

CON 12-15 Doc #13804

June 28, 2002

Mr. James Huneston Iowa Department of Natural Resources Underground Storage Tank Section Wallace Building 502 East 9th Street Des Moines, IA 50319-0034

Subject:

Corrective Action Design Report Extension Request

Former Schroeder's Standard

225 South Lawler Postville, Iowa

LUST No. 227H48 Tank Reg. No. 8605701

Maxim Project #1370024

Dear Mr. Humeston:

On behalf of Ms. Geraldine Cook, Maxim Technologies, Inc. respectfully requests a Corrective Action Design Report (CADR) submittal date of October 25, 2002 be assigned to this project. To date additional field and groundwater analytical data (attached) have been collected for the CADR. The extension is requested due to historical groundwater analytical data that indicates dry cleaning solvents present along with the petroleum hydrocarbons, which presents complexities in the disposal of excavated soils. Therefore, it is Maxim's intent to conduct additional soil and soil gas analysis as part of the 3rd quarter 2002 SMR. The extension for submittal of the CADR will provide time for Maxim to address the soil contaminant issue, submit a SMR for 2002, complete the CADR and allow the client time for review.

If you have any questions regarding this request please contact me at 319-232-6591 or by e-mail ghiester@maximusa.com.

Respectfully,

MAXIM TECHNOLOGIES, INC

Gaylen D. Hiesterman

Profect Manager CGP #1619

GDH/mho

Attachments: Analytical Reports

Former Schroeder's Standard

Geraldine Cook

2213 LaPorte Road * Waterloo, IA 50702 * 319-232-6591 * 319-232-0373

"Providing Cost-Effective Solutions to Clients Nationwide"

ANALYTICAL REPORT

Tom Kabis Groundwater Resource Consultants P.O. Box 2160 Des Moines, IA 50310 515-274-2614

Report Date: 8/1/90

Collected: 7/24/90 8:30 AM

Collector: L. Luvaas

Work Order: 9007.101 Sample No: 903760

Date Received: 7/27/90

Location: Schroeders Standard, Postville, IA Description: W-7-MW1 (EMW1) Sample Matrix: water

Comments: Job No. 89124S

Total Extractable Hydrocarbons are extracted by SW-846 Method 3510 for water matrices and SW-846 Method 3550 for soil matrices.

Date Analyzed: 7/30/90

PARAMETER

RESULT

OUANT LIMIT

METHOD

Tetrachloroethane

4,450 ug/L

1 ug/L

SW-846 8015

Analyst: JNK

Keystone Laboratories, Inc.

leffrey N. King, Ph.D.

Huntingdon

4123 South 67th Street Omaha, Nebraska 68117 Phone (402) 331-4453 (Chem/NDT) Fax (402) 331-8779

ORGANICS REPORT

Project Name/	BTEX Analysis on Water				
Location	Former Schroeder's Standard Station, 225 South Lawler, Postville, IA				
Client:	Geraldine Schroeder 4565 Winghaven Drive Waterloo, Iowa 50701 (319) 234-3866	Job No.: Lab No.:	6210-95-024.063 7700-95-202 C 3605-3613		
Ordered by: Submitted by:	William Althaus III/Huntingdon-	Date Rec'd:	5-2-95		
	Waterloo (319)232-6591	Report Date:	5-11-95		
	Huntingdon-Waterloo (Airborne)	Fax Date:	5-11-95		
Test Method:	EPA 8020: Modified EPA 602: Purge & Trap. OA-1				

TEST RESULTS

Lab No.:	C 3605	C 3606	C 3607	C 3608	C 3609
Sample I.D.:	EMW-1	EMW-2	EMW-3	EMW-4	EMW-5
Sample Type: Sample Date:	Water 4-28-95	Water 4-28-95	Water 4-28-95	Water 4-28-95	Water 4-28-95
Benzene:	4-20-93 <1	4-26-93 <1	31	4-28-93 560	4-26-93 <1
Toluene:	<1	<1	4	105	<1
Ethylbenzene:	<1	<1	9	179	<1
Total Xylene:	<1	<1	8	369	<1
Tetrachloroethene	692	<5	<5	< 5	<5
TH Gas:	469	< 10	484	4,500	< 10
% Surrogate Recovery:	99	99	99	99	99
Analyst/Date:	SF/5-3	5-2	5-2	5-2	5-2

Comments: All units are $\mu g/L$ (ppb) for water

Method Detection Limits: BTEX = 1 ppb; Tetrachloroethene = 5 ppb;

THGas = 10 ppb

RESULTS SHOWN ARE RESULTS OBTAINED ONLY ON SAMPLES BY METHOD SHOWN, AND DO NOT NECESSARILY CONSTITUTE APPROVAL BY US OF THE SOURCE OR PRODUCT FROM WHICH SAMPLE WAS TAKEN

Huntingdon

Huntingdon-Waterloo

Project: Former Schroeder Standard Station

May 12, 1995

Page 2

TEST RESULTS

Lab No.:	C 3610 gcs	C 3611	C 3612	C 3613
Sample I.D.:	MW-Ø1	MW-72 ACS	MW-8/3/LCS	MW-94 PCS
Sample Type:	Water	Water	Water	Water
Sample Date:	4-28-95	4-28-95	4-28-95	4-28-95
Benzene:	. 4	<1	1	< 1
Toluene:	2	< 1	<1	< 1
Ethylbenzene:	< 1	<1	<1	< 1
Total Xylene:	1	<1	1	<1
Tetrachloroethene	215	<5	<5	<5 🦟
TH Gas:	625	< 10	197	< 10
% Surrogate Recovery:	99	99	99	99
Analyst/Date:	SF/5-3	5-3	5-3	5-3

Comments: 'All units are $\mu g/L$ (ppb) for water

Method Detection Limits: BTEX = 1 ppb; Tetrachloroethene = 5 ppb;

THGas = 10 ppb

CC: (2) Client

Huntingdon Engineering & Environmental, Inc.

Seth Frishman, Chemistry Manager

SF/cjw-et

RESULTS SHOWN ARE RESULTS OBTAINED ONLY ON SAMPLES BY METHOD SHOWN, AND DO NOT NECESSARILY CONSTITUTE APPROVAL BY US OF THE SOURCE OR PRODUCT FROM WHICH SAMPLE WAS TAKEN

ORGANICS REPORT

Project Name/	BTEX Analysis on Water			
Location	Former Schroeder's Standard Station, 225 South Lawler, Postville, IA			
Client:	Geraldine Schroeder 4565 Winghaven Drive Waterloo, Iowa 50701 (319) 234-3866	Job No.: Lab No.:	6210-95-024.063 7700-95-202 C 4533-4536	
Ordered by: Submitted by:	William Althaus III/Huntingdon-	Date Rec'd:	6-22-95	
	Waterloo (319)232-6591	Report Date:	7-25-95	
	Huntingdon-Waterloo (Airborne)	Fax Date:	7-25-95	
Test Method:	EPA 8020; Modified EPA 602; Purge & Trap, OA-1			

TEST RESULTS

Lab No.:	C 4533	C 4534	C 4535	C 4536
·	MW-7	MW-5	MW-8	MW-6
Sample I.D.:				
Sample Type:	Water	Water	Water	Water
Sample Date:	6-20-95	6-20-95	6-20-95	6-20-95
Benzene:	< 1	299	<1	2,960
Toluene:	<1	99	<1	1,490
Ethylbenzene:	<1	352	<1	3,910
Total Xylene:	< 1	573	<1	7,920
Tetrachloroethene:	399	< 5	<5 ⁻	>25,000 ~
TH Gas:	< 10	9,410	< 10	549,000
% Surrogate Recovery:	99	99	99	99
Analyst/Date:	SF/7-3-95	7-3-95	7-3-95	7-3-95

Comments:

All units are μ g/L (ppb) for water

Method Detection Limits:

BTEX = 1 ppb; Tetrachloroethene = 5 ppb;

THGas = 10 ppb

CC: (2) Client

Submitted by:

Seth Frishman, Chemistry Manager

SF/cjw

Nebraska Analytical Testing Laboratories

4123 South 67th Street - Omaha, NE 68117

402-331-0935 **FAX**: 402-331-8779

ORGANICS REPORT

Project Name:

BTEX and MTBE Analysis on Water

Location:

Former Schroeder's Standard, Postville, IA

Client:

Former Schroeder's Standard

Attn: Geraldine Cook

Job No.: Project No: MWA-00-100

P.O. Box 307

Lab No.:

1370024

Postville, IA 52162

C 2827-2831

Ordered by:

Gaylen Hiesterman/

Date Rec'd: Report Date:

3-24-01 3-29-01

Maxim-Waterloo

Fax Date:

3-29-01

Submitted by:

Maxim-Waterloo

319-232-6591

Test Method:

Purge & Trap, OA-1

	TEST :	RESULTS		
C 2827 ⁽¹⁾	C 2828	C 2829 ⁽²⁾	C 2830	C 2831
EMW-4	EMW-5	MW-6	MW-5	MW-3
Water	Water	Water	Water	Water
3-23-01	3-23	3-23	3-23	3-23
<2	5	<2	7	3
< 150	< 15	< 75	< 15	107
876	459	5,030	2 ·	270
751	33	310	< 1	14
724	305	1,580	<1 .	865
2,460	1,050	5,810	< 2	370
99	99	99	99	99
SF/3-26	3-27	3-28	3-25	3-28
	EMW-4 Water 3-23-01 <2 <150 876 751 724 2,460	C 2827 ⁽¹⁾ C 2828 EMW-4 EMW-5 Water Water 3-23-01 3-23 <2 5 <150 <15 876 459 751 33 724 305 2,460 1,050 99 99	EMW-4 EMW-5 MW-6 Water Water Water 3-23-01 3-23 3-23 <2 5 <2 <150 <15 <75 876 459 5,030 751 33 310 724 305 1,580 2,460 1,050 5,810 99 99 99	C 2827 ⁽¹⁾ C 2828 C 2829 ⁽²⁾ C 2830 EMW-4 EMW-5 MW-6 MW-5 Water Water Water Water 3-23-01 3-23 3-23 3-23 <2 5 <2 7 <150 <15 <75 <15 876 459 5,030 2 751 33 310 <1 724 305 1,580 <1 2,460 1,050 5,810 <2 99 99 99

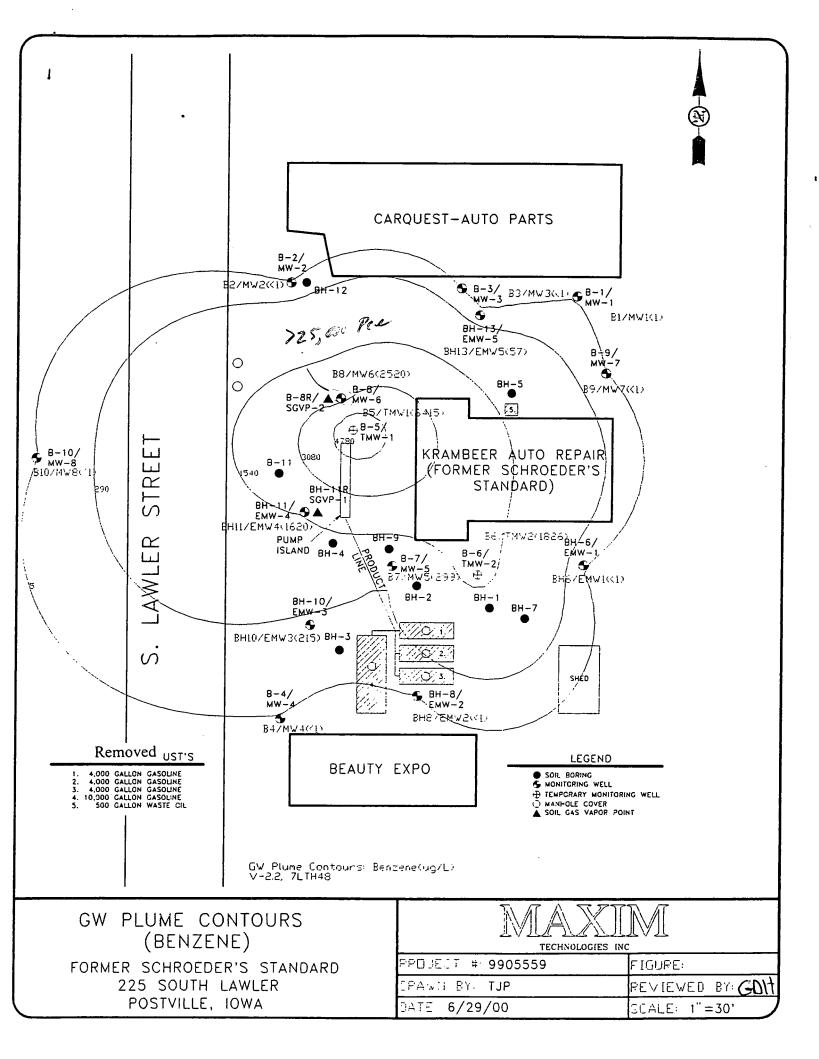
Comments:

All units are $\mu g/L$ (ppb)

Method Detection Limits: BTE = 1 ppb; Xylene = 2 ppb; MTBE = 15 ppb

MTBE = Methyl tert-Butyl Ether

(1) Dilution is 10X ⁽²⁾ Dilution is 5X


IA Lab Certification No: 139

CC: Client

Submitted by:

Seth Frishman, Chief Scientist

SF/pt

