

2023 Annual Water Quality Report and Engineering Inspection

Permit #70-SDP-09-91P

Central Iowa Power Cooperative

December 7, 2023

2023 Annual Water Quality Report and Engineering Inspection Permit #70-SDP-09-91C

I hereby certify that this engineering document was prepared by me or under my direct personal supervision and that I am a duly licensed Professional Engineer under the laws of the State of Iowa.

Michael J Alowitz, P.E.

License Number:

18160

My license renewal date is: December 31, 2024

Pages or sheets covered by this seal: Entire Document

Executive Summary

Period of Report Coverage

This Annual Water Quality Report (AWQR) presents the data collected in October 2023 for the Central Iowa Power Cooperative (CIPCO) Coal Combustion Residue (CCR) Monofill. For most analytes, the report includes data from October 2016 onward when analysis was shifted to total metals instead of dissolved metals. Greater historical data for chloride and sulfate is included because these analytes were not previously filtered.

Report Priority

The 2023 CIPCO AWQR is consistent with past data. Decreasing trends are observed more frequently than increasing trends. Elevated concentrations remain primarily in one area identified by MW-15 and MW-17. The recommendations are to continue groundwater monitoring.

Site Status and Applicable Rules

The CIPCO CCR Monofill ceased receiving CCR in 2014 and closure cap construction was completed in 2015. Closure Permit #70-SDP-09-91C (Closure Permit) was issued February 1, 2016. The CCR Monofill is permitted and closed under 567 <u>lowa Administrative Code</u>, Chapter 103. Figure 2 – Site Plan and Monitoring Network shows the status of the site monitoring network and topographic conditions.

Contents

Intro	duction		1
1.1	Backg	ground	1
1.2	Monito	oring System	2
1.3	Sampl	le Collection	2
1.4	Analyt	tical Parameters	2
Grou	ndwater l	Flow Conditions	2
2.1	Horizo	ontal Groundwater Flow	2
2.2	Vertica	al Hydraulic Gradients	3
Analy	tical Res	sults	3
3.1	Data A	Analysis	3
	3.1.1	Published Standards	3
	3.1.2	Baseline Concentrations	4
	3.1.3	UCLs	4
	3.1.4	Two-Year Average Concentration	4
3.2	Repor	rting Limits	4
3.3	Evalua	ation of Analytical and Field Data	4
	3.3.1	Published Standards	4
	3.3.2	Baseline Concentrations	5
	3.3.3	Trend Review	5
Sumr	nary and	I Recommendations	6
Inspe	ctions		6
	1.1 1.2 1.3 1.4 Ground 2.1 2.2 Analy 3.1 3.2 3.3	1.2 Monito 1.3 Samp 1.4 Analy Groundwater 2.1 Horizo 2.2 Vertico Analytical Res 3.1 Data (3.1.1) 3.1.2 3.1.3 3.1.4 3.2 Report 3.3 Evalu 3.3.1 3.3.2 3.3.3	 1.1 Background 1.2 Monitoring System 1.3 Sample Collection 1.4 Analytical Parameters Groundwater Flow Conditions 2.1 Horizontal Groundwater Flow 2.2 Vertical Hydraulic Gradients Analytical Results 3.1 Data Analysis 3.1.1 Published Standards 3.1.2 Baseline Concentrations 3.1.3 UCLs 3.1.4 Two-Year Average Concentration 3.2 Reporting Limits 3.3 Evaluation of Analytical and Field Data 3.3.1 Published Standards 3.3.2 Baseline Concentrations 3.3.3 Trend Review Summary and Recommendations

Table index

Table 1	Monitoring Program Summary
	,
Table 2	Monitoring Program Implementation Schedule
Table 3	Monitoring Well Maintenance and Performance Revaluation Schedule (Not Applicable)
Table 4	Monitoring Well Maintenance and Performance Summary
Table 5	Background Summary
Table 6	Summary of Well/Detected Constituent Pairs with No Immediately Preceding Control Limit Exceedances
Table 7	Summary of Ongoing and Newly Identified Control Limit Exceedances
Table 8	Analytical Data Summary
Table 9	Historical Control Limit and Action Level Exceedances
Table 10	Groundwater Quality Assessment Plan Trend Analysis
Table 11	Leachate Management Summary (Not Applicable)
Table 12	Gas Monitoring Summary (Not Applicable)

Table index (cont'd)

Table 13 Groundwater Elevations October 10, 2023
Table 14 Vertical Hydraulic Gradients (ft/ft) October 10, 2023

Figure index

igure 1	Site Location Map
Figure 2	Site Map and Monitoring Network
Figure 3	Water Table Potentiometric Surface October 10, 2023
Figure 4	Uppermost Aquifer Potentiometric Surface October 10, 2023
Figure 5	Summary of Exceedances of Published Standards October 2023
Figure 6	Arsenic Sample Results October 2023
Figure 7	Boron Sample Results October 2023
Figure 8	Chloride Sample Results October 2023
Figure 9	Cobalt Sample Results October 2023
Figure 10	Iron Sample Results October 2023
Figure 11	Lithium Sample Results October 2023
Figure 12	Magnesium Sample Results October 2023
Figure 13	Manganese Sample Results October 2023
Figure 14	Molybdenum Sample Results October 2023
Figure 15	Sodium Sample Results October 2023
Figure 16	Strontium Sample Results October 2023
Figure 17	Sulfate Sample Results October 2023
Figure 18	Temperature Values October 2023
Figure 19	pH Values October 2023
Figure 20	Specific Conductance Values October 2023

Appendices

Appendix A	Monitoring Forms
Appendix B	Laboratory Analytical Reports
Appendix C	Graphs of Analytical and Monitoring Results
Appendix D	Inspection Summary

Acronyms/Abbreviations:

AWQR Annual Water Quality Report

CIPCO Central Iowa Power Cooperative (CIPCO

CCR Coal Combustion Residue

HA Lifetime Health Advisory

HIR Hydrogeological Investigation Report
HMSP Hydrologic Monitoring System Plan
GWQA Groundwater Quality Assessment

IAC Iowa Administrative Code

IDNR Iowa Department of Natural Resources

MCL EPA Maximum Contaminant Level

ORP Oxidation Reduction Potential

SDWR Secondary Drinking Water Regulations

SWS Statewide Standard

U Used in Table 8 to denote concentrations that are reported as non-detect.

The associated value represents half the reporting limit.

UCL Upgradient Control Limit

USEPA United States Environmental Protection Agency

1. Introduction

This Annual Water Quality Report (AWQR) and Engineering Inspection was prepared by GHD on behalf of Central lowa Power Cooperative (CIPCO) for the closed Fair Station Coal Combustion Residue (CCR) Monofill (Monofill) in Muscatine County, Iowa. The Monofill ceased receiving CCR in 2014 and closure cap construction was completed in 2015. Closure Permit #70-SDP-09-91C (Closure Permit) was issued February 1, 2016.

1.1 Background

The Monofill received CCR from the Fair Station power plant in Muscatine, Iowa from 1974 through November 7, 2014. No material other than CCR and other approved materials from demolition of Fair Station have been disposed in the Monofill. Prior to 1974, the Monofill property was used for agricultural activities. Cap construction was completed in 2014 and 2015. Final seeding of the cover was completed in September 2015. The Construction Summary Report was submitted to the Iowa Department of Natural Resources (IDNR) on December 22, 2015, and the Closure Permit was issued on February 1, 2016. The closure activities did not require modification of the groundwater monitoring network.

The local geology consists of sands, silts, and clays similar to what would be expected from alluvial deposition. The 1994 Hydrogeological Investigation Report (HIR) and Hydrologic Monitoring System Plan (HMSP) concluded these deposits did not appear to be great enough in thickness or extent to form an alluvial aquifer. Over the majority of the Monofill, Pennsylvanian shale is found at depths of 15 feet below ground surface or less, underlain by Devonian limestone. On the eastern, higher elevation portion of the Monofill, depth to bedrock is greater than 15 feet.

The Monofill is located adjacent to the Pine Creek flood plain. Pine Creek enters the Mississippi River approximately ½ mile southwest of the Monofill. Water table groundwater flow is generally toward Pine Creek. The Devonian aquifer flow is generally directed west/southwest, toward Pine Creek and the Mississippi River. The location of the Monofill is shown in Figure 1.

A groundwater quality assessment (GWQA) was initiated at the Monofill site in 2012 and completed in 2013. As an outgrowth of those activities, new monitoring wells MW-17, MW-19, and MW-20 were integrated into the HMSP and the analyte list was expanded at the direction of the IDNR, as reflected in this AWQR. Monitoring well MW-19 has since been abandoned.

The December 9, 2016 AWQR for 2016 data was the last report to include dissolved (filtered) metals analysis for groundwater samples. Following an IDNR comment letter dated May 17, 2017, CIPCO applied for a variance to switch to unfiltered samples. The December 9, 2016 AWQR included a side-by-side comparison of filtered and unfiltered samples collected generally through low-flow techniques. The variance request also sought to reduce the analyte list. The variance was approved in a letter dated July 24, 2017, with the exception that arsenic and cobalt analyses remain required. The approval eliminates barium, beryllium, copper, lead, selenium, and zinc. The variance was incorporated into Revision 1 of the closure permit also issued July 24, 2017.

Due to the change to sampling total metals (unfiltered metals), it was necessary to establish new baseline concentrations for metals. Four sampling events: October 2016, August 2017, October 2017, and April 2018 formed the new baseline concentrations. Historical data reflecting total metals are no longer reported; however, the data are available in the December 9, 2016 AWQR.

It is anticipated a 10-year post-closure monitoring period, completed with an annual sampling event in 2026, will be required; however, the potential to cease monitoring earlier exists.

1.2 Monitoring System

Groundwater samples are collected from three water table monitoring wells (upgradient well MW-11, and downgradient wells MW-2 and MW-6), and water table monitoring wells MW-4, MW-7, and MW-10 are used for elevation monitoring only. Groundwater samples are collected from seven uppermost aquifer wells (upgradient location MW-9 and downgradient locations MW-1, MW-3, MW-5, MW-15, MW-17, and MW-20). Surface water sampling was discontinued with issuance of the Closure Permit. Figure 2 shows the locations of monitoring wells and identifies upgradient locations. Table 1 and Table 2 present the monitoring program summary and implementation schedule, respectively. Table 4 presents the monitoring well maintenance and performance summary.

Based on past groundwater data, MW-1, although hydraulically upgradient, is evaluated as a downgradient well. All other wells are characterized as upgradient or downgradient consistent with site data.

1.3 Sample Collection

Sampling for the 2023 AWQR was completed in October 2023. Groundwater samples were collected with low-flow pneumatic bladder pumps with dedicated tubing and dedicated (disposable) bladders except for MW-9.

A flow-through monitoring cell was used prior to sample collection to measure pH, conductivity, temperature, dissolved oxygen, turbidity, and oxidation reduction potential (ORP). The sampling method for MW-9 remained a disposable polyethylene bailer without a flow-cell.

1.4 Analytical Parameters

Groundwater samples collected during the sampling event were analyzed for arsenic, cobalt, iron, magnesium, manganese, chloride, and sulfate as required in Paragraph 567—103.1(4)d of the <u>lowa Administrative Code</u> (IAC). A variance granted in July 2017 eliminated the requirement for barium, beryllium, copper, lead, selenium, and zinc analyses based on historical data. Boron, lithium, molybdenum, sodium, and strontium are also analyzed per the amended HMSP. Laboratory analysis was conducted by Eurofins Environmental Testing North Central, LLC. (Eruofins) of Cedar Falls, Iowa. Eurofins provided prepared sample containers for the monitoring event.

2. Groundwater Flow Conditions

2.1 Horizontal Groundwater Flow

Static water levels were measured at each of the monitoring wells included in the monitoring system in October 2023. Table 13 presents groundwater elevations measured in wells during the October 2023 monitoring event. A water table contour map (Figure 3) was prepared using water level measurements from the October 2023 monitoring event. During this monitoring event, the inferred groundwater flow direction at the water table was toward the southwest. Figure 4 shows the potentiometric surface of the uppermost aquifer based on measurements from the October 2023 monitoring event. The apparent direction of flow in the uppermost aquifer is generally to the southwest. The flow of groundwater in both the water table and uppermost aquifer at the Monofill is toward Pine Creek located west of the Monofill.

2.2 Vertical Hydraulic Gradients

Water levels measured in monitoring well clusters MW-2/MW-3, MW-6/MW-5, MW-10/MW-9, and MW-7/MW-20 during the 2022 monitoring event were used to calculate vertical hydraulic gradients for the Monofill. The vertical hydraulic gradients were calculated by the following equation:

Water Elevation in Deep Well - Water Elevation in Shallow Well

Elevation of Middle of Saturated Zone of Shallow Well Screen - Elevation of Middle of Saturated Zone of Deep Well Screen

The calculated vertical hydraulic gradients are presented in Table 14. The results are similar to historical results for each well pair. The downward-directed flow reported at MW-10/MW-9 remains the largest gradient on site; MW-9 is the deepest well on site.

3. Analytical Results

Groundwater sample collection records for October 2023 are provided in Appendix A and the associated laboratory analytical reports are provided in Appendix B. Table 8 present current and historical analytical data (with total metals) collected at the Monofill for sampling locations and analytes in the current monitoring plan. Historical data with total metals was last presented in the December 9, 2016 AWQR. Appendix C includes graphs of concentration versus time for all analytes and in each monitored unit (water table and uppermost aquifer). Table 10 summarizes the annual laboratory results and basic trend analysis.

3.1 Data Analysis

Sample results are compared to multiple reference concentrations: 1) published concentration standards, 2) baseline concentrations, 3) upgradient control limits (UCLs) and, 4) where applicable, a two-year average concentration. All comparisons are shown in the Analytical Data Summary in Appendix C. Comparison to published standards and UCLs are included graphically in Appendix C.

3.1.1 Published Standards

To evaluate the status of water quality at the Monofill, a comparison was made between the sample result and federal drinking water quality standards, as required by Paragraph 567—103.1(4)d of the IAC. Sample results were compared to the United States Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL), Lifetime Health Advisory (HA) Level, or Secondary Drinking Water Regulations (SDWR) guidelines as presented in the 2018 Edition of the Drinking Water Standards and Health Advisories, dated March 2018 (2018 Standards) (USEPA, 2018). The following definitions of the various standards are adapted from the 2018 Standards document:

- MCL The highest level for a contaminant that is allowed in drinking water. MCLs are enforceable standards.
 There is an MCL for arsenic.
- HA An estimate of acceptable drinking water levels for a chemical substance based on health effects information. The lifetime HA is the concentration of a chemical in drinking water that is not expected to cause any adverse noncarcinogenic effects for a lifetime of exposure. The lifetime HA is based on exposure of a 70-kilogram (kg) adult consuming 2 liters of water per day. An HA is not a legally enforceable federal standard, but serves as technical guidance to assist federal, state, and local officials. There is an HA for boron, manganese, molybdenum, selenium, and strontium.
- SDWR Non-enforceable federal guidelines regarding cosmetic effects (such as tooth or skin discoloration) or aesthetic effects (such as taste, odor, or color) of drinking water. An SDWR guideline exists for chloride, iron, manganese, and sulfate.

lowa Statewide Standards (SWSs) are used for comparison of cobalt and lithium results since no MCL, HA, or SDWR guideline has been established for cobalt and lithium. Under 40 CFR Part 257.95(h)(2), federal standards for lithium (0.04 mg/L) and cobalt (0.006 mg/L) were established in 2018 for monitoring CCR sites where the federal coal ash rule is applicable. These federal standards are higher than the SWS of 0.014 mg/L and 0.003 mg/L for lithium and cobalt, respectively, in protected groundwater sources.

3.1.2 Baseline Concentrations

Baseline concentrations for total metals were established at all wells based on sample events in October 2016, August 2017, October 2017, and April 2018. Baseline concentrations are included in Table 10. For sulfate and chloride, historical values are used for baseline concentrations since these samples are not filtered and there was no difference with historical samples. Table 5 presents background summary data.

3.1.3 UCLs

A UCL was calculated for each upgradient sampling location as the average of all previous sampling results for each analyte in each well plus two standard deviations. The calculated UCLs are presented in Tables 5 and 8. Non-detect results were conservatively represented by one-half the reporting limit for calculation of the UCL. Table 6 presents exceedances of a control limit not immediately preceded by an exceedance. The cobalt concentration at MW-5 exceeded the UCL for the second year in a row. Iron was measured above the UCL at MW-5 for the first time in several years and manganese dipped below the UCL.. Table 8 provides all associated data and Table 9 presents a graphical summary of UCL and/or published standard exceedances in the last 5 years.

3.1.4 Two-Year Average Concentration

For magnesium and sodium, no MCL, HA, SDWR guideline, or SWS is established. In order to evaluate the status of water quality at the Monofill for these compounds (magnesium and sodium), a comparison was made between the sample result and the two-year average concentration for that parameter in each well, in accordance with Paragraph 567—103.1(4)d of the IAC. Non-detect results were represented by the reporting limit for calculating the two-year average concentration.

3.2 Reporting Limits

In the previous year's results, there were several constituents that had elevated reporting limits at certain wells, such as arsenic (MW-15), lithium (MW-6), and molybdenum (MW-2). In these cases, the results are graphed in the usual manner at one-half the reporting limit; however, they can appear on the graphs as spikes in concentration. The 2023 data have reporting limits consistent with historical data.

3.3 Evaluation of Analytical and Field Data

3.3.1 Published Standards

No reported concentrations exceed an MCL.

HAs were exceeded for boron (five locations), manganese (five locations), and molybdenum (three locations).

SDWR guidelines were exceeded for iron (five locations), manganese (eight locations), and sulfate (two locations).

SWSs were exceeded for cobalt (two locations) and lithium (eight locations).

Figure 5 identifies the monitoring points where published standards were exceeded. Table 7 presents a summary of ongoing and newly identified exceedances of the published standards.

3.3.2 Baseline Concentrations

October 2023 sample results exceeded baseline concentrations for the following wells and analytes:

- Boron at eight locations
- Chloride at four locations
- Cobalt at one location
- Iron at one location
- Lithium at three locations
- Magnesium at four locations
- Manganese at four locations
- Molybdenum at one location
- Sodium at five locations
- Strontium at five locations
- Sulfate at two locations

3.3.3 Trend Review

Trends can be observed in the charts in Appendix C and are summarized in Table 10. Most analytes and wells saw no trend. Decreasing trends outnumber increasing trends for laboratory analytes.

Sulfate concentrations at uppermost aquifer monitoring wells MW-15 and MW-17 remain approximately an order of magnitude higher than the other monitoring locations. The 2023 data show MW-17 sulfate concentration is consistent with past data. The 2023 sulfate result for MW-15 is an increase over recent years and ends a 2-year downward trend in concentration. There is no obvious trend in MW-15 sulfate results and a slight increasing trend in MW-17. The last time the sulfate SDWR limit was exceeded at MW-5 was 2013; the last time at MW-6 was 2015. Sulfate last exceeded the SDWR limit at wells MW-1 and MW-2 in 2021. For the 2023 results, only monitoring wells MW-15 and MW-17 exceeded their sulfate baseline concentrations.

Chloride concentrations exhibit a long-term trend of decreasing concentrations at every location with elevated results. The 2023 data showed slight increases in chloride across the monitoring network except for MW-1 and MW-17 where there were slight decreases in chloride concentration; however, all results stay very close to those of previous years. The maximum chloride concentration reported, 18.3 mg/L at MW-15, is less than 10 percent of the SDWR value of 250 mg/L.

Sulfate and chloride are often used as indicators for CCR impact on groundwater. The long-term overall trends for sulfate and chloride at the CIPCO CCR Monofill show the positive effects of closure.

The reported cobalt and manganese concentrations at monitoring well MW-5 were still higher compared to previous years, although slightly decreased from 2022. Monitoring well MW-5 is co-located with MW-6 which has consistently exhibited the highest cobalt and manganese concentrations on site. Future monitoring events will help identify if the results of the last to sampling events signify a new trend in MW-5.

A historically increasing trend in molybdenum was evident at monitoring well MW-17 through 2021 but the last 2 years of data have been decreasing. MW-15 molybdenum concentration exhibits an increasing trend.

Sodium results show a long-term increasing trend at MW-17; however, the 2023 result is lower than the 2022 result. In MW-15, there have been increases over the last few years, but generally a flat or decreasing trend in sodium concentrations in other areas of the Site.

The prevalence of decreasing trends may be affected by ongoing low water levels at the time of sampling. Continued monitoring will further help assess the concentration patterns and trends.

4. Summary and Recommendations

No MCLs were exceeded in the October 2023 groundwater monitoring event. HAs (boron, manganese, and molybdenum), SDWR guidelines (iron, manganese, and sulfate), and the SWSs (cobalt and lithium) were exceeded at locations consistent with historical results.

Overall, groundwater monitoring results are in-line with expectations and decreasing trends are seen in sulfate data, while chloride data are consistent with historical trends. Overall, decreasing concentration trends are observed more than increasing trends but for most locations and analytes, no clear trend was noted.

The groundwater monitoring network remains appropriate for assessing the Monofill's impact on groundwater. Overall, the Monofill does not appear to be impacting groundwater at concentrations of concern relative to drinking water exposure. The standards used to evaluate the Monofill's impact on groundwater are drinking water standards. Although HAs and SDWR guidelines are exceeded, the Monofill does not pose a significant risk because no drinking water receptors are located immediately downgradient of the Monofill, local users of groundwater have deep wells, and the extent of impacts appears to be limited.

Routine annual monitoring at the Monofill should continue in October 2024. No change to the analyte list is proposed at this time. Although surface water monitoring may be warranted in the future, at this time, it is not recommended to resume. Years of past surface water monitoring did not show an impact, and sulfate concentrations (the largest mass in terms of milligrams per liter and thus most likely to be observed at levels of impact) at MW-17 remain within the range of historical results.

5. Inspections

CIPCO continued routine inspections of the Monofill since closure. Appendix D includes a summary of the 2023 inspection activities and corrective actions. Sam Honolod of CIPCO routinely inspects the Monofill property.

Overall, the cap is well vegetated. Multiple mowing events were conducted during the year. Maintenance work on drainage channels was performed.

In 2022, a significant effort was completed by CIPCO to protect the landfill berm along Pine Creek. Two areas of historical erosion were cleared, covered with flex-a-mat, and re-seeded. This area generally appeared to be protected with the flex-a-mat performing as expected.

Minor maintenance tasks were identified such as fence repair. In 2023, woody vegetation around the stormwater ponds was cleared.

CIPCO will continue multiple site visits and inspections to support landfill maintenance.

Tables

Table 1

Monitoring Program Summary
2023 Annual Water Quality Report

CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

Monitoring Well		Current Monitoring	Change for next		Total # of Samples in each monitoring program since January 1, 2018			
	Formation	Program	sampling event	Control Limit Exceedances	Routine (Annual)	Supplemental	Remedial Action	
				Chloride, Iron, Lithium, Magnesium,				
MW-1	Uppermost Aquifer	Annual	No Change	Sulfate	7	0	0	
				Boron, Lithium, Sodium, Strontium,				
MW-2	Water Table	Annual	No Change	Sulfate	7	0	0	
MW-3	Uppermost Aquifer	Annual	No Change	Boron, Sodium, Strontium	7	0	0	
MW-5	Uppermost Aquifer	Annual	No Change	Boron, Chloride, Cobalt, Iron, Magnesium, Sodium, Sulfate	7	0	0	
				Arsenic, Boron, Chloride, Cobalt, Manganese, Molybdenum, Sodium,				
MW-6	Water Table	Annual	No Change	Strontium	7	0	0	
MW-9	Uppermost Aquifer	Annual	No Change		7	0	0	
MW-11	Water Table	Annual	No Change		7	0	0	
MW-15	Uppermost Aquifer	Annual	No Change	Boron, Chloride, Lithium, Magnesium, Molybdenum, Sodium, Sulfate	7	0	0	
				Boron, Chloride, Iron, Lithium, Magnesium, Molybdenum, Sodium,				
MW-17	Uppermost Aquifer	Annual	No Change	Sulfate	7	0	0	
MW-20	Uppermost Aquifer	Annual	No Change	Boron, Sodium	7	0	0	
Other monitoring po	ints							
MW-4	Water Table	Water Level	No Change	NA	0	0	0	
MW-7	Water Table	Water Level	No Change	NA	0	0	0	
MW-10	Water Table	Water Level	No Change	NA	0	0	0	

Table 2

Monitoring Program Implementation Schedule 2023 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

	Rece	nt Sampling Date	es and Const	ituents	Upcoming Sampling Dates and Constituents		
Monitoring Well					Annually		
MW-1							
MW-2							
MW-3							
MW-5	Arsenic, c	Arsenic, cobalt, iron, magnesium, manganese, chloride, and sulfate as required in Paragraph 567—103.1(
MW-6	· · · · · · · · · · · · · · · · · · ·				eliminated the requirement to analyze for barium, beryllium, copper,		
MW-9					ium, molybdenum, sodium, and strontium are also analyzed per the		
MW-11	,	,			ended HMSP.		
MW-15							
MW-17							
MW-20							

Table 3

Monitoring Well Maintenance and Performance Revaluation Schedule 2023 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

This table is not applicable to the CIPCO Fair Station CCR Monofill

Table 4

Monitoring Well Maintenance and Performance Summary 2023 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

Well	Top of Top of Total Casing Screen Depth			Da	te of Measureme	ents	
	Casing	Screen	Depth		10/19/2021	10/11/2022	10/10/2023
				Groundwater Level (ft)	21.92	24.71	25.41
MW-1	588.13	571.51	36	Groundwater Elevation (Ft MSL)	566.21	563.42	562.72
				Measured Well Depth (ft)			
				Submerged screen	N	N	N
				Groundwater Level (ft)	6.90	7.17	7.51
MW-2	559.42	546.7	12.69	Groundwater Elevation (Ft MSL)	552.52	552.25	551.91
				Measured Well Depth (ft)			
				Submerged screen	Υ	Y	Υ
				Groundwater Level (ft)	9.30	9.18	9.44
MW-3	559.17	512.69	46.41	Groundwater Elevation (Ft MSL)	549.87	549.99	549.73
				Measured Well Depth (ft)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
				Submerged screen	Υ	Υ . = 2	Y
NAVA / 4	FFC 00	<i></i> 70	40.0	Groundwater Level (ft)	9.73	9.70	9.60
MW-4	556.93	557.78	10.3	Groundwater Elevation (Ft MSL)	547.2	547.23	547.33
				Measured Well Depth (ft) Submerged screen	N	N	N
					6.72		
N 4) 4/ 5	<i></i>	507.04	00.0	Groundwater Level (ft)		5.88	6.80
MW-5	555.54	527.24	28.3	Groundwater Elevation (Ft MSL)	548.82	549.66	548.74
				Measured Well Depth (ft)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
				Submerged screen	Y 7.70	Y 7.00	Y
				Groundwater Level (ft)	7.73	7.20	7.99
MW-6	555.89	541.11	14.82	Groundwater Elevation (Ft MSL)	548.16	548.69	547.9
				Measured Well Depth (ft)			
				Submerged screen	Y	Υ	Υ
				Groundwater Level (ft)	3.51	3.45	3.03
MW-7	555.55	548.78	17.99	Groundwater Elevation (Ft MSL)	552.04	552.10	552.52
				Measured Well Depth (ft)			
				Submerged screen	Υ	Υ	Υ
				Groundwater Level (ft)	33.18	33.21	32.83
MW-9	629.13	513.59	118.67	Groundwater Elevation (Ft MSL)	595.95	595.92	596.30
				Measured Well Depth (ft)			
				Submerged screen	Υ	Υ	Υ
				Groundwater Level (ft)	24.98	23.58	23.21
MW-10	629.39	597.45	32.25	Groundwater Elevation (Ft MSL)	604.41	605.81	606.18
				Measured Well Depth (ft)			
				Submerged screen	Y	Y	Υ
				Groundwater Level (ft)	5.58	6.81	7.36
MW-11	587.99	586.22	20.44	Groundwater Elevation (Ft MSL)	582.41	581.18	580.63
				Measured Well Depth (ft)			
				Submerged screen	N	N	N
				Groundwater Level (ft)	12.42	12.46	12.55
MW-15	558.66	539.50	29.16	Groundwater Elevation (Ft MSL)	546.24	546.20	546.11
				Measured Well Depth (ft)			
				Submerged screen	Y	Y	Υ
				Groundwater Level (ft)	12.08	11.98	12.22
MW-17	557.32	541.97	20.35	Groundwater Elevation (Ft MSL)	545.24	545.34	545.1
				Measured Well Depth (ft)	1		
				Submerged screen	Y	Y	Υ
				Groundwater Level (ft)	5.98	5.70	5.92
MW-20	558.92	524.52	44.4	Groundwater Elevation (Ft MSL)	552.94	553.22	553.00
20	230.02			Measured Well Depth (ft)	1 202.01		
				Submerged screen	Y	Y	Υ

Table 5

Background Summary 2023 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

Interwell Background/Control Limit (MW-11 Water Table)

Constituent	Units	Samples	Detections	Background level	Statistical Test	Action Level	Source
Inorganics							
Arsenic (As)	mg/L	10	0	0.0016	M+/-2SD	0.01	MCL
Boron (Bo)	mg/L	10	0	0.132	M+/-2SD	6	HA
Chloride (CI)	mg/L	42	38	12.6	M+/-2SD	250	SDWR
Cobalt (Co)	mg/L	10	5	0.001295	M+/-2SD	0.0028	SWS
Iron (Fe)	mg/L	10	9	0.95	M+/-2SD	0.3	SDWR
Lithium (Li)	mg/L	10	1	0.0076	M+/-2SD	0.014	SWS
Magnesium (Mg)	mg/L	10	10	54.3	M+/-2SD	NA	
Manganese (Mn)	mg/L	10	10	0.463	M+/-2SD	0.3, 0.05	HA, SDWR
Molybdenum (Mo)	mg/L	10	0	0.001	M+/-2SD	0.04	HA
Sodium (Na)	mg/L	10	10	14.7	M+/-2SD	NA	
Strontium (St)	mg/L	10	10	0.153	M+/-2SD	4	HA
Sulfate (SO4)	mg/L	29	28	136	M+/-2SD	250	SDWR

Interwell Background/Control Limit (MW-9 Uppermost Aquifer)

Constituent	Units		Detections	Background level	Statistical Test	Action Level	Source
Inorganics							
Arsenic (As)	mg/L	10	0	0.0016	M+/-2SD	0.01	MCL
Boron (Bo)	mg/L	10	7	0.372	M+/-2SD	6	HA
Chloride (CI)	mg/L	40	7	5.9	M+/-2SD	250	SDWR
Cobalt (Co)	mg/L	10	2	0.001768	M+/-2SD	0.0028	SWS
Iron (Fe)	mg/L	10	2	0.65	M+/-2SD	0.3	SDWR
Lithium (Li)	mg/L	10	10	0.0494	M+/-2SD	0.014	SWS
Magnesium (Mg)	mg/L	10	10	35.5	M+/-2SD	NA	
Manganese (Mn)	mg/L	10	7	0.751	M+/-2SD	0.3, 0.05	HA, SDWR
Molybdenum (Mo)	mg/L	10	0	0.001	M+/-2SD	0.04	HA
Sodium (Na)	mg/L	10	10	13.3	M+/-2SD	NA	
Strontium (St)	mg/L	10	10	0.733	M+/-2SD	4	HA
Sulfate (SO4)	mg/L	29	27	36.2	M+/-2SD	250	SDWR

Table 6

Summary of Well/Detected Constituent Pairs With No Immediately Preceding Control Limit Exceedances 2023 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

Well	Constituent	Units	Most recent result	Control Limit
MW-1	Manganese	mg/L	0.399	0.3 (HAL)
MW-2	Lithium	mg/L	0.0373	0.014
MW-2	Manganese	mg/L	0.0670	0.05 (SDWR)
MW-3	Iron	mg/L	0.309	0.3
MW-3	Manganese	mg/L	0.708	0.3 (HAL)
MW-17	Manganese	mg/L	0.354	0.3 (HAL)

Notes:

For this table, control limit identified as published standards.

Manganese has a Secondary Drinking Water Regulation (SDWR) limit of 0.05 mgilligrams per liter (mg/L) and a Health Advisory Level (HAL) of 0.3 mg/L.

Table 7

Summary of Ongoing and Newly Identified Control Limit Exceedances 2023 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

Well	Constituent	Units	Most recent result	Background/Baseline Standard	Action Level/ Statewide Standard
MW-1	Boron	mg/L	0.300	0.284	6
	Chloride	mg/L	6.3	6.6	250
	Cobalt	mg/L	0.00149	0.000946	0.0028
	Iron	mg/L	3.64	1.69	0.3
	Lithium	mg/L	0.0630	0.0667	0.014
	Manganese	mg/L	0.399	0.296	0.3/0.05
	Strontium	mg/L	0.646	0.748	4
	Sulfate	mg/L	250	370	250
MW-2	Boron	mg/L	7.56	7.36	6
	Cobalt	mg/L	0.0005U	0.000315	0.0028
	Lithium	mg/L	0.0373	0.0516	0.014
	Magnesium	mg/L	32.2	30.1	NA
	Manganese	mg/L	0.0670	0.05661	0.3/0.05
	Strontium	mg/L	0.33	0.323	4
	Sulfate	mg/L	206	703	250
MW-3	Iron	mg/L	0.309	1.05	0.3
	Lithium	mg/L	0.0393	0.0391	0.014
	Manganese	mg/L	0.708	1.599	0.3/0.05
	Sodium	mg/L	24.7	33.4	NA
	Strontium	mg/L	0.84	0.772	4
MW-5	Boron	mg/L	6.23	5.63	6
	Chloride	mg/L	15.9	13.7	250
	Cobalt	mg/L	0.00282	0.003063	0.0028
	Iron	mg/L	0.770	1.09	0.3
	Lithium	mg/L	0.0197	0.0264	0.014
	Manganese	mg/L	0.598	0.592	0.3/0.05
	Strontium	mg/L	0.315	0.318	4
MW-6	Boron	mg/L	8.06	6.31	6
	Chloride	mg/L	15.7	13.2	250
	Colbalt	mg/L	0.00302	0.00481	0.0028
	Iron	mg/L	0.794	0.981	0.3
	Lithium	mg/L	0.01U	0.0055	0.014
	Manganese	mg/L	5.17	8.29	0.3/0.05
	Molybdenmun	mg/L	0.0477	0.0679	0.04
MW-9	Boron	mg/L	0.216	0.159	6
	Lithium	mg/L	0.0448	0.045	0.014
	Magnesium	mg/L	32.4	30.9	NA
	Sodium	mg/L	12.5	9.2	NA
MW-11	Chloride	mg/L	10.3	8.6	250
	Magnesium	mg/L	50.8 0.126	48 0.302	NA
	Manganese	mg/L	0.126	0.302	0.3/0.05
	Sodium	mg/L	14.2	12.0	NA
	Strontium	mg/L	0.146	0.134	4

Table 7

Summary of Ongoing and Newly Identified Control Limit Exceedances 2023 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

Well	Constituent	Units	Most recent result	Background/Baseline Standard	Action Level/ Statewide Standard
MW-15	Boron	mg/L	37.5	28.9	6
	Chloride	mg/L	18.3	16.9	250
	Lithium	mg/L	0.166	0.156	0.014
	Magnesium	mg/L	116	105	NA
	Manganese	mg/L	0.253	0.510	0.3/0.05
	Molybdenum	mg/L	0.215	0.0746	0.04
	Sodium	mg/L	98.9	85.7	NA
	Strontium	mg/L	0.645	0.629	4
	Sulfate	mg/L	1380	783	250
MW-17	Boron	mg/L	19.7	16	6
	Chloride	mg/L	16.9	17.4	250
	Iron	mg/L	1.34	2.58	0.3
	Lithium	mg/L	0.289	0.278	0.014
	Magnesium	mg/L	157	180	NA
	Manganese	mg/L	0.354	0.265	0.3/0.05
	Molybdenum	mg/L	0.0972	0.1489	0.04
	Sodium	mg/L	75.2	58.2	NA
	Strontium	mg/L	0.424	0.400	4
	Sulfate	mg/L	1,090	869	250
MW-20	Boron	mg/L	1.45	1.3	6
	Lithium	mg/L	0.0222	0.0241	0.014
	Sodium	mg/L	91.0	77.5	NA
	Strontium	mg/L	0.544	0.578	4

Note: Non detect results are denoted by U and shown as the reporting limit. Table 8 shows 1/2 the Reporting Limit.

Table 8 Page 1 of 21

Analytical Data Summary Central Iowa Power Cooperative Ash Disposal Landfill

TOTAL ARSENIC (unfiltered) (mg/L) MCL = 0.01

		V	Water Table				Upp	ermost Aquif	er		
	Reporting	Upgradient	Downg	radient	Upgradient			Downg	_j radient		
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Oct-16	0.00200	0.00100U	0.00100U	0.00460	0.00100U	0.00305	0.00100U	0.00100U	0.00684	0.00335	0.00100U
Aug-17	0.00200	0.00100U	0.00100U	0.00246	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U
Oct-17	0.00200	0.00100U	0.00100U	0.00100U	0.00100U	0.00057	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U
Apr-18	0.00200	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U
Oct-18	0.00200	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U
Oct-19	0.00200	0.00100U	0.00100U	0.00278	0.00100U	0.00100U	0.00100U	0.00100U	0.00219	0.00100U	0.00100U
Oct-20	0.00200	0.00100U	0.00100U	0.00239	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U
Oct-21	0.00200	0.00100U	0.00100U	0.00272	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U
Oct-22	0.00200	0.00100U	0.00400U	0.00400U	0.00100U	0.00100U	0.00100U	0.00100U	0.00400U	0.00400U	0.00100U
Oct-23	0.00200	0.00100U	0.00100U	0.00222	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U	0.00100U
HISTOR	IC AVERAGE	0.0010	0.0013	0.0024	0.0010	0.0012	0.0010	0.0010	0.0020	0.0015	0.0010
BASELIN	NE AVERAGE	0.0010	0.0010	0.0023	0.0010	0.0014	0.0010	0.0010	0.0025	0.0016	0.0010
	UCL	0.0016			0.0016						

TOTAL BORON (unfiltered) (mg/L) HA=6

		v	ater Table				Upp	ermost Aqui	fer		
	Reporting	Upgradient	Downg	radient	Upgradient			Down	gradient		
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Oct-16	0.200	0.100U	7.94	6.94	0.100U	0.263	3.39	5.76	31.2	15.2	1.29
Aug-17	0.200	0.100U	6.48	6.75	0.217	0.260	2.52	5.28	24.9	15.6	1.27
Oct-17	0.200	0.100U	7.71	7.07	0.219	0.321	2.40	6.31	28.4	17.9	1.39
Apr-18	0.200	0.100U	7.31	4.48	0.100U	0.291	2.76	5.16	31.0	15.3	1.23
Oct-18	0.200	0.100U	8.53	6.89	0.364	0.452	3.10	6.23	35.9	16.4	1.61
Oct-19	0.200	0.100U	9.35	7.60	0.100U	0.345	2.82	6.06	44.5	17.4	1.37
Oct-20	0.200	0.100U	7.21	6.76	0.282	0.332	3.80	6.77	44.0	25.4	1.51
Oct-21	0.200	0.100U	7.91	6.15	0.208	0.299	2.21	5.60	29.6	26.7	1.71
Oct-22	0.200	0.050U	8.47	7.51	0.219	0.281	2.34	6.32	36.8	25.9	1.37
Oct-23	0.200	0.050U	7.56	8.06	0.216	0.300	1.43	6.23	37.5	19.7	1.45
	IC AVERAGE		7.8	6.8	0.203	0.314	2.68	5.97	34.4	19.6	1.42
BASELIN	NE AVERAGE UCL	0.100 0.132	7.36	6.31	0.159 0.372	0.284	2.77	5.63	28.9	16.0	1.30

CHLORIDE (mg/L) SDWR = 250

			ater Table				Upp	ermost Aquif			
	Reporting	Upgradient	Downg	radient	Upgradient				gradient		
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Aug-95	5	6	17		2.5U	2.5U	2.5U		18		
Nov-95	5	6.7	24		2.5U	2.5U	2.5U		17		
Feb-96	5	8.3	26			2.5U	2.5U		18		
Jun-96	5	6.1	24		2.5U	2.5U	2.5U		15		
Sep-96	5	9.2	19			2.5U	6.3		20		
Apr-97	5	7.6	20		2.5U	2.5U	5.7		17		
Oct-97	5	7.8	19		5.6	2.5U	2.5U		18		
Apr-98	5	11	31		2.5U	6.4	9.8		18		
Oct-98	5	7.2	24		2.5U	2.5U	5.6				
Apr-99	10	5U	18		5U	5U	5U		16		
Oct-99	10	5U	18		5U	5U	5U		17		
Apr-00	10	5U	15		5U	5U	5U		11		
Dec-00	5	7.4	19.4		2.5U	2.5U	5		16.9		
May-01	5.0	8.9	20.4		2.5U	5.5	10.2		15.5		
Jul-01	5.0	9.9	14.7		2.5U	8.6	7.1		16.9		
Oct-01	5.0	7.6	16.2		2.5U	6.3	6.9		17.9		
Jan-02	5.0	8.0	18.3		2.5U	6.0	5.2		17.3		
Oct-02	5.0	10.3	16.2		2.5U	7.2	2.5U		19.0		
Oct-03	5	12.6	18.1		5.6	6.7	2.5U		19.5		
Oct-04	5.0	6.8	14.3		2.5U	9.0	2.5U		20.2		
Oct-05	5.0	7	2.5U	14.2	2.5U	12.7	16.5	13.0	21.1		
Jan-06	5.0			15.4				15			
Apr-06	5.0			11.3				13.2			
Jul-06	5.0			11.9				13.5			
Oct-06	5.0	7.43	18.3	14.0	5.2	12.4	2.5U	13.4	23.1		
Oct-07	5.0	6.65	17.5	9.91	2.5U	13.9	2.5U	11.9	21.6		
Oct-08	5.0	6.36	15	10.5	2.5U	33.8	2.5U	11.3	21.5		

CHLORIDE (mg/L) SDWR = 250

			ater Table		Uppermost Aquifer Upgradient Downgradient							
	Reporting	Upgradient	Downg		Upgradient							
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20	
Oct-09	5.0	6.49	14.2	13.0	7.0	28.1	2.5U	12.2	21.9			
Oct-10	5.0	5.63	12.6	13.0	2.5U	17.3	2.5U	11.8	19.6			
Oct-11	5.0	7.56	21.3	20.6	2.5U	16.7	2.5U	15.4	21.7			
Oct-12	5.0	6.32	19.9	21.9	2.5U	14.4	2.5U	15.1	19.9			
Dec-12	5.0	9.3	25.2	22.6	2.5U	16.4	2.5U	19.2	23.8	16.1		
Oct-13	5.0	7.06	15.3	19.2	2.5U	13.6	2.5U	18.1	20.4	18.3	9.14	
Jan-14	5.0									17.9		
Apr-14	5.0									16.9	5.41	
Jul-14	5.0									16.6		
Oct-14	5.0										5.96	
Oct-14	5.0	13.7	16.5	20.5	5.00	13.7	2.5U	20.4	23.4	19.1	7.29	
Oct-15	5.0	11.2	13.4	26.8	6.00	12.7	8.96	22.8	21.6	20.2	11.5	
Oct-16	5.0	9.23	36.6	15.9	5.59	12.6	2.5U	18.4	21.1	18.2	5.65	
Aug-17	5.0	10.4	15.3	15.8	2.5U	10.5	2.5U	19.3	20.2	19.3	6.11	
Oct-17	5.0	10.4	13.7	16.7	2.5U	13.1	2.5U	18.6	20.3	19.4	5.06	
Apr-18	5.0	10.4	14.4	18.3	2.5U	11.1	5.26	18.2	19.2	19.3	6.21	
Oct-18	5.0	10.2	12.3	15.9	2.5U	9.2	2.5U	17.3	19.4	18.0	2.5U	
Oct-19	5.0	7.5	10.7	13.2	2.5U	7.8	2.5U	15.9	16.7	17.1	2.5U	
Oct-20	5.0	2.5U	9.3	2.5U	2.5U	5.8	2.5U	2.5U	15.2	15.6	2.5U	
Oct-21	5.0	9.61	9.6	15.8	2.5U	6.91	2.5U	15.5	16.6	18.2	5.36	
Oct-22	5.0	9.71	8.92	13.2	2.5U	7.21	2.5U	13.8	15.2	21.0	2.5U	
Oct-23	5.00	10.3	9.67	15.7	2.5U	6.30	2.5U	15.9	18.3	16.9	2.5U	
	IC AVERAGE	8.1	17.3	15.5	3.2	9.3	4.2	15.3	18.8	18.1	5.35	
BASELIN	NE AVERAGE UCL	8.6 12.6	17.4	13.2	2.5 5.9	6.6	7.4	13.7	16.9	17.4	5.8	

TOTAL COBALT (unfiltered) (mg/L) Statwide Standard = 0.0028 mg/L

		,	Water Table				Upp	ermost Aquit	fer		
	Reporting	Upgradient	Downgr	adient	Upgradient			Down	gradient		
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Oct-16	0.000500	0.00135	0.000508	0.00523	0.000250U	0.000871	0.00464	0.00259	0.00277	0.000250U	0.000516
Aug-17	0.000500	0.000558	0.000250U	0.00500	0.000250U	0.00104	0.00772	0.00269	0.00135	0.000250U	0.00112
Oct-17	0.000500	0.00031	0.000250U	0.00522	0.00056	0.00100	0.00262	0.00423	0.00061	0.000250U	0.000490
Apr-18	0.000500	0.00106	0.000250U	0.00379	0.00229	0.000874	0.00200	0.00274	0.00182	0.000250U	0.000250U
Oct-18	0.000500	0.000250U	0.000250U	0.00324	0.000250U	0.001020	0.00089	0.00158	0.00169	0.000250U	0.000250U
Oct-19	0.000500	0.000250U	0.000250U	0.00405	0.000250U	0.001280	0.00132	0.00081	0.00218	0.000250U	0.00054
Oct-20	0.000500	0.000560	0.000250U	0.00500	0.000250U	0.001200	0.000659	0.00203	0.000810	0.000250U	0.000250U
Oct-21	0.000500	0.000250U	0.000638	0.00559	0.000250U	0.00233	0.000648	0.000840	0.000250U	0.000250U	0.000250U
Oct-22	0.000500	0.000250U	0.00100U	0.00363	0.000250U	0.000723	0.00129	0.00354	0.00100U	0.00100U	0.000250U
Oct-23	0.000500	0.000250U	0.000250U	0.00302	0.000250U	0.00149	0.00162	0.00282	0.000780	0.000250U	0.000250U
	IC AVERAGE IE AVERAGE UCL	0.000509 0.000820 0.001295	0.000390 0.000315	0.004377 0.004810	0.000485 0.000838 0.001768	0.001183 0.000946	0.002341 0.004245	0.002387 0.003063	0.001326 0.001638	0.000325 0.000250	0.000416 0.000594

TOTAL IRON (unfiltered) (mg/L) SDWR = 0.3

		,	Water Table				Upp	ermost Aquif	er		
	Reporting	Upgradient	Downgi	radient	Upgradient			Downg	gradient		
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
0 1 10	0.400	4.00	0.000	4.40	0.05011	4.00	4.40	4.00	0.507		0.05011
Oct-16	0.100	1.03	0.223	1.16	0.050U	1.82	1.10	1.02	0.507	2.93	0.050U
Aug-17	0.100	0.476	0.207	1.09	0.050U	1.39	1.78	1.52	0.322	3.16	1.13
Oct-17	0.100	0.247	0.5U	0.872	0.798	1.74	0.398	1.16	0.5U	2.68	0.213
Apr-18	0.100	0.471	0.184	0.802	0.354	1.79	0.938	0.668	0.399	1.53	0.050U
Oct-18	0.100	0.374	0.050U	0.396	0.050U	1.41	0.249	0.210	0.129	2.50	0.117
Oct-19	0.100	0.181	0.200U	0.893	0.050U	1.80	0.125	0.200U	0.050U	3.34	0.050U
Oct-20	0.100	0.595	0.050U	0.900	0.050U	1.58	0.050U	0.176	0.050U	2.46	0.137
Oct-21	0.100	0.111	0.050U	1.80	0.050U	2.13	0.050U	0.400	0.050U	2.66	0.050U
Oct-22	0.100	0.050U	0.200U	0.739	0.050U	1.50	0.258	0.611	0.200U	2.00	0.133
Oct-23	0.100	0.255	0.050U	0.794	0.050U	3.64	0.309	0.770	0.050U	1.34	0.128
HISTOR	IC AVERAGE	0.379	0.171	0.945	0.155	1.88	0.526	0.674	0.226	2.46	0.206
BASELIN	NE AVERAGE UCL	0.556 0.95	0.279	0.981	0.313 0.65	1.69	1.05	1.09	0.432	2.58	0.361

TOTAL LITHIUM (unfiltered) (mg/L) Statewide Standard = 0.014 mg/L

		V	Vater Table				Upp	ermost Aquif	er		
	Reporting	Upgradient	Downg	radient	Upgradient			Downg	gradient		
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Oct-16	0.0140	0.0070U	0.0571	0.0070U	0.0435	0.0663	0.0434	0.0257	0.163	0.270	0.0214
Aug-17	0.0100	0.0050U	0.0515	0.0050U	0.0433	0.0643	0.0361	0.0242	0.157	0.275	0.0186
Oct-17	0.0100	0.0080	0.0627	0.0050U	0.0500	0.0684	0.0416	0.0318	0.165	0.314	0.0289
Apr-18	0.0100	0.0050U	0.0351	0.0050U	0.0433	0.0677	0.0354	0.0237	0.138	0.254	0.0274
Oct-18	0.0100	0.0050U	0.0411	0.0050U	0.0448	0.0591	0.0309	0.0205	0.149	0.265	0.0207
Oct-19	0.0100	0.0050U	0.0444	0.0050U	0.0417	0.0708	0.0339	0.0258	0.204	0.302	0.0216
Oct-20	0.0100	0.0050U	0.0383	0.0050U	0.0457	0.0667	0.0361	0.0245	0.162	0.317	0.0241
Oct-21	0.0100	0.0050U	0.0406	0.0140	0.0404	0.0656	0.0410	0.0237	0.135	0.318	0.0210
Oct-22	0.0100	0.0050U	0.0200U	0.0200U	0.0405	0.0573	0.0392	0.0182	0.156	0.295	0.0190
Oct-23	0.0100	0.0050U	0.0373	0.0050U	0.0448	0.0630	0.0393	0.0197	0.166	0.289	0.0222
	IC AVERAGE	0.0055	0.0428	0.0076	0.0438	0.0649	0.0377	0.024	0.160	0.290	0.0225
BASELIN	NE AVERAGE UCL	0.0062 0.0076	0.0516	0.0055	0.0450 0.0494	0.0667	0.0391	0.0264	0.156	0.278	0.024

Table 8 Page 8 of 21

Analytical Data Summary Central Iowa Power Cooperative Ash Disposal Landfill

TOTAL MAGNESIUM (unfiltered) (mg/L) No Standard Established, Use 2-Year Average

		v	Vater Table				Upp	ermost Aquif	er		
	Reporting	Upgradient	Downg		Upgradient				gradient		
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Oct-16	0.500	48.2	30.6	44.1	31.1	84.8	23.4	38.6	103	177	18.3
Aug-17	0.050	48.1	29.2	45.4	30.8	77.9	21.4	39.2	105	171	18.0
Oct-17	0.050	53.3	35.3	45.0	32.5	78.5	23.0	44.2	113	207	19.6
Apr-18	0.0500	42.3	25.2	31.5	29.3	83.6	23.8	43.2	98.2	166	18.1
Oct-18	0.0500	50.0	27.3	38.2	30.4	73.2	25.1	35.0	121	169	16.7
Oct-19	0.0500	45.9	33.8	37.4	34.0	75.5	22.5	36.5	103	192	17.4
Oct-20	0.0500	48.9	37.0	39.6	35.1	77.0	27.3	42.0	117	230	19.5
Oct-21	0.0500	49.1	36.6	33.6	30.4	74.1	20.3	35.9	108	182	17.0
Oct-22	0.0500	47.1	30.5	33.2	28.9	69.7	19.6	33.8	117	179	15.7
Oct-23	0.0500	50.8	32.2	35.3	32.4	72.7	19.4	38.3	116	157	16.6
	AR AVERAGE	48.1	33.6	33.4	29.7	71.9	20.0	34.9	112.5	180.5	16.4
	IC AVERAGE	48.4	31.8	38.3	31.5	76.7	22.6	38.7	110	183	17.7
BASELI	NE AVERAGE UCL	48.0 54.3	30.1	41.5	30.9 35.5	81.2	22.9	41.3	105	180	18.5

TOTAL MANGANESE (unfiltered) (mg/L) HA=0.3, SDWR=0.05

		1	Nater Table				Upp	ermost Aquif	er		
	Reporting	Upgradient	Downgi	radient	Upgradient			Downg	gradient		
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Oct-16	0.0200	0.380	0.102	8.92	0.0419	0.276	2.64	0.502	0.783	0.266	0.132
Aug-17	0.0200	0.300	0.702	8.48	0.0419	0.270	2.74	0.502	0.765	0.244	0.132
Oct-17	0.0100	0.170	0.0490	8.71	0.505	0.306	0.463	0.776	0.476	0.293	0.123
Apr-18	0.0100	0.442	0.0330	7.05	0.882	0.331	0.553	0.568	0.575	0.255	0.0298
Oct-18	0.0100	0.102	0.0271	6.20	0.0274	0.325	0.165	0.334	0.609	0.212	0.0815
Oct-19	0.0100	0.238	0.0563	8.55	0.044	0.313	0.194	0.167	0.779	0.284	0.0759
Oct-20	0.0100	0.292	0.0525	7.73	0.0050U	0.363	0.474	0.410	0.364	0.336	0.0669
Oct-21	0.0100	0.160	0.0552	3.63	0.0477	0.466	0.339	0.147	0.0292	0.248	0.0360
Oct-22	0.0100	0.0615	0.0440	6.61	0.0050U	0.251	0.159	1.54	0.167	0.262	0.0279
Oct-23	0.0100	0.126	0.0670	5.17	0.0050U	0.399	0.708	0.598	0.253	0.354	0.0427
HISTOR	IC AVERAGE	0.219	0.053	7.11	0.161	0.330	0.844	0.556	0.424	0.275	0.072
BASELIN	NE AVERAGE UCL	0.302 0.463	0.0561	8.29	0.369 0.751	0.296	1.599	0.592	0.510	0.265	0.097

Table 8 Page 10 of 21

Analytical Data Summary Central Iowa Power Cooperative Ash Disposal Landfill

TOTAL MOLYBDENUM (unfiltered) (mg/L) HA=0.04

	Reporting	Upgradient	Water Table Downgr	adient	Upgradient		Upp	ermost Aquife Downg			
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Oct-16	0.00200	0.00100U	0.00100U	0.0509	0.00100U	0.00100U	0.00100U	0.00100U	0.0907	0.198	0.00100U
Aug-17	0.00200	0.00100U	0.00100U	0.0750	0.00100U	0.00100U	0.00100U	0.00100U	0.0511	0.119	0.00100U
Oct-17	0.00200	0.00100U	0.00100U	0.0783	0.00100U	0.00100U	0.00100U	0.00100U	0.0806	0.0995	0.00100U
Apr-18	0.00200	0.00100U	0.00100U	0.0674	0.00100U	0.00100U	0.00100U	0.00100U	0.0758	0.1790	0.00100U
Oct-18	0.00200	0.00100U	0.00100U	0.0524	0.00100U	0.00100U	0.00100U	0.00100U	0.0639	0.166	0.00100U
Oct-19	0.00200	0.00100U	0.00100U	0.0933	0.00100U	0.00100U	0.00100U	0.00100U	0.4830	0.178	0.00242
Oct-20	0.00200	0.00100U	0.00100U	0.0626	0.00100U	0.00100U	0.00100U	0.00100U	0.0924	0.254	0.00240
Oct-21	0.00200	0.00100U	0.00100U	0.0220	0.00100U	0.00100U	0.00100U	0.00100U	0.104	0.301	0.00100U
Oct-22	0.00200	0.00100U	0.00400U	0.0667	0.00100U	0.00100U	0.00100U	0.00100U	0.179	0.127	0.00100U
Oct-23	0.00200	0.00100U	0.00100U	0.0477	0.00100U	0.00100U	0.00100U	0.00100U	0.215	0.0972	0.00100U
	IC AVERAGE	0.0010	0.0013	0.0616	0.0010	0.0010	0.0010	0.0010	0.1436	0.1719	0.0013
BASELI	NE AVERAGE UCL	0.001 0.001	0.001	0.0679	0.0010 0.001	0.0010	0.0010	0.0010	0.0746	0.1489	0.0010

Table 8 Page 11 of 21

Analytical Data Summary Central Iowa Power Cooperative Ash Disposal Landfill

TOTAL SODIUM (unfiltered) (mg/L) No Standard Established, Use 2-Year Average

		v	Vater Table				Upp	ermost Aquif	er		
	Reporting	Upgradient	Downg	radient	Upgradient			Down	gradient		
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Oct-16	0.500	12.4	26.9	21.8	12.0	12.3	32.4	21.1	101	56.8	80.3
Aug-17	1.000	12.0	23.3	20.8	9.7	13.3	25.1	19.4	84.2	60.1	79.1
Oct-17	1.000	11.1	22.6	19.7	8.18	13.2	38.7	19.6	77.4	62.5	77.7
Apr-18	1.00	12.5	24.9	14.7	6.96	11.2	37.4	19.7	80	53.4	72.9
Oct-18	1.00	14.3	22.7	18.0	7.90	12.2	40.7	20.1	100	61.0	89.3
Oct-19	1.00	12.5	19.3	17.7	9.87	10.1	32.9	18.9	99.1	68.5	78.2
Oct-20	1.00	12.9	20.0	18.7	9.84	10.8	25.9	20.8	95.1	76.5	92.0
Oct-21	1.00	13.0	18.8	18.0	9.85	10.3	26.4	18.6	76.1	81.5	82.7
Oct-22	1.00	13.0	18.2	17.0	11.0	10.4	45.9	18.3	91.7	81.3	82.9
Oct-23	1.00	14.2	17.9	18.3	12.5	11.8	24.7	19.7	98.9	75.2	91.0
	AR AVERAGE	13.0	18.5	17.5	10.4	10.4	36.2	18.5	83.9	81.4	82.8
HISTOR	IC AVERAGE	12.8	21.5	18.5	9.8	11.6	33.0	19.6	90.4	67.7	82.6
BASELI	NE AVERAGE UCL	12.0 14.7	24.4	19.3	9.2 13.3	12.5	33.4	20.0	85.7	58.2	77.5

Table 8 Page 12 of 21

Analytical Data Summary Central Iowa Power Cooperative Ash Disposal Landfill

TOTAL STRONTIUM (unfiltered) (mg/L) HA=4

		W	ater Table				Upp	ermost Aquif	er		
	Reporting	Upgradient	Downg	radient	Upgradient			Downg	gradient		
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Oct-16	0.00100	0.127	0.327	0.413	0.574	0.719	0.781	0.287	0.620	0.379	0.534
Aug-17	0.00100	0.138	0.338	0.424	0.653	0.711	0.743	0.310	0.645	0.405	0.592
Oct-17	0.00100	0.142	0.363	0.365	0.649	0.691	0.734	0.318	0.583	0.397	0.557
Apr-18	0.00100	0.128	0.263	0.288	0.741	0.871	0.828	0.357	0.668	0.420	0.628
Oct-18	0.00100	0.134	0.290	0.330	0.648	0.656	0.585	0.273	0.543	0.342	0.517
Oct-19	0.00100	0.138	0.357	0.358	0.668	0.757	0.676	0.320	0.766	0.430	0.565
Oct-20	0.00100	0.137	0.358	0.328	0.612	0.761	0.730	0.320	0.778	0.494	0.591
Oct-21	0.00100	0.151	0.397	0.263	0.586	0.780	0.899	0.373	0.651	0.506	0.584
Oct-22	0.00100	0.138	0.319	0.278	0.626	0.711	0.741	0.335	0.652	0.441	0.567
Oct-23	0.00100	0.146	0.330	0.273	0.594	0.646	0.840	0.315	0.645	0.424	0.544
HISTOR	IC AVERAGE	0.138	0.334	0.332	0.635	0.730	0.756	0.321	0.655	0.424	0.568
BASELII	NE AVERAGE UCL	0.134 0.153	0.323	0.373	0.654 0.733	0.748	0.772	0.318	0.629	0.400	0.578

SULFATE (mg/L) SDWR=250

Dete	Reporting	Water Table Upgradient Downgradient			Upgradient	Uppermost Aquifer Downgradient						
Date	Limit	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20	
Aug-95												
Nov-95												
Feb-96												
Jun-96												
Sep-96												
Apr-97												
Oct-97												
Apr-98												
Oct-98												
Apr-99												
Oct-99												
Apr-00												
Dec-00												
May-01	10	88	800		50	320	180		81			
Jul-01	10	120	170		32	150	27		250			
Oct-01	10	96	860		16	540	150		1,700			
Jan-02	10	88	980		14	470	120		1,100			
Oct-02	10	110	850		35	500	78		1,100			
Oct-03	10	89	1,100		17	420	66		1,400			
Oct-04	10.0	92.5	790		15.8	538	72.5		1,420			
Oct-05	10.0	130	990	380	22.0	750	94.0	370	1,900			
Jan-06	10.0			394				304		-		
Apr-06	10.0			361				355				
Jul-06	10.0			380				232	-			
Oct-06	10.0	121	798	338	16.8	456	49.5	259	1,610			
Oct-07	10.0	125	1,020	315	23.5	665	74.9	398	1,760			
Oct-08	10.0	91.8	664	184	18.4	840	116	265	1,380			

SULFATE (mg/L) SDWR=250

	Reporting Limit	Water Table Upgradient Downgradient			Uppermost Aquifer							
					Upgradient	Downgradient						
Date		MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20	
Oct-09	200.0	79.0	600	200	21.0	730	110	92.0	1,400	ı		
Oct-10	100/200	102	479	193	19.3	522	137	211	1,300			
Oct-11	Varies	111	788	245	19.8	471	90	211	1,480			
Oct-12	Varies	113	801	307	16.1	457	55.7	248	1,400			
Dec-12	Varies	109	992	295	14.7	452	68.6	226	1,520	804		
Oct-13	Varies	105	551	332	17.4	452	65.3	257	1,440	957	31.3	
Jan-14	100									860		
Apr-14	100									828	20.4	
Jul-14	100									830		
Oct-14											19.6	
Oct-14	Varies	97.6	520	309	23.0	408	96.5	211	1,330	947	25.7	
Oct-15	20.00	78.0	310	265	20.8	364	62.8	202	1,350	901	24.8	
Oct-16	5.00	77.9	313	177	22.4	340	87.1	185	1,370	984	28.1	
Aug-17	5.00	85.2	272	175	19.8	325	85.0	161	1,200	973	29.2	
Oct-17	5.00	84.7	307	153	18.5	311	114	150	1,260	1,050	26.9	
Apr-18	5.00	82.4	288	125	15.2	319	176	142	1,330	1,070	25.4	
Oct-18	5.00	84.6	283	135	14.7	306	179	136	1,330	1,010	24.5	
Oct-19	5.00	87.3	301	105	19.6	303	140	128	1,250	948	24.9	
Oct-20	5.00	19.9	265	25.8	2.50U	270	21.8	22.3	1,320	949	25.8	
Oct-21	5.00	89.2	318	108	21.2	275	50.2	90.8	1,140	1,140	27.0	
Oct-22 Oct-23	5.00 5.00	75.6 74.3	216 206	78.1 75.6	16.6 18.8	247 250	54.1 24.4	59.9 62.2	929 1,380	1,060 1,090	22.6 26.7	
	5.00	14.5	200	75.0	10.0	200	24.4	UZ.Z	1,500	1,090	20.7	
HISTORIC AVERAGE		93	580	226	20	429	91	199	1,291	965	26	
BASELINE AVERAGE		98	703	379	28	370	119	315	783	869	110	

Table 8 Page 15 of 21

Analytical Data Summary Central Iowa Power Cooperative Ash Disposal Landfill

Temperature (degrees Celsius)

	Water Table Upgradient Downgradient			Uppermost Aquifer Upgradient Downgradient							
Date	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20	
A 05											
Aug-95 Nov-95											
Feb-96											
Jun-96											
Sep-96	17.0	20.0			18.0	18.0		14.0			
Зер-96 Apr-97	17.0	20.0			10.0	10.0		14.0			
Oct-97	13.6	13.1		13.1	11.8	11.2		13.4			
Apr-98	10.0	10.1		10.1	11.0	11.2		10.4			
Oct-98		14.5				11.9					
Apr-99											
Oct-99	11.7	13.3		11.7	10.6	11.1		13.3			
Apr-00	8.5	7.5		11.0	10.0	9.0		12.0			
Dec-00	10	10.0		11	11	12		10			
May-01	10.5	13.1		11.4	13.4	12.9		12.6			
Jul-01	13.9	15.2		12.8	15.3	15.0		13.8			
Oct-01	11	12.6		9	10.5	11.4		12.6			
Jan-02	12	9.3		9	11.7	9.9		10.2			
Oct-02	10.7	12.0		8.1	10.8	10.6		11.0			
Oct-03	14.7	13		13.5	12.5	14.5		14.7			
Oct-04	12.7	14		12.7	11.5	11.9		13.2			
Oct-05	15.7	15.9	15.1	13.5		13.7	12.8	13.9			
Jan-06											
Apr-06											
Jul-06											
Oct-06 Oct-07	14.4	15.1	17.1	13.2	12.7	12.5	16.2	14.1			
Oct-08	13.5	11.8	15.1	13.2	11.6	11.1	13.5	14.1			

Table 8 Page 16 of 21

Analytical Data Summary Central Iowa Power Cooperative Ash Disposal Landfill

Temperature (degrees Celsius)

	Upgradient V	Vater Table Downg	radient	Upgradient		Upp	ermost Aquit Down	fer gradient		
Date	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Oct-09	13.9	14.9	16.9	13.0	13.9	12.6	16.0	13.9		
Oct-10	12.6	12.5	16.5	12.3	11.9	11.1	14.3	12.2		
Oct-10 Oct-11	12.4	11.3	14.5	11.5	11.5	9.7	13.9	10.9		
Oct-11	16.5	13.4	16.0	14.8	15.4	11.8	15.6	12.1		
Dec-12	11.9	10.5	12.1	11.6	11.1	11.0	13.7	12.1	12.5	
Oct-13	10.3	10.3	11.7	10.3	9.2	9.6	13.7	10.0	11.4	9.4
Jan-14	10.5	10.2	11.7	10.5	3.2	9.0	13.0	10.0	7.4	3.4
Apr-14									8.7	10.3
Jul-14									14.9	10.0
Oct-14									14.0	12.3
Oct-14	11.9	11.9	10.8	11.1	11.0	10.1	12.5	10.9	11.9	11.6
Oct-15	13.5	15.6	16.1	11.0	11.9	14.1	14.8	15.0	14.3	12.5
Oct-16	12.0	14.2	16.4	13.0	10.9	12.0	14.7	14.1	14.3	11.7
Aug-17	11.4	13.9	15.7	13.1	10.7	12.9	13.5	13.1	12.8	12.9
Oct-17	12.7	13.3	15.7	12.8	11.7	11.1	14.0	12.1	12.8	11.0
Apr-18	9.5	7.0	7.2	10.5	10.5	10.4	9.8	10.2	8.7	9.7
Oct-18	12.3	13.9	15.3	11.3	10.7	11.6	14.2	12.8	13.8	12.7
Oct-19	12.6	15.4	16.9	13.1	12.3	12.2	14.4	13.4	14.5	12.8
Oct-20	16.7	14.0	13.2	14.3	13.6	17.1	17.5	13.6	13.5	16.5
Oct-21	14.45	14.51		18.04	13.78	14.61	19.23	19.8	17.06	13.4
Oct-22 Oct-23	13.32 12.92	14.65 14.97	16.35 16.6	12.46 14.29	13.34 11.48	12.07 14.85	14.86 14.86	14.86 17.08	14.17 14.03	16.99 12.68

Analytical Data Summary Central Iowa Power Cooperative Ash Disposal Landfill

рΗ

	v	Uppermost Aquifer									
	Upgradient	Downg		Upgradient		Downgradient					
Date	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20	
Aug-95											
Nov-95											
Feb-96											
Jun-96											
Sep-96	6.48	6.95			6.83	7.16		7.27			
Apr-97											
Oct-97	6.70	6.14		7.12	6.60	6.14		6.95			
Apr-98											
Oct-98	8.01	8.30		8.62	8.66	7.12					
Apr-99											
Oct-99	6.92	7.01		7.19	7.01	7.44		6.40			
Apr-00	7.00	6.59		7.46	6.81	7.31		6.96			
Dec-00	6.62			7.25	5.72	6.79		6.61			
May-01	7.00	7.05		7.50	7.32	6.84		7.44			
Jul-01	6.98	6.81			6.75	7.2		7.58			
Oct-01	7.04	6.43		7.32	5.72	7.01		6.97			
Jan-02	7.01	6.47		7.32	6.78	7.20		6.90			
Oct-02	7.01	8.28		9.31	7.30	8.34		7.49			
Oct-03	7.10	6.7		7.52	6.83	7.22		6.98			
Oct-04	6.78	7.15		7.60	5.82	7.33		7.12			
Oct-05	7.84	7.05	6.30	7.90		7.49	5.84	6.81			
Jan-06											
Apr-06											
Jul-06											
Oct-06	6.68	6.26	6.16		6.13	7.24		6.68			
Oct-07 Oct-08	7.92 7.10	7.34 6.65	7.67 6.88	7.84	7.23 6.76	7.40 7.24	8.30 7.10	7.15 6.99			

Analytical Data Summary Central Iowa Power Cooperative Ash Disposal Landfill

рΗ

		ater Table		l		Upp	ermost Aquif			
_	Upgradient	Downg		Upgradient	BB187 4			gradient	B 8184 4 =	1014 04
Date	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Oct-09	7.13	6.93	6.96	7.16	6.94	7.23	7.12	6.91		
Oct-10	7.10	6.60	6.83	7.22	6.71	7.19	7.16	7.01		
Oct-11	7.11	6.56	7.00	7.30	7.08	7.24	7.28	7.07		
Oct-12										
Dec-12	6.88	6.43	6.75	7.02	6.67		6.91	6.87	6.97	
Oct-13	6.88	6.44	6.85	7.03	6.74	6.54	6.76	5.64	6.15	7.00
Jan-14									6.42	
Apr-14									6.25	7.35
Jul-14									6.72	
Oct-14										5.44
Oct-14	7.74	7.57	5.56	7.41	7.50	7.93	6.32	7.57	7.23	8.00
Oct-15	7.03	6.63	6.70	7.23	6.77	7.35	6.92	7.08	6.95	7.52
Oct-16	6.85	6.52	6.79	7.35	6.73	7.06	6.88	6.88	6.98	7.38
Aug-17	6.56	6.37	6.65	6.40	6.60	6.88	6.76	6.85	6.82	7.14
Oct-17	6.76	6.43	6.73	7.30	5.94	6.96	6.76	6.71	6.71	7.16
Apr-18	6.78	6.58	6.95	7.00	6.61	7.15	6.94	6.84	6.97	7.52
Oct-18	6.97	6.57	6.92	7.43	6.83	7.06	6.97	6.96	7.06	7.47
Oct-19	7.03	6.54	6.77	6.05	6.90	7.13	6.79	7.03	7.16	7.35
Oct-20	6.94	6.53	6.92	7.36	6.80	7.09	6.98	7.00	7.03	7.48
Oct-21	7.00	7.11	7.00	7.44	6.79	7.30	7.05	7.05	6.96	6.83
Oct-22 Oct-23	7.02 6.42	6.69 6.44	7.23 6.72	7.68 8.07	6.84 6.48	7.13 6.98	7.3 6.7	7.27 6.83	7.33 6.82	7.41 7.11

Table 8 Page 19 of 21

Analytical Data Summary Central Iowa Power Cooperative Ash Disposal Landfill

Specific Conductance (microSiemens/cm)

	Water Table Upgradient Downgradient			Upgradient		Upp	ermost Aquif Downo	er gradient		
Date	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
Aug-95										
Nov-95										
Feb-96										
Jun-96										
Sep-96										
Apr-97										
Oct-97	785	1,205		570	1,114	483		1,290		
Apr-98		,			,			,		
Oct-98	880	1,830		664	1,140	620				
Apr-99										
Oct-99	891	1,580		619	1,432	672		2,200		
Apr-00	847	1,461		585	1,192	821		1,917		
Dec-00	839	1,626		592	1,287	761		2.27		
May-01	895	1,903		642	1,415	927		2,080		
Jul-01	783	1,704			1,362	870		1,899		
Oct-01	897	1,710		674	1,287	846		2.35		
Jan-02	887	1,828		674	1,566	802		2,345		
Oct-02	873	1,799		625	1,566	744		2,333		
Oct-03	896	2,090		636	1,473	747.4		2,394		
Oct-04	976	1,822		719.8	1,833	817.2		2,964		
Oct-05	855	1,711	979	612		728	933	2,463		
Jan-06										
Apr-06										
Jul-06										
Oct-06	1,315	2,170	1,107	782	3,760	828		2,680		
Oct-07 Oct-08	861 908	1,751 1,537	797 764	629	1,811 2,190	716 818	943 954	246 2,583		

Table 8 Page 20 of 21

Analytical Data Summary Central Iowa Power Cooperative Ash Disposal Landfill

Specific Conductance (microSiemens/cm)

	V Upgradient	Vater Table Downg	radient	Upgradient		Upp	ermost Aquif Down	er gradient		
Date	MW-11	MW-2	MW-6	MW-9	MW-1	MW-3	MW-5	MW-15	MW-17	MW-20
0-1-00	900	4.045	000	705.00	4.000	050	044	0.570		
Oct-09	866	1,315	880	705.00	1,980	856	911	2,570		
Oct-10	896.6	1,288	879.7	676.2	1,761	899.9	893.5			
Oct-11	921.4	1,740	1,047	693	1,621	820	927	2,601		
Oct-12	1,036	1,691	1,050	633	1,543	835	1,005	2,501		
Dec-12	938.2	1,985	1,082	663.3	1,517		1,022	2,708	1,917	
Oct-13	829.9	1,153	1,021	601.0	1,353	826.2	956.7	254	1,890	651.0
Jan-14									1,995	
Apr-14									2,081	700.0
Jul-14									1,979	
Oct-14										754.2
Oct-14	852	1,190	1,183	694.4	1,328	938.1	938.7	2,200	1,899	624.5
Oct-15	891.2	1,024	1,220	677.1	1,424	709.4	1,029	2,488	2,035	672.5
Oct-16	867	978	1,080	654	1,400	703	1,020	2,410	2,090	667
Aug-17	913	962	1,110	723	1,330	678	1,000	2,260	2,160	691
Oct-17	1,430	1,690	1.760	1,110	2,200	1,260	1,720	4,060	3,830	1,180
Apr-18	880	1,040	927	667	1,400	781	997	2,530	2,250	695
Oct-18	906	1.005	979	686	1,310	887	998	1,825	2,114	688
Oct-19	1,160	1,100	1,040	625	1,370	840	970	2,550	2,170	730
Oct-20	845	960	1,000	681	1,190	691	857	2,390	2,270	655
Oct-21	846	1128		771	1144	677	854	2105	2154	626
Oct-22	926	1001	832	751	1183	790	840	1922	1909	686
Oct-23	824	805	810	603	1108	499	820	2291	2067	612

Table 8 Page 21 of 21

Analytical Data Summary Central Iowa Power Cooperative Ash Disposal Landfill

Notes:

Baseline Data to be completed in 2018 for all calculations except Chloride and Sulfate.

mg/L - Milligrams per liter.

MCL - Maximum Contaminant Level.

UCL - Upgradient Control Limit.

HA - Health Advisory.

SDWR - Safe Drinking Water Regulations Guideline.

U - Value shown is 1/2 the detection limit. This value was used, where applicable, in calculation of UCL, baseline, and 2-year average.

Shaded values indicate concentration exceeds water quality criteria (e.g., the MCL, HA, SDWR limit, SWS, or 2-year average).

BOLD Bold indicates value exceeds the calculated UCL.

Italics Indicates sample result exceeds baseline concentration.

UCL, calculated as the Historic Average plus two standard deviations; based on upgradient wells only.

2-Year Average is the average concentration over the prior two years of sampling data.

Historic Average is the average based on analytical results for each well as shown. Historic dissolved metals are not included.

Baseline Average is the average concentration based four (4) quarters or four (4) initial sampling events.

Historic Control Limit and Action Level Exceedances 2023 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

Key: gray =0	Key: gray =CL; black =action level Well Constituent			F a I I 2021	F a I I 2022	F a I I 2023
MW-1	Chloride					
	Cobalt					
	Iron					
	Lithium					
	Magnesium					
	Manganese					
	Sodium					
	Strontium					
	Sulfate					
MW-2	Boron					1
	Lithium					
	Magnesium Manganese					
	Sodium					
	Strontium					
	Sulfate					
MW-3	Boron					
	Iron					
	Lithium					
	Magnesium					
	Manganese					
	Sodium					
	Strontium					
	Sulfate					
MW-5	Boron					
	Chloride					
	Cobalt					
	Iron					
	Lithium					
	Magnesium					
	Manganese					
	Sodium					
	Sulfate					

Historic Control Limit and Action Level Exceedances 2023 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

Key: gray =CL; black =action level Well Constituent			9	F a I I 2020	F a I I 2021	F a I I 2022	F a I I 2023
MW-6	Arsenic						
	Boron						
	Chloride						
	Cobalt						
	Iron						
	Magnesium						
	Manganese						
	Molybdenum						
	Sodium						
	Strontium						
MW-9	Lithium						1
	Magnesium						
MW-11	Sodium Iron						
10100-11	Magnesium						
	Manganese						
	Sodium						
MW-15	Arsenic						
	Boron						
	Chloride						
	Cobalt						
	Lithium						
	Magnesium						
	Manganese						
	Molybdenum						
	Sodium						
	Strontium						
	Sulfate						

Table 9

Historic Control Limit and Action Level Exceedances 2023 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

Key: gray =CL; black =action level			F a I I 2020	F a I I 2021	F a I I 2022	F a I I 2023
Well MW-17	Constituent	2019	2020	2021	2022	2023
IVIVV-17	Boron Chloride					
	Iron					
	Lithium					
	Magnesium					
	Manganese					
	Molybdenum					
	Sodium					
	Sulfate					
MW-20	Boron					
	Lithium					
	Magnesium					
	Manganese					
	Molybdenum					
	Sodium					

Data shown for 5 years total.

Table 10

Groundwater Quality Assessment Plan Trend Analysis 2023 Annual Water Quality Report Central Iowa Power Cooperative CCR Monofill Permit No. 70-SDP-09-91C

			Water Table				Up	permost Aquifer			
Parameter	Units	MW-11 <i>UG</i>	MW-2 DG	MW-6 DG	MW-9 <i>UG</i>	MW-1 DG	MW-3 DG	MW-5 DG	MW-15 DG	MW-17 DG	MW-20 DG
Arsenic	mg/L	ND	ND	0.00222	ND	ND	ND	ND	ND	ND	ND
	Trend	NA	NA	None	NA	NA	NA	NA	NA	NA	NA
Boron	mg/L	ND	7.56	8.06	0.216	0.300	1.43	6.23	37.5	19.7	1.45
	Trend	NA	None	Increasing	None	None	None	None	None	None	None
Chloride	mg/L	10.3	9.67	15.7	ND	6.3	ND	15.9	18.3	16.9	ND
	Trend	None	Decreasing	None	NA	Decreasing	NA	Decreasing	None	Increasing	NA
Cobalt	mg/L	ND	ND	0.00302	ND	0.001490	0.00162	0.00282	0.00078	ND	ND
	Trend	None	NA	None	None	None	Increasing	Decreasing	None	NA	NA
Iron	mg/L	0.255	ND	0.794	ND	3.64	0.309	0.770	ND	1.34	ND
	Trend	Decreasing	NA	None	NA	None	NA	Increasing	None	Decreasing	None
Lithium	mg/L	ND	0.0373	ND	0.0448	0.0630	0.0393	0.0197	0.166	0.289	0.0222
	Trend	NA	None	NA	None	Decreasing	None	None	None	None	None
Magnesium	mg/L	50.8	32.2	35.3	32.4	72.7	19.4	38.3	116	157	16.6
	Trend	None	None	None	None	Decreasing	Decreasing	None	None	Decreasing	None
Manganese	mg/L	0.126	0.0670	5.17	ND	0.399	0.708	0.598	0.253	0.354	0.0427
	Trend	None	None	Decreasing	None	None	None	None	None	None	None
Molybdenum	mg/L	ND	ND	0.0477	ND	ND	ND	ND	0.215	0.0972	ND
	Trend	NA	NA	None	NA	NA	NA	NA	Increasing	Decreasing	NA
Sodium	mg/L	14.2	17.9	18.3	12.5	11.8	24.7	19.7	98.9	75.2	91.0
	Trend	Increasing	Decreasing	None	None	None	None	None	Increasing	None	None
Strontium	mg/L	0.146	0.330	0.273	0.594	0.646	0.840	0.315	0.645	0.424	0.544
	Trend	None	None	None	None	Decreasing	None	Decreasing	None	Decreasing	Decreasing
Sulfate	mg/L	74.3	206	75.6	18.8	250	24.4	62.2	1,380	1,090	26.7
	Trend	None	Decreasing	Decreasing	None	Decreasing	None	Decreasing	None	Increasing	None
Temperature	°C	12.92	14.97	16.60	14.29	11.48	14.85	14.86	17.08	14.03	12.68
	Trend	None	None	None	None	None	None	None	None	None	None
рН	pH Units	6.42	6.44	6.72	8.07	6.48	6.98	6.70	6.83	6.82	7.11
	Trend	None	Decreasing	None	Increasing	None	None	None	None	None	None
Specific	μS/cm	824	805	810	603	1,108	499	820	2,291	2,067	612
Conductance	Trend	None	Decreasing	None	None	None	None	None	None	None	None

Notes:

UG - Upgradient.
mg/L - Milligrams per liter.
μS/cm - MicroSiemens per centimeter.

NA - Not applicable; no trend observed due to predominance of non-detect results.

ND - Not detected. NS - Not sampled.

°C - Degrees Celsius.

Leachate Management Summary 2023 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

This table is not applicable to the CIPCO Fair Station CCR Monofill

Gas Monitoring Summary 2023 Annual Water Quality Report CIPCO Fair Station CCR Monofill Permit No. 70-SDP-09-91C

This table is not applicable to the CIPCO Fair Station CCR Monofill

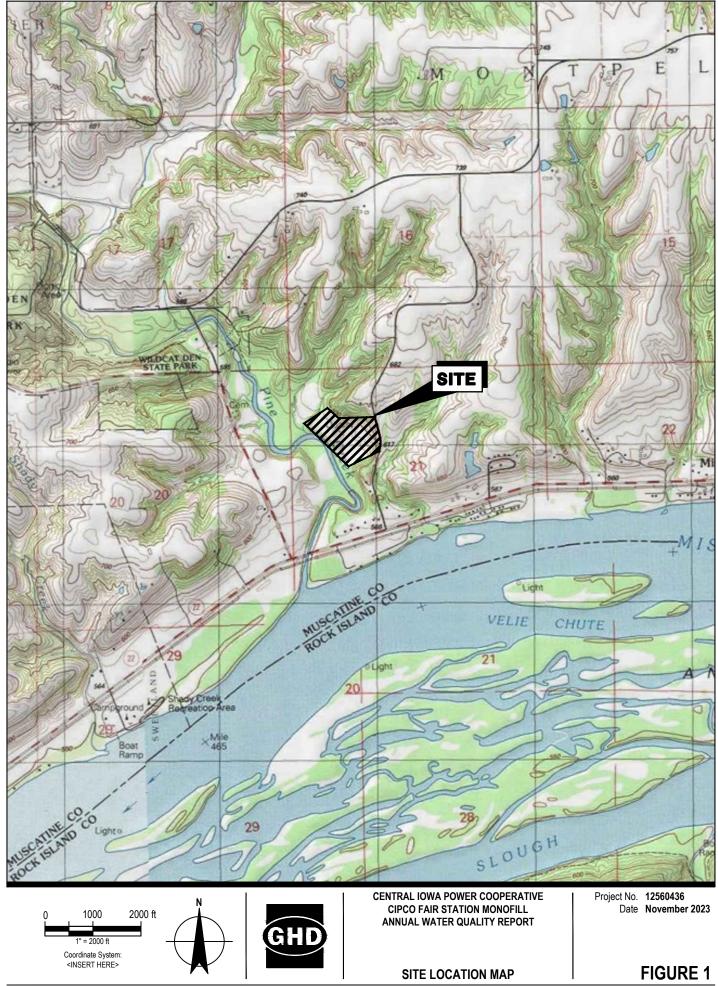
Groundwater Elevations ^a

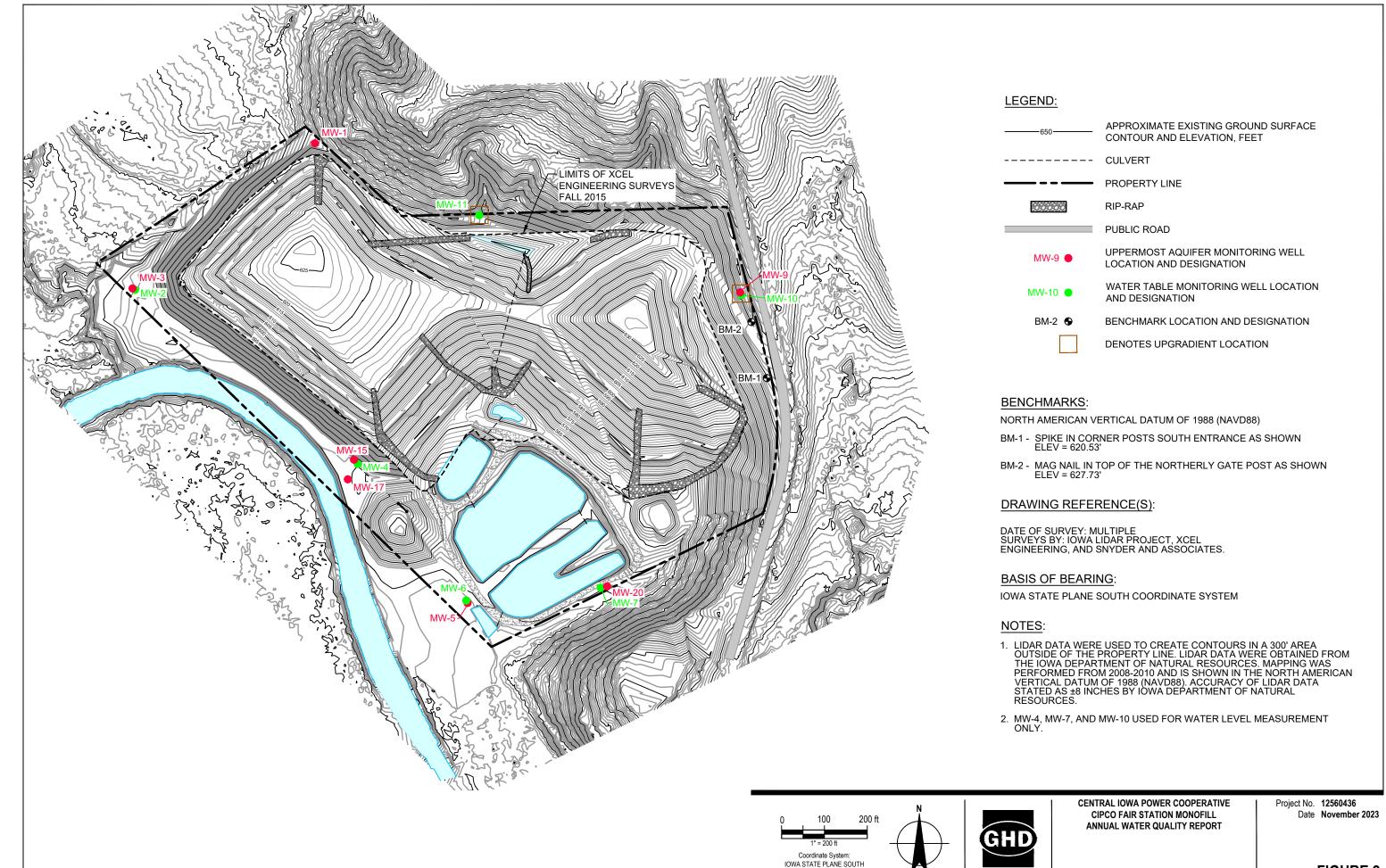
Central Iowa Power Cooperative CCR Monofill October 10, 2023

Monitoring Well	Unit	Elevation (feet)
MW-1	Uppermost Aquifer	562.72
MW-2	Water Table	551.92
MW-3	Uppermost Aquifer	549.73
MW-4	Water Table	547.32
MW-5	Uppermost Aquifer	548.74
MW-6	Water Table	547.89
MW-7	Water Table	553.74
MW-9	Uppermost Aquifer	596.30
MW-10	Water Table	606.18
MW-11	Water Table	580.63
MW-15	Uppermost Aquifer	546.10
MW-17	Uppermost Aquifer	545.10
MW-20	Uppermost Aquifer	553.00

Notes:

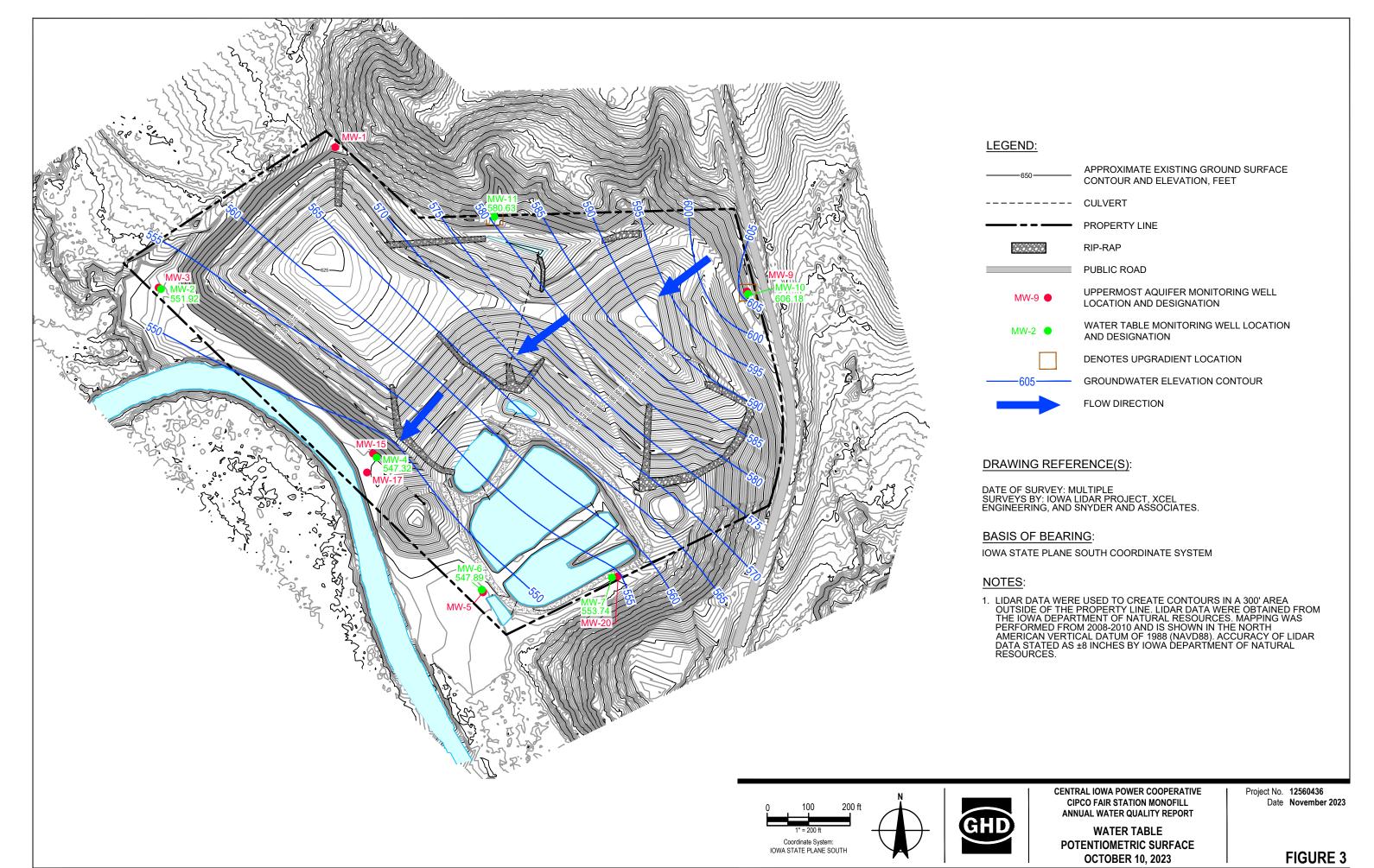
^a All groundwater elevations in feet North American Veritcal Datum 1988. CCR - Coal combustion residue.

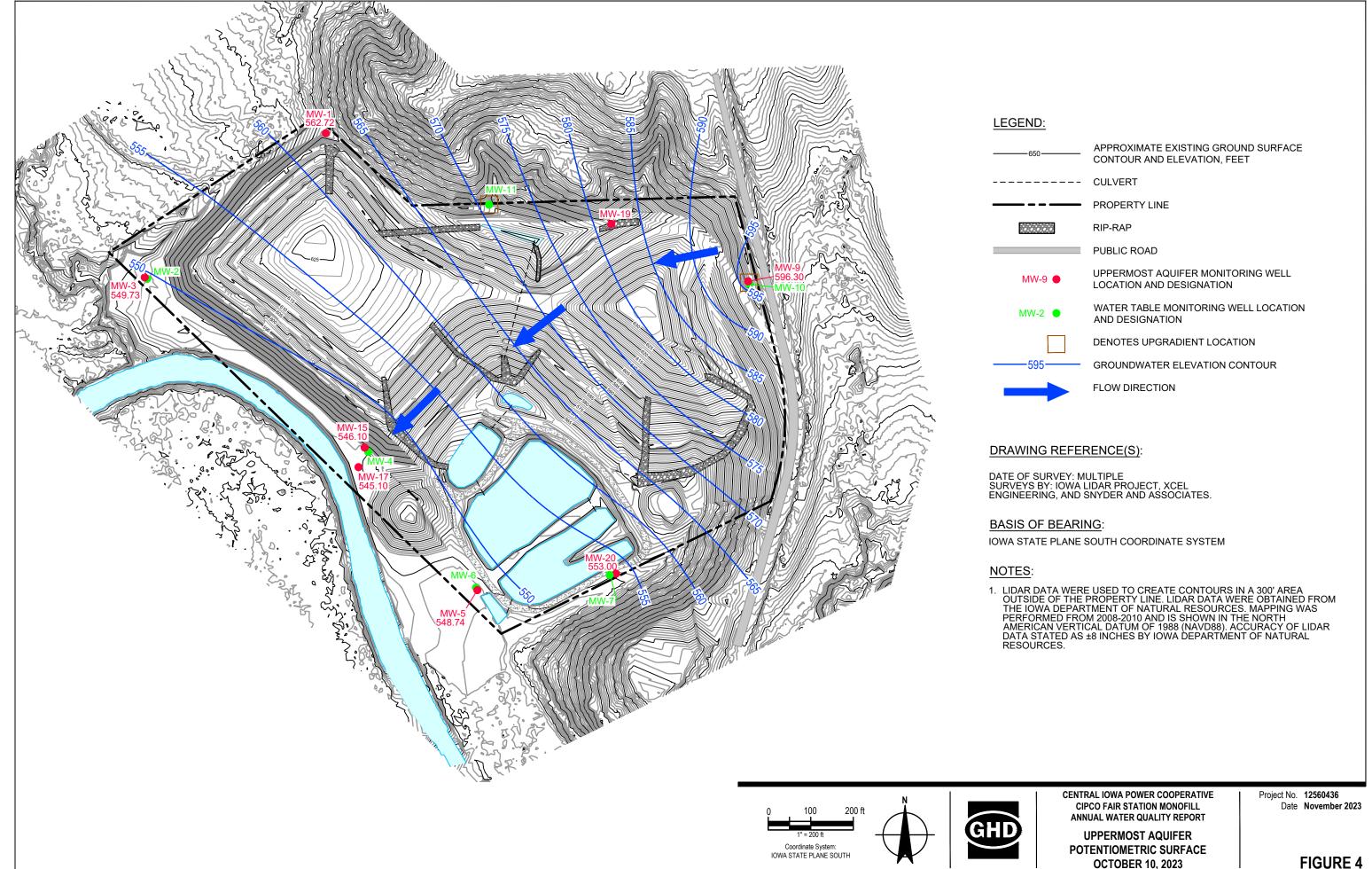

Vertical Hydraulic Grandients^a (ft/ft) Central Iowa Power Cooperative CCR Monofill October 10, 2023

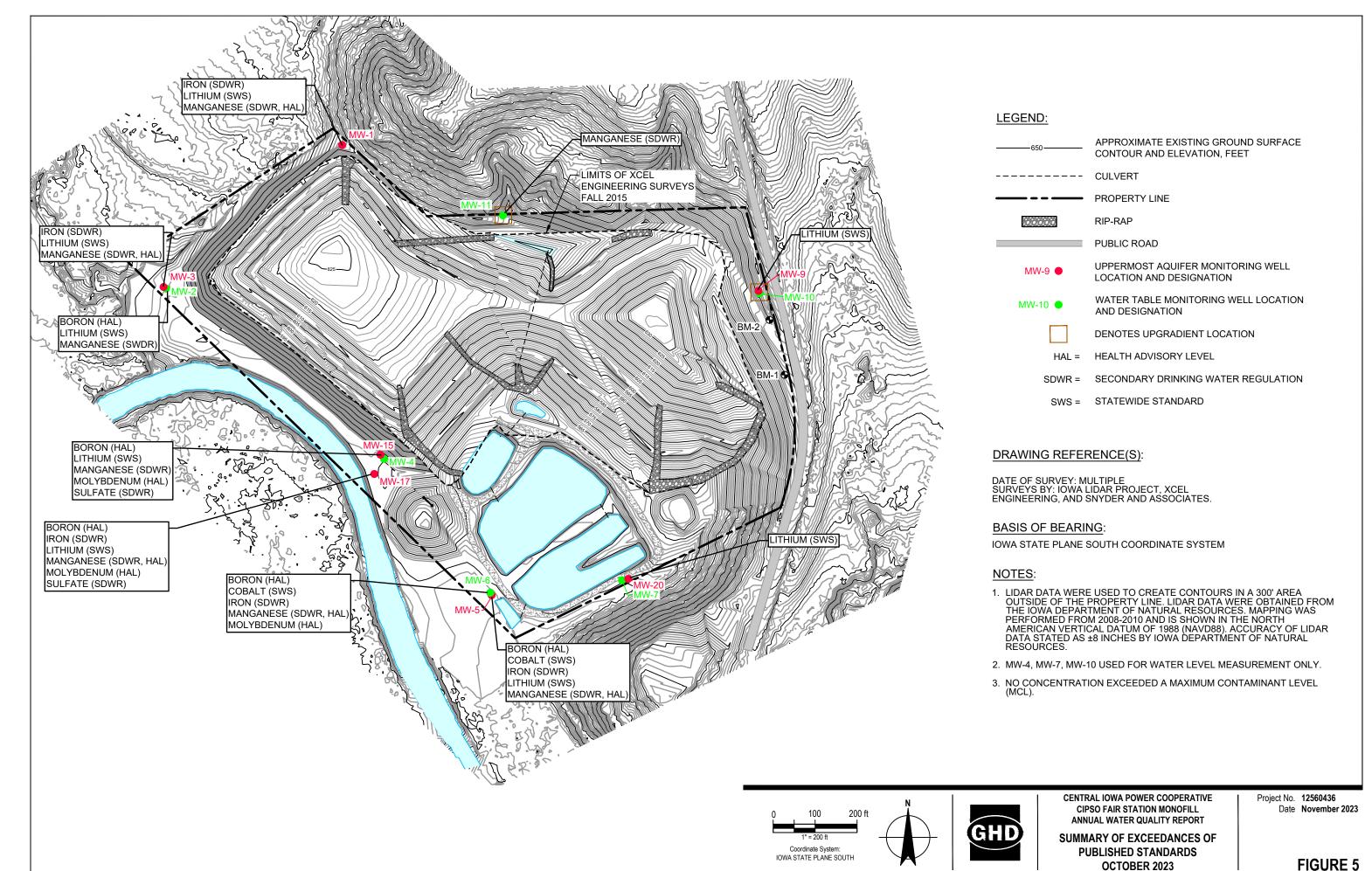

Well Cluster	Gradient
Shallow/Deep	
MW-2/MW-3	-0.060
MW-6/MW-5	0.052
MW-10/MW-9	-0.118
MW-7/MW-20	-0.031

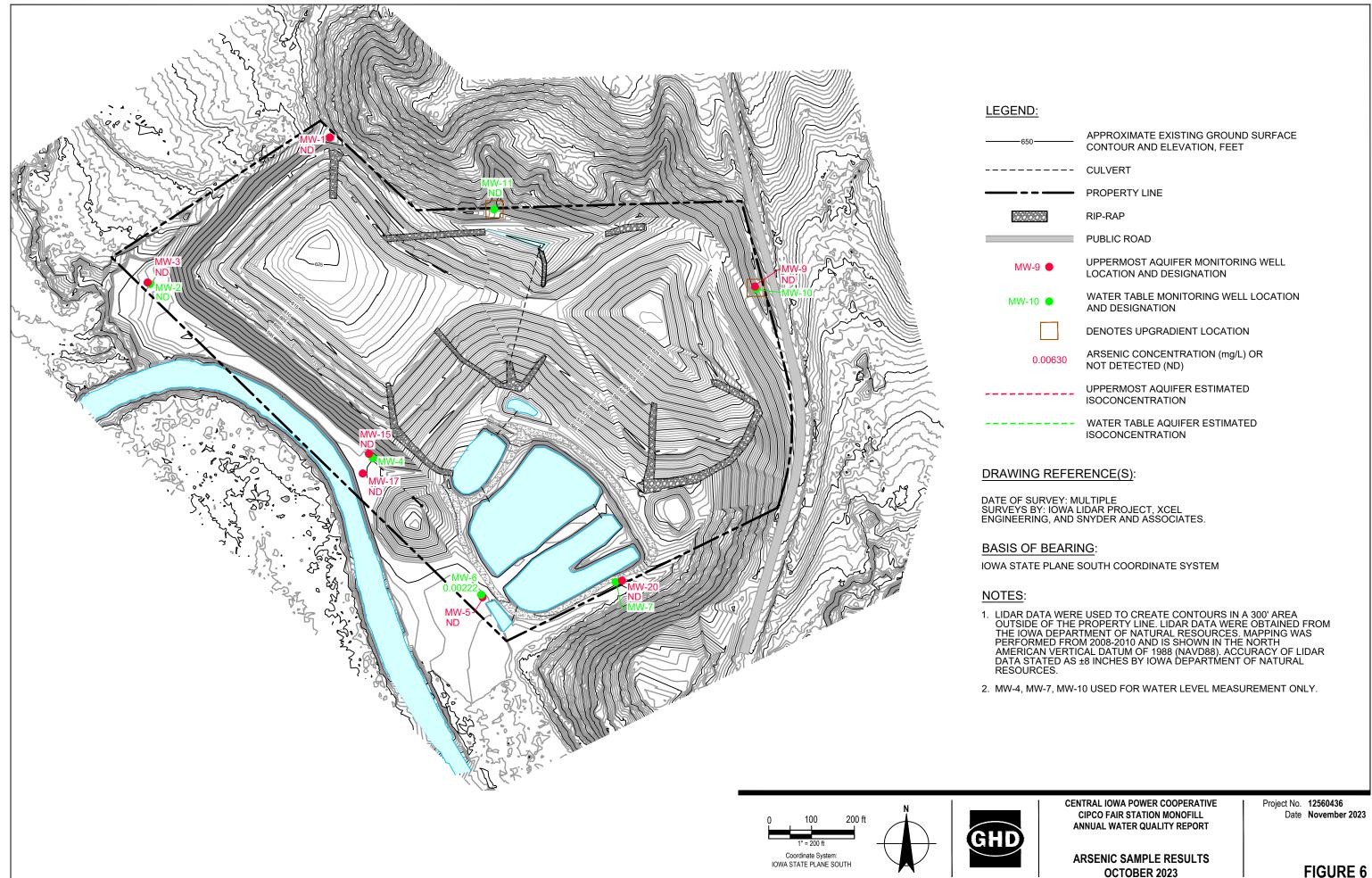
Notes:

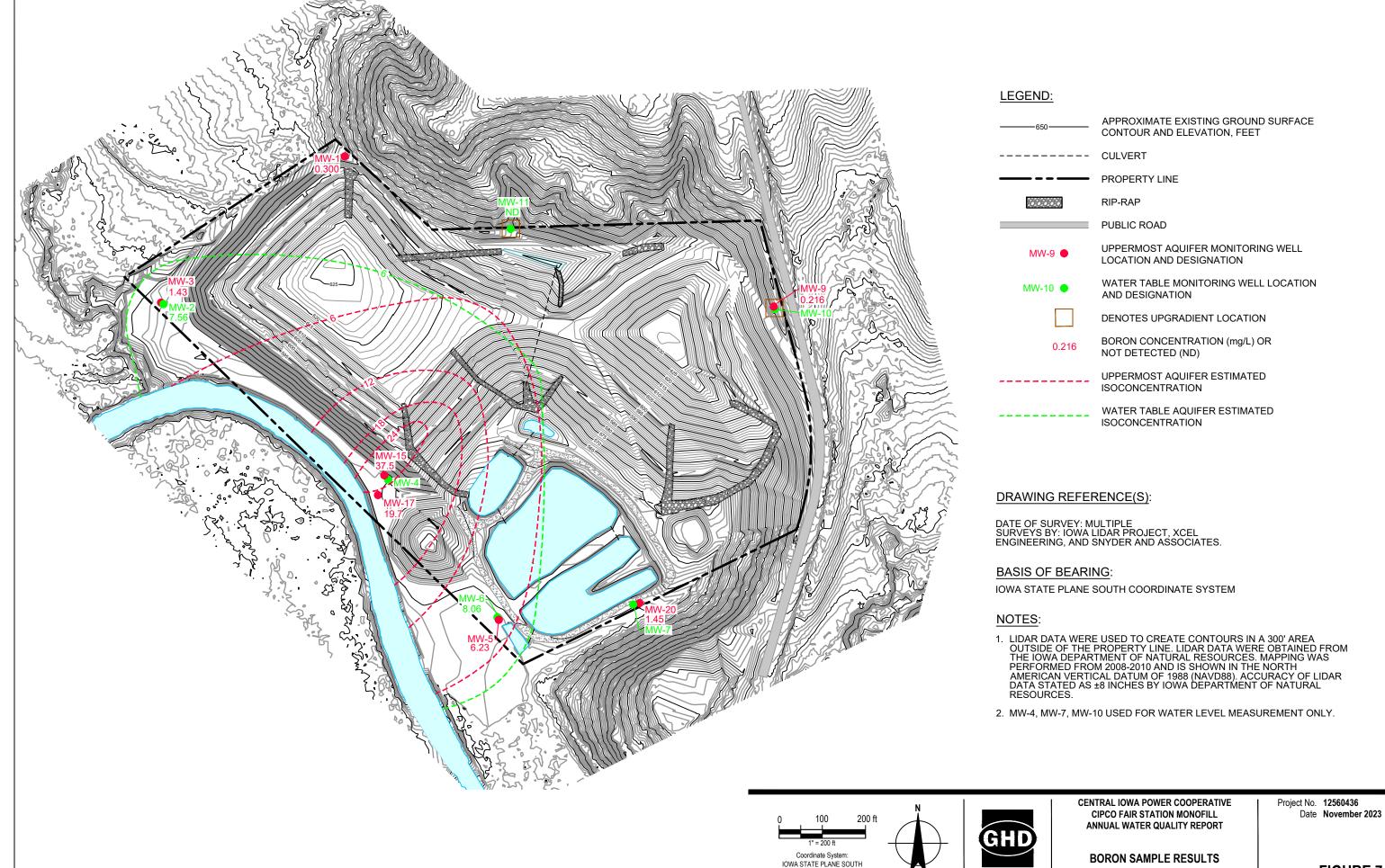
Positive hydraulic gradients indicate upward-directed flow, and negative hydraulic gradients indicate downward-directed flow.
 CCR - Coal combustion residue.
 ft/ft - Foot per foot.

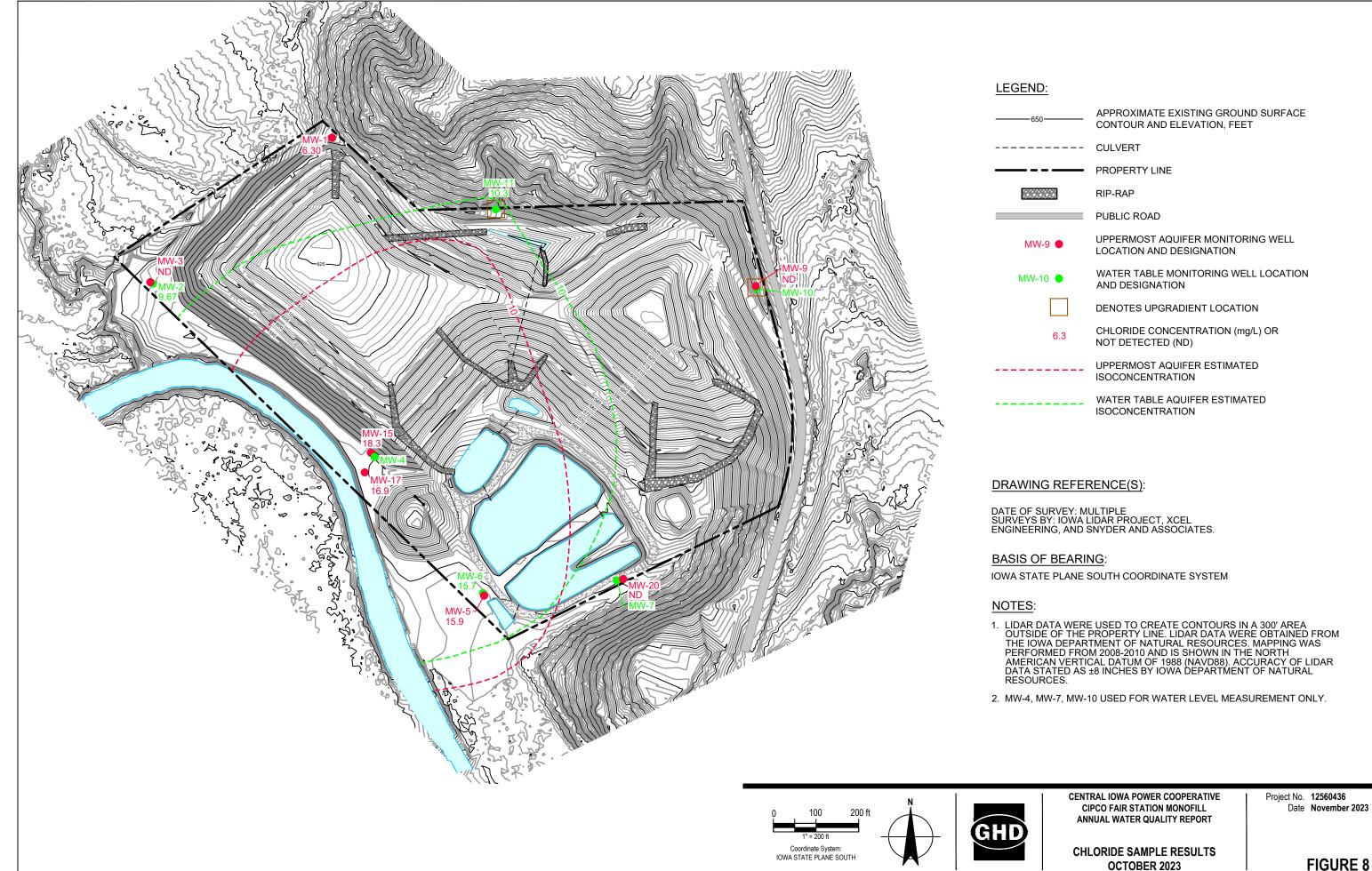

Figures

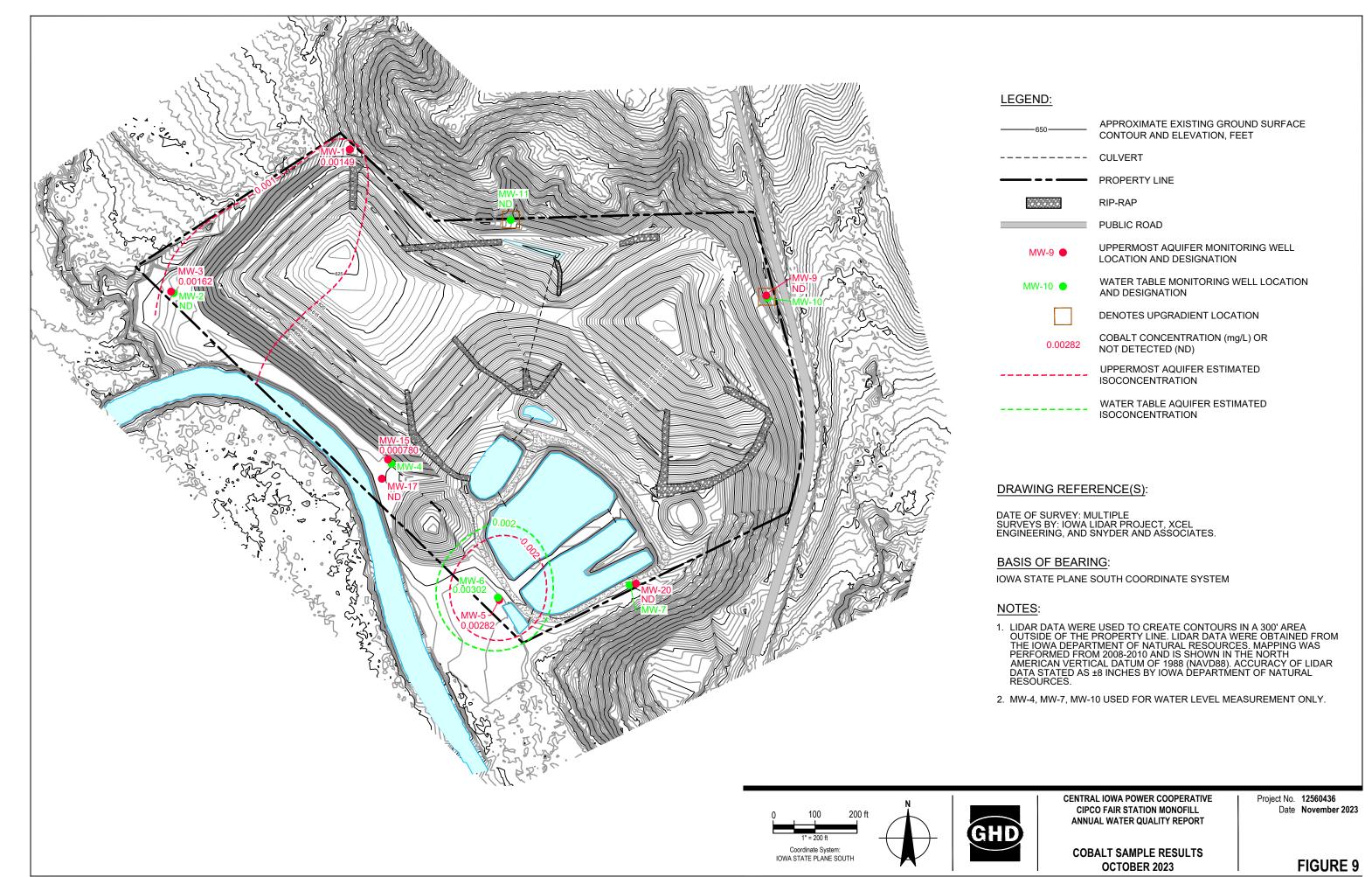


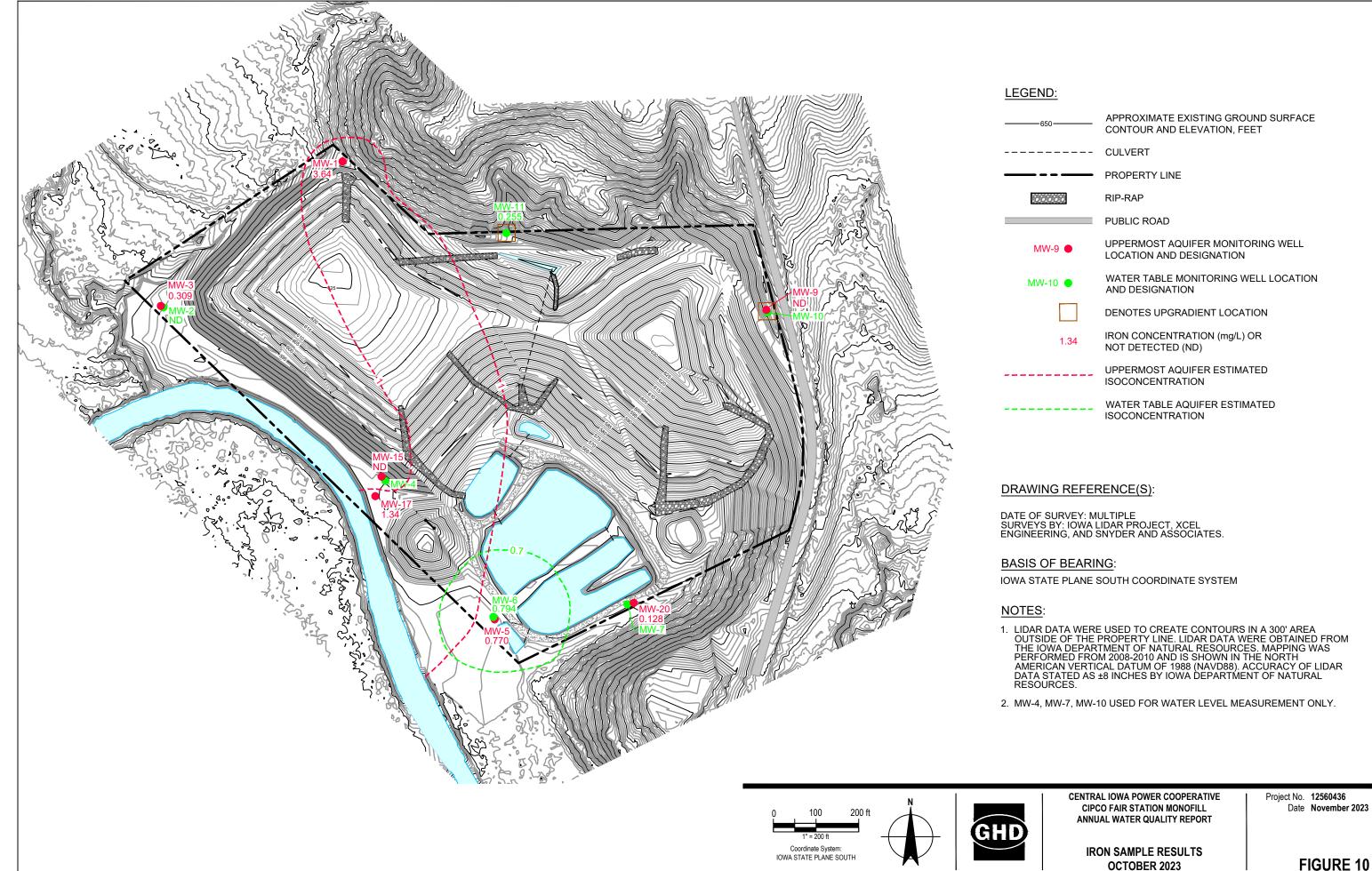


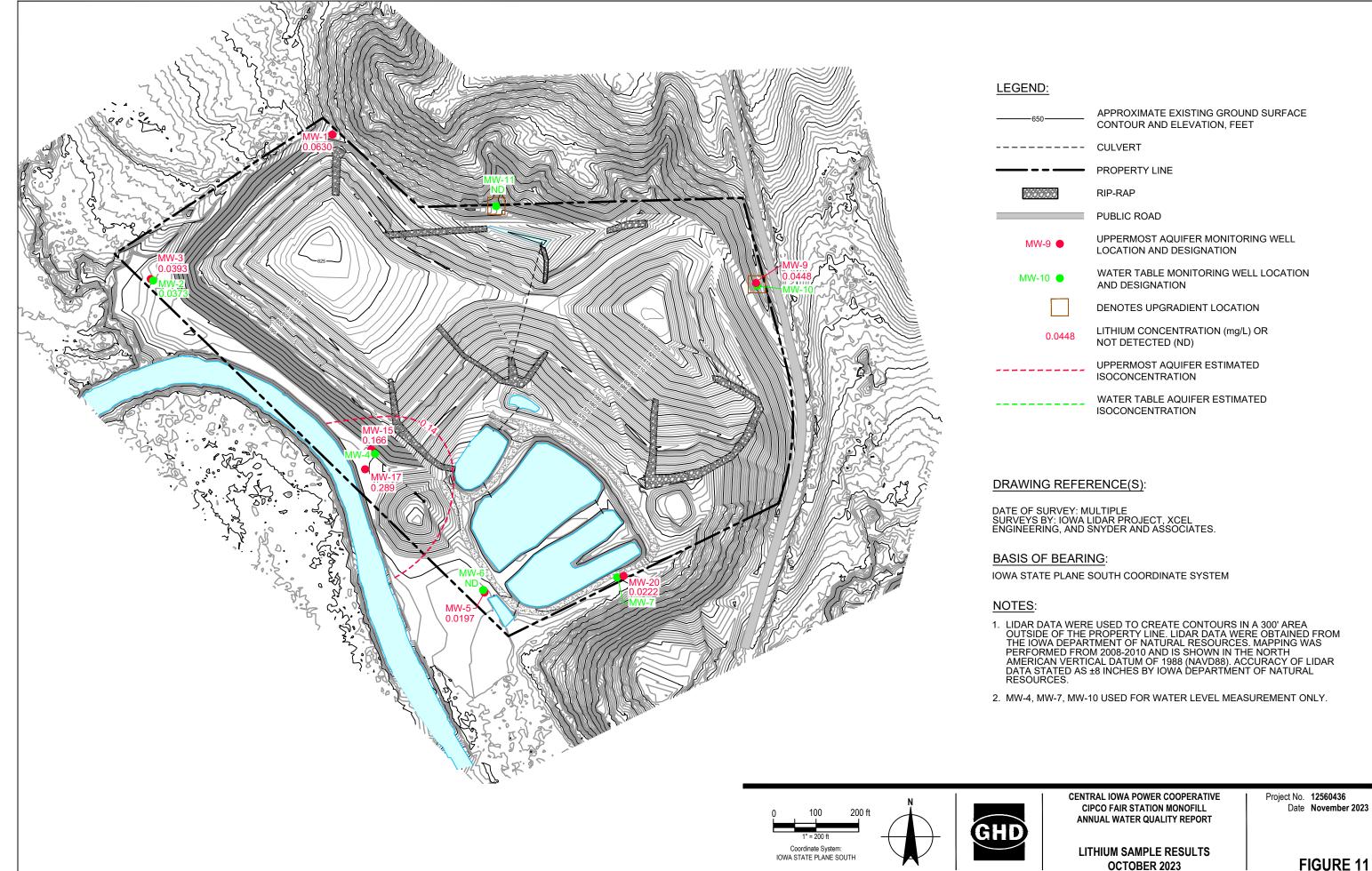

Filename: N:USIDes Moines\Projects\563\12560436\Digital_Design\ACAD\Figures\RPT-003\12560436-GHD-00-00-RPT-EN-D102_DE-003.DWG

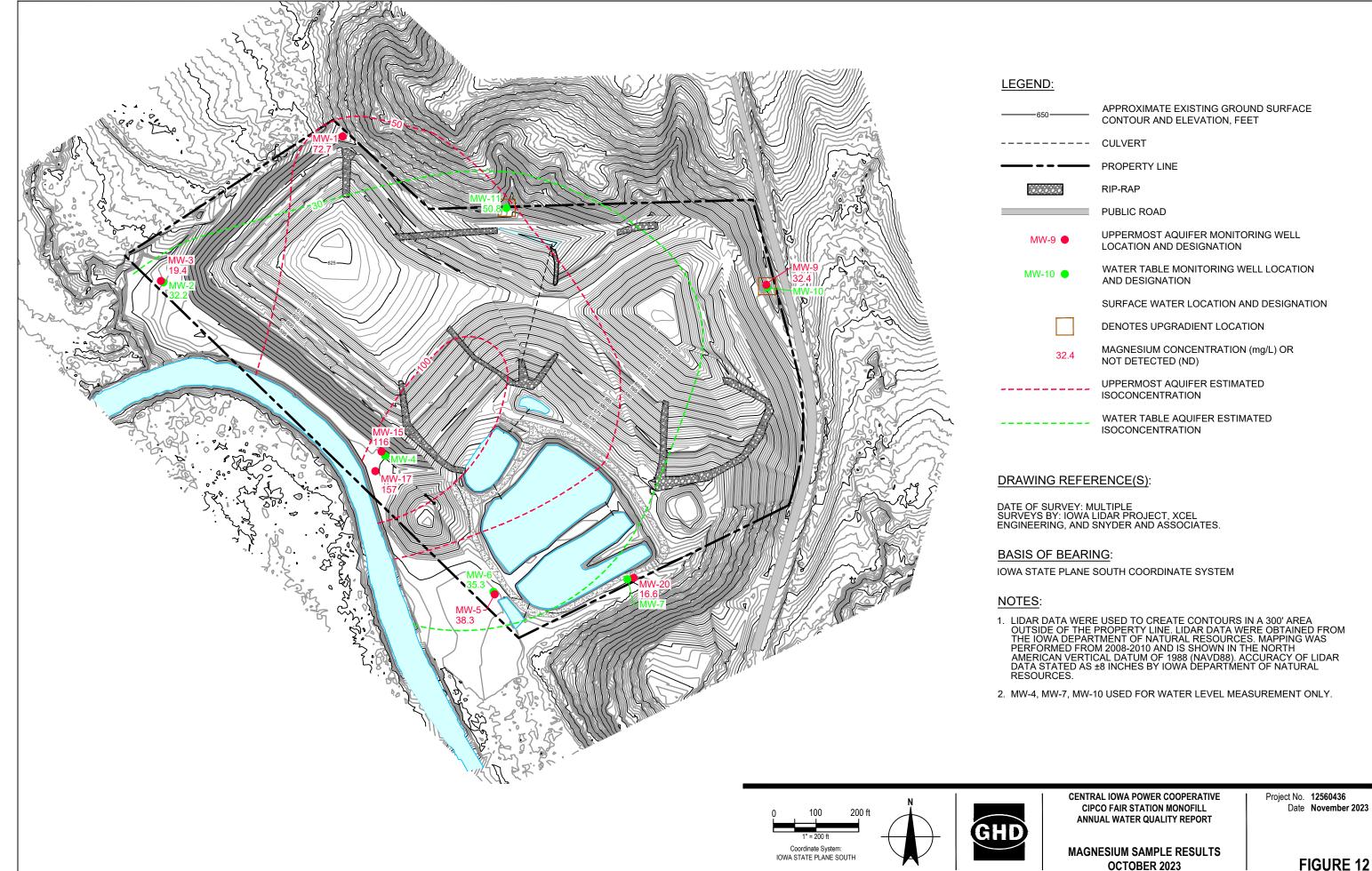

SITE MAP AND MONITORING NETWORK

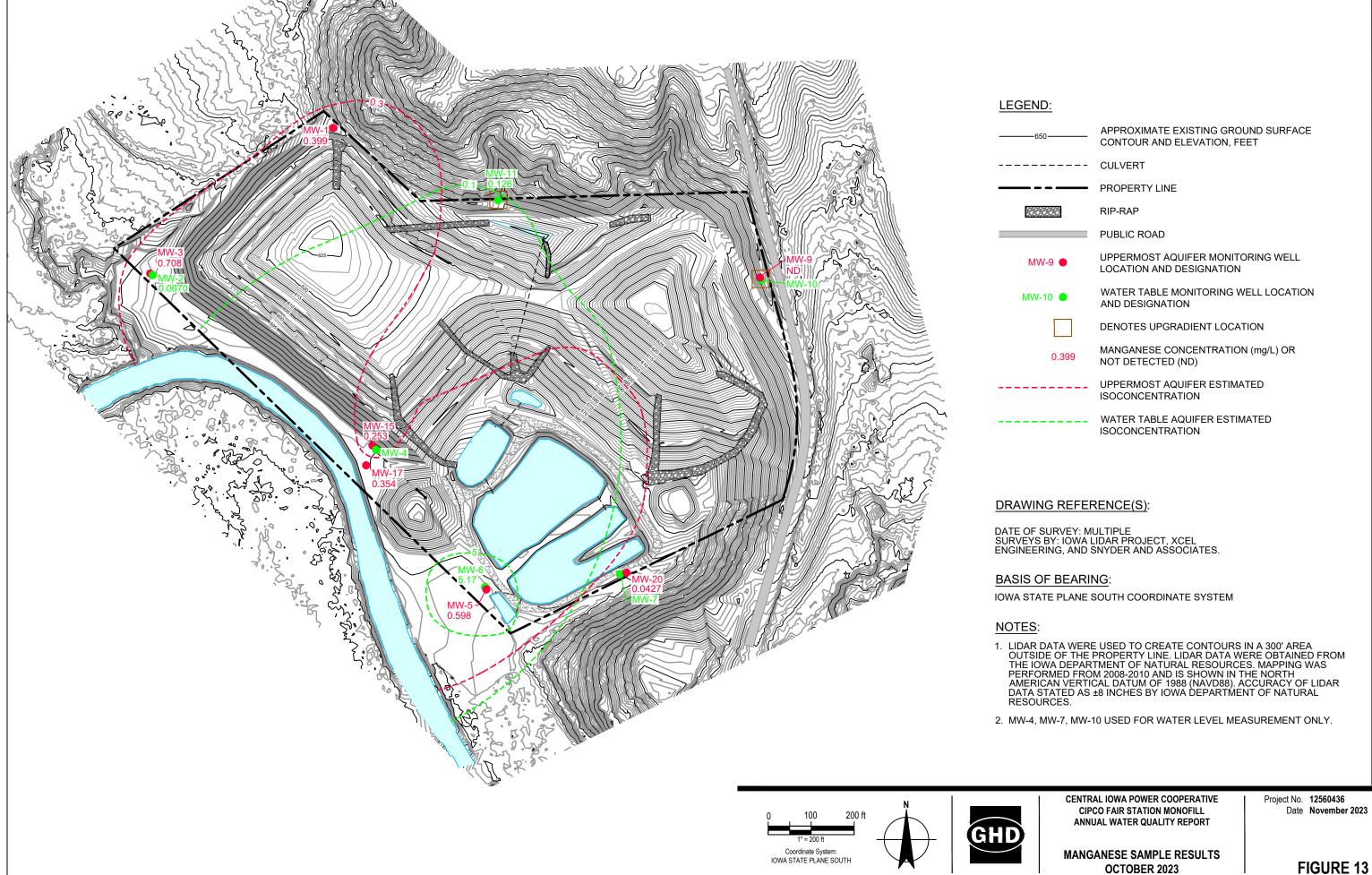


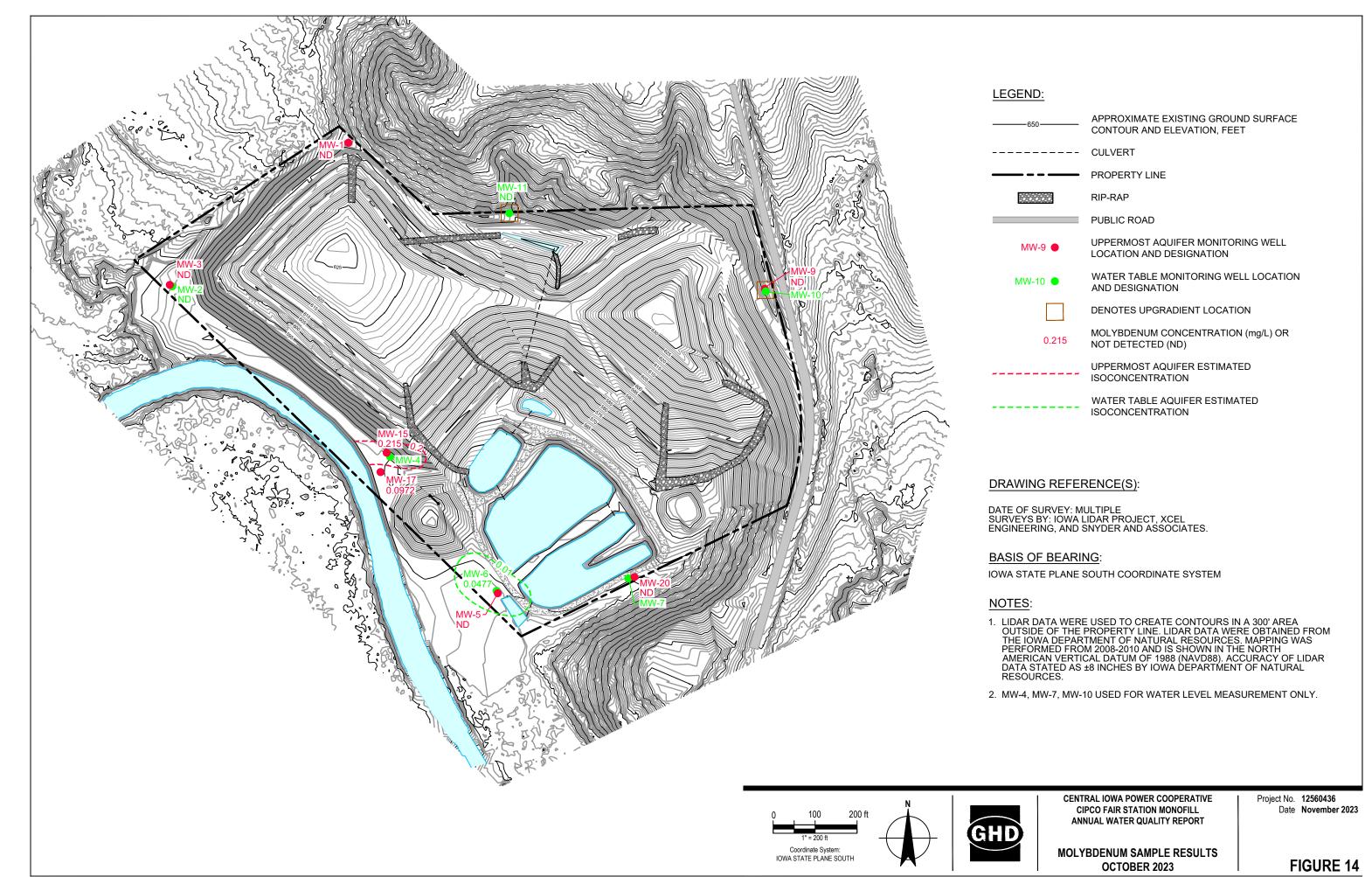


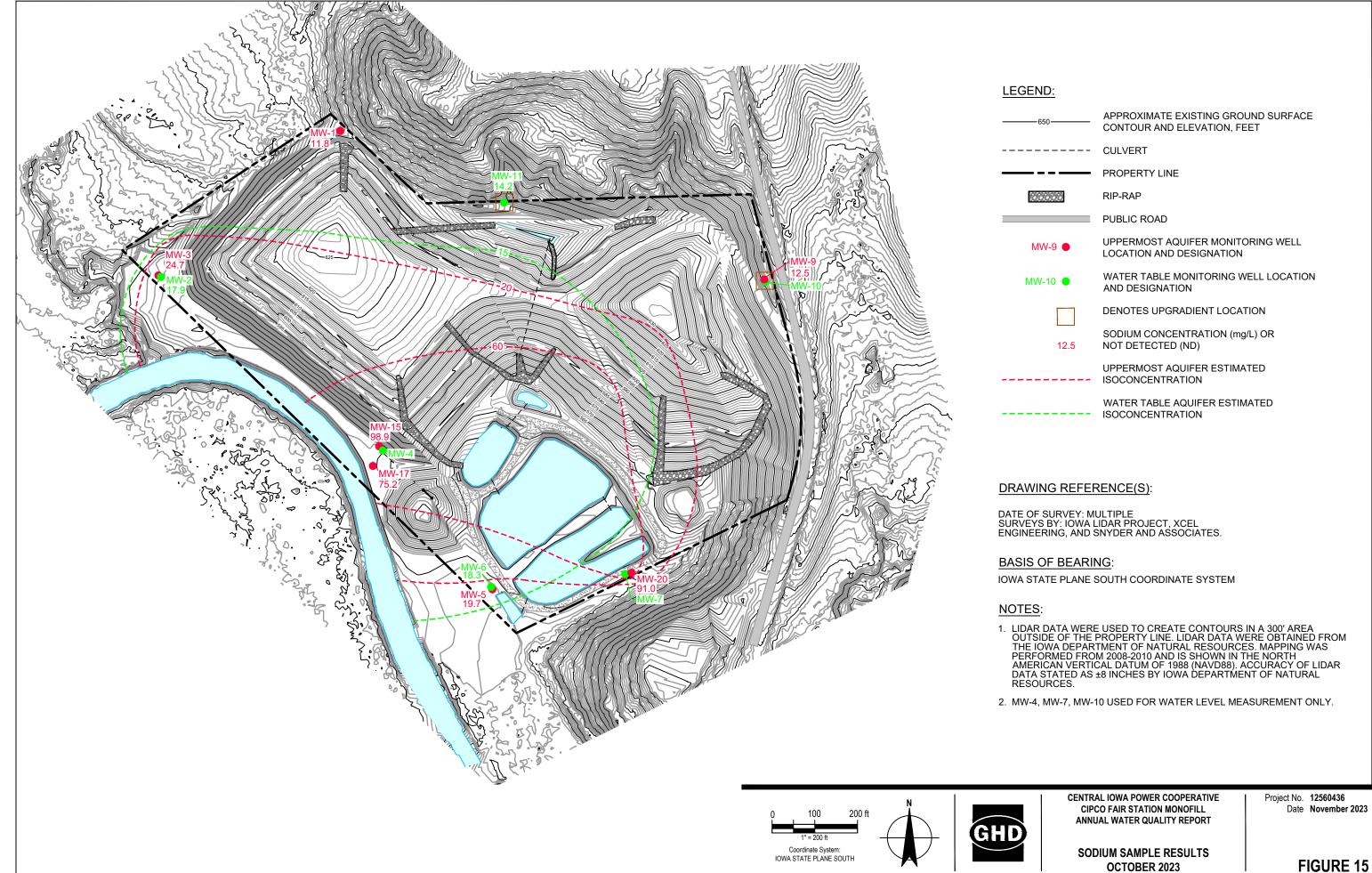


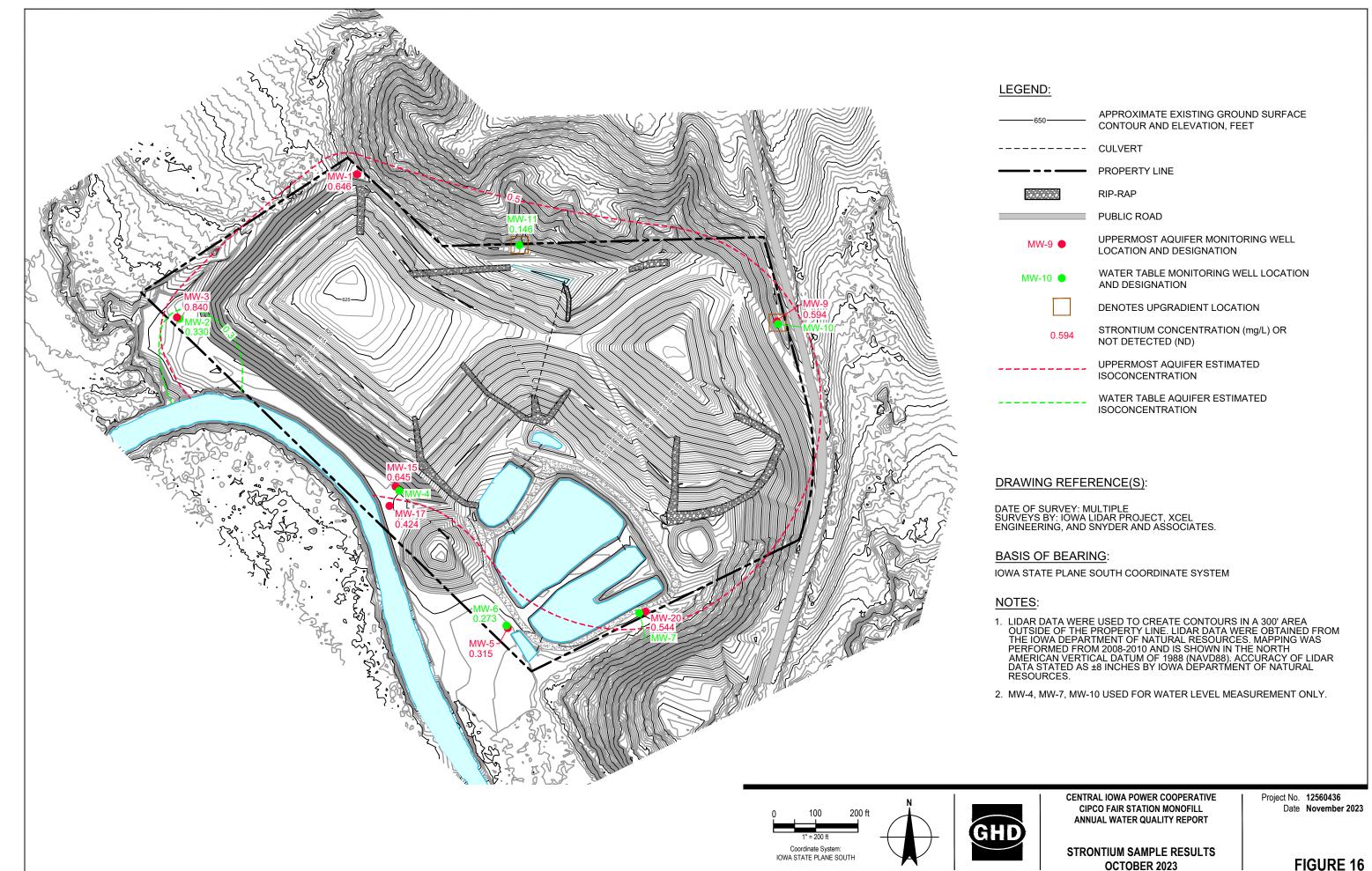

Filename: N:US\Des Moines\Projects\563\12560436\Digital_Design\ACAD\Figures\RPT-003\12560436-GHD-00-00-RPT-EN-D107_DE-003.DWG

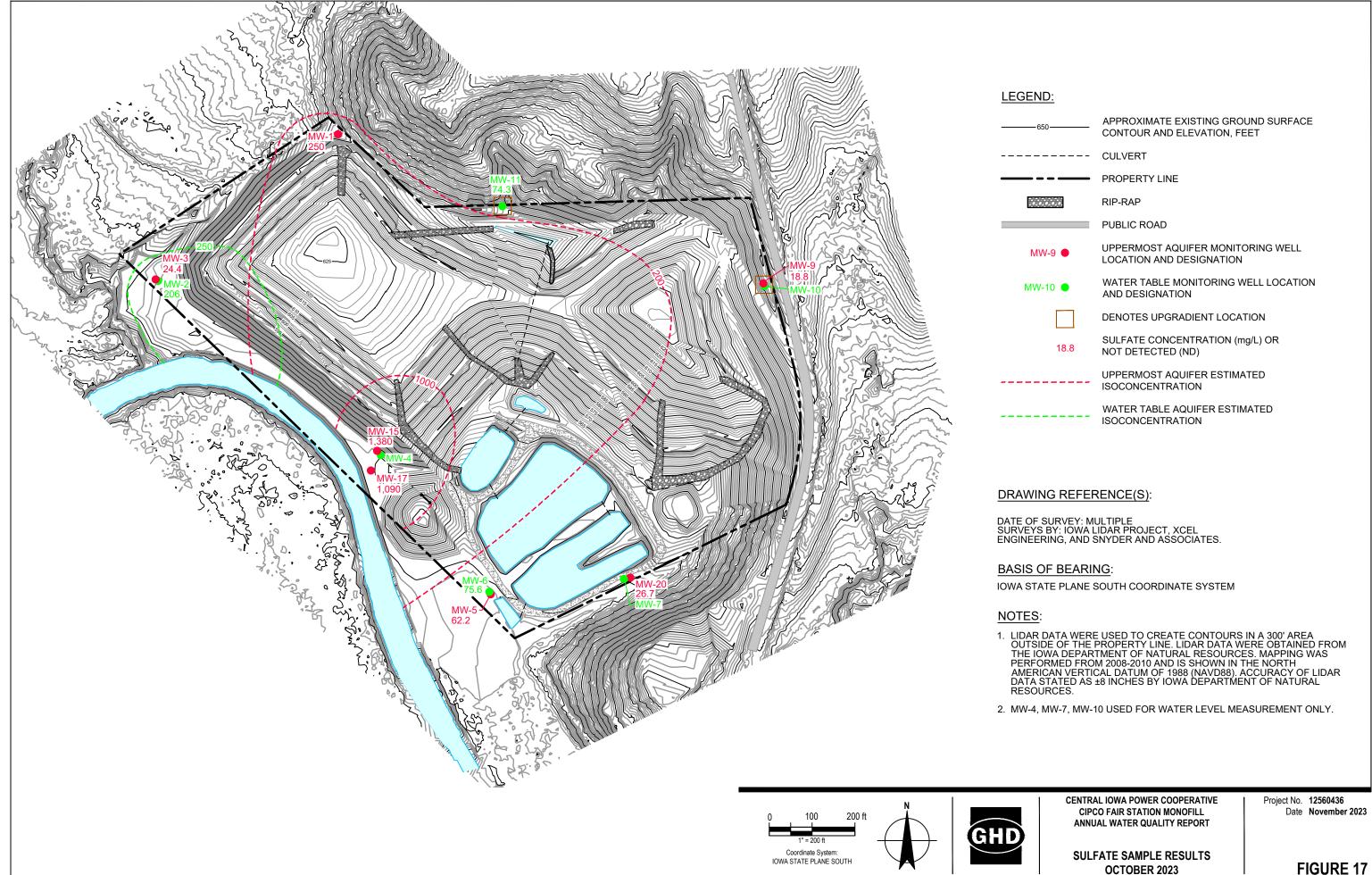

OCTOBER 2023

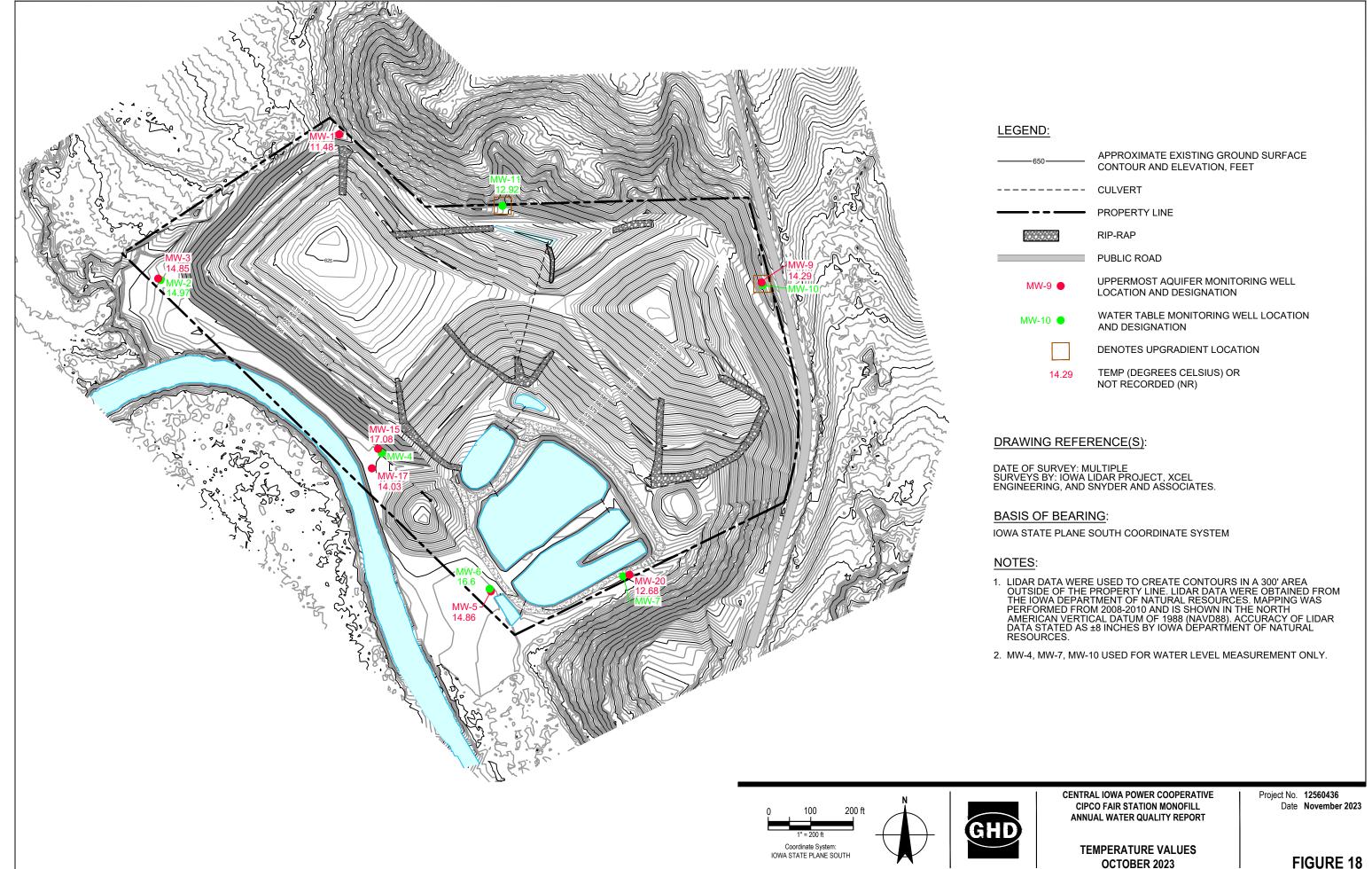


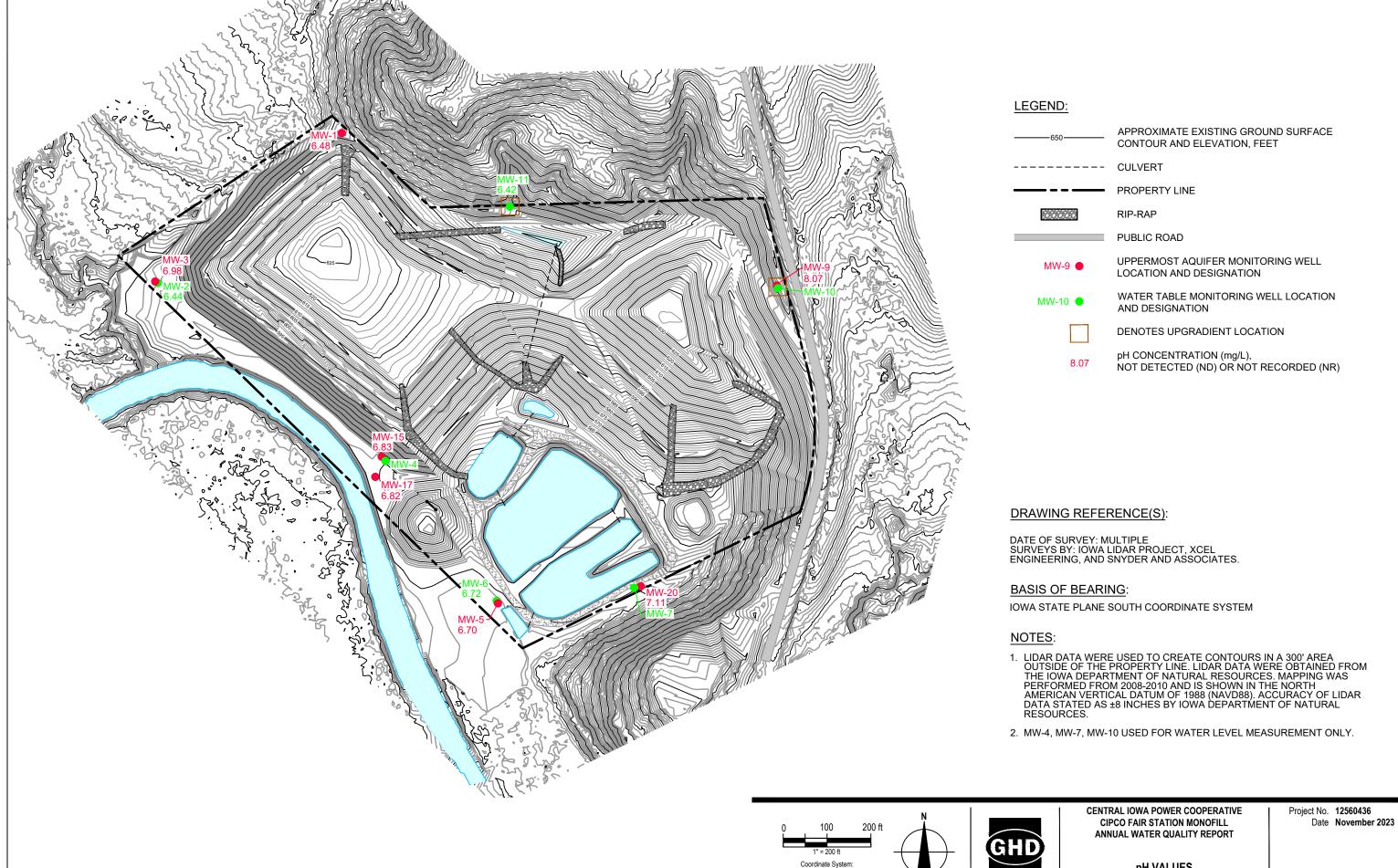


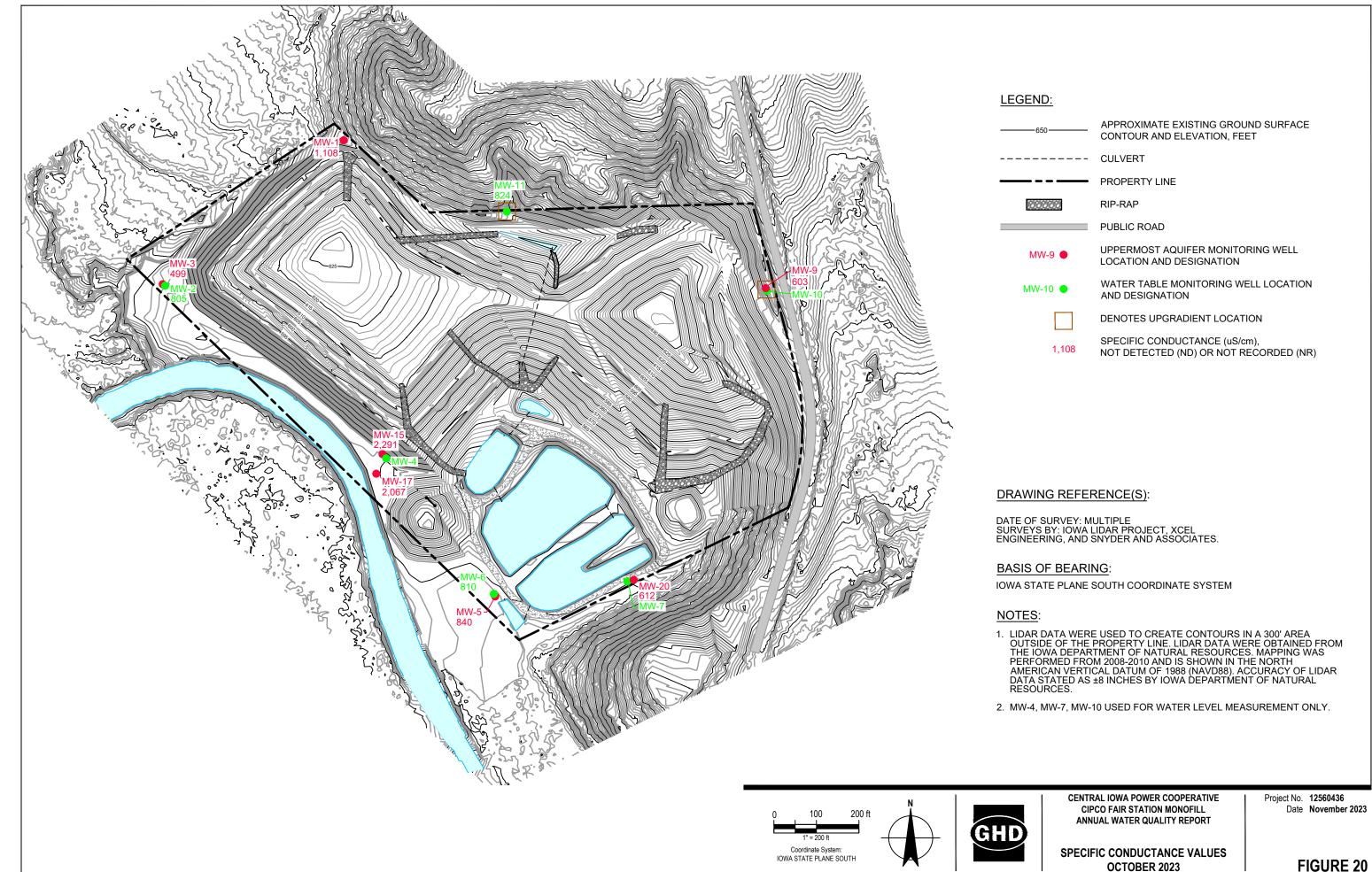





Filename: N:\US\Des Moines\Projects\563\12560436\Digital_Design\ACAD\Figures\RPT-003\12560436-GHD-00-00-RPT-EN-D113_DE-003.DWG


OCTOBER 2023





IOWA STATE PLANE SOUTH

Filename: N:IUSIDes Moines|Projects|563112560436|Digital_Design|ACAD|Figures|RPT-003\12560436-GHD-00-00-RPT-EN-D119_DE-003.DWG

pH VALUES OCTOBER 2023

Appendices

Appendix A Monitoring Forms

Site Name	ame CIPCO Ash Disposal Landfill				Permit No. 70-SDP-09				
Monitoring Well/Piezomete	er No.		MW-1	Upgradier Downgra		X			
Name Of person sampling			Clin	nt Oberbroeckling					
A. MONITORING WELL/	PIEZOMETER C	ONDITIC	ONS						
Well/piezometer Proper If no, explain	ly Capped?	_	Yes	Standing Water or If yes, explain					
B. GROUNDWATER ELE	VATION MEAS	UREMEN	NT (+/- 0.01 fo	ot, MSL)					
Elevation: Top of inner Depth of Well	36.27 ft	Solin	Inside C	Ground Elevation _ asing Diameter (inch Water Level Probe	es)				
Groundwater Lev	el (+/- 0.01 foot be	elow top	of inner casing	g, MSL):					
	Date/Tim	ne	Depth Ground						
Before Purging * After Purging * Before Sampling	10/10/2023 10/10/2023 10/10/2023	9:32 10:00 10:00	25.41	ft 562.7	'2 ft				
*C. WELL PURGING									
Quantity of Water Remo No. of Well Volumes (b Was well pumped/bailed	ased on current w			1.47 g 0.83 we	gallons ll volumes				
Equipment used: Bailer type Pump type	Pneumatic Blade	der	_ Dedicated Ba Dedicated Pu		No				
If not dedicated, me	thod of cleaning		Replac	e bladder, rinse w/v	vater, dedic	cated tubing			
*D. FIELD MEASUREME	NT								
Weather Conditions Field Measurements (aft	er stabilization)			Sunny					
Temperature	,	11.48	Units		°C				
Equipment Used		(10		Aquatroll 500					
pH Equipment Used		6.48		Aquatroll 500					
Specific Cond.		1,108	Units	_	μS/cm				
Equipment Used	_	1,100	Omts_	Aquatroll 500	MO/CIII				
Comments: ORP: 200.1	DO: 5.68	Turb.:	11.78	Sample Time:	10/10/202	23 10:00			

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Test Date / Time: 10/10/2023 9:32:26 AM

Project: CIPCO-MW-1 (2)

Operator Name: Clint Oberbroeckling

Location Name: MW-1
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 25 ft
Total Depth: 35 ft

Initial Depth to Water: 25.41 ft

Pump Type: QED Sample PRO Tubing Type: Nylon- Double

Bonded

Tubing Inner Diameter: 0.25 in

Tubing Length: 35 ft

Pump Intake From TOC: 30 ft Estimated Total Volume Pumped:

5550 ml

Flow Cell Volume: 130 ml Final Flow Rate: 300 ml/min

Final Draw Down: 0 ft

Instrument Used: Aqua TROLL 500

Serial Number: 745328

Test Notes:

Weather Conditions:

36° sunny

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10 %	+/- 10	+/- 0.33	
10/10/2023 9:32 AM	00:00	6.48 pH	11.90 °C	988.44 μS/cm	7.79 mg/L	28.88 NTU	202.9 mV	25.61 ft	300.00 ml/min
10/10/2023 9:35 AM	03:05	6.51 pH	11.63 °C	997.43 μS/cm	7.17 mg/L	25.83 NTU	203.4 mV	25.41 ft	300.00 ml/min
10/10/2023 9:38 AM	06:10	6.50 pH	11.54 °C	1,032.4 µS/cm 6.24 mg/L		18.08 NTU	203.6 mV	25.41 ft	300.00 ml/min
10/10/2023 9:41 AM	09:15	6.48 pH	11.50 °C	1,059.2 μS/cm	5.26 mg/L	15.19 NTU	203.9 mV	25.41 ft	300.00 ml/min
10/10/2023 9:44 AM	12:20	6.48 pH	11.48 °C	1,085.5 μS/cm	5.59 mg/L	17.14 NTU	202.2 mV	25.41 ft	300.00 ml/min
10/10/2023 9:47 AM	15:25	6.48 pH	11.47 °C	1,096.9 µS/cm	5.66 mg/L	6.49 NTU	201.5 mV	25.41 ft	300.00 ml/min
10/10/2023 9:50 AM	18:30	6.48 pH	11.48 °C	1,107.9 μS/cm	5.68 mg/L	11.78 NTU	200.1 mV	25.41 ft	300.00 ml/min

Samples

Sample ID:	Description:
MW-1	ST-1000

Site Name	CIPCO Ash Disp	osal Land	lfill	Permit No.	. 70-	SDP-09-91P
Monitoring Well/Piezometer	r No.		MW-2	Upgradien	t	
C				Downgra		X
Name Of person sampling			Clint	Oberbroeckling		
	_			8		
A. MONITORING WELL/I	PIEZOMETER C	ONDITION	NS			
Well/piezometer Properly If no, explain	y Capped?			Standing Water or I		
B. GROUNDWATER ELE	VATION MEASU	UREMENT	Γ (+/- 0.01 foo	t, MSL)		
Elevation: Top of inner v	vell casing		559.43 ft G	round Elevation	557	.67 ft
Depth of Well	12.95 ft			ing Diameter (inche	es)	2.0 in
Equipment Used		Solinst	Model 101 W	ater Level Probe		
Groundwater Leve	el (+/- 0.01 foot be	low top of	inner casing,	MSL):		
	Date/Tim	-				
	Date/Till	е	Depth to Groundwa			
Before Purging	10/10/2023	14:12	7.51 ft			
* After Purging	10/10/2023	14:50	7.51 ft			
* Before Sampling	10/10/2023	14:50	7.51 ft	551.92	<u> 2 IT </u>	
*C. WELL PURGING						
Quantity of Water Remo	ved from Well (g	allons)		1.41 g	allons	
No. of Well Volumes (ba					l volumes	
Was well pumped/bailed		No		2007 (102	- 101011105	
Equipment used:						
Bailer type		I	Dedicated Bail	er		
	Pneumatic Blade		Dedicated Pun		No	
If not dedicated, met	hod of cleaning			bladder, rinse w/w	ater, dedic	ated tubing
*D. FIELD MEASUREMEI	VТ					
Weather Conditions			S	unny		
Field Measurements (after Temperature	er stadilization)	14.97	Units		°C	
Equipment Used		14.77		quatroll 500	<u> </u>	
рН	-	6.44	11	quation 500		
Equipment Used		0111	A	quatroll 500		
Specific Cond.		805	Units	_	uS/cm	
Equipment Used				quatroll 500		
~ ~					404000	
Comments: ORP: 59.8	DO: 0.11	Turb.:	4.40	Sample Time:	10/10/202	3 14:50

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Test Date / Time: 10/10/2023 2:12:20 PM

Project: CIPCO-MW-2 (2)

Operator Name: Clint Oberbroeckling

Location Name: MW-2
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 2.95 ft
Total Depth: 12.95 ft

Initial Depth to Water: 7.51 ft

Pump Type: QED Sample PRO Tubing Type: Nylon- Double

Bonded

Tubing Inner Diameter: 0.25 in

Tubing Length: 12.95 ft

Pump Intake From TOC: 7.95 ft

Estimated Total Volume Pumped:

5336.667 ml

Flow Cell Volume: 130 ml Final Flow Rate: 200 ml/min

Final Draw Down: 0 ft

Instrument Used: Aqua TROLL 500

Serial Number: 745328

Test Notes:

Weather Conditions:

50° sunny

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10 %	+/- 10	+/- 0.33	
10/10/2023 2:12 PM	00:00	6.56 pH	15.71 °C	811.60 μS/cm	0.98 mg/L	36.80 NTU	58.5 mV	7.51 ft	200.00 ml/min
10/10/2023 2:15 PM	03:00	6.53 pH	15.43 °C	807.61 μS/cm	0.44 mg/L	27.37 NTU	60.1 mV	7.51 ft	200.00 ml/min
10/10/2023 2:18 PM	06:00	6.50 pH	15.28 °C	806.94 μS/cm	0.31 mg/L	17.05 NTU	60.8 mV	7.51 ft	200.00 ml/min
10/10/2023 2:21 PM	09:00	6.48 pH	15.14 °C	805.46 μS/cm	0.25 mg/L	14.09 NTU	61.2 mV	7.51 ft	200.00 ml/min
10/10/2023 2:24 PM	12:00	6.47 pH	15.07 °C	805.09 μS/cm	0.22 mg/L	10.84 NTU	61.3 mV	7.51 ft	200.00 ml/min
10/10/2023 2:27 PM	15:00	6.46 pH	15.03 °C	805.14 μS/cm	0.18 mg/L	8.77 NTU	61.2 mV	7.51 ft	200.00 ml/min
10/10/2023 2:29 PM	16:48	6.43 pH	14.98 °C	805.20 μS/cm	0.16 mg/L	9.19 NTU	61.1 mV	7.51 ft	200.00 ml/min
10/10/2023 2:29 PM	17:08	6.44 pH	15.03 °C	804.97 μS/cm	0.16 mg/L	6.39 NTU	61.0 mV	7.51 ft	200.00 ml/min
10/10/2023 2:33 PM	20:41	6.43 pH	15.00 °C	805.12 μS/cm	0.14 mg/L	10.29 NTU	60.7 mV	7.51 ft	200.00 ml/min
10/10/2023 2:36 PM	23:41	6.44 pH	14.98 °C	804.91 μS/cm	0.13 mg/L	6.09 NTU	60.2 mV	7.51 ft	200.00 ml/min
10/10/2023 2:39 PM	26:41	6.44 pH	14.97 °C	805.16 μS/cm	0.11 mg/L	4.40 NTU	59.8 mV	7.51 ft	200.00 ml/min

Samples

Sample ID:	Description:
MW-2	ST-14:50

Created using VuSitu from In-Situ, Inc.

Site Name	CIPCO Ash Disp	osal Landf	ill	Permit No.	70-SDP-	09-91P
Monitoring Well/Piezometer	r No.		MW-3	Upgradient		
C	•			Downgradient	X	
Name Of person sampling			Clint Obe	rbroeckling		
				-		
A. MONITORING WELL/F	PIEZOMETER CO	CONDITION	5			
Well/piezometer Properly If no, explain	y Capped?			ding Water or Litter?		No
B. GROUNDWATER ELE	VATION MEASU	JREMENT	(+/- 0.01 foot, MS	SL)		
Elevation: Top of inner w	vell casing	55	59.17 ft Ground	l Elevation	556.69 ft	
	46.75 ft		Inside Casing D	Diameter (inches)	2.0 i	n
Equipment Used		Solinst N	Model 101 Water	Level Probe		
Groundwater Leve	l (+/- 0.01 foot be	low top of i	nner casing, MSL):		
		•				
	Date/Time	e	Depth to Groundwater	Groundwater Elevation		
			Groundwater	Lievation		
Before Purging	10/10/2023	14:50	9.44 ft	549.73 ft		
* After Purging	10/10/2023	16:05	9.70 ft	549.47 ft		
* Before Sampling	10/10/2023	16:05	9.70 ft	549.47 ft	_	
*C. WELL PURGING						
	1 C W 11 /	11		2.07		
Quantity of Water Remove No. of Well Volumes (ba				2.87 gallons 0.47 well volur	noc	
Was well pumped/bailed		No		0.47 Well volul	nes	
was well pulliped, suited	ary.	110				
Equipment used:						
Bailer type			edicated Bailer			
1 71	Pneumatic Bladd		edicated Pump	No		
If not dedicated, met	hod of cleaning	-	Replace blade	der, rinse w/water, d	ledicated t	ubing
*D. FIELD MEASUREMEN	TV					
Weather Conditions			Sunny			
Field Measurements (after	er stabilization)					
Temperature		14.85	Units	°C		
Equipment Used	-	<i>(</i> 00	Aquat	croll 500		
pH Equipment Used		6.98	Aquet	croll 500		
Specific Cond.		499	Units	μS/cm		
Equipment Used		7//		roll 500		
1. F	-		1			
Comments: ORP: 34.3	DO: 0.37	Turb.: 14	8.14 Sa	mple Time: 10/10	0/2023	16:05

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Test Date / Time: 10/10/2023 2:50:32 PM

Project: CIPCO-MW-3 (2)

Operator Name: Clint Oberbroeckling

Location Name: MW-3
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 36.5 ft

Total Depth: 46.5 ft

Initial Depth to Water: 9.44 ft

Pump Type: QED Sample PRO

Tubing Type: Nylon- Double

Bonded

Tubing Inner Diameter: 0.25 in

Tubing Length: 46.5 ft

Pump Intake From TOC: 41.5 ft

Estimated Total Volume Pumped:

10867.5 ml

Flow Cell Volume: 130 ml Final Flow Rate: 150 ml/min Final Draw Down: 0.26 ft **Instrument Used: Aqua TROLL 500**

Serial Number: 745328

Test Notes:

Weather Conditions:

50°sunny

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10 %	+/- 10	+/- 0.33	
10/10/2023 2:50 PM	00:00	6.60 pH	15.00 °C	614.33 μS/cm	0.87 mg/L	61.68 NTU	49.0 mV	9.44 ft	300.00 ml/min
10/10/2023 2:53 PM	03:27	6.87 pH	14.44 °C	478.64 μS/cm	1.32 mg/L	118.79 NTU	44.2 mV	9.90 ft	300.00 ml/min
10/10/2023 2:57 PM	06:54	6.98 pH	14.27 °C	456.10 μS/cm	0.88 mg/L	160.37 NTU	41.9 mV	9.90 ft	150.00 ml/min
10/10/2023 3:00 PM	10:21	7.01 pH	14.54 °C	455.44 μS/cm	0.64 mg/L	166.28 NTU	40.5 mV	9.90 ft	150.00 ml/min
10/10/2023 3:04 PM	13:48	7.02 pH	14.72 °C	456.90 μS/cm	0.51 mg/L	187.08 NTU	39.6 mV	9.90 ft	150.00 ml/min
10/10/2023 3:07 PM	17:15	7.03 pH	14.81 °C	459.09 μS/cm	0.45 mg/L	208.93 NTU	39.0 mV	9.90 ft	150.00 ml/min
10/10/2023 3:11 PM	20:42	7.02 pH	14.83 °C	462.50 μS/cm	0.42 mg/L	236.87 NTU	38.4 mV	9.70 ft	150.00 ml/min
10/10/2023 3:14 PM	24:09	7.02 pH	14.89 °C	465.24 μS/cm	0.38 mg/L	236.61 NTU	38.0 mV	9.70 ft	150.00 ml/min
10/10/2023 3:18 PM	27:36	7.01 pH	14.94 °C	468.52 μS/cm	0.36 mg/L	193.22 NTU	37.5 mV	9.70 ft	150.00 ml/min
10/10/2023 3:21 PM	31:03	7.01 pH	14.90 °C	471.44 μS/cm	0.32 mg/L	190.43 NTU	37.0 mV	9.70 ft	150.00 ml/min
10/10/2023 3:25 PM	34:30	7.01 pH	14.88 °C	473.85 μS/cm	0.29 mg/L	187.12 NTU	36.6 mV	9.70 ft	150.00 ml/min
10/10/2023 3:28 PM	37:57	7.00 pH	14.83 °C	476.38 μS/cm	0.26 mg/L	180.02 NTU	36.2 mV	9.70 ft	150.00 ml/min

10/10/2023	41:24	7.00 pH	14.85 °C	478.69 µS/cm	0.25 mg/L	194.67 NTU	35.8 mV	9.70 ft	150.00 ml/min	
3:31 PM	71.27	7.00 pm	14.00	470.00 µ0/cm	0.23 mg/L	154.07 1410	33.0 111	3.7011	130.00 111/111111	
10/10/2023	44:51	7.00 pH	14.80 °C	404 45 uC/om	0.24 mg/L	197.79 NTU	35.3 mV	9.70 ft	150.00 ml/min	
3:35 PM	44.51	7.00 pm	14.00 C	481.45 μS/cm	0.24 mg/L	197.79 1010	33.3 1117	9.7011	150.00 111/111111	
10/10/2023	48:18	6.99 pH	14.77 °C	484.47 μS/cm	0.22 mg/L	194.78 NTU	34.9 mV	9.70 ft	150.00 ml/min	
3:38 PM	40.16	0.99 pm	14.77	404.47 μ3/0111	0.22 mg/L	194.76 1010	34.9 1110	9.7011	130.00 111/111111	
10/10/2023	51:45	7.03 pH	15.06 °C	0.98 µS/cm	7.02 mg/L	0.00 NTU	35.5 mV	9.70 ft	150.00 ml/min	
3:42 PM	31.43	7.03 pm	13.00 C	0.90 μ3/cm	7.02 mg/L	0.00 1110	33.3 1117	9.7011	130.00 1111/111111	
10/10/2023	55:12	6.98 pH	14.96 °C	492.08 µS/cm	1.35 mg/L	252.69 NTU	36.0 mV	9.70 ft	150.00 ml/min	
3:45 PM	33.12	6.96 PH	14.90 C	492.00 μ3/6/11			30.0 1110			
10/10/2023	58:39	6 00 vH	14.92 °C	491.95 µS/cm	0.59 mg/L	150.65 NTU	35.4 mV	9.70 ft	150.00 ml/min	
3:49 PM	56.59	6.98 pH	14.92 C	491.95 μ5/611	0.59 Hig/L	150.65 N10	35.4 IIIV	9.7011	150.00 ml/min	
10/10/2023	01:02:06	6.98 pH	14.92 °C	494.98 µS/cm	0.43 mg/L	148.25 NTU	34.7 mV	9.70 ft	150.00 ml/min	
3:52 PM	01.02.00	0.90 рп	14.32 C	494.90 μ3/CIII	0.43 HIg/L	140.23 NTU	34.1 IIIV	9.7011	150.00 ml/mln	
10/10/2023	01:05:33	6.98 pH	14.85 °C	498.61 µS/cm	0.37 mg/L	148.14 NTU	34.3 mV	9.70 ft	150.00 ml/min	
3:56 PM	01.05.55	0.30 pri	14.05	430.01 μ3/611	0.57 Hig/L	140.14 N10	5 4 .5 IIIV	9.7010	150.00 mi/min	

Samples

Sample ID:	Description:
Mw-3	St-1605

Created using VuSitu from In-Situ, Inc.

Site Name	CIPCO Ash Disposal La	andfill		Permit No.	70-SDP-09-91P
Monitoring Well/Piezome	eter No.	MW-4		Upgradient	
, and the second				Downgradient _	X
Name Of person sampling		Clin	ıt Ober	broeckling	
A. MONITORING WELI	L/PIEZOMETER CONDIT	IONS			
Well/piezometer Prope If no, explain	erly Capped?	Yes	Stand If yes	ing Water or Litter? , explain	No
B. GROUNDWATER EL	LEVATION MEASUREME	ENT (+/- 0.01 fo	ot, MSI	L),	
Elevation: Top of inner	r well casing	556.92 ft (Ground	Elevation	555.34 ft
Depth of Well	10.45 ft	Inside Ca	sing Di	iameter (inches)	2.0 in
Equipment Used	Soli	nst Model 101	Water 1	Level Probe	
Groundwater Le	evel (+/- 0.01 foot below top	of inner casing	, MSL)	:	
	Date/Time	Depth	to	Groundwater	
		Groundw		Elevation	
Before Purging	10/10/2023	9.60 1	P 4	547.32 ft	
* After Purging	10/10/2023		<u> </u>	347.32 It	_
* Before Sampling					_ _
*C. WELL PURGING					
Quantity of Water Ren	noved from Well (gallons)			Water Level On	lv
	based on current water leve	el)		water Level On	
Was well pumped/bail	•	<u> </u>			
Equipment used:					
Equipment used: Bailer type		Dedicated Ba	iler		
Pump type		Dedicated Pu			
If not dedicated, m	nethod of cleaning				
*D. FIELD MEASUREM	ENT				
Weather Conditions					
Field Measurements (a	fter stabilization)				
Temperature		Units_			
Equipment Used			Aquatr	roll 500	
pH	1		A 4-		
Equipment Used Specific Cond.		Units	Aquati	coll 500	
Equipment Used	1		Aquatr	roll 500	
• •			-		
Comments: No sample	2				

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Site Name	CIPCO Ash Dis	Ash Disposal Landfill			Permit No.			70-SDP-09-91P	
Monitoring Well/Piezome	ter No.		MW-5		Upgradien	t			
<i>6</i>					Downgra		<u> </u>	X	
Name Of person sampling			C	lint Oberb	maakling				
Tvame Of person sampling	·		Ci	iiii Oberb	decking				
A. MONITORING WELL	/PIEZOMETER C	CONDITIC	ONS						
Well/piezometer Prope If no, explain		_	Yes Standing Water or Litter? If yes, explain					No	
B. GROUNDWATER EL	EVATION MEAS	UREMEN	NT (+/- 0.01 f	foot, MSL)					
Elevation: Top of inner	well casing		555.54 ft	Ground E	Elevation		553.24 f	't	
Depth of Well		_	Inside (meter (inche				
Equipment Used		Solin	st Model 10	1 Water L	evel Probe				
Groundwater Le	vel (+/- 0.01 foot b	elow top	of inner casir	ng, MSL):					
	Date/Tin	na	Dep	th to	Groundw	ntor			
	Date/ III.	IIC		dwater	Elevation				
Before Purging	10/10/2023	11:26			548.74				
* After Purging	10/10/2023	11:45			548.74				
* Before Sampling	10/10/2023	11:45	6.8	0 ft	548.74	4 ft			
*C. WELL PURGING									
Quantity of Water Rem	noved from Well (9	gallons)			0.91 g	allons			
No. of Well Volumes (
Was well pumped/baile		No							
E									
Equipment used: Bailer type			Dedicated I	Railer					
Pump type	Pneumatic Blad	lder	Dedicated I			No			
If not dedicated, m		idei			r, rinse w/w		dicated	tubing	
,	ε				,				
*D. FIELD MEASUREMI	ENT								
Weather Conditions				Sunny					
Field Measurements (a	fter stabilization)	1406	** ·			0.0			
Temperature	1	14.86	Units		11 500	°C			
Equipment Used		6.70		Aquatro	DII 500				
pH Equipment Used		0.70		Aquatro	11 500				
Specific Cond.		820	Units			uS/cm			
Equipment Used		020		Aquatro		as/CIII			
=qsipment obed	<u> </u>								
Comments: ORP: 156	.3 DO: 0.08	Turb.:	5.15	Sam	ple Time:	10/10/	2023	11:45	

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Test Date / Time: 10/10/2023 11:26:58 AM

Project: CIPCO-MW-5 (2)

Operator Name: Clint Oberbroeckling

Location Name: MW-5
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 18.5 ft
Total Depth: 28.5 ft

Initial Depth to Water: 6.8 ft

Pump Type: QED Sample PRO Tubing Type: Nylon- Double

Bonded

Tubing Inner Diameter: 0.25 in

Tubing Length: 28.5 ft

Pump Intake From TOC: 23.5 ft Estimated Total Volume Pumped:

3460 ml

Flow Cell Volume: 130 ml Final Flow Rate: 300 ml/min

Final Draw Down: 0 ft

Instrument Used: Aqua TROLL 500

Serial Number: 745328

Test Notes:

Weather Conditions:

40° sunny

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10 %	+/- 10	+/- 0.33	
10/10/2023	00:00	6.81 pH	14.65 °C	789.60 µS/cm	1.72 mg/L	15.71 NTU	163.1 mV	6.80 ft	300.00 ml/min
11:26 AM	00.00	0.61 pm	14.05 C	769.00 μ3/611	1.72 mg/L	13.711010	103.11110	0.00 11	300.00 111/111111
10/10/2023	02:53	6.77 pH	14.76 °C	785.19 µS/cm	0.43 mg/L	9.79 NTU	160.4 mV	6.80 ft	300.00 ml/min
11:29 AM	02.55	0.77 pm	14.70 C	765.19 μ5/611	0.43 mg/L	9.79 1010	100.4 1110	0.00 11	300.00 111/111111
10/10/2023	05:46	6.74 pH	14.79 °C	798.13 µS/cm	0.19 mg/L	5.11 NTU	159.1 mV	6.80 ft	300.00 ml/min
11:32 AM	00.40	0.74 pri	14.75 0	730.13 μο/οπ	0.13 Hig/L	3.111410	100.11111	0.00 10	300.00 111/111111
10/10/2023	08:39	6.71 pH	14.83 °C	812.06 µS/cm	0.12 mg/L	3.44 NTU	157.8 mV	6.80 ft	300.00 ml/min
11:35 AM	00.59	0.71 pm	14.00 0	012.00 μο/οπ	0.12 mg/L	5.44 NTO	107.01110	0.00 10	000.00 111/111111
10/10/2023	11:32	6.70 pH	14.86 °C	819.71 µS/cm	0.08 mg/L	5.15 NTU	156.3 mV	6.80 ft	300.00 ml/min
11:38 AM	11.02	0.70 pri	14.00 C	σ19.71 μο/οπ	0.00 Hig/L	3.13 1410	150.5 111	0.00 11	300.00 111/111111

Samples

Sample ID:	Description:
MW-5	ST-1145

Site Name	CIPCO Ash Dispo	sal Landf	ill	Permit No.	70-SDP-09-91P
Monitoring Well/Piezometer	r No.		MW-6	Upgradient	
<i>6</i> · · · · · · · · · · · · · · · · · · ·				Downgradient _	X
Name Of person sampling			Clint Obo	rbroeckling	
value Of person sampling			Cint Obe	i bi beckinig	
A. MONITORING WELL/P	PIEZOMETER CO	NDITIONS	S		
Well/piezometer Properly If no, explain	y Capped?			ding Water or Litter?	No
B. GROUNDWATER ELEV	VATION MEASUI	REMENT ((+/- 0.01 foot, MS	L)	
Elevation: Top of inner w	vell casing	5:	55.88 ft Ground	l Elevation	553.47 ft
Depth of Well	15.10 ft			Diameter (inches)	2.0 in
Equipment Used		Solinst I	Model 101 Water	Level Probe	
Groundwater Leve	el (+/- 0.01 foot belo	ow top of i	nner casing, MSL):	
	Date/Time	-	Depth to	Groundwater	
	Date/ Time		Groundwater	Elevation	
Paforo Durging	10/10/2023	11:47	7.99 ft	547.89 ft	
Before Purging * After Purging	10/10/2023	12:10	8.20 ft	547.68 ft	_
* Before Sampling	10/10/2023	12:10	8.20 ft	547.68 ft	_
*C. WELL PURGING					
Quantity of Water Remov				0.58 gallons	
No. of Well Volumes (ba				0.50 well volur	nes
Was well pumped/bailed	dry?	No			
Equipment used:					
Bailer type	D Dla dda		edicated Bailer	No	
Pump type If not dedicated, met	Pneumatic Bladde		edicated Pump	No der, rinse w/water, d	ladicated tubing
ii not dedicated, men	nod of cicaning		Replace blade	ici, illise w/watei, u	iculcated tubing
*D. FIELD MEASUREMEN	NT				
Weather Conditions			Sunny		
Field Measurements (after		1 < < 0	** *	2.5	
Temperature		16.60	Units	°C	
Equipment Used	-	6.72	Aquat	roll 500	
pH Equipment Used		6.72	Agnot	roll 500	
Specific Cond.		810	Units Aquat	μS/cm	
Equipment Used		010		roll 500	
=qp.mont cood	-				
Comments: ORP: 144.4	DO: 0.10 T	urb.: 2	.52 Sa	mple Time: 10/10	0/2023 12:10

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Test Date / Time: 10/10/2023 11:47:16 AM

Project: CIPCO - MW-6 (2)

Operator Name: Clint Oberbroeckling

Location Name: MW-6
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 5.08 ft
Total Depth: 15.08 ft

Initial Depth to Water: 7.99 ft

Pump Type: QED Sample PRO Tubing Type: Nylon- Double

Bonded

Tubing Inner Diameter: 0.25 in

Tubing Length: 15.08 ft

Pump Intake From TOC: 10.08 ft Estimated Total Volume Pumped:

2205 ml

Flow Cell Volume: 130 ml Final Flow Rate: 300 ml/min Final Draw Down: 0.21 ft Instrument Used: Aqua TROLL 500

Serial Number: 745328

Test Notes:

Weather Conditions:

50° sunny

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10 %	+/- 10	+/- 0.33	
10/10/2023	00:00	6.78 pH	16.64 °C	791.92 µS/cm	1.61 mg/L	17.38 NTU	148.5 mV	7.99 ft	300.00 ml/min
11:47 AM	00.00	00.00 0.70 pri 10.04	10.04 C	791.92 μο/οπ	1.01 mg/L	17.30 1410	140.5 111	7.55 10	300.00 1117111111
10/10/2023	02:27	6.72 pH	16.78 °C	809.72 µS/cm	0.40 mg/L	6.89 NTU	147.1 mV	8.20 ft	300.00 ml/min
11:49 AM	02.21	0.72 pm	10.76	009.72 μ0/6/11	0.40 Hig/L	0.09 1110	147.11111	0.20 It	300.00 111/111111
10/10/2023	04:54	6.72 pH	16.72 °C	808.78 µS/cm	0.17 mg/L	3.17 NTU	145.6 mV	8.20 ft	300.00 ml/min
11:52 AM	04.54	0.72 pm	10.72 0	000.70 μ0/011	0.17 mg/L	3.17 1110	143.0111	0.20 It	300.00 111/111111
10/10/2023	07:21	6.72 pH	16.60 °C	809.90 µS/cm	0.10 mg/L	2.52 NTU	144.4 mV	8,20 ft	300.00 ml/min
11:54 AM	07.21	0.72 pri	10.00 C	009.90 μ3/011	0.10 mg/L	2.52 NTO	144.41110	0.2011	300.00 1111/111111

Samples

Sample ID:	Description:
MW-6	ST-12:10

ndfill	Permit No.	70-SDP-09-91P
MW-7	Upgradient	
2,2,,,,	Downgradient	X
Cli-A C		
Clint C	Derbroeckling	
ONS		
Yes So	tanding Water or Litter? yes, explain	No
NT (+/- 0.01 foot,	MSL)	
556.77 ft Gro	und Elevation	555.05 ft
		2.0 in
st Model 101 Wa	ter Level Probe	
of inner casing, M	SL):	
Danish ta	C	
Groundwate	Dievation	
3.03 ft	553.74 ft	<u> </u>
		_
	Water Level On	lv
<u></u>		
Dedicated Bailer		
<u> </u>		
Units		
	uatroll 500	
•		
	uatroll 500	
Units		
	MW-7 Clint Cons Yes Solif If (+/- 0.01 foot, 556.77 ft Gro Inside Casin St Model 101 Wa of inner casing, M Depth to Groundwate 3.03 ft Dedicated Bailer Dedicated Pump Units Aq	Clint Oberbroeckling Clint Oberbroeckling NNS Yes Standing Water or Litter? If yes, explain TO (+/- 0.01 foot, MSL) 556.77 ft Ground Elevation Inside Casing Diameter (inches) st Model 101 Water Level Probe of inner casing, MSL): Depth to Groundwater Groundwater Elevation 3.03 ft 553.74 ft Water Level On Dedicated Bailer Dedicated Pump Units Aquatroll 500 Aquatroll 500

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Site Name	CIPCO Ash Disposa	l Landfill	Permit No.	70-SDP-09-91P
Monitoring Well/Piezometer	· No	MW-9	Upgradient Downgrad	
Name Of person sampling		Clin	t Oberbroeckling	
A. MONITORING WELL/F	PIEZOMETER CONI	DITIONS		
Well/piezometer Properly If no, explain	Capped?	Yes	Standing Water or L If yes, explain	Litter? No
B. GROUNDWATER ELE	VATION MEASURE	MENT (+/- 0.01 foo	ot, MSL)	
Elevation: Top of inner w Depth of Well Equipment Used	118.67 ft		Ground Elevation sing Diameter (inches Vater Level Probe	627.04 ft 2.0 in
Groundwater Leve	l (+/- 0.01 foot below	top of inner casing,	MSL):	
	Date/Time	Depth Groundw		
Before Purging * After Purging * Before Sampling	10/10/2023 1	6:45 7:00 7:00	<u>596.30</u>	
*C. WELL PURGING				
Quantity of Water Remove No. of Well Volumes (bat Was well pumped/bailed	sed on current water l		not full	purge
Equipment used: Bailer type Di Pump type If not dedicated, met	sposable Polyethylend nod of cleaning	Dedicated Bai		Yes
*D. FIELD MEASUREMEN	T			
Weather Conditions Field Measurements (after	r stabilization)	S	Sunny	
Temperature	14.		1 500	°C
Equipment Used pH	8.0		Aquatroll 500	
Equipment Used Specific Cond.	60		Aquatroll 500 u	S/cm
Equipment Used			Aquatroll 500	
Comments: ORP: 25	DO: 8.54 Tur	b.: 0.57	Sample Time:	10/10/2023 17:00

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Test Date / Time: 10/10/2023 4:45:42 PM

Project: CIPCO-MW-9 (2)

Operator Name: Clint Oberbroeckling

Location Name: MW-9
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 108.65 ft
Total Depth: 118.65 ft

Initial Depth to Water: 32.83 ft

Pump Type: QED Sample PRO Tubing Type: Nylon- Double

Bonded

Tubing Inner Diameter: 0.25 in Tubing Length: 118.65 ft

Pump Intake From TOC: 113.65 ft Estimated Total Volume Pumped:

0 ml

Flow Cell Volume: 130 ml Final Flow Rate: 300 ml/min

Final Draw Down: 0 ft

Instrument Used: Aqua TROLL 500

Serial Number: 745328

Test Notes:

Pulled bailer to sample. One groundwater quality reading

Weather Conditions:

50° sunny

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10 %	+/- 10	+/- 0.33	
10/10/2023 4:45 PM	00:00	8.07 pH	14.29 °C	603.21 μS/cm	8.54 mg/L	0.57 NTU	25.0 mV	32.83 ft	300.00 ml/min

Samples

Sample ID:	Description:
MW-9	ST-1700

Created using VuSitu from In-Situ, Inc.

Site Name	CIPCO Ash Disposal I	Landfill	Permit No.	70-SDP-09-91P
Monitoring Well/Piezome	eter No.	MW-10	Upgradient Downgradient	X
Name Of person sampling		Clint	Oberbroeckling	
A. MONITORING WELI	/PIEZOMETER CONDIT	TONS		
Well/piezometer Prope If no, explain	erly Capped?	Yes	Standing Water or Litter? If yes, explain	No
B. GROUNDWATER EL	EVATION MEASUREM	ENT (+/- 0.01 foot	, MSL)	
Elevation: Top of inne Depth of Well Equipment Used	32.25 ft	Inside Cas	round Elevation ing Diameter (inches) vater Level Probe	
Groundwater Le	evel (+/- 0.01 foot below to	p of inner casing, l	MSL):	
	Date/Time	Depth to Groundwa		
Before Purging * After Purging * Before Sampling	10/10/2023		606.18 ft	_ _ _
*C. WELL PURGING				
	noved from Well (gallons) (based on current water level dry?		Water Level O	-
Pump type	nethod of cleaning	Dedicated Bail Dedicated Pum		
*D. FIELD MEASUREM	_			
Weather Conditions Field Measurements (a Temperature Equipment Used		Units	quatroll 500	
pHEquipment Used Specific Cond. Equipment Used	1		quatroll 500	
Comments: No sample	e			

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Site Name	CIPCO Ash Disp	osal Landi	fill	Permit No.	70-SDP-()9-91P
Monitoring Well/Piezometer	· No.		MW-11	Upgradient Downgradient	X	
Name Of person sampling			Clint Obe	rbroeckling		
A. MONITORING WELL/F	PIEZOMETER CO	ONDITION	S			
Well/piezometer Properly If no, explain	Capped?			ding Water or Litter? s, explain		
B. GROUNDWATER ELE	VATION MEASU	JREMENT	(+/- 0.01 foot, MS	SL)		
Elevation: Top of inner w Depth of Well Equipment Used	20.40 ft		87.99 ft Ground Inside Casing D Model 101 Water	Diameter (inches)	586.18 ft 2.0 in	<u> </u>
Groundwater Leve						
	Date/Time	e	Depth to Groundwater	Groundwater Elevation		
Before Purging * After Purging * Before Sampling	10/10/2023 10/10/2023 10/10/2023	8:46 9:15 9:15	7.36 ft 7.36 ft 7.36 ft	580.63 ft 580.63 ft 580.63 ft	_ _	
*C. WELL PURGING					_	
Quantity of Water Remov No. of Well Volumes (ba Was well pumped/bailed	sed on current wa			1.24 gallons 0.58 well volun	nes	
Equipment used: Bailer type Pump type	Pneumatic Bladd		edicated Bailer	No		
If not dedicated, met				der, rinse w/water, d	edicated tu	ıbing
*D. FIELD MEASUREMEN	NT					
Weather Conditions Field Measurements (after	er stabilization)		Sunny			
Temperature		12.92	Units	°C		
Equipment Used pH		6.42	Aquat	croll 500		
Equipment Used		0.42	Aguat	roll 500		
Specific Cond.	·	824	Units	μS/cm		
Equipment Used				croll 500		
Comments: ORP: 199.5	DO: 0.57	Turb.: 1'	7.05 Sa	mple Time: 10/10)/2023	9:15

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Test Date / Time: 10/10/2023 8:46:21 AM

Project: CIPCO-MW-11 (2)

Operator Name: Clint Oberbroeckling

Location Name: MW-11
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 10.4 ft
Total Depth: 20.4 ft

Initial Depth to Water: 7.36 ft

Pump Type: QED Sample PRO Tubing Type: Nylon- Double

Bonded

Tubing Inner Diameter: 0.25 in

Tubing Length: 20.4 ft

Pump Intake From TOC: 15.4 ft Estimated Total Volume Pumped:

4710 ml

Flow Cell Volume: 130 ml Final Flow Rate: 300 ml/min

Final Draw Down: 0 ft

Instrument Used: Aqua TROLL 500

Serial Number: 745328

Test Notes:

Weather Conditions:

36° sunny

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10 %	+/- 10	+/- 0.33	
10/10/2023 8:46 AM	00:00	6.60 pH	12.98 °C	856.86 μS/cm	3.19 mg/L	36.09 NTU	205.5 mV	7.36 ft	300.00 ml/min
10/10/2023 8:48 AM	02:37	6.50 pH	12.31 °C	847.38 μS/cm	1.68 mg/L	24.06 NTU	202.5 mV	7.36 ft	300.00 ml/min
10/10/2023 8:51 AM	05:14	6.46 pH	12.82 °C	840.86 μS/cm	1.24 mg/L	16.79 NTU	201.3 mV	7.36 ft	300.00 ml/min
10/10/2023 8:54 AM	07:51	6.43 pH	13.03 °C	840.02 μS/cm	0.96 mg/L	16.58 NTU	201.7 mV	7.36 ft	300.00 ml/min
10/10/2023 8:56 AM	10:28	6.41 pH	12.94 °C	831.53 μS/cm	0.75 mg/L	14.26 NTU	200.3 mV	7.36 ft	300.00 ml/min
10/10/2023 8:59 AM	13:05	6.41 pH	12.87 °C	828.12 μS/cm	0.65 mg/L	17.36 NTU	201.0 mV	7.36 ft	300.00 ml/min
10/10/2023 9:02 AM	15:42	6.42 pH	12.92 °C	824.21 μS/cm	0.57 mg/L	17.05 NTU	199.5 mV	7.36 ft	300.00 ml/min

Samples

Sample ID:	Description:
MW-11	ST-915

Site Name	CIPCO Ash Disp	osal Landf	ill	Permit No.	70-SDP-09-91P
Monitoring Well/Piezometer	· No		MW-15	Upgradient	
Womtoring Went rezonicter	110.		1/1// 10	Downgradient	X
				<u>-</u>	
Name Of person sampling			Clint Obe	rbroeckling	
A. MONITORING WELL/P	PIEZOMETER C	ONDITION	\$		
Well/piezometer Properly If no, explain				ding Water or Litter?	
11 110, explain			II ye	s, explain	
B. GROUNDWATER ELEV	VATION MEASU	JREMENT	(+/- 0.01 foot, MS	SL)	
Elevation: Top of inner w	ell casing	5:	58.65 ft Ground	l Elevation	556.33 ft
Depth of Well	29.20 ft	-		Diameter (inches)	2.0 in
Equipment Used		Solinst 1	Model 101 Water	Level Probe	
Groundwater Level	l (+/- 0 01 foot be	low top of i	nner casing MSL).	
		•	C		
	Date/Tim	e	Depth to	Groundwater	
			Groundwater	Elevation	
Before Purging	10/10/2023	13:05	12.55 ft	546.10 ft	
* After Purging	10/10/2023	13:45	13.05 ft	545.60 ft	<u> </u>
* Before Sampling	10/10/2023	13:45	13.05 ft	545.60 ft	<u> </u>
*C. WELL PURGING					
Quantity of Water Remov				1.57 gallons	
No. of Well Volumes (ba Was well pumped/bailed		iter level) No		0.58 well volum	nes
was wen pumpeu/baneu	ury :	110	<u> </u>		
Equipment used:					
Bailer type			edicated Bailer		
	Pneumatic Blade		edicated Pump	No	
If not dedicated, meth	nod of cleaning		Replace blade	der, rinse w/water, d	edicated tubing
*D. FIELD MEASUREMEN	T				
Weather Conditions			Sunny		
Field Measurements (afte	r stabilization)				
Temperature		17.08	Units	°C	
Equipment Used		6.02	Aquat	roll 500	
pH Equipment Used		6.83	Agnot	mall 500	
Specific Cond.		2,291	Units Aquai	roll 500 μS/cm	
Equipment Used		49471		roll 500	
Equipment 0300			71 q uai	2011	
Comments: ORP: 69.5	DO: 0.43	Turb.: 0	.00 Sa	mple Time: 10/10	0/2023 13:45

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Test Date / Time: 10/10/2023 1:05:18 PM

Project: CIPCO-MW-15 (2)

Operator Name: Clint Oberbroeckling

Location Name: MW-15
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 10.4 ft
Total Depth: 29.15 ft

Initial Depth to Water: 12.55 ft

Pump Type: QED Sample PRO Tubing Type: Nylon- Double

Bonded

Tubing Inner Diameter: 0.25 in

Tubing Length: 29.15 ft

Pump Intake From TOC: 19.15 ft

Estimated Total Volume Pumped:

5930.833 ml

Flow Cell Volume: 130 ml Final Flow Rate: 100 ml/min Final Draw Down: 0.5 ft Instrument Used: Aqua TROLL 500

Serial Number: 745328

Test Notes:

Weather Conditions:

55°sunny

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific	RDO	Turbidity	ORP	Depth to	Flow
2 0.10 1 11110	_iapood iiiio	μ	· opo.ataro	Conductivity	Concentration		J	Water	
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10	+/- 10	+/- 0.33	
10/10/2023	00:00	6.95 pH	14.71 °C	2,182.9	3.99 mg/L	0.35 NTU	101.4 mV	12.55 ft	300.00 ml/min
1:05 PM	00.00	0.95 pm	14.71 0	μS/cm	3.99 Hig/L	0.55 1410	101.41110	12.55 10	300.00 111/111111
10/10/2023	02:54	6.95 pH	14.67 °C	2,183.4	1.38 mg/L	3.76 NTU	98.9 mV	13.30 ft	300.00 ml/min
1:08 PM	02.54	0.95 pm	14.07 C	μS/cm	1.36 Hig/L	3.70 1010	90.9 1110	13.30 11	300.00 111/111111
10/10/2023	05:48	6.93 pH	14.93 °C	2,192.6	0.96 mg/L	0.00 NTU	96.4 mV	13.30 ft	300.00 ml/min
1:11 PM	03.40	0.95 pm	14.95 C	μS/cm	0.90 mg/L	0.00 1410	90.4 IIIV	13.30 11	300.00 111/111111
10/10/2023	08:42	6.91 pH	15.51 °C	2,206.5	0.92 mg/L	0.00 NTU	93.3 mV	13.40 ft	300.00 ml/min
1:14 PM	00.42	0.51 pm	15.51 0	μS/cm	0.52 mg/L	0.001110	33.3 111	13.40 10	300.00 111/111111
10/10/2023	11:36	6.88 pH	15.58 °C	2,232.1	0.68 mg/L	0.30 NTU	90.7 mV	13.40 ft	300.00 ml/min
1:16 PM	11.50	0.00 pm	13.30 0	μS/cm	0.00 mg/L	0.50 1410	30.7 111	13.40 10	300.00 111/111111
10/10/2023	14:30	6.85 pH	15.81 °C	2,248.6	0.53 mg/L	0.00 NTU	87.8 mV	13.40 ft	50.00 ml/min
1:19 PM	14.50	0.00 pri	13.01 0	μS/cm	0.55 mg/L	0.001410	07.01117	13.40 11	30.00 111711111
10/10/2023	15:35	6.85 pH	16.19 °C	2,249.6	0.51 mg/L	0.14 NTU	86.3 mV	13.25 ft	50.00 ml/min
1:20 PM	10.00	0.00 pri	10.15	μS/cm	0.51 mg/L	0.141010	00.5 111	13.23 11	30.00 111711111
10/10/2023	16:51	6.85 pH	16.49 °C	2,251.7	0.62 mg/L	0.03 NTU	84.7 mV	13.25 ft	100.00 ml/min
1:22 PM	10.51	0.05 pri	10.49 C	μS/cm	0.02 mg/L	0.03 14 10	04.7 1117	13.23 10	100.00 111/111111
10/10/2023	22:51	6.84 pH	17.24 °C	2,274.3	0.52 mg/L	0.00 NTU	77.6 mV	13.05 ft	100.00 ml/min
1:28 PM	22.51	0.04 pm	17.24 0	μS/cm	0.52 Hig/L	0.00 1410	77.01110	13.03 11	100.00 111/111111
10/10/2023	25:29	6.83 pH	17.22 °C	2,286.4	0.46 mg/L	0.00 NTU	75.0 mV	13.05 ft	100.00 ml/min
1:30 PM	20.29	0.00 pri	17.22 0	μS/cm	0.40 Hig/L	0.00 1410	75.5 1110	13.03 11	100.00 111/111111
10/10/2023	31:29	6.83 pH	17.08 °C	2,290.8	0.43 mg/L	0.00 NTU	69.5 mV	13.05 ft	100.00 ml/min
1:36 PM	01.20	0.00 pi i	17.00 0	μS/cm	0.40 mg/2	0.00 1410	00.0 111	10.0010	100.00 111,/11111

Samples

Sample ID:	Description:
Mw-15	ST-13:45

Created using VuSitu from In-Situ, Inc.

Site Name	CIPCO Ash Disp	osal Landf	ill	Permit No.	70-SDP-09-91P
Monitoring Well/Piezometer	· No		MW-17	Upgradient	
Womtoring Went lezometer	110.		1,1,1,1,1	Downgradient	X
				_	
Name Of person sampling			Clint Obe	rbroeckling	
A. MONITORING WELL/P	PIEZOMETER CO	ONDITION	S		
Well/piezometer Properly				ding Water or Litter?	
If no, explain			If ye	s, explain	
B. GROUNDWATER ELEV	VATION MEASU	JREMENT	(+/- 0.01 foot, MS	SL)	
Elevation: Top of inner w	ell casing	5:	57.32 ft Ground	d Elevation	554.53 ft
Depth of Well	20.35 ft			Diameter (inches)	2.0 in
Equipment Used		Solinst I	Model 101 Water	Level Probe	
Groundwater Level	l (+/- 0 01 foot be	elow top of i	nner casing MSL).	
		•	C		
	Date/Time	e	Depth to	Groundwater	
			Groundwater	Elevation	
Before Purging	10/10/2023	12:17	12.22 ft	545.10 ft	
* After Purging	10/10/2023	12:50	12.50 ft	544.82 ft	_
* Before Sampling	10/10/2023	12:50	12.50 ft	544.82 ft	<u> </u>
*C. WELL PURGING					
Quantity of Water Remov				1.66 gallons	
No. of Well Volumes (ba				1.25 well volum	nes
Was well pumped/bailed	dry?	No			
Equipment used:					
Bailer type			edicated Bailer		
	Pneumatic Blade		edicated Pump	No	
If not dedicated, meth	nod of cleaning		Replace blade	der, rinse w/water, d	ledicated tubing
*D. FIELD MEASUREMEN	NT				
Weather Conditions			Sunny	,	
Field Measurements (after	r stabilization)				
Temperature		14.03	Units	°C	
Equipment Used		(00	Aquat	troll 500	
pH Equipment Used		6.82	Agnot	troll 500	
Specific Cond.		2,067	Units Aquai	troll 500 µS/cm	
Equipment Used		2,007		troll 500	
Equipment 0300			riqua		
Comments: ORP: 129.3	DO: 0.17	Turb.: 1	.36 Sa	mple Time: 10/10	0/2023 12:50

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Test Date / Time: 10/10/2023 12:17:45 PM

Project: CIPCO-MW-17 (2)

Operator Name: Clint Oberbroeckling

Location Name: MW-17
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 10.35 ft
Total Depth: 20.35 ft

Initial Depth to Water: 12.22 ft

Pump Type: QED Sample PRO

Tubing Type: Nylon- Double

Bonded

Tubing Inner Diameter: 0.25 in

Tubing Length: 20.35 ft

Pump Intake From TOC: 15.35 ft Estimated Total Volume Pumped:

6295 ml

Flow Cell Volume: 130 ml Final Flow Rate: 300 ml/min Final Draw Down: 0.28 ft Instrument Used: Aqua TROLL 500

Serial Number: 745328

Test Notes:

Weather Conditions:

50° sunny

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10 %	+/- 10	+/- 0.33	
10/10/2023 12:17 PM	00:00	7.00 pH	15.05 °C	2,303.6 μS/cm	3.26 mg/L	32.88 NTU	135.9 mV	12.22 ft	300.00 ml/min
10/10/2023 12:20 PM	02:37	6.95 pH	14.57 °C	2,467.9 μS/cm	1.31 mg/L	34.65 NTU	137.9 mV	12.22 ft	300.00 ml/min
10/10/2023 12:22 PM	05:14	6.91 pH	14.28 °C	2,471.2 μS/cm	0.62 mg/L	22.84 NTU	138.6 mV	12.50 ft	300.00 ml/min
10/10/2023 12:25 PM	07:51	6.89 pH	14.11 °C	2,377.1 μS/cm	0.39 mg/L	15.13 NTU	138.1 mV	12.50 ft	300.00 ml/min
10/10/2023 12:28 PM	10:28	6.87 pH	13.96 °C	2,275.6 μS/cm	0.30 mg/L	9.33 NTU	137.0 mV	12.50 ft	300.00 ml/min
10/10/2023 12:30 PM	13:08	6.85 pH	13.94 °C	2,185.6 μS/cm	0.23 mg/L	4.89 NTU	135.4 mV	12.50 ft	300.00 ml/min
10/10/2023 12:33 PM	15:45	6.84 pH	13.90 °C	2,123.0 μS/cm	0.20 mg/L	2.92 NTU	133.4 mV	12.50 ft	300.00 ml/min
10/10/2023 12:36 PM	18:22	6.83 pH	13.89 °C	2,086.8 μS/cm	0.18 mg/L	1.14 NTU	131.5 mV	12.50 ft	300.00 ml/min
10/10/2023 12:38 PM	20:59	6.82 pH	14.03 °C	2,066.6 μS/cm	0.17 mg/L	1.36 NTU	129.3 mV	12.50 ft	300.00 ml/min

Samples

Sample ID:	Description:
Janipie ID.	Description.

MW-17

Created using VuSitu from In-Situ, Inc.

Site Name	CIPCO Ash Disp	osal Landf	fill	Permit No.	70-SDP-09-91P
Monitoring Well/Piezometer	· No		MW-20	Upgradient	
Womtoring Went rezonicted	110.		17177 20	Downgradient	X
				_	
Name Of person sampling			Clint Obe	rbroeckling	
A. MONITORING WELL/F	PIEZOMETER CO	ONDITION	\$		
Well/piezometer Properly				ling Water or Litter?	
If no, explain			lf yes	s, explain	
B. GROUNDWATER ELE	VATION MEASU	JREMENT	(+/- 0.01 foot, MS	L)	
Elevation: Top of inner w	ell casing	5:	58.92 ft Ground	l Elevation	555.95 ft
Depth of Well	44.39 ft			iameter (inches)	2.0 in
Equipment Used		Solinst I	Model 101 Water	Level Probe	
Groundwater Leve	$1 (\pm /- 0.01)$ foot be	olow top of i	nner casing MSI	١٠	
Gloundwater Leve	1 (17-0.01 1001 00	now top of i	inner easing, wist,	,.	
	Date/Time	e	Depth to	Groundwater	
			Groundwater	Elevation	
Before Purging	10/10/2023	10:35	5.92 ft	553.00 ft	
* After Purging	10/10/2023	11:00	6.71 ft	552.21 ft	
* Before Sampling	10/10/2023	11:00	6.71 ft	552.21 ft	-
*C. WELL PURGING					
C. WELL I OKOING					
Quantity of Water Remov				0.72 gallons	
No. of Well Volumes (ba				0.11 well volun	nes
Was well pumped/bailed	dry?	No			
Equipment used:					
Bailer type		D	edicated Bailer		
	Pneumatic Bladd		edicated Pump	No	
If not dedicated, met	hod of cleaning		Replace blade	ler, rinse w/water, d	ledicated tubing
*D. FIELD MEASUREMEN	T				
Weather Conditions			Sunny		
Field Measurements (after	r stabilization)		,		
Temperature	•	12.68	Units	$^{\circ}\mathrm{C}$	
Equipment Used			Aquat	roll 500	
pH		7.11			
Equipment Used		(12		roll 500	
Specific Cond.		612	Units	μS/cm roll 500	
Equipment Used			Aquat	1011 200	
Comments: ORP: 176.4	DO: 0.59	Turb.: 6	5.64 Sa	mple Time: 10/10	0/2023 11:00

Note: Attach Laboratory Report and 8-1/2" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Test Date / Time: 10/10/2023 10:35:36 AM

Project: CIPCO-MW-20 (2)

Operator Name: Clint Oberbroeckling

Location Name: MW-20
Well Diameter: 2 in
Casing Type: PVC
Screen Length: 10 ft
Top of Screen: 34.4 ft
Total Depth: 44.4 ft

Initial Depth to Water: 5.92 ft

Pump Type: QED Sample PRO Tubing Type: Nylon- Double

Bonded

Tubing Inner Diameter: 0.25 in

Tubing Length: 44.4 ft

Pump Intake From TOC: 39.4 ft Estimated Total Volume Pumped:

2725 ml

Flow Cell Volume: 130 ml Final Flow Rate: 50 ml/min Final Draw Down: 0.79 ft Instrument Used: Aqua TROLL 500

Serial Number: 745328

Test Notes:

Weather Conditions:

40° sunny

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.1	+/- 0.5	+/- 3 %	+/- 0.3	+/- 10 %	+/- 10	+/- 0.33	
10/10/2023 10:35 AM	00:00	6.86 pH	12.26 °C	608.15 μS/cm	5.18 mg/L	2.43 NTU	180.5 mV	5.92 ft	300.00 ml/min
10/10/2023 10:38 AM	03:23	7.10 pH	12.18 °C	602.61 μS/cm	3.20 mg/L	1.15 NTU	178.9 mV	5.92 ft	300.00 ml/min
10/10/2023 10:42 AM	06:46	7.17 pH	11.45 °C	608.06 μS/cm	2.47 mg/L	3.02 NTU	177.9 mV	6.20 ft	50.00 ml/min
10/10/2023 10:45 AM	10:09	7.16 pH	12.25 °C	612.15 µS/cm	1.81 mg/L	10.02 NTU	177.7 mV	6.20 ft	50.00 ml/min
10/10/2023 10:49 AM	13:32	7.13 pH	12.40 °C	611.46 μS/cm	1.26 mg/L	8.86 NTU	178.2 mV	6.20 ft	50.00 ml/min
10/10/2023 10:52 AM	16:55	7.12 pH	12.49 °C	611.68 µS/cm	0.88 mg/L	7.44 NTU	177.1 mV	6.20 ft	50.00 ml/min
10/10/2023 10:52 AM	17:17	7.12 pH	12.51 °C	611.92 μS/cm	0.83 mg/L	8.40 NTU	176.9 mV	6.71 ft	50.00 ml/min
10/10/2023 10:56 AM	20:40	7.11 pH	12.68 °C	611.92 μS/cm	0.59 mg/L	6.64 NTU	176.4 mV	6.71 ft	50.00 ml/min

Samples

Sample ID: Description:	
-------------------------	--

MW-20

Created using VuSitu from In-Situ, Inc.

Appendix B

Laboratory Analytical Reports

ANALYTICAL REPORT

PREPARED FOR

Attn: Michael Alowitz GHD Services Inc. 11228 Aurora Avenue Des Moines, Iowa 50322-7905

Generated 10/24/2023 9:27:31 AM

JOB DESCRIPTION

CIPCO Ash Landfill Project

JOB NUMBER

310-266968-1

Eurofins Cedar Falls 3019 Venture Way Cedar Falls IA 50613

Eurofins Cedar Falls

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 10/24/2023 9:27:31 AM

Authorized for release by Meredith Liechti, Service Center Manager meredith.liechti@et.eurofinsus.com (319)277-2401

14

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Detection Summary	6
Client Sample Results	9
Definitions	19
QC Sample Results	20
QC Association	22
Chronicle	24
Certification Summary	27
Method Summary	28
Chain of Custody	29
Pacaint Chacklists	31

Case Narrative

Client: GHD Services Inc.

Project/Site: CIPCO Ash Landfill Project

Job ID: 310-266968-1

Job ID: 310-266968-1

Laboratory: Eurofins Cedar Falls

Narrative

Job Narrative 310-266968-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/11/2023 4:55 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.8°C

HPLC/IC

Method 9056A ORGFM 28D: The following samples were diluted due to the nature of the sample matrix: MW-3 (310-266968-3), MW-9 (310-266968-6) and MW-20 (310-266968-10). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

Sample Summary

Client: GHD Services Inc.

310-266968-7

310-266968-8

310-266968-9

310-266968-10

Project/Site: CIPCO Ash Landfill Project

MW-11

MW-15

MW-17

MW-20

Lab Sample ID Collected Received Client Sample ID Matrix 310-266968-1 10/11/23 16:55 MW-1 Water 10/10/23 10:00 310-266968-2 MW-2 10/10/23 14:50 10/11/23 16:55 Water 310-266968-3 MW-3 Water 10/10/23 16:05 10/11/23 16:55 310-266968-4 MW-5 Water 10/10/23 11:45 10/11/23 16:55 310-266968-5 MW-6 Water 10/10/23 12:10 10/11/23 16:55 310-266968-6 MW-9 Water 10/10/23 17:00 10/11/23 16:55

10/10/23 09:15

10/10/23 13:45

10/10/23 12:50

10/10/23 11:00

10/11/23 16:55

10/11/23 16:55

10/11/23 16:55

10/11/23 16:55

Water

Water

Water

Water

Job ID: 310-266968-1

3

4

5

7

8

9

10

4.0

13

12

Detection Summary

Client: GHD Services Inc.

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-1 Lab Sample ID: 310-266968-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	6.30		5.00		mg/L		_	9056A	Total/NA
Sulfate	250		5.00		mg/L	5		9056A	Total/NA
Boron	0.300		0.100		mg/L	1		6020B	Total/NA
Cobalt	0.00149		0.000500		mg/L	1		6020B	Total/NA
Iron	3.64		0.100		mg/L	1		6020B	Total/NA
Lithium	0.0630		0.0100		mg/L	1		6020B	Total/NA
Magnesium	72.7		0.500		mg/L	1		6020B	Total/NA
Manganese	0.399	F1	0.0100		mg/L	1		6020B	Total/NA
Sodium	11.8		1.00		mg/L	1		6020B	Total/NA
Strontium	0.646		0.00100		mg/L	1		6020B	Total/NA

Client Sample ID: MW-2

Analyte	Result Qu	alifier RL	MDL Unit	Dil Fac	D Met	hod	Prep Type
Chloride	9.67	5.00	mg/L	5	905	6A	Total/NA
Sulfate	206	5.00	mg/L	5	905	6A	Total/NA
Boron	7.56	0.700	mg/L	7	602	ЭB	Total/NA
Lithium	0.0373	0.0100	mg/L	1	602	OB	Total/NA
Magnesium	32.2	0.500	mg/L	1	602	ЭB	Total/NA
Manganese	0.0607	0.0100	mg/L	1	602	ЭB	Total/NA
Sodium	17.9	1.00	mg/L	1	602	OB	Total/NA
Strontium	0.330	0.00100	mg/L	1	602	OB .	Total/NA

Client Sample ID: MW-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Sulfate	24.4		5.00		mg/L	5		9056A	Total/NA
Boron	1.43		0.100		mg/L	1		6020B	Total/NA
Cobalt	0.00162		0.000500		mg/L	1		6020B	Total/NA
Iron	0.309		0.100		mg/L	1		6020B	Total/NA
Lithium	0.0393		0.0100		mg/L	1		6020B	Total/NA
Magnesium	19.4		0.500		mg/L	1		6020B	Total/NA
Manganese	0.708		0.0100		mg/L	1		6020B	Total/NA
Sodium	24.7		1.00		mg/L	1		6020B	Total/NA
Strontium	0.840		0.00100		mg/L	1		6020B	Total/NA

Client Sample ID: MW-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	15.9		5.00		mg/L	5	_	9056A	Total/NA
Sulfate	62.2		5.00		mg/L	5		9056A	Total/NA
Boron	6.23		0.700		mg/L	7		6020B	Total/NA
Cobalt	0.00282		0.000500		mg/L	1		6020B	Total/NA
Iron	0.770		0.100		mg/L	1		6020B	Total/NA
Lithium	0.0197		0.0100		mg/L	1		6020B	Total/NA
Magnesium	38.3		0.500		mg/L	1		6020B	Total/NA
Manganese	0.598		0.0100		mg/L	1		6020B	Total/NA
Sodium	19.7		1.00		mg/L	1		6020B	Total/NA
Strontium	0.315		0.00100		mg/L	1		6020B	Total/NA

This Detection Summary does not include radiochemical test results.

Job ID: 310-266968-1

Page 6 of 31

-0

3

6

8

10

13

14

Lab Sample ID: 310-266968-4

Lab Sample ID: 310-266968-2

Lab Sample ID: 310-266968-3

Client: GHD Services Inc.

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-6 Lab Sample ID: 310-266968-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	15.7		5.00		mg/L	5	_	9056A	Total/NA
Sulfate	75.6		5.00		mg/L	5		9056A	Total/NA
Arsenic	0.00222		0.00200		mg/L	1		6020B	Total/NA
Boron	8.06		0.700		mg/L	7		6020B	Total/NA
Cobalt	0.00302		0.000500		mg/L	1		6020B	Total/NA
Iron	0.794		0.100		mg/L	1		6020B	Total/NA
Magnesium	35.3		0.500		mg/L	1		6020B	Total/NA
Manganese	5.17		0.0700		mg/L	7		6020B	Total/NA
Molybdenum	0.0477		0.00200		mg/L	1		6020B	Total/NA
Sodium	18.3		1.00		mg/L	1		6020B	Total/NA
Strontium	0.273		0.00100		mg/L	1		6020B	Total/NA

Client Sample ID: MW-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Sulfate	18.8		5.00		mg/L	5	_	9056A	Total/NA
Boron	0.216		0.100		mg/L	1		6020B	Total/NA
Lithium	0.0448		0.0100		mg/L	1		6020B	Total/NA
Magnesium	32.4		0.500		mg/L	1		6020B	Total/NA
Sodium	12.5		1.00		mg/L	1		6020B	Total/NA
Strontium	0.594		0.00100		mg/L	1		6020B	Total/NA

Client Sample ID: MW-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	10.3		5.00		mg/L	5	_	9056A	Total/NA
Sulfate	74.3		5.00		mg/L	5		9056A	Total/NA
Iron	0.255		0.100		mg/L	1		6020B	Total/NA
Magnesium	50.8		0.500		mg/L	1		6020B	Total/NA
Manganese	0.126		0.0100		mg/L	1		6020B	Total/NA
Sodium	14.2		1.00		mg/L	1		6020B	Total/NA
Strontium	0.146		0.00100		mg/L	1		6020B	Total/NA

Client Sample ID: MW-15

- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	18.3		10.0		mg/L	10	_	9056A	Total/NA
Sulfate	1380		100		mg/L	100		9056A	Total/NA
Boron	37.5		1.00		mg/L	10		6020B	Total/NA
Cobalt	0.000780		0.000500		mg/L	1		6020B	Total/NA
Lithium	0.166		0.0100		mg/L	1		6020B	Total/NA
Magnesium	116		5.00		mg/L	10		6020B	Total/NA
Manganese	0.253		0.0100		mg/L	1		6020B	Total/NA
Molybdenum	0.215		0.00200		mg/L	1		6020B	Total/NA
Sodium	98.9		1.00		mg/L	1		6020B	Total/NA
Strontium	0.645		0.00100		mg/L	1		6020B	Total/NA

Client Sample ID: MW-17

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	16.9		5.00		mg/L	5	_	9056A	Total/NA
Sulfate	1090		20.0		mg/L	20		9056A	Total/NA
Boron	19.7		1.00		mg/L	10		6020B	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Cedar Falls

10/24/2023

Page 7 of 31

2

Job ID: 310-266968-1

Lab Sample ID: 310-266968-6

Lab Sample ID: 310-266968-7

Lab Sample ID: 310-266968-8

Lab Sample ID: 310-266968-9

5

8

10

11

13

Detection Summary

Client: GHD Services Inc.

Project/Site: CIPCO Ash Landfill Project

Job ID: 310-266968-1

Client Sample ID: MW-17 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron	1.34		0.100		mg/L		_	6020B	Total/NA
Lithium	0.289		0.0100		mg/L	1		6020B	Total/NA
Magnesium	157		5.00		mg/L	10		6020B	Total/NA
Manganese	0.354		0.0100		mg/L	1		6020B	Total/NA
Molybdenum	0.0972		0.00200		mg/L	1		6020B	Total/NA
Sodium	75.2		1.00		mg/L	1		6020B	Total/NA
Strontium	0.424		0.00100		mg/L	1		6020B	Total/NA

Client Sample ID: MW-20

Lab Sample ID: 310-266968-10

Lab Sample ID: 310-266968-9

Analyte	Result	Qualifier RL	MDL Uni	t Dil Fac	D	Method	Prep Type
Sulfate	26.7	5.00	mg/	L 5	_	9056A	Total/NA
Boron	1.45	0.100	mg/	L 1		6020B	Total/NA
Iron	0.128	0.100	mg/	L 1		6020B	Total/NA
Lithium	0.0222	0.0100	mg/	L 1		6020B	Total/NA
Magnesium	16.6	0.500	mg/	L 1		6020B	Total/NA
Manganese	0.0427	0.0100	mg/	L 1		6020B	Total/NA
Sodium	91.0	1.00	mg/	L 1		6020B	Total/NA
Strontium	0.544	0.00100	mg/	L 1		6020B	Total/NA

Client: GHD Services Inc. Job ID: 310-266968-1

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-1 Lab Sample ID: 310-266968-1

Date Collected: 10/10/23 10:00 Matrix: Water Date Received: 10/11/23 16:55

	Method: SW846 9056A - Anions,	lon Chromatog	graphy							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	6.30		5.00		mg/L			10/20/23 14:42	5
Į	Sulfate	250		5.00		mg/L			10/20/23 14:42	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/16/23 09:15	10/17/23 14:18	1
Boron	0.300		0.100		mg/L		10/16/23 09:15	10/17/23 14:18	1
Cobalt	0.00149		0.000500		mg/L		10/16/23 09:15	10/17/23 14:18	1
Iron	3.64		0.100		mg/L		10/16/23 09:15	10/17/23 14:18	1
Lithium	0.0630		0.0100		mg/L		10/16/23 09:15	10/17/23 14:18	1
Magnesium	72.7		0.500		mg/L		10/16/23 09:15	10/17/23 14:18	1
Manganese	0.399	F1	0.0100		mg/L		10/16/23 09:15	10/17/23 14:18	1
Molybdenum	<0.00200		0.00200		mg/L		10/16/23 09:15	10/17/23 14:18	1
Sodium	11.8		1.00		mg/L		10/16/23 09:15	10/17/23 14:18	1
Strontium	0.646		0.00100		mg/L		10/16/23 09:15	10/17/23 14:18	1

Client: GHD Services Inc. Job ID: 310-266968-1

Project/Site: CIPCO Ash Landfill Project

Method: SW846 9056A - Anions, Ion Chromatography

Client Sample ID: MW-2 Lab Sample ID: 310-266968-2

Date Collected: 10/10/23 14:50 Matrix: Water

mg/L

10/16/23 09:15

10/17/23 14:40

Date Received: 10/11/23 16:55

Strontium

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9.67		5.00		mg/L			10/20/23 14:54	5
Sulfate	206		5.00		mg/L			10/20/23 14:54	5
- Method: SW846 6020B -	- Metals (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/16/23 09:15	10/17/23 14:40	1
Boron	7.56		0.700		mg/L		10/16/23 09:15	10/17/23 15:30	7
Cobalt	<0.000500		0.000500		mg/L		10/16/23 09:15	10/17/23 14:40	1
Iron	<0.100		0.100		mg/L		10/16/23 09:15	10/17/23 14:40	1
Lithium	0.0373		0.0100		mg/L		10/16/23 09:15	10/17/23 14:40	1
Magnesium	32.2		0.500		mg/L		10/16/23 09:15	10/17/23 14:40	1
Manganese	0.0607		0.0100		mg/L		10/16/23 09:15	10/17/23 14:40	1
Molybdenum	<0.00200		0.00200		mg/L		10/16/23 09:15	10/17/23 14:40	1
Sodium	17.9		1.00		mg/L		10/16/23 09:15	10/17/23 14:40	1

0.00100

0.330

Client: GHD Services Inc. Job ID: 310-266968-1

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-3 Lab Sample ID: 310-266968-3

Date Collected: 10/10/23 16:05

Matrix: Water
Date Received: 10/11/23 16:55

Method: SW846 9056A - Anions, Ion Chromatography										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	<5.00		5.00		mg/L			10/20/23 15:06	5
	Sulfate	24.4		5.00		mg/L			10/20/23 15:06	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/16/23 09:15	10/17/23 14:42	1
Boron	1.43		0.100		mg/L		10/16/23 09:15	10/17/23 22:17	1
Cobalt	0.00162		0.000500		mg/L		10/16/23 09:15	10/17/23 14:42	1
Iron	0.309		0.100		mg/L		10/16/23 09:15	10/17/23 14:42	1
Lithium	0.0393		0.0100		mg/L		10/16/23 09:15	10/17/23 14:42	1
Magnesium	19.4		0.500		mg/L		10/16/23 09:15	10/17/23 14:42	1
Manganese	0.708		0.0100		mg/L		10/16/23 09:15	10/17/23 14:42	1
Molybdenum	<0.00200		0.00200		mg/L		10/16/23 09:15	10/17/23 14:42	1
Sodium	24.7		1.00		mg/L		10/16/23 09:15	10/17/23 14:42	1
Strontium	0.840		0.00100		mg/L		10/16/23 09:15	10/17/23 14:42	1

_

5

7

0

10

11

13

Client: GHD Services Inc. Job ID: 310-266968-1

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-5 Lab Sample ID: 310-266968-4

Date Collected: 10/10/23 11:45

Date Received: 10/11/23 16:55

Matrix: Water

Method: SW846 9056A - Anion	s, Ion Chromatography						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	15.9	5.00	mg/L			10/20/23 15:18	5
Sulfate	62.2	5.00	mg/L			10/20/23 15:18	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/16/23 09:15	10/17/23 14:44	1
Boron	6.23		0.700		mg/L		10/16/23 09:15	10/17/23 15:32	7
Cobalt	0.00282		0.000500		mg/L		10/16/23 09:15	10/17/23 14:44	1
Iron	0.770		0.100		mg/L		10/16/23 09:15	10/17/23 14:44	1
Lithium	0.0197		0.0100		mg/L		10/16/23 09:15	10/17/23 14:44	1
Magnesium	38.3		0.500		mg/L		10/16/23 09:15	10/17/23 14:44	1
Manganese	0.598		0.0100		mg/L		10/16/23 09:15	10/17/23 14:44	1
Molybdenum	<0.00200		0.00200		mg/L		10/16/23 09:15	10/17/23 14:44	1
Sodium	19.7		1.00		mg/L		10/16/23 09:15	10/17/23 14:44	1
Strontium	0.315		0.00100		mg/L		10/16/23 09:15	10/17/23 14:44	1

_

3

5

7

8

40

Client: GHD Services Inc. Job ID: 310-266968-1

Project/Site: CIPCO Ash Landfill Project

Lab Sample ID: 310-266968-5 **Client Sample ID: MW-6** Date Collected: 10/10/23 12:10

Matrix: Water

Date Received: 10/11/23 16:55

Method: SW846 9056A - Anions	, Ion Chromatog	raphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	15.7		5.00		mg/L			10/20/23 15:54	5
Sulfate	75.6		5.00		mg/L			10/20/23 15:54	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.00222		0.00200		mg/L		10/16/23 09:15	10/17/23 14:47	1
Boron	8.06		0.700		mg/L		10/16/23 09:15	10/17/23 15:34	7
Cobalt	0.00302		0.000500		mg/L		10/16/23 09:15	10/17/23 14:47	1
Iron	0.794		0.100		mg/L		10/16/23 09:15	10/17/23 14:47	1
Lithium	<0.0100		0.0100		mg/L		10/16/23 09:15	10/17/23 14:47	1
Magnesium	35.3		0.500		mg/L		10/16/23 09:15	10/17/23 14:47	1
Manganese	5.17		0.0700		mg/L		10/16/23 09:15	10/17/23 15:34	7
Molybdenum	0.0477		0.00200		mg/L		10/16/23 09:15	10/17/23 14:47	1
Sodium	18.3		1.00		mg/L		10/16/23 09:15	10/17/23 14:47	1
Strontium	0.273		0.00100		mg/L		10/16/23 09:15	10/17/23 14:47	1

Client: GHD Services Inc. Job ID: 310-266968-1

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-9 Lab Sample ID: 310-266968-6

Date Collected: 10/10/23 17:00 Matrix: Water

Date Received: 10/11/23 16:55

Method: SW846 9056A - Anions, lo	Chromato	graphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00		5.00		mg/L			10/20/23 16:07	5
Sulfate	18.8		5.00		mg/L			10/20/23 16:07	5
_									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/16/23 09:15	10/17/23 14:49	1
Boron	0.216		0.100		mg/L		10/16/23 09:15	10/17/23 22:20	1
Cobalt	<0.000500		0.000500		mg/L		10/16/23 09:15	10/17/23 14:49	1
Iron	<0.100		0.100		mg/L		10/16/23 09:15	10/17/23 14:49	1
Lithium	0.0448		0.0100		mg/L		10/16/23 09:15	10/17/23 14:49	1
Magnesium	32.4		0.500		mg/L		10/16/23 09:15	10/17/23 14:49	1
Manganese	<0.0100		0.0100		mg/L		10/16/23 09:15	10/17/23 14:49	1
Molybdenum	<0.00200		0.00200		mg/L		10/16/23 09:15	10/17/23 14:49	1
Sodium	12.5		1.00		mg/L		10/16/23 09:15	10/17/23 14:49	1
Strontium	0.594		0.00100		mg/L		10/16/23 09:15	10/17/23 14:49	1

2

3

5

7

10

11

Client: GHD Services Inc. Job ID: 310-266968-1

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-11 Lab Sample ID: 310-266968-7

Date Collected: 10/10/23 09:15 Matrix: Water Date Received: 10/11/23 16:55

Method: SW846 9056A - Anions,	Ion Chromatography							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	10.3	5.00		mg/L			10/20/23 16:19	5
Sulfate	74.3	5.00		mg/L			10/20/23 16:19	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/16/23 09:15	10/17/23 14:51	1
Boron	<0.100		0.100		mg/L		10/16/23 09:15	10/17/23 22:22	1
Cobalt	<0.000500		0.000500		mg/L		10/16/23 09:15	10/17/23 14:51	1
Iron	0.255		0.100		mg/L		10/16/23 09:15	10/17/23 14:51	1
Lithium	<0.0100		0.0100		mg/L		10/16/23 09:15	10/17/23 14:51	1
Magnesium	50.8		0.500		mg/L		10/16/23 09:15	10/17/23 14:51	1
Manganese	0.126		0.0100		mg/L		10/16/23 09:15	10/17/23 14:51	1
Molybdenum	<0.00200		0.00200		mg/L		10/16/23 09:15	10/17/23 14:51	1
Sodium	14.2		1.00		mg/L		10/16/23 09:15	10/17/23 14:51	1
Strontium	0.146		0.00100		mg/L		10/16/23 09:15	10/17/23 14:51	1

Client: GHD Services Inc. Job ID: 310-266968-1

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-15 Lab Sample ID: 310-266968-8

Date Collected: 10/10/23 13:45

Date Received: 10/11/23 16:55

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	18.3		10.0		mg/L			10/20/23 16:31	10
Sulfate	1380		100		mg/L			10/20/23 09:17	100
- Method: SW846 6020E	B - Metals (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
· ······ y · ·									
Arsenic	<0.00200		0.00200		mg/L		10/16/23 09:15	10/17/23 14:53	1

Analyte	Result C	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200	0.00200		mg/L		10/16/23 09:15	10/17/23 14:53	1
Boron	37.5	1.00		mg/L		10/16/23 09:15	10/17/23 15:36	10
Cobalt	0.000780	0.000500		mg/L		10/16/23 09:15	10/17/23 14:53	1
Iron	<0.100	0.100		mg/L		10/16/23 09:15	10/17/23 14:53	1
Lithium	0.166	0.0100		mg/L		10/16/23 09:15	10/17/23 14:53	1
Magnesium	116	5.00		mg/L		10/16/23 09:15	10/17/23 15:36	10
Manganese	0.253	0.0100		mg/L		10/16/23 09:15	10/17/23 14:53	1
Molybdenum	0.215	0.00200		mg/L		10/16/23 09:15	10/17/23 14:53	1
Sodium	98.9	1.00		mg/L		10/16/23 09:15	10/17/23 14:53	1
Strontium	0.645	0.00100		mg/L		10/16/23 09:15	10/17/23 14:53	1

2

3

6

8

9

11

12

Client: GHD Services Inc. Job ID: 310-266968-1

Project/Site: CIPCO Ash Landfill Project

Lab Sample ID: 310-266968-9 **Client Sample ID: MW-17** Date Collected: 10/10/23 12:50

Matrix: Water

Date Received: 10/11/23 16:55

Method: SW846 9056A - Anions, lo	n Chromatography						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	16.9	5.00	mg/L			10/20/23 09:29	5
Sulfate	1090	20.0	mg/L			10/20/23 16:43	20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/16/23 09:15	10/17/23 14:56	1
Boron	19.7		1.00		mg/L		10/16/23 09:15	10/17/23 15:39	10
Cobalt	<0.000500		0.000500		mg/L		10/16/23 09:15	10/17/23 14:56	1
Iron	1.34		0.100		mg/L		10/16/23 09:15	10/17/23 14:56	1
Lithium	0.289		0.0100		mg/L		10/16/23 09:15	10/17/23 14:56	1
Magnesium	157		5.00		mg/L		10/16/23 09:15	10/17/23 15:39	10
Manganese	0.354		0.0100		mg/L		10/16/23 09:15	10/17/23 14:56	1
Molybdenum	0.0972		0.00200		mg/L		10/16/23 09:15	10/17/23 14:56	1
Sodium	75.2		1.00		mg/L		10/16/23 09:15	10/17/23 14:56	1
Strontium	0.424		0.00100		mg/L		10/16/23 09:15	10/17/23 14:56	1

Client: GHD Services Inc.

Job ID: 310-266968-1

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-20 Lab Sample ID: 310-266968-10

Date Collected: 10/10/23 11:00 Matrix: Water
Date Received: 10/11/23 16:55

Method: SW846 9056A - Anions,	Ion Chromatog	graphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00		5.00		mg/L			10/20/23 16:55	5
Sulfate	26.7		5.00		mg/L			10/20/23 16:55	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/16/23 09:15	10/17/23 15:05	1
Boron	1.45		0.100		mg/L		10/16/23 09:15	10/17/23 22:25	1
Cobalt	<0.000500		0.000500		mg/L		10/16/23 09:15	10/17/23 15:05	1
Iron	0.128		0.100		mg/L		10/16/23 09:15	10/17/23 15:05	1
Lithium	0.0222		0.0100		mg/L		10/16/23 09:15	10/17/23 15:05	1
Magnesium	16.6		0.500		mg/L		10/16/23 09:15	10/17/23 15:05	1
Manganese	0.0427		0.0100		mg/L		10/16/23 09:15	10/17/23 15:05	1
Molybdenum	<0.00200		0.00200		mg/L		10/16/23 09:15	10/17/23 15:05	1
Sodium	91.0		1.00		mg/L		10/16/23 09:15	10/17/23 15:05	1
Strontium	0.544		0.00100		mg/L		10/16/23 09:15	10/17/23 15:05	1

_

3

5

7

8

10

11

13

Definitions/Glossary

Client: GHD Services Inc. Job ID: 310-266968-1

Project/Site: CIPCO Ash Landfill Project

Qualifiers

M	eta	ls

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.
F1	MS and/or MSD recovery exceeds control limits.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
MI	Minimum Level (Dioxin)

MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present
POI Practical Quantitation

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Cedar Falls

Page 19 of 31

-

4

7

0

15

13

QC Sample Results

Client: GHD Services Inc.

Project/Site: CIPCO Ash Landfill Project

Job ID: 310-266968-1

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 310-403413/3

Matrix: Water

Analysis Batch: 403413

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB MDL Unit Dil Fac Analyte Result Qualifier RL Prepared Analyzed Chloride <1.00 1.00 mg/L 10/20/23 14:18 Sulfate <1.00 1.00 mg/L 10/20/23 14:18

Lab Sample ID: LCS 310-403413/4

Matrix: Water

Analysis Batch: 403413

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	9.639		mg/L		96	90 - 110	
Sulfate	10.0	10.09		mg/L		101	90 - 110	

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 310-402547/1-A

Matrix: Water

Analysis Batch: 402835

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 402547

MR MR

	INID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00200		0.00200		mg/L		10/16/23 09:15	10/17/23 14:12	1
Boron	<0.100		0.100		mg/L		10/16/23 09:15	10/17/23 14:12	1
Cobalt	<0.000500		0.000500		mg/L		10/16/23 09:15	10/17/23 14:12	1
Iron	<0.100		0.100		mg/L		10/16/23 09:15	10/17/23 14:12	1
Lithium	<0.0100		0.0100		mg/L		10/16/23 09:15	10/17/23 14:12	1
Magnesium	<0.500		0.500		mg/L		10/16/23 09:15	10/17/23 14:12	1
Manganese	<0.0100		0.0100		mg/L		10/16/23 09:15	10/17/23 14:12	1
Molybdenum	<0.00200		0.00200		mg/L		10/16/23 09:15	10/17/23 14:12	1
Sodium	<1.00		1.00		mg/L		10/16/23 09:15	10/17/23 14:12	1
Strontium	<0.00100		0.00100		mg/L		10/16/23 09:15	10/17/23 14:12	1

Lab Sample ID: LCS 310-402547/2-A

Matrix: Water

Analysis Batch: 402835

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 402547

Alialysis Datcii. 402000							Fieb Date	11. 402347
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.200	0.2003		mg/L		100	80 - 120	
Boron	0.200	0.1955		mg/L		98	80 - 120	
Cobalt	0.100	0.1057		mg/L		106	80 - 120	
Iron	0.200	0.2313		mg/L		116	80 - 120	
Lithium	0.200	0.2020		mg/L		101	80 - 120	
Magnesium	2.00	2.114		mg/L		106	80 - 120	
Manganese	0.100	0.09788		mg/L		98	80 - 120	
Molybdenum	0.200	0.2051		mg/L		103	80 - 120	
Sodium	2.00	2.129		mg/L		106	80 - 120	
Strontium	0.200	0.1978		mg/L		99	80 - 120	

QC Sample Results

Client: GHD Services Inc. Job ID: 310-266968-1

Project/Site: CIPCO Ash Landfill Project

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: 310-266968-1 MS

Analysis Batch: 402835

Matrix: Water

Client Sample ID: MW-1 Prep Type: Total/NA Prep Batch: 402547

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	<0.00200		0.200	0.2314		mg/L		115	75 - 125
Boron	0.300		0.200	0.5350		mg/L		118	75 _ 125
Cobalt	0.00149		0.100	0.1177		mg/L		116	75 _ 125
Iron	3.64		0.200	3.960	4	mg/L		158	75 - 125
Lithium	0.0630		0.200	0.3014		mg/L		119	75 _ 125
Magnesium	72.7		2.00	78.05	4	mg/L		268	75 - 125
Manganese	0.399	F1	0.100	0.5341	F1	mg/L		135	75 - 125
Molybdenum	<0.00200		0.200	0.2342		mg/L		117	75 _ 125
Sodium	11.8		2.00	14.57	4	mg/L		140	75 _ 125
Strontium	0.646		0.200	0.8768		mg/L		115	75 - 125

Lab Sample ID: 310-266968-1 MSD

Matrix: Water

Analysis Batch: 402835

Client Sample ID: MW-1
Prep Type: Total/NA

Prep Batch: 402547

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	<0.00200		0.200	0.2106		mg/L		105	75 - 125	9	20
Boron	0.300		0.200	0.5104		mg/L		105	75 - 125	5	20
Cobalt	0.00149		0.100	0.1052		mg/L		104	75 - 125	11	20
Iron	3.64		0.200	3.888	4	mg/L		123	75 - 125	2	20
Lithium	0.0630		0.200	0.2757		mg/L		106	75 - 125	9	20
Magnesium	72.7		2.00	74.88	4	mg/L		110	75 - 125	4	20
Manganese	0.399	F1	0.100	0.5104		mg/L		111	75 - 125	5	20
Molybdenum	<0.00200		0.200	0.2090		mg/L		104	75 - 125	11	20
Sodium	11.8		2.00	13.95	4	mg/L		109	75 - 125	4	20
Strontium	0.646		0.200	0.8426		mg/L		98	75 - 125	4	20

4

6

0

11

13

QC Association Summary

Client: GHD Services Inc. Job ID: 310-266968-1

Project/Site: CIPCO Ash Landfill Project

HPLC/IC

Analysis Batch: 403413

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-266968-1	MW-1	Total/NA	Water	9056A	
310-266968-2	MW-2	Total/NA	Water	9056A	
310-266968-3	MW-3	Total/NA	Water	9056A	
310-266968-4	MW-5	Total/NA	Water	9056A	
310-266968-5	MW-6	Total/NA	Water	9056A	
310-266968-6	MW-9	Total/NA	Water	9056A	
310-266968-7	MW-11	Total/NA	Water	9056A	
310-266968-8	MW-15	Total/NA	Water	9056A	
310-266968-8	MW-15	Total/NA	Water	9056A	
310-266968-9	MW-17	Total/NA	Water	9056A	
310-266968-9	MW-17	Total/NA	Water	9056A	
310-266968-10	MW-20	Total/NA	Water	9056A	
MB 310-403413/3	Method Blank	Total/NA	Water	9056A	
LCS 310-403413/4	Lab Control Sample	Total/NA	Water	9056A	

Metals

Prep Batch: 402547

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-266968-1	MW-1	Total/NA	Water	3005A	
310-266968-2	MW-2	Total/NA	Water	3005A	
310-266968-3	MW-3	Total/NA	Water	3005A	
310-266968-4	MW-5	Total/NA	Water	3005A	
310-266968-5	MW-6	Total/NA	Water	3005A	
310-266968-6	MW-9	Total/NA	Water	3005A	
310-266968-7	MW-11	Total/NA	Water	3005A	
310-266968-8	MW-15	Total/NA	Water	3005A	
310-266968-9	MW-17	Total/NA	Water	3005A	
310-266968-10	MW-20	Total/NA	Water	3005A	
MB 310-402547/1-A	Method Blank	Total/NA	Water	3005A	
LCS 310-402547/2-A	Lab Control Sample	Total/NA	Water	3005A	
310-266968-1 MS	MW-1	Total/NA	Water	3005A	
310-266968-1 MSD	MW-1	Total/NA	Water	3005A	

Analysis Batch: 402835

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
310-266968-1	MW-1	Total/NA	Water	6020B	402547
310-266968-2	MW-2	Total/NA	Water	6020B	402547
310-266968-2	MW-2	Total/NA	Water	6020B	402547
310-266968-3	MW-3	Total/NA	Water	6020B	402547
310-266968-4	MW-5	Total/NA	Water	6020B	402547
310-266968-4	MW-5	Total/NA	Water	6020B	402547
310-266968-5	MW-6	Total/NA	Water	6020B	402547
310-266968-5	MW-6	Total/NA	Water	6020B	402547
310-266968-6	MW-9	Total/NA	Water	6020B	402547
310-266968-7	MW-11	Total/NA	Water	6020B	402547
310-266968-8	MW-15	Total/NA	Water	6020B	402547
310-266968-8	MW-15	Total/NA	Water	6020B	402547
310-266968-9	MW-17	Total/NA	Water	6020B	40254
310-266968-9	MW-17	Total/NA	Water	6020B	40254
310-266968-10	MW-20	Total/NA	Water	6020B	402547

Eurofins Cedar Falls

QC Association Summary

Client: GHD Services Inc.

Job ID: 310-266968-1

Project/Site: CIPCO Ash Landfill Project

Metals (Continued)

Analysis Batch: 402835 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 310-402547/1-A	Method Blank	Total/NA	Water	6020B	402547
LCS 310-402547/2-A	Lab Control Sample	Total/NA	Water	6020B	402547
310-266968-1 MS	MW-1	Total/NA	Water	6020B	402547
310-266968-1 MSD	MW-1	Total/NA	Water	6020B	402547

Analysis Batch: 402883

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-266968-3	MW-3	Total/NA	Water	6020B	402547
310-266968-6	MW-9	Total/NA	Water	6020B	402547
310-266968-7	MW-11	Total/NA	Water	6020B	402547
310-266968-10	MW-20	Total/NA	Water	6020B	402547

3

4

6

9

10

12

13

Job ID: 310-266968-1

Client Sample ID: MW-1 Date Collected: 10/10/23 10:00

Date Received: 10/11/23 16:55

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	403413	QTZ5	EET CF	10/20/23 14:42
Total/NA	Prep	3005A			402547	KCK5	EET CF	10/16/23 09:15
Total/NA	Analysis	6020B		1	402835	A6US	EET CF	10/17/23 14:18

Client Sample ID: MW-2

Date Collected: 10/10/23 14:50 Date Received: 10/11/23 16:55

Lab Sample ID: 310-266968-2

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	403413	QTZ5	EET CF	10/20/23 14:54
Total/NA	Prep	3005A			402547	KCK5	EET CF	10/16/23 09:15
Total/NA	Analysis	6020B		1	402835	A6US	EET CF	10/17/23 14:40
Total/NA	Prep	3005A			402547	KCK5	EET CF	10/16/23 09:15
Total/NA	Analysis	6020B		7	402835	A6US	EET CF	10/17/23 15:30

Client Sample ID: MW-3

Date Collected: 10/10/23 16:05 Date Received: 10/11/23 16:55

Lab Sample ID: 310-266968-3

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	403413	QTZ5	EET CF	10/20/23 15:06
Total/NA	Prep	3005A			402547	KCK5	EET CF	10/16/23 09:15
Total/NA	Analysis	6020B		1	402835	A6US	EET CF	10/17/23 14:42
Total/NA	Prep	3005A			402547	KCK5	EET CF	10/16/23 09:15
Total/NA	Analysis	6020B		1	402883	A6US	EET CF	10/17/23 22:17

Client Sample ID: MW-5

Date Collected: 10/10/23 11:45 Date Received: 10/11/23 16:55

Lab Sample ID: 310-266968-4	Lab S	ample	ID:	310-2	266968-4	ı
-----------------------------	-------	-------	-----	-------	----------	---

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A			403413	QTZ5	EET CF	10/20/23 15:18
Total/NA	Prep	3005A			402547	KCK5	EET CF	10/16/23 09:15
Total/NA	Analysis	6020B		1	402835	A6US	EET CF	10/17/23 14:44
Total/NA	Prep	3005A			402547	KCK5	EET CF	10/16/23 09:15
Total/NA	Analysis	6020B		7	402835	A6US	EET CF	10/17/23 15:32

Client Sample ID: MW-6

Date Collected: 10/10/23 12:10

Date Received: 10/11/23 16:55

₋ab Sam	ple ID:	310-	266	968-5
---------	---------	------	-----	-------

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	403413	QTZ5	EET CF	10/20/23 15:54
Total/NA	Prep	3005A			402547	KCK5	EET CF	10/16/23 09:15
Total/NA	Analysis	6020B		1	402835	A6US	EET CF	10/17/23 14:47

Eurofins Cedar Falls

Page 24 of 31

2

Client: GHD Services Inc.

Project/Site: CIPCO Ash Landfill Project

Lab Sample ID: 310-266968-5

Matrix: Water

Job ID: 310-266968-1

Client Sample ID: MW-6

Client Sample ID: MW-9

Date Collected: 10/10/23 17:00

Date Collected: 10/10/23 12:10 Date Received: 10/11/23 16:55

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3005A			402547	KCK5	EET CF	10/16/23 09:15
Total/NA	Analysis	6020B		7	402835	A6US	EET CF	10/17/23 15:34

Lab Sample ID: 310-266968-6

as cample is: 010 200000 0

Matrix: Water

Date Received: 10/11/23 16:55 Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor Number Analyst Lab or Analyzed Total/NA Analysis 9056A 403413 QTZ5 EET CF 10/20/23 16:07 Total/NA 10/16/23 09:15 Prep 3005A 402547 KCK5 EET CF Analysis Total/NA 6020B 402835 A6US EET CF 10/17/23 14:49 Total/NA Prep 3005A 402547 KCK5 EET CF 10/16/23 09:15

1

402883 A6US

EET CF

Client Sample ID: MW-11

Total/NA

Date Collected: 10/10/23 09:15

Analysis

6020B

Date Received: 10/11/23 16:55

Lab Sample ID: 310-266968-7

10/17/23 22:20

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	403413	QTZ5	EET CF	10/20/23 16:19
Total/NA	Prep	3005A			402547	KCK5	EET CF	10/16/23 09:15
Total/NA	Analysis	6020B		1	402835	A6US	EET CF	10/17/23 14:51
Total/NA	Prep	3005A			402547	KCK5	EET CF	10/16/23 09:15
Total/NA	Analysis	6020B		1	402883	A6US	EET CF	10/17/23 22:22

Client Sample ID: MW-15

Date Collected: 10/10/23 13:45

Date Received: 10/11/23 16:55

Lab Sample ID: 310-266968-8

Matrix: Water

Matrix. Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		100	403413	QTZ5	EET CF	10/20/23 09:17
Total/NA	Analysis	9056A		10	403413	QTZ5	EET CF	10/20/23 16:31
Total/NA	Prep	3005A			402547	KCK5	EET CF	10/16/23 09:15
Total/NA	Analysis	6020B		1	402835	A6US	EET CF	10/17/23 14:53
Total/NA	Prep	3005A			402547	KCK5	EET CF	10/16/23 09:15
Total/NA	Analysis	6020B		10	402835	A6US	EET CF	10/17/23 15:36

Client Sample ID: MW-17

Date Collected: 10/10/23 12:50

Date Received: 10/11/23 16:55

Lab Sam	ple ID:	310-266968-9	
---------	---------	--------------	--

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A		5	403413	QTZ5	EET CF	10/20/23 09:29
Total/NA	Analysis	9056A		20	403413	QTZ5	EET CF	10/20/23 16:43

Eurofins Cedar Falls

Page 25 of 31

10/24/2023

5

7

9

TU

12

Lab Chronicle

Client: GHD Services Inc. Job ID: 310-266968-1

Project/Site: CIPCO Ash Landfill Project

Client Sample ID: MW-17

Lab Sample ID: 310-266968-9

Matrix: Water

Date Collected: 10/10/23 12:50 Date Received: 10/11/23 16:55

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3005A			402547	KCK5	EET CF	10/16/23 09:15
Total/NA	Analysis	6020B		1	402835	A6US	EET CF	10/17/23 14:56
Total/NA	Prep	3005A			402547	KCK5	EET CF	10/16/23 09:15
Total/NA	Analysis	6020B		10	402835	A6US	EET CF	10/17/23 15:39

Lab Sample ID: 310-266968-10

Matrix: Water

Date Collected: 10/10/23 11:00 Date Received: 10/11/23 16:55

Client Sample ID: MW-20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9056A			403413	QTZ5	EET CF	10/20/23 16:55
Total/NA	Prep	3005A			402547	KCK5	EET CF	10/16/23 09:15
Total/NA	Analysis	6020B		1	402835	A6US	EET CF	10/17/23 15:05
Total/NA	Prep	3005A			402547	KCK5	EET CF	10/16/23 09:15
Total/NA	Analysis	6020B		1	402883	A6US	EET CF	10/17/23 22:25

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

5

9

10

12

13

Accreditation/Certification Summary

Client: GHD Services Inc. Job ID: 310-266968-1

Project/Site: CIPCO Ash Landfill Project

Laboratory: Eurofins Cedar Falls

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		Identification Number	Expiration Date	
lowa	State	State		12-01-23	
	he following analytes are included in this report, but the laboratory is not certi				
The following analytes	are included in this report, but	it the laboratory is not certif	fied by the governing authority. This lis	t may include analyt	
,	' '	it the laboratory is not certif	fied by the governing authority. This lis	t may include analyt	
,	are included in this report, but loes not offer certification.	it the laboratory is not certif	fied by the governing authority. This lis	t may include analy	
,	' '	it the laboratory is not certii Matrix	fied by the governing authority. This lis Analyte	t may include analyt	

1

3

4

5

7

0

10

12

13

Method Summary

Client: GHD Services Inc.

Project/Site: CIPCO Ash Landfill Project

Method **Method Description** Laboratory Protocol SW846 EET CF 9056A Anions, Ion Chromatography 6020B Metals (ICP/MS) SW846 EET CF 3005A SW846 EET CF Preparation, Total Metals

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Job ID: 310-266968-1

3

4

7

10

11

13

Environment Testing America

Cooler/Sample Receipt and Temperature Log Form

	water barrers	Bed Fr . L	a few to the terms of the
Client:	·	SHO	
City/State: CITY	and the state of t	STATE #A	Project:
Receipt Information			Long things for the parties as a second
Date/Time Received:	10/11/23	1653	Received By:
Delivery Type: UP			☐ FedEx Ground ☐ US Mail ☐ Spee-Dec
	Courier 🗌 Lab Fi		
Condition of Cooler/Co	ntainers:「中国	Carles And	图 "国际的特殊"的 Land (新国的联系统)。
Sample(s) received in	Cooler? Yes	□ No	If yes: Cooler ID:
Multiple Coolers?	Yes	₽No	If yes: Cooler # of
Cooler Custody Seals No		□ No	If yes: Cooler custody seals intact? ☐ Yes ☐
Sample Custody Seals No	Present? ☐ Yes⊾	No No	If yes: Sample custody seals intact? Yes
Trip Blank Present?	☐ Yes	ĮZ No	If yes: Which VOA samples are in cooler? ↓
Temperature Record	美術等能	题。"因品类学说·	
_			
Coolant: Wet ice	Blue ice	Dry ice	Other: NONE
Thermometer ID:	to see the second of the secon	,	Correction Factor (°C):
🎎 demp Blank 🕆 emperat	IIIA 🗀 It no tomo nione -c	or temp blank te	mperature above criteria, proceed to Sample Container Temperature
		/ N	
Uncorrected Temp (°C): 2,		Corrected Temp (°C): 2 - 2
Uncorrected Temp (°C): 2 .		L. The Manager of the Late Manager and A.
Uncorrected Temp (°C): 2,		1,
Uncorrected Temp (°C): 2 .		L. The Manager of the Late Manager and A.
Uncorrected Temp (°C Sample Container Ten Container(s) used: Uncorrected Temp): 2 .		L. The Manager of the Late Manager and A.
Uncorrected Temp (°C Sample Container Ten Container(s) used: Uncorrected Temp (°C): Corrected Temp (°C):): 2 , nperature * CONTAINER 1		L. The Manager of the Late Manager and A.
Uncorrected Temp (°C Sample Container Ten Container(s) used: Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted): 2 . nperature ** CONTAINER 1	mple(s) recei	CONTAINER 2 ived same day of sampling? Yes No
Uncorrected Temp (°C Sample Container Ten Container(s) used: Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted 1) If temperature exce a) If yes: Is there 2) If temperature is <(e.g., bulging septa	container 1 container 1 container 1 eds criteria, was salevidence that the classification of the container of the containe	mple(s) recei hilling proces us signs that ottles, frozen	ived same day of sampling? Yes No ss began? Yes No the integrity of sample containers is compromised? solid?)
Uncorrected Temp (°C Sample Container Ten Container(s) used: Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted 1) If temperature exce a) If yes: Is there 2) If temperature is <0 (e.g., bulging septa	eds criteria, was salevidence that the cl	mple(s) recei hilling proces us signs that ottles, frozen g. If no, proce	ived same day of sampling? Yes Noss began? Yes Not the integrity of sample containers is compromised? solid?) Yes No
Uncorrected Temp (°C Sample Container Ten Container(s) used: Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted 1) If temperature exce a) If yes: Is there 2) If temperature is <0 (e.g., bulging septa Note: If yes, contact Additional Comments.	eds criteria, was salevidence that the cloop. A proken/cracked both proceeding the proceeding th	mple(s) recei hilling proces us signs that ottles, frozen g. If no, proce	ived same day of sampling?
Uncorrected Temp (°C Sample Container Ten Container(s) used: Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted 1) If temperature exce a) If yes: Is there 2) If temperature is <0 (e.g., bulging septa Note: If yes, contact Additional Comments.	eds criteria, was salevidence that the cloop. A proken/cracked both proceeding the proceeding th	mple(s) recei hilling proces us signs that ottles, frozen g. If no, proce	CONTAINER 2 CONTAINER 2 Yes No No No No No No No N
Uncorrected Temp (°C Sample Container Ten Container(s) used: Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted 1) If temperature exce a) If yes: Is there 2) If temperature is <0 (e.g., bulging septa Note: If yes, contact Additional Comments.	eds criteria, was salevidence that the cl	mple(s) recei hilling proces us signs that ottles, frozen g. If no, proce	ived same day of sampling?

Document. CED-P-SAM-FRM45521 Revision: 26

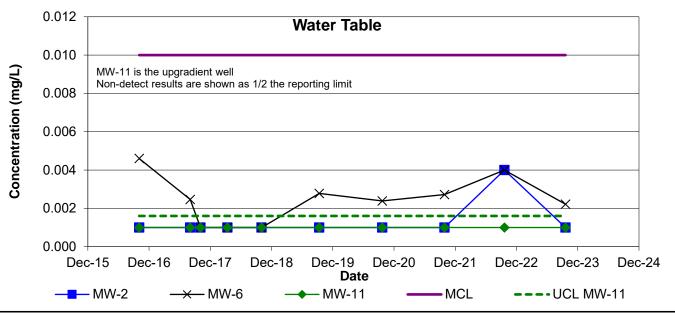
Date: 27 Jan 2022

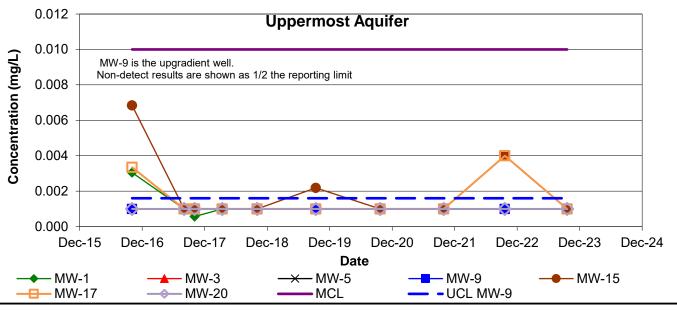
Eurofins Cedar Falls

Login Sample Receipt Checklist

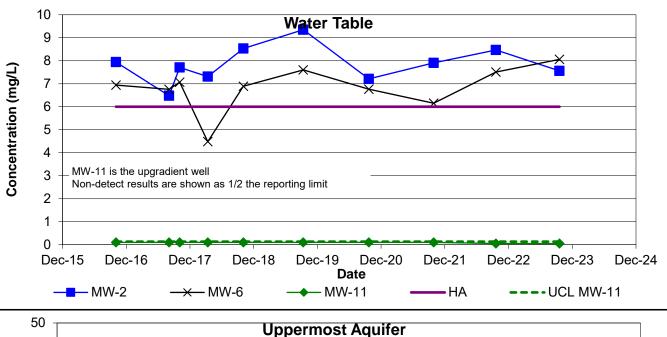
Client: GHD Services Inc. Job Number: 310-266968-1

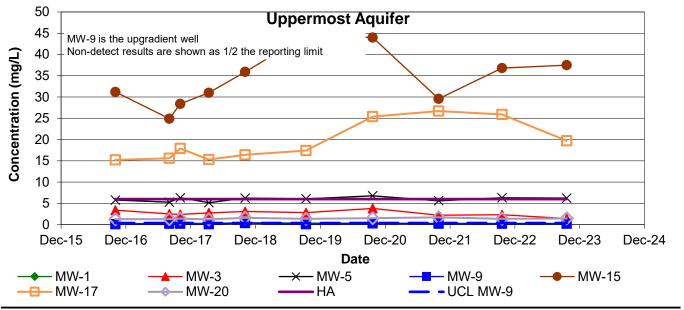
Login Number: 266968 List Source: Eurofins Cedar Falls

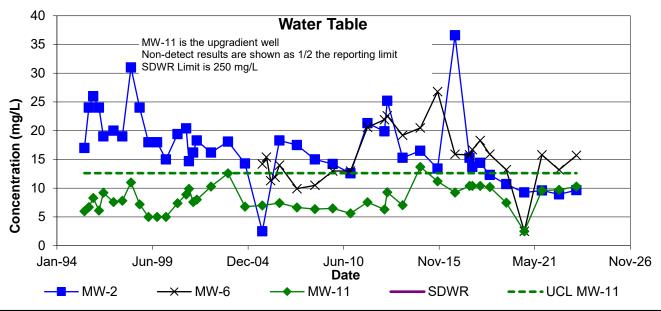

List Number: 1 Creator: Lage, Sydney

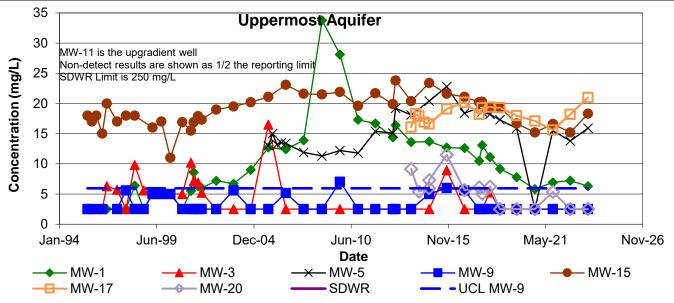

Answer	Comment
N/A	
True	
N/A	
True	
N/A	
	N/A True N/A True True True True True True True True

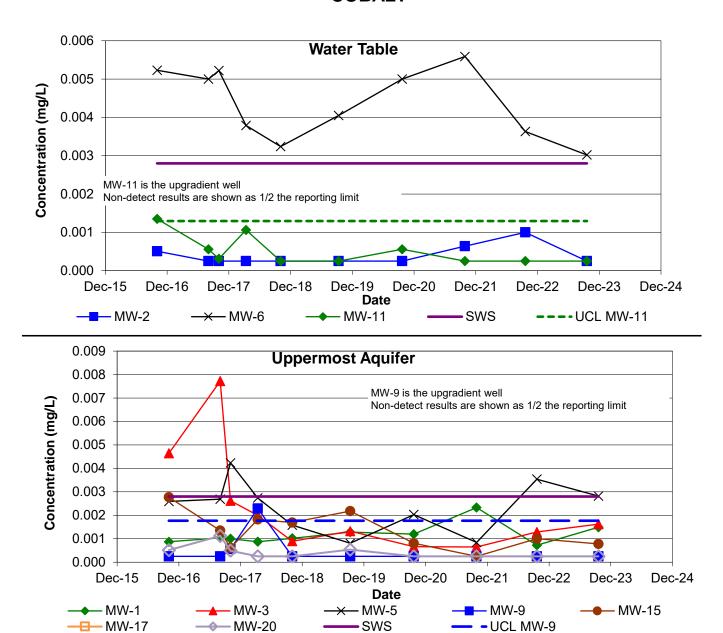
Appendix C


Graphs of Analytical and Monitoring Results

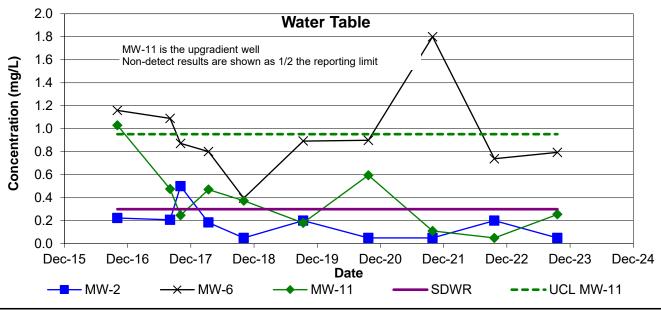

ARSENIC

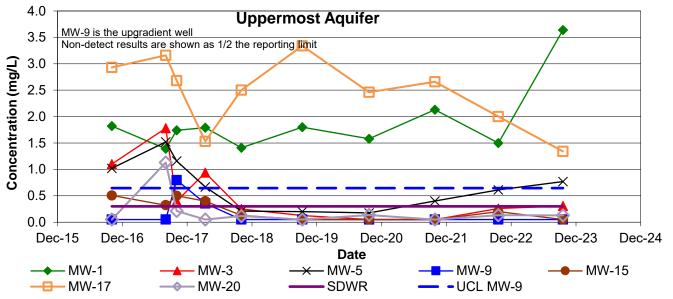



BORON

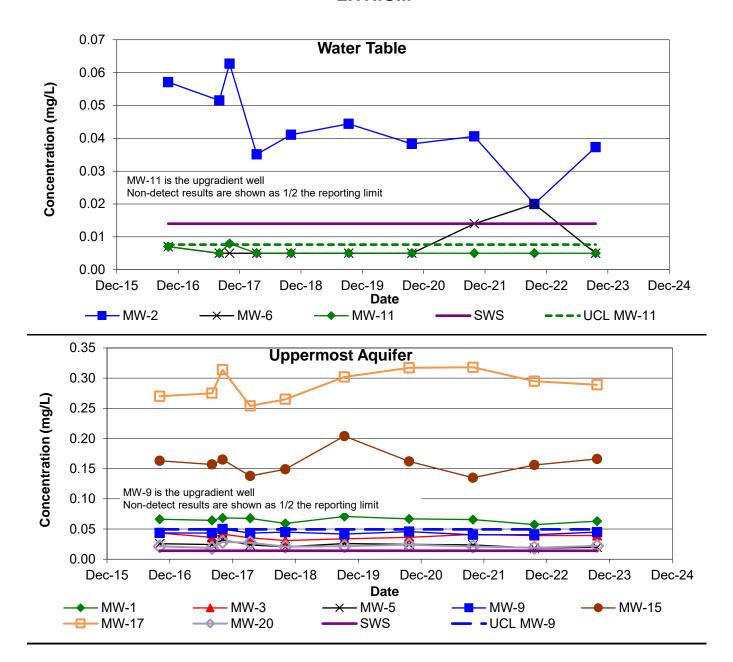


CHLORIDE

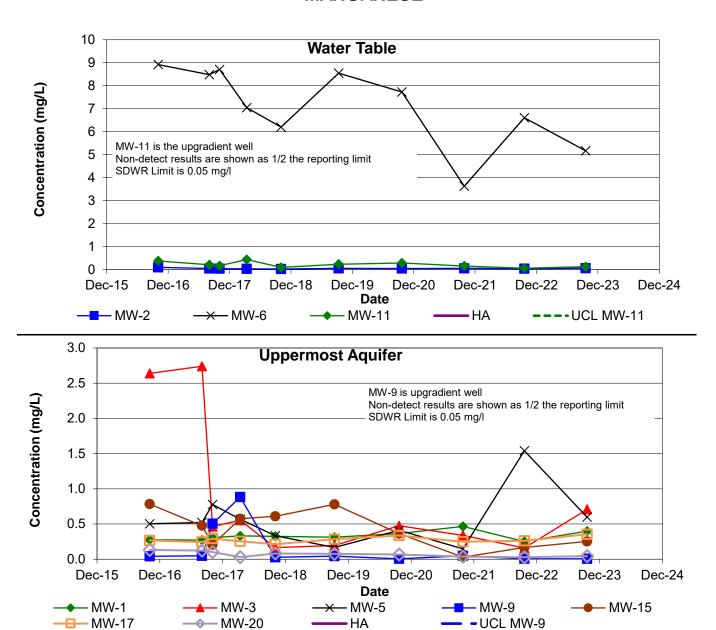


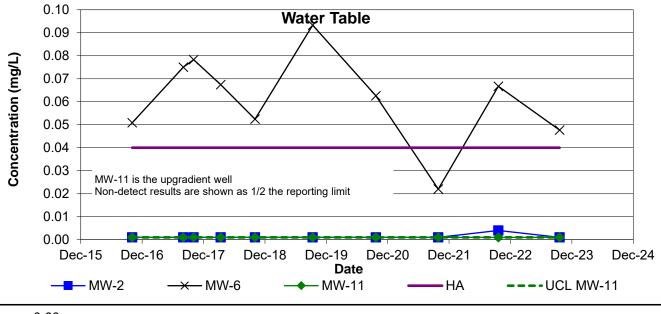


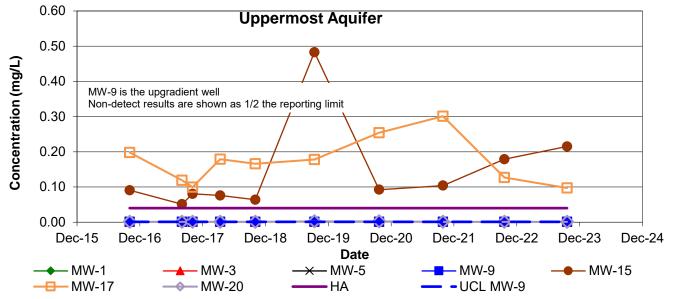
COBALT



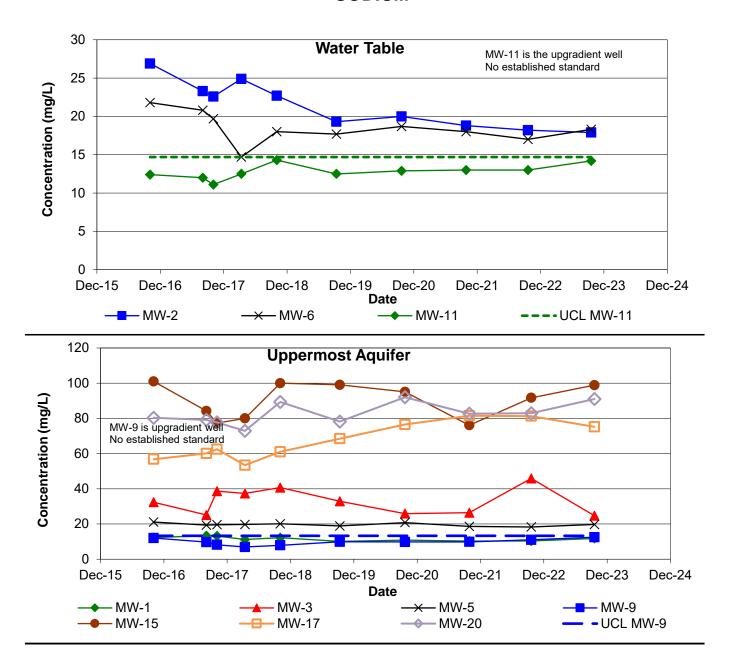
IRON


LITHIUM

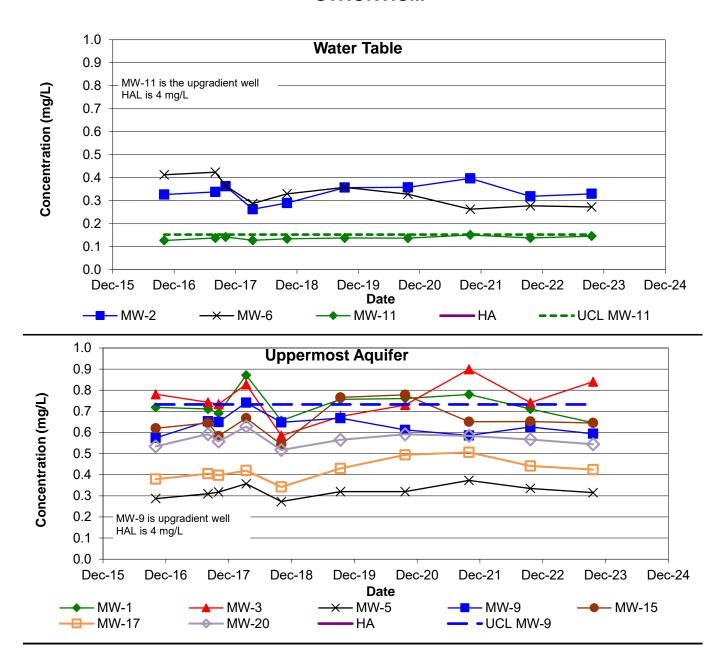

MAGNESIUM

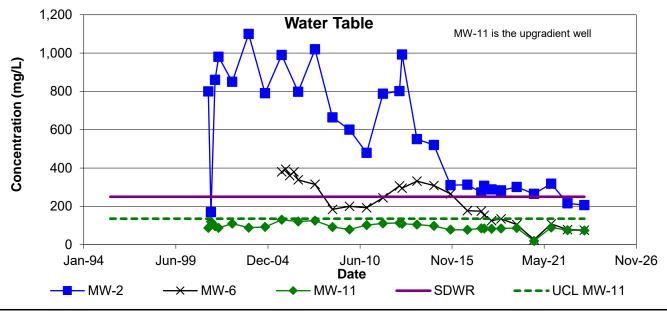


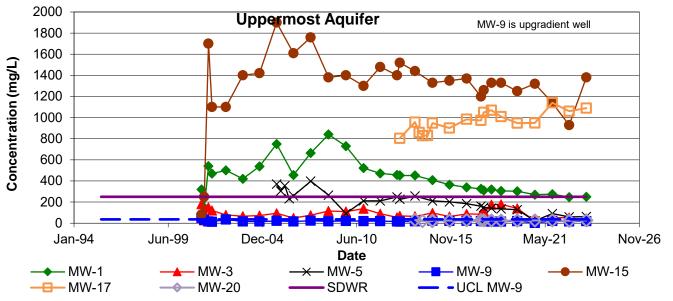
MANGANESE

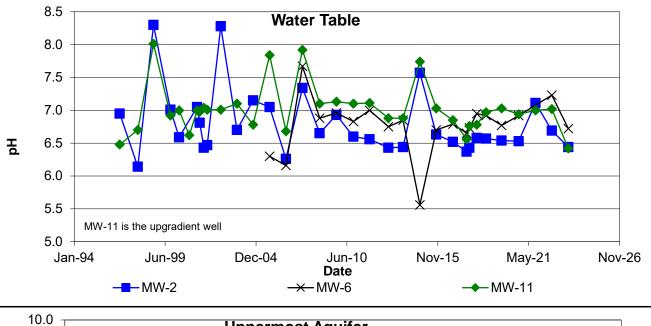


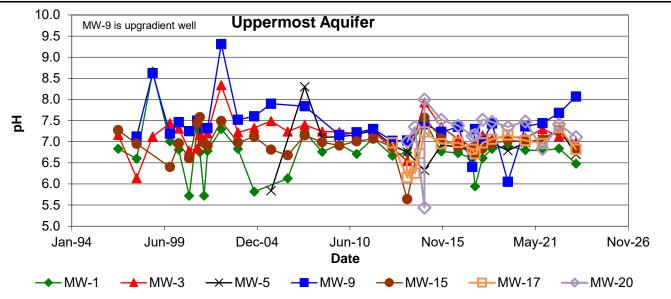
MOLYBDENUM



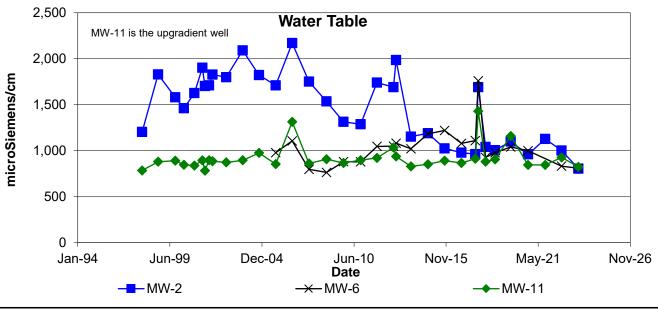

SODIUM

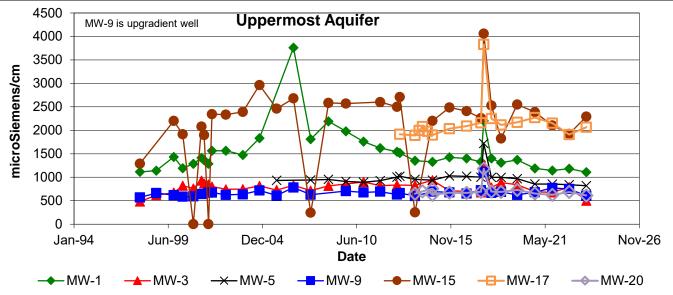


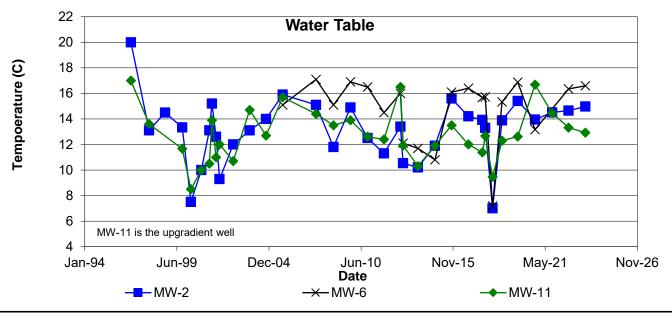

STRONTIUM

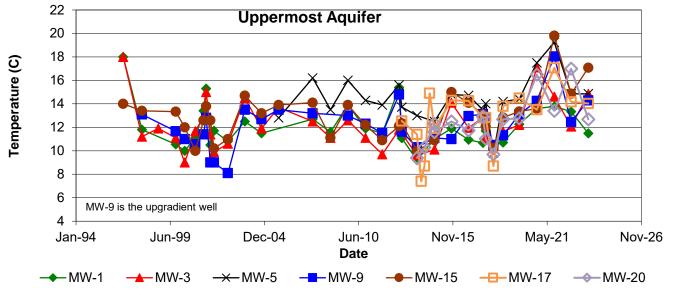


SULFATE








CONDUCTIVITY

TEMPERATURE

Appendix D

Inspection Summary

November 17, 2023

Mick Leat Iowa Department of Natural Resources Wallace State Office Building 502 East 9th Street, 4th Floor Des Moines, IA 50319-0034

Dear Mick,

This letter has been prepared to provide a summary of monthly inspections complemented by Central Iowa Power Cooperative (CIPCO) of the closed Fair Station Coal Combustion Residue Landfill near Muscatine, Iowa.

BACKGROUND

2015 activities included: final capping of the ash, terrace, and rip-rap channel installation and seeding in September. Vegetation was started to be established in most areas by the end of 2015. Straw waddles were installed in areas of slow growth and areas at risk of washing out. The closure permit was issued February 1, 2016.

2023 Inspection Summary and Actions

The Flex-a-mat installed in 2022 on the steep slopes is proving to be an excellent solution with great vegetation growth that has minimized the erosion. The 2023 summer was dry not only in the Muscatine area but for much of Eastern lowa. The vegetation remained in good shape throughout the year. A couple localized dry patches that were reseded are showing good growth. The site only required mowing twice this year.

The main maintenance items conducted were: re-work of the east rip-rap channel to reduce the surface runoff velocity and erosion, culvert clean out, sapling removal along the retainage ponds, fence repairs and general cleaning of the rip-rap channels. The Mississippi River backed up into Mosquito Creek in the spring, this flooding made its way into the low elevation portions of the property. The fence along Mosquito Creek will continue to be repaired following some additional tree clearing.

Clint Oberbroeckling of GHD conducted the annual well sampling on October 10th.

CIPCO will continue to monitor and maintain the CCR Landfill according to the IDNR standards.

Regards,
Sam Honold
CIPCO – Supervisor, Generation Engineering

→ The Power of Commitment