

LaBounty Disposal Site

→ LBTD Shutdown – Response to February 15, 2022 Comments

Agenda

Introductions

EPA Comment Letter – February 15, 2022

- Comment 1 Further discussion.
- Comment 2 Further discussion.
- Comment 3 No discussion needed.
- Comment 4 No discussion needed
- Comment 5 Further discussion.
- Comment 6 Further discussion.
- Comment 7 Further discussion.

Next Steps

- Response to comments.
- EPA review.

Introductions

Zoetis

Dawn Horst

GHD

Jeff Coon, Kevin Armstrong

USEPA

Brad Johnson, Liz Hagenmaier, Vanessa Madden, Randy Brown

IDNR

Hylton Jackson, Mike Sullivan

Model Used and Model Inputs (EPA Comment 1)

- Spreadsheet calculations used to estimate the effect of the LBTD system on reducing groundwater and mass discharge to the Cedar River.
- Groundwater and Mass Flux calculation actual field and laboratory measurements.
 - Calculations demonstrate minimal influence of LBTD
 - Low discharge Reduction of 0.4%
 - High discharge Reduction of 1.6%
- Calculations are conservative when extended to estimate surface water concentrations.
 - Overestimates loading to Cedar River (compared to actual surface monitoring data).
 - Do not account for attenuation of arsenic at groundwater-surface water transition zone.

Inputs

Table 3.3 Page 1 of 1

Calculations of Arsenic Flux at Low and High Discharges LaBounty Disposal Site Charles City, Iowa

Flow-	•	Groundwater Elevation	Elevation	Horizontal	Arsenic Conc.	Aquifer Thickness	Flowtube Width	Cross Sectional Area	Average Linear Velocity	Arsenic Mass Flux (kg/(day	Arsenic Total Flux	Groundwater Flux	Groundwater Flux	Groundwater Volume Diverted by LBTD	LBTD Arsenic Loading Reduction	LBTD Arsenic Loading Prevention	Percent Reduction of Arsenic Discharge
tube	Wells	(ft NGVD)	(ft NGVD)	Gradient	(ug/L)	(m)	(m)	(m2)	(cm/s)	m2))	(kg/day)	(m3/day)	(gal/day)	(gal/day)	(kg/day)	(kg/year)	by LBTD
	Low discharge s	cenario - 2018	Jan -April (April	groundwater	elevation	and concer	tration)										
A1	04A to 05A	975.07	974.57	0.0015	9.13	9.6	134.5	1,298	5.86E-04	1.39E-06	0.002	197	52,054				
A2	04A to 07AS	975.07	974.18	0.0023	159,000	11.3	217.8	2,469	8.76E-04	3.61E-02	89.1	561	148,069				
A3	09A to 08A	974.68	974.41	0.0008	123,000	5.0	247.7	1,240	3.07E-04	9.79E-03	12.1	99	26,062				
B1	04R to 05R	975.13	975.13	0.0000	14.6	4.0	134.5	533	0.00E+00	0.00E+00	0	0	0				
B2	04R to 07R	975.13	974.71	0.0011	630	5.8	184.3	1,068	1.64E-05	2.68E-06	0.003	4.54	1,198				
B3	09R to 08R	974.70	974.35	0.0010	8,100	7.0	207.6	1,456	1.58E-05	3.31E-05	0.048	5.96	1,574				
					48,459		Total	8,064			101.3	867	228,957	2,145	0.39	144	0.4%
	High Discharge	scenario - 201	Jan -April (April	groundwate	r elevation	and conce	ntration)										
A1	04A to 05A	977.59	976.94	0.0020	6.21	10.4	134.5	1,395	7.62E-04	1.23E-06	0.002	275	72,740				
A2	04A to 07AS	977.59	976.59	0.0025	139,000	12.1	217.8	2,630	9.84E-04	3.54E-02	93.2	671	177,153				
A3	09A to 08A	976.81	976.64	0.0005	118,000	5.7	247.7	1,408	1.93E-04	5.91E-03	8.3	71	18,639				
B1	04R to 05R	977.59	977.56	0.0001	12.3	4.0	134.5	533	1.39E-06	4.44E-09	0.000002	0.19	51				
B2	04R to 07R	977.59	977.14	0.0011	5,660	5.8	184.3	1,068	1.76E-05	2.58E-05	0.028	4.86	1,284				
B3	09R to 08R	977.00	976.60	0.0012	4,670	7.0	207.6	1,456	1.80E-05	2.18E-05	0.032	6.81	1,799				
					44,558		Total	8,490			101.6	1028	271,666	9,984	1.68	615	1.6%

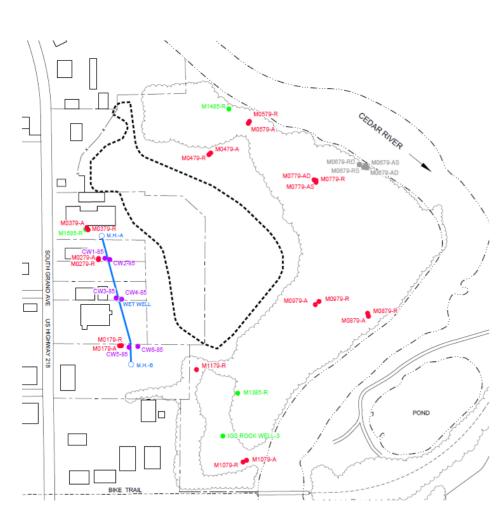
Notes:

LBTD - LaBounty tile discharge.

Effective Porosity: 0.3.

Alluvial Aquifer Hydraulic Conductivity: 1.2E-01 cm/sec (CH2M Hill, 1985).

Bedrock Aquifer Hydraulic Conductivity: 4.6E-03 cm/sec (CH2M Hill, 1985).

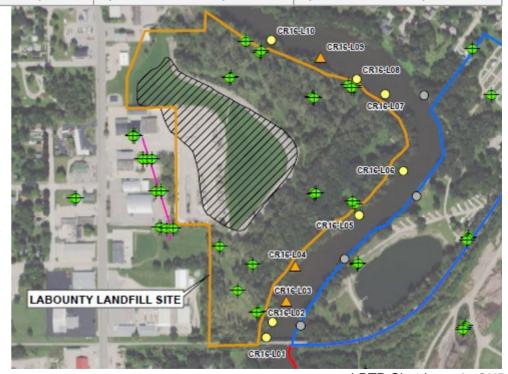

Conceptual Site Model - Discharge to River

- Highest arsenic in groundwater shallow alluvial aquifer.
- Arsenic attenuation occurring.
- During low river stages, low groundwater conditions are expected.
 - Reducing groundwater and arsenic flux to river.

Effect of LBTD Shutdown

- No apparent effect on McDonnell Station.
 - Actual monitoring data (during operation and during LBTD pilot shutdown).
- Limited influence on groundwater elevations and flow conditions.
 - < 2% reduction in groundwater and arsenic flux to Cedar River

2016 Sampling Summary (Golder, 2017)



2016 Sampling Summary (Golder, 2017)

Arsenic Concentrations (µg/L)

	Screening Level	CR16-L08	CR16-L07	CR16-L06	CR16-L05
Surface Water	150/50	1.6	Not Analyzed	6.2	16
Pore Water	150	160	32	510	140
Groundwater	10	43,300	43,300	174,000	174,000
		(M0679-AS)	(M0679-AS)	(M0879-A)	(M0879-A)

- Surface water and sediment concentrations were 1 2 orders of magnitude below screening values.
- Two discrete exceedances in pore water (surface water ecological screening value).
 - Mean and 95% UCL for pore water < surface water screening value.
- Pore water 95% UCL < screening value for infaunal species.

River concentrations at low flow (EPA Comments 2, 5, and 6)

- Record Low Flows for Cedar River at Charles City, IA (October 1964 to present)
 - Daily mean low 60 cfs
 - November 1976
 - December 1997
 - January 1978
 - Record low (instantaneous reading) 37 cfs (below 60 cfs for ~2 hours)
- LaBounty Projected Cedar River Concentrations
 - Maximum concentration at McDonnell Station 22 μg/L (actual)
 - 150 samples collected since 2004 (low flow of 113 cfs)
 - Calculated 95% UCL of actual arsenic load in Cedar River at lower flow conditions (<200 cfs)
 - McDonnell Station during low flows arsenic < 50 μg/L at daily mean low of 60 cfs (calculated)
 - Arsenic loading 50 µg/L criteria exceeded at 55 cfs

Ongoing sediment and pore water sampling (EPA Comment 7)

- 2015 Five-year Review Surface water, sediment, and pore water sampling completed (2016)
 - Two pore water samples > surface water screening levels.
 - Localized arsenic transport to the Cedar River may occur
 - Adverse impacts on ecological receptors are not likely localized nature of any impact
- Five-Year Review Addendum, EPA (Feb. 2019)
 - "No further investigation or assessment be performed to assess potential arsenic impacts from the Site, other than annual surface water monitoring in a location directly downstream of CR16-L06 to confirm no material changes."
 - EPA concurred with minimal effect of LBTD on groundwater flow and discharge to Cedar River.
- Recommend continue with annual surface water sampling directly downstream of CR16-L06.
 - Included in approved monitoring and maintenance plan.

Conclusions

- LBTD has minimal effect on groundwater elevations and flow conditions.
 - <2% on groundwater and mass flux to Cedar River.
- Based on 95% UCL, exceedance of 50 µg/L not expected at mean daily low flow of 60 cfs.
- Site remains protective of human health and the environment.

Recommendations

- Continue with Five-Year Review Addendum, EPA (Feb. 2019) recommendations.
- Permanently shutdown the LBTD system.
- Continue annual surface water monitoring downstream of CR16-L06.

Next Steps

- Zoetis to submit response to comments by March 31.
- EPA review expected response date?
- February 1, 2025 NPDES compliance date.

12 LBTD Shutdown I GHD

* Thank You

