

First Semi-Annual 2023 Groundwater Sampling Report Sand Management Site

Boone, Iowa

August 2024

1631 NW 30th Court Ankeny, Iowa 50023

SEE-001-024-391

First Semi-Annual 2024 Groundwater Sampling Report Sand Management Site

August 2024

SS NA	LENG	INES	0	۰.
S.	2		M	
00	MO	10		
0	5 12			
SN'S			Į	
	Set DRUCESCOM	AL ENG	NAL ENGINEER	THAL ENGINEER XX

Г

I hereby certify that this engineering document was prepared by me or under my direct personal supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Iowa.

Donn L Stone, P.E.

IML Z

Date

License Number: 11461 My license renewal date is December 31, 2024

First Semi-Annual 2024 Groundwater Sampling Report Sand Management Site

TABLE OF CONTENTS

1.0	INTRODCUTION	2
1.1	OWNER INFORMATION	4
2.0	SUBSURFACE CONDITIONS AND MONITORING WELLS	5
4.0	REVIEW OF GROUNDWATER ANALYSIS	6
6.0	SUMMARY	9

1.0 INTRODUCTION

Besser Quinn owns a facility known as the Besser Quinn Sand Management Site. This site has received used foundry sand since 2000. The site is under closure procedures and is operating under DNR ID #08-BUD-08-99 as prepared by the Iowa Department of Natural Resource. The BUD requires groundwater monitoring for four quarters of a year and thence semi-annually. This report presents the findings of a sampling event during June 2023 to perform chemical analysis consistent with the BUD. The former chemical analyses were associated with the chemical analyses required for sand being deposited at the site. The semi-annual sampling program will continue with the next sampling event anticipated in November or December 2024.

1.1 OWNER INFORMATION

Besser Quinn Machine and Foundry Division of the Besser International Pipe Machinery Corporation 1518 12th Street Boone, Iowa 50036

Besser-Quinn Vice President - Pipe and Precast Brian Christle - 515-432-3553

1.2 SITE LOCATION INFORMATION

The Quinn Quarry Reclamation site is located along Boone County Road E-41, which was formerly USA Highway 30. The street address of the site is 1159 216th Drive. Figure 1 notes the location of the Besser Quinn Sand Management Site.

1.3 HISTORIC DISSCUSSION

The initial development of the site required the determination of depth to groundwater and the collection of groundwater samples for chemical analysis. To accomplish these tasks, three groundwater wells were installed. Groundwater was found near 30' of depth and quality control samples did not note the presence of chemical at unacceptable concentrations.

2.0 SUBSURFACE CONDITIONS AND MONITORING WELLS

Monitoring wells were installed in 2000 as a function of the initial siting of the management site. In late 2018, the initial wells were checked and two of the wells were determined to be nonfunctionable. Two replacements wells were installed adjacent to the two non-functional wells. Monitoring of the three functional wells did not present a defined groundwater flow direction and IDNR requested two additional wells to assist in defining the groundwater flow direction. After the completion of the fourth and fifth wells, IDNR geologic staff reviewed satellite images and suggested that the management site was sighted on a narrow peninsula of glacial till surrounded by alluvium. Based on this observation, this location of the site could potentially have groundwater flow in several directions which could change with time.

Historic groundwater measurements note inconsistent trends in elevations, with some monitoring wells noting higher elevations than the previous sampling event, while the others were noted as lower than the previous sampling event. The groundwater sampling was delayed for this sampling event as the area has been subjected to a drought. The groundwater in the monitoring wells present at the previous sampling event was low and made obtaining a good sample difficult. The area received several rainfalls of more than an inch during the spring of 2024. The depth to groundwater was checked, noting slight change in elevation. By mid-summer the groundwater surface between sampling events and between wells further demonstrates the disconnection of the wells from each other. Table 1 presents the current groundwater elevations compared the to the previous sampling event measurements.

Monitoring well	Depth to water	Height of Riser	Well Screen	Surface Elevation	Groundwater Elevation August 2024	Previous Elevation December 2023
QN	16.18	2.60	26'-36'	909.82	893.64	887.34
QNE	30.57	3.33	18'-50'	919.14	888.57	887.37
QNW	46.57	3.04	18'-50'	922.01	875.44	874.95
QS	41.54	3.13	18'-50'	916.18	874.64	874.43
QE	40.21	2.72	24'-34'	915.76	875.55	875.61
QW	dry	3.05	34'-44'	912.19		

Table 1 Groundwater Depth August 2024

3.0 REVIEW OF GROUNDWATER ANALYSIS

Groundwater samples are typically obtained on two semi-annual occasions with the most recent event taking place on December 1, 2023. The samples were subjected to the analysis outlined in the BUD. Table 2 presents some of the concentration of detected materials in the groundwater samples. The full analysis is in the appendix. The BUD lists certain VOC compounds for analysis, further the BUD states that the groundwater analysis need not be performed on the VOC compounds if there are not found to be present in the sand being placed at the site. Per the most recent sand analysis, no VOCs were noted as present.

Table 2 Historic Groundwater Analysis, ppm March, June, September & December 2020, June 2021 & December 2021, June 2022 March 2023, June 2023, December 2023, August 2024

Monitoring well	Manganese	Molybdenum	Barium	Boron	Cobalt	Nickel
	Total Metal					
QN – Mar. 2020	1.15	0.358	0.205	0.544	0.0039	0.019
QN – Jun 2020	0.945	0.265	0.089	0.479	0.0035	0.020
QN-Sept. 2020	0.857	0.246	0.079	0.481	0.0029	0.017
QN – Dec. 2020	1.10	0.250	0.104	0.520	0.0039	0.016
QN – June 2021	0.955	0.223	0.122	0.661	0.0034	0.013
QN – Dec. 2021	0.614	0.184	0.126	0.634	0.0025	0.017
QN – June 2022	0.333	0.024	0.056	0.124	0.0008	0020
QN – Dec. 2022	0.922	0.134	0.043	0.523	0.0059	0.025
QN – March 2023	0.782	0.124	0.0445	0.654	0.0027	0.016
QN – June 2023	0.689	0.115	0.0881	0.603	0.0061	0.0121
QN – Dec. 2023	0.691	0.090	0.0594	0.488	0.0025	0.169
QN – Aug. 2024	5.81	0.0147	0.0486	0.0374	0.0041	0.0094
QNE – Mar. 2020	1.46	0.115	0.149	1.15	0.0038	0.016
QNE – Jun 2020	0.616	0.021	0.104	0.476	0.0019	0.018
QNE-Sept. 2020	0.698	0.023	0.094	0.0752	0.0011	0.015
QNE – Dec. 2020	0.604	0.023	0.097	0.739	0.0013	0.012
QNE – June 2021	0.397	0.020	0.096	0.749	0.0006	ND
QNE – Dec. 2021	0.431	0.020	0.097	0.730	0.0007	ND
QNE – June 2022	0.313	0.018	0.100	0.608	0.0005	ND
QNE – Dec. 2022	0.399	0.014	0.096	0.632	0.0043	ND
QNE – Mar2023	0.639	0.0129	0.0907	0.671	0.0011	0.0053
QNE – June 2023	0.347	0.0117	0.100	0.620	0.0062	0.0044
QNE – Dec. 2023	0.555	0.0127	0.0992	0.625	0.0027	0.0066
QNE – Aug. 2024	0.042	0.0121	0.109	0.660	0.0009	0.0052

QNW -Mar. 2020	1.04	ND	0.226	0.174	0.0033	ND
QNW – Jun. 2020	0.302	ND	0.170	ND	0.0074	0.010
QNW-Sept. 2020	0.056	ND	0.245	0.198	0.0004	ND
QNW- Dec. 2020	0.045	ND	0.287	0.247	0.0004	ND
QNW – June 2021	0.701	ND	0.260	0.163	0.0033	ND
QNW- Dec. 2021	0.714	ND	0.309	0.0277	0.0067	ND
QNW – June 2022	5.24	0.018	1.82	0.122	0.0804	0.100
QNW – Dec. 2022	9.88	0.020	1.40	0.296	0.0581	0.091
QNW -Mar 2023	0.105	ND	0.195	0.147	0.0007	0.0040
QNW– June 2023	0.512	ND	0.249	0.138	0.0030	0.0056
QNW – Dec. 2023	49.9	0.155	9.41	1.29	0.727	1.37
QNW – Aug. 2024	4.42	0.0077	0.314	0.211	0.0087	0.0181
QS – Mar. 2020	16.6	0.02	2.99	0.162	0.227	0.338
QS – Jun. 2020	0.658	ND	0.256	ND	0.0103	0.021
QS-Sept. 2020	0.419	ND	0.250	ND	0.0064	0.015
QS – Dec. 2020	1.08	ND	0.384	ND	0.0135	0.025
QS – June 2021	0.429	ND	0.261	0.114	0.007	0.012
QS – Dec. 2021	0.078	ND	0.202	ND	0.0038	ND
QS – June 2022	20.0	0.022	3.89	0.139	0.226	0.336
QS – Dec. 2022	12.0	0.014	2.68	0.135	0.192	0.229
QS – Mar 2023	ND	ND	0.188	ND	ND	ND
QS – June 2023	2.42	ND	0.719	0.106	0.0357	0.0456
QS – Dec. 2023	22.5	0.0670	22.5	ND	1.62	1.89
QS – Aug. 2024	No Sample					
QE – Mar. 2020	1.29	ND	0.120	0.293	0.0048	0.011
QE – Jun. 2020	1.02	ND	0.114	0.185	0.002	ND
QE-Sept. 2020	0.808	ND	0.063	0.524	0.0004	ND
QE – Dec. 2020	0.776	0.010	0.052	0.523	0.0042	0.015
QE – June 2021	2.07	ND	0.0065	0.504	0.0017	ND
QE – Dec. 2021	3.01	ND	0.077	0.489	0.0024	0.015
QE – June 2022	0.719	ND	0.069	ND	0.0023	ND
QE – Dec 2022	1.5	0.019	0.152	0.645	0.0293	0.043
QE – Mar 2023	1.39	0.0041	0.637	0.167	0.0066	0.0157
QE – June 2023	3.03	0.0040	0.0778	0.385	0.0076	0.0116
QE – Dec 2023	1.48	0.0076	0.0716	0.629	0.0085	0.0248
QE – Aug 2024	2.86	0.0071	0.0659	0.0577	0.0058	0.0130
QW – Mar. 2020	0.082	ND	0.176	ND	0.0012	ND
QW – Jun. 2020	0.024	ND	0.151	ND	0.0004	ND
QW-Sept. 2020	0.023	ND	0.156	ND	0.0004	ND

QW – Dec. 2020	0.049	ND	0.170	ND	0.0009	ND
QW – June 2021	0.504	ND	0.284	ND	0.0082	0.016
QW – Dec. 2021	0.059	ND	0.189	ND	0.0013	ND
QW – June 2022	2.02	ND	0.628	ND	0.0308	0.053
QW – Dec. 2022	Dry	Dry	Dry	Dry	Dry	Dry
QW – Mar 2023	Dry	Dry	Dry	Dry	Dry	Dry
QW – June 2023	Dry	Dry	Dry	Dry	Dry	Dry
QW – Dec. 2023	Dry	Dry	Dry	Dry	Dry	Dry
QW – Aug. 2024	Dry	Dry	Dry	Dry	Dry	Dry

Table 2 notes that selected metals exhibit concentrations fairly consistent between June 2020, and June 2023. Again, for the August 2024 sampling, MW QW was noted as dry and no groundwater sample was obtained. A slow flow pump was used to collect a sample for MW QS, however there was not enough groundwater available to collect a sample.

The most previous sampling event disrupted the sediment in the QE, QNE, QNW and QS wells and influenced the metal analysis. The August 2024 sampling was performed without disrupting the sediment. For the most part metal concentrations dropped with the recent sampling with the reduction in sediment. However, MW QN and MW QNW exhibited a significant higher manganese concentrations than the historic sampling events.. WM QE also noted a higher manganese concentration, which is somewhat consistent with past sampling events.

Table 3 presented below compares the ground water to the State of Iowa non-protected groundwater standard. Table 3 notes manganese concentrations exceeded the State of Iowa non-protected groundwater standard in MW QN. No other exceedances were noted.

Table 3Groundwater Analysis to Non-Protected Groundwater Std., ppmDecember 2023

Monitoring well	Manganese	Molybdenum	Barium	Boron	Cobalt	Nickel
	Total Metal	Total Metal	Total Metal	Total Metal	Total Metal	Total Metal
Non-Protected GW standard	4.9	0.2	10	30	0.01	0.7
QN –Aug. 2024	<mark>5.81</mark>	0.0147	0.0486	0.0374	0.0041	0.0094
QNE – Aug. 2024	0.042	0.0121	0.109	0.660	0.0009	0.0052
QNW – Aug. 2024	4.42	0.0077	0.314	0.211	0.0087	0.0181
QS – Aug. 2024	No Sample	No Sample	No Sample	No Sample	No Sample	No Sample
QE – Aug. 2024	2.86	0.0071	0.0659	0.0577	0.0058	0.0130
QW – Aug. 2024	Dry	Dry	Dry	Dry	Dry	Dry

Table 4Groundwater Analysis to Protected Groundwater Std., ppmDecember 2023

Monitoring well	Manganese	Molybdenum	Barium	Boron	Cobalt	Nickel
	Total Metal	Total Metal	Total Metal	Total Metal	Total Metal	Total Metal
Protected GW standard	0.3	0.04	2.0	6.0	0.0021	0.1
QN –June 2023	<mark>5.81</mark>	0.0147	0.0486	0.0374	0.0041	0.0094
QNE – June 2023	0.042	0.0121	0.109	0.660	0.0009	0.0052
QNW – June 2023	<mark>4.42</mark>	0.0077	0.314	0.211	0.0087	0.0181
QS – June 2023	No Sample	No Sample	No Sample	No Sample	No Sample	No Sample
QE –June 2023	<mark>2.86</mark>	0.0071	0.0659	0.0577	0.0058	0.0130
QW – June 2023	Dry	Dry	Dry	Dry	Dry	Dry

Table 4 notes that the only metal exceeding the Protected Groundwater Standard is manganese in QN, QNW and QE. In the past other metals were noting as exceeding this standard.

A statistical analysis of the groundwater surface and metal concentration trends was performed by Otter Creek Environmental Services, L.L.C., Elgin, Illinois. A copy of the report is included in the Appendix.

4.0 SUMMARY

This sampling report presents data from the first semi-annual groundwater sampling event for 2024. The current concentrations, for the most part, are consistent with the previous sampling events and analysis. Future sampling events will be undertaken to develop site averages for chemical parameters.

Based on the comparison to the lowa state wide groundwater standards, the concentrations noted with this sampling event notes several metals as non-compliant with the standard. Sampling and reporting will continue until the life of the BUD is complete.

Appendix A

Chemical Analysis

Disposal Site Name: Resser	Quinn		*	Permit No.:	
Mall (Bissenseter) MW/ ON			Weather: foggy	- misty, 64 F	
Deter: 13 August 2024		Sampler Name: Donn	Stone		
Date: 15 August 2024					
Construction Data					
Construction Data			Depth	to Tope of Screen (ft):	18'
Contra Diameter (in): 2	C	asing Material 2' PVC			
Lasing Diameter (in): 2	ASI): 925.05		Ground Surf	ace Elevation (ft. MSL):	922.01
Field Observations	vist). <u></u>				
	2				
	, 	Before Purging	After Purging	Before Sampling]
Depth to Wat	er Level (ft)·			46.57	
Water Elevati	on (ft MSL):			875.44	1
Water Elevati	to Water Level	< Denth to Ton of Scre	en) Ves	No	-
Screen Submergeur (Depti				_	
		Start	End		
Purg	e Date/Time				
Well Conditions Commentar	ry: well co	over and casing in good	repair		
Sampling Equipment (check	k one)				
	Interval Samp	ler			
X Bailer	Other (specify	<i>(</i>):			
Equipment Name & Descrip	tion: 2' PVC	bailer, plastic rope			
Pump Types (check one)					
Submersible Peris	staltic 🔲 B	ladder 🗌 Inertial Lif	t Pump 🗌 Other (s	specify):	
Method (check one)					
	Purge	Purge			
Options (check one)					
X Dedicated Disp	osable	Portable			
Decontamination Method:	washed and	sanitized in office, wra	pped in plastic until op	pened in field	
Field Analysis		1			Final Reading
Date/Time	12:16				
Depth to Water (ft)	46.57				
Volume Purged ()					
Temp (°C)	60 F				
Sp. Cond (umhos/cm)	1860				
рН	6.9				
DO (mg/l)					
ORP (mV)					
Turbidity (NTU)					
Equipment Depth:	Flow	Rate:	Volume Removed:	Volume S	ampled:
Odor? Ves	X No	Color? Yes	 X No		
Comments: slight turbidit	ty at end of sar	mpling			

Disposal Site Name: Besse	er Quinn			Permit No.:		
Well/Piezometer: MW QNE Weather: foggy- misty, 64 F						
Date: 13 August 2024 Sampler Name: Donn Stone						
Monitoring Well Details						
Construction Data						
Borehole Diameter (in): 6			Depth	to Tope of Screen (ft):	18'	
Casing Diameter (in): 2	с	asing Material: 2' PVC				
Top of Casing Elevation (ft.	MSL): 922.47		Ground Surf	ace Elevation (ft. MSL)	919.14	
Field Observations						
Locked: 🛛 Yes 🗌 N	0					
		Before Purging	After Purging	Before Sampling		
Depth to Wa	ter Level (ft.):			30.57		
Water Elevat	ion (ft. MSL):			888.57		
Screen Submerged? (Depth	to Water Level	< Depth to Top of Scre	en) 🗌 Yes 🔳	No	-	
· · · · · · · · · · · · · · · · · · ·				7		
		Start	End			
Pure	ge Date/Time					
Well Conditions Commenta	ry: well co	over and casing in good	repair			
Sampling Equipment (chec	k one)					
Pump	Interval Sampl	er				
🗙 Bailer	Other (specify):				
Equipment Name & Descrip	otion: 2' PVC b	bailer, plastic rope				
Pump Types (check one)						
Submersible Peri	staltic 🗌 Bl	adder 🛛 Inertial Lift	Pump 🗌 Other (s	pecify):		
Method (check one)						
Low Flow	Purge	Purge				
Options (check one)						
X Dedicated Disp	osable	Portable				
Decontamination Method:	washed and	sanitized in office, wrap	ped in plastic until op	ened in field		
Field Analysis					Final Reading	
Date/Time	10:06					
Depth to Water (ft)	30.57					
Volume Purged ()						
Temp (°C)	60 F					
Sp. Cond (umhos/cm)	1200					
рН	6.9					
DO (mg/l)						
ORP (mV)						
Turbidity (NTU)						
Equipment Depth:	Flow R	ate: Vo	olume Removed:	Volume S	ampled:	
Odor? Yes	X No	Color? Yes	No			
Comments: increasing silt	with depth, sli	ght turbidty				

DRIR

Disposal Site Name: Besse	er Quinn			Permit No.:				
Well/Piezometer: MW QN Weather: foggy-misty, 64 F								
Date: 13 August 2024 Sampler Name: Donn Stone								
Monitoring Well Details								
Construction Data								
Borehole Diameter (in): 6			De	epth to Tope of Screen (ft):	26'			
Casing Diameter (in): 2	Ci	asing Material: 2' PV	/C					
Top of Casing Elevation (ft. MSL): 912.42 Ground Surface Elevation (ft. MSL): 909.82								
Field Observations								
Locked: Xes N	0							
		Before Purging	After Purging	Before Sampling	1			
Depth to Wa	ter Level (ft.):			16.18				
Water Elevat	ion (ft. MSL):			893.64				
Screen Submerged? (Depth	to Water Level	< Depth to Top of Sc	reen) 🔳 Yes	 No	_			
J (1								
		Start	End					
Purg	ge Date/Time							
Well Conditions Commenta	ry: well co	ver and casing in goo	d repair					
Sampling Equipment (chec	k one)							
Pump	Interval Sampl	er						
🗙 Bailer	Other (specify)	:						
Equipment Name & Descrip	otion: 2' PVC b	oailer, plastic rope						
Pump Types (check one)								
Submersible Peris	staltic 🗌 Bla	adder 🗌 Inertial L	ift Pump 🗌 Othe	r (specify):				
Method (check one)								
Low Flow	Purge	Purge						
Options (check one)								
X Dedicated Disp	osable	Portable						
Decontamination Method:	washed and s	anitized in office, wr	apped in plastic until	opened in field				
Field Analysis					Final Reading			
Date/Time	10:46							
Depth to Water (ft)	16.18							
Volume Purged ()								
Temp (°C)	60 F							
Sp. Cond (umhos/cm)	3190							
рН	6.6							
DO (mg/l)								
ORP (mV)								
Turbidity (NTU)								
Equipment Depth:	Flow R	ate:	Volume Removed:	Volume Sa	mpled:			
Odor? XYes	No	Color? TYes	No No					
Comments: slight septic o	dor, no turbidit	Y						

Disposal Site	Name: Besse	er Quinn			Permit No.:			
Well/Piezome	Well/Piezometer: MW QE Weather: foggy- misty, 64 F							
Date: 13 Aug	Date: 13 August 2024 Sampler Name: Donn Stone							
Monitoring W	Vell Details							
Construction	Data							
Borehole Diar	meter (in): 6			Depth	to Tope of Screen (ft):	24'		
Casing Diame	ter (in): 2	С	asing Material: 2' PVC					
Top of Casing	Elevation (ft.	MSL): 918.48		Ground Surf	ace Elevation (ft. MSL):	915.76		
Field Observa	tions							
Locked: X Yes No						_		
			Before Purging	After Purging	Before Sampling			
	Depth to Wat	ter Level (ft.):			40.21			
	Water Elevat	ion (ft. MSL):			875.55			
Screen Subm	erged? (Depth	to Water Level	l < Depth to Top of Scre	een) 🗌 Yes 🛛 🛛	🖁 No			
			Start	End				
	Purg	ge Date/Time						
Well Conditic	ons Commenta	ry: well co	over and casing in good	repari				
Sampling Equ	uipment (chec	k one)						
Pump		Interval Sampl	er					
🗙 Bailer		Other (specify):					
Equipment N	ame & Descrip	otion: 2' PVC l	pailer, plastic rope					
Pump Types	(check one)							
Submersi	ble 🗌 Peri	staltic 🗌 Bl	adder 🛛 Inertial Lif	t Pump 🗌 Other (s	pecify):			
Method (che	ck one)							
Low Flow	No F	Purge	Purge					
Options (che	ck one)							
X Dedicated	d 🗌 Disp	osable	Portable					
Decontamina	ation Method:	washed and	sanitized in office, wrap	oped in plastic until op	ened in field			
Field Analysi	S	I	T			Final Reading		
Date/Time		11:30						
Depth to Wa	ter (ft)	40.21						
Volume Purg	ed ()							
Temp (°C)		59						
Sp. Cond (um	nhos/cm)	3200						
рН		6.9						
DO (mg/l)								
ORP (mV)								
Turbidity (NT	ru)							
Equipment D	epth:	Flow F	Rate: V	olume Removed:	Volume Sa	ampled:		
Odor?	Yes	No No	Color? 🗌 Yes 🚺	No				
Comments:	slight if any tu	urbidity,						

CERTIFICATE OF ANALYSIS

1HH1175

Stone Environmental Engineering

Project Name: SEE 001

Donn StoneProject / PO Number: SEE 0011631 NW 30th CourtReceived: 08/14/2024Ankeny, IA 50021Reported: 08/29/2024

Analytical Testing Parameters

Client Sample ID: Sample Matrix:	QN Aqueous					Collected E	By: DLS		
Lab Sample ID:	1HH1175-01					Collection	Date: 08/12/	2024 10:46	
Determination of Carb Compounds	oonyl	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 8315									
Formaldehyde		<20.0	20.0	ug/L	1		08/15/24 1422	08/17/24 1511	PDS
Determination of Con Chemistry Parameters	ventional s	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 410.4									
COD, total		<20	20	mg/L	1		08/19/24 1143	08/19/24 1246	CES
EPA 420.1									
Phenols, total		<0.035	0.035	mg/L	1		08/28/24 0839	08/28/24 1604	KKJ
EPA 9020									
Total Organic Haloge	ns (TOX)	0.092	0.010	mg/L	1	TX1	08/27/24 0000	08/28/24 1440	LNH
Nitrogon Ammonia		0.64	0.10	ma/l	1		09/26/24 1252	09/26/24 1554	
		0.01	0.10	mg/L	1		08/20/24 1255	06/20/24 1554	JAC
Total Suspended Soli	ds (TSS)	87	1	mg/L	1		08/15/24 1624	08/16/24 0910	RDH
Determination of Inorg	ganic Anions	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 9056									
Fluoride		0.1	0.1	mg/L	1		08/26/24 0000	08/27/24 0203	MID
Chloride		99.3	10.0	mg/L	10		08/26/24 0000	08/26/24 1428	MID
Sulfate		1010	10.0	mg/L	10		08/26/24 0000	08/26/24 1428	MID
Determination of Tota	l Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020/	A								
Antimony, total		<0.0020	0.0020	mg/L	4		08/15/24 1613	08/19/24 2017	RVV
Arsenic, total		0.0092	0.0040	mg/L	4		08/15/24 1613	08/19/24 2017	RVV
Barium, total		0.0486	0.0040	mg/L	4		08/15/24 1613	08/19/24 2017	RVV
Beryllium, total		<0.0040	0.0040	mg/L	4		08/15/24 1613	08/19/24 2017	RVV
Cadmium, total		<0.0008	0.0008	mg/L	4		08/15/24 1613	08/19/24 2017	RVV
Chromium, total		<0.0080	0.0080	mg/L	4		08/15/24 1613	08/19/24 2017	RVV
Cobalt, total		0.0041	0.0004	mg/L	4		08/15/24 1613	08/19/24 2017	RVV
Copper, total		<0.0040	0.0040	mg/L	4		08/15/24 1613	08/19/24 2017	RVV
Lead. total							00/15/01 1010	00/10/01 0017	D\/\/
,		<0.0040	0.0040	mg/L	4		08/15/24 1613	08/19/24 2017	
Manganese, total		<0.0040 5.81	0.0040 0.100	mg/L mg/L	4 100		08/15/24 1613 08/15/24 1613	08/19/24 2017 08/20/24 1209	RVV
Manganese, total Molybdenum, total		<0.0040 5.81 0.0147	0.0040 0.100 0.0040	mg/L mg/L mg/L	4 100 4		08/15/24 1613 08/15/24 1613 08/15/24 1613	08/19/24 2017 08/20/24 1209 08/19/24 2017	RVV RVV RVV

Microbac Laboratories, Inc., Newton

600 East 17th Street South | Newton, IA 50208 | 641-792-8451 p | www.microbac.com

CERTIFICATE OF ANALYSIS

Client Sample ID: Sample Matrix: Lab Sample ID:	QN Aqueous 1HH1175-01					Collected B Collection I	y: DLS Date: 08/12/	2024 10:46	
Determination of Tota	l Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Selenium, total		<0.0040	0.0040	mg/L	4		08/15/24 1613	08/19/24 2017	RVV
Silver, total		<0.0040	0.0040	mg/L	4		08/15/24 1613	08/19/24 2017	RVV
Thallium, total		<0.0020	0.0020	mg/L	4		08/15/24 1613	08/19/24 2017	RVV
Vanadium, total		<0.0200	0.0200	mg/L	4		08/15/24 1613	08/19/24 2017	RVV
Zinc, total		<0.0200	0.0200	mg/L	4		08/15/24 1613	08/19/24 2017	RVV
EPA 3010A/EPA 6010	В								
Aluminum, total		0.125	0.050	mg/L	1		08/16/24 0732	08/20/24 0018	JAR
Boron, total		0.374	0.100	mg/L	1		08/16/24 0732	08/21/24 0343	JAR
Iron, total		15.7	0.100	mg/L	1		08/16/24 0732	08/20/24 0018	JAR
Magnesium, total		164	0.100	mg/L	1		08/16/24 0732	08/20/24 0018	JAR
EPA 7470A									
Mercury, total		<0.00050	0.00050	mg/L	1		08/16/24 1502	08/20/24 1056	JAR

CERTIFICATE OF ANALYSIS

Client Sample ID: Sample Matrix: Lab Sample ID:	QNE Aqueous 1HH1175-02					Collected By Collection D	r: DLS ate: 08/12/	2024 10:06	
Determination of Carbo Compounds	onyl	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 8315									
Formaldehyde		<10.0	10.0	ug/L	1		08/15/24 1422	08/17/24 1530	PDS
Determination of Conv Chemistry Parameters	entional	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 410.4									
COD, total		<20	20	mg/L	1		08/19/24 1143	08/19/24 1246	CES
EPA 420.1									
Phenols, total		<0.035	0.035	mg/L	1		08/28/24 0839	08/28/24 1604	KKJ
EPA 9020									
Total Organic Halogen	s (TOX)	<0.010	0.010	mg/L	1		08/27/24 0000	08/28/24 1440	LNH
TIMBERLINE									
Nitrogen, Ammonia		1.52	0.10	mg/L	1		08/26/24 1253	08/26/24 1556	JAC
USGS I-3765-85									
Total Suspended Solid	s (TSS)	6	1	mg/L	1		08/15/24 1624	08/16/24 0910	RDH
Determination of Inorg	anic Anions	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 9056									
Fluoride		0.1	0.1	mg/L	1		08/26/24 0000	08/27/24 0225	MID
Chloride		6.5	1.0	mg/L	1		08/26/24 0000	08/27/24 0225	MID
Sulfate		233	10.0	mg/L	10		08/26/24 0000	08/26/24 1451	MID
Determination of Total	Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020A									
Antimony, total		<0.0020	0.0020	mg/L	4		08/15/24 1613	08/19/24 2023	RVV
Arsenic, total		<0.0040	0.0040	mg/L	4		08/15/24 1613	08/19/24 2023	RVV
Barium, total		0.109	0.0040	mg/L	4		08/15/24 1613	08/19/24 2023	RVV
Beryllium, total		<0.0040	0.0040	mg/L	4		08/15/24 1613	08/19/24 2023	RVV
Cadmium, total		<0.0008	0.0008	mg/L	4		08/15/24 1613	08/19/24 2023	RVV
Chromium, total		<0.0080	0.0080	mg/L	4		08/15/24 1613	08/19/24 2023	RVV
Cobalt, total		0.0009	0.0004	mg/L	4		08/15/24 1613	08/19/24 2023	RVV
Copper, total		0.0052	0.0040	mg/L	4		08/15/24 1613	08/19/24 2023	RVV
Lead, total		<0.0040	0.0040	mg/L	4		08/15/24 1613	08/19/24 2023	RVV
Manganese, total		0.402	0.0040	mg/L	4		08/15/24 1613	08/19/24 2023	RVV
Molybdenum, total		0.0121	0.0040	mg/L	4		08/15/24 1613	08/19/24 2023	RVV
Nickel, total		0.0052	0.0040	mg/L	4		08/15/24 1613	08/19/24 2023	RVV
Selenium, total		<0.0040	0.0040	mg/L	4		08/15/24 1613	08/19/24 2023	RVV
Silver, total		<0.0040	0.0040	mg/L	4		08/15/24 1613	08/19/24 2023	RVV
Thallium, total		<0.0020	0.0020	mg/L	4		08/15/24 1613	08/19/24 2023	RVV
Vanadium, total		<0.0200	0.0200	mg/L	4		08/15/24 1613	08/19/24 2023	RVV
Zinc, total		<0.0200	0.0200	mg/L	4		08/15/24 1613	08/19/24 2023	RVV
EPA 3010A/EPA 6010B									

CERTIFICATE OF ANALYSIS

Client Sample ID: Sample Matrix: Lab Sample ID:	QNE Aqueous 1HH1175-02					Collected B Collection I	Sy: DLS Date: 08/12	2/2024 10:06	
Determination of Tota	l Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Aluminum, total		0.092	0.050	mg/L	1		08/16/24 0732	08/20/24 0027	JAR
Boron, total		0.660	0.100	mg/L	1		08/16/24 0732	08/21/24 0352	JAR
Iron, total		0.161	0.100	mg/L	1		08/16/24 0732	08/20/24 0027	JAR
Magnesium, total		62.2	0.100	mg/L	1		08/16/24 0732	08/20/24 0027	JAR
EPA 7470A									
Mercury, total		<0.00050	0.00050	mg/L	1		08/16/24 1502	08/20/24 1058	JAR

CERTIFICATE OF ANALYSIS

Client Sample ID: Sample Matrix: Lab Sample ID:	QE Aqueous 1HH1175-03					Collected By Collection D	y: DLS vate: 08/12/	2024 11:30	
Determination of Carbo Compounds	onyl	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 8315									
Formaldehyde		<20.0	20.0	ug/L	1		08/15/24 1422	08/17/24 1549	PDS
Determination of Conv Chemistry Parameters	rentional	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 410.4									
COD, total		21	20	mg/L	1		08/19/24 1143	08/19/24 1246	CES
EPA 420.1									
Phenols, total		<0.035	0.035	mg/L	1		08/28/24 0839	08/28/24 1604	KKJ
EPA 9020									
Total Organic Halogen	is (TOX)	0.032	0.010	mg/L	1	TX1, TX2	08/27/24 0000	08/28/24 1440	LNH
TIMBERLINE									
Nitrogen, Ammonia		1.74	0.10	mg/L	1		08/26/24 1253	08/26/24 1559	JAC
USGS I-3765-85									
Total Suspended Solid	ls (TSS)	852	1	mg/L	1		08/15/24 1624	08/16/24 0910	RDH
Determination of Inorg	anic Anions	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 9056									
Fluoride		<0.1	0.1	mg/L	1		08/26/24 0000	08/27/24 0248	MID
Chloride		15.2	1.0	mg/L	1		08/26/24 0000	08/27/24 0248	MID
Sulfate		901	10.0	mg/L	10		08/26/24 0000	08/26/24 1513	MID
Determination of Total	Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020A	L Contraction of the second seco								
Antimony, total		<0.0020	0.0020	mg/L	4		08/15/24 1613	08/19/24 2029	RVV
Arsenic, total		0.0099	0.0040	mg/L	4		08/15/24 1613	08/19/24 2029	RVV
Barium, total		0.0659	0.0040	mg/L	4		08/15/24 1613	08/19/24 2029	RVV
Beryllium, total		<0.0040	0.0040	mg/L	4		08/15/24 1613	08/19/24 2029	RVV
Cadmium, total		<0.0008	0.0008	mg/L	4		08/15/24 1613	08/19/24 2029	RVV
Chromium, total		<0.0080	0.0080	mg/L	4		08/15/24 1613	08/19/24 2029	RVV
Cobalt, total		0.0058	0.0004	mg/L	4		08/15/24 1613	08/19/24 2029	RVV
Copper, total		<0.0040	0.0040	mg/L	4		08/15/24 1613	08/19/24 2029	RVV
Lead, total		<0.0040	0.0040	mg/L	4		08/15/24 1613	08/19/24 2029	RVV
Manganese, total		2.86	0.100	mg/L	100		08/15/24 1613	08/20/24 1209	RVV
Molybdenum, total		0.0071	0.0040	mg/L	4		08/15/24 1613	08/19/24 2029	RVV
Nickel, total		0.0130	0.0040	mg/L	4		08/15/24 1613	08/19/24 2029	RVV
Selenium, total		<0.0040	0.0040	mg/L	4		08/15/24 1613	08/19/24 2029	RVV
Silver, total		<0.0040	0.0040	mg/L	4		08/15/24 1613	08/19/24 2029	RVV
Thallium, total		<0.0020	0.0020	mg/L	4		08/15/24 1613	08/19/24 2029	RVV
Vanadium, total		<0.0200	0.0200	mg/L	4		08/15/24 1613	08/19/24 2029	RVV
Zinc, total		<0.0200	0.0200	mg/L	4		08/15/24 1613	08/19/24 2029	RVV
EPA 3010A/EPA 6010B	6								

CERTIFICATE OF ANALYSIS

Client Sample ID: Sample Matrix: Lab Sample ID:	QE Aqueous 1HH1175-03					Collected E Collection	By: Date: 0	0LS 18/12/2	2024 11:30	
Determination of Tota	l Metals	Result	RL	Units	DF	Note	Prepare	d	Analyzed	Analyst
Aluminum, total		0.078	0.050	mg/L	1		08/16/24 0	732	08/20/24 0033	JAR
Boron, total		0.577	0.100	mg/L	1		08/16/24 0	732	08/21/24 0358	JAR
Iron, total		12.3	0.100	mg/L	1		08/16/24 0	732	08/20/24 0033	JAR
Magnesium, total		140	0.100	mg/L	1		08/16/24 0	732	08/20/24 0033	JAR
EPA 7470A										
Mercury, total		<0.00050	0.00050	mg/L	1		08/16/24 1	502	08/20/24 1101	JAR

CERTIFICATE OF ANALYSIS

Client Sample ID: Sample Matrix: Lab Sample ID:	QNW Aqueous 1HH1175-04					Collected By: Collection Da	DLS	2024 12:16	
Determination of Carbo	onyl	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Compounds									
EPA 8315									
Formaldehyde		<10.0	10.0	ug/L	1		08/15/24 1422	08/17/24 1608	PDS
Determination of Conv Chemistry Parameters	entional	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 410.4									
COD, total		<20	20	mg/L	1		08/19/24 1143	08/19/24 1246	CES
EPA 420.1									
Phenols, total		0.053	0.035	mg/L	1		08/26/24 0847	08/26/24 1714	KKJ
EPA 9020				-					
Total Organic Halogen	s (TOX)	0.133	0.010	mg/L	1	TX1	08/27/24 0000	08/28/24 1440	LNH
TIMBERLINE	()			0					
Nitrogen, Ammonia		0.11	0.10	mg/L	1		08/26/24 1253	08/26/24 1601	JAC
USGS I-3765-85				0					
Total Suspended Solid	s (TSS)	626	1	mg/L	1		08/15/24 1624	08/16/24 0910	RDH
Determination of Inorg	anic Anions	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 9056									
Fluoride		0.1	0.1	mg/L	1		08/26/24 0000	08/27/24 0310	MID
Chloride		241	10.0	mg/L	10		08/26/24 0000	08/26/24 1536	MID
Sulfate		134	10.0	mg/L	10		08/26/24 0000	08/26/24 1536	MID
Determination of Total	Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
EPA 3005A/EPA 6020A									
Antimony, total		<0.0020	0.0020	mg/L	4		08/15/24 1613	08/19/24 2035	RVV
Arsenic, total		0.0063	0.0040	mg/L	4		08/15/24 1613	08/19/24 2035	RVV
Barium, total		0.314	0.0040	mg/L	4		08/15/24 1613	08/19/24 2035	RVV
Beryllium, total		<0.0040	0.0040	mg/L	4		08/15/24 1613	08/19/24 2035	RVV
Cadmium, total		<0.0008	0.0008	mg/L	4		08/15/24 1613	08/19/24 2035	RVV
Chromium, total		<0.0080	0.0080	mg/L	4		08/15/24 1613	08/19/24 2035	RVV
Cobalt, total		0.0087	0.0004	mg/L	4		08/15/24 1613	08/19/24 2035	RVV
Copper, total		0.0071	0.0040	mg/L	4		08/15/24 1613	08/19/24 2035	RVV
Lead, total		0.0042	0.0040	mg/L	4		08/15/24 1613	08/19/24 2035	RVV
Manganese, total		4.42	0.100	mg/L	100		08/15/24 1613	08/20/24 1209	RVV
Molybdenum, total		0.0077	0.0040	mg/L	4		08/15/24 1613	08/19/24 2035	RVV
Nickel, total		0.0181	0.0040	mg/L	4		08/15/24 1613	08/19/24 2035	RVV
Selenium, total		<0.0040	0.0040	mg/L	4		08/15/24 1613	08/19/24 2035	RVV
Silver, total		<0.0040	0.0040	mg/L	4		08/15/24 1613	08/19/24 2035	RVV
Thallium, total		<0.0020	0.0020	mg/L	4		08/15/24 1613	08/19/24 2035	RVV
Vanadium, total		<0.0200	0.0200	mg/L	4		08/15/24 1613	08/19/24 2035	RVV
Zinc, total		<0.0200	0.0200	mg/L	4		08/15/24 1613	08/19/24 2035	RVV
EPA 3010A/EPA 6010B									

CERTIFICATE OF ANALYSIS

1HH1175

Client Sample ID: Sample Matrix: Lab Sample ID:	QNW Aqueous 1HH1175-04					Collected E Collection I	By: DLS Date: 08/12	2/2024 12:16	
Determination of Tota	l Metals	Result	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Aluminum, total		2.46	0.050	mg/L	1		08/16/24 0732	08/20/24 0042	JAR
Boron, total		0.211	0.100	mg/L	1		08/16/24 0732	08/21/24 0409	JAR
Iron, total		13.8	0.100	mg/L	1		08/16/24 0732	08/20/24 0042	JAR
Magnesium, total		68.3	0.100	mg/L	1		08/16/24 0732	08/20/24 0042	JAR
EPA 7470A									
Mercury, total		<0.00050	0.00050	mg/L	1		08/16/24 1502	08/20/24 1103	JAR

Definitions

RL:	Reporting Limit
TX1:	Repeated analysis of this sample consistently exceeded greater than 10% breakthrough to the second column.
TX2 :	The RPD value for the sample duplicates are outside of acceptance limits due to matrix interference. The reported value is an average of all test measurements.

Report Comments

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at <<u>https://www.microbac.com/standard-terms-conditions></u>.

Reviewed and Approved By:

Heather Tisdale Customer Relationship Specialist heather.tisdale@microbac.com 08/29/24 12:30

Refinquished By Date/Time	P Z I	Number Sample Identification / Client ID	SITE INFORMATION Sampler: Project: SEE 001 SPECIAL INSTRUCTIONS SPECIAL INSTRUCTIONS FH & CM ON CTIVITY Note FH & CM ON CTIVITY Turn Around Time Matandard RUSH, need by//	MICROBAC®
Rélinquish	Aqueous	Matrix		600 Ead Newton 641-792
Original -	GRAB	Sample Type	REP Donn Stone 1631 Anke Work Ol Temper	CHAIN at 17th St 1, 1A 5020 2-8451
Lab Copy	21/0	Date	Stone Environme NVV 30th C NVV 30th C NVV 30th C NVV 30th C NVV 30th C NVV 30th C	
Date/Time 8/14/2.6 2.4 Date/Time Vellow - Sampl	10:46	Time	antal Engineer	one Environm
2:38 pm er Copy		Number of Containers		1 1 7 5 ental Engineerir
narks:	4315@Furmulitahyda ag.f-6020 bc-f-6020 cod-f-6020 cod-f-6020 fc-f-6020 fc-f-6020 mp-f-6020 mi-f-6020 ph-45020 sof-9056-w tas-i-3765-85 m-f-6020	Anal	Donn Ston Stone Envir 1631 NW 3 Ankeny, IA Containe COC/Lab Preservat Received	
	9020-100 al-f-6010 ba-t-6020 b-t-6010 cl-9056-wr cond-2510 er-t-6020 fbg-t-7470 mn-t-6020 pb-t-6020 pb-t-6020 fl-f-6020 v-f-6020 v-f-6020	/ses	• • • • • • • • • • • • • • • • • • •	Printed: 7/11/20
	01	Lab Sample Number		Page 1 of Page 9 of 12

Results of the Ground Water Statistics

for Besser Quinn Quarry

First Semi-Annual Monitoring Event in 2024

Prepared for: Besser Quinn Quarry Boone, IA 50036

and

Stone Environmental Engineering Ankeny, IA 50021

Prepared by: Jeffrey A. Holmgren Otter Creek Environmental Services, L.L.C. 40W565 Foxwick Court Elgin, IL 60124 (847) 464-1355

October 2024

INTRODUCTION

This report contains the results of the statistical analyses used to evaluate the ground water data obtained during the first semi-annual monitoring event in 2024 at Besser Quinn Quarry. The ground water at Besser Quinn Quarry is monitored by wells QE, QN, QNE, QNW, QS, and QW. These monitoring wells were sampled on August 12, 2024 and analyzed for the parameters required by permit. No sample was obtained at QS; well QW was reported to be dry.

The statistical plan is designed to detect a release from the facility at the earliest indication so that it is protective of human health and the environment. Both interwell and intrawell methodologies are described and then applied to the Besser Quinn Quarry data. The statistical plan conforms with IAC 567, Chapter 113.10, USEPA Guidance document ("*Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Unified Guidance*", March 2009), and the American Society for Testing and Materials (ASTM) standard D6312-98, *Developing Appropriate Statistical Approaches for Ground-Water Detection Monitoring Programs*.

Ground Water Monitoring Program

The groundwater monitoring network for Besser Quinn Quarry includes wells QE, QN, QNE, QNW, QS, and QW. Each of the groundwater monitoring wells is to be sampled at least semiannually and analyzed for the detection monitoring parameters listed below.

Detection monitoring constituents for Besser Quinn Quarry

Barium, Total Boron, Total Cobalt, Total Manganese, Total Molybdenum, Total Nickel, Total

The ground water data obtained during the first semi-annual monitoring event in 2024 are summarized in Attachment A. The historical ground water data obtained from 2019 through the first semi-annual monitoring event in 2024 are summarized in Attachment B.

STATISTICAL METHODOLOGIES FOR DETECTION MONITORING

IAC 567, Chapter 113.10(4) provides several options for statistically evaluating the ground water data at those wells that monitor the open cells or contiguous MSWLF units. The preferred methods for comparing ground water data are using either prediction limits or using control charts. Both of these methods were applied to the Besser Quinn Quarry data using the DUMPStat[®] statistical program. DUMPStat[®] is a program for the statistical analysis of groundwater monitoring data using methods described in "Statistical Methods for Groundwater Monitoring" by Dr. Robert D. Gibbons. The DUMPStat program is completely consistent with all USEPA regulations and guidance and the ASTM D6312-98 guidance. Ground water statistics are to be done on the constituents listed.

besserquinn2024s1

Interwell Statistics: Upgradient versus Downgradient Comparisons

Interwell statistics are appropriate when the upgradient and downgradient wells monitor the same ground water formation and there is similar variability in the upgradient and downgradient zones. Site prediction limits are determined by pooling the historical ground water data from hydraulically upgradient wells. This statistical method compares the current downgradient determinations to site prediction limits and checks for exceedances. The type of prediction limit utilized (e.g., parametric or nonparametric) is based on the detection frequency and the data distribution of each parameter in the background data. The distribution of the background data is tested for normality using the Shapiro-Wilk test (Gibbons, 1994 and USEPA 1992). If the constituent is normally distributed, a normal prediction limit is used. If normality is rejected by the Shapiro-Wilk test, the background data is transformed by taking the natural logarithm. The Shapiro-Wilk test is then reapplied on the transformed data. If it is not rejected, lognormal prediction limits are used. If after transforming the data, normality is still rejected, nonparametric prediction limits are used for that analyte. The nonparametric prediction limit is the largest determination in the background measurements. For constituents where the background detection frequency is greater than 0% but less than 50%, nonparametric prediction limits will be used. If the detection frequency is 0% after thirteen samples have been collected, the practical quantitation limit (PQL) becomes the nonparametric prediction limit.

Results of the Interwell Statistics

The background data used in this statistical analysis includes the ground water data collected from ground water wells QE, QN, and QNE during the period from 2020 through the current data. A summary of the background data from monitoring wells QE, QN, and QNE is listed in Attachment C, Table 1 "Upgradient Data". This statistical method compares the current downgradient determinations to site prediction limits and checks for exceedances.

Table 2 "Most Current Downgradient Monitoring Data", summarizes the current data from downgradient well QNW compared to the site prediction limits. Prediction limit exceedances are flagged with asterisks. For the most current data, the site prediction limit exceedances detected are summarized in the table below.

Well	Parameter	Result	Prediction Limit	Prediction Limit Type	Verified/ Awaiting verification
OWW	Barium, mg/L	0.314	0.2050	Nonparametric	Verified
QNW	Manganese, mg/L	4.42	3.8243	Lognormal	Verified

Prediction Limit Exceedances at Besser Quinn Quarry during the First Semi-Annual Monitoring Event in 2024

The detection frequencies of the parameters in the up and down gradient monitoring wells are summarized in Table 3. Table 4 summarizes the results of the Shapiro-Wilk test. Table 5 is a summary of the statistics and prediction limits determined. Time series graphs of each of the parameters at each well with the corresponding prediction limits are attached.

A statistical power curve indicates the expected false assessments for the site as a whole. The false positive rate for interwell analyses is the percentage of failures when the upgradient versus downgradient true mean difference equals zero. False negative rate indicates the chance of missing contamination at a single well

for a single constituent. The statistical power is a function of the number of wells included, the number of constituents compared, the detection frequencies, and the data distributions involved. For interwell analysis, the site-wide false positive rate is 1% and the test becomes sensitive to 5 standard deviation unit increases over background.

Intrawell statistics

Intrawell statistics are appropriate for facilities where the upgradient wells do not accurately characterize the natural ground water conditions downgradient from the facility. This may be due to different hydrogeological conditions where the wells are screened, having too few upgradient wells to account for the spatial variability, or the site exhibiting no definable hydraulic gradient. Intrawell statistics compare new measurements to the historical data at each ground water monitoring well independently. It is recommended that at least eight background samples be obtained prior to performing the statistics.

The most useful technique for intrawell comparisons is the combined Shewhart-CUSUM control chart. This control chart procedure is useful because it will detect releases both in terms of the constituent concentration and cumulative increases. This method is also extremely sensitive to sudden and gradual releases. A requirement for constructing these control charts is that the parameter is detected at a frequency greater than or equal to 25%, otherwise the data variance is not properly defined.

The combined Shewhart-CUSUM control chart assumes that the data are independent and normally distributed with a fixed mean and a constant variance. Independent data is much more critical than the normality assumption. To achieve independence, it is recommended that data are collected no more frequently than quarterly to account for seasonal variation. The combined Shewhart-CUSUM control chart is extremely robust to deviations from normality. Because the control charts do not use a specific multiplier based on a normal distribution, it is more conservative to assume normality.

It is recommended that at least eight rounds of data be available to provide a reliable estimate of the mean and standard deviation of the parameter concentration, although the control charts will be generated with as few as four data points. Having only four data points may produce greater uncertainty in the mean and standard deviation of the background data, leading to higher control limits, thus having a potentially high false negative rate.

Many groundwater monitoring parameters are not detected at a frequency great enough to generate the combined Shewhart-CUSUM control charts. For constituents that are detected less than 25% of the time at a particular well, the data should be plotted as a time series until a sufficient number of data points are available to provide a 99% confidence nonparametric prediction limit. Thirteen independent measurements (with 1 resample) are necessary to achieve a 99% confidence (1% false positive rate) nonparametric prediction limit. Eight independent measurements (for pass 1 of 2 resamples) are necessary to achieve a 99% confidence nonparametric prediction limit. The nonparametric prediction limit is the largest determination out of the data set collected for that well and parameter. If the detection frequency is 0% after thirteen samples have been collected, the practical quantitation limit (PQL) becomes the nonparametric prediction limit.

besserquinn2024s1

In developing the statistical background, the historical data must be thoroughly screened for anomalous data due to sampling error, analytical error, or simply by chance alone. An erroneous data point, if not removed prior to the mean and variance computations, would yield a larger control limit thus increasing the false negative rate. The DUMPStat[®] program screens for outliers using the Dixon test. Anomalous data will still be plotted on the graphs (with a unique symbol) but will not be included in the calculations.

The verification resample plan is an integral function of the statistical plan to reduce the probability that anomalous data obtained after the background has been established, is indicative of a release.

The background data for each well and constituent is tested for existing trends using Sen's nonparametric estimate of trend. If contamination exists prior to completing the background, the control limits could be potentially high and this control chart method would not be able to detect an increasing trend unless the increase is severe.

Results of the Intrawell Statistics

The monitoring constituents at wells QE, QN, QNE, QNW, and QS were evaluated using the combined Shewhart-CUSUM control chart method. The previous background included the four rounds of data obtained from March 2020 through December 2020. Since a minimum of eight rounds of data is recommended, the background was updated to include data obtained from March 2020 through December 2022.

A summary of the intrawell statistics is included in Attachment D, Table 1 "Summary Statistics and Intermediate Computations for Combined Shewhart-CUSUM Control Charts." The control charts or time series graphs follow the summary table. For the most current data, the control limit exceedances detected are summarized in the table below. No increasing trends were detected in the background data.

Well	Parameter	Result	CUSUM value	Control Limit	Control Limit Type	Verified/ Awaiting Verification
QN	Manganese, mg/L	5.81	5.5427	2.5968	Normal	Awaiting verification

Control Limit Exceedances During the First Semi-Annual Monitoring Event in 2024

A control chart factor was selected to provide a balance of the site-wide false positive and false negative rates. A statistical power curve indicates the expected false assessments for the site as a whole. The site-wide false positive rate is 5% and the test becomes sensitive to 4 standard deviation units over background.

Attachment A

Ground Water Data

Table 1

-			-		
Constituents	Units	QE	QN	QNE	QNW
Barium, Total	mg/L	.0659	.0486	.1090	.3140
Boron, Total	mg/L	.577	.374	.660	.211
Cobalt, Total	mg/L	.0058	.0041	.0009	.0087
Manganese, Total	mg/L	2.860	5.810	.402	4.420
Molybdenum, Total	mg/L	.0071	.0147	.0121	.0077
Nickel, Total	mg/L	.0130	.0094	.0052	.0181

Analytical Data Summary for 8/12/2024

* - The displayed value is the arithmetic mean of multiple database matches.

Table 1

Constituents	Units	QE	QN	QNE	QNW	
Aluminum	mg/L	.078	.125	.092	2.460	
Ammonia	mg/L	1.74	.61	1.52	.11	
Antimony, total	mg/L	<.002	<.002	<.002	<.002	
Arsenic, total	mg/L	.0099	.0092	<.0040	.0063	
Barium, Total	mg/L	.0659	.0486	.1090	.3140	
Beryllium, total	mg/L	<.004	<.004	<.004	<.004	
Boron, Total	mg/L	.577	.374	.660	.211	
Cadmium, total	mg/L	<.0008	<.0008	<.0008	<.0008	
Chloride	mg/L	15.2	99.3	6.5	241.0	
Chromium, total	mg/L	<.008	<.008	<.008	<.008	
Cobalt, Total	mg/L	.0058	.0041	.0009	.0087	
COD	mg/L	21	<20	<20	<20	
Copper, total	mg/L	<.0040	<.0040	.0052	.0071	
Fluoride	mg/L	<.1	.1	.1	.1	
Formaldehyde	ug/L	<20	<20	<10	<10	
Iron	mg/L	12.300	15.700	.161	13.800	
Lead, total	mg/L	<.0040	<.0040	<.0040	.0042	
Magnesium	mg/L	140.0	164.0	62.2	68.3	
Manganese, Total	mg/L	2.860	5.810	.402	4.420	
Mercury, total	mg/L	<.0005	<.0005	<.0005	<.0005	
Molybdenum, Total	mg/L	.0071	.0147	.0121	.0077	
Nickel, Total	mg/L	.0130	.0094	.0052	.0181	
Phenols	mg/L	<.035	<.035	<.035	.053	
Selenium, total	mg/L	<.004	<.004	<.004	<.004	
Silver, total	mg/L	<.004	<.004	<.004	<.004	
Sulfate	mg/L	901	1010	233	134	
Thallium, total	mg/L	<.002	<.002	<.002	<.002	
TOX	mg/L	.032	.092	<.010	.133	
TSS	mg/L	852	87	6	626	
Vanadium, total	mg/L	<.02	<.02	<.02	<.02	
Zinc, total	mg/L	<.020	<.020	<.020	<.002	

Analytical Data Summary for 8/12/2024

* - The displayed value is the arithmetic mean of multiple database matches.

Attachment B

Historical Ground Water Data

Table 1

Analytical Data Summary for QE

Constituents	Units	3/1/2020	6/15/2020	9/1/2020	12/9/2020	6/10/2021	12/9/2021	6/21/2022	12/6/2022	3/22/2023	6/19/2023	12/1/2023	8/12/2024
Barium, Total	mg/L	.1200	.1140	.0630	.0520	.0065	.0770	.0690	.1520	.0637	.0778	.0716	.0659
Boron, Total	mg/L	.293	.185	.524	.523	.504	.489	<.100	.645	.167	.385	.629	.577
Cobalt, Total	mg/L	.0048	.0020	.0004	.0042	.0017	.0024	.0023	.0293	.0066	.0076	.0085	.0058
Manganese, Total	mg/L	1.290	1.020	.808	.776	2.070	3.010	.719	1.500	1.390	3.030	1.480	2.860
Molybdenum, Total	mg/L	<.0100	<.0100	<.0100	.0100	<.0100	<.0100	<.0100	.0190	.0041	.0040	.0076	.0071
Nickel, Total	mg/L	.0110	<.0100	<.0100	.0150	<.0100	.0150	<.0100	.0430	.0157	.0116	.0248	.0130

* - The displayed value is the arithmetic mean of multiple database matches.
Analytical Data Summary for QN

Constituents	Units	3/1/2020	6/15/2020	9/1/2020	12/9/2020	6/10/2021	12/9/2021	6/21/2022	12/6/2022	3/22/2023	6/19/2023	12/1/2023	8/12/2024
Barium, Total	mg/L	.2050	.0890	.0790	.1040	.1220	.1260	.0560	.0430	.0445	.0881	.0594	.0486
Boron, Total	mg/L	.544	.479	.481	.520	.661	.634	.124	.523	.654	.603	.488	.374
Cobalt, Total	mg/L	.0039	.0035	.0029	.0039	.0034	.0025	.0008	.0059	.0027	.0061	.0025	.0041
Manganese, Total	mg/L	1.150	.945	.857	1.100	.955	.614	.333	.922	.782	.689	.691	5.810
Molybdenum, Total	mg/L	.3580	.2650	.2460	.2500	.2230	.1840	.0240	.1340	.1240	.1150	.0900	.0147
Nickel, Total	mg/L	.0190	.0200	.0170	.0160	.0130	.0170	.0200	.0250	.0106	.0121	.0169	.0094

Analytical Data Summary for QNE

Constituents	Units	3/1/2020	6/15/2020	9/1/2020	12/9/2020	6/10/2021	12/9/2021	6/21/2022	12/6/2022	3/22/2023	6/19/2023	12/1/2023	8/12/2024
Barium, Total	mg/L	.1490	.1040	.0940	.0970	.0960	.0970	.1000	.0960	.0907	.1000	.0992	.1090
Boron, Total	mg/L	1.1500	.4760	.0752	.7390	.7490	.7300	.6080	.6320	.6710	.6200	.6250	.6600
Cobalt, Total	mg/L	.0038	.0019	.0011	.0013	.0006	.0007	.0005	.0043	.0011	.0062	.0027	.0009
Manganese, Total	mg/L	1.460	.616	.698	.604	.397	.431	.313	.399	.639	.347	.555	.402
Molybdenum, Total	mg/L	.1150	.0210	.0230	.0230	.0200	.0200	.0180	.0140	.0129	.0117	.0127	.0121
Nickel, Total	mg/L	.0160	.0180	.0150	.0120	<.0100	<.0100	<.0100	<.0100	.0053	.0044	.0066	.0052

Analytical Data Summary for QNW

Constituents	Units	3/1/2020	6/15/2020	9/1/2020	12/9/2020	6/10/2021	12/9/2021	6/21/2022	12/6/2022	3/22/2023	6/19/2023	12/1/2023	8/12/2024
Barium, Total	mg/L	.226	.170	.245	.287	.260	.309	1.820	1.400	.195	.249	9.410	.314
Boron, Total	mg/L	.174	<.010	.198	.247	.163	.277	.122	.296	.147	.138	1.290	.211
Cobalt, Total	mg/L	.0033	.0074	.0004	.0004	.0033	.0067	.0804	.0581	.0007	.0030	.7270	.0087
Manganese, Total	mg/L	1.040	.302	.056	.045	.701	.714	5.240	9.880	.105	.512	49.900	4.420
Molybdenum, Total	mg/L	<.0100	<.0100	<.0100	<.0100	<.0100	<.0100	.0180	.0200	<.0040	<.0040	.1550	.0077
Nickel, Total	mg/L	<.0100	.0100	<.0100	<.0100	<.0100	<.0100	.1000	.0910	.0040	.0056	1.3700	.0181

Analytical Data Summary for QS

Constituents	Units	3/1/2020	6/15/2020	9/1/2020	12/9/2020	6/10/2021	12/9/2021	6/21/2022	12/6/2022	3/22/2023	6/19/2023	12/1/2023
Barium, Total	mg/L	2.990	.256	.250	.384	.261	.202	3.890	2.680	.188	.719	22.500
Boron, Total	mg/L	.162	<.010	<.010	<.010	.114	<.100	.139	.135	<.100	.106	<1.000
Cobalt, Total	mg/L	.2270	.0103	.0064	.0135	.0070	.0038	.2260	.1920	<.0004	.0357	1.6200
Manganese, Total	mg/L	16.600	.658	.419	1.080	.429	.078	20.000	12.000	<.004	2.420	93.100
Molybdenum, Total	mg/L	.020	<.010	<.010	<.010	<.010	<.010	.022	.014	<.004	<.004	.067
Nickel, Total	mg/L	.3380	.0210	.0150	.0250	.0120	<.0100	.3360	.2290	<.0040	.0456	1.8900

Analytical Data Summary for QW

Constituents	Units	3/1/2020	6/15/2020	9/1/2020	12/9/2020	6/10/2021	12/9/2021	6/21/2022
Barium, Total	mg/L	.176	.151	.156	.170	.284	.189	.628
Boron, Total	mg/L	<.01	<.01	<.01	<.01	<.01	<.10	<.10
Cobalt, Total	mg/L	.0012	.0004	.0004	.0009	.0082	.0013	.0308
Manganese, Total	mg/L	.082	.024	.023	.049	.504	.059	2.020
Molybdenum, Total	mg/L	<.01	<.01	<.01	<.01	<.01	<.01	<.01
Nickel, Total	mg/L	<.010	<.010	<.010	<.010	.016	<.010	.053

Attachment C

Summary Tables and Graphs for the Interwell Comparisons

Upgradient Data

Constituent	Units	Well	Date		Result	Adjusted	
Barium. Total	ma/L	QE	03/01/2020		0.1200		
Barium, Total	mg/L	QE	06/15/2020		0.1140		
Barium, Total	mg/L	QE	09/01/2020		0.0630		
Barium, Total	mg/L	QE	12/09/2020		0.0520		
Barium, Total	mg/L	QE	06/10/2021		0.0065		*
Barium, Iotal	mg/L	QE	12/09/2021		0.0770		
Barium Total	mg/L		12/06/2022		0.0690		
Barium Total	ma/l	0F	03/22/2023		0.1520		
Barium, Total	mg/L	QE	06/19/2023		0.0778		
Barium, Total	mg/L	QE	12/01/2023		0.0716		
Barium, Total	mg/L	QE	08/12/2024		0.0659		
Boron, Total	mg/L	QE	03/01/2020		0.2930		
Boron, Iotal	mg/L		00/15/2020		0.1850		
Boron Total	mg/L	OF	12/09/2020		0.5240		
Boron, Total	ma/L	QE	06/10/2021		0.5040		
Boron, Total	mg/L	QE	12/09/2021		0.4890		
Boron, Total	mg/L	QE	06/21/2022	ND	0.1000		
Boron, Total	mg/L	QE	12/06/2022		0.6450		
Boron, Total	mg/L	QE	03/22/2023		0.1670		
Boron, Iotal	mg/L	QE	06/19/2023		0.3850		
Boron Total	mg/L	OF	08/12/2023		0.0290		
Cobalt, Total	mg/L	QE	03/01/2020		0.0048		
Cobalt, Total	mg/L	QE	06/15/2020		0.0020		
Cobalt, Total	mg/L	QE	09/01/2020		0.0004		
Cobalt, Total	mg/L	QE	12/09/2020		0.0042		
Cobalt, Total	mg/L	QE	06/10/2021		0.0017		
Cobalt, Iotal	mg/L	QE	12/09/2021		0.0024		
Cobalt Total	mg/L		12/06/2022		0.0023		
Cobalt, Total	ma/L	QE	03/22/2023		0.0066		
Cobalt, Total	mg/L	QE	06/19/2023		0.0076		
Cobalt, Total	mg/L	QE	12/01/2023		0.0085		
Cobalt, Total	mg/L	QE	08/12/2024		0.0058		
Manganese, Total	mg/L	QE	03/01/2020		1.2900		
Manganese, Iotal	mg/L	QE	06/15/2020		1.0200		
Manganese Total	mg/L	OF	12/09/2020		0.0000		
Manganese, Total	mg/L	QE	06/10/2021		2.0700		
Manganese, Total	mg/L	QE	12/09/2021		3.0100		
Manganese, Total	mg/L	QE	06/21/2022		0.7190		
Manganese, Total	mg/L	QE	12/06/2022		1.5000		
Manganese, Iotal	mg/L	QE	03/22/2023		1.3900		
Manganese Total	mg/L		12/01/2023		1 4800		
Manganese, Total	ma/L	QE	08/12/2024		2.8600		
Molybdenum, Total	mg/L	QE	03/01/2020	ND	0.0100		
Molybdenum, Total	mg/L	QE	06/15/2020	ND	0.0100		
Molybdenum, Total	mg/L	QE	09/01/2020	ND	0.0100		
Molybdenum, Iotal	mg/L	QE	12/09/2020		0.0100		
Molybdenum, Total	mg/L		12/09/2021		0.0100		
Molybdenum, Total	ma/L	QE	06/21/2022	ND	0.0100		
Molybdenum, Total	mg/L	QE	12/06/2022		0.0190		
Molybdenum, Total	mg/L	QE	03/22/2023		0.0041		
Molybdenum, Total	mg/L	QE	06/19/2023		0.0040		
Molybdenum, Total	mg/L	QE	12/01/2023		0.0076		
Nolybdenum, Iotal	mg/L mg/l	QE	08/12/2024		0.0071		
Nickel Total	mg/L		06/15/2020		0.0110		
Nickel, Total	ma/L	QE	09/01/2020	ND	0.0100		
Nickel, Total	mg/L	QE	12/09/2020		0.0150		
Nickel, Total	mg/L	QE	06/10/2021	ND	0.0100		
Nickel, Total	mg/L	QE	12/09/2021		0.0150		
Nickel, Total	mg/L	QE	06/21/2022	ND	0.0100		
Nickel, Iotal	mg/L		12/06/2022		0.0430		r
Nickel Total	mg/L		03/22/2023		0.0157		
Nickel, Total	mg/L	QE	12/01/2023		0.0248		
Nickel, Total	mg/L	QE	08/12/2024		0.0130		
Barium, Total	mg/L	QN	03/01/2020		0.2050		
Barium, Total	mg/L	QN	06/15/2020		0.0890		

* - Outlier for that well and constituent.
 ** - ND value replaced with median RL.
 *** - ND value replaced with manual RL.
 ND = Not detected, Result = detection limit.

Upgradient Data

Constituent	Units	Well	Date	Result	Adjusted	
Barium, Total	mg/L	QN	09/01/2020	0.0790		
Barium, Total	mg/L	QN	12/09/2020	0.1040		
Barium, Total	mg/L	QN	06/10/2021	0.1220		
Barium, Total	mg/L	QN	12/09/2021	0.1260		
Barium, Total	mg/L	QN	06/21/2022	0.0560		
Barium, Total	mg/L	QN	12/06/2022	0.0430		
Barium, Total	mg/L	QN	03/22/2023	0.0445		
Barium, Iotal	mg/L	QN	06/19/2023	0.0881		
Barium, Iotal	mg/L		12/01/2023	0.0594		
Boron Total	mg/L		03/01/2024	 0.0400		
Boron Total	ma/l	ON	06/15/2020	0.04790		
Boron, Total	ma/L	QN	09/01/2020	0.4810		
Boron, Total	mg/L	QN	12/09/2020	0.5200		
Boron, Total	mg/L	QN	06/10/2021	0.6610		
Boron, Total	mg/L	QN	12/09/2021	0.6340		
Boron, Total	mg/L	QN	06/21/2022	0.1240		*
Boron, Total	mg/L	QN	12/06/2022	0.5230		
Boron, Iotal	mg/L	QN	03/22/2023	0.6540		
Boron, Iotal	mg/L	QN	06/19/2023	0.6030		
Boron, Total	mg/L		12/01/2023	0.4000		
Cohalt Total	mg/L		03/01/2020	 0.0740		
Cobalt Total	ma/l	ON	06/15/2020	0.0035		
Cobalt, Total	ma/L	QN	09/01/2020	0.0029		
Cobalt, Total	mg/L	QN	12/09/2020	0.0039		
Cobalt, Total	mg/L	QN	06/10/2021	0.0034		
Cobalt, Total	mg/L	QN	12/09/2021	0.0025		
Cobalt, Total	mg/L	QN	06/21/2022	0.0008		
Cobalt, Total	mg/L	QN	12/06/2022	0.0059		
Cobalt, Total	mg/L	QN	03/22/2023	0.0027		
Cobalt, Iotal	mg/L	QN	06/19/2023	0.0061		
Cobalt Total	mg/L		12/01/2023	0.0025		
Manganese Total	mg/L		03/01/2020	 1 1500		
Manganese Total	ma/l	ON	06/15/2020	0.9450		
Manganese, Total	ma/L	QN	09/01/2020	0.8570		
Manganese, Total	mg/L	QN	12/09/2020	1.1000		
Manganese, Total	mg/L	QN	06/10/2021	0.9550		
Manganese, Total	mg/L	QN	12/09/2021	0.6140		
Manganese, Total	mg/L	QN	06/21/2022	0.3330		
Manganese, Iotal	mg/L	QN	12/06/2022	0.9220		
Manganese, Total	mg/L		03/22/2023	0.7820		
Manganese Total	mg/L		12/01/2023	0.0090		
Manganese Total	ma/l	ON	08/12/2023	5 8100		*
Molybdenum, Total	ma/L	QN	03/01/2020	 0.3580		
Molybdenum, Total	mg/L	QN	06/15/2020	0.2650		
Molybdenum, Total	mg/L	QN	09/01/2020	0.2460		
Molybdenum, Total	mg/L	QN	12/09/2020	0.2500		
Molybdenum, Total	mg/L	QN	06/10/2021	0.2230		
Molybdenum, Total	mg/L	QN	12/09/2021	0.1840		
Molybdenum, Iotal	mg/L	QN	06/21/2022	0.0240		
Molybdenum, Total	mg/L		03/22/2022	0.1340		
Molybdenum, Total	ma/l	ON	06/19/2023	0.1240		
Molybdenum, Total	ma/L	QN	12/01/2023	0.0900		
Molybdenum, Total	mg/L	QN	08/12/2024	0.0147		
Nickel, Total	mg/L	QN	03/01/2020	0.0190		
Nickel, Total	mg/L	QN	06/15/2020	0.0200		
Nickel, Total	mg/L	QN	09/01/2020	0.0170		
Nickel, Total	mg/L	QN	12/09/2020	0.0160		
NICKEI, IOTAI	mg/L	QN	06/10/2021	0.0130		
Nickel, Total	mg/L		12/09/2021	0.0170		
Nickel Total	ma/l		12/06/2022	0.0200		
Nickel, Total	mg/L	QN	03/22/2023	0.0106		
Nickel, Total	mg/L	QN	06/19/2023	0.0121		
Nickel, Total	mg/L	QN	12/01/2023	0.0169		
Nickel, Total	mg/L	QN	08/12/2024	0.0094		
Barium, Total	mg/L	QNE	03/01/2020	0.1490		
Barium, Iotal	mg/L		06/15/2020	0.1040		
Barium, Total	mg/L mg/l	ONF	12/09/2020	0.0940		

* - Outlier for that well and constituent.
 ** - ND value replaced with median RL.
 *** - ND value replaced with manual RL.
 ND = Not detected, Result = detection limit.

Upgradient Data

Constituent	Units	Well	Date		Result	Adjusted	
Barium, Total	mg/L	QNE	06/10/2021		0.0960		
Barium, Total	mg/L	QNE	12/09/2021		0.0970		
Barium, Total	mg/L	QNE	06/21/2022		0.1000		
Barium, Total	mg/L	QNE	12/06/2022		0.0960		
Barium, Total	mg/L	QNE	03/22/2023		0.0907		
Barium, Total	mg/L	QNE	06/19/2023		0.1000		
Barium, Iotal	mg/L	QNE	12/01/2023		0.0992		
Boron Total	mg/L		03/01/2020		1 1500		
Boron Total	mg/L	ONE	06/15/2020		0 4760		
Boron, Total	ma/L	QNE	09/01/2020		0.0752		*
Boron, Total	mg/L	QNE	12/09/2020		0.7390		
Boron, Total	mg/L	QNE	06/10/2021		0.7490		
Boron, Total	mg/L	QNE	12/09/2021		0.7300		
Boron, Total	mg/L	QNE	06/21/2022		0.6080		
Boron, Total	mg/L	QNE	12/06/2022		0.6320		
Boron, Total	mg/L	QNE	03/22/2023		0.6710		
Boron, Iotal	mg/L		06/19/2023		0.6200		
Boron, Iotal	mg/L		12/01/2023		0.6250		
Cobalt Total	mg/L		03/01/2020		0.0000		
Cobalt, Total	mg/L	ONE	06/15/2020		0.0000		
Cobalt Total	ma/l	ONE	09/01/2020		0.0011		
Cobalt, Total	mg/L	QNE	12/09/2020		0.0013		
Cobalt, Total	mg/L	QNE	06/10/2021		0.0006		
Cobalt, Total	mg/L	QNE	12/09/2021		0.0007		
Cobalt, Total	mg/L	QNE	06/21/2022		0.0005		
Cobalt, Total	mg/L	QNE	12/06/2022		0.0043		
Cobalt, Total	mg/L	QNE	03/22/2023		0.0011		
Cobalt, Total	mg/L	QNE	06/19/2023		0.0062		
Cobalt, Iotal	mg/L	QNE	12/01/2023		0.0027		
Manganosa Total	mg/L		03/01/2020		1 4600		
Manganese Total	mg/L	ONE	06/15/2020		0.6160		
Manganese Total	mg/L	ONF	09/01/2020		0.6980		
Manganese, Total	mg/L	QNE	12/09/2020		0.6040		
Manganese, Total	mg/L	QNE	06/10/2021		0.3970		
Manganese, Total	mg/L	QNE	12/09/2021		0.4310		
Manganese, Total	mg/L	QNE	06/21/2022		0.3130		
Manganese, Total	mg/L	QNE	12/06/2022		0.3990		
Manganese, Iotal	mg/L		03/22/2023		0.6390		
Manganese, Total	mg/L		12/01/2023		0.3470		
Manganese Total	mg/L		08/12/2023		0.3330		
Molybdenum Total	mg/L	ONF	03/01/2020		0.4020		*
Molybdenum, Total	ma/L	QNE	06/15/2020		0.0210		
Molybdenum, Total	mg/L	QNE	09/01/2020		0.0230		
Molybdenum, Total	mg/L	QNE	12/09/2020		0.0230		
Molybdenum, Total	mg/L	QNE	06/10/2021		0.0200		
Molybdenum, Total	mg/L	QNE	12/09/2021		0.0200		
Molybdenum, Total	mg/L	QNE	06/21/2022		0.0180		
Molybdenum, Total	mg/L	QNE	12/06/2022		0.0140		
Molybdenum, Iotal	mg/L	QNE	03/22/2023		0.0129		
Molybdenum, Total	mg/L		12/01/2023		0.0117		
Molybdenum Total	mg/L	ONE	08/12/2023		0.0127		
Nickel Total	mg/L	ONE	03/01/2020		0.0121		
Nickel, Total	mg/L	QNE	06/15/2020		0.0180		
Nickel, Total	mg/L	QNE	09/01/2020		0.0150		
Nickel, Total	mg/L	QNE	12/09/2020		0.0120		
Nickel, Total	mg/L	QNE	06/10/2021	ND	0.0100		
Nickel, Total	mg/L	QNE	12/09/2021	ND	0.0100		
Nickel, Total	mg/L	QNE	06/21/2022		0.0100		
NICKEI, IOTAI	mg/L		12/06/2022		0.0100		
Nickel, Iotal	mg/L		03/22/2023		0.0053		
Nickel Total	mg/L		12/01/2023		0.0044		
Nickel, Total	mg/L	QNE	08/12/2024		0.0052		

* - Outlier for that well and constituent.
 ** - ND value replaced with median RL.
 *** - ND value replaced with manual RL.
 ND = Not detected, Result = detection limit.

Constituent	Units	Well	Date	Result		Pred. Limit
Barium, Total	mg/L	QNW	08/12/2024	0.3140	***	0.2050
Boron, Total	mg/L	QNW	08/12/2024	0.2110	**	1.0374
Cobalt, Total	mg/L	QNW	08/12/2024	0.0087	**	0.0249
Manganese, Total	mg/L	QNW	08/12/2024	4.4200	***	3.8243
Molybdenum, Total	mg/L	QNW	08/12/2024	0.0077		0.3047
Nickel, Total	mg/L	QNW	08/12/2024	0.0181	**	0.0300

* - Current value failed - awaiting verification.
 ** - Current value passed - previous exceedance not verified.
 **** - Current value failed - exceedance verified.
 **** - Current value passed - awaiting one more verification.
 ***** - Insufficient background data to compute prediction limit.
 ND = Not Detected, Result = detection limit.

Constituent	Detect	Upgradient N	Proportion	Detect	Downgradient N	Proportion
Barium, Total	35	35	1.000	12	12	1.000
Boron, Total	33	34	0.971	11	12	0.917
Cobalt, Total	36	36	1.000	12	12	1.000
Manganese, Total	35	35	1.000	12	12	1.000
Molybdenum, Total	29	35	0.829	4	12	0.333
Nickel, Total	27	35	0.771	7	12	0.583

Detection Frequencies in Upgradient and Downgradient Wells

N = Total number of measurements in all wells. Detect = Total number of detections in all wells. Proportion = Detect/N.

Shapiro-Wilk Multiple Group Test of Normality

Constituent	Detect	Ν	Detect Freq	G raw	G log	G cbrt	G sqrt	G sqr	G cub	Crit Value	Dist Form	Model Type
Barium, Total	35	35	1.000	4.486	2.610					2.326	non-norm	nonpar
Boron, Total	33	34	0.971	2.062	2.200					2.326	normal	normal
Cobalt, Total	36	36	1.000	3.537	0.696					2.326	lognor	lognor
Manganese, Total	35	35	1.000	2.520	1.979					2.326	lognor	lognor
Molybdenum, Total	29	35	0.829	1.107	1.905					2.326	normal	normal
Nickel, Total	27	35	0.771	1.206	0.900					2.326	normal	normal

 * - Distribution override for that constituent. Fit to distribution is confirmed if G <= critical value. Model type may not match distributional form when detection frequency < 50%.

Summary Statistics and Prediction Limits

Constituent	Units	Detect	N	Mean	SD	alpha	Factor	Pred Limit	Туре	Conf
Barium, Total	mg/L	35	35					0.2050	nonpar	0.99
Boron, Total	mg/L	33	34	0.5454	0.1984	0.0100	2.4803	1.0374	normal	
Cobalt, Total	mg/L	36	36	-5.9325	0.9060	0.0100	2.4712	0.0249	lognor	
Manganese, Total	mg/L	35	35	-0.1688	0.6100	0.0100	2.4756	3.8243	lognor	
Molybdenum, Total	mg/L	29	35	0.0648	0.0969	0.0100	2.4756	0.3047	normal	
Nickel, Total	mg/L	27	35	0.0110	0.0077	0.0100	2.4756	0.0300	normal	

Conf = confidence level for passing initial test or one verification resample at all downgradient wells for a single constituent (nonparametric test only).
* - Insufficient Data.
** - Calculated limit raised to Manual Reporting Limit.
*** - Nonparametric limit based on ND value.

For transformed data, mean and SD in transformed units and prediction limit in original units.

All sample sizes and statistics are based on outlier free data. For nonparametric limits, median reporting limits are substituted for extreme reporting limit values.

Dixon's Test Outliers 1% Significance Level

Constituent	Units	Well	Date	Result	ND Qualifier	Date Range	Ν	Critical Value
Barium, Total	mg/L	QE	06/10/2021	0.0065		03/01/2020-08/12/2024	12	0.6425
Nickel, Total	mg/L	QE	12/06/2022	0.0430		03/01/2020-08/12/2024	12	0.6425
Boron, Total	mg/L	QN	06/21/2022	0.1240		03/01/2020-08/12/2024	12	0.6425
Manganese, Total	mg/L	QN	08/12/2024	5.8100		03/01/2020-08/12/2024	12	0.6425
Boron, Total	mg/L	QNE	09/01/2020	0.0752		03/01/2020-08/12/2024	12	0.6425
Molybdenum, Total	mg/L	QNE	03/01/2020	0.1150		03/01/2020-08/12/2024	12	0.6425

N = Total number of independent measurements in background at each well. Date Range = Dates of the first and last measurements included in background at each well. Critical Value depends on the significance level and on N-1 when the two most extreme values are tested or N for the most extreme value.

that Failed the Current Statistical Evaluation or are in Verification Resampling Mode							
Constituent	Units	Well	Date		Result		Pred. Limit
Barium, Total	mg/L	QNW	03/01/2020		0.2260	*	0.2050
Barium, Total	mg/L	QNW	06/15/2020		0.1700		0.2050
Barium, Total	mg/L	QNW	09/01/2020		0.2450	*	0.2050
Barium, Total	mg/L	QNW	12/09/2020		0.2870	*	0.2050
Barium, Total	mg/L	QNW	06/10/2021		0.2600	*	0.2050
Barium, Total	mg/L	QNW	12/09/2021		0.3090	*	0.2050
Barium, Total	mg/L	QNW	06/21/2022		1.8200	*	0.2050
Barium, Total	mg/L	QNW	12/06/2022		1.4000	*	0.2050
Barium, Total	mg/L	QNW	03/22/2023		0.1950		0.2050
Barium, Total	mg/L	QNW	06/19/2023		0.2490	*	0.2050
Barium, Total	mg/L	QNW	12/01/2023		9.4100	*	0.2050
Barium, Total	mg/L	QNW	08/12/2024		0.3140	*	0.2050
Boron, Total	mg/L	QNW	03/01/2020		0.1740		1.0374
Boron, Total	mg/L	QNW	06/15/2020	ND	0.0100		1.0374
Boron, Total	mg/L	QNW	09/01/2020		0.1980		1.0374
Boron, Total	mg/L	QNW	12/09/2020		0.2470		1.0374
Boron, Total	mg/L	QNW	06/10/2021		0.1630		1.0374
Boron, Total	mg/L	QNW	12/09/2021		0.2770		1.0374
Boron, Total	mg/L	QNW	06/21/2022		0.1220		1.0374
Boron Total	ma/l	ONW	12/06/2022		0 2960		1 0374

03/22/2023

06/19/2023

12/01/2023 08/12/2024

03/01/2020

06/15/2020

09/01/2020

12/09/2020

06/10/2021

12/09/2021

06/21/2022

12/06/2022

03/22/2023

06/19/2023

12/01/2023

08/12/2024

03/01/2020

06/15/2020

09/01/2020

12/09/2020

06/10/2021

12/09/2021

06/21/2022

12/06/2022

03/22/2023

06/19/2023

12/01/2023

08/12/2024

03/01/2020

06/15/2020

09/01/2020

12/09/2020

06/10/2021

12/09/2021

06/21/2022

12/06/2022

03/22/2023

06/19/2023

12/01/2023

08/12/2024

Historical Downgradient Data for Constituent-Well Combinations

* - Significantly increased over background.

** - Detect at limit for 100% NDs in background (NPPL only).

*** - Manual exclusion.

Boron, Total

Boron, Total

Boron, Total

Boron, Total

Cobalt, Total

Manganese, Total

Nickel, Total Nickel, Total

Nickel, Total

Nickel, Total

Nickel, Total

Nickel, Total

Nickel, Total

Nickel, Total

Nickel, Total

Nickel, Total

Nickel, Total

Nickel, Total

mg/L

mg/L mg/L mg/L

mg/L mg/L

mg/L mg/L

mg/L mg/L

mg/L

mg/L

mg/L mg/L

QNW

ONW

ONW

QNW

QNW

QNW

QNW QNW

QNW

QNW

QNW

QNW

QNW

QNW

QNW

QNW

QNW

QNW

ND = Not Detected, Result = detection limit.

1.0374

1.0374

1.0374

1.0374

0.0249

0.0249

0.0249

0.0249

0.0249

0.0249

0.0249

0.0249

0.0249

0.0249

0.0249

0.0249

3.8243

3.8243

3.8243

3.8243

3.8243

3.8243

3.8243

3.8243

3.8243

3.8243

3.8243

3.8243

0.0300

0.0300

0.0300

0.0300

0.0300

0.0300

0.0300

0.0300

0.0300

0.0300

0.0300

0.0300

0.1470

0.1380

1.2900

0.2110

0.0033

0.0074

0.0004

0.0004

0.0033

0.0067

0.0804

0.0581

0.0007

0.0030

0.7270

0.0087

1.0400

0.3020

0.0560

0.0450

0.7010

0.7140

5.2400

9.8800

0.1050

0.5120

49.9000

4.4200

0.0100

0.0100

0.0100

0.0100

0.0100

0.0100

0.1000

0.0910

0.0040

0.0056

1.3700

0.0181

ND

ND

ND

ND

ND

Up vs. Down Prediction Limits

Graph 5

Graph 6 Prepared by: Otter Creek Environmental

False Positive and False Negative Rates for Current Upgradient vs. Downgradient Monitoring Program

<u>Worksheet 1 - Upgradient vs. Downgradient Comparisons</u> <u>Barium, Total (mg/L)</u> <u>Nonparametric Prediction Limit</u>

<u>Step</u>	Equation	Description
1	PL = max(X) = 0.205	Compute nonparametric prediction limit as largest background measurement.
2	Conf = 0.99 <u>Worksheet 1 - Upgr</u> <u>No</u>	Confidence level is based on N, K and resampling strategy (see Gibbons 1994). adient vs. Downgradient Comparisons Boron, Total (mg/L) ormal Prediction Limit
<u>Step</u>	Equation	Description
1	X ₁ = sum[X ₁] / N ₁ = 18.542 / 33 = 0.562	Compute mean of N ₁ detected measurements.
2	$S_{1} = ((sum[X_{1}^{2}]-sum[X_{1}]^{2}/N_{1}) / (N_{1}^{-1}))^{\frac{1}{2}}$ = ((11.41-343.806/33) / (33-1)) ^{1/2} = 0.176	Compute sd of N ₁ detected measurements.
3	$\overline{X} = (1 - N_0/N) \overline{X}_1$ = (1 - 1/34) 0.562 = 0.545	Use Aitchison's method to adjust mean for presence of nondetects.
4	$S = [(1 - N_0/N) * S_1^2 + (N_0/N) (1 - (N_0^{-1})/(N^{-1})) \overline{X_1}^2]^{\frac{1}{2}}$ = [(1 - 1/34) * 0.176 ² + (1/34) (1 - (1-1)/(34-1)) 0.562 ²]^{\frac{1}{2}} = 0.198	Use Aitchison's method to adjust sd for presence of nondetects.
5	alpha = min[$(195^{1/\mathbf{K}})^{\frac{1}{2}}$, .01] = min[$(195^{1/6})^{\frac{1}{2}}$, .01] = 0.01	Adjusted per comparison false positive rate. Pass initial or 1 resample.
6	PL = \overline{X} + tS(1+1/N) ^{1/2} = 0.545 + (2.445*0.198)(1+1/34) ^{1/2} = 1.037	One-sided normal prediction limit (t is Student's t on N-1 degrees of freedom and 1-alpha confidence level).

<u>Worksheet 1 - Upgradient vs. Downgradient Comparisons</u> <u>Cobalt, Total (mg/L)</u> <u>Lognormal Prediction Limit</u>

<u>Step</u>	Equation	Description
1	Y = log _e (X)	Transform to natural logarithmic scale.
2	$\overline{Y} = sum[Y] / N$	Compute mean on a natural log scale.
	= -213.569 / 36	
	= -5.932	
3	$S_{Y} = ((sum[Y^{2}] - sum[Y]^{2}/N) / (N-1))^{\frac{1}{2}}$	Compute sd on a natural log scale.
	= ((1295.714 - 45611.517/36) / (36-1)) ^{1/2}	
	= 0.906	
4	alpha = min[(195 ^{1/K}) ^½ , .01]	Adjusted per comparison false positive rate. Pass
	= min[(195 ^{1/6}) ^½ , .01]	initial or 1 resample.
	= 0.01	
5	$PL = \exp[\overline{\mathbf{Y}} + \mathbf{tS}_{\mathbf{Y}} (1+1/\mathbf{N})^{1/2}]$	One-sided lognormal prediction limit (t is Student's t
	= exp[-5.932 + (2.438*0.906)(1+1/36) ^{1/2}]	level).
	= 0.025	

<u>Worksheet 1 - Upgradient vs. Downgradient Comparisons</u> <u>Manganese, Total (mg/L)</u> <u>Lognormal Prediction Limit</u>

<u>Step</u>	Equation	Description
1	$Y = \log_{e}(X)$	Transform to natural logarithmic scale.
2	Y = sum[Y] / N = -5.907 / 35	Compute mean on a natural log scale.
	= -0.169	
3	$S_{Y} = ((sum[Y^{2}] - sum[Y]^{2}/N) / (N-1))^{\frac{1}{2}}$ = ((13.649 - 34.893/35) / (35-1)) ^{1/2} = 0.61	Compute sd on a natural log scale.
4	alpha = min[(195 ^{1/K}) ^{1/} ₂ , .01] = min[(195 ^{1/6}) ^{1/} ₂ , .01]	Adjusted per comparison false positive rate. Pass initial or 1 resample.
	= 0.01	
5	PL = $\exp[\overline{Y} + tS_{Y}(1+1/N)^{\frac{1}{2}}]$ = $\exp[-0.169$ + $(2.441*0.61)(1+1/35)^{\frac{1}{2}}]$	One-sided lognormal prediction limit (t is Student's t on N-1 degrees of freedom and 1-alpha confidence level).
	= 3.824	

Worksheet 1 - Upgradient vs. Downgradient Comparisons Molybdenum, Total (mg/L) Normal Prediction Limit

<u>Step</u>	Equation	Description
1	X ₁ = sum[X ₁] / N ₁ = 2.268 / 29 = 0.078	Compute mean of N ₁ detected measurements.
2	$S_{1} = ((sum[X_{1}^{2}]-sum[X_{1}]^{2}/N_{1})/(N_{1}-1))^{\frac{1}{2}}$ = ((0.464-5.143/29)/(29-1)) ^{1/2} = 0.101	Compute sd of N ₁ detected measurements.
3	$\overline{X} = (1 - N_0/N) \overline{X}_1$ = (1 - 6/35) 0.078 = 0.065	Use Aitchison's method to adjust mean for presence of nondetects.
4	$S = [(1 - N_0/N) * S_1^2 + (N_0/N) (1 - (N_0^{-1})/(N^{-1})) \overline{X_1}^2]^{\frac{1}{2}}$ = [(1 - 6/35) * 0.101 ² + (6/35) (1 - (6-1)/(35-1)) 0.078 ²] ^{\frac{1}{2}} = 0.097	Use Aitchison's method to adjust sd for presence of nondetects.
5	alpha = min[(195 ^{1/K}) ^{1/2} , .01] = min[(195 ^{1/6}) ^{1/2} , .01] = 0.01	Adjusted per comparison false positive rate. Pass initial or 1 resample.
6	PL = \overline{X} + tS(1+1/N) ^{1/2} = 0.065 + (2.441*0.097)(1+1/35) ^{1/2} = 0.305	One-sided normal prediction limit (t is Student's t on N-1 degrees of freedom and 1-alpha confidence level).

<u>Worksheet 1 - Upgradient vs. Downgradient Comparisons</u> <u>Nickel, Total (mg/L)</u> <u>Normal Prediction Limit</u>

<u>Step</u>	Equation	<u>Description</u>
1	$\overline{X}_{1} = sum[X_{1}] / N_{1}$ = 0.385 / 27	Compute mean of N ₁ detected measurements.
	= 0.014	
2	$S_{1} = ((sum[X_{1}^{2}]-sum[X_{1}]^{2}/N_{1}) / (N_{1}-1))^{\frac{1}{2}}$ = ((0.006-0.148/27) / (27-1))^{\frac{1}{2}}	Compute sd of N ₁ detected measurements.
	= 0.005	
3	$\overline{\mathbf{X}} = (1 - \mathbf{N}_0 / \mathbf{N}) \overline{\mathbf{X}}_1$ $= (1 - 8/35) 0.014$	Use Aitchison's method to adjust mean for presence of nondetects.
	= 0.011	
4	S = [(1 - N ₀ /N) * S ₁ ² + (N ₀ /N)(1 - (N ₀ -1)/(N-1)) \overline{X}_{1}^{2}] ^{1/2}	Use Aitchison's method to adjust sd for presence of nondetects.
	= $[(1 - 8/35) * 0.005^2 + (8/35) (1 - (8-1)/(35-1)) 0.014^2]^{\frac{1}{2}}$	
	= 0.008	
5	alpha = min[(195 ^{1/K}) ^{1/2} , .01] = min[(195 ^{1/6}) ^{1/2} , .01]	Adjusted per comparison false positive rate. Pass initial or 1 resample.
	= 0.01	
6	$PL = \overline{\mathbf{X}} + \mathbf{tS}(1+1/\mathbf{N})^{\frac{1}{2}}$	One-sided normal prediction limit (t is Student's t on N-1 degrees of freedom and 1-alpha confidence
	$= 0.011 + (2.441*0.008)(1+1/35)^{1/2}$	level).
	= 0.03	

Attachment D

Summary Tables and Graphs for the Intrawell Comparisons

Constituent	Units	Well	N(back)	N(mon)	N(tot)	Mean	SD	R(i-1)	R(i)	S(i-1)	S(i)	Limit	Туре	Conf	
Barium, Total	mg/L	QE	7	4	12	0.0924	0.0367	0.0716	0.0659	0.0924	0.0924	0.3307	normal		
Boron, Total	mg/L	QE	8	4	12	0.4079	0.1914	0.6290	0.5770	0.4376	0.4153	1.6520	normal		
Cobalt, Total	mg/L	QE	8	4	12	0.0059	0.0096	0.0085	0.0058	0.0059	0.0059	0.0680	normal		
Manganese, Total	mg/L	QE	8	4	12	1.3991	0.7938	1.4800	2.8600	1.5232	2.1903	6.5590	normal		
Molybdenum, Total	mg/L	QE	8	4	12	0.0111	0.0032	0.0076	0.0071	0.0111	0.0111	0.0318	normal		
Nickel, Total	mg/L	QE	7	4	12	0.0116	0.0024	0.0248	0.0130	0.0224	0.0215	0.0270	normal		
Barium, Total	mg/L	QN	8	4	12	0.1030	0.0505	0.0594	0.0486	0.1030	0.1030	0.4315	normal		
Boron, Total	mg/L	QN	7	4	12	0.5489	0.0717	0.4880	0.3740	0.5489	0.5489	1.0148	normal		
Cobalt, Total	mg/L	QN	7	4	12	0.0037	0.0011	0.0025	0.0041	0.0037	0.0037	0.0108	normal		
Manganese, Total	mg/L	QN	8	4	12	0.8595	0.2673	0.6910	5.8100	0.8595	5.5427	2.5968	normal		
Molybdenum, Total	mg/L	QN	7	4	12	0.2371	0.0699	0.0900	0.0147	0.2371	0.2371	0.6913	normal		
Nickel, Total	mg/L	QN	8	4	12	0.0184	0.0035	0.0169	0.0094	0.0184	0.0184	0.0414	normal		
Barium, Total	mg/L	QNE	8	4	12	0.1041	0.0184	0.0992	0.1090	0.1041	0.1041	0.2236	normal		
Boron, Total	mg/L	QNE	7	4	12	0.7263	0.2105	0.6250	0.6600	0.7263	0.7263	2.0942	normal		
Cobalt, Total	mg/L	QNE	8	4	12	0.0018	0.0015	0.0027	0.0009	0.0042	0.0018	0.0114	normal		
Manganese, Total	mg/L	QNE	8	4	12	0.6148	0.3665	0.5550	0.4020	0.6148	0.6148	2.9970	normal		
Molybdenum, Total	mg/L	QNE	7	4	12	0.0199	0.0031	0.0127	0.0121	0.0199	0.0199	0.0402	normal		
Nickel, Total	mg/L	QNE	8	4	12	0.0126	0.0032	0.0066	0.0052	0.0126	0.0126	0.0337	normal		
Barium, Total	mg/L	QNW	6	4	12	0.2495	0.0489	9.4100	0.3140	9.3611	0.2651	0.5673	normal		
Boron, Total	mg/L	QNW	7	4	12	0.2110	0.0641	1.2900	0.2110	1.2259	0.2110	0.6275	normal		
Cobalt, Total	mg/L	QNW	8	4	12	0.0200	0.0311	0.7270	0.0087	0.6959	0.0200	0.2220	normal		
Manganese, Total	mg/L	QNW	8	4	12	2.2473	3.5224	49.9000	4.4200	46.3776	2.2473	25.1427	normal		
Molybdenum, Total	mg/L	QNW	8	4	12	0.0123	0.0042	0.1550	0.0077	0.1508	0.0123	0.0396	normal		
Nickel, Total	mg/L	QNW	6	4	12								nonpar *		**

Summary Statistics and Intermediate Computations for Combined Shewhart-CUSUM Control Charts

N(back) and N(mon) = Non-outlier measurements in the background and monitoring periods.

N(tot) = All independent measurements for that constituent and well.

For transformed data, mean and SD in transformed units and control limit in original units.

Conf = confidence level for passing initial test or one verification resample (nonparametric test only). * - Insufficient Data. ** - Detection Frequency < 25%. *** - Zero Variance.

Intra-Well Control Charts / Prediction Limits

Prepared by: Otter Creek Environmental

Intra-Well Control Charts / Prediction Limits

Prepared by: Otter Creek Environmental

October 2024

Intra-Well Control Charts / Prediction Limits

Prepared by: Otter Creek Environmental

Intra-Well Control Charts / Prediction Limits

Prepared by: Otter Creek Environmental

False Positive and False Negative Rates for Current Intra-Well Control Charts Monitoring Program

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Barium, Total (mg/L) at QE</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 0.647 / 7	
	= 0.092	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{\frac{1}{2}}$	Compute background sd.
	$= ((0.068 - 0.419/7) / (7-1))^{\frac{1}{2}}$	
	= 0.037	
3	SCL = X + F * S	Compute combined Shewhart-CUSUM normal control limit.
	= 0.092 + 6.5 * 0.037	
	= 0.331	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 7 * (7 -1) / 2	
	= 21	
5	S = -0.015	Sen's estimator of trend.
6	var(S) = 44.333	Variance estimate for slope.
7	$M_{1}(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= $(21 - 2.326 * 44.333^{\frac{1}{2}}) / 2$	the $M_1^{(1)}$ largest slope estimate. When M_1 is not an integer, interpolation is used.
	= 2.756	
8	LCL(S) = -0.117	One-sided lower confidence limit for slope.

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Boron, Total (mg/L) at QE</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 3.263 / 8	
	= 0.408	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	$= ((1.587 - 10.647/8) / (8-1))^{\frac{1}{2}}$	
	= 0.191	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 0.408 + 6.5 * 0.191	
	= 1.652	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 8 * (8 -1) / 2	
	= 28	
5	S = 0.057	Sen's estimator of trend.
6	var(S) = 65.333	Variance estimate for slope.
7	$M_{1}(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= (28 - 2.326 * 65.333 ^{1/2}) / 2	the $M_1^{(1)}$ largest slope estimate. When M_1 is not an integer, interpolation is used.
	= 4.6	
8	LCL(S) = -0.252	One-sided lower confidence limit for slope.

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Cobalt, Total (mg/L) at QE</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 0.047 / 8	
	= 0.006	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{\frac{1}{2}}$	Compute background sd.
	$= ((9.17 \times 10^{-4} - 0.002/8) / (8-1))^{\frac{1}{2}}$	
	= 0.01	
3	SCL = $\overline{\mathbf{X}}$ + \mathbf{F} * \mathbf{S}	Compute combined Shewhart-CUSUM normal control limit.
	= 0.006 + 6.5 * 0.01	
	= 0.068	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 8 * (8 -1) / 2	
	= 28	
5	S = 4.26×10 ⁻⁴	Sen's estimator of trend.
6	var(S) = 65.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{\frac{1}{2}}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	$= (28 - 2.326 * 65.333^{1/2}) / 2$	the $M_1^{(i)}$ largest slope estimate. When M_1 is not an integer, interpolation is used.
	= 4.6	
8	LCL(S) = -0.003	One-sided lower confidence limit for slope.

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Manganese, Total (mg/L) at QE</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 11.193 / 8	
	= 1.399	
2	S = $([sum[X^2] - sum[X]^2/N) / (N-1))^{\frac{1}{2}}$	Compute background sd.
	= $((20.072 - 125.283/8) / (8-1))^{\frac{1}{2}}$	
	= 0.794	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 1.399 + 6.5 * 0.794	
	= 6.559	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 8 * (8 -1) / 2	
	= 28	
5	S = 0.019	Sen's estimator of trend.
6	var(S) = 65.333	Variance estimate for slope.
7	$M_{1}(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	$= (28 - 2.326 * 65.333^{\frac{1}{2}}) / 2$	the M_1 "Fargest slope estimate. When M_1 is not an integer, interpolation is used.
	= 4.6	
8	LCL(S) = -0.973	One-sided lower confidence limit for slope.

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Molybdenum, Total (mg/L) at QE</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	X = sum[X] / N = 0.089 / 8	Compute background mean.
	= 0.011	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{\frac{1}{2}}$	Compute background sd.
	$= ((0.001 - 0.008/8) / (8-1))^{\frac{1}{2}}$	
	= 0.003	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 0.011 + 6.5 * 0.003	
	= 0.032	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 8 * (8 -1) / 2	
	= 28	
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 21.0	Variance estimate for slope.
7	$M_{1}(S) = (N' - Z_{.99} * var(S)^{\frac{1}{2}}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is the M. th largest slope estimate. When M. is
	= $(28 - 2.326 * 21.0^{1/2}) / 2$	not an integer, interpolation is used.
	= 8.67	
8	LCL(S) = 0.0	One-sided lower confidence limit for slope.

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Nickel, Total (mg/L) at QE</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 0.081 / 7	
	= 0.012	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{\frac{1}{2}}$	Compute background sd.
	$= ((9.71 \times 10^{-4} - 0.007/7) / (7-1))^{\frac{1}{2}}$	
	= 0.002	
3	SCL = X + F * S	Compute combined Shewhart-CUSUM normal control limit.
	= 0.012 + 6.5 * 0.002	
	= 0.027	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 7 * (7-1) / 2	
	= 21	
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 34.667	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{\frac{1}{2}}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= (21 - 2.326 * 34.667 $\frac{1}{2}$) / 2	the M_1 "largest slope estimate. When M_1 is not an integer, interpolation is used.
	= 3.652	
8	LCL(S) = -0.003	One-sided lower confidence limit for slope.

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Barium, Total (mg/L) at QN</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 0.824 / 8	
	= 0.103	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{\frac{1}{2}}$	Compute background sd.
	$= ((0.103 - 0.679/8) / (8-1))^{\frac{1}{2}}$	
	= 0.051	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 0.103 + 6.5 * 0.051	
	= 0.431	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 8 * (8 -1) / 2	
	= 28	
5	S = -0.029	Sen's estimator of trend.
6	var(S) = 65.333	Variance estimate for slope.
7	M ₁ (S) = (N ' - Z _{.99} * var(S) ^{1/2}) / 2	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= (28 - 2.326 * 65.333 ^{1/2}) / 2	not an integer, interpolation is used.
	= 4.6	
8	LCL(S) = -0.102	One-sided lower confidence limit for slope.
<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Boron, Total (mg/L) at QN</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 3.842 / 7	
	= 0.549	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	$= ((2.14 - 14.761/7) / (7-1))^{\frac{1}{2}}$	
	= 0.072	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 0.549 + 6.5 * 0.072	
	= 1.015	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 7 * (7 -1) / 2	
	= 21	
5	S = 0.019	Sen's estimator of trend.
6	var(S) = 44.333	Variance estimate for slope.
7	$M_{1}(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= (21 - 2.326 * 44.333 ^{1/2}) / 2	not an integer, interpolation is used.
	= 2.756	
8	LCL(S) = -0.115	One-sided lower confidence limit for slope.

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Cobalt, Total (mg/L) at QN</u> <u>Normal Control Limit</u>

1 $\overline{x} = sum [X] / N$ Compute background mean. $= 0.026 / 7$ $= 0.004$ 2 $S = ((sum [X^2] - sum [X]^2 / N) / (N-1))^{\frac{1}{2}}$ Compute background sd. $= ((1.04 \times 10^4 - 6.76 \times 10^4 / 7) / (7-1))^{\frac{1}{2}}$ Compute background sd. $= (1.04 \times 10^4 - 6.76 \times 10^4 / 7) / (7-1))^{\frac{1}{2}}$ Compute combined Shewhart-CUSUM normal control limit. 3 SCL = $\overline{x} + F + S$ Compute combined Shewhart-CUSUM normal control limit. $= 0.001$ $= 0.001$ Number of sample pairs during trend detection period. $= 7 + (7-1)/2$ $= 21$ Sen's estimator of trend. 5 $S = -1.02 \times 10^4$ Sen's estimator of trend. 6 $var(S) = (N - Z_{.99} + var(S)^{\frac{1}{2}})/2$ Ordinal position for one-sided lower confidence limit for slope. The LCL is the h_1^{-10} largest slope estimate. When M_1 is not an integer, interpolation is used.	<u>Step</u>	Equation	Description
$= 0.026 / 7$ $= 0.004$ 2 S = ((sum[X ²] - sum[X] ² /N)/(N-1)) ^{1/2} $= ((1.04 \times 10^{-4} \cdot 6.76 \times 10^{-4}/7)/(7-1))^{1/2}$ Compute background sd. $= ((1.04 \times 10^{-4} \cdot 6.76 \times 10^{-4}/7)/(7-1))^{1/2}$ $= 0.001$ 3 SCL = $\overline{X} + F * S$ Compute combined Shewhart-CUSUM normal control limit. $= 0.004 + 6.5 * 0.001$ $= 0.011$ 4 N ³ = N ⁴ (N-1)/2 $= 7 * (7-1)/2$ $= 21$ 5 S = -1.02 \times 10^{-4} 6 var(S) = 43.333 Variance estimator of trend. 6 var(S) = (N - Z_{.99} * var(8)^{1/2})/2 $= (21 - 2.326 * 43.333^{1/2})/2$ $= 2.844$ Ordinal position for one-sided lower confidence limit for slope. The LCL is the M ₁ th largest slope estimate. When M ₁ is not an integer, interpolation is used.	1	$\overline{X} = sum[X] / N$	Compute background mean.
$= 0.004$ 2 $S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{\frac{1}{2}}$ $= ((1.04 \times 10^4 - 6.76 \times 10^4/7) / (7-1))^{\frac{1}{2}}$ $= 0.001$ 3 $SCL = \overline{x} + F^*S$ $= 0.004 + 6.5^* 0.001$ $= 0.014$ 4 $N^* = N^* (N-1)/2$ $= 0.011$ 4 $N^* = N^* (N-1)/2$ $= 21$ 5 $S = -1.02 \times 10^4$ 6 $var(S) = 43.333$ Variance estimate for slope. 7 $M_1(S) = (N^* - Z_{.99}^* var(S)^{\frac{1}{2}})/2$ $= (21 - 2.326^* 43.333^{\frac{1}{2}})/2$ $= 2.844$ Compute background sd. Compute background sd. Compute combined Shewhart-CUSUM normal control limit. Compute combined Shewhart-CUSUM normal control limit. Compute combined Shewhart-CUSUM normal control limit. Scale State Stat		= 0.026 / 7	
2 $S = ((sum[X^2] - sum[X]^2(N) / (N-1))^{\frac{1}{2}}$ $= ((1.04 \times 10^4 - 6.76 \times 10^4 / 7) / (7-1))^{\frac{1}{2}}$ = 0.001 3 $SCL = \overline{X} + \overline{F} \cdot S$ = 0.004 + 6.5 * 0.001 = 0.011 4 $N = N * (N-1) / 2$ = 21 5 $S = -1.02 \times 10^{-4}$ 6 $var(S) = 43.333$ 7 $M_1(S) = (N - Z_{.99} * var(S)^{\frac{1}{2}}) / 2$ $= (21 - 2.326 * 43.333^{\frac{1}{2}}) / 2$ = 2.844 Compute background sd. Compute combined Shewhart-CUSUM normal control limit. Compute combined Shewhart-CUSUM normal control limit. Sense timator of sample pairs during trend detection period. Sen's estimator of trend. Ordinal position for one-sided lower confidence limit for slope. The LCL is the M ₁ th largest slope estimate. When M ₁ is not an integer, interpolation is used. = 2.844		= 0.004	
$= ((1.04 \times 10^{-4} - 6.76 \times 10^{-4} / 7) / (7-1))^{\frac{1}{2}}$ $= 0.001$ 3 SCL = $\overline{x} + F * S$ Compute combined Shewhart-CUSUM normal control limit. = 0.004 + 6.5 * 0.001 $= 0.011$ 4 N' = N * (N-1) / 2 $= 21$ 5 S = -1.02 \times 10^{-4} 6 var(S) = 43.333 5 S = -1.02 \times 10^{-4} 7 M ₁ (S) = (N' - Z _{.99} * var(S) ^{\frac{1}{2}}) / 2 $= (21 - 2.326 * 43.333^{\frac{1}{2}}) / 2$ $= 2.844$ Compute combined Shewhart-CUSUM normal control limit. Compute combined Shewhart-CUSUM normal control limit. Compute combined Shewhart-CUSUM normal control limit. Number of sample pairs during trend detection period. Sen's estimator of trend. Cordinal position for one-sided lower confidence limit for slope. The LCL is the M ₁ ⁽¹⁾ largest slope estimate. When M ₁ is not an integer, interpolation is used.	2	S = $([sum[X^2] - sum[X]^2/N) / (N-1))^{\frac{1}{2}}$	Compute background sd.
$= 0.001$ 3 SCL = $\overline{X} + F + S$ Compute combined Shewhart-CUSUM normal control limit. = 0.004 + 6.5 * 0.001 = 0.011 4 N' = N * (N-1)/2 = 21 5 S = -1.02x10 ⁻⁴ Series estimate or freed. 6 var(S) = 43.333 7 M ₁ (S) = (N' - Z _{.99} * var(S) ^{1/2})/2 = (21 - 2.326 * 43.333 ^{1/2})/2 = 2.844 Series estimate for slope. 7 M ₁ (S) = (N' - Z _{.99} * var(S) ^{1/2})/2 = (21 - 2.326 * 43.333 ^{1/2})/2 = 2.844		$= ((1.04 \times 10^{-4} - 6.76 \times 10^{-4} / 7) / (7 - 1))^{\frac{1}{2}}$	
3 $SCL = \overline{X} + F * S$ = 0.004 + 6.5 * 0.001 = 0.011Compute combined Shewhart-CUSUM normal control limit.4 $N' = N * (N-1)/2$ = 21Number of sample pairs during trend detection period.5 $S = -1.02 \times 10^{-4}$ Sen's estimator of trend.6 $var(S) = 43.333$ Variance estimate for slope.7 $M_1(S) = (N' - Z_{.99} * var(S)^{\frac{1}{2}})/2$ = (21 - 2.326 * 43.333 ^{1/2})/2 = 2.844Ordinal position for one-sided lower confidence limit for slope. The LCL is the M_1 in largest slope estimate. When M_1 is not an integer, interpolation is used.		= 0.001	
$= 0.004 + 6.5 * 0.001$ $= 0.011$ $= 0.011$ $Mumber of sample pairs during trend detection period.$ $= 7 * (7-1) / 2$ $= 21$ $S = -1.02 \times 10^{-4}$ $S = -1.02 \times 10^{-4}$ $Variance estimate for slope.$ $Variance estimate for slope.$ $M_1(S) = (N' - Z_{.99} * var(S)^{\frac{1}{2}}) / 2$ $= (21 - 2.326 * 43.333^{\frac{1}{2}}) / 2$ $= 2.844$ $Variance estimate for slope.$	3	SCL = X + F * S	Compute combined Shewhart-CUSUM normal control limit.
$= 0.011$ $(N' = N * (N-1)/2$ $= 7 * (7-1)/2$ $= 21$ $S = -1.02 \times 10^{-4}$ $(Var(S) = 43.333$ $M_{1}(S) = (N' - Z_{.99} * var(S)^{\frac{1}{5}})/2$ $= (21 - 2.326 * 43.333^{\frac{1}{5}})/2$ $= 2.844$ Number of sample pairs during trend detection period. Number of sample p		= 0.004 + 6.5 * 0.001	
4N' = N * (N-1) / 2 = 7 * (7-1) / 2 = 21Number of sample pairs during trend detection period.5S = -1.02x10^{-4}Sen's estimator of trend.6var(S) = 43.333Variance estimate for slope.7 $M_1(S) = (N' - Z_{.99} * var(S)^{\frac{1}{2}}) / 2$ = (21 - 2.326 * 43.333^{\frac{1}{2}}) / 2 = 2.844Ordinal position for one-sided lower confidence limit for slope. The LCL is the $M_1^{(11)}$ largest slope estimate. When M_1 is not an integer, interpolation is used.		= 0.011	
= 7 * (7-1) / 2 $= 21$ 5 S = -1.02x10 ⁻⁴ 6 var(S) = 43.333 7 M ₁ (S) = (N' - Z _{.99} * var(S) ^{1/2}) / 2 = (21 - 2.326 * 43.333 ^{1/2}) / 2 = 2.844 9 Ordinal position for one-sided lower confidence limit for slope. The LCL is not an integer, interpolation is used.	4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
= 21 5 S = -1.02x10 ⁻⁴ 5 S =		= 7 * (7 -1) / 2	
5 $S = -1.02 \times 10^{-4}$ Sen's estimator of trend. 6 $var(S) = 43.333$ Variance estimate for slope. 7 $M_1(S) = (N' - Z_{.99} * var(S)^{\frac{1}{2}})/2$ Ordinal position for one-sided lower confidence limit for slope. The LCL is the M_1^{th} largest slope estimate. When M_1 is not an integer, interpolation is used. = 2.844 = 2.844		= 21	
6 $var(S) = 43.333$ 7 $M_1(S) = (N' - Z_{.99} * var(S)^{\frac{1}{2}})/2$ $= (21 - 2.326 * 43.333^{\frac{1}{2}})/2$ = 2.844 Variance estimate for slope. Ordinal position for one-sided lower confidence limit for slope. The LCL is the M_1 th largest slope estimate. When M_1 is not an integer, interpolation is used.	5	$S = -1.02 \times 10^{-4}$	Sen's estimator of trend.
7 $M_1(S) = (N' - Z_{.99} * var(S)^{\frac{1}{2}})/2$ = $(21 - 2.326 * 43.333^{\frac{1}{2}})/2$ = 2.844 Ordinal position for one-sided lower confidence limit for slope. The LCL is the M_1^{th} largest slope estimate. When M_1 is not an integer, interpolation is used.	6	var(S) = 43.333	Variance estimate for slope.
$= (21 - 2.326 * 43.333^{\frac{1}{2}}) / 2$ $= 2.844$ the M ₁ ··· largest slope estimate. When M ₁ is not an integer, interpolation is used.	7	M ₁ (S) = (N' - Z_{.99} * var(S) ^{1/2}) / 2	Ordinal position for one-sided lower confidence limit for slope. The LCL is
= 2.844		= $(21 - 2.326 * 43.333^{\frac{1}{2}}) / 2$	the M_1 "largest slope estimate. When M_1 is not an integer, interpolation is used.
		= 2.844	
8 LCL(S) = -0.002 One-sided lower confidence limit for slope.	8	LCL(S) = -0.002	One-sided lower confidence limit for slope.

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Manganese, Total (mg/L) at QN</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 6.876 / 8	
	= 0.86	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	$= ((6.41 - 47.279/8) / (8-1))^{1/2}$	
	= 0.267	
3	SCL = $\overline{\mathbf{X}}$ + \mathbf{F} * \mathbf{S}	Compute combined Shewhart-CUSUM normal control limit.
	= 0.86 + 6.5 * 0.267	
	= 2.597	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 8 * (8 -1) / 2	
	= 28	
5	S = -0.207	Sen's estimator of trend.
6	var(S) = 65.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	$= (28 - 2.326 * 65.333^{\frac{1}{2}}) / 2$	the M1 ¹¹ largest slope estimate. When M1 is not an integer, interpolation is used.
	= 4.6	
8	LCL(S) = -0.55	One-sided lower confidence limit for slope.

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Molybdenum, Total (mg/L) at QN</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 1.66 / 7 = 0.237	
2	$S = ((sum[X2] - sum[X]2/N) / (N-1))^{\frac{1}{2}}$	Compute background sd.
	= ((0.423 - 2.756/7) / (7-1)) ² = 0.07	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 0.237 + 6.5 * 0.07	
	= 0.691	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 7 * (7 -1) / 2	
	= 21	
5	S = -0.058	Sen's estimator of trend.
6	var(S) = 44.333	Variance estimate for slope.
7	$M_{1}(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= $(21 - 2.326 * 44.333^{\frac{1}{2}}) / 2$	not an integer, interpolation is used.
	= 2.756	
8	LCL(S) = -0.16	One-sided lower confidence limit for slope.

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Nickel, Total (mg/L) at QN</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 0.147 / 8	
	= 0.018	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{\frac{1}{2}}$	Compute background sd.
	$= ((0.003 - 0.022/8) / (8-1))^{\frac{1}{2}}$	
	= 0.004	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 0.018 + 6.5 * 0.004	
	= 0.041	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 8 * (8 -1) / 2	
	= 28	
5	S = 7.17×10 ⁻⁴	Sen's estimator of trend.
6	var(S) = 63.333	Variance estimate for slope.
7	$M_{1}(S) = (N' - Z_{.99} * var(S))^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= $(28 - 2.326 * 63.333^{\frac{1}{2}}) / 2$	not an integer, interpolation is used.
	= 4.745	
8	LCL(S) = -0.005	One-sided lower confidence limit for slope.

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Barium, Total (mg/L) at QNE</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 0.833 / 8	
	= 0.104	
2	S = $((sum[X2] - sum[X]2/N) / (N-1))^{\frac{1}{2}}$	Compute background sd.
	$= ((0.089 - 0.694/8) / (8-1))^{1/2}$	
	= 0.018	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 0.104 + 6.5 * 0.018	
	= 0.224	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 8 * (8 -1) / 2	
	= 28	
5	S = -0.002	Sen's estimator of trend.
6	var(S) = 63.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{\frac{1}{2}}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	$= (28 - 2.326 * 63.333^{1/2}) / 2$	the M_1 "Fargest slope estimate. When M_1 is not an integer, interpolation is used.
	= 4.745	
8	LCL(S) = -0.043	One-sided lower confidence limit for slope.

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Boron, Total (mg/L) at QNE</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 5.084 / 7	
	= 0.726	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	$= ((3.958 - 25.847/7) / (7-1))^{\frac{1}{2}}$	
	= 0.21	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 0.726 + 6.5 * 0.21	
	= 2.094	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 7 * (7 -1) / 2	
	= 21	
5	S = -0.079	Sen's estimator of trend.
6	var(S) = 44.333	Variance estimate for slope.
7	$M_{1}(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= $(21 - 2.326 * 44.333^{\frac{1}{2}}) / 2$	not an integer, interpolation is used.
	= 2.756	
8	LCL(S) = -0.367	One-sided lower confidence limit for slope.

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Cobalt, Total (mg/L) at QNE</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	X̄ = sum[X] / N = 0.014 / 8	Compute background mean.
	= 0.002	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{\frac{1}{2}}$ = $((4.05 \times 10^{-5} - 2.02 \times 10^{-4}/8) / (8-1))^{\frac{1}{2}}$	Compute background sd.
	= 0.001	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 0.002 + 6.5 * 0.001	
	= 0.011	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 8 * (8 -1) / 2	
	= 28	
5	S = -5.61×10 ⁻⁴	Sen's estimator of trend.
6	var(S) = 65.333	Variance estimate for slope.
7	$M_{1}(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= $(28 - 2.326 * 65.333^{\frac{1}{2}}) / 2$	not an integer, interpolation is used.
	= 4.6	
8	LCL(S) = -0.003	One-sided lower confidence limit for slope.

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Manganese, Total (mg/L) at QNE</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 4.918 / 8	
	= 0.615	
2	S = $((sum[X2] - sum[X]2/N) / (N-1))^{\frac{1}{2}}$	Compute background sd.
	$= \left(\left(3.964 - 24.187/8 \right) / (8-1) \right)^{\frac{1}{2}}$	
	= 0.367	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 0.615 + 6.5 * 0.367	
	= 2.997	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 8 * (8 -1) / 2	
	= 28	
5	S = -0.2	Sen's estimator of trend.
6	var(S) = 65.333	Variance estimate for slope.
7	$M_{1}(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	$= (28 - 2.326 * 65.333^{\frac{1}{2}}) / 2$	the M ₁ ¹¹ largest slope estimate. When M ₁ is not an integer, interpolation is used.
	= 4.6	
8	LCL(S) = -0.682	One-sided lower confidence limit for slope.

Prepared by: Otter Creek Environmental

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Molybdenum, Total (mg/L) at QNE</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 0.139 / 7	
	= 0.02	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{\frac{1}{2}}$	Compute background sd.
	$= ((0.003 - 0.019/7) / (7-1))^{1/2}$	
	= 0.003	
3	SCL = $\overline{\mathbf{X}}$ + \mathbf{F} * \mathbf{S}	Compute combined Shewhart-CUSUM normal control limit.
	= 0.02 + 6.5 * 0.003	
	= 0.04	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 7 * (7 -1) / 2	
	= 21	
5	S = -0.003	Sen's estimator of trend.
6	var(S) = 42.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{\frac{1}{2}}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= (21 - 2.326 * 42.333 ^{1/2}) / 2	the M_1 "largest slope estimate. When M_1 is not an integer, interpolation is used.
	= 2.933	
8	LCL(S) = -0.006	One-sided lower confidence limit for slope.

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Nickel, Total (mg/L) at QNE</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 0.101 / 8	
	= 0.013	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{\frac{1}{2}}$	Compute background sd.
	$= ((0.001 - 0.01/8) / (8-1))^{\frac{1}{2}}$	
	= 0.003	
3	SCL = $\overline{\mathbf{X}}$ + \mathbf{F} * \mathbf{S}	Compute combined Shewhart-CUSUM normal control limit.
	= 0.013 + 6.5 * 0.003	
	= 0.034	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 8 * (8 -1) / 2	
	= 28	
5	S = -0.003	Sen's estimator of trend.
6	var(S) = 56.667	Variance estimate for slope.
7	$M_{1}(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= (28 - 2.326 * 56.667 $\frac{1}{2}$) / 2	the $M_1^{(1)}$ largest slope estimate. When M_1 is not an integer, interpolation is used.
	= 5.245	
8	LCL(S) = -0.006	One-sided lower confidence limit for slope.

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Barium, Total (mg/L) at QNW</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 1.497 / 6 = 0.25	
2	S = $((sum[X2] - sum[X]2/N) / (N-1))^{\frac{1}{2}}$	Compute background sd.
	= ((0.365 - 2.24 1/6) / (6-1)) = 0.049	
3	SCL = $\overline{\mathbf{X}}$ + F * S	Compute combined Shewhart-CUSUM normal control limit.
	= 0.25 + 6.5 * 0.049	
	= 0.567	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 6 * (6 -1) / 2	
	= 15	
5	S = 0.05	Sen's estimator of trend.
6	var(S) = 28.333	Variance estimate for slope.
7	$M_{1}(S) = (N' - Z_{.99} * var(S)^{\frac{1}{2}}) / 2$ = (15 - 2.326 * 28.333 ^{1/2}) / 2 = 1.309	Ordinal position for one-sided lower confidence limit for slope. The LCL is the M_1^{th} largest slope estimate. When M_1 is not an integer, interpolation is used.
8	LCL(S) = -0.15	One-sided lower confidence limit for slope.

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Boron, Total (mg/L) at QNW</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 1.477 / 7	
	= 0.211	
2	S = $((sum[X2] - sum[X]2/N) / (N-1))^{\frac{1}{2}}$	Compute background sd.
	$= \left(\left(0.336 - 2.182/7 \right) / (7-1) \right)^{\frac{1}{2}}$	
	= 0.064	
3	SCL = $\overline{\mathbf{X}}$ + \mathbf{F} * \mathbf{S}	Compute combined Shewhart-CUSUM normal control limit.
	= 0.211 + 6.5 * 0.064	
	= 0.628	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 7 * (7-1) / 2	
	= 21	
5	S = 0.03	Sen's estimator of trend.
6	var(S) = 44.333	Variance estimate for slope.
7	$M_{1}(S) = (N' - Z_{99} * var(S)^{\frac{1}{2}}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	$= (21 - 2.326 * 44.333^{1/2}) / 2$	the M ₁ ^{ur} largest slope estimate. When M ₁ is not an integer, interpolation is used.
	= 2.756	
8	LCL(S) = -0.103	One-sided lower confidence limit for slope.

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Cobalt, Total (mg/L) at QNW</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 0.16 / 8 = 0.02	
2	S = $((sum[X2] - sum[X]2/N) / (N-1))^{\frac{1}{2}}$ = $((0.01 - 0.026/8) / (8-1))^{\frac{1}{2}}$	Compute background sd.
	= 0.031	
3	SCL = \overline{X} + F * S = 0.02 + 6.5 * 0.031	Compute combined Shewhart-CUSUM normal control limit.
	= 0.222	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 8 * (8-1) / 2 = 28	
	- 20	
5	S = 0.007	Sen's estimator of trend.
6	var(S) = 63.333	Variance estimate for slope.
7	$M_{1}(S) = (N' - Z_{.99} * var(S)^{\frac{1}{2}}) / 2$ = (28 - 2.326 * 63.333 ^{1/2}) / 2 = 4.745	Ordinal position for one-sided lower confidence limit for slope. The LCL is the M_1^{th} largest slope estimate. When M_1 is not an integer, interpolation is used.
8	LCL(S) = -0.005	One-sided lower confidence limit for slope.

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Manganese, Total (mg/L) at QNW</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 17.978 / 8	
	= 2.247	
2	S = $((sum[X2] - sum[X]2/N) / (N-1))^{\frac{1}{2}}$	Compute background sd.
	$= ((127.251 - 323.208/8) / (8-1))^{\frac{1}{2}}$	
	= 3.522	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 2.247 + 6.5 * 3.522	
	= 25.143	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 8 * (8 -1) / 2	
	= 28	
5	S = 1.072	Sen's estimator of trend.
6	var(S) = 65.333	Variance estimate for slope.
7	$M_{1}(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= $(28 - 2.326 * 65.333^{\frac{1}{2}}) / 2$	the M_1 "largest slope estimate. When M_1 is not an integer, interpolation is used.
	= 4.6	
8	LCL(S) = -0.781	One-sided lower confidence limit for slope.

<u>Worksheet 2 - Intra-Well Control Charts / Prediction Limits</u> <u>Molybdenum, Total (mg/L) at QNW</u> <u>Normal Control Limit</u>

<u>Step</u>	Equation	Description
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 0.098 / 8	
	= 0.012	
2	S = ((sum[X ²] - sum[X] ² /N) / (N-1)) ^{1/2}	Compute background sd.
	= ((0.001 - 0.01/8) / (8-1)) ^{1/2}	
	= 0.004	
3	SCL = X + F * S	Compute combined Shewhart-CUSUM normal control limit.
	= 0.012 + 6.5 * 0.004	
	= 0.04	
4	N' = N * (N -1) / 2	Number of sample pairs during trend detection period.
	= 8 * (8 -1) / 2	
	= 28	
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 37.0	Variance estimate for slope.
7	$M_{1}(S) = (N' - Z_{.99} * var(S)^{\frac{1}{2}}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= (28 - 2.326 * 37.0 ^{1/2}) / 2	not an integer, interpolation is used.
	= 6.926	
8	LCL(S) = 0.0	One-sided lower confidence limit for slope.
		Worksheet 2 - Intra-Well Control Charts / Prediction Limits

Nickel, Total (mg/L) at QNW

Insufficient data to perform analysis

Analytical Data and CUSUM Summary

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Barium, Total	mg/L	QE	03/01/2020	yes	0.1200					
Barium, Total	mg/L	QE	06/15/2020	yes	0.1140					
Barium, Total	mg/L	QE	09/01/2020	yes	0.0630					
Barium, Total	mg/L	QE	12/09/2020	yes	0.0520					
Barium, Total	mg/L	QE	06/10/2021	yes	0.0065		yes			*
Barium, Total	mg/L	QE	12/09/2021	yes	0.0770		-			
Barium, Total	mg/L	QE	06/21/2022	yes	0.0690					
Barium, Total	mg/L	QE	12/06/2022	ves	0.1520					
Barium, Total	mg/L	QE	03/22/2023	,	0.0637			0.0924		
Barium. Total	ma/L	QE	06/19/2023		0.0778			0.0924		
Barium, Total	mg/L	QE	12/01/2023		0.0716			0.0924		
Barium, Total	mg/L	QE	08/12/2024		0.0659			0.0924		
Boron. Total	ma/L	QE	03/01/2020	ves	0.2930					
Boron. Total	ma/L	QE	06/15/2020	ves	0.1850					
Boron, Total	ma/L	QE	09/01/2020	ves	0.5240					
Boron, Total	ma/L	QE	12/09/2020	ves	0.5230					
Boron Total	ma/l	0F	06/10/2021	ves	0 5040					
Boron Total	ma/l	0F	12/09/2021	Ves	0 4890					
Boron Total	ma/l	0F	06/21/2022	Ves	0 1000	ND				
Boron Total	ma/l	OF	12/06/2022	ves	0.6450	110				
Boron Total	mg/L	OF	03/22/2023	,	0 1670			0 4079		
Boron Total	mg/L		06/19/2023		0.3850			0.4079		
Boron Total	mg/L		12/01/2023		0.6290			0.4376		
Boron Total	mg/L		08/12/2023		0.0230			0.4570		
Cobalt Total	ma/l	OF	03/01/2020	Ves	0.0048			0.1100		
Cobalt Total	mg/L	OF	06/15/2020	Ves	0.0010					
Cobalt Total	mg/L		09/01/2020	Ves	0.0020					
Cobalt Total	mg/L		12/09/2020	Ves	0.0004					
Cobalt, Total	mg/L		06/10/2021	Ves	0.0042					
Cobalt, Total	mg/L		12/00/2021	Ves	0.0017					
Cobalt, Total	mg/L		06/21/2022	yes vos	0.0024					
Cobalt, Total	mg/L		12/06/2022	yes vos	0.0023					
Cobalt Total	mg/L		03/22/2022	yes	0.0295			0.0050		
Cobalt Total	mg/L		05/22/2023		0.0000			0.0059		
Cobalt Total	mg/L		12/01/2023		0.0070			0.0059		
Cobalt, Total	mg/L		08/12/2023		0.0005			0.0059		
Manganaga Total	mg/L		02/01/2024	1/00	1 2000			0.0059		
Manganasa Total	mg/L		05/01/2020	yes	1.2900					
Manganasa Total	mg/L		00/15/2020	yes	0.0200					
Manganasa Tatal	mg/L		12/00/2020	yes	0.0000					
Manganasa, Total	mg/L		12/09/2020	yes	0.7700					
Manganasa Tatal	mg/L		10/10/2021	yes	2.0700					
Manganasa Tatal	mg/L		12/09/2021	yes	3.0100					
Manganese, Total	mg/L		12/06/2022	yes	0.7190					
Manganese, Total	mg/∟		12/00/2022	yes	1.5000			4 0004		
Manganese, Iotal	mg/∟		03/22/2023		1.3900			1.3991		
Manganese, Iotal	mg/L		06/19/2023		3.0300			2.2362		
Manganese, Iotal	mg/L		12/01/2023		1.4800			1.5232		
ivianganese, Iotal	mg/L		08/12/2024		2.8600			2.1903		
woiybdenum, Iotal	mg/L		03/01/2020	yes	0.0100	ND				
Molybdenum, Total	mg/L	QE	06/15/2020	yes	0.0100	ND				

Analytical Data and CUSUM Summary

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Molybdenum, Total	mg/L	QE	09/01/2020	yes	0.0100	ND				
Molybdenum, Total	mg/L	QE	12/09/2020	yes	0.0100					
Molybdenum, Total	mg/L	QE	06/10/2021	yes	0.0100	ND				
Molybdenum, Total	mg/L	QE	12/09/2021	yes	0.0100	ND				
Molybdenum, Total	mg/L	QE	06/21/2022	yes	0.0100	ND				
Molybdenum, Total	mg/L	QE	12/06/2022	yes	0.0190					
Molybdenum, Total	mg/L	QE	03/22/2023		0.0041			0.0111		
Molybdenum, Total	mg/L	QE	06/19/2023		0.0040			0.0111		
Molybdenum, Total	mg/L	QE	12/01/2023		0.0076			0.0111		
Molybdenum, Total	mg/L	QE	08/12/2024		0.0071			0.0111		
Nickel, Total	mg/L	QE	03/01/2020	yes	0.0110					
Nickel, Total	mg/L	QE	06/15/2020	yes	0.0100	ND				
Nickel, Total	mg/L	QE	09/01/2020	yes	0.0100	ND				
Nickel, Total	mg/L	QE	12/09/2020	yes	0.0150					
Nickel, Total	mg/L	QE	06/10/2021	ves	0.0100	ND				
Nickel, Total	mg/L	QE	12/09/2021	ves	0.0150					
Nickel, Total	mg/L	QE	06/21/2022	ves	0.0100	ND				
Nickel, Total	mg/L	QE	12/06/2022	ves	0.0430		ves			*
Nickel, Total	ma/L	QE	03/22/2023	,	0.0157		,	0.0133		
Nickel, Total	ma/L	QE	06/19/2023		0.0116			0.0116		
Nickel, Total	ma/L	QE	12/01/2023		0.0248			0.0224		
Nickel, Total	ma/L	QE	08/12/2024		0.0130			0.0215		
Barium, Total	ma/L	QN	03/01/2020	ves	0.2050					
Barium. Total	ma/L	QN	06/15/2020	ves	0.0890					
Barium, Total	mg/L	QN	09/01/2020	ves	0.0790					
Barium. Total	ma/L	QN	12/09/2020	ves	0.1040					
Barium. Total	ma/L	QN	06/10/2021	ves	0.1220					
Barium. Total	ma/L	QN	12/09/2021	ves	0.1260					
Barium. Total	ma/L	QN	06/21/2022	ves	0.0560					
Barium. Total	ma/L	QN	12/06/2022	ves	0.0430					
Barium. Total	ma/L	QN	03/22/2023	,	0.0445			0.1030		
Barium. Total	ma/L	QN	06/19/2023		0.0881			0.1030		
Barium. Total	ma/L	QN	12/01/2023		0.0594			0.1030		
Barium. Total	ma/L	QN	08/12/2024		0.0486			0.1030		
Boron, Total	ma/L	QN	03/01/2020	ves	0.5440					
Boron, Total	ma/L	QN	06/15/2020	ves	0.4790					
Boron, Total	ma/L	QN	09/01/2020	ves	0.4810					
Boron, Total	ma/L	QN	12/09/2020	ves	0.5200					
Boron, Total	ma/L	QN	06/10/2021	ves	0.6610					
Boron, Total	ma/L	QN	12/09/2021	ves	0.6340					
Boron, Total	mg/L	QN	06/21/2022	ves	0.1240		ves			*
Boron, Total	ma/L	QN	12/06/2022	ves	0.5230		,			
Boron, Total	ma/L	QN	03/22/2023	,	0.6540			0.5823		
Boron, Total	mg/L	QN	06/19/2023		0.6030			0.5648		
Boron, Total	mg/L	QN	12/01/2023		0.4880			0.5489		
Boron, Total	mg/L	QN	08/12/2024		0.3740			0.5489		
Cobalt, Total	mg/L	QN	03/01/2020	ves	0.0039					
Cobalt, Total	mg/L	QN	06/15/2020	yes	0.0035					
Cobalt, Total	mg/L	QN	09/01/2020	ves	0.0029					
Cobalt, Total	mg/L	QN	12/09/2020	yes	0.0039					

Analytical Data and CUSUM Summary

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	
Cobalt, Total	mg/L	QN	06/10/2021	yes	0.0034	4			
Cobalt, Total	mg/L	QN	12/09/2021	ves	0.0025				
Cobalt, Total	mg/L	QN	06/21/2022	ves	0.0008	ves			*
Cobalt, Total	mg/L	QN	12/06/2022	ves	0.0059				
Cobalt, Total	mg/L	QN	03/22/2023	,	0.0027		0.0037		
Cobalt. Total	ma/L	QN	06/19/2023		0.0061		0.0050		
Cobalt, Total	ma/L	QN	12/01/2023		0.0025		0.0037		
Cobalt, Total	ma/L	QN	08/12/2024		0.0041		0.0037		
Manganese, Total	ma/L	QN	03/01/2020	ves	1,1500				
Manganese, Total	ma/L	QN	06/15/2020	ves	0.9450				
Manganese, Total	mg/L	QN	09/01/2020	ves	0.8570				
Manganese, Total	mg/L	QN	12/09/2020	ves	1.1000				
Manganese, Total	mg/L	QN	06/10/2021	ves	0.9550				
Manganese, Total	ma/L	QN	12/09/2021	ves	0.6140				
Manganese, Total	ma/L	QN	06/21/2022	ves	0.3330				
Manganese, Total	ma/L	QN	12/06/2022	ves	0.9220				
Manganese, Total	ma/L	QN	03/22/2023	,	0.7820		0.8595		
Manganese, Total	ma/L	QN	06/19/2023		0.6890		0.8595		
Manganese, Total	ma/L	QN	12/01/2023		0.6910		0.8595		
Manganese Total	ma/l	<u>ON</u>	08/12/2024		5 8100		5 5427		**
Molybdenum Total	ma/l	QN	03/01/2020	ves	0.3580				
Molybdenum Total	ma/l	ON	06/15/2020	ves	0 2650				
Molybdenum Total	ma/l	<u>ON</u>	09/01/2020	ves	0 2460				
Molybdenum, Total	ma/L	<u>ÕN</u>	12/09/2020	ves	0.2500				
Molvbdenum, Total	ma/L	QN	06/10/2021	ves	0.2230				
Molvbdenum, Total	ma/L	QN	12/09/2021	ves	0.1840				
Molvbdenum, Total	ma/L	QN	06/21/2022	ves	0.0240	ves			*
Molvbdenum, Total	ma/L	QN	12/06/2022	ves	0.1340	,			
Molvbdenum, Total	ma/L	QN	03/22/2023	,	0.1240		0.2371		
Molvbdenum, Total	ma/L	QN	06/19/2023		0.1150		0.2371		
Molybdenum Total	ma/l	ON	12/01/2023		0 0900		0 2371		
Molvbdenum, Total	ma/L	QN	08/12/2024		0.0147		0.2371		
Nickel, Total	ma/L	QN	03/01/2020	ves	0.0190				
Nickel Total	ma/l	ON	06/15/2020	ves	0.0200				
Nickel Total	ma/l	<u>ON</u>	09/01/2020	ves	0.0170				
Nickel Total	ma/l	ON	12/09/2020	ves	0.0160				
Nickel, Total	ma/L	QN	06/10/2021	ves	0.0130				
Nickel, Total	ma/L	QN	12/09/2021	ves	0.0170				
Nickel Total	ma/l	ON	06/21/2022	ves	0.0200				
Nickel Total	ma/l	<u>ON</u>	12/06/2022	ves	0.0250				
Nickel, Total	ma/L	QN	03/22/2023	,	0.0106		0.0184		
Nickel, Total	ma/L	QN	06/19/2023		0.0121		0.0184		
Nickel, Total	ma/L	QN	12/01/2023		0.0169		0.0184		
Nickel, Total	ma/L	QN	08/12/2024		0.0094		0.0184		
Barium. Total	ma/L	QNE	03/01/2020	ves	0.1490				
Barium, Total	ma/L	QNE	06/15/2020	ves	0.1040				
Barium, Total	ma/L	QNE	09/01/2020	ves	0.0940				
Barium, Total	ma/L	QNE	12/09/2020	ves	0.0970				
Barium, Total	ma/L	QNE	06/10/2021	ves	0.0960				
Barium, Total	mg/L	QNE	12/09/2021	yes	0.0970				

Analytical Data and CUSUM Summary

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	
Barium, Total	mg/L	QNE	06/21/2022	yes	0.1000				
Barium, Total	mg/L	QNE	12/06/2022	yes	0.0960				
Barium, Total	mg/L	QNE	03/22/2023	-	0.0907		0.1041		
Barium, Total	mg/L	QNE	06/19/2023		0.1000		0.1041		
Barium, Total	mg/L	QNE	12/01/2023		0.0992		0.1041		
Barium, Total	mg/L	QNE	08/12/2024		0.1090		0.1041		
Boron, Total	mg/L	QNE	03/01/2020	yes	1.1500				
Boron, Total	mg/L	QNE	06/15/2020	ves	0.4760				
Boron, Total	mg/L	QNE	09/01/2020	ves	0.0752	ves			*
Boron, Total	ma/L	QNE	12/09/2020	ves	0.7390				
Boron, Total	mg/L	QNE	06/10/2021	ves	0.7490				
Boron, Total	ma/L	QNE	12/09/2021	ves	0.7300				
Boron, Total	ma/L	QNE	06/21/2022	ves	0.6080				
Boron, Total	ma/L	QNE	12/06/2022	ves	0.6320				
Boron, Total	ma/L	QNE	03/22/2023	,	0.6710		0.7263		
Boron, Total	ma/L	QNE	06/19/2023		0.6200		0.7263		
Boron Total	ma/l	ONE	12/01/2023		0 6250		0 7263		
Boron Total	ma/l	ONE	08/12/2024		0.6600		0 7263		
Cobalt Total	ma/l	ONF	03/01/2020	ves	0.0038		0.1200		
Cobalt Total	ma/l	ONE	06/15/2020	ves	0.0019				
Cobalt Total	ma/l	ONE	09/01/2020	ves	0.0011				
Cobalt Total	ma/l	ONE	12/09/2020	ves	0.0013				
Cobalt Total	ma/l	ONE	06/10/2021	ves	0.0006				
Cobalt Total	ma/l	ONE	12/09/2021	ves	0.0007				
Cobalt Total	ma/l	ONE	06/21/2022	ves	0.0005				
Cobalt Total	ma/l	ONE	12/06/2022	ves	0.0043				
Cobalt Total	ma/l	ONE	03/22/2023	,00	0.0011		0.0018		
Cobalt Total	ma/l	ONE	06/19/2023		0.0062		0.0047		
Cobalt Total	mg/L	ONE	12/01/2023		0.0002		0.0042		
Cobalt Total	ma/l	ONE	08/12/2024		0.0009		0.0018		
Manganese Total	mg/L	ONE	03/01/2020	Ves	1 4600		0.0010		\vdash
Manganese Total	mg/L	ONE	06/15/2020	Ves	0.6160				
Manganese Total	mg/L	ONE	09/01/2020	Ves	0.6980				
Manganese Total	mg/L		12/00/2020	Ves	0.0000				
Manganese Total	mg/L	ONE	06/10/2021	Ves	0.3970				
Manganese Total	mg/L		12/00/2021	Ves	0.0070				
Manganese Total	mg/L		06/21/2022	yes	0.4010				
Manganese Total	mg/L		12/06/2022	yes	0.3130				
Manganese, Total	mg/L		03/22/2022	yes	0.5350		0.6148		
Manganoso Total	mg/L		06/10/2023		0.0390		0.0140		
Manganese Total	mg/L		12/01/2023		0.5470		0.0140		
Manganese Total	mg/L		08/12/2023		0.000		0.6148		
Molybdonum Total	mg/L		03/01/2024	VOC	0.4020	VOS	0.0140		*
Molybdenum Total	mg/L		06/15/2020	yes	0.1130	yes			
Molybdenum Total	mg/L		00/01/2020	yes	0.0210				
Molybdonum Total	mg/L		12/00/2020	yes	0.0230				
Molybdenum, Total	mg/L		06/10/2020	yes	0.0230				
Molybdonum Total	mg/L		12/00/2021	yes	0.0200				
Molybdenum, Total	mg/L		06/21/2022	yes	0.0200				
Molybdonum Total	mg/L		12/06/2022	yes	0.0100				
worybuchull, lotal	mg/∟		12/00/2022	yes	0.0140				. 1

Analytical Data and CUSUM Summary

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Molybdenum, Total	mg/L	QNE	03/22/2023		0.0129			0.0199		
Molybdenum, Total	mg/L	QNE	06/19/2023		0.0117			0.0199		
Molybdenum, Total	mg/L	QNE	12/01/2023		0.0127			0.0199		
Molybdenum, Total	mg/L	QNE	08/12/2024		0.0121			0.0199		
Nickel, Total	mg/L	QNE	03/01/2020	yes	0.0160					
Nickel, Total	mg/L	QNE	06/15/2020	yes	0.0180					
Nickel, Total	mg/L	QNE	09/01/2020	ves	0.0150					
Nickel, Total	mg/L	QNE	12/09/2020	ves	0.0120					
Nickel, Total	ma/L	QNE	06/10/2021	ves	0.0100	ND				
Nickel, Total	ma/L	QNE	12/09/2021	ves	0.0100	ND				
Nickel, Total	mg/L	QNE	06/21/2022	ves	0.0100	ND				
Nickel, Total	ma/L	QNE	12/06/2022	ves	0.0100	ND				
Nickel, Total	ma/L	QNE	03/22/2023	,	0.0053			0.0126		
Nickel, Total	ma/L	QNE	06/19/2023		0.0044			0.0126		
Nickel Total	ma/l	ONF	12/01/2023		0.0066			0.0126		
Nickel, Total	ma/L	QNE	08/12/2024		0.0052			0.0126		
Barium, Total	ma/L	QNW	03/01/2020	ves	0.2260					
Barium Total	ma/l	ONW	06/15/2020	ves	0 1700					
Barium Total	ma/l	ONW	09/01/2020	ves	0 2450					
Barium Total	ma/l	ONW	12/09/2020	ves	0.2870					
Barium Total	ma/l	ONW	06/10/2021	Ves	0.2600					
Barium Total	ma/l	ONW	12/09/2021	Ves	0.2000					
Barium Total	ma/l	ONW	06/21/2022	Ves	1 8200		VAS			*
Barium Total	ma/l	ONW	12/06/2022	Ves	1 4000		Ves			*
Barium Total	ma/l	ONW	03/22/2023	yes	0 1950		yes	0 2495		
Barium Total	ma/l	ONW	06/19/2023		0.1000			0.2400		
Barium Total	ma/l		12/01/2023		9 / 100			0.2400		**
Barium Total	ma/L		08/12/2020		0.3140			0.2651		
Boron Total	mg/L		03/01/2020	VAS	0.0140			0.2001		
Boron Total	ma/L		06/15/2020	Ves	0.1740	ND	Ves			*
Boron Total	mg/L		00/01/2020	yes	0.0100	ND	yes			
Boron Total	mg/L		12/00/2020	yes	0.1900					
Boron Total	mg/L		06/10/2021	yes	0.2470					
Boron Total	mg/L		12/00/2021	yes	0.1030					
Boron Total	mg/L		12/09/2021	yes	0.2770					
Boron Total	mg/L		12/06/2022	yes	0.1220					
Boron, Total	mg/L		12/00/2022	yes	0.2900			0.0110		
Boron, Total	mg/L		03/22/2023		0.1470			0.2110		
Boron, Total	mg/L		10/19/2023		0.1300			0.2110		**
Boron, Total	mg/L		12/01/2023		1.2900			1.2209		
Boron, Iotal	mg/L		08/12/2024	1/2.2	0.2110			0.2110		
Coball, Iolal	mg/L		03/01/2020	yes	0.0033					
Cobalt, Iotal	mg/L		06/15/2020	yes	0.0074					
Cobalt, Iotal	mg/∟		12/00/2020	yes	0.0004					
Copalt, Iotal	mg/L		12/09/2020	yes	0.0004					
Copalt, Iotal	mg/L		06/10/2021	yes	0.0033					
Cobalt, Iotal	mg/L	QNW	12/09/2021	yes	0.0067					
Cobalt, Iotal	mg/L	QNW	06/21/2022	yes	0.0804					
Cobalt, Total	mg/L	QNW	12/06/2022	yes	0.0581					
Cobalt, Total	mg/L	QNW	03/22/2023		0.0007			0.0200		
Cobalt, Total	mg/L	QNW	06/19/2023		0.0030			0.0200		

Analytical Data and CUSUM Summary

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Cobalt, Total	mg/L	QNW	12/01/2023		0.7270			0.6959		**
Cobalt, Total	mg/L	QNW	08/12/2024		0.0087			0.0200		
Manganese, Total	mg/L	QNW	03/01/2020	yes	1.0400					
Manganese, Total	mg/L	QNW	06/15/2020	yes	0.3020					
Manganese, Total	mg/L	QNW	09/01/2020	yes	0.0560					
Manganese, Total	mg/L	QNW	12/09/2020	yes	0.0450					
Manganese, Total	mg/L	QNW	06/10/2021	yes	0.7010					
Manganese, Total	mg/L	QNW	12/09/2021	yes	0.7140					
Manganese, Total	mg/L	QNW	06/21/2022	yes	5.2400					
Manganese, Total	mg/L	QNW	12/06/2022	yes	9.8800					
Manganese, Total	mg/L	QNW	03/22/2023		0.1050			2.2473		
Manganese, Total	mg/L	QNW	06/19/2023		0.5120			2.2473		
Manganese, Total	mg/L	QNW	12/01/2023		49.9000			46.3776		**
Manganese, Total	mg/L	QNW	08/12/2024		4.4200			2.2473		
Molybdenum, Total	mg/L	QNW	03/01/2020	yes	0.0100	ND				
Molybdenum, Total	mg/L	QNW	06/15/2020	yes	0.0100	ND				
Molybdenum, Total	mg/L	QNW	09/01/2020	yes	0.0100	ND				
Molybdenum, Total	mg/L	QNW	12/09/2020	yes	0.0100	ND				
Molybdenum, Total	mg/L	QNW	06/10/2021	yes	0.0100	ND				
Molybdenum, Total	mg/L	QNW	12/09/2021	yes	0.0100	ND				
Molybdenum, Total	mg/L	QNW	06/21/2022	yes	0.0180					
Molybdenum, Total	mg/L	QNW	12/06/2022	yes	0.0200					
Molybdenum, Total	mg/L	QNW	03/22/2023		0.0040	ND		0.0123		
Molybdenum, Total	mg/L	QNW	06/19/2023		0.0040	ND		0.0123		
Molybdenum, Total	mg/L	QNW	12/01/2023		0.1550			0.1508		**
Molybdenum, Total	mg/L	QNW	08/12/2024		0.0077			0.0123		
Nickel, Total	mg/L	QNW	03/01/2020	yes	0.0100	ND				
Nickel, Total	mg/L	QNW	06/15/2020	yes	0.0100					
Nickel, Total	mg/L	QNW	09/01/2020	yes	0.0100	ND				
Nickel, Total	mg/L	QNW	12/09/2020	yes	0.0100	ND				
Nickel, Total	mg/L	QNW	06/10/2021	yes	0.0100	ND				
Nickel, Total	mg/L	QNW	12/09/2021	yes	0.0100	ND				
Nickel, Total	mg/L	QNW	06/21/2022	yes	0.1000		yes			*
Nickel, Total	mg/L	QNW	12/06/2022	yes	0.0910		yes			*
Nickel, Total	mg/L	QNW	03/22/2023		0.0040					
Nickel, Total	mg/L	QNW	06/19/2023		0.0056					
Nickel, Total	mg/L	QNW	12/01/2023		1.3700					
Nickel, Total	mg/L	QNW	08/12/2024		0.0181					

				•				
Constituent	Units	Well	Date	Result	ND Qualifier	Date Range	Ν	Critical Value
Barium, Total	mg/L	QE	06/10/2021	0.0065		03/01/2020-12/06/2022	8	0.6808
Nickel, Total	mg/L	QE	12/06/2022	0.0430		03/01/2020-12/06/2022	8	0.6808
Boron, Total	mg/L	QN	06/21/2022	0.1240		03/01/2020-12/06/2022	8	0.6808
Cobalt, Total	mg/L	QN	06/21/2022	0.0008		03/01/2020-12/06/2022	8	0.6808
Molybdenum, Total	mg/L	QN	06/21/2022	0.0240		03/01/2020-12/06/2022	8	0.6808
Boron, Total	mg/L	QNE	09/01/2020	0.0752		03/01/2020-12/06/2022	8	0.6808
Molybdenum, Total	mg/L	QNE	03/01/2020	0.1150		03/01/2020-12/06/2022	8	0.6808
Barium, Total	mg/L	QNW	06/21/2022	1.8200		03/01/2020-12/06/2022	8	0.6371
Barium, Total	mg/L	QNW	12/06/2022	1.4000		03/01/2020-12/06/2022	8	0.6371
Boron, Total	mg/L	QNW	06/15/2020	0.0100	< 0.0100	03/01/2020-12/06/2022	8	0.6808
Nickel, Total	mg/L	QNW	06/21/2022	0.1000		03/01/2020-12/06/2022	8	0.6371
Nickel, Total	mg/L	QNW	12/06/2022	0.0910		03/01/2020-12/06/2022	8	0.6371
-				-				

Dixon's Test Outliers 1% Significance Level

N = Total number of independent measurements in background at each well. Date Range = Dates of the first and last measurements included in background at each well. Critical Value depends on the significance level and on N-1 when the two most extreme values are tested or N for the most extreme value.