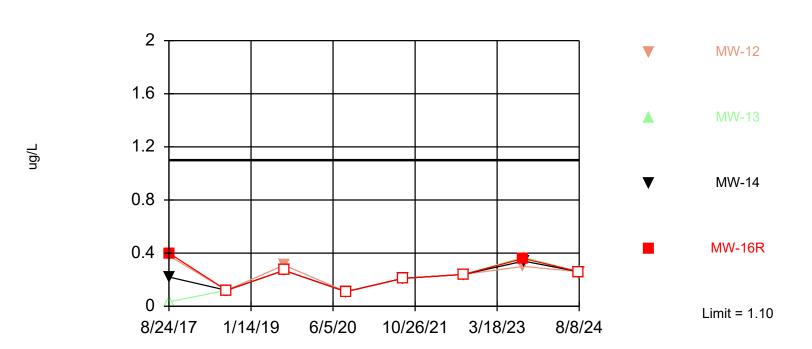
### Iron

Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Annual per-constituent alpha = 0.07802. Individual comparison alpha = 0.0201 (1 of 2). Comparing 4 points to limit.

Constituent: Iron (ug/L) Analysis Run 10/30/2024 12:10 PM View: Pennsylvanian Unit


	MW-102P (bg)	MW-16R	MW-12	MW-14	MW-13
8/24/2017	5230	365	473	91.5	324
8/16/2018	5330	266	27.1 (J)	81.8	155
8/7/2019	5200	430	180	230	290
8/24/2020	5500		<50	97 (J)	98 (J)
8/25/2020		530			
8/10/2021			110		
8/11/2021	5500	320		290	360
8/24/2022	2200	370	63 (J)	43 (J)	<36 (U)
8/29/2023	3400	320	<36 (U)		
8/30/2023				<36 (U)	<36 (U)
8/7/2024	5500	480		47 (J)	
8/8/2024			43 (J)		130

Sanitas[™] v.10.0.23 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

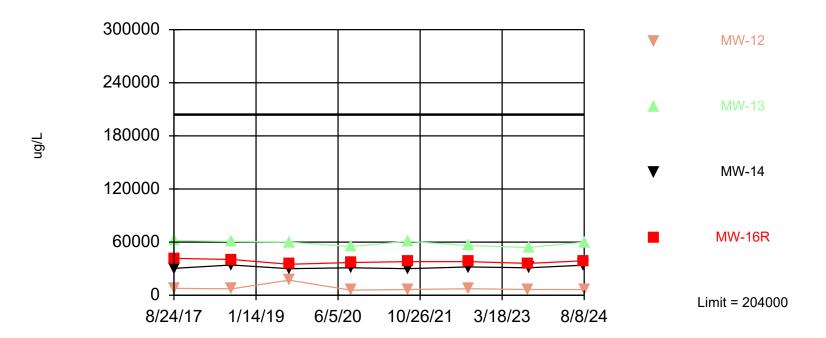
Within Limit

### Lead

Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 75% NDs. Annual per-constituent alpha = 0.07802. Individual comparison alpha = 0.0201 (1 of 2). Comparing 4 points to limit.


Constituent: Lead (ug/L) Analysis Run 10/30/2024 12:10 PM View: Pennsylvanian Unit

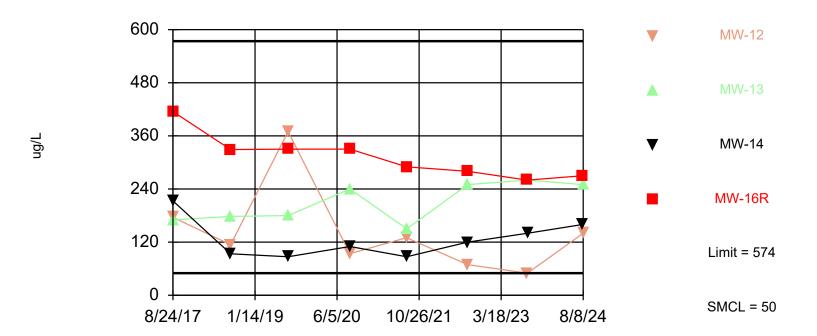
	MW-102P (bg)	MW-16R	MW-12	MW-14	MW-13
8/24/2017	0.036 (J)	0.4 (J)	0.38 (J)	0.22 (J)	<0.033
8/16/2018	<0.12	<0.12	<0.12	0.12 (J)	<0.12
8/7/2019	<1.1	<0.27	0.31 (J)	<0.27	<0.27
8/24/2020	<0.44		<0.11	<0.11	<0.11
8/25/2020		<0.11			
8/10/2021			0.21 (J)		
8/11/2021	<0.21	<0.21		<0.21	<0.21
8/24/2022	<0.24 (U)	<0.24 (U)	<0.24 (U)	<0.24 (U)	<0.24 (U)
8/29/2023	0.27 (JB)	0.36 (JB)	0.3 (JB)		
8/30/2023				0.34 (JB)	0.37 (JB)
8/7/2024	<0.26	<0.26		<0.26	
8/8/2024			<0.26		<0.26

Within Limit

## Magnesium

Interwell Parametric




Background Data Summary: Mean=150875, Std. Dev.=20153, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8102, critical = 0.749. Kappa = 2.63 (c=15, w=4, 1 of 2, event alpha = 0.1). Report alpha = 0.006999. Individual comparison alpha = 0.001754. Comparing 4 points to limit.

Constituent: Magnesium (ug/L) Analysis Run 10/30/2024 12:10 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-16R	MW-12	MW-14	MW-13
8/24/2017	157000	41700	7830	30400	61700
8/16/2018	170000	40400	7230	34200	60700
8/7/2019	170000	35000	17000	30000	60000
8/24/2020	160000		5700	31000	55000
8/25/2020		37000			
8/10/2021			6500		
8/11/2021	160000	38000		30000	61000
8/24/2022	120000	38000	7300	32000	56000
8/29/2023	120000	36000	6500		
8/30/2023				31000	54000
8/7/2024	150000	39000		34000	
8/8/2024			6400		60000

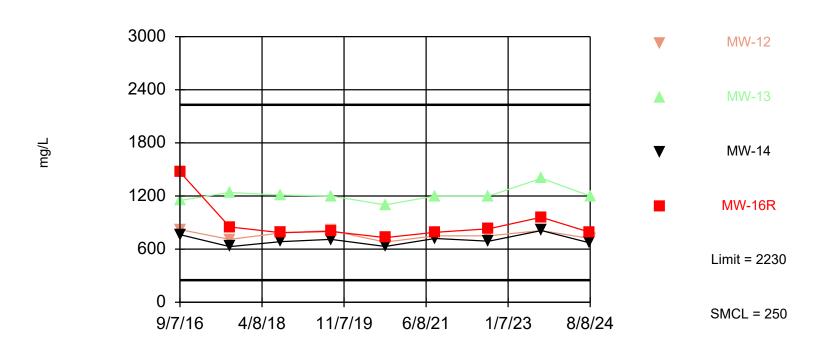
#### Within Limit

### Manganese



Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Annual per-constituent alpha = 0.07802. Individual comparison alpha = 0.0201 (1 of 2). Comparing 4 points to limit.


Constituent: Manganese (ug/L) Analysis Run 10/30/2024 12:10 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-16R	MW-12	MW-14	MW-13
8/24/2017	558	415	176	213	170
8/16/2018	574	329	114	93.7	178
8/7/2019	550	330	370	87	180
8/24/2020	550		94	110	240
8/25/2020		330			
8/10/2021			130		
8/11/2021	510	290		87	150
8/24/2022	330	280	69	120	250
8/29/2023	340	260	50		
8/30/2023				140	260
8/7/2024	530	270		160	
8/8/2024			140		250

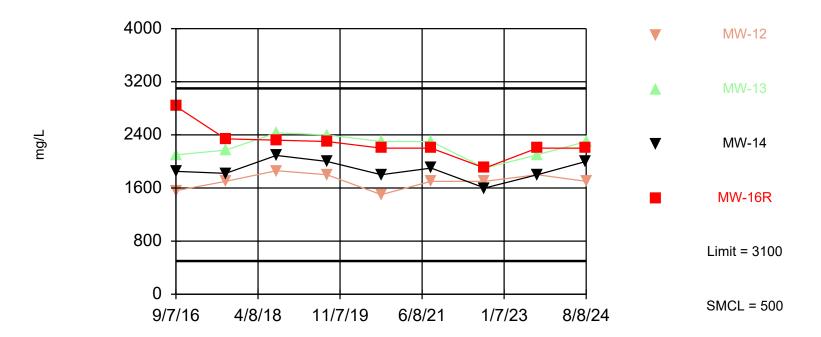
#### Within Limit

### Sulfate

Interwell Parametric



Background Data Summary: Mean=1624, Std. Dev.=272.5, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9504, critical = 0.814. Kappa = 2.21 (c=15, w=4, 1 of 2, event alpha = 0.1). Report alpha = 0.006999. Individual comparison alpha = 0.001754. Comparing 4 points to limit.


Constituent: Sulfate (mg/L) Analysis Run 10/30/2024 12:10 PM View: Pennsylvanian Unit

	MW-102P (bg)	MW-16R	MW-14	MW-12	MW-13
9/2/2015	1690				
12/30/2015	2070				
3/23/2016	1860				
6/21/2016	1840				
9/7/2016	1920	1470	764	821	1150
8/24/2017	1540	850	628	710	1240
8/16/2018	1690	786	684	782	1210
8/7/2019	1600	800	710	810	1200
8/24/2020	1500		630	680	1100
8/25/2020		730			
8/10/2021				750	
8/11/2021	1500	790	720		1200
8/24/2022	1000	830	690	750	1200
8/29/2023	1500	960		810	
8/30/2023			810		1400
8/7/2024	1400	790	670		
8/8/2024				720	1200

#### Within Limit

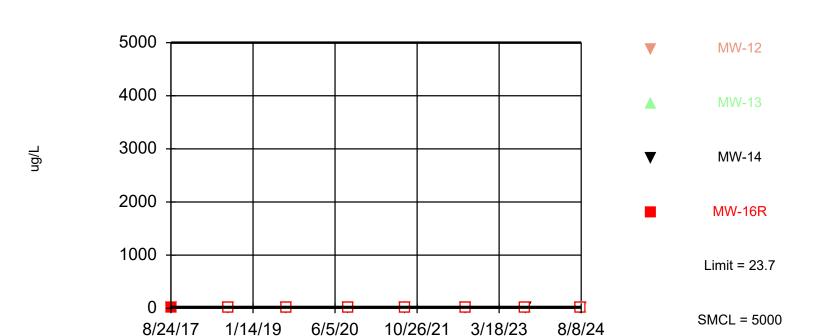
## **Total Dissolved Solids**

Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 9 background values. Annual per-constituent alpha = 0.06656. Individual comparison alpha = 0.01707 (1 of 2). Comparing 4 points to limit.

Constituent: Total Dissolved Solids (mg/L) Analysis Run 10/30/2024 12:10 PM View: Pennsylvanian Unit


	MW-102P (bg)	MW-13	MW-14	MW-12	MW-16R
9/7/2016	2890	2100	1850	1560	2830
8/24/2017	2760	2170	1820	1700	2340
8/16/2018	2730	2430	2090	1860	2320
8/7/2019	3100	2400	2000	1800	2300
8/24/2020	3000	2300	1800	1500	
8/25/2020					2200
8/10/2021				1700	
8/11/2021	310 (X)	2300	1900		2200
8/24/2022	2200	1900	1600	1700	1900
8/29/2023	2600			1800	2200
8/30/2023		2100	1800		
8/7/2024	2800		2000		2200
8/8/2024		2300		1700	

Sanitas[™] v.10.0.23 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

#### Within Limit

### Zinc

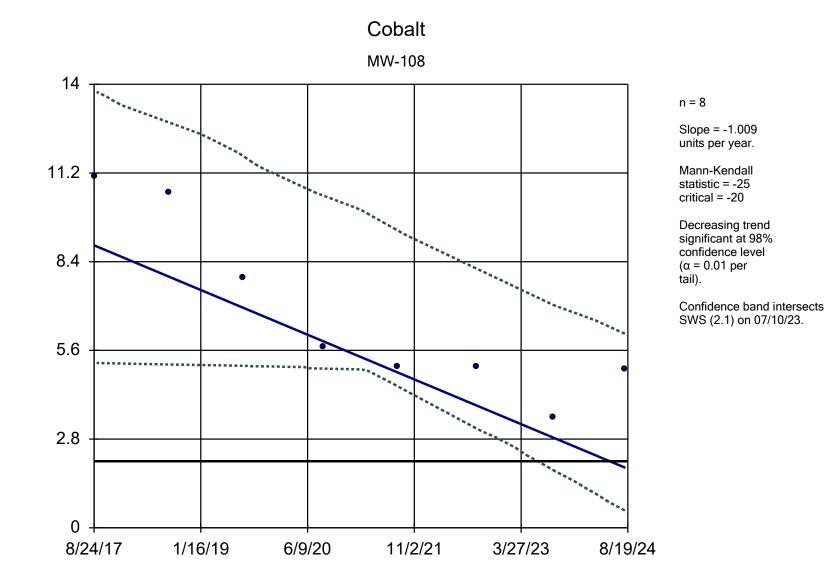
Interwell Parametric



Background Data Summary (after Kaplan-Meier Adjustment): Mean=8.238, Std. Dev.=5.876, n=8, 37.5% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7864, critical = 0.749. Kappa = 2.63 (c=15, w=4, 1 of 2, event alpha = 0.1). Report alpha = 0.006999. Individual comparison alpha = 0.001754. Comparing 4 points to limit.

Constituent: Zinc (ug/L) Analysis Run 10/30/2024 12:10 PM View: Pennsylvanian Unit

					•
	MW-102P (bg)	MW-16R	MW-12	MW-14	MW-13
8/24/2017	3.6 (J)	1 (J)	3.7 (J)	1.7 (J)	2 (J)
8/16/2018	4.3 (J)	<3.7	<3.7	<3.7	<3.7
8/7/2019	<10	<10	<10	<10	<10
8/24/2020	<40		<10	<10	<10
8/25/2020		<10			
8/10/2021			<10		
8/11/2021	<10	<10		<10	<10
8/24/2022	21	<10 (U)	<10 (U)	<10 (U)	<10 (U)
8/29/2023	6.9 (J)	<6.4 (U)	<6.4 (U)		
8/30/2023				<6.4 (U)	<6.4 (U)
8/7/2024	12 (J)	<9.7		<9.7	
8/8/2024			<9.7		<9.7


Appendix E

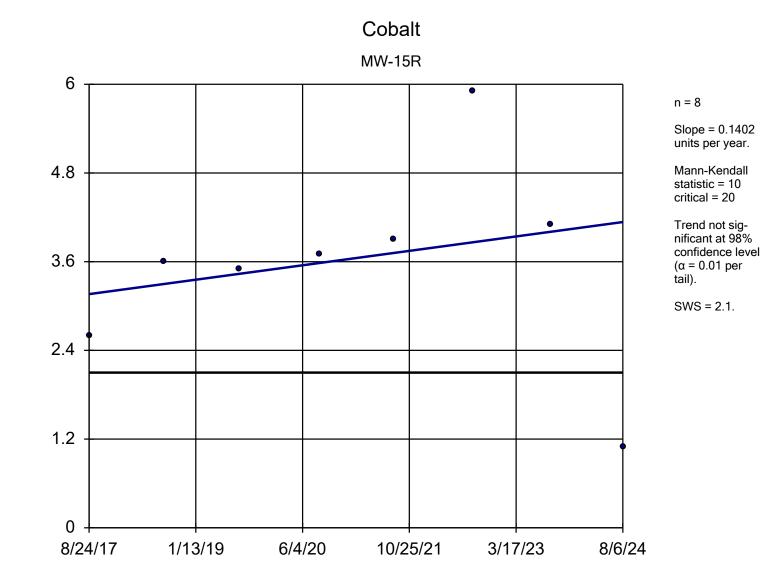
Groundwater Quality Trend Summary

## Trend Test

Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML Printed 11/4/2024, 3:10 PM

Constituent	Well	<u>Slope</u>	<u>Calc.</u>	<u>Critical</u>	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	<u>Normality</u>	<u>Xform</u>	<u>Alpha</u>	Method
Cobalt (ug/L)	MW-108	-1.009	-25	-20	Yes	8	0	n/a	n/a	0.02	NP
Cobalt (ug/L)	MW-15R	0.1402	10	20	No	8	0	n/a	n/a	0.02	NP
Manganese (ug/L)	MW-108	-75.37	-20	-20	No	8	0	n/a	n/a	0.02	NP
Manganese (ug/L)	MW-15R	-412.1	-26	-20	Yes	8	0	n/a	n/a	0.02	NP




Sen's Slope and 95% Confidence Band Analysis Run 11/4/2024 2:46 PM Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML

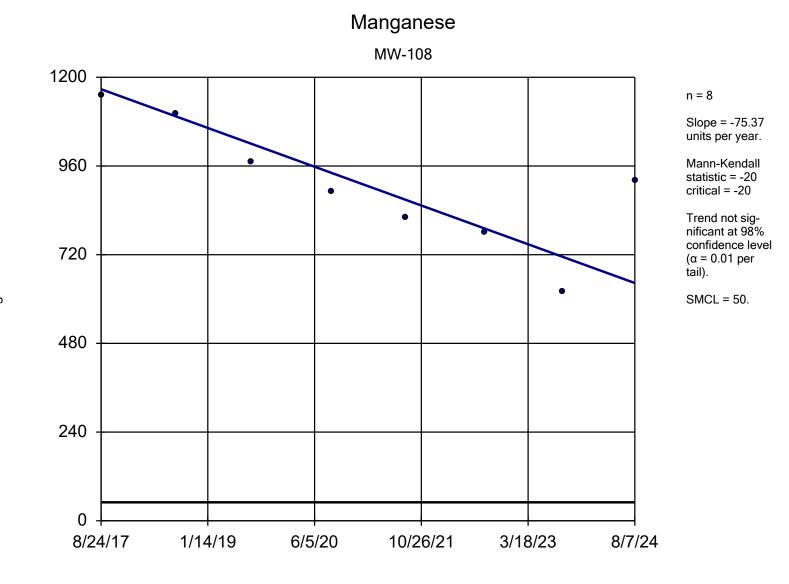
ng/L

## Sen's Slope Estimator

Constituent: Cobalt (ug/L) Analysis Run 11/4/2024 3:10 PM

	MW-108	LCL	UCL
8/24/2017	11.1	5.203	13.8
8/16/2018	10.6	5.156	12.8
8/7/2019	7.9	5.115	11.73
8/24/2020	5.7	5.025	10.49
8/11/2021	5.1	4.479	9.398
8/24/2022	5.1	3.144	8.191
8/30/2023	3.5	1.813	7.03
8/7/2024	5	0.5404	6.119




Sen's Slope and 95% Confidence Band Analysis Run 11/4/2024 2:46 PM Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML

ng/L

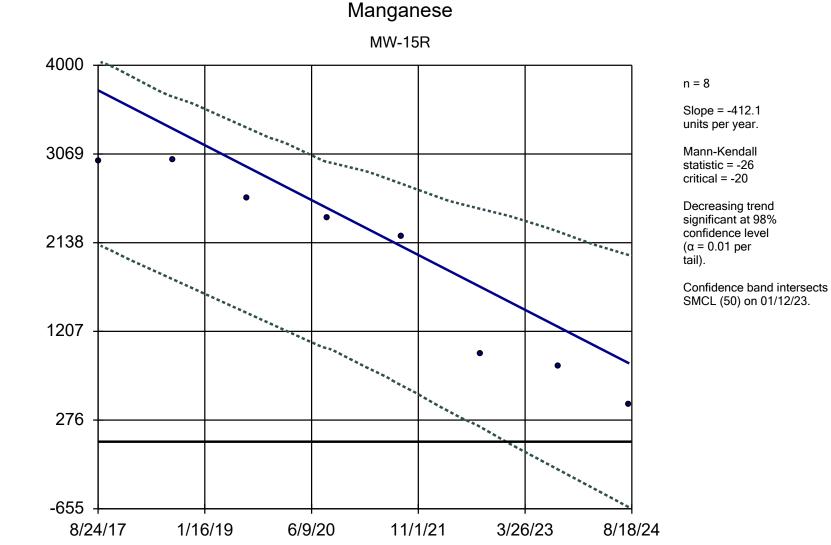
## Sen's Slope Estimator

Constituent: Cobalt (ug/L) Analysis Run 11/4/2024 3:10 PM

	MW-15R
8/24/2017	2.6
8/16/2018	3.6
8/7/2019	3.5
8/25/2020	3.7
8/12/2021	3.9
8/24/2022	5.9
8/30/2023	4.1
8/6/2024	1.1



Sen's Slope and 95% Confidence Band Analysis Run 11/4/2024 2:46 PM Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML


ng/L

## Sen's Slope Estimator

Constituent: Manganese (ug/L) Analysis Run 11/4/2024 3:10 PM

Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML

	MW-108
8/24/2017	1150
8/16/2018	1100
8/7/2019	970
8/24/2020	890
8/11/2021	820
8/24/2022	780
8/30/2023	620
8/7/2024	920



## Sen's Slope and 95% Confidence Band Analysis Run 11/4/2024 2:46 PM Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML

ng/L

## Sen's Slope Estimator

Constituent: Manganese (ug/L) Analysis Run 11/4/2024 3:10 PM

Ottumwa-Midland Landfill Client: SCS Engineers Data: 191022-input-OML

	MW-15R	LCL	UCL
8/24/2017	2990	2119	4045
8/16/2018	3010	1754	3669
8/7/2019	2600	1399	3343
8/25/2020	2400	1031	2985
8/12/2021	2200	641.4	2757
8/24/2022	970	205.8	2494
8/30/2023	840	-240.7	2256
8/6/2024	440	-640.7	2006

Appendix F

Additional Points Data History, 2020-Present

#### Appendix F Additional Points Data History, 2020-Present* Ottumwa Midland Landfill Permit No. 90-SDP-8-92P

			GU-1 TEMP					GU-2					GU-EX					LP-1		
CHEMICAL PARAMETER	2020	2021	2022	2023	2024	2020	2021	2022	2023	2024	2020	2021	2022	2023	2024	2020	2021	2022	2023	2024
ARSENIC, UG/L	<0.88	<0.75			<0.53						<0.88	1.9 J	2.2		0.70 J					
BARIUM, UG/L	45	41 B			38						30	25 B	64		35					Í
BERYLLIUM, UG/L	<0.27	<0.27			< 0.33						<0.27	<0.27	<0.27		< 0.33					i
BORON, UG/L	520	370			270						1,000	1,000	870		900					1
CALCIUM, MG/L ⁽¹⁾					230										150					i
COBALT, UG/L	11	14			11						1.3	2.6	4.0		3.5					1
COPPER	<1.5	<1.4			<1.8						<1.5	<1.4	7.5		<1.8					i
FLUORIDE, MG/L	<0.23	0.47 J			0.42 J						0.30 J	0.76	<0.22		0.46 J					i
IRON, UG/L	<50.0	41 J			<36						720	810	6,900		260					1
LEAD, UG/L	<0.11	<0.21			<0.26						<0.11	<0.21	1.1		<0.26					1
LITHIUM, UG/L ⁽¹⁾					48										26					1
MAGNESIUM, UG/L	70,000	67,000	Too Little		61000						29,000	38,000	53,000		36000					1
MANGANESE, UG/L	3,100	3,000	Water to	DRY	2000	DRY	DRY	DRY	DRY	DRY	240	530	400	DRY	250	DRY	DRY	DRY	DRY	DRY
MOLYBDENUM, UG/L ⁽¹⁾			Sample		2.2										48					i
SELENIUM, UG/L	<1.0	<0.96			1.4 J						<1.0	0.97 J	2.0 J		4.7 J					i
ZINC, UG/L	40	35			29						10.0 J	<10	36		39					i
CHLORIDE, MG/L	16	17			20						5.5	8.2	15		32					1
SULFATE, MG/L	500	460			390						390	440	700		460					1
TOTAL DISSOLVED SOLIDS, MG/L	1,200	1,100			1100						750	880	1,200		930					1
TOTAL SUSPENDED SOLIDS, MG/L ⁽¹⁾					<1.4										2.5					1
pH, SU	7.03	6.44			6.73						7.16	7.25	6.76		7.7					i
TEMPERATURE, DEGREES C	16	15.9			20.7						20.5	19.9	17.8		23.3					i
SPECIFIC CONDUCTANCE, UMHOS/CM	1,758	1,615	1		6.66						1,114	1,298	1,489		7.22					i –
OXIDATION REDUCTION POTENTIAL, MV ⁽¹⁾					83.1										56.2					i –
DISSOLVED OXYGEN, MG/L ⁽¹⁾					1438										1281					i –

NOTES:

1. Parameter added to sampling list in 2023 as part of monitoring program modifications directed by IDNR.

Updated: LH, 9/26/2024 Checked: RM, 11/5/2024

2. Specific conductivity probe was likely not fully submerged in liquid at SW-3 in 2023. * Historical data through 2019 are included in Appendix C

C:\Users\lhawksworth\AppData\Roaming\Microsoft\Excel\[AWQR_OML_Tables_241104 (version 1).xlsb]Appendix F_Add. Points History

#### Appendix F Additional Points Data History, 2020-Present* Ottumwa Midland Landfill Permit No. 90-SDP-8-92P

CHEMICAL PARAMETER			SW-1R					SW-2R					SW-3	<b>I</b>				SW-4		
	2020	2021	2022	2023	2024	2020	2021	2022	2023	2024	2020	2021	2022	2023	2024	2020	2021	2022	2023	2024
ARSENIC, UG/L		3.7					2.5				1.1 J	1.8 J	4.4	3.1	2	5.9				1
BARIUM, UG/L		130 B					150 B				42	57 B	84.0	21	52	270.0				1
BERYLLIUM, UG/L		<0.27					<0.27				<0.27	<0.27	<0.27	<0.33	<0.33	<0.27				1
BORON, UG/L		71 J					150				740	590	860	960	560	130				1
CALCIUM, MG/L ⁽¹⁾														140	61					1
COBALT, UG/L		0.55					5.1				0.096 J	0.36 J	0.67	0.41 J	0.20 J	1.8				1
COPPER		<1.4					6.9				<1.5	9.3	2.3 J	<1.8	<1.8	<1.5				1
FLUORIDE, MG/L		0.52					0.6				0.24 J	0.43 J	<0.22	<0.38	<0.38	<0.23				1
IRON, UG/L		210					5600				<50.0	260	590	130	76 J	950				1
LEAD, UG/L		<0.21					3.2				<0.11	0.35 J	0.44 J	0.28 J	<0.26	0.42 J				1
LITHIUM, UG/L ⁽¹⁾														11	8.7 J					1
MAGNESIUM, UG/L		25,000					24,000				25,000	26,000	36,000	54000	23000	26,000				1
MANGANESE, UG/L	DRY	600	DRY	DRY	DRY	DRY	690	DRY	DRY	DRY	<4.0	50	25	45	26	4700	DRY	DRY	DRY	DRY
MOLYBDENUM, UG/L ⁽¹⁾														25	9.9					1
SELENIUM, UG/L		<0.96					1.2 J				<1.0	1.3 J	2.4 J	2.1 J	1.9 J	<1.0				1
ZINC, UG/L		<10					53				<10.0	44	<10	9.8 J	<9.7	<10.0				1
CHLORIDE, MG/L		19					13				3.5 J	5.3	5.7	16	4.6 J	20				1
SULFATE, MG/L		23					130				310	270	470	830	250	36				1
TOTAL DISSOLVED SOLIDS, MG/L		340					390				490	470	730	1000	410	410				1
TOTAL SUSPENDED SOLIDS, MG/L ⁽¹⁾														14	8.3					
pH, SU		7.52					7.73				8.93	7.41	8.68	9.01	8.56	7.55				1
TEMPERATURE, DEGREES C		23.4					23.3				26.8	28.4	29.4	31.4	28.1	22.5				1
SPECIFIC CONDUCTANCE, UMHOS/CM		461					647				786	741	963	(2)	8.94	721				1
OXIDATION REDUCTION POTENTIAL, MV ⁽¹⁾	•													45.8	18.0					1
DISSOLVED OXYGEN, MG/L ⁽¹⁾	·													7.64	651					

#### Appendix F Additional Points Data History, 2020-Present* Ottumwa Midland Landfill Permit No. 90-SDP-8-92P

CHEMICAL PARAMETER			SW-5				IFA	CHATE BA	SIN				TCB-1/2		
	2020	2021	2022	2023	2024	2020	2021	2022	2023	2024	2020	2021	2022	2023	2024
ARSENIC, UG/L	0.99 J	8.9				3.2	30	9.4	4.9	9.7	1.4 J	1.1 J	1.0 J	1.3 J	0.95 J
BARIUM, UG/L	58	140 B				70	42 B	55.0	61	72	140.0	150 B	110	63	76
BERYLLIUM, UG/L	<0.27	<0.27				<0.27	<0.27	<0.27	<0.33	<0.33	<0.27	<0.27	<0.27	<0.33	<0.33
BORON, UG/L	1,100	1,300				4300	2500	2,400	2200	2100	870	440	450	480	430
CALCIUM, MG/L ⁽¹⁾									200	260				140	130
COBALT, UG/L	0.25 J	3.8				0.26 J	0.47 J	0.31 J	0.30 J	0.68	<0.091	<0.091	<0.19	<0.17	<0.17
COPPER	<1.5	1.7 J				1.5 J	4.9 J	2.0 J	2.4 J	<1.8	<1.5	<1.4	<1.8	<1.8	<1.8
FLUORIDE, MG/L	0.44 J	0.7				<0.23	<0.28	<0.22	<0.38	<0.38	<0.23	0.35 J	<0.22	<0.38	<0.38
IRON, UG/L	61.0 J	3,200				<50.0	90 J	45 J	<36	<36	<50.0	<36	<36	52 J	<36
LEAD, UG/L	<0.11	0.77				<0.11	<0.21	<0.24	<0.24	<0.26	<0.11	<0.21	<0.24	<0.24	<0.26
LITHIUM, UG/L ⁽¹⁾									35	43				<2.5	3.3 J
MAGNESIUM, UG/L	32,000	39,000		Too Little		85,000	21,000	31,000	34000	28000	10,000	7,500	12,000	15000	14000
MANGANESE, UG/L	300	7,500	DRY	Water to	DRY	62	33	15	16	86	4.7 J	6.4 J	<3.6	8.9 J	6.0 J
MOLYBDENUM, UG/L ⁽¹⁾				Sample					790	680				4.1	3.9
SELENIUM, UG/L	<1.0	1.0 J				33	60	37	38	76	1.1 J	1.3 J	1.0 J	<1.4	<1.4
ZINC, UG/L	<10.0	<10				<10.0	14 J	<10	6.9 J	<9.7	<10.0	<10	<10	<6.4	<9.7
CHLORIDE, MG/L	7.4	13				150	290	230	410	1000	11	12	<2.3	18	12
SULFATE, MG/L	430	450				4,300	1,600	2,200	2500	1900	370	270	370	560	380
TOTAL DISSOLVED SOLIDS, MG/L	760	900				7,500	2,900	3,500	3300	5000	590	420	570	730	590
TOTAL SUSPENDED SOLIDS, MG/L ⁽¹⁾									8.7	6				1.3 J	3.9
pH, SU	7.45	7.14				8.59	8.45	8.86	8.86	8.6	8.46	7.44	8.79	7.79	8.06
TEMPERATURE, DEGREES C	22.8	27.8				26.8	27	29.1	30.3	25.8	27.7	29.1	27.3	26.6	28.3
SPECIFIC CONDUCTANCE, UMHOS/CM	1,196	1,416				4,097	4,306	4,567	5364	12.64	917	695	772	1003	8.39
OXIDATION REDUCTION POTENTIAL, MV ⁽¹⁾									63.3	63.7				67.0	71.9
DISSOLVED OXYGEN, MG/L ⁽¹⁾									10.4	6769				7.47	863

## Appendix G

2024 Annual Facility Inspection Summary and Leachate Control System Performance Evaluation

# SCS ENGINEERS

### Annual Facility Inspection Summary – 2024 Interstate Power and Light Company Ottumwa-Midland Commercial Landfill Permit No. 90-SDP-8-92P

This annual facility inspection summary for the Interstate Power and Light Company (IPL) Ottumwa-Midland Landfill (OML) includes the following elements:

- Engineering inspection described in Section 8.0 of the August 2016 Operations Manual.
- Annual National Pollutant Discharge Elimination System Storm Water Pollution Prevention Plan (SWPPP) review.
- Annual Leachate Control System Performance Evaluation required by Special Provision 6.c. of the permit for OML (Sanitary Disposal Permit No. 90-SDP-8-92P).
- Groundwater monitoring well inspections.
- Iowa Department of Natural Resources (IDNR) inspections.

A summary of each annual inspection element is provided in the sections below.

No portion of the facility has received final cover, so no annual post-closure inspections have been completed per 567 IAC 103.1(5) f.

## **ENGINEERING INSPECTION**

On August 15, 2024, Mr. Eric Nelson, PE with SCS Engineers, conducted a site inspection. The inspection included a review of operating records kept for compliance with U.S. Environmental Protection Agency (U.S. EPA) Rule 40 CFR 257, Subpart D - Standards for the Disposal of Coal Combustion Residuals (CCR) in Landfill and Surface Impoundments, and a visual review of the landfill facility for signs of distress or malfunction. This inspection summary addresses the report items described in Section 8.0 of the Operations Manual.

## Changes in Geometry

No apparent changes in geometry were noted that would indicate distress or malfunction of the CCR unit at the facility since the previous annual inspection at OML, completed under 40 CFR 257.84(b)(1). All changes in geometry observed during the annual inspection were the result of planned CCR filling or intermediate soil cover placement activities.

### **CCR** Volumes

Approximately 1.292 million cubic yards (MCY) of CCR was in place at OML as of August 15, 2024. This estimate is based on:

• The in-place volume as of August 22, 2023, as calculated using a topographic survey of the site and record surveys of liner construction.

• The volume of CCR material placed between August 22, 2023, and August 15, 2024, as estimated using disposal records provided by IPL.

## Appearance of Structural Weakness

The inspection included a review of the appearance of an actual or potential structural weakness of the CCR unit as indicated by the following:

### Signs of Surface Movement or Instability

No signs of surface movement or instability were noted during the inspection.

### Inappropriate Vegetation Growth

Woody vegetation was present in the leachate drainage layer sand at the toe of slope in the northeast corner of Expansion Phase 1 near the contact water swale. If left to grow it could impede contact water flow or leachate flow within the sand leachate drainage layer. SCS recommends spot removing the woody vegetation and monitoring these areas for renewed growth during the 7-day inspections.

### **Animal Burrows**

No animal burrows were noted during the inspection.

### **Erosion Damage**

The following erosion damage was observed during the annual inspection.

- Existing Landfill intermediate cover. Minor exposed soil areas without vegetation were present within the intermediate soil cover area. If left unaddressed, CCR material could become exposed. SCS recommends that vegetation be restored and that these areas be monitored during the 7-day inspections for improved growth.
- South slope of Sedimentation Basin No. 2. Exposed soil areas lacking vegetation were present along the south slope of Sedimentation Basin No. 2. This could impact stormwater run-on/run-off control features if vegetation is not restored. SCS recommends adding topsoil, seed, and erosion mat to exposed areas to restore vegetation, and monitoring growth during the 7-day inspections.

### Unusual Surface Damage Caused by Vehicle Traffic

No unusual surface damage was noted during the inspection.

### **Disruptive Conditions**

### **Existing Disruptive Conditions**

No existing disruptive conditions were noted during the inspection.

Location	Observation	Possible Resolution
Leachate Sump	Leachate is actively being removed from Expansion Phase 1, but leachate levels are high enough to trigger the high-level alarm condition in the sump.	• Continue to actively remove leachate from OML to reduce sump and leachate head levels.
Expansion Phase 1	Woody vegetation, CCR, and sediment build-up in contact water management features at the toe of slope in the northeast corner is reducing the freeboard available for contact water run-off.	<ul> <li>Remove the woody vegetation and accumulated CCR/sediment.</li> <li>Monitor the area during the 7-day inspections.</li> </ul>
Expansion Phase 1	Stitched rain cover ballast material seams have started to separate at various locations on the rain cover ballast.	<ul> <li>Repair the separated stitching, or</li> <li>Add supplemental sandbag ballast in lieu of stitching.</li> <li>Monitor the ballast material seams during the 7-day inspections.</li> </ul>

### Potentially Disruptive Conditions

## Other Changes Since Previous Annual Inspection

No changes to site conditions that appear to have the potential to affect the stability or operation of the facility were noted during the inspection.

Potentially disruptive conditions pertaining to the Expansion Phase 1 leachate collection system vault control unit and level sensor mentioned in the 2023 Facility Inspection Report were resolved in 2024. IPL staff worked with EPG Companies to replace the LH-1 leachate panel and to replace and calibrate the Headwell Sensor. This work was completed as of February 21, 2024. The LH-1 liquid level sensor and readout are now functioning as intended. The completion of this work was previously reported to IDNR in a letter dated September 13, 2024.

## NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM SWPPP

The SWPPP – Annual Site Compliance Evaluation/Report was completed in November 2024. A copy of the 2024 SWPPP – Annual Site Compliance Evaluation/Report is presented in **Attachment A**. Site personnel training records are included in **Attachment B**.

## LEACHATE CONTROL SYSTEM PERFORMANCE

Leachate head levels are measured monthly by the landfill operator from LP-1 and LH-1. The records for leachate head levels are kept available at the site at all times. Monthly leachate elevation and head measurement records were viewed during the inspection and were complete.

Records of volume of leachate collected and the volume of leachate and contact water transported off site for treatment/disposal are kept available at the site at all times. Leachate and contact water removal and hauling records were viewed during the inspection. The Leachate Control System Performance Evaluation (LCSPE) is included as **Attachment C**.

Every 3 years leachate collection lines are to be cleaned and inspected. The collection lines were last cleaned in October 2023. The LCSPE includes information about the collection line cleaning.

## **GROUNDWATER WELLS**

Michael Morgan of SCS Engineers conducted an inspection of the site monitoring wells on August 12, 2024. All wells were found to be in good condition.

## **IDNR INSPECTIONS**

The most recent IDNR inspection of the facility was performed on June 1, 2021. The inspection report is included as **Attachment D**.

I:\25224073.00\Deliverables\2024 AWQR\App G - Inspection\2024 Annual Facility Inspection Report_Final.docx

## Attachment A

SWPPP – Annual Site Compliance Evaluation/Report and Signature Log

# STORM WATER POLLUTION PREVENTION PLAN (SWPPP)

1944

## ANNUAL SITE COMPLIANCE EVALUATION / REPORT

for the

## **Ottumwa Midland Landfill**

Inspection date: 11/20/2024

Prepared by

**Rob Saunders** 

G:\OttumwaGenerating\Environmental Recordkeeping\Ottumwa Midland Landfill\Annual Facility Site Compliance Inspection (AFSCI)\2024\2024 OML Annual Facility Site Compliance Inspection (AFSCI) Report.doc 1 of 4

#### **Guidance for Inspectors**

During the inspection, use these guidelines:

• Employees should use common sense and maintain a neat, clean working environment which will help prevent spilling of significant materials. Any spills should be promptly cleaned up.

194

in Property

- All portable containers are required to be clearly labeled as to the contents.
- Is there evidence of pollutants entering the storm drainage system?
- Are the BMPs that are implemented effective in preventing storm water pollution?
- Is the Storm Water Pollution Prevention Plan up to date?
- Storm water pollution prevention equipment including dikes, curbs, gutter, drains, valves, concrete, containers, and drums should be given necessary preventative maintenance to prevent releases to storm water.
- All storm water pollution equipment will be maintained in a good operating order.
- Other equipment (such as tanks, containers, and drums) will be checked regularly for signs of deterioration.

For Section 313 Water Priority Chemicals, the periodic storm water inspections will include observations for the following:

- Leaks or conditions that would lead to discharges of section 313 Water Priority Chemicals.
- Conditions that could lead to direct contact of storm water with raw materials, intermediate materials, or products.
- Piping, pumps, storage tank and bins, pressure vessels, process and material handling equipment, and material bulk storage areas for leaks, wind blowing, corrosion, support or foundation failure, or other deterioration or non-containment.

Construction activities may involve the removal of large areas of vegetative cover exposing raw soil to erosion. During these construction periods, procedures should be implemented to reduce erosion. These procedures may include the following:

- Compliance with any applicable Storm Water Pollution Plan for Construction Activities.
- Seeding erodeable areas with a suitable grass.
- Spreading crushed rock on erodable areas.
- Minimizing the time period raw soil is exposed.
- Building temporary silt retention dams in ditches to allow settling of suspended soil before discharge.
- Applying biodegradable soil cover such as straw or burlap to highly erodable areas until a more permanent solution can be implemented.
- Use of silt fences.
- Use of velocity reduction structures (rip rap).

## **ANNUAL SITE COMPLIANCE EVALUATION / REPORT**

In accordance with published EPA guidelines and requirements for Storm Water Discharges Associated with Industrial Activities, this ANNUAL SITE COMPLIANCE EVALUATION / REPORT is provided for record and authorization.

Ottumwa Midland Landfill
√1 15300 130 th Street Ottumwa, Iowa 52501
11/20/2024

Inspector(s)

oment

### **REQUIRED OBSERVATIONS and ACTIVITIES:**

**Rob Saunders** 

Do you see: (Y or N)	No	Pollutants entering stormwater drainage area, if "YES" then describe on an attached sheet?
	Yes	BMP measures effectively reducing pollutant loading, if "NO" then describe on an attached sheet?
	No	Areas needing new or additional BMP measures, if "YES" then describe on attached sheet?
	Yes	BMP measures operating properly, if "NO" then describe on an attached sheet?
	Yes	Effective and proper use of any equipment in use for this plan's implementation, if "NO" then describe on an attached sheet?
	Yes	Any areas of noncompliance, if "YES" then describe on an attached sheet?
Note:	( ✓ )	<ul> <li>Prepare an ANNUAL SITE COMPLIANCE EVALUATION/REPORT, include the following:</li> <li>A) Inspection date,</li> <li>B) Inspection personnel,</li> <li>C) Incidents of noncompliance,</li> <li>D) Inspection results,</li> <li>E) Follow-up activities (schedule), and</li> <li>F) Certification</li> </ul>
	( ✓ ) ( ✓ )	Was the current SWPPP reviewed and is it up to date? ¹ Sign the report in accordance with Section 2.6.2 and keep with plan. (EPA Guidance Manual)

¹ Update the SWPPP. Be sure to update the revision date on the title page and in the footer on each page. Be sure to update the revision sheet to reflect the review, even if no changes were made. Send an updated copy to the site See OGS Environmental Procedure 088: "How to Update SWPPP Plans."

G:\OttumwaGenerating\Environmental Recordkeeping\Ottumwa Midland Landfill\Annual Facility Site Compliance Inspection (AFSCI)\2024\2024 OML Annual Facility Site Compliance Inspection (AFSCI) Report.doc

## ANNUAL SITE COMPLIANCE EVALUATION / REPORT

192.00

### **INCIDENTS of NON-COMPLIANCE:**

- Junk tire in Storm Water Outfall 005 discharge area.
- Three of the neighbor's cows jumped the fence and were on OML property.

### **INSPECTION RESULTS:**

N. 1

• See the attached document, "Annual Facility Site Compliance Inspection (AFSCI) Finding Tracking Log."

### FOLLOW-UP ACTIVITIES (SCHEDULE):

• Follow up on all incidents of non-compliance in one month (12/20/2024).

### **ADDITIONAL INFORMATION**

None

It is therefore the position of this team, that the **Ottumwa Midland Landfill** Storm Water Pollution Prevention Plan (SWPPP) is in compliance and will effectively reduce (or eliminate) storm water pollution at its source.

CERTIFICAT	ION					
I certify under penalty of law that this document a						
direction or supervision in accordance with a						
personnel properly gather and evaluate the inform	nation, the information submitted is, to the					
pest of my knowledge and belief, true, accurate, and complete. I am aware of the significant						
penalties for submitting false information, including the possibility of fine and imprisonment						
for knowing violations.	×					
A. Name & Official Title (type or print):	B. Area Code and Telephone No:					
Derek Roberts	(641) 935-2908					
Manager GENCO Operations						
Ottumwa Generating Station						
C. Signature:	D. Date Signed:					
$\bigcirc$						
June tobar	11/21/24					

Attachment B

Site Personnel Training Records

Ottumwa	Alliant Energy, Generating Station	OGS Safety Procedure 323: Training Sign In Sheet	Revision Date: 4/19/2023 Author: Rob Saunders
Training D	ate:	4/20/2023	
		~ }	
Row No.	Trainer Name	Course Name:	Course Code:
1	Rob Saunders	CCR Rule Refresher Training	ENV0404
2			
3			

Row No.	Employee Name	Employee Number	Employee Signature
1	Aaron Thamke (17163)	17163	
2	Adam Phillips (17558)	17558	
3	Al White (09792)[C]	09792	
4	Blake McClaflin (15299)	15299	
5	Brandon Hartley (19504)	19504	
6	Brandon Saner (16819)	16819	
7	Brian Crall (17165)	17165	
8	Brian Johnson (19737)	19737	
9	Chad Black (17016)	17016	
10	Clinton Thompson (16207)	16207	
11	Cole Campbell (19712)	19712	
12	Conner Glosser (21413)	21413	
13	Dalton Burnstedt (22020)	22020	
14	Dan Griffith (17610)	17610	
15	Daniel Thrasher (09804)	09804	
16	Dave Bettis (16685)	16685	
17	David Jasper (05030)	05030	
18	Derek Roberts (09346)	09346	
19	Dexter Barclay (13268)	13268	
20	Douglas Sloan (04409)	04409	
21	Douglas Sparks (05425)	05425	
22	Eddie Mitchell (03250)	03250	

\OGS_Office\Safety\Safety Management System Documentation\Safety Procedures\323 OGS Training Sign In Sheet.xlsx te 1 of 3

ł

23	Frederick Latham (17010)	17010	V.
24	Greg Wynn (17443)	17443	X
25	James Rose (13818)	13818	
26	Jason Marth (16760)	16760	
27	Jason Van Antwerp (23264)	23264	
28	Jeffery Annee (13533)	13533	
29	Jeffrey Deahl (07172)	07172	
30	Jeremy Kohlhaas (07562)	07562	-
31	Jessica Ewing (19796)	19796	
32	John Gerths (16835)	16835	
33	John McAninch (17563)	17563	
34	John Sheston (17410)	17410	
35	John Watts (09920)	09920	
36	Jon Bickford (09794)	09794	
37	Jon Morlan (18358)	18358	
38	Keith Young (14740)	14740	
39	Kirk McAninch (16829)	16829 KurMilum	
40	Leon Wickenkamp (08594)	08594	
41	Marcy Valdez (11211)	11211	
42	Mark Houg (16388)	16388	
43	Mark Lunsford (09822)	09822	
44	Martin Lamb (15512)	15512	
45	Michael Paxton (17059)	17059	
46	Nathan Miller (14197)	14197	
47	Randall Raskie (21439)	21439	
18	Rebecca Jaques (03385)	03385	
19	Rob Saunders (16073)	16073 00 QUAR	
50	Robert Taylor (09830)	09830	
51	Roger Lovelady (21994)	21994	
52	Roy Hicks (16729)	16729	
3	Ryan Black (17011)	17011	
4	Scott Johnson (09802)	09802	
55	Stephen Keck (03370)	03370 Jak Kal	
6	Taylor Crall (19715)	19715	

11	Terence Helton (17584)	17584	
Y	Teri Burch (16818)	16818	
1	Terry Harris (09835)	09835	
X	Tom Barr (18891)	18891	
51	Tyler Smith (15603)	15603	
2	W. Alan Campbell (11159)	11159	
53	Wade Hart (16789)	16789 Whide Hat	
4			
5			
6			
57			
58			
59			
70			

Note to the E&S Specialist. Submit a copy to The Point--> Submit a Service Ticket --> IPL Ops Support Coordinator --> Category = IPL Training, Subcategory = Training Attendance Sheet 1077



<b>OUS</b> Environme	ntal Procedure 119:
Environmental ⁻	Training Sign In
Sheet	

#### **Procedure**

Use this sign in sheet to document attendance at required environmental training sessions. Indicate the date, site, topic, and trainer,

Note to the Environmental Specialist: Submit a copy to The Point  $\rightarrow$  Submit a Service Ticket  $\rightarrow$ IPL Ops Support Coordinator  $\rightarrow$  Category = IPL Training, Subcategory = Training Attendance Sheet Submitted to IPL Operations Support Services on

03/16/2023 1. Date: OGS 2. Site: MOML

3. Topic: ¹	RCRA Waste Training (ENV0020)	
	SWPPP (ENV0002)	
	SPCC, Site Specific ²	
	Fugitive Dust (ENV0012)	
	ERRAP ³	
	CCR Rule Training for Inspectors (ENV0404)	
	DOT Haz Mat Training (ENV0061)	
	LOTO Initial 6-hr (SAF0107)	
	Other:	
4. Trainer:	Rob Saunders	
	Other:	

Line no.	Print your Name (Legibly)	Employee Number (NOT A0 number)
1.	Martin D Lamb	15512
2.	Wade Hart	16789
3.	Steve Keck	3370
4.		16829
5.	KIRK MCANINCH DEREK ROBERTS	09346
6.	Ron Runder	16073
7.		
8.		
9.		
10.		

### **Continued on back:**

G:\OGS_Office\Environmental\Environmental Management System Documentation\Environmental Procedures\119 Environmental Training Sign In Sheet.docx

	Alliant Energy. Generating Station	OGS Safety Procedure 323: Training Sign In Sheet	Revision Date: 1/30/2024 Author: Rob Saunders
		01/10/01	
Training D	ate:	04/18/24	
Training D	vate:	04/18/24	
Training D Row No.	Trainer Name	Course Name:	Course Code:

Row No.	Employee Name	Employee Number	Employee Signature
1	Aaron Thamke (17163)	17163	
2	Adam Phillips (17558)	17558	
3	AI White (09792)[C]	09792	
4	Blake McClaflin (15299)	15299	
5	Brandon Hartley (19504)	19504	
6	Brandon Saner (16819)	16819	
7	Brian Crall (17165)	17165	
8	Brian Johnson (19737)	19737	
9	Chad Black (17016)	17016	
10	Clinton Thompson (16207)	16207	
11	Cole Campbell (19712)	19712	
12	Conner Glosser (21413)	21413	
13	Dalton Burnstedt (22020)	22020	
14	Dan Griffith (17610)	17610	
15	Daniel Thrasher (09804)	09804	
16	Danny Lamb (15512)	15512	
17	Dave Bettis (16685)	16685	
18	David Jasper (05030)	05030	
19	Derek Roberts (09346)	09346	
20	Dexter Barclay (13268)	13268	2
21	Douglas Sloan (04409)	04409	
22	Douglas Sparks (05425)	05425	

G:\OGS_Office\Safety\Safety Management System Documentation\Safety Procedures\323 OGS Training Sign In Sheet.xlsx Page 1 of 3

		· 200.	
23	Eddie Mitchell (03250)	03250	
24	Frederick Latham (17010)	17010	1
25	Greg Wynn (17443)	17443	
26	James Rose (13818)	13818	
27	Jason Marth (16760)	16760	
28	Jeffery Annee (13533)	13533	
29	Jeffrey Deahl (07172)	07172	
30	Jeremy Kohlhaas (07562)	07562	
31	Jessica Ewing (19796)	19796	
32	Jevin Jensen (23728)	23728	
33	John Gerths (16835)	16835	
34	John McAninch (17563)	17563	
35	John Sheston (17410)	17410	
36	Jon Bickford (09794)	09794	
37	Jon Morlan (18358)	18358	
38	Keith Young (14740)	14740	
39	Kirk McAninch (16829)	16829 / M/ Clerr	
40	Leon Wickenkamp (08594)	08594	
41	Mark Houg (16388)	16388	
42	Mark Lunsford (09822)	09822	
43	Michael Paxton (17059)	17059	
44	Nathan Miller (14197)	14197	
45	Nathan Moorman (23556)	23556	
46	Randall Raskie (21439)	21439	
47	Rebecca Jaques (03385)	03385	$\land \land$
48	Rob Saunders (16073)	16073	Kh MIMON
49	Robert Taylor (09830)	09830	
50	Roger Lovelady (21994)	21994	
51	Roy Hicks (16729)	16729	
52	Ryan Black (17011)	17011	
53	Ryan Giltner (23555)	23555	1
54	Scott Johnson (09802)	09802	
55	Stephen Keck (03370)	03370 - Kent	
56	Taylor Crall (19715)	19715	

G:\OGS_Office\Safety\Safety Management System Documentation\Safety Procedures\323 OGS Training Sign In Sheet.xlsx Page 2 of 3

$\langle \rangle$	Terence Helton (17584)	17584	
XY	Teri Burch (16818)	16818	
Y	Terry Harris (09835)	09835	
)	Tom Barr (18891)	18891	
í.	Tyler Smith (15603)	15603	
2	W. Alan Campbell (11159)	11159	
3	Wade Hart (16789)	16789	Ulade dia t
			- Nave Pars
,			
	- 14		
)			

Note to the E&S Specialist: If a training was presented that has a THRIVE Course Code, then:

Submit a copy of this document to The Point--> Submit a Service Ticket --> IPL Ops Support Coordinator --> Category =

IPL Training, Subcategory = Training Attendance Sheet. Be sure to add this document as an attachment to the Service Ticket.

Submitted to the IPL Operations Support Services on

🔶 Alliant	OGS Safety Procedure 323:	Revision Date:
Energy.	Training Sign In Sheet	6/5/2024
		Author: Rob
Ottumwa Generating Station		Saunders

· 2.*

Course Code:

Training D	ate:	06/06/24
Row No.	Trainer Name	Course Name:
1	Rob Saunders	ERRAP Annual Training
2		
3		

4

Row No.	Employee Name	Employee Number	Employee Signature
1	Aaron Thamke (17163)	17163	
2	Adam Phillips (17558)	17558	
3	Al White (09792)[C]	09792	
4	Blake McClaflin (15299)	15299	
5	Brandon Hartley (19504)	19504	
6	Brandon Saner (16819)	16819	
7	Brian Crall (17165)	17165	
8	Brian Johnson (19737)	19737	
9	Chad Black (17016)	17016	
10	Clinton Thompson (16207)	16207	
11	Cole Campbell (19712)	19712	
12	Conner Glosser (21413)	21413	
13	Dalton Burnstedt (22020)	22020	
14	Dan Griffith (17610)	17610	
15	Daniel Thrasher (09804)	09804	
16	Danny Lamb (15512)	15512	
17	Dave Bettis (16685)	16685	
18	David Jasper (05030)	05030	
19	Derek Roberts (09346)	09346	
20	Dexter Barclay (13268)	13268	
21	Douglas Sloan (04409)	04409	
22	Douglas Sparks (05425)	05425	

C:\Users\A03370\AppData\Local\Microsoft\Windows\INetCache\Content.Outlook\98PCRE62\323 OGS Training Sign In Sheet.xlsx Page 1 of 3

1	Eddie Mitchell (03250)	03250	
F	Frederick Latham (17010)	17010	
1	Greg Wynn (17443)	17443	
1	Hunter Gerths (24020)	24020	
17	James Rose (13818)	13818	
28	Jason Marth (16760)	16760	
9	Jeff Major (23895)	23895	
0	Jeffery Annee (13533)	13533	
31	Jeffrey Deahl (07172)	07172	
32	Jeremy Kohlhaas (07562)	07562	
33	Jessica Ewing (19796)	19796	
34	Jevin Jensen (23728)	23728	
35	John Gerths (16835)	16835	
36	John McAninch (17563)	17563	
37	John Sheston (17410)	17410	
38	Jon Bickford (09794)	09794	
39	Jon Morlan (18358)	18358	
0	Keith Young (14740)	14740	
1	Kirk McAninch (16829)	16829	fine M aunch
12	Leon Wickenkamp (08594)	08594	pen de conceret
3	Mark Houg (16388)	16388	
4	Mark Lunsford (09822)	09822	
5	Michael Paxton (17059)	17059	
6	Nathan Miller (14197)	14197	
17	Nathan Moorman (23556)	23556	
18	Randall Raskie (21439)	21439	
19	Rebecca Jaques (03385)	03385	0,0,1
0	Rob Saunders (16073)	16073	AD ALLA
1	Robert Taylor (09830)	09830	
2	Roger Lovelady (21994)	21994	
3	Roy Hicks (16729)	16729	
54	Ryan Black (17011)	17011	
55	Ryan Giltner (23555)	23555	
56	Scott Johnson (09802)	09802	

C:\Users\A03370\AppData\Local\Microsoft\Windows\INetCache\Content.Outlook\98PCRE62\323 OGS Training Sign In Sheet.xlsx Page 2 of 3

Stephen Keck (03370)	03370	Here Kaal
Taylor Crall (19715)	19715	Justice
Terence Helton (17584)	17584	
Teri Burch (16818)	16818	
Terry Harris (09835)	09835	
Tom Barr (18891)	18891	
Tyler Smith (15603)	15603	
W. Alan Campbell (11159)	11159	
Wade Hart (16789)	16789	Wode Hant

Note to the E&S Specialist: If a training was presented that has a THRIVE Course Code, then:

Submit a copy of this document to The Point--> Submit a Service Ticket --> IPL Ops Support Coordinator --> Category =

IPL Training, Subcategory = Training Attendance Sheet. Be sure to add this document as an attachment to the Service Ticket.

Submitted to the IPL Operations Support Services on _

Employee ID	Employee Name	Job Title	Location Name	Activity Code	Activity Name	Last Completed Date	Expiration Date	Manager Name
16789	Hart, Wade	Ash Disposal Facility Operator	Ottumwa Generating Station	ENV0012	ENV0012 Fugitive Dust	Jan 3, 2024	Dec 31, 2025	Lamb, Martin
16789	Hart, Wade	Ash Disposal Facility Operator	Ottumwa Generating Station	OGS0012	OGS0012 OGS Fugitive Dust Training	Jan 3, 2024	Dec 31, 2025	Lamb, Martin
16829	McAninch, Kirk A	Ash Disposal Facility Operator	Ottumwa Generating Station	ENV0012	ENV0012 Fugitive Dust	Jan 3, 2024	Dec 31, 2025	Lamb, Martin
16829	McAninch, Kirk A	Ash Disposal Facility Operator	Ottumwa Generating Station	OGS0012	OGS0012 OGS Fugitive Dust Training	Jan 3, 2024	Dec 31, 2025	Lamb, Martin
03370	Keck, Stephen B	Ash Disposal Facility Foreman	Ottumwa Generating Station	ENV0012	ENV0012 Fugitive Dust	Apr 2, 2024	Dec 31, 2025	Lamb, Martin
03370	Keck, Stephen B	Ash Disposal Facility Foreman	Ottumwa Generating Station	OGS0012	OGS0012 OGS Fugitive Dust Training	Apr 2, 2024	Dec 31, 2025	Lamb, Martin
16789	Hart, Wade	Ash Disposal Facility Operator	Ottumwa Generating Station	ENV0002	ENV0002 SWPPP Annual Training	Jan 5, 2024	Dec 31, 2025	Lamb, Martin
16789	Hart, Wade	Ash Disposal Facility Operator	Ottumwa Generating Station	OGS0002	OGS0002 OGS and OML SWPPP Training	Jan 3, 2024	Dec 31, 2025	Lamb, Martin
16829	McAninch, Kirk A	Ash Disposal Facility Operator	Ottumwa Generating Station	ENV0002	ENV0002 SWPPP Annual Training	Jan 5, 2024	Dec 31, 2025	Lamb, Martin
16829	McAninch, Kirk A	Ash Disposal Facility Operator	Ottumwa Generating Station	OGS0002	OGS0002 OGS and OML SWPPP Training	Jan 3, 2024	Dec 31, 2025	Lamb, Martin
03370	Keck, Stephen B	Ash Disposal Facility Foreman	Ottumwa Generating Station	OGS0002	OGS0002 OGS and OML SWPPP Training	Mar 25, 2024	Dec 31, 2025	Lamb, Martin
16789	Hart, Wade	Ash Disposal Facility Operator	Ottumwa Generating Station	ENV0020-GEN	ENV0020 Waste Awareness (Generation)	Jan 5, 2024	Dec 31, 2025	Lamb, Martin
16789	Hart, Wade	Ash Disposal Facility Operator	Ottumwa Generating Station	OGS0020	OGS0020 OGS and OML RCRA Training	Jan 3, 2024	Dec 31, 2025	Lamb, Martin
16829	McAninch, Kirk A	Ash Disposal Facility Operator	Ottumwa Generating Station	ENV0020-GEN	ENV0020 Waste Awareness (Generation)	Jan 5, 2024	Dec 31, 2025	Lamb, Martin
16829	McAninch, Kirk A	Ash Disposal Facility Operator	Ottumwa Generating Station	OGS0020	OGS0020 OGS and OML RCRA Training	Jan 3, 2024	Dec 31, 2025	Lamb, Martin
03370	Keck, Stephen B	Ash Disposal Facility Foreman	Ottumwa Generating Station	OGS0020	OGS0020 OGS and OML RCRA Training	Mar 25, 2024	Dec 31, 2025	Lamb, Martin

Attachment C

Leachate Control System Performance Evaluation

November 27, 2024 File No. 25224073.00

Mr. Jeffrey Maxted Alliant Energy 4902 N. Biltmore Lane Madison, WI 53718

Subject: Leachate Control System Performance Evaluation Interstate Power and Light Company Ottumwa-Midland Commercial Landfill Permit #90-SDP-08-92P

Dear Mr. Maxted:

This Leachate Control System Performance Evaluation (LCSPE) Report is provided by SCS Engineers (SCS) as per the requirements of the July 21, 2017, permit renewal for the Ottumwa-Midland Commercial Landfill (OML). This report is a supplement to the 2024 Annual Water Quality Report.

## BACKGROUND

OML accepts coal combustion residuals (CCR). The current Phase 1 landfill is approximately 10 acres in size. The initial landfill permit was approved on September 23, 1994, by the Iowa Department of Natural Resources (IDNR). Landfill activities began in 1995. The last permit renewal was approved by the IDNR on July 21, 2017.

## **ORIGINAL LANDFILL LEACHATE CONTROL SYSTEM**

The leachate control system in the original landfill area at OML consists of a leachate collection system, a leachate lift station, and a leachate storage lagoon. Construction of the leachate control system is described in the July 1995 Construction Certification Report that was prepared by Montgomery Watson. The leachate collection system layout is shown on **Figure 1**. A summary of the original landfill leachate control system is provided below.

The active leachate collection system in the original landfill consists of the following components:

- Twelve-inch protective general fill layer
- Geocomposite drainage layer
- Leachate collection pipes/trenches and cleanouts

Leachate collection pipe consists of 6-inch-diameter, perforated, heavy duty, smooth interior, corrugated polyethylene pipe (CPEP). Leachate collection system piping is installed in trenches excavated 18 inches into the 4-foot-thick compacted clay liner. One north-south-oriented trench and five east-west-oriented leachate collection trenches are installed at the base of the landfill. Leachate collection piping is bedded and covered with 1.5-inch clean stone, and the trenches are wrapped with geotextile. The geotextile-wrapped, stone-filled leachate collection trenches extend beneath the



geocomposite drainage layer and 12-inch protective general fill layer. The east-west leachate collection pipes are sloped to the interior north-south-oriented leachate collection pipe. The north-south leachate collection pipe then drains south to a leachate transport pipe.

Each end of the east-west-oriented leachate collection pipes are connected to a 6-inch-diameter, non-perforated, heavy duty, smooth interior, CPEP leachate cleanout pipe. The north end of the north-south-oriented leachate collection pipe is also connected to a CPEP cleanout pipe. The cleanout pipes extend up the liner side slopes and are exposed above grade at the limits of the landfill liner to provide cleanout access at the ground surface.

The north-south-oriented leachate collection pipe is connected to a 6-inch-diameter, non-perforated, Standard Dimension Ratio (SDR) 17 high-density polyethylene (HDPE) leachate transport pipe where it exits the lined limits of the original landfill to the south. The leachate transport pipe drains leachate by gravity to the leachate wet well/lift station located south of the sediment pond. From the lift station, leachate is pumped under 130th Street to the leachate lagoon via a 2-inch-diameter, non-perforated, SDR 17 HDPE force main.

Leachate is pumped from the lagoon for on-site reuse for moisture conditioning during CCR placement in the landfill or dust control within the lined limits of OML. Leachate is also transported off-site for treatment or disposal.

## PHASE 1 EXPANSION LEACHATE CONTROL SYSTEM

The leachate control system in the Phase 1 Expansion area at OML consists of a leachate collection system, a leachate riser pipe and pump, and a leachate vault. Construction of the leachate control system is described in the November 5, 2015, Phase 1 Liner Construction Documentation Report, that was prepared by SCS. The leachate collection system layout is shown on **Figure 2**. A summary of the leachate control system in Phase 1 is provided below.

The active leachate collection system in Phase 1 consists of the following components:

- Twelve-inch leachate drainage layer
- Twelve-inch drainage filter and 12-inch coarse aggregate bedding over leachate collection pipes
- Leachate collection pipes/trenches and cleanouts

Leachate collection pipe consists of 6-inch-diameter, perforated, SDR 11, HDPE pipe. Leachate collection system piping is installed in a trench that is a minimum of 18 inches deep. The full 2-foot thickness of the clay liner was maintained under the trench during construction. One east-west-oriented leachate collection trench is installed at the base of the landfill cell, and gravity drains to the west. A sweep bend is located at the west end of the leachate collection piping, and the pipe is oriented to the southwest toward the leachate sump.

The east end and southwest ends of the leachate collection pipe are connected to a 6-inch-diameter, non-perforated, HDPE cleanout pipe. The cleanout pipes extend up the liner side slopes and are exposed above grade to provide cleanout access at the ground surface.

An 18-inch-diameter SDR 17 HDPE leachate collection sump riser pipe is installed in the leachate collection sump. The riser pipe extends up the liner side slope in the southwest corner of Phase 1 to the leachate vault. A pump is installed in the riser pipe and pumps leachate from the leachate sump to the leachate vault. From the leachate vault, leachate is pumped through a 3-inch HDPE force main to the leachate lift station. From the leachate lift station, leachate is pumped across 130th Street to the leachate lagoon via a 2-inch-diameter, non-perforated, SDR 17 HDPE force main.

Leachate is pumped from the lagoon for on-site reuse for moisture conditioning during CCR placement in the landfill or dust control within the lined limits of OML. Leachate is also transported off-site for treatment or disposal.

## LEACHATE CONTROL SYSTEM PERFORMANCE EVALUATION

The July 21, 2017, permit renewal requires an annual evaluation of the effectiveness of the leachate control system. The evaluation is based on a review of the following items provided by Interstate Power and Light (IPL):

- Volume of Leachate Collected
- Leachate Head Well Measurements
- Leachate Collection Line Cleaning/Jetting

The following subsections provide a summary of each of these items.

## Volume of Leachate Collected

The daily leachate volumes pumped from the landfill into the lagoon and transported off-site are shown in **Attachment A**. A total of 3,371,754 gallons of leachate was transported off-site to either the City of Ottumwa or the Ottumwa Generating Station during November 2023 through October 2024, according to IPL records. Remaining leachate was used for waste conditioning and dust control within the active disposal areas or remains stored in the leachate lagoon. Historical data that summarizes quantities of leachate transported off-site are provided in Table A-2 of **Attachment A**.

### Leachate Head Well Measurements

The location of leachate head wells LP-1 and LH-1 are shown on **Figures 1** and **2**. LP-1 was installed on June 7, 2011, and is constructed of 2-inch-diameter Schedule 40 PVC with a 1-foot-long Schedule 40 PVC well screen. LP-1 was installed directly above the geocomposite.

LH-1 was constructed in 2015 during the Phase 1 construction project. LH-1 is constructed of a 3-inch-diameter, Schedule 80 PVC pipe with a 5-foot screened section at the end with 0.010-inch slots (10-slot). The headwell was installed at a constant elevation of approximately 753.55 feet directly on the geomembrane. The PVC pipe section is connected to a 3-inch-diameter solid SDR 17 HDPE riser pipe with an HDPE-to-PVC transition fitting prior to the 22½ degree HDPE elbow. A submersible level sensor was installed within the flat portion of the headwell just beyond the 22½ degree HDPE elbow.

A sensor malfunction hindered leachate head measurements at LH-1 in 2023. Repair work, which included ordering and installing upgraded wiring to address a short in the control wiring, was completed on August 1, 2023; however, similar issues with the system status screen and level

sensor readout were noted during the August 22, 2023, inspection. IPL staff worked with EPG Companies to replace the LH-1 leachate panel and to replace and calibrate the Headwell Sensor. This work was completed as of February 21, 2024. The LH-1 liquid level sensor and readout are now functioning as intended. The completion of this work was previously reported to IDNR in a letter dated September 13, 2024 (IDNR Document ID #110868).

A summary table of 2023 and 2024 leachate head level measurements for LP-1 and LH-1 is included in **Attachment B**. Leachate head measurements at LH-1 were under 1 foot during each month from November 2023 through October 2024. Levels were highest in May 2024, when site staff noted issues with the leachate pump, and in August 2024 following heavy rains. As noted in the August 2024 site inspection, active leachate removal was being performed in Expansion Phase 1 and continued active removal was recommended to reduce sump and leachate head levels.

## Leachate Collection Line Cleaning/Jetting

The last jetting of the leachate collection lines was performed on October 11, 2023. The jetting documentation is included in **Attachment C**. The next leachate line jetting is scheduled to be performed in 2026.

## Summary of Leachate Control System Performance Evaluation

Based on a review of the leachate data included in this submittal, the leachate control system at OML appears to be functioning as designed. The leachate is pumped from the leachate collection system to the leachate storage lagoon. Leachate from the lagoon is primarily used for dust control within the landfill. A total of 3,371,754 gallons of leachate was transported off-site during November 2023 through October 2024. The leachate collection lines were cleaned on October 11, 2023. The leachate control measures appear to be adequate.

Two recommendations related to the leachate collection system were made after an August 2024 site inspection: continuing to actively remove leachate from OML to reduce sump and leachate head levels and repair of the rain cover ballast material stitching. Work in response to this recommendation is ongoing.

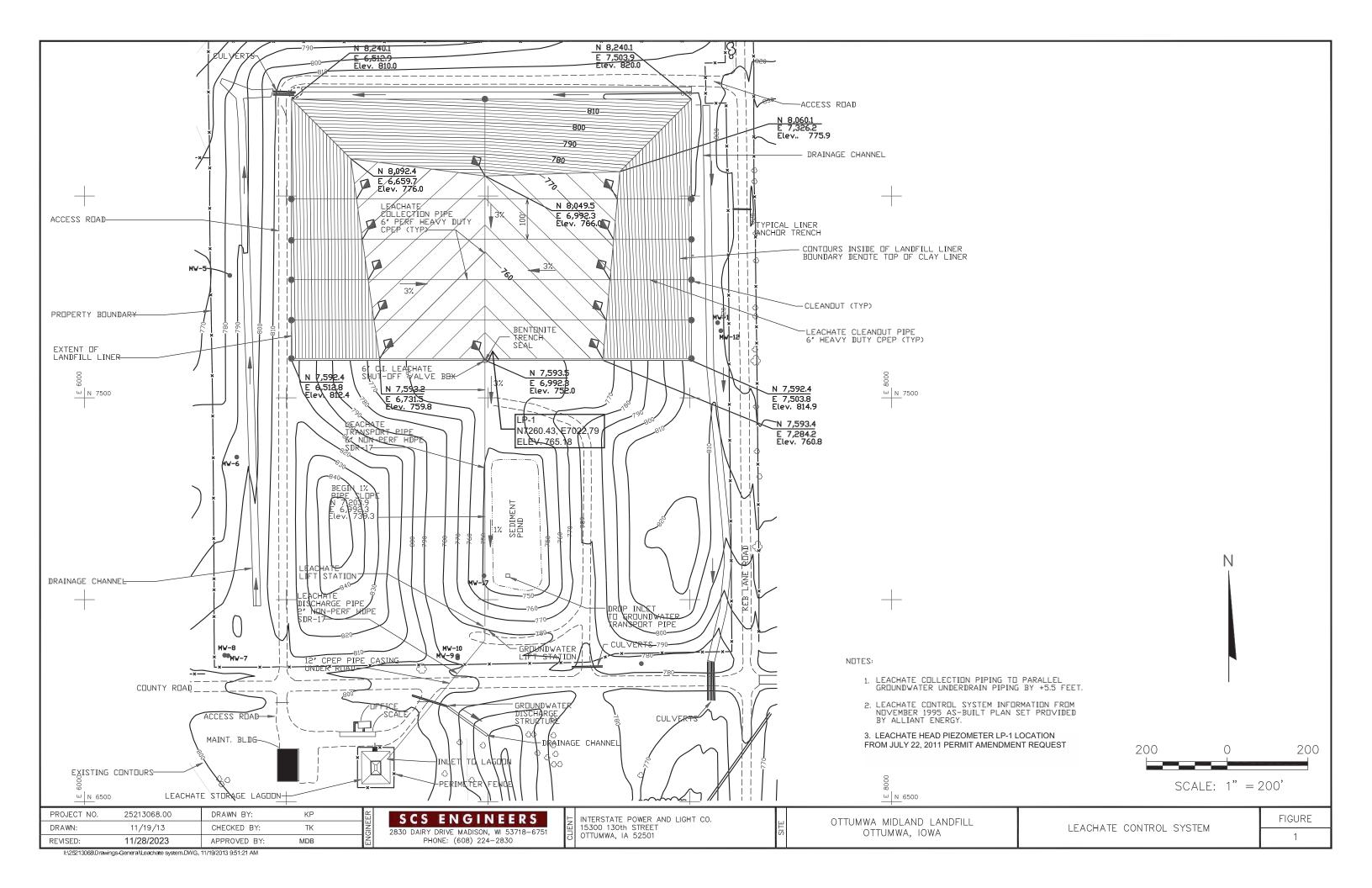
If you have any questions about this report, please contact Tom Karwoski at 608-216-7369.

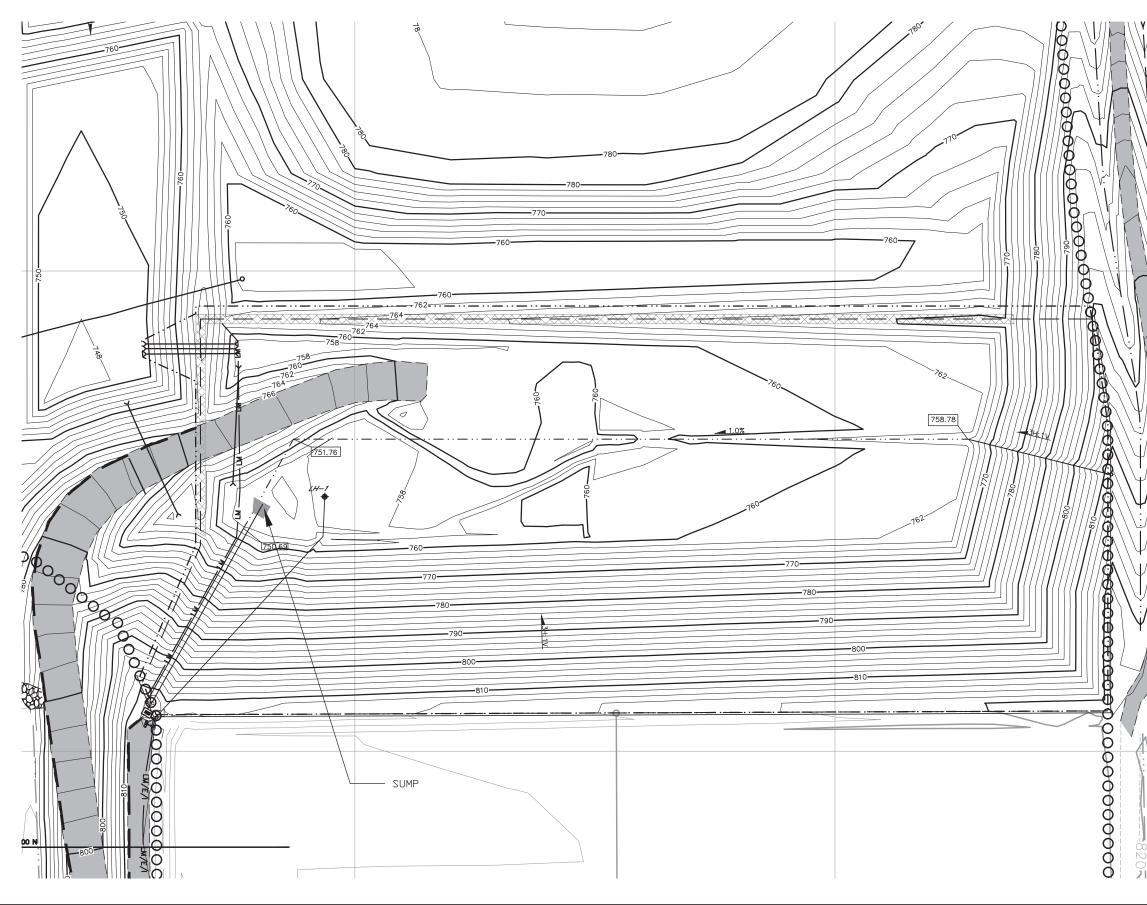
Sincerely,

or unde

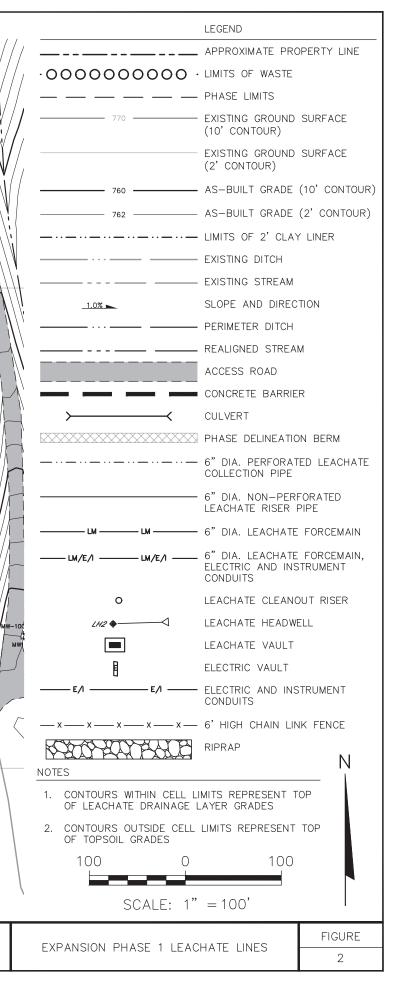
Thomas J. Karwoski Project Manager SCS Engineers

EMS/MDB/Imh/EJN


Ethan Schaefer Associate Geologist SCS Engineers


Enclosures: Figure 1 – Leachate Control System Figure 2 – Expansion Phase 1 Leachate Lines Attachment A – Leachate Volumes Attachment B – Leachate Head Measurements Attachment C – Leachate Line Jetting Documentation

 $I:\25224073.00\Deliverables\2024\AWQR\App\G-Inspection\Attachments\C_LCSPE\241127_Leachate\ Control\ System\ Performance\ Report\ 2024_Final.docx$ 


# Figures

- 1
- Leachate Control System Expansion Phase 1 Leachate Lines 2





PROJECT NO.	25216073.00	DRAWN BY:	BJM	ER	SCS ENGINEERS	L INTERSTATE POWER AND LIGHT CO.		
DRAWN:	11/10/16	CHECKED BY:	MDB	GINE	2830 DAIRY DRIVE MADISON, WI 53718-6751	卣 15300 130th STREET	SITE	OTTUMWA MIDLAND LANDFILL OTTUMWA, IOWA
REVISED:	11/10/16	APPROVED BY:	TK 11/23/2021	ВŇ	PHONE: (608) 224–2830	러 OTTUMWA, IA 52501		



Attachment A

Leachate Volumes

#### Instructions for Use

1. Enter the dates for the month in the date column.

2. Enter the accumulated total generated leachate volume from the end of the previous month from the leachate totalizer in C12.

3. Enter the accumulated total generated leachate for each day from the leachate totalizer in Column C.

4. Enter the daily volume (in gallons) of leachate hauled off site and the offsite location in Column D. Note since we do not have a flow meter, convert from pounds to gallons: X lbs + 8.34 = gallons.

5. The spreadsheet will calculate the daily leachate generated and the cumulative volume of leachate hauled for the month.

Nov-23	Daily Total Generated [Wetwell Flow Meter] (Gallons)	Cumulative Total Generated [Wetwell Flow Meter] (Gallons)	Daily Total Generated [Phase 1 (LV-1) Flow Meter] (Gallons)	Cumulative Total Generated [Phase 1 (LV-1) Flow Meter] (Gallons)	Batch Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Cumulative Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Offsite Treatment Location ("OGS" or other)	Ground Water Discharged >25,000 gpd? (Y or N) ¹	Revision Date: 08/29/16 Comments
Last month		960,741		29,554,941					
11/1/2023	984	961,725	0	29,554,941				N	
11/2/2023	851	962,576	0	29,554,941				N	
11/3/2023									
11/4/2023									
11/5/2023									
11/6/2023	11,529	974,105	6,687	29,561,628				N	
11/7/2023	843	974,948	0	29,561,628				N	
11/8/2023	1,327	976,275	0	29,561,628				N	
11/9/2023	1,380	977,655	0	29,561,628				N	
11/10/2023									
11/11/2023									
11/12/2023									
11/13/2023	10,273	987,928	6,336	29,567,946				N	
11/14/2023	927	988,855	0	29,567,946				N	
11/15/2023	1,266	990,121	0	29,567,946				N	
11/16/2023	796	990,917	0	29,567,946				N	
11/17/2023									
11/18/2023									
11/19/2023									
11/20/2023	11,655	1,002,572	6,918	29,574,864				Ν	
11/21/2023	8,675	1,011,247	6,325	29,581,189				N	
11/22/2023	969	1,012,216	1,382	29,582,571				Ν	
11/23/2023									
11/24/2023									
11/25/2023									
11/26/2023									
11/27/2023	3,668	1,015,884	181	29,582,752				N	
11/28/2023	0	1,015,884	0	29,582,752				N	
11/29/2023	0	1,015,884	0	29,582,752	5,700	5,700	City	N	
11/30/2023	15,525	1,031,409	13,667	29,596,419	22,374	28,074	City	N	
Totals	70,668	NA	41,496	NA	28,074	NA	NA		NA

¹ "Ground Water" refers to combination of old cell under-drain water plus storm water discharged form the old storm water pond. Both are discharged to the same wetwell.

So, when storm water is discharged, there is no way to estimate the volume of under-drain water discharged, as the two streams are commingled in the wetwell. Storm water is not often discharged. This means that most of the time, but not all of the time, we are able to estimate the volume of under-drain water discharged. Ground water withdrawls that exceed 25,000 gpd would require a DNR water use permit.

enter blue data spreadsheet calculates red data

Revision Date: 08/20/16

#### Instructions for Use

1. Enter the dates for the month in the date column.

2. Enter the accumulated total generated leachate volume from the end of the previous month from the leachate totalizer in C12.

3. Enter the accumulated total generated leachate for each day from the leachate totalizer in Column C.

4. Enter the daily volume (in gallons) of leachate hauled off site and the offsite location in Column D. Note since we do not have a flow meter, convert from pounds to gallons: X lbs: 8.34 = gallons.

5. The spreadsheet will calculate the daily leachate generated and the cumulative volume of leachate hauled for the month.

									Revision Date: 08/29/16
Dec-23	Daily Total Generated [Wetwell Flow Meter] (Gallons)	Cumulative Total Generated [Wetwell Flow Meter] (Gallons)	Daily Total Generated [Phase 1 (LV-1) Flow Meter] (Gallons)	Cumulative Total Generated [Phase 1 (LV-1) Flow Meter] (Gallons)	Batch Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Cumulative Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Offsite Treatment Location ("OGS" or other)	Ground Water Discharged >25,000 gpd? (Y or N) ¹	Comments
Last month	NA	1,031,409	NA	29,596,419	NA	NA	NA		
12/1/2023									
12/2/2023									
12/3/2023									
12/4/2023	9,680	1,041,089	5,681	29,602,100	22,367	22,367	City	Ν	
12/5/2023	1,017	1,042,106	0	29,602,100	22,312	44,679	City	Ν	
12/6/2023	383	1,042,489	0	29,602,100	16,940	61,619	City	Ν	
12/7/2023						61,619			
12/8/2023						61,619			
12/9/2023						61,619			
12/10/2023						61,619			
12/11/2023	16,695	1,059,184	11,381	29,613,481		61,619		Ν	
12/12/2023	619	1,059,803	0	29,613,481		61,619		Ν	
12/13/2023	572	1,060,375	0	29,613,481	50,638	112,257	OGS	Ν	PH 8.06
12/14/2023	798	1,061,173	0	29,613,481	17,026	129,283	OGS	Ν	PH 8.14
12/15/2023						129,283			
12/16/2023						129,283			
12/17/2023						129,283			
12/18/2023	10,449	1,071,622	6,808	29,620,289		129,283		Ν	
12/19/2023	997	1,072,619	805	29,621,094		129,283		Ν	
12/20/2023	6,314	1,078,933	4,923	29,626,017		129,283		Ν	
12/21/2023	991	1,079,924	0	29,626,017		129,283		Ν	
12/22/2023						129,283			
12/23/2023						129,283			
12/24/2023						129,283			
12/25/2023						129,283			
12/26/2023						129,283			
12/27/2023	62,324	1,142,248	54,305	29,680,322	39,837	169,120	OGS	Ν	PH 7.89
12/28/2023	2,621	1,144,869	1,494	29,681,816	39,398	208,518	OGS	Ν	PH 7.64
12/29/2023	7,013	1,151,882	6,035	29,687,851				Ν	1
12/30/2023									
12/31/2023									
otals	120,473	NA	91,432	NA	208,518	NA	NA		NA

¹ "Ground Water" refers to combination of old cell under-drain water plus storm water discharged form the old storm water pond. Both are discharged to the same wetwell.

So, when storm water is discharged, there is no way to estimate the volume of under-drain water discharged, as the two streams are commingled in the wetwell. Storm water is not often discharged. This means that most of the time, but not all of the time, we are able to estimate the volume of under-drain water discharged. Ground water withdrawls that exceed 25,000 gpd would require a DNR water use permit.

#### Instructions for Use

1. Enter the dates for the month in the date column.

2. Enter the accumulated total generated leachate volume from the end of the previous month from the leachate totalizer in C12.

3. Enter the accumulated total generated leachate for each day from the leachate totalizer in Column C.

4. Enter the daily volume (in gallons) of leachate hauled off site and the offsite location in Column D. Note since we do not have a flow meter, convert from pounds to gallons: X lbs: 8.34 = gallons.

5. The spreadsheet will calculate the daily leachate generated and the cumulative volume of leachate hauled for the month.

									Revision Date: 08/29/16
Jan-24	Daily Total Generated [Wetwell Flow Meter] (Gallons)	Cumulative Total Generated [Wetwell Flow Meter] (Gallons)	Daily Total Generated [Phase 1 (LV-1) Flow Meter] (Gallons)	Cumulative Total Generated [Phase 1 (LV-1) Flow Meter] (Gallons)	Batch Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Cumulative Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Offsite Treatment Location ("OGS" or other)	Ground Water Discharged >25,000 gpd? (Y or N) ¹	Comments
Last month		1,151,882		29,687,851					
1/1/2024									
1/2/2024	13,850	1,165,732	12,187	29,700,038				Ν	
1/3/2024	1,605	1,167,337	0	29,700,038				Ν	
1/4/2024	784	1,168,121	0	29,700,038				Ν	
1/5/2024	7,047	1,175,168	6,089	29,706,127				Ν	
1/6/2024									
1/7/2024									
1/8/2024	9,281	1,184,449	6,125	29,712,252				Ν	
1/9/2024	1,221	1,185,670	0	29,712,252				Ν	
1/10/2024	7,075	1,192,745	6,125	29,718,377				Ν	
1/11/2024	7,302	1,200,047	6,196	29,724,573				Ν	
1/12/2024									
1/13/2024									
1/14/2024									
1/15/2024	16,523	1,216,570	12,082	29,736,655				Ν	
1/16/2024	6,687	1,223,257	0	29,736,655				Ν	
1/17/2024	1,189	1,224,446	5,959	29,742,614				Ν	
1/18/2024	798	1,225,244	0	29,742,614				Ν	
1/19/2024									
1/20/2024									
1/21/2024									
1/22/2024	4,300	1,229,544	0	29,742,614				Ν	
1/23/2024	1,218	1,230,762	0	29,742,614				Ν	
1/24/2024	2,188	1,232,950	0	29,742,614	33,719	33,719	OGS	Ν	PH 8.07
1/25/2024	9,295	1,242,245	5,495	29,748,109	39,849	73,568	OGS	Ν	PH 8.36
1/26/2024						73,568			
1/27/2024						73,568			
1/28/2024						73,568			
1/29/2024	73,655	1,315,900	55,829	29,803,938	22,753	96,321	City	Ν	PH 7.79
1/30/2024	23,241	1,339,141	15,382	29,819,320	22,751	119,072	City	Ν	PH 7.33
1/31/2024	25,602	1,364,743	14,933	29,834,253	22712 / 17082	158,866	City / OGS	Ν	PH 7.28
Fotals	212,861	NA	146,402	NA	158,866	NA	NA		NA

¹ "Ground Water" refers to combination of old cell under-drain water plus storm water discharged form the old storm water pond. Both are discharged to the same wetwell.

So, when storm water is discharged, there is no way to estimate the volume of under-drain water discharged, as the two streams are commingled in the wetwell. Storm water is not often discharged. This means that most of the time, but not all of the time, we are able to estimate the volume of under-drain water discharged. Ground water withdrawls that exceed 25,000 gpd would require a DNR water use permit.

#### Instructions for Use

1. Enter the dates for the month in the date column.

2. Enter the accumulated total generated leachate volume from the end of the previous month from the leachate totalizer in C12.

3. Enter the accumulated total generated leachate for each day from the leachate totalizer in Column C.

4. Enter the daily volume (in gallons) of leachate hauled off site and the offsite location in Column D. Note since we do not have a flow meter, convert from pounds to gallons: X lbs: 8.34 = gallons.

5. The spreadsheet will calculate the daily leachate generated and the cumulative volume of leachate hauled for the month.

									Revision Date: 08/29/16
ebuary 2024	Daily Total Generated [Wetwell Flow Meter] (Gallons)	Cumulative Total Generated [Wetwell Flow Meter] (Gallons)	Daily Total Generated [Phase 1 (LV-1) Flow Meter] (Gallons)	Cumulative Total Generated [Phase 1 (LV-1) Flow Meter] (Gallons)	Batch Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Cumulative Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Offsite Treatment Location ("OGS" or other)	Ground Water Discharged >25,000 gpd? (Y or N) ¹	Comments
Last month	NA	1,364,743	NA	29,834,253	NA	NA	NA		
2/1/2024	26,807	1,391,550	16,967	29,851,220	39,844	39,844	OGS	N	PH 7.28
2/2/2024						39,844			
2/3/2024						39,844			
2/4/2024						39,844			
2/5/2024	49,890	1,441,440	29,045	29,880,265	22,712	62,556	City	Ν	PH 8.02
2/6/2024	22,080	1,463,520	19,923	29,900,188	22,782	85,338	City	Ν	PH 8.04
2/7/2024	12,883	1,476,403	9,137	29,909,325	45,434	130,772	OGS	N	PH 7.86
2/8/2024	11,891	1,488,294	9,507	29,918,832	33,803	164,575	OGS	N	PH 7.75
2/9/2024						164,575			
2/10/2024						164,575			
2/11/2024						164,575			
2/12/2024	24,042	1,512,336	20,298	29,939,130	22,688	187,263	City	N	PH 7.60
2/13/2024	33,549	1,545,885	31,991	29,971,121	22,667	209,930	City	N	PH 7.83
2/14/2024	12,475	1,558,360	10,329	29,981,450	22,799	232,729	City	N	PH 8.10
2/15/2024	16,299	1,574,659	15,394	29,996,844	0	232,729		Ν	PH 8.22
2/16/2024						232,729			
2/17/2024						232,729			
2/18/2024						232,729			
2/19/2024	45,542	1,620,201	39,537	30,036,381	22,767	255,496	City	N	PH 8.19
2/20/2024	10,475	1,630,676	6,117	30,042,498	22,779	278,275	City	N	PH 8.16
2/21/2024	6,093	1,636,769	7,990	30,050,488	22,544	300,819	City	N	PH 7.86
2/22/2024	10,525	1,647,294	9,443	30,059,931	39,847	340,666	OGS	N	PH 8.21
2/23/2024						340,666			
2/24/2024						340,666			
2/25/2024						340,666			
2/26/2024	35,344	1,682,638	29,592	30,089,523		340,666		Ν	
2/27/2024	6,109	1,688,747	4,544	30,094,067		340,666		Ν	
2/28/2024	6,063	1,694,810	4,634	30,098,701		340,666		Ν	
2/29/2024	10,377	1,705,187	9,157	30,107,858		340,666		Ν	
	010.111		070.005			NA	NA		NA
otals	340,444	NA	273,605	NA	340,666	NA	NA	1	110

¹ "Ground Water" refers to combination of old cell under-drain water plus storm water discharged form the old storm water pond. Both are discharged to the same wetwell.

So, when storm water is discharged, there is no way to estimate the volume of under-drain water discharged, as the two streams are commingled in the wetwell. Storm water is not often discharged. This means that most of the time, but not all of the time, we are able to estimate the volume of under-drain water discharged. Ground water withdrawls that exceed 25,000 gpd would require a DNR water use permit.

#### Instructions for Use

1. Enter the dates for the month in the date column.

2. Enter the accumulated total generated leachate volume from the end of the previous month from the leachate totalizer in C12.

3. Enter the accumulated total generated leachate for each day from the leachate totalizer in Column C.

4. Enter the daily volume (in gallons) of leachate hauled off site and the offsite location in Column D. Note since we do not have a flow meter, convert from pounds to gallons: X lbs: 8.34 = gallons.

5. The spreadsheet will calculate the daily leachate generated and the cumulative volume of leachate hauled for the month.

Mar-24	Daily Total Generated [Wetwell Flow Meter] (Gallons)	Cumulative Total Generated [Wetwell Flow Meter] (Gallons)	Daily Total Generated [Phase 1 (LV-1) Flow Meter] (Gallons)	Cumulative Total Generated [Phase 1 (LV-1) Flow Meter] (Gallons)	Batch Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Cumulative Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Offsite Treatment Location ("OGS" or other)	Ground Water Discharged >25,000 gpd? (Y or N) ¹	Comments
Last month	NA	1,705,187	NA	30,107,858	NA	NA	NA		
3/1/2024									
3/2/2024									
3/3/2024									
3/4/2024	24,333	1,729,520	18,487	30,126,345	11,372	11,372	City	Ν	PH 8.32 SK/06:48 a.m.
3/5/2024	13,565	1,743,085	5,199	30,131,544		11,372		Ν	
3/6/2024	10,200	1,753,285	6,726	30,138,270		11,372		Ν	
3/7/2024	13,940	1,767,225	6,590	30,144,860	22,717	34,089	City	Ν	PH 8.39 SK/06:58 a.m.
3/8/2024						34,089			
3/9/2024						34,089			
3/10/2024						34,089			
3/11/2024	41,676	1,808,901	23,731	30,168,591	22,676	56,765	City	Ν	PH 8.39 SK/07:30 a.m.
3/12/2024	7,299	1,816,200	4,356	30,172,947	17,002	73,767	City	Ν	PH 8.38 SK/10:25 a.m.
3/13/2024	6,188	1,822,388	875	30,173,822	22,715	96,482	City	Ν	PH 8.38 KM/06:54 a.m.
3/14/2024	28,742	1,851,130	23,062	30,196,884	17,019	113,501	Ciy	Ν	PH 7.70 WH/07:54 a.m.
3/15/2024						113,501			
3/16/2024						113,501			
3/17/2024						113,501			
3/18/2024	58,862	1,909,992	19,196	30,216,080	22,537	136,038	City	Ν	PH 8.31 SK/07:15 a.m.
3/19/2024	6,509	1,916,501	4,089	30,220,169	22,669	158,707	City	Ν	PH 8.28 WH/07:05 a.m.
3/20/2024	11,010	1,927,511	2,395	30,222,564	22,707	181,414	City	Ν	PH 8.37 KM/06:51 a.m.
3/21/2024	4,492	1,932,003	1,738	30,224,302	22,758	204,172	City	Ν	PH 8.31 SK/10:05 a.m.
3/22/2024						204,172			
3/23/2024						204,172			
3/24/2024						204,172			
3/25/2024	24,315	1,956,318	19,480	30,243,782	11,689	215,861	City	Ν	PH 8.25 WH/09:10 a.m.
3/26/2024	17,460	1,973,778	15,420	30,259,202	22,779	238,640	City	Ν	PH 8.15 WH/06:21 a.m.
3/27/2024	7,531	1,981,309	5,185	30,264,387	22,633	261,273	City	Ν	PH 7.99 KM / 6:40 a.m.
3/28/2024	6,685	1,987,994	4,595	30,268,982		261,273		Ν	
3/29/2024	1	1				261,273			
3/30/2024	1	1				261,273			
3/31/2024						261,273			
otals	282.807	NA	161,124	NA	261,273	NA	NA		NA

¹ "Ground Water" refers to combination of old cell under-drain water plus storm water discharged form the old storm water pond. Both are discharged to the same wetwell.

So, when storm water is discharged, there is no way to estimate the volume of under-drain water discharged, as the two streams are commingled in the wetwell. Storm water is not often discharged. This means that most of the time, but not all of the time, we are able to estimate the volume of under-drain water discharged. Ground water withdrawls that exceed 25,000 gpd would require a DNR water use permit.

#### Instructions for Use

1. Enter the dates for the month in the date column.

2. Enter the accumulated total generated leachate volume from the end of the previous month from the leachate totalizer in C12.

3. Enter the accumulated total generated leachate for each day from the leachate totalizer in Column C.

4. Enter the daily volume (in gallons) of leachate hauled off site and the offsite location in Column D. Note since we do not have a flow meter, convert from pounds to gallons: X lbs: 8.34 = gallons.

5. The spreadsheet will calculate the daily leachate generated and the cumulative volume of leachate hauled for the month.

									Revision Date: 08/29/16
pr-24	Daily Total Generated [Wetwell Flow Meter] (Gallons)	Cumulative Total Generated [Wetwell Flow Meter] (Gallons)	Daily Total Generated [Phase 1 (LV-1) Flow Meter] (Gallons)	Cumulative Total Generated [Phase 1 (LV-1) Flow Meter] (Gallons)	Batch Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Cumulative Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Offsite Treatment Location ("OGS" or other)	Ground Water Discharged >25,000 gpd? (Y or N) ¹	Comments
Last month	NA	1,987,994	NA	30,268,982	NA	NA	NA		
4/1/2024	35,604	2,023,598	26,688	30,295,670	22,693	22,693	City	Ν	PH 7.85 SK / 0740
4/2/2024	41,340	2,064,938	14,317	30,309,987	22,784	45,477	City	Ν	PH 7.63 KM / 0700
4/3/2024	64,130	2,129,068	35,490	30,345,477	39,813	85,290	OGS	Ν	PH 7.53 SK / 0718
4/4/2024	18,700	2,147,768	5,555	30,351,032	45,348	130,638	OGS	Ν	PH 7.69 SK / 0648
4/5/2024						130,638			
4/6/2024						130,638			
4/7/2024						130,638			
4/8/2024	58,312	2,206,080	23,031	30,374,063		130,638		Ν	
4/9/2024	17,682	2,223,762	5,680	30,379,743		130,638		Ν	
4/10/2024	24,483	2,248,245	6,141	30,385,884	11319 / 5686	147,643	City/OGS	Ν	PH 8.19 1142 / SK
4/11/2024	12,384	2,260,629	9,672	30,395,556	45,142	192,785	OGS	Ν	PH 8.24 0642 / SK
4/12/2024						192,785			
4/13/2024						192,785			
4/14/2024						192,785			
4/15/2024	28,394	2,289,023	20,405	30,415,961	22,501	215,286	City	Ν	PH 8.23 0650 / SK
4/16/2024	7,852	2,296,873	6,095	30,422,056		215,286		Ν	
4/17/2024	21,372	2,318,245	19,967	30,442,023	22,621	237,907	City	Ν	PH 8.27 0700 / WH
4/18/2024	20,994	2,339,239	18,624	30,460,647	11,043 / 22,609	271,559	City / OGS	Ν	PH 8.50 0626 / KM
4/19/2024						271,559			
4/20/2024						271,559			
4/21/2024						271,559			
4/22/2024	72,007	2,411,246	37,805	30,498,452	22,703	294,262	City	Ν	PH 8.43 0644 / SK
4/23/2024	11,200	2,422,446	4,628	30,503,080	22,683	316,945	City	Ν	PH 8.58 0616 / KM
4/24/2024	7,079	2,429,525	4,802	30,507,882	17,002 / 11245	345,192	City/OGS	Ν	PH 8.52 0652 / SK
4/25/2024	7,707	2,437,232	6,205	30,514,087	28,317	373,509	OGS	Ν	PH 8.30 0615 / WH
4/26/2024						373,509			
4/27/2024						373,509			
4/28/2024						373,509			
4/29/2024	76,477	2,513,709	42,024	30,556,111	22,775	396,284	City	Ν	PH 8.13 7:05 / KM
4/30/2024	19,063	2,532,772	9,374	30,565,485	22,782	419,066	City	Ν	PH 8.20 1009 / SK
Totals	544,780	NA	296,503	NA	419,066	NA	NA		NA

¹ "Ground Water" refers to combination of old cell under-drain water plus storm water discharged form the old storm water pond. Both are discharged to the same wetwell.

So, when storm water is discharged, there is no way to estimate the volume of under-drain water discharged, as the two streams are commingled in the wetwell. Storm water is not often discharged. This means that most of the time, but not all of the time, we are able to estimate the volume of under-drain water discharged. Ground water withdrawls that exceed 25,000 gpd would require a DNR water use permit.

#### Instructions for Use

1. Enter the dates for the month in the date column.

2. Enter the accumulated total generated leachate volume from the end of the previous month from the leachate totalizer in C12.

3. Enter the accumulated total generated leachate for each day from the leachate totalizer in Column C.

4. Enter the daily volume (in gallons) of leachate hauled off site and the offsite location in Column D. Note since we do not have a flow meter, convert from pounds to gallons: X lbs: 8.34 = gallons.

5. The spreadsheet will calculate the daily leachate generated and the cumulative volume of leachate hauled for the month.

Мау	Daily Total Generated [Wetwell Flow Meter] (Gallons)	Cumulative Total Generated [Wetwell Flow Meter] (Gallons)	Daily Total Generated [Phase 1 (LV-1) Flow Meter] (Gallons)	Cumulative Total Generated [Phase 1 (LV-1) Flow Meter] (Gallons)	Batch Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Cumulative Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Offsite Treatment Location ("OGS" or other)	Ground Water Discharged >25,000 gpd? (Y or N) ¹	Comments
Last month	NA	2,532,772	NA	30,565,485	NA	NA	NA		
5/1/2024	5,845	2,538,617	0	30,565,485	17082 / 5693	22,775	City/OGS	Ν	PH 8.34 1004 / SK
5/2/2024	13,130	2,551,747	0	30,565,485	51,050	73,825	OGS	Ν	PH 7.88 0645 / SK
5/3/2024						73,825			
5/4/2024						73,825			
5/5/2024						73,825			
5/6/2024	75,060	2,626,807	6,480	30,571,965	39,571	113,396	City	Ν	PH 7.58 0622 / SK
5/7/2024	43,900	2,670,707	38,177	30,610,142	39,676	153,072	City	Ν	PH 7.67 0640 / SK
5/8/2024	37,860	2,708,567	32,310	30,642,452	39,729	192,801	City	Ν	PH 7.85 0635 / SK
5/9/2024	39,770	2,748,337	34,560	30,677,012	99,664	292,465	OGS	Ν	PH 7.79 0648 / WH
5/10/2024	62,608	2,810,945	61,188	30,738,200	105,914	398,379	OGS	Ν	PH 7.86 0510 / WH
5/11/2024						398,379			
5/12/2024						398,379			
5/13/2024	124,470	2,935,415	114,380	30,852,580	34,089	432,468	City	Ν	PH 7.78 0630 / WH
5/14/2024	52,470	2,987,885	32,805	30,885,385	39,703	472,171	City	Ν	PH 6.73 0642 / KM
5/15/2024	39,404	3,027,289	32,791	30,918,176	33,993	506,164	City	Ν	PH 7.86 0615 / WH
5/16/2024	24,619	3,051,908	16,683	30,934,859		506,164	City	Ν	PH 8.01 0654 / SK
5/17/2024						506,164			
5/18/2024						506,164			
5/19/2024						506,164			
5/20/2024	20,690	3,072,598	13,243	30,948,102	39,592	545,756	City	Ν	PH 8.04 0633 / KM
5/21/2024	35,570	3,108,168	35,110	30,983,212	39,775	585,531	City	Ν	PH 6.99 0730 / KM
5/22/2024	36,899	3,145,067	32,710	31,015,922	22693 / 5703	613,927	City / OGS	Ν	PH 7.55 1025 / KM
5/23/2024	32,337	3,177,404	16,389	31,032,311	5691 / 28444	648,062	OGS / City	Ν	PH 8.28 0705 / KM
5/24/2024						648,062			
5/25/2024						648,062			
5/26/2024						648,062			
5/27/2024						648,062			
5/28/2024	86,271	3,263,675	59,711	31,092,022	28,434	676,496	City	Ν	PH 8.37 6:50 / WH
5/29/2024	39,796	3,303,471	28,008	31,120,030	28,386	704,882	City	Ν	PH 8.46 6:25 / WH
5/30/2024	18,001	3,321,472	10,205	31,130,235	34,065	738,947	City	Ν	PH 8.51 6:25 / WH
5/31/2024	14,117	3,335,589	10,125	31,140,360	28,441	767,388	City	Ν	PH 8.54 7:10 / KM
Totals	802.817	NA	574.875	NA	767.388	NA	NA		NA

¹ "Ground Water" refers to combination of old cell under-drain water plus storm water discharged form the old storm water pond. Both are discharged to the same wetwell.

So, when storm water is discharged, there is no way to estimate the volume of under-drain water discharged, as the two streams are commingled in the wetwell. Storm water is not often discharged. This means that most of the time, but not all of the time, we are able to estimate the volume of under-drain water discharged. Ground water withdrawls that exceed 25,000 gpd would require a DNR water use permit.

#### Instructions for Use

1. Enter the dates for the month in the date column.

2. Enter the accumulated total generated leachate volume from the end of the previous month from the leachate totalizer in C12.

3. Enter the accumulated total generated leachate for each day from the leachate totalizer in Column C.

4. Enter the daily volume (in gallons) of leachate hauled off site and the offsite location in Column D. Note since we do not have a flow meter, convert from pounds to gallons: X lbs: 8.34 = gallons.

5. The spreadsheet will calculate the daily leachate generated and the cumulative volume of leachate hauled for the month.

Jun-24	Daily Total Generated [Wetwell Flow Meter] (Gallons)	Cumulative Total Generated [Wetwell Flow Meter] (Gallons)	Daily Total Generated [Phase 1 (LV-1) Flow Meter]	Cumulative Total Generated [Phase 1 (LV-1) Flow Meter]	Batch Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Cumulative Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Offsite Treatment Location ("OGS" or other)	Ground Water Discharged >25,000 gpd? (Y or N) ¹	Comments
			(Gallons)	(Gallons)					
Last month	NA	3,335,589	NA	31,140,360	NA	NA	NA		
6/1/2024									
6/2/2024									DU 0 00 0700 01/
6/3/2024	91,166	3,426,759	29,710	31,170,070	22,542	22,542	City	N	PH 8.22 0730 SK
6/4/2024	33,294	3,460,053	9,454	31,179,524	22,712	45,254	City	Ν	PH 8.19 0642 WH
6/5/2024	27,410	3,487,463	6,915	31,186,439		45,254		N	
6/6/2024	70,380	3,557,843	7,673	31,194,112	22,487	67,741	City	Ν	PH 8.58 0729 SK
6/7/2024						67,741			
6/8/2024						67,741			
6/9/2024						67,741			
6/10/2024	42,509	3,600,352	31,564	31,225,677		67,741		N	
6/11/2024	7,911	3,608,263	4,758	31,230,435		67,741		Ν	
6/12/2024	14,797	3,623,060	9,489	31,239,924		67,741		Ν	
6/13/2024	17,693	3,640,753	4,757	31,244,681		67,741		Ν	
6/14/2024						67,741			
6/15/2024						67,741			
6/16/2024						67,741			
6/17/2024	55,000	3,695,753	23,402	31,268,083	22,763	90,504	City	Ν	PH 8.55 0808 KM
6/18/2024	18,420	3,714,173	8,074	31,276,157	22,676	113,180	City	Ν	PH 8.58 0635 SK
6/19/2024	8,370	3,722,543	5,876	31,282,033	22,631	135,811	City	Ν	PH 8.68 0730 SK
6/20/2024	6,482	3,729,025	4,626	31,286,659		135,811		Ν	
6/21/2024						135,811			
6/22/2024						135,811			
6/23/2024						135,811			
6/24/2024	32,220	3,761,245	18,213	31,304,872		135,811		Ν	
6/25/2024	10,114	3,771,359	4,522	31,309,394	22,540	158,351	City	Ν	PH 8.4 0715 WH
6/26/2024	5,851	3,777,210	4,592	31,313,986	22,465	180,816	City	Ν	PH 8.49 0720 SK
6/27/2024	6,377	3,783,587	4,658	31,318,644	22,583	203,399	City	N	PH 8.50 0734 SK
6/28/2024						203,399		1	1
6/29/2024						203,399	1	1	1
6/30/2024						203,399			
otals	447,994	NA	178,283	NA	203,399	NA	NA	1	NA

¹ "Ground Water" refers to combination of old cell under-drain water plus storm water discharged form the old storm water pond. Both are discharged to the same wetwell.

So, when storm water is discharged, there is no way to estimate the volume of under-drain water discharged, as the two streams are commingled in the wetwell. Storm water is not often discharged. This means that most of the time, but not all of the time, we are able to estimate the volume of under-drain water discharged. Ground water withdrawls that exceed 25,000 gpd would require a DNR water use permit.

#### Instructions for Use

1. Enter the dates for the month in the date column.

2. Enter the accumulated total generated leachate volume from the end of the previous month from the leachate totalizer in C12.

3. Enter the accumulated total generated leachate for each day from the leachate totalizer in Column C.

4. Enter the daily volume (in gallons) of leachate hauled off site and the offsite location in Column D. Note since we do not have a flow meter, convert from pounds to gallons: X lbs: 8.34 = gallons.

5. The spreadsheet will calculate the daily leachate generated and the cumulative volume of leachate hauled for the month.

Jul-24	Daily Total Generated	Cumulative Total Generated	Daily Total Generated	Cumulative Total Generated	Batch Total to Offsite Treatment	Cumulative Total to Offsite Treatment	Offsite Treatment Location ("OGS" or	Ground Water Discharged >25,000	Revision Date: 08/29/16 Comments
	[Wetwell Flow Meter] (Gallons)	[Wetwell Flow Meter] (Gallons)	[Phase 1 (LV-1) Flow Meter] (Gallons)	[Phase 1 (LV-1) Flow Meter] (Gallons)	[Loading Facility Flow Meter] (Gallons)	[Loading Facility Flow Meter] (Gallons)	other)	gpd? (Y or N) ¹	
Last month	6,482	3,729,025	4,626	31,286,659	NA	NA	NA		
7/1/2024	99,256	3,828,281	72,523	31,359,182				Ν	
7/2/2024	6,211	3,834,492	4,603	31,363,785	22,636	22,636	City	Ν	PH 7.83 0708 WH
7/3/2024	16,207	3,850,699	15,403	31,379,188		22,636	City	Ν	PH 7.98 0720 KM
7/4/2024						22,636			
7/5/2024	17,201	3,867,900	14,030	31,393,218		22,636		Ν	
7/6/2024						22,636			
7/7/2024						22,636			
7/8/2024	31,334	3,899,234	27,909	31,421,127	22,739	45,375	City	Ν	PH 7.91 0725 SK
7/9/2024	8,430	3,907,664	5,027	31,426,154	22,684	68,059	City	Ν	PH 8.04 0715 KM
7/10/2024	6,830	3,914,494	8,074	31,434,228	22,729	90,788	City	Ν	PH 7.89 0707 WH
7/11/2024	7,520	3,922,014	5,962	31,440,190	22,684	113,472	City	Ν	PH 8.10 0820 SK
7/12/2024						113,472			
7/13/2024						113,472			
7/14/2024						113,472			
7/15/2024	28,768	3,950,782	23,419	31,463,609		113,472		Ν	
7/16/2024	6,022	3,956,804	4,598	31,468,207		113,472		Ν	
7/17/2024	6,122	3,962,926	4,688	31,472,895		113,472		Ν	
7/18/2024	6,219	3,969,145	4,710	31,477,605		113,472		Ν	
7/19/2024						113,472			
7/20/2024						113,472			
7/21/2024						113,472			
7/22/2024	35,338	4,004,483	18,676	31,496,281		113,472		Ν	
7/23/2024	9,945	4,014,428	4,664	31,500,945		113,472		Ν	
7/24/2024	7,215	4,021,643	4,695	31,505,640		113,472		Ν	
7/25/2024	9,517	4,031,160	4,686	31,510,326		113,472		Ν	
7/26/2024						113,472			
7/27/2024						113,472			
7/28/2024						113,472			
7/29/2024	13,609	4,044,769	7,339	31,517,665		113,472		Ν	
7/30/2024	5,810	4,050,579	1,912	31,519,577	22,731	136,203	City	Ν	PH 8.45 0630 WH
7/31/2024	43,398	4,093,977	8,574	31,528,151	22,715	158,918	City	Ν	PH 8.15 6:35 KM
Totals	364,952	NA	241,492	NA	158,918	NA	NA		NA

¹ "Ground Water" refers to combination of old cell under-drain water plus storm water discharged form the old storm water pond. Both are discharged to the same wetwell.

So, when storm water is discharged, there is no way to estimate the volume of under-drain water discharged, as the two streams are commingled in the wetwell. Storm water is not often discharged. This means that most of the time, but not all of the time, we are able to estimate the volume of under-drain water discharged. Ground water withdrawls that exceed 25,000 gpd would require a DNR water use permit.

#### Instructions for Use

1. Enter the dates for the month in the date column.

2. Enter the accumulated total generated leachate volume from the end of the previous month from the leachate totalizer in C12.

3. Enter the accumulated total generated leachate for each day from the leachate totalizer in Column C.

4. Enter the daily volume (in gallons) of leachate hauled off site and the offsite location in Column D. Note since we do not have a flow meter, convert from pounds to gallons: X lbs: 8.34 = gallons.

5. The spreadsheet will calculate the daily leachate generated and the cumulative volume of leachate hauled for the month.

									Revision Date: 08/29/16
ug-24	Daily Total Generated [Wetwell Flow Meter] (Gallons)	Cumulative Total Generated [Wetwell Flow Meter] (Gallons)	Daily Total Generated [Phase 1 (LV-1) Flow Meter] (Gallons)	Cumulative Total Generated [Phase 1 (LV-1) Flow Meter] (Gallons)	Batch Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Cumulative Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Offsite Treatment Location ("OGS" or other)	Ground Water Discharged >25,000 gpd? (Y or N) ¹	Comments
Last month	43,398	4,093,977	8,574	31,528,151	NA	NA	NA		
8/1/2024	31,098	4,125,075	3,219	31,531,370	22,741	22,741	City	Ν	PH 8.33 6:25/ WH
8/2/2024			Preloa	ded 8-1-2024 / Delivered	5,583	28,324	City	Ν	PH 8.33 6:25/ WH
8/3/2024						28,324			
8/4/2024						28,324			
8/5/2024	158,300	4,283,375	33,250	31,564,620	22,506	50,830	City	Ν	PH 7.94 0716 SK
8/6/2024	46,240	4,329,615	22,521	31,587,141	30,556	81,386	City	Ν	PH 8.05 0706 WH
8/7/2024	31,220	4,360,835	31,591	31,618,732	47,101	128,487	City	Ν	PH 8.19 0638 KM
8/8/2024	50,220	4,411,055	36,028	31,654,760	33,914	162,401	City	Ν	PH 8.42 0622 KM
8/9/2024						162,401			
8/10/2024						162,401			
8/11/2024						162,401			
8/12/2024	51,850	4,462,950	37,790	31,692,550	28,408	190,809	City	Ν	PH 8.34 6:37 WH
8/13/2024	31,085	4,494,035	26,416	31,718,966	34,101	224,910	City	Ν	PH 8.15 0655 SK
8/14/2024	35,960	4,529,995	31,540	31,750,506	34,101	259,011	City	Ν	PH 8.35 7:56 KM
8/15/2024	29,820	4,559,815	26,119	31,776,625	28,415	287,426	City	Ν	PH 8.42 0742 WH
8/16/2024						287,426			
8/17/2024						287,426			
8/18/2024						287,426			
8/19/2024	55,170	4,614,985	37,338	31,813,963	34,115	321,541	City	Ν	PH 7.78 0745 SK
8/20/2024	41,756	4,656,741	36,713	31,850,676	28,453	349,994	City	Ν	PH 8.09 0808 WH
8/21/2024	38,404	4,695,145	25,540	31,876,216	28,451	378,445	City	Ν	PH 8.15 0820 WH
8/22/2024	34,210	4,729,355	31,220	31,907,436	34,146	412,591	City	Ν	PH 8.29 0732 SK
8/23/2024						412,591			
8/24/2024						412,591			
8/25/2024						412,591			
8/26/2024	37,660	4,767,015	33,147	31,940,583	34,106	446,697	City	Ν	PH 7.98 0655 SK
8/27/2024	37,620	4,804,635	31,611	31,972,194	34,041	480,738	City	Ν	PH 8.19 0655 SK
8/28/2024	20,640	4,825,275	13,470	31,985,664	28,400	509,138	City	Ν	PH 8.12 0820 SK
8/29/2024	15,454	4,840,729	8,327	31,993,991	22,712	531,850	City	Ν	PH 8.21 9:12 KM
8/30/2024				1		531,850			l l
8/31/2024						531,850			
otals	746,707	NA	465,840	NA	531,850	NA	NA		NA

¹ "Ground Water" refers to combination of old cell under-drain water plus storm water discharged form the old storm water pond. Both are discharged to the same wetwell.

So, when storm water is discharged, there is no way to estimate the volume of under-drain water discharged, as the two streams are commingled in the wetwell. Storm water is not often discharged. This means that most of the time, but not all of the time, we are able to estimate the volume of under-drain water discharged. Ground water withdrawls that exceed 25,000 gpd would require a DNR water use permit.

#### Instructions for Use

1. Enter the dates for the month in the date column.

2. Enter the accumulated total generated leachate volume from the end of the previous month from the leachate totalizer in C12.

3. Enter the accumulated total generated leachate for each day from the leachate totalizer in Column C.

4. Enter the daily volume (in gallons) of leachate hauled off site and the offsite location in Column D. Note since we do not have a flow meter, convert from pounds to gallons: X lbs: 8.34 = gallons.

5. The spreadsheet will calculate the daily leachate generated and the cumulative volume of leachate hauled for the month.

Sep-24	Daily Total Generated [Wetwell Flow Meter] (Gallons)	Cumulative Total Generated [Wetwell Flow Meter] (Gallons)	Daily Total Generated [Phase 1 (LV-1) Flow Meter] (Gallons)	Cumulative Total Generated [Phase 1 (LV-1) Flow Meter] (Gallons)	Batch Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Cumulative Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Offsite Treatment Location ("OGS" or other)	Ground Water Discharged >25,000 gpd? (Y or N) ¹	Comments
Last month	NA	4,840,729	NA	31,993,991	NA	NA	NA		
9/1/2024									
9/2/2024									
9/3/2024	126,552	4,967,281	57,167	32,051,158	22,700	22,700	City	Ν	PH 8.29 0655 SK
9/4/2024	6,233	4,973,514	5,058	32,056,216	22,727	45,427	City	Ν	PH 8.21 0719 SK
9/5/2024	13,443	4,986,957	9,892	32,066,108		45,427		Ν	
9/6/2024	6,754	4,993,711	4,254	32,070,362		45,427		Ν	
9/7/2024						45,427			
9/8/2024						45,427			
9/9/2024	47,580	5,041,291	18,275	32,088,637		45,427		Ν	
9/10/2024	9,972	5,051,263	5,354	32,093,391		45,427		Ν	
9/11/2024	6,538	5,057,801	4,020	32,097,411		45,427		Ν	
9/12/2024	4,327	5,062,128	4,529	32,101,940		45,427		Ν	
9/13/2024						45,427			
9/14/2024						45,427			
9/15/2024						45,427			
9/16/2024	33,620	5,095,748	7,433	32,109,373		45,427		Ν	
9/17/2024	14,210	5,109,958	11,756	32,121,129		45,427		Ν	
9/18/2024	18,030	5,127,988	11,112	32,132,241	9,729	55,156	City	Ν	PH 8.21 SK 1058
9/19/2024	6,520	5,134,508	5,427	32,137,668		55,156		Ν	
9/20/2024						55,156			
9/21/2024						55,156			
9/22/2024						55,156			
9/23/2024	3	5,134,511	0	32,137,668		55,156		Ν	
9/24/2024	14,160	5,148,671	10,926	32,148,594	22,643	77,799	City	Ν	PH 8.36 SK 0700
9/25/2024	30,380	5,179,051		OFF	22,751	100,550	City	Ν	PH 8.25 SK 0702
9/26/2024	4,399	5,183,450	20,555	32,169,149	22,650	123,200	City	Ν	PH 8.41 SK 0905
9/27/2024	41,301	5,224,751	30,399	32,199,548	22,746	145,946	City	Ν	PH 8.08 WH 7:07
9/28/2024						145,946			
9/29/2024						145,946			
9/30/2024	20,808	5,245,559	17,976	32,217,524	22,765	168,711	City	Ν	PH 8.29 SK 0633
lotals	404,830	NA	224,133	NA	168,711	NA	NA		NA

¹ "Ground Water" refers to combination of old cell under-drain water plus storm water discharged form the old storm water pond. Both are discharged to the same wetwell.

So, when storm water is discharged, there is no way to estimate the volume of under-drain water discharged, as the two streams are commingled in the wetwell. Storm water is not often discharged. This means that most of the time, but not all of the time, we are able to estimate the volume of under-drain water discharged. Ground water withdrawls that exceed 25,000 gpd would require a DNR water use permit.

#### Instructions for Use

1. Enter the dates for the month in the date column.

2. Enter the accumulated total generated leachate volume from the end of the previous month from the leachate totalizer in C12.

3. Enter the accumulated total generated leachate for each day from the leachate totalizer in Column C.

4. Enter the daily volume (in gallons) of leachate hauled off site and the offsite location in Column D. Note since we do not have a flow meter, convert from pounds to gallons: X lbs: 8.34 = gallons.

5. The spreadsheet will calculate the daily leachate generated and the cumulative volume of leachate hauled for the month.

Oct-24	Daily Total Generated [Wetwell Flow Meter] (Gallons)	Cumulative Total Generated [Wetwell Flow Meter] (Gallons)	Daily Total Generated [Phase 1 (LV-1) Flow Meter] (Gallons)	Cumulative Total Generated [Phase 1 (LV-1) Flow Meter] (Gallons)	Batch Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Cumulative Total to Offsite Treatment [Loading Facility Flow Meter] (Gallons)	Offsite Treatment Location ("OGS" or other)	Ground Water Discharged >25,000 gpd? (Y or N) ¹	Comments
Last month	NA	5,245,559	NA	32,199,524	NA	NA	NA		
10/1/2024	5,140	5,250,699	22,245	32,221,769	11,384	11,384	City	Ν	PH 8.51 KM 0836
10/2/2024	2,060	5,252,759	87	32,221,856		11,384		Ν	
10/3/2024	3,210	5,255,969	4,264	32,226,120		11,384		Ν	
10/4/2024						11,384			
10/5/2024						11,384			
10/6/2024						11,384			
10/7/2024	26,400	5,282,369	25,935	32,252,055		11,384		Ν	
10/8/2024	7,922	5,290,291	4,129	32,256,184		11,384		Ν	
10/9/2024	5,424	5,295,715	4,425	32,260,609		11,384		Ν	
10/10/2024	5,277	5,300,992	4,530	32,265,139		11,384		Ν	
10/11/2024						11,384			
10/12/2024						11,384			
10/13/2024						11,384			
10/14/2024	12,660	5,313,652	9,063	32,274,202	22,758	34,142	City	Ν	PH 8.43 WH 8:00
10/15/2024	5,166	5,318,818	4,529	32,278,731		34,142		Ν	
10/16/2024	5,354	5,324,172	4,497	32,283,228		34,142		Ν	
10/17/2024	802	5,324,974	0	32,283,228		34,142		Ν	
10/18/2024						34,142			
10/19/2024						34,142			
10/20/2024						34,142			
10/21/2024	16,927	5,341,901	13,914	32,297,142		34,142		Ν	
10/22/2024	870	5,342,771	0	32,297,142		34,142		Ν	
10/23/2024	5,460	5,348,231	4,515	32,301,657	22,820	56,962	City	Ν	PH 8.30 SK 0905
10/24/2024	941	5,349,172	898	32,302,555		56,962		Ν	
10/25/2024						56,962			
10/26/2024						56,962			
10/27/2024						56,962			
10/28/2024	28,233	5,377,405	24,116	32,326,671	22,751	79,713	City	Ν	PH 7.73 SK 0633
10/29/2024	806	5,378,211	0	32,326,671		79,713	, i i i i i i i i i i i i i i i i i i i	Ν	
10/30/2024	5,715	5,383,926	4,482	32,331,153	22,681	102,394	City	Ν	PH 8.17 KM 1018
10/31/2024	37,552	5,421,478	39,341	32,370,494	22,631	125,025	City	Ν	PH 8.29 KM 8:19
Totals	175,919	NA	170,970	NA	125,025	NA	NA		NA

¹ "Ground Water" refers to combination of old cell under-drain water plus storm water discharged form the old storm water pond. Both are discharged to the same wetwell.

So, when storm water is discharged, there is no way to estimate the volume of under-drain water discharged, as the two streams are commingled in the wetwell. Storm water is not often discharged. This means that most of the time, but not all of the time, we are able to estimate the volume of under-drain water discharged. Ground water withdrawls that exceed 25,000 gpd would require a DNR water use permit.

# Table A-2. Summary of Leachate and Contact Water Quantities Transported to Ottumwa Generating Station or Other Offsite Disposal Location,<br/>2013-2024Ottumwa-Midland Commercial Landfill

Wapello County, lowe	a	low	/, I	Jnty	ζοι	С	lo	bel	ap	W	
----------------------	---	-----	------	------	-----	---	----	-----	----	---	--

						Volume	(gallons)					
Month	2013*	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
January			46,500	528,115					255,594		169,013	158,866
February			71,300	310,180					301,065	91,834	120,820	340,666
March	41,242			675,520				59,806	473,255	383,001	355,568	261,273
April	159,710		37,200	531,440	129,817	366,173		376,426	342,758	259,322	265,282	419,066
Мау	210,988	98,419	182,900	439,047	735,442	486,212	127,770	416,619	367,950	271,152	193,099	767,388
June		23,800	1,036,300	628,126	492,458		363,490	401,999	247,168	187,212	90,528	203,399
July			770,550	522,497				144,309	598,589	72,802	118,775	158,918
August			1,106,800	622,201			144,477	41,348	103,526		90,640	531,850
September		17,000	779,300	563,082		916,824	206,826	246,230	90,923	169,815	90,780	168,711
October				47,187			579,793	91,055	181,751	87,169	84,706	125,025
November			430,190				73,311	101,914	211,827	242,499	28,074	N/A
December			2,501,725				133,176	157,652	217,013	156,256	208,518	N/A
Total	411,940	139,219	6,962,765	4,867,395	1,357,717	1,769,209	1,628,843	2,037,358	3,391,419	1,921,062	1,815,803	3,135,162

-- = No hauling

N/A = Data not yet available

*: Quantities for years prior to 2013 were included in previous AWQRs.

Created by:	MDB	Date: 11/1/2019
Last revision by:	EMS	Date: 11/14/2024
Checked by:	JSN	Date: 11/15/2024

I:\25224073.00\Deliverables\2024 AWQR\App G - Inspection\Attachments\C_LCSPE\Attachments\[A2_Leachate Hauling Table.xlsx]Hauled Volume

Attachment B

Leachate Head Measurements

# Monthly Leachate Elevation and Head Measurement Records

LP-1

## Ottumwa Midland Landfill

Year:

2023

enter blue data spreadsheet calculates red data

Operator: Keck, Hart, McAninch Equipment Used: Model 101, Serial number 223320

Equipment Osed.		a number 223320							Revised 10/11/2017
Month	Leachate Piezometer	Location (Phase)	TOC Elev. (NGVD) a	BOC Elev. (NGVD) b	Top of Clay Liner Elev. (NGVD) c	Depth to Leachate (ft) d	Leachate Elev. (NGVD) a-d	Leachate Head at Top of Clay Liner (ft) a-c-d	Date Read/Comments
NA	LP-1	Original Cell	765.18	753.56	753.11	NA	NA	NA	NA
January	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		
February	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		
March	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		
April	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		
Мау	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		
June	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		
July	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		
August	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		
September	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		
October	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		
November	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		
December	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		

Notes:

1) TOC = Top of Casing. Based on June 15, 2011 survey and boring log/well construction form = 765.18 2) BOC = Bottom of Casing. Based on June 15, 2011 survey and boring log/well construction form = 753.56

3) Top of Clay Liner Elevation based on June 15, 2011 survey and boring log/well construction form = 753.11

4) NGVD = National Geodetic Vertical Datum

5) TBD = To Be Determined, well has not been installed

6) Per a phone conversation with OML staff on 11/19/2024, a recorded "Depth to Leachate" measurement of 11.55' at LP-1 indicates that LP-1 was dry.

# Monthly Leachate Elevation and Head Measurement Records

LP-1

## Ottumwa Midland Landfill

Year:

2024

enter blue data spreadsheet calculates red data

Operator: Keck, Hart, McAninch Equipment Used: Model 101, Serial number 223320

Equipmont obou.		ii number 223320							Revised 10/11/2017
Month	Leachate Piezometer	Location (Phase)	TOC Elev. (NGVD) a	BOC Elev. (NGVD) b	Top of Clay Liner Elev. (NGVD) c	Depth to Leachate (ft) d	Leachate Elev. (NGVD) a-d	Leachate Head at Top of Clay Liner (ft) a-c-d	Date Read/Comments
NA	LP-1	Original Cell	765.18	753.56	753.11	NA	NA	NA	NA
January	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		1/1/2024
February	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		2/4/2024
March	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		3/4/2024
April	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		4/1/2024
Мау	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		5/1/2024
June	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		6/3/2024
July	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		7/3/2024
August	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		8/5/2024
September	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		9/3/2024
October	LP-1	Original Cell	765.18	753.56	753.11	11.55	Dry ⁽⁶⁾		10/7/2024
November	LP-1	Original Cell	765.18	753.56	753.11	10.75	754.43	1.32	11/4/2024
December	LP-1	Original Cell	765.18	753.56	753.11	?	#VALUE!	#VALUE!	

Notes:

1) TOC = Top of Casing. Based on June 15, 2011 survey and boring log/well construction form = 765.18 2) BOC = Bottom of Casing. Based on June 15, 2011 survey and boring log/well construction form = 753.56

3) Top of Clay Liner Elevation based on June 15, 2011 survey and boring log/well construction form = 753.11

4) NGVD = National Geodetic Vertical Datum

5) TBD = To Be Determined, well has not been installed

6) Per a phone conversation with OML staff on 11/19/2024, a recorded "Depth to Leachate" measurement of 11.55' at LP-1 indicates that LP-1 was dry.

## Monthly Leachate Elevation and Head Measurement Records LH-1 **Ottumwa Midland Landfill**

Revised 10/24/2013

Year:

2023

Operator: Keck

Equipment Used: Vault reading

1					-		-		Revised 10/24/2013
Month	Leachate Piezometer	Location (Phase)	TOC Elev. (NGVD) a	BOC Elev. (NGVD) b	Top of Clay Liner Elev. (NGVD) c	Depth to Leachate (ft) d	Leachate Elev. (NGVD) a-d	Leachate Head at Top of Clay Liner (ft) a-c-d	Comments
	LH-1	Phase 1	TBD	TDB	TBD				See Notes
January	LH-1						0		Sensor malfunction
February	LH-1						0		Sensor malfunction
March	LH-1						0		Sensor malfunction
April	LH-1						0		Sensor malfunction
Мау	LH-1						0		Sensor malfunction
June	LH-1						0		Sensor malfunction
July	LH-1						4.25	0.35	
August	LH-1						2.2	0.18	
September	LH-1						1.67	0.14	
October	LH-1						2.75	0.23	
November	LH-1						4.67	0.39	
December	LH-1						2.5	0.21	

Notes:

1) TOC = Top of Casing. Based on ______ survey and boring log/well construction form.

2) BOC = Bottom of Casing. Based on ______ survey and boring log/well construction form. 3) Top of Clay Liner Elevation based on ______ survey and boring log/well construction form.

4) NGVD = National Geodetic Vertical Datum

5) TBD = To Be Determined, well has not been installed

6) The data recorded in the column labeled "Leachate Elev. (NDVD)" is the leachate head above the transducer installed in LH-1 as read from the control panel display. The leachate head is displayed in units of "inches" and has been converted to units of "feet" by dividing the reading by 12 for reporting in the column labeled "Leachate Head at "Top of Clay Liner (ft)."

Note: The liner elevation at transducer location in LH-1 is 753.59 feet per the November 2015 Phase 1 Liner Construction Documentation Report prepared by SCS. (Source: Email from Eric Nelson, 10/18/2017, 1:18 PM.)

How to use this spreadsheet: (RJS 10/19/2017):

1. Enter the leachate head level from the transducer panel located near Leachate Vault-1 (LV-1) in column J in decimal feet.

2. Add the observed leachate level to the liner elevation at transducer location LH-1. Enter this value into column I. This will represent the leachate head elevation above the liner.

For example: The observed leachate level in 0.375 ft on the digital readout for LH-1. Enter this into column J. Add 0.375 to the liner elevation at LH-1 to get the elevation of the leachate: 753.59 + 0.375 = 753.965. Enter this value into column I.

## Monthly Leachate Elevation and Head Measurement Records LH-1 **Ottumwa Midland Landfill**

Revised 10/24/2013

Year: 2024

Operator: Keck

Equipment Used: Display

			TOC Elev.	BOC Elev.	Top of Clay Liner Elev.	Depth to	Leachate Elev.	Leachate Head at Top of	Revised 10/24/2013
Month	Leachate Piezometer	Location (Phase)	(NGVD) a	(NGVD) b	(NGVD) c	Leachate (ft) d	(NGVD) a-d	Clay Liner (ft) a-c-d	Comments
	LH-1	Phase 1	TBD	TDB	TBD				See Notes
January	LH-1						1.42	0.12	
February	LH-1						2.3	0.19	
March	LH-1						2.92	0.24	
April	LH-1						1.67	0.14	
Мау	LH-1						7.17	0.60	Leachate Pump issues
June	LH-1						1.8	0.15	
July	LH-1						3	0.25	
August	LH-1						8.3	0.69	Recent heavy rains
September	LH-1						1.9	0.16	
October	LH-1						2.5	0.21	
November	LH-1						5	0.42	
December	LH-1								

Notes:

1) TOC = Top of Casing. Based on ______ survey and boring log/well construction form.

 2) BOC = Bottom of Casing. Based on ______ survey and boring log/well construction form.

 3) Top of Clay Liner Elevation based on ______ survey and boring log/well construction form.

4) NGVD = National Geodetic Vertical Datum

5) TBD = To Be Determined, well has not been installed

6) The data recorded in the column labeled "Leachate Elev. (NDVD)" is the leachate head above the transducer installed in LH-1 as read from the control panel display. The leachate head is displayed in units of "inches" and has been converted to units of "feet" by dividing the reading by 12 for reporting in the column labeled "Leachate Head at "Top of Clay Liner (ft)."

Note: The liner elevation at transducer location in LH-1 is 753.59 feet per the November 2015 Phase 1 Liner Construction Documentation Report prepared by SCS. (Source: Email from Eric Nelson, 10/18/2017, 1:18 PM.)

How to use this spreadsheet: (RJS 10/19/2017):

1. Enter the leachate head level from the transducer panel located near Leachate Vault-1 (LV-1) in column J in decimal feet.

2. Add the observed leachate level to the liner elevation at transducer location LH-1. Enter this value into column I. This will represent the leachate head elevation above the liner.

For example: The observed leachate level in 0.375 ft on the digital readout for LH-1. Enter this into column J. Add 0.375 to the liner elevation at LH-1 to get the elevation of the leachate: 753.59 + 0.375 = 753.965. Enter this value into column I.

Attachment C

Leachate Line Jetting Documentation



Interstate Power & Light Company 1031 Iowa St. Suite # 5007 Dubuque IA 52001-5007 October 11, 2023

Attn: Steve Keck Fly Ash Disposal Foreman Ottumwa Midland Landfull

Services renderred at Ottumwa Midland Landfill, 15300 130th Street, Ottumwa IA 52501

We, George Boitnott Enterprises, Inc. were on site on 10/10/23 & 10/11/23 to jet the lateral lines at the Ottumwa Midland Landfill using 3,500 gallons of water. All lines were clean with no blockages found while jetting of any lines.

Sincerely,

1

Kevin McIntosh George Boitnott Enterprise Service Supervisor.

George & Jeff Boitnott Enterprises, Inc. 735 Gateway Drive • P.O. Box 157 • Ottumwa, IA 52501 2 641-682-5157 or 1-800-373-9433 • Fax 641-682-6872 Attachment D

IDNR Landfill Compliance Visit Report





GOVERNOR KIM REYNOLDS LT. GOVERNOR ADAM GREGG

**DIRECTOR KAYLA LYON** 

June 22, 2021

Alliant Energy Corporate Services, Inc. Attn: Tasha Campbell, Environmental Specialist II 4902 North Bitmore Lane Madison, WI 53718

1

Subject: Ottumwa-Midland CCR Landfill Compliance Visit Facility No: 90-SDP-08-92P

Dear Ms. Campbell:

On June 1, 2021 I met with Rob Saunders, Blake McClaflin and Steve Keck to conduct a compliance visit at the Ottumwa-Midland CCR Landfill. Please review the enclosed report which outlines various items discussed and observed during the course of our visit.

If you have any questions or would like further explanation of any part of this report, please contact me at this office at 319-653-2135 or at ryan.stouder@dnr.iowa.gov.

Sincerely,

FIELD SERVICES & COMPLIANCE BUREAU

Ryan Stouder Environmental Specialist Senior

Encl. SDP Visit Report

N:\SHARED\SW 2021\Midland CCR visit cover 060121

xc: Becky Jolly, IDNR Solid Waste Section, via email Alliant Energy, Attn:Rob Saunders, 20775 Powerplant Rd, Ottumwa, IA 52501 (w/encl) Ottumwa Midland CCR SW File

# IOWASEPARTMENT OF NATURAL RESOURCE Field Office 6 1023 West Madison, Washington, IA 52353 319-653-2135 Sanitary Landfill Visit

permit #: 90-SDP-08-92P

Date this Visit: 06/01/2021

Previous Visit Date: 9/11/12

weather Conditions at Time of Visit: 73 deg. F, Sunny, Wind: South 5 mph

Person(s) Contacted: Rob Saunders, Blake McClaflin, Steve Keck

Were deficiencies noted or significant observations made during this inspection? Yes – See Comments Sec., No – No deficiencies noted, Blank – Not applicable or observed, BND – Previously N

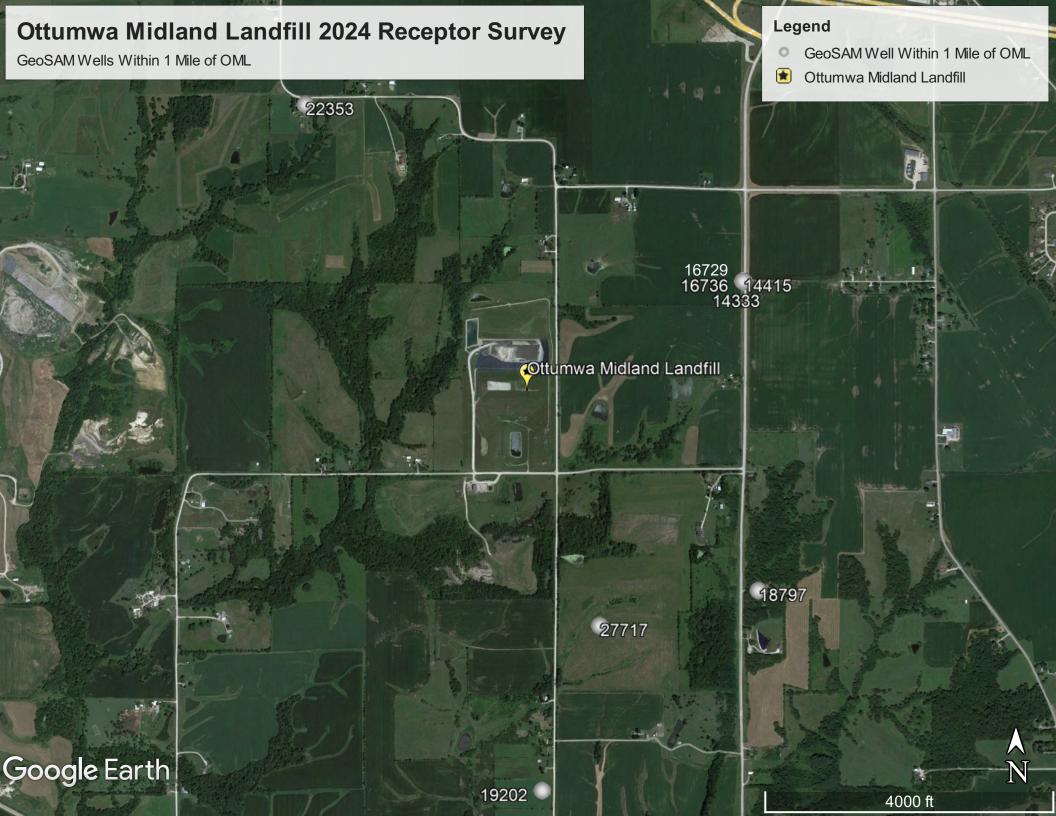
			Obs	ervatio	ns		bserved, PND – Previously Noted Deficiency
Yes	No	PND	Item	Yes	No	PND	Item
	$\boxtimes$		1. Fill Cover: daily; intermediate; final				10. Special Waste Handling
	$\boxtimes$		2. Control of Face: slope; width; location		$\boxtimes$		11. ERRAP/GP1
	$\boxtimes$		3. Compaction		$\boxtimes$		12. Operator Certification
	$\boxtimes$		4. Cover erosion; minor rills		$\bowtie$		13. Staffing
	$\bowtie$		5. Drainage into fill		$\boxtimes$		14. Equipment Backup/Maintenance
	$\boxtimes$		6. Leachate Mgmt. & Control		$\boxtimes$		15. Interior Roads
	$\boxtimes$	$\boxtimes$	7. Fugitive Dust		$\boxtimes$		16. Perimeter fence, gate, signs, mon. wells
	$\boxtimes$		8. Wet Weather Area		$\boxtimes$		17. Photos taken
			9. Construction & Demolition Area		$\boxtimes$		18. Follow-up needed

**Comments:** Expansion phase 1 is being utilized, this area has been used for the past 3 or 4 years. Most of the bottom ash comes from the Ottumwa Generating Station and some loads come from the Prairie Creek Cedar Rapids plant. The ash material was being spread at the time of my visit. No fugitive dust issues were observed. A water truck usually follows the drier material, the weather conditions have been moderately wet so not as much water has been utilized. The main working face is covered with soil. The soil cover is from the stockpile north or the sides of the main working face. There was minor erosion in the area near the working face.

The haul roads are well maintained with ditches designed convey stormwater runoff offsite. The older portions of the landfill have a wellestablished grassed cover. This area is mowed and maintained as needed to prevent tree growth.

The leachate pond observed in the discharge area on the northwest corner. The area around the leachate pond was absent of trees and maintained with gravel to reduce woody plants. A leachate pond loadout is located near the main gate and office. I was able to review records of ash deliver loads and CCR well monitoring data, landfill operation and policy guidance.

No issues were observed with the monitoring wells located around the landfill property.


	AUTHENTICATION
INSPECTOR: Ryan Stouder	hyan Stand
REVIEWER: Kurt Levetzow	I A III

Appendix H

Receptor Survey

## GeoSAM Search Results Within 1 Mile of Ottumwa Midland Landfill, November 2024

wnumber	14415	14333	16729	16736	19202	18797	27717	22353
FID	12809	13863	15268	15284	16115	16556	24587	22333
owner_name	Ward, Robert	Ward, R.L.	Peterson, Ed	Ward, Robert	Sondoge, H.	Behringer, Bob	Rogers, Ratherine	Crady, Dale
_	Walu, hobell	Walu, n.L.	Feleison, Eu	#3		Benniger, Bob	nugers, nathenne	Clauy, Date
alt_name pwts id	0	0	0	#3 0	BAILER, KEN 0	0	0	0
pwis_iu	Geologic Data	Geologic Data	0	0	0	U	0	0
	0	U U	Linkaassa				Linkansum	
project	Preservation	Preservation	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
operator	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
county	Wapello	Wapello	Wapello	Wapello	Wapello	Wapello	Wapello	Wapello
quad	Ottumwa North,	Ottumwa North,	Ottumwa North,	Ottumwa North,	Ottumwa North,	Ottumwa North,	Ottumwa North,	Ottumwa North,
township	T73N	T73N	T73N	T73N	T72N	T72N	T72N	T73N
range	R14W	R14W	R14W	R14W	R14W	R14W	R14W	R14W
section	35	35	35	35	3	2	2	34
quarter					SE NE SE NE	NE SW SW NW	NW SW	NW NE NE NW
latitude	41.082826	41.082826	41.082826	41.082826	41.063432	41.071081	41.069743	41.089533
longitude	-92.438689	-92.438689	-92.438689	-92.438689	-92.448759	-92.437911	-92.445914	-2.460711
ll_acc	Calc. +/- 3730 ft.	Calc. +/- 3730 ft.	Calc. +/- 3730 ft.	Calc. +/- 3730 ft.	Calc. +/- 230 ft.	Calc. +/- 230 ft.	Calc. +/- 930 ft.	Calc. +/- 230 ft.
utm_x	547148	547148	547148	547148	546316	547222	546550	545294
utm_y	4548103	4548103	4548103	4548103	4545945	4546800	4546647	4548836
elevation	842	842	842	842	745	785	784	832
	Digital Elevation	Digital Elevation	Digital Elevation	Digital Elevation			Digital Elevation	Digital Elevation
	Model Accurate	Model Accurate	Model Accurate	Model Accurate	Торо Мар		Model Accurate	Model Accurate
elev_acc	to 10 ft	to 10 ft	to 10 ft	to 10 ft	Accurate to 5 ft	Unknown	to 5 ft	to 5 ft
field_loca	0	0	0	0	0	0	0	No
site_type	Drilled hole	Drilled hole	Drilled hole	Drilled hole	Drilled hole	Drilled hole	Drilled hole	Drilled hole
position	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
dpth_br	0	0	0	0	20	10	15	40
dpth_well	30	30	31	39	155	293	152	208
dpth_tot	30	30	31	39	155	293	152	208
	Schlicher Well	Schlicher Well	Schlicher Well	Schlicher Well	Schlicher Well		Bruinekool,	Schlicher Well
drill_comp	Co.	Co.	Co.	Co.	Co.	Verwers Well Co.	Dwayne	Co.
icon	3	3	2	2	2	2	0	
drl_date	22-Oct-62	30-May-62	31-Oct-63	30-Oct-63	8-Oct-66	6-Apr-66	3-May-85	11/6/1968
aquifer					Mississippian	Mississippian		
well_type	Unknown	Unknown	Unknown	Private	Private	Private	Private	Private
smpl_type	Chips	Chips	Chips	Chips	Chips	Chips	Chips	
log_drlr	1	1	0	0	0	0	0	1
log_strp	1	1	1	1	1	1	0	1
log_geop	0	0	0	0	0	0	0	0
log_other	0	0	0	1	0	0	1	0
	https://www.iihr.	https://www.iihr.	https://www.iihr.	https://www.iihr.	https://www.iihr.	https://www.iihr.	https://www.iihr.	https://www.iihr.
	uiowa.edu/igs/g	uiowa.edu/igs/g	uiowa.edu/igs/g	uiowa.edu/igs/g	uiowa.edu/igs/g	uiowa.edu/igs/g	uiowa.edu/igs/g	uiowa.edu/igs/g
	eosam/well/144	eosam/well/143	eosam/well/167	eosam/well/167	eosam/well/192	eosam/well/187	eosam/well/277	eosam/well/223
HLINK	15/general-	33/general-	29/general-	36/general-	02/general-	97/general-	17/general-	53/general-
х	-10290227.79	-10290227.79	-10290227.79	-10290227.79	-10291348.78	-10290141.18	-10291032.07	
		5024566.166641	5024566.166641	5024566.166641				
у	4365	4365	4365	4365	149	4625	096	
•						-		

