

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION VII 901 NORTH 5TH STREET KANSAS CITY, KANSAS 66101 NOV 1 4 2005

Mr. Dan Cook Environmental Specialist Senior Contaminated Sites Section Iowa Department of Natural Resources Wallace State Office Building Des Moines, Iowa 50319

Dear Mr. Cook:

Re: Ottumwa (ex) Navy Air Station site, Ottumwa, Iowa EPA ID #IAN000703254

Enclosed is a copy the Preliminary Assessment, dated October 18, 2006 that was completed on the Ottumwa (ex) Navy Air Station site. This Preliminary Assessment was prepared by an Environmental Protection Agency (EPA), Tetra Tech EM Inc.

The Preliminary Assessment was prepared in accordance with EPA's *Guidance* for Performing Preliminary Assessments under CERCLA, Interim Final, (EPA 1992). The-purpose of our investigation was to review existing information on the site and its environs to assess the threat(s), if any, posed to public health, welfare, or the environment, and to determine if further investigation under CERCLA/SARA is warranted.

Based upon the findings in this investigation, this site does not warrant further federal response activities under CERCLA/SARA. If you have any questions, or need further information please call or email at (913) 551-7568 or <u>king.ronald@epa.gov</u>.

Sincerely,

Ronald King Iowa Site Assessment Manager Enforcement/Fund Lead Removal Branch Superfund Division

Enclosure

cc: William Bonneau, USACE, w/enclosure

PRELIMINARY ASSESSMENT OTTUMWA (EX) NAVAL AIR STATION SITE

OTTUMWA, IOWA

EPA ID: IAN000703254

Superfund Technical Assessment and Response Team (START) 3

Contract No. EP-S7-06-01, Task Order No. 0002.006.007

Prepared For:

U.S. Environmental Protection Agency Region 7 · 901 North 5th Street Kansas City, Kansas 66101

October 18, 2006

Prepared By:

Tetra Tech EM Inc. 8030 Flint Street Lenexa, Kansas 66214 (913) 894-2600

CONTENTS

Section	<u>n</u>		Page
1.0	INTRODUCT	ION	1
2.0	SITE DESCRI	IPTION	2
2.0	SHE DESCRI		Z
	2.1 SITE	LOCATION	2
	2.2 SITE	DESCRIPTION	2
	2.3 OPER	ATIONAL HISTORY AND WASTE CHARACTERISTICS	3
		JLATORY INVOLVEMENT	
3.0	INVESTIGAT	IVE EFFORTS	6
	3.1 PREV	IOUS SAMPLING	7
	3.2 SITE	ASSESSMENT SAMPLING	7
	3.2.1	Soil Sampling	8
	3.2.2	Groundwater Sampling	
	3.2.3	Surface Water and Sediment Sampling	
4.0	HAZARD RA	NKING SYSTEM FACTORS	16
	4.1 SOUR	CES OF CONTAMINATION	16
	4.2 GROU	JNDWATER PATHWAY	16
	- 4.2.1	Hydrogeological Setting	16
	4.2.2	Groundwater Targets	
	4.2.3	Groundwater Pathway Conclusion	
	4.3 SURF.	ACE WATER PATHWAY	18
	4.3.1	Hydrological Setting	
	4.3.2	Surface Water Targets	
	4.3.3	Surface Water Pathway Conclusion	19
		EXPOSURE AND AIR PATHWAY	
	4.4.1	Physical Conditions	20
	4.4.2	Soil and Air Targets	
	4.4.3	Soil Exposure and Air Pathway Conclusions	21
5.0	EMERGENCY	Y RESPONSE CONSIDERATIONS	21
6.0	SUMMARY		22
7.0	REFERENCES	S	24

- -

i

CONTENTS (Continued)

Appendix

- A FIGURES
- B PHOTOGRAPHIC LOG
- C FIELD LOGBOOK
- D FIELD SHEETS AND CHAIN-OF-CUSTODY RECORDS
- E ANALYTICAL RESULTS
- F REGISTERED WELLS WITHIN 4 MILES OF OTTUMWA (EX) NAVAL AIR STATION

TABLES.

Table	Page
TABLE 1 SOURCE SOIL SAMPLE SUMMARY	9
TABLE 2 ANALYTICAL DATA SUMMARY FOR VOCS AND TPH IN SOIL SAMPLE	S 10
TABLE 3 METALS DATA FOR SOIL SAMPLES	
TABLE 4 ANALYTICAL DATA SUMMARY FOR SEDIMENT SAMPLES	
TABLE 5 ANALYTICAL DATA SUMMARY FOR SURFACE WATER SAMPLES	

1.0 INTRODUCTION

The U.S. Environmental Protection Agency (EPA), Region 7, under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and the Superfund Amendments and Reauthorization Act of 1986 (SARA), tasked Tetra Tech EM, Inc., (Tetra Tech) to conduct a preliminary assessment (PA) of the Ottumwa (ex) Naval Air Station (NAS) site 5 miles north of Ottumwa, Wapello County, Iowa. Tetra Tech performed this investigation under the Superfund Technical Assessment and Response Team (START) 3 Contract Number EP-S7-06-01, Task Order Number 0002.006.007.

The purpose of the PA is to review existing information on the site and its environs to assess the threat(s), if any, posed to public health, welfare, or the environment, and to determine if further investigation under CERCLA/SARA is warranted. The scope of the PA includes the review of information available from federal, state, and local agencies and performance of an on-site reconnaissance visit and sampling.

Using these sources of existing information and sampling data, the site is then evaluated using the EPA Hazard Ranking System (HRS) criteria to assess the relative threat associated with actual or potential releases of hazardous substances at the site. The HRS has been adopted by the EPA to help set priorities for further evaluation and eventual remedial action at hazardous waste sites. The HRS is the primary method of determining a site's eligibility for placement on the National Priorities List (NPL). The NPL identifies sites at which the EPA may conduct remedial response actions. This report summarizes the findings of these preliminary investigative activities.

The Ottumwa (ex) NAS site was identified as a potential hazardous waste site and entered into the Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) on May 31, 2001 (IAN000703254) (EPA 2006a). The CERCLIS database indicates that aliases for this site include the Ottumwa (ex) Tracking and Data Acquisition Annex, the U.S. Army Reserve Motor Repair Shop, and the Ottumwa Industrial Airport. CERCLIS also indicates an underground storage tank (UST) removal was completed at the site on March 1, 1995. Supplemental information for this PA was also obtained from the Resource Conservation and Recovery Act (RCRA) file for the former Moog Automotive site (IADOC052461225).

The PA report was written using guidance from EPA publications Guidance for Performing Preliminary Assessments Under CERCLA (EPA 1991), Guidance for Performing Site Inspections Under CERCLA (EPA 1992), and "Hazardous Ranking System Final Rule" (EPA 1990).

1

G9004/06.0002.006.007

Apparent Problem

The former Ottumwa NAS was commissioned in March 1943. In June 1945, the site included 76 buildings, an aircraft landing field with two concrete runways, asphalt landing mats, and a concrete aircraft parking area. A rifle range, skeet range, and ammunition storage were also on site. In 1947, the property was leased to the City of Ottumwa for use as a public airport. In 1957, title to the land—not the improvements—reverted to the City. From about 1959 to 1964, the facility was used by the Air Force as the Ottumwa Tracking and Data Acquisition Annex. In 1964, the facility improvements were sold to the City; however, the U.S. Army Reserve (USAR) requested space for a Motor Repair Shop and Reserve Center. The USAR used an existing building until 1981, when a new building was constructed.

No records were available regarding the use of hazardous substances used by the military at this Formerly Used Defense (FUD) site. EPA determined a PA was necessary based on a 2001 Pre-CERCLIS screening indicating a possible release of contaminants associated with site facilities and citing a lack of sampling data (Tetra Tech 2001). Hazardous substances typically associated with FUD sites include: volatile organic compounds (VOC) including trichloroethylene (TCE), perchlorate, metals, polychlorinated biphenyls (PCB), and total petroleum hydrocarbons (TPH).

2.0 SITE DESCRIPTION

The site location, description, operational history, waste characteristics, and previous investigations of the Ottumwa (ex) NAS site are discussed below.

2.1 SITE LOCATION

The Ottumwa (ex) NAS is currently the Ottumwa Industrial Airport, and is located about 5 miles north of the City of Ottumwa, Iowa. The site covers approximately 1,440 acres and is situated in a rural area within Sections 22, 23, 26, and 27, Township 73 North, and Range 14 West as depicted on the U.S. Geological Survey (USGS) Ottumwa North, Iowa, 7.5-minute quadrangle map (see Figure 1, Appendix A). The geographical coordinates for the center of the site are latitude 41°06'11" north (41.1031° north) and longitude 92°26'16" west (92.4378° west) (USGS 1956, photorevised 1976).

2.2 SITE DESCRIPTION

The site is currently the Ottumwa Industrial Airport and industrial park. Figure 2 presents the 1994 aerial photograph of the site annotated with facility use information indicated on a map (circa 1961) of the NAS included in the Defense Environmental Restoration Program (DERP)-FUD Site Summary (U.S. Army

G9004/06.0002.006.007

Corps of Engineers [USACE] 1991a). The site is generally flat to gently sloping, with undeveloped open areas used for agriculture (corn, soybeans, or hay). Much of the northern portion of the facility is owned by Indian Hills Community College (IHCC), which formerly used buildings in the area for its campus. The main IHCC campus is now located in northern Ottumwa, with only the IHCC Aviation Center in use at this location (IHCC 2006). This area was mainly used by the military for barracks, recreational facilities, and the dispensary (shown as "Good Samaritan Home" on Figure 1). A skeet range, rifle ranges (indoor and outdoor), and an ammunition bunker were also located in the northeastern portion of the site. A number of buildings formerly located in the northern portion of the facility, including barracks, the dispensary, and the indoor rifle range, have been demolished. A fenced and secured compound on city property at the far northeastern portion of the site houses a sewage treatment plant and an outdoor firing range used by local law enforcement. This is not the location of the rifle range used during operation of the NAS facility. Airport personnel excavating fill dirt east of the treatment plant reportedly uncovered buried debris (Tetra Tech 2006b). This area is identified on the DERP FUD maps as a "storage and dump area" formerly used by the U.S. Department of Defense (DoD).

Most of the southern portion of the site is the business/industrial park. Businesses in the area typically own their buildings and immediate property; however, large portions of the area and the streets and easements are owned by the City. Major businesses currently using this area are the American Bottling Company, Norris Asphalt and Paving, and Al-Jon Inc., which manufactures recycling equipment such as car crushers. The American Bottling facility (soft drink bottling) property is owned by Ottumwa Properties LLC and managed by Agracel, Inc., in Effingham, Illinois. American Bottling occupies the former Moog Automotive (Everco) facility, and Al-Jon occupies several buildings, including the former USAR motor repair shop. Several smaller businesses are also present, as are a number of vacant buildings, some of which are in disrepair. During field activities, an apparent residence was observed at the corner of Terminal Avenue and 6th Street, and appeared to be associated with an automotive repair businesses east of the residence. Figure 3 shows the 2004 aerial photograph with current major businesses and site features annotated.

2.3 OPERATIONAL HISTORY AND WASTE CHARACTERISTICS

The former Ottumwa NAS is located about 5 miles north of Ottumwa in Wapello County, Iowa; it was commissioned in March 1943. In June 1945, the site included 76 buildings, an aircraft landing field with two concrete runways, asphalt landing mats, and a concrete aircraft parking area. In 1947, the Federal Government leased the property to the City of Ottumwa for use as a public airport and other approved

G9004/06.0002.006.007

purposes (the City sub-leased to various businesses and individuals). In 1954, the lease was modified to delete one building from the City lease and designate it as a U.S. Marine Corps training center. In 1957, title to the 1,440 acres where most of the facility improvements were located reverted to the City of Ottumwa. In 1957, improvements (65 buildings) and 29.12 acres for rail spur easement were reported as excess to the General Services Administration. In 1959, this was withdrawn and the facility (minus two buildings that were transferred to the City) was transferred to the Air Force (Naval Construction Battalion Center 1974). The Air Force used the site as the Ottumwa Tracking and Data Acquisition Annex. The Air Force reported the rail spur easement and 42 buildings excess in 1964, and they were sold to the City shortly thereafter (Naval Construction Battalion Center 1974). In 1964, the USAR requested space for the Motor Repair Shop and Reserve Center. The USAR used an existing building until 1981, when a new building was constructed.

This facility includes the NAS dating to original construction and the U.S. Army Reserve Motor Repair Shop dating to 1964. While in operation, it consisted of 76 buildings, an aircraft landing field with two concrete runways, two asphalt landing mats, a rifle range, a concrete aircraft parking area, underground storage tanks (UST) that held fuel, a sewage system, hangers, and a water supply system (USACE 1991a).

According to the 2001 Pre-CERCLIS Site Screening Assessment report, businesses at the site at that time included Boys and Girls Town, a youth detention center, Al-Jon, Briggs Transportation, American Bottling, Roadway Package System, Norris Asphalt Paving Corporate Headquarters, Bakery Supply, a truck driving school, and Southeast Iowa Drug Task Force (Tetra Tech 2001).

The IHCC campus was located at the Ottumwa Airport from about 1966 to 1981, when the present campus was acquired. IHCC still operates aviation and truck-driving programs at the airport campus (IHCC 2006). No records regarding hazardous substances used at the facility were available for review.

2.4 **REGULATORY INVOLVEMENT**

Regulatory involvement at the site has included investigations of the Ottumwa (ex) NAS FUD site, including investigations of the Ottumwa (ex) Tracking and Data Acquisition Annex and the U.S. Army Reserve Motor Repair Shop. A number of businesses located at the Ottumwa Industrial Airport are regulated under RCRA; however, most of these facility records are not relevant to the previous site use by the DoD.

Previous regulatory involvement or investigations related to the site use by the DoD have included the following:

- USACE conducted a site visit on October 19 and 20, 1989. A Project Summary Sheet indicated a building had been constructed over two 100,000-gallon and two 25,000-gallon reinforced concrete USTs formerly used by the NAS. These tanks were part of a fuel hydrant system and were connected to seven pumping stations on the runway. In 1970, the property had been leased to Everco Industries, Inc., which poured a building foundation over the tank area but left a manhole between the USTs (USACE 1991a, b, c). In 1986, Moog Automotive purchased Everco. Moog hired a contractor to sample the USTs and install monitoring wells around them. The contractor excavated a 15- by 15-foot area around one of the 100,000-gallon tanks to about 8 feet below ground surface (bgs). Free product and gross soil contamination were encountered. Excavation stopped because of a highly volatile atmosphere. The excavation was backfilled with clean soil and the concrete patched. Analysis of soil samples indicated no metals or PCBs (USACE 1991b). In December 1990, the owner ceased the investigation and remediation activities with the understanding that the USACE would complete the work. The Project Summary Sheet recommended further environmental sampling and possible remediation for this area (USACE 1991b).
- In addition to the four USTs discussed above, four smaller (1,000-gallon to 3,000-gallon) USTs were discussed in the Site Survey Summary Sheet (USACE 1991c). The locations of these USTs were not specified, but appear to have been at the former location of the USAR Motor Repair Shop. Testing and possible removal of these USTs was recommended. A copy of a letter from the Department of the Army to the State of Iowa (dated as received by EPA on June 3, 1997) indicates that three 2,000-gallon USTs and associated piping were removed in March 1995. Levels of petroleum hydrocarbons in soil samples collected from the excavation were below regulatory limits (USACE 1997). The State issued a No Further Action letter for the site in August 1997 (Iowa Department of Natural Resources [IDNR] 1997).
- A letter report from Chemical Waste Management to Everco Corporation, dated February 14, 1990, summarized an investigation at the Everco Facility in December 1989. This letter indicates much of the information previously summarized by USACE. The letter indicates that 24 samples were collected for analysis of VOCs, PCBs, and Extraction Procedure (EP) Toxicity metals. PCBs were not detected above a detection limit of 5 parts per million (ppm), and VOCs were not detected above a detection limit of 100 ppm. Metals results for EP Toxicity were also below detection limits. A sample of waste solvent from Tank 1 indicated that trichloroethene (TCE), tetrachloroethene (PCE), and 1,1,1-trichloroethane (TCA) were present at concentrations of 0.29 to 0.43 percent by weight. Fuel oil compounds were also present in the sample (Chemical Waste Management 1990).
- A USACE memorandum dated August 17, 1992, discussed the contaminants detected from the Chemical Waste Management study of December 1989 and Environmental Resources Management studies of December 1990 and June 1992. According to this memorandum, soil Sample 1-A, located in the Tank 4 area, contained high levels of chlorinated hydrocarbons generally associated with cleaning and degreasing solvents. It also contained high levels of nonchlorinated hydrocarbons associated with cleaning solvents. Sample 3-A, from the manway area between Tanks 3 and 4, contained lower levels of chlorinated and non-chlorinated solvents. Both samples also contained low levels of fuel (gasoline or JP-4) compounds. The memorandum

indicated that two sets of water samples dated December 1990 and June 1992 had been collected for analysis. Sample Manhole 1 reportedly contained low levels of three VOCs typically associated with cleaning and degreasing solvents. The 1992 sample indicated high levels of seven of these VOC compounds. Low levels of semi-volatile organic compounds (SVOC) and high levels of TPH were also reported (USACE 1992).

The memorandum indicates that the Omaha District of the USACE met with Everco in June 1992. In this meeting, it was reported that plating wastes (lead, chromium, and solvents) may have been dumped into the tanks. The USACE concluded that the contamination found at this site was not consistent with DoD usage, but with the industrial uses of the present owner, Moog, and its predecessor, Everco. The USACE concluded that Everco (or Moog) should have notified IDNR upon becoming aware of the contamination at the site (USACE 1992). A March 8, 1993, letter to Iowa DNR from the USACE took the position that the contamination at the Everco/Moog facility was not the responsibility of the DoD and indicated that the USACE did not "intend to conduct or participate in the execution of any studies or remediation activities relating to the tanks located at the Everco/Moog site" (USACE 1993). The letter also indicated that Moog Inc. was a subsidiary of Everco.

- An October 4, 1993, letter from Paul Hartman of Moog Temperature Control Division (Moog) to the EPA Region 7 RCRA Iowa Section stated that upon word of the USACE's position, they developed a plan for evaluating the contents of the tanks. The letter indicated that final sampling of the tanks and six monitoring wells at the facility was completed in September 1993 and they were awaiting the report. Upon receipt of the report, plans would proceed for in-place tank closure (Moog Temperature and Control Division [Moog] 1993). Information available in the Iowa UST database indicates these tanks were closed in place in 1994 (IDNR 2006b).
- EPA performed a Pre-CERCLIS Screening Assessment Report for the Ottumwa Tracking Acquisition Annex in May 2001. The Pre-CERCLIS investigation concluded that further pre-remedial action may be warranted based on past operations and information regarding water management activities at similar DoD Army airfields (Tetra Tech 2001).
- On February 15, 2006, Tetra Tech contacted Mr. Tom Francis at the Ottumwa Industrial Airport. Mr. Francis indicated that the USTs at Everco/Moog had been cleaned and filled with grout for inplace closure. He indicated that during attempts to acquire fill material from a hill near the sewage treatment plant, airport personnel had encountered burned waste materials, and he suspected the area may have been used as a landfill for the former NAS (Tetra Tech 2006b). Mr. Francis also indicated he had maps showing the locations of specific areas of interest, such as the ammunition/pyrotechnics building and the shooting ranges. Mr. Francis also stated that the airport obtains water from the City, and that most of the residences in the area were connected to a rural water system (purchased from the City), but that some older farmsteads might still have wells (Tetra Tech 2006b).

3.0 INVESTIGATIVE EFFORTS

Section 3.0 discusses the PA field sampling and quality assurance (QA)/quality control (QC) activities performed at the Ottumwa (ex) NAS site.

3.1 PREVIOUS SAMPLING

• Previous sampling activities associated with UST removal or in-place closure have occurred at the site as discussed in Section 2.4. Because the contamination from the USTs was previously determined unrelated to DoD use, no further investigation was conducted in the immediate tank area. For this PA, several borings were placed in the surrounding area to determine whether contaminants had migrated away from the previously-investigated area.

3.2 SITE ASSESSMENT SAMPLING

The general objective of the PA was to determine whether any threats to human health or the environment exist as a result of releases to the soil exposure, groundwater migration, and surface water migration pathways. START team members (STM) Jenna Mead, Derrick Jones, and Quon Do conducted PA sampling activities on June 12 through 14, 2006. Mr. Tom Francis, the Airport Manager, provided assistance to START during utility location and in establishing sampling locations.

Field activities included collection of on-site soil, sediment, and surface water samples. A site-specific Quality Assurance Project Plan (QAPP) for PA activities developed by Tetra Tech START was submitted to EPA, and approved in May 2006 (Tetra Tech 2006a). Field activities were conducted in accordance with the approved QAPPs, except as noted below. Photographs documenting site activities are included in Appendix B. Sampling related activities were recorded in a logbook (see Appendix C).

Samples were delivered to the EPA Region 7 laboratory on June 14, 2006. The EPA activity number/analytical services request number was RKOTTEXNAS/3047. Field sheets and chain-of-custody records are included in Appendix D, and analytical results are included in Appendix E.

Quality Assurance/Quality Control

To ensure the credibility of sample collection, preparation, and analytical data, QA/QC sampling for the project was conducted according to protocols approved by EPA Region 7 for work at hazardous waste sites, in accordance with the site-specific QAPP submitted to EPA Region 7 on March 30, 2006. Tetra Tech START received the analytical results on July 25, 2006, with data validation completed by EPA Region 7 laboratory (see Appendix E).

QC sampling for this project consisted of the following: two water trip blanks, one soil trip blank, and one water field blank. Duplicate soil and surface water samples were collected. No equipment rinsate blank was collected because only disposable sampling equipment was used.

G9004/06.0002.006.007

For interpreting all analytical results, and as a guideline for determining significant matrix contaminant levels, sample results were compared to applicable health-based benchmarks, as published in the Superfund Chemical Data Matrix (SCDM) (EPA 2004b) and the EPA Region 9 preliminary remediation goals (PRG) (EPA 2004a).

Deviations From The Quality Assurance Project Plan

Tetra Tech START performed all work on this project in accordance with the site-specific QAPP, with the following exceptions:

- 1. No groundwater samples were collected from Geoprobe[®] temporary wells because groundwater was not present above the maximum penetration depth of 30 feet. Minor amounts of water trapped above a clay layer at about 14 to 16 feet bgs were found; however, these were insufficient to sample. Attempts were made to collect groundwater at locations SB-1, SB-6, and SB-10.
- 2. An additional soil sampling location was added to the 10 locations proposed in the QAPP. This additional location was a 0.5- to 2-foot sample collected from the debris burial area. A 30-foot boring was originally planned for this location; however, Geoprobe[®] access would have caused significant damage to a cultivated corn field. Therefore, a hand-dug boring was placed at the debris burial area and the deep boring was placed about 1,000 feet south-southwest, at the vehicle path to the field. This deep boring location was also lower in elevation, increasing the chance of encountering groundwater.

3.2.1 Soil Sampling

Based on previous investigations, site reconnaissance observations, and background information about the site, a biased or judgmental sampling scheme was followed to select source sampling locations on site. Sampling locations are illustrated on Figure 4 (see Appendix A). Table 1 summarizes the soil samples.

Soil samples were collected from 11 locations including a background location. At four locations, samples were collected only from hand-dug holes at 0.5 to 2 feet bgs. Three of these locations (SB-3, -4, and -5) were in areas where any contamination would likely be confined to surficial soils (ammunition storage and rifle or skeet ranges). The fourth location (SB-2) was at the debris burial area identified by Mr. Francis. Access to this location was by crossing cultivated corn fields. The shallow sample was collected by hand to avoid crop damage from the Geoprobe[®] truck driving across the corn field. An additional deep boring location (SB-1) was placed along the vehicle path from the paved road to the field. Borings in or downgradient of the facility were typically sampled from 12 to 14 feet bgs, as well as from 0.5 to 2 feet bgs. Frequently, a saturated clay layer was encountered around 14 to 16 feet bgs; however, insufficient water was present to sample. Only SB-9, located near the former Motor Repair Facility (currently Al-Jon),

had detectable odors or organic vapors. This sample was collected from 10 to 12 feet bgs based on the presence of a petroleum odor and a photoionization detector (PID) reading of 56.6 ppm.

TABLE 1

SOURCE SOIL SAMPLE SUMMARY OTTUMWA (EX) NAS SITE, OTTUMWA, IOWA JUNE 2006

EPA Sample, Number	Location,	Borehole Number	Depth (ft bgs)	Sample, Date S.	Samples Time
3047-1		SB-1	0.5 - 2	6/12/06	15:15
3047-2	Near entrance to sewage treatment plant	3D-1	12 - 14	6/12/06	15:50
3047-3	Debris burial area	SB-2	0.5 – 2	6/12/06	16:45
3047-4	North end of ammunition/rifle range area	SB-3	0.5 – 2	6/12/06	18:25
3047-5	South end of ammunition/rifle range area	SB-4	0.5 – 2	6/13/06	7:50
3047-6	Skeet range	SB-5	0.5 – 2	6/13/06	8:10
3047-7	City-owned alfalfa field east-southeast of	SB-6	0.5 – 2	6/13/06	10:25
3047-8	bottling plant and southwest of warehouse	3D-0	12 – 14	6/13/06	10:40
3047-9	Between former rail spur and 1st Avenue,		0.5 – 2	6/13/06	12:50
3047-9FD	northwest of 5th Street	SB-7	0.5 – 2	6/13/06	12:50
3047-11		-	12 – 14	6/13/06	13:15
3047-12	City easement southwest of bottling plant	SB-8	0.5 – 2	6/13/06	14:20
3047-13	City casement southwest of botting plant	5D -6	12 - 14	6/13/06	14:40
3047-14	Easement north of intersection of 2nd Avenue	SB-9	0.5 - 2	6/13/06	15:20
3047-15	and 8th-Street by former Motor Repair	30-9	10 - 12_	6/13/06	15:40
3047-16	Southeast of Airport Terminal, across	SB-10	0.5 – 2	6/13/06	16:30
3047-17	Terminal Street	30-10	12 - 14	6/13/06	17:00 ⁻
3047-18	Background location; north of Terminal	SB-11	0.5 - 2	6/13/06	17:45
3047-19	Avenue near entrance sign from Airport Road	30-11	12 - 14	6/13/06	18:05

Notes:

EPA	U.S. Environmental Protection Agency	ft bgs	Feet below ground surface
FD	Field duplicate	SB	Soil boring

Nineteen soil samples (including one duplicate sample) were submitted to EPA Region 7 laboratory to be analyzed for VOCs, TPH, metals, perchlorate, PCBs, explosives, and percent solids. Duplicate samples and extra volume for matrix spike and matrix spike duplicate (MS/MSD) analysis were collected for QC purposes. For each soil sample, 5 grams of soil were placed into two 40-milliliter (mL) vials preserved with sodium bisulfate. Two additional 40-mL vials were filled with soil. The vials were submitted for VOC analysis and percent solids. Two more 40-mL vials were filled for purgeable TPH analysis. In addition, three 8-ounce (oz) jars were filled and submitted for analyses of extractable TPH, perchlorate,

metals, explosives, and PCBs. Samples were placed into a cooler containing ice, where they were stored at or below 4 degrees Celsius (°C) pending submittal to EPA Region 7 laboratory.

Analytical Data Summary

Table 2 presents a summary of the VOCs and TPH detected in soil samples.

TABLE 2

ANALYTICAL DATA SUMMARY FOR VOCS AND TPH IN SOIL SAMPLES OTTUMWA (EX) NAS SITE, OTTUMWA, IOWA **JUNE 2006**

EPA Sample Number	Borehole Number	Depth (ft bgs)	Purgeable TPH (µg/kg)	Extractable TPH (µg/kg)	Acétone (µg/kg)	Carbon Disulfide (µg/kg)	2-butanone µg/kg)
3047-1	SB-1	0.5 – 2	ND	180,000	ND	ND	ND
3047-2	_ 5D- 1	12 - 14	NĎ	32,000	ND	ND	ND
3047-3	SB-2	0.5 – 2	ND	20,000	35	ND	ND
3047-4	SB-3	0.5 – 2	ND	ND	55	15	ND
3047-5	SB-4	0.5 - 2	ND	21,000	93	ND	ND
3047-6	SB-5	0.5 – 2	ND	37,000	85	ND	ND
3047-7	SB-6	0.5 – 2	ND	25,000	ND	ND	ND
3047-8	30-0	12 - 14	ND	11,000	38	ND	ND
3047-9		0.5 – 2	ND	21,000	ND	ND	ND
3047-9FD	SB-7	0.5 - 2	ND	31,000	ND	ND	ND
3047-11		12 – 14	ND	10,000	ND	ND	ND
3047-12	SB-8	0.5 - 2	ND	14,000	ND	ND	ND
3047-13	50-0	12 - 14	ND	15,000	ND	ND	ND
3047-14	SB-9	0.5 – 2	ND	9,900	ND	ND	ND
3047-15	30-9	10 - 12	1,600 J	14,000	1,700	ND	5,800
3047-16	SB-10	0.5 – 2	ND	13,000	ND	ND	ND
3047-17	30-10	B-10 12 - 14 ND		4,800 ND		ND	ND
3047-18	SB-11	SB-11 0.5 - 2 ND ND		ND	160	ND	14
3047-19	(BKG)	12 - 14	ND	ND	ND	ND	ND
	SCDM RfD		None	None	- 70M -	7.8M	47M
	SCDM CR		None	None	None	None	- None 🦉 -
EPA Reg	ion 9 PRG (Ir	idustrial)	None	None	54M	720,000	110M

Notes:

BKG Background sample

- Cancer risk from SCDM CR
- U.S. Environmental Protection Agency EPA Feet below ground surface
- ft bgs
- Field duplicate FD J
- Estimated concentration µg/kg Micrograms per kilogram

- Μ Million
- ND Compound not detected
- PRG Preliminary remedial goal - residential soils
- RfD Reference Dose from SCDM
- Soil boring SB
- Superfund Chemical Data Matrix SCDM

G9004/06.0002.006.007

No explosives, PCBs, or perchlorate were detected in any of the soil samples. Acetone, a common laboratory contaminant, was detected in seven of the 19 samples, and 2-butanone was detected in two samples. Carbon disulfide was detected in the sample from SB-3 at a concentration of 15 micrograms per kilogram (μ g/kg). These VOC concentrations were all below any health-based risk levels. Purgeable TPH was detected at an estimated 1,600 μ g/kg in the sample 3047-15, collected from SB-9 at 10 to 12 feet bgs. This sample was collected downgradient of the former motor repair facility (now Al-Jon) and was noted to have a fuel odor and elevated PID reading (56.6 ppm) during sampling. Extractable TPH was reported at concentrations of 4,800 μ g/kg to 180,000 μ g/kg in 15 of the 19 soil samples. No health-based benchmark levels are available for TPH.

Table 3 presents the metals concentrations for the soil samples. Arsenic was detected at concentrations in excess of its EPA Region 9 residential PRG and SCDM cancer risk (CR) benchmarks in the five samples where it was reported; however, these concentrations are similar to that in the background sample. Therefore, the reported arsenic concentrations are likley naturally occurring levels and not related to former site use by the DoD. The iron concentrations in three samples exceeded the 23,000 milligrams (mg)/kg PRG; however, these concentrations did not exceed three times the background concentrations. Consequently, they are also considered to be representative of background conditions. The mercury concentration reported for sample 3047-9 (SB-7, 0.5 to 2 feet bgs) exceeded three times the background concentrations in the concentrations reported for the background sample. The mercury concentration in sample 3047-9 did not exceed any health-based benchmarks. No other metals concentrations exceeded their Region 9 PRGs, SCDM benchmarks, or three times background. The common metals calcium, potassium, magnesium, and sodium were detected but are not included in Table 3.

3.2.2 Groundwater Sampling

Groundwater was not encountered above the maximum penetration depth of 30 feet in Geoprobe[®] borings. The airport and surrounding area use Des Moines River surface water supplied by or purchased from the Ottumwa Water Works. A survey of the area was made in an attempt to locate any nearby water wells that might be used for drinking; however, none were identified. One water field blank and one water trip blank were submitted to the EPA Region 7 laboratory for analysis.

TABLE 3

METALS DATA FOR SOIL SAMPLES OTTUMWA (EX) NAS SITE, OTTUMWA, IOWA JUNE 2006

EPA Sample	3047-1	3047-2	3047-3	3047-4	3047-5	3047-6	,3047-7	3047-8	3047-9	3047-9FD	3047-11	3047-12	3047-13	3047-14	3047-15	3047-16	3047-17	3047-18	3047-19			
Boring (ft bgs)	SB-1 (0.5-2)	SB-1 (12-14)	SB-2 (0.5-2)	SB-3 (0.5-2)	SB-4 (0.5-2)	SB-5 (0.5-2)	SB-6 (0.5-2)	SB-6 (12-14)	SB-7 (0.5-2)	SB-7 (0.5-2)	SB-7 (12-14)	SB-8 (0.5-2)	SB-8 (12-14)	SB-9 (0.5-2)	SB-9 (10-12)	SB-10 (052)	SB-10 (12-14)	SB-11 (0.5-2) BKG	SB-11 (12-14) BKG	14)		lues
Analyte								Concent	ration in m	illigrams p	er kilogram	(mg/kg)		· ·						PRG	, R/D	CR
Mercury	0.059	0.047	0.053	0.022	0.041	0.029	0.069	0.045	0.106	0.047	0.034	0.040	0.017	0.044	0.022	0.052	0.028	0.033	0.031	23	23 ;:	• None
Aluminum	11,100 J	9,560	14,700	4,970	12,100	12,800	16,500	10,300	17,800	12,500	18,600	, 12,200	12,500	15,500	13,600	13,200	13,000	14,100	10,500	76,000	, None	None.
Antimony	ND	2.01	ND	ND	ND	ND	ND	31),	31	None												
Arsenic	ND	ND	ND	ND	7.64	5.84	ND	10.3	ND	11.3	6.96	9.90	ND	0.39	23	0.43						
Barium	205	189	216	217	296	. 217	21/5	262	311	206	159	231	159	273	259	235	215	247	211	5,400	5,500	None
Beryllium	ND	ND	ND	ND	ND	1.02	ND	ND	1.26	ND	ND	ND	1.06	1.26	1.05	1.26	1.07	1.12	ND	150	160	None
Chromium *	13.3 -	13.5	17.2	5.31	13.2	14.4	18.0	15.6	17.4	13.8	16.6	14.1	11.1	18.6	_ 11.1	16.2	12.7	15.6	10.9	30"	230	None
Cobalt	4.69	2.59	3.09	2.71	8.96	8.53	4.41	12.6	14.7	5.89	2.68	4.94	8.26	12.8	8.68	18.8	12.6	19.5	23.1	900	None	None
Copper	15.0	13.5	15.6	8.94	14.2	12.6	16.5	20.5	21.1	13.7	8.45	12.5	. 9.98	26.0	7.18	27.7	11.1	19.4	12.3	3,100	None	None
lron	16,300 J	8,520	20,200	13,200	18,800	16,800	19,600	21,900	25,100	16,400	16,500	12,700	9,700	25,200	36,400	21,200	22,900	21,100	16,300	23,000	None	None
Lead	14.0	8.87	8.53	12.2	22.2	17.8	11.7	19.1	17.8	11.1	14.8	12.1	31.3	23.3	13.7	23.0	15.7	37.9	12.7	400	None	None
Manganese	181 J	51.8	132	372	998	709	253	1,260	808	361	36.2	142	292	1,140	1,250	697	904	1,380	1,450	1,800	11,000	. None
Nickel	.11.1	9.94	17.5	9.58	13.6	13.4	13.8	30.8	27.8	12.3	6.30	11.7	7.39	30.3	9.14	35.7	14.3	22.3	15.3	1,600	1,600	None
Selenium	ND	ND	11.2	ND	10.4	ND	10.4	ND	ND	390	390	None										
Vanadium	28.9	11.5	29.5	13.7	30.8	34.4	29.4	33.1	33.8	29.5	46.7	22.6	ND	ND	ND	ND	62.1	38.6	36.5	78	550	None
Zinc	28.8 J	42.8	35.3	137	42.9	37.2	46.5	46.1	54.0	40.2	10.7 -	27.2	10.5	49.4	ND	50.3	18.7	77.3	22.1	23,000	;23,000	None

Notes:

Boldface type indicates concentration exceeds a benchmark value. Benchmark concentrations for Chromium VI are provided

BKG

Background sample location Cancer Risk Screening Concentration from SCDM CR

EPA U.S. Environmental Protection Agency

Field duplicate Estimated value FD

J

ft bgs Feet below ground surface mg/kg Milligrams per kilogram PRG Preliminary remediation gos

Preliminary remediation goal - residential soil RfD

Reference Dose Screening Concentration from SCDM Soil Boring

SB

SCDM Superfund Chemical Data Matrix ND Compound not detected

3.2.3 Surface Water and Sediment Sampling

During this investigation, two surface water (SW) and collocated sediment (SED) samples were collected from streams flowing southward and northward from the former NAS facility. Duplicate surface water and sediment samples were collected from the south flowing stream. Two additional sediment samples (including the background sample) were collected from the dry drainageway north of the site (upstream of the collated sediment and surface water sample). SED-1 was collected near the burial area and SED-2 (background) was collected upstream of drainages from facility operations other than the runways. Surface water and sediment sampling locations are illustrated in Figure 4 in Appendix A.

Surface water samples were collected by submerging the sample containers or by transferring water from one container to another as needed to fill the sample container. Four 40-mL vials preserved with hydrochloric acid were submitted for VOC analysis, and two additional 40-mL vials were submitted for purgeable TPH analysis. Two 128-ounce containers were submitted for explosives, PCBs; and extractable TPH analysis. Two 1-liter containers were submitted for perchlorate and metals analysis. Metals samples were preserved with nitric acid following sample collection.

Sediment samples were collected for standard VOC analysis in two 40-mL vials. Two additional 40-mL vials were collected for TPH analysis, and three 8-oz glass jars were collected for metals, perchlorate, explosives, and PCBs analysis. Immediately after the containers were filled, they were capped and placed into a cooler containing ice, where they were stored and maintained at or below 4°C pending delivery to the EPA Region 7 laboratory.

Analytical Data Summary

Surface water and sediment samples were analyzed for VOCs, perchlorate, metals, TPH, and PCBs. Table 4 presents a summary of the analytical data for the sediment samples, and Table 5 presents the analytical data for the surface water samples. The common metals calcium, sodium, magnesium, and potassium were also detected in the samples, but are not included in the tables.

No explosives, VOCs, PCBs, perchlorate, or purgeable TPH were reported in the sediment samples. Extractable TPH was detected at 100 mg/kg in SED-3 and at 72 mg/kg in its duplicate. This compound was not reported (at or above its detection limit of 49 mg/kg) in the background sample. This indicates a release of TPH to the surface water has occurred. The common laboratory contaminant acetone was also reported in the SED-3 sample and duplicate at 8.8 µg/kg and 6.3 µg/kg, respectively.

TABLE 4

ANALYTICAL DATA SUMMARY FOR SEDIMENT SAMPLES OTTUMWA (EX) NAS SITE, OTTUMWA, IOWA JUNE 2006

		EPA Sample	Number, Name, a	nd Reported Cond	centrations						
Compound	3047-22 SED-1 (Northern Drainage)	3047-24 SED-3 (South flowing stream)	(South flowing stream)	SED-4 (North flowing stream)	3047-23 SED-2* (BKG)	Three Times Background					
		Volatile C	Organic Compoun	ds (µg/kg)							
Acetone	ND	8.8	6.3	ND ·	ND (5)	ND					
		Total Petro	leum Hydrocarb	ons (mg/kg)							
Extractable TPH	ND	100	72	[,] ND	ND (49)	ŅD					
Metals (mg/kg)											
Mercury	0.028	0.078	0.086	0.027	0.027	0.081					
Aluminum	13,200	7,210	5,250	10,700	10,800	32,400					
Barium	180	168	96.6	188	173	519					
Cadmium	ND	· ND	2.32	ND	ND (1)	ND					
Chromium	14.7 J	18.5 J	13.2 J	11.5 J	12.9 J	38.7					
Cobalt	6.52	11.6	6.47	7.25	3.06	9.18					
Copper	14.2	29.6	31.5	12.9	12.6	37.8					
Iron	17,800	15,700	19,200	14,000 J	13,100	39,300					
Lead	17.4	165	51.8	16.5	12.4	37.2					
Manganese	580	1,000	450	749	253	759					
Nickel	14.8	18.3	13.1	13.5	12.4	37.2					
Selenium	ND	16.5	13.0	ND	ND (10)	ND					
Vanadium	32.0	21.3	13.9	29.6	24.1	72.3					
Zinc	53.2	162	188	38.9	39.1	117.3					

Notes:

Boldface type indicates sample concentrations significantly elevated (three times) relative to the background concentration. EPA U.S. Environmental Protection Agency

J Laboratory code indicating the reported value is an estimate

ND Compound not detected (detection limit provided for background sample)

µg/kg Micrograms per kilogram

mg/kg Milligrams per kilogram

SED Sediment

TPH Total petroleum hydrocarbons

BKG Background

FD Field duplicate

Metals concentrations in the two sediment samples from the northern portion of the facility (SED-1 and SED-4) did not exceed three times the concentrations found in the background sample (SED-2). Sample

G9004/06.0002.006.007

SED-3 and/or its duplicate, collected from the southern drainage at 150th Street, contained several compounds at levels in excess of three times background levels. These compounds are: mercury, lead, manganese, selenium, and zinc. In addition, the copper concentrations in SED-3 (29.6 mg/kg) and its duplicate (31.5 mg/kg) exceeded twice the background concentration (12.6 mg/kg). Selenium, not detected in the background sample, was detected at 16.5 mg/kg in sample SED-3 and at 13 mg/kg in the duplicate.

TABLE 5

ANALYTICAL DATA SUMMARY FOR SURFACE WATER SAMPLES OTTUMWA (EX) NAS, OTTUMWA, IOWA JUNE 2006

	Benchm	ark Values	EPA Sample N	umber, Name, and	Concentrations
			2986-301	2986-301FD	2986-3031
Compound	Acute CMC	Chronic	SW-3# (South flowing // stream)	SW-3 (South flowing stream)	SW-4 (North flowing stream)
	Tó	tal Petroleum H	lydrocarbons (µg/l	5	
Extractable TPH	None	None	120	110	120
		· 🖉 🙀 Metal	s (µg/L)		1. 非合物的态
Aluminum	750	87	156	160	7,410
Barium	None	None	178	175	299
Copper	13	9	ND	ND	5.25
Iron	None	1,000	296	292	7,410
Manganese	None	None	90.3	88.8	649
Titanium .	None	None	ND	ND	107
Vanadium	None	None	ND	ND	20.6
Zinc	120	120	ND	ND	30.5

Notes:

Value in boldface type exceeds a benchmark.

CMC Critical Maximum Concentration from SCDM

CCC Criterion Continuous Concentration from SCDM

EPA U.S. Environmental Protection Agency

FD Field duplicate

ND Compound not detected

µg/L Micrograms per liter

SW Surface water

SCDM Superfund Chemical Data Matrix

TPH Total petroleum hydrocarbons

Surface water samples were collected from unnamed streams flowing north and south of the former facility. A duplicate sample was also collected from the south flowing stream. No explosives, VOCs, PCBs, perchlorate, or purgeable TPH was reported in the surface water samples. Extractable TPH was reported for both samples (SW-3 and SW-4) at 120 µg/L and in the duplicate (SW-3D) at 110 µg/L. The

metals concentrations for the north flowing stream sample (SW-4) were much higher compared to the south flowing stream samples (SW-3 and SW-3D). The aluminum and iron concentrations in SW-4 exceeded the ecological benchmark concentrations; however, these high concentrations are likely related to a higher sediment content in SW-4.

4.0 HAZARD RANKING SYSTEM FACTORS

This section discusses the sources of contamination and the various contaminant migration pathways evaluated under the Hazard Ranking System.

4.1 SOURCES OF CONTAMINATION

Soil samples were collected downgradient from potential contaminant source areas identified from facility records—including firing ranges, USTs, and a burial/dump area. No contaminants other than iron and arsenic were detected in surficial soils at concentrations above benchmark values. Because the concentrations of these metals did not exceed three times background levels, they likely represent naturally occurring conditions.

Purgeable TPH was detected at an estimated 1,600 μ g/kg in the sample 3047-15, collected from SB-9 at 10 to 12 feet bgs. This sample was collected downgradient of the former motor repair facility (now Al-Jon) and was noted to have a fuel odor and elevated PID reading (56.6 parts per million) during sampling. Extractable TPH was reported at concentrations of 4,800 μ g/kg to 180,000 μ g/kg in 15 of the 19 soil samples. No health-based benchmark levels are available for TPH.

4.2 GROUNDWATER PATHWAY

Section 4.2 discusses the hydrogeologic setting, groundwater targets, and conclusions. Groundwater was not encountered at the site, and no active drinking water wells were identified in the area. Consequently, no groundwater samples were collected during this investigation.

4.2.1 Hydrogeological Setting

Wapello County is in the Southern Iowa Groundwater Province, which is considered as having poor groundwater resources. Review of the IDNR Geological Survey registered wells database indicates about 40 feet of glacial drift is present in the site area (IDNR 2006a). The glacial drift overlies lower and middle Pennsylvanian-age Cherokee Group and Caseyville Formation bedrock (IDNR 2004). The primary lithology of the Pennsylvanian bedrock is shale, and this serves as an aquiclude. Below the Pennsylvanian bedrock lies the Mississippian aquifer, which consists of limestones, dolomites, and some interbedded sandstones. The depth to the top of this aquifer is somewhere between 140 and 190 feet bgs. The database indicated only 74 registered wells within a 4-mile radius of the site. Static water levels were generally between 50 and 100 feet bgs, with the main waterbearing units indicated at depths of 100 to 300 feet bgs (IDNR 2006a).

The Pennsylvanian rocks are generally considered as an aquitard; however, local occurrences of limestone and sandstone can occasionally act as aquifers. The underlying Mississippian carbonates can act as an aquifer in areas where the Pennsylvanian is absent. In southern and southeastern Iowa, the underlying Cambrian-Ordovician sandstone aquifers have been used for decades by towns and industries as the only adequate and reliable water supply. Because of the generally poor groundwater resources in the area, rural water districts have decreased reliance on this aquifer (IDNR 2004, Prior and others 2003). Quaternary alluvium, glacial drift, and buried alluvial valleys also act as aquifers. Water quality in buried alluvial valleys tends to be more mineralized than in shallow alluvial deposits (Prior and others 2003).

4.2.2 Groundwater Targets

The 2000 census data indicate that the population within 4 miles of the site is 2,137 persons (Mable/Geocorr Geographic Correspondence Engine Output 2006). Of those, over half are located between 3 and 4 miles from the site, roughly corresponding to the outskirts of the City of Ottumwa, which has a population of 24,998 (U.S. Census Bureau 2006). Census information indicated no residents within 0.25 mile of the site center and 10 residents between 0.25 and 0.5 mile from the site center. The 2000 census data indicate that 37 persons reside between 0.5 and 1 mile; 232 persons are located between 1 and 2 miles; and 261 people are between 2 and 3 miles of the site. The population between 3 and 4 miles of the site is 1,597.

Approximately 25,000 residents of the City of Ottumwa are supplied by surface water from the Des Moines River (EPA 2006b). The EPA's Safe Drinking Water Website indicates that only one public water supply (PWS) in Wapello County—Eddyville, at the northwest corner of the county and outside of the 4mile distance area—is supplied by groundwater. All others are supplied by surface water (Ottumwa Water Works) or purchased surface water (all others). The largest PWS other than the Ottumwa Water Works is the Wapello Rural Water Association, serving a population of 10, 690. The Ottumwa Water Works has a pumping station at the airport and provides water to that facility. The Wapello Rural Water Association provides water purchased from the City to the residences and businesses surrounding the airport (Tetra Tech 2006b).

G9004/06.0002.006.007

An attempt was made to locate active drinking water wells around the site; however, all nearby residents were served by the rural water district. Residents at several older homes or farmsteads were asked if they had an active well or knew of anyone who did; however, no wells were identified. Area residents that previously relied on private wells indicated that their wells had last been used between about 2 and 25 years ago.

4.2.3 Groundwater Pathway Conclusion

Groundwater is not typically used for drinking in the site area; therefore, this pathway poses minimal threat to nearby human health and the environment.

4.3 SURFACE WATER PATHWAY

Section 4.3 discusses the hydrology, targets, sample summary, analytical data summary, and conclusions drawn from the analytical data for the samples collected to assess the surface water pathway. Surface water and sediment samples were collected from drainage pathways to determine the presence and extent of contamination that might have come from the site.

4.3.1 Hydrological Setting

Wapello County receives about 33 inches annual precipitation. The site is located on a flat to gently sloping topographic high between the Des-Moines River and Cedar-Creek. Intermittent tributaries surround the site and collect surface runoff. The nearest perennial stream is Comstock Creek, which becomes perennial about 1 mile west of the runway cross. Comstock Creek flows into the Des Moines River, which flows southeast and is located about 3 miles southwest of the airport. The 15-mile Target Distance Limit (TDL) for this drainage pathway would end in the Des Moines River near the southern edge of the City of Ottumwa. Because the probable point of entry (PPE) for this pathway receives runoff only from the agricultural, western portion of the runway area, the stream was not sampled during this investigation.

Drainage at the southern portion of the site is to Little Cedar Creek. The PPE, where the stream becomes perennial, is about 2 miles east-southeast of the property boundary. This creek flows southeast from the facility, then turns to the northeast to discharge into Cedar Creek. Drainage from the northern portion of the site is into unnamed tributaries of Cedar Creek. Based on the topographic map, the PPE would be about 2 miles northeast of the facility. Cedar Creek flows southeast paralleling the Des Moines River through neighboring Jefferson County and discharges into the Skunk River in Henry County. The Cedar

Creek 15-mile TDLs would end in eastern Wapello County, northeast of the community of Bladensburg. Because of the distances from the site to the first perennial streams, sample locations were selected from the drainageways leading to these PPE. Both of these drainageways contained surface water during the investigation; however, the surface water is likely derived largely from irrigation tail water or discharge from industrial or treatment operations at the airport.

4.3.2 Surface Water Targets

No known drinking water intakes exist within the Cedar Creek 15-mile TDL. The City of Ottumwa surface water intakes are present within the 15-mile TDL along the Des Moines River; however, this surface water pathway was not evaluated because it receives runoff only from the agricultural western portion of the airfield. The USGS National Map shows numerous freshwater forested/shrub wetlands and several small freshwater emergent wetlands along Cedar Creek at and downstream of the PPE (USGS 2006). A few small wetlands are also present along Little Cedar Creek (USGS 2006). No wetlands or sensitive environments were identified at or near the site.

4.3.3 Surface Water Pathway Conclusion

No explosives, VOCs, PCBs, perchlorate, or purgeable TPH were reported in the surface water or sediment samples. Extractable TPH was detected in SED-3 at 100 mg/kg (72 mg/kg in its duplicate). Extractable TPH was also detected in the two surface water samples at 120 µg/L. These data indicate a release of TPH has occurred. Aluminum and iron were detected at concentrations exceeding ecological benchmarks in the surface water sample collected from the north flowing stream; however, these metals are likely related to a high sediment content in the sample.

The sediment sample (SED-3) and/or its duplicate sample collected from the southern drainage at 150th Street contained concentrations of mercury, lead, manganese, selenium, and zinc that exceeded three times the background levels of these compounds. Surficial soil samples collected at or downgradient of potential source areas at the former NAS facility did not indicate any elevated levels of these metals. It is unknown whether these elevated metals may be related to past DoD use or to other past or current agricultural or industrial operations. Elevated metals concentrations could negatively impact wetlands downstream of the facility.

G9004/06.0002.006.007

4.4 SOIL EXPOSURE AND AIR PATHWAY

Section 4.4 discusses the physical conditions, soil and air targets, soil sampling summary, analytical data summary, and conclusions drawn from the analytical data for the soil samples collected from the suspected source areas. Soil samples were collected at the identified potential source areas, but air samples were not collected because actual or potential contamination to the air migration pathway was not considered significant.

4.4.1 Physical Conditions

The site is a former NAS currently serving as the Ottumwa Industrial Airport and business park. The developed portion of the site is largely located east of where the runways cross. Older buildings in this area date to its use as a NAS in the 1940s. A number of older buildings, particularly in the section of the site owned by IHCC, have been demolished and some of these areas are now being farmed or are mowed for hay.

The U.S. Department of Agriculture (USDA) has classified soil in the area as Taintor silty clay loam with some Mahaska silty clay loam (USDA 1976). The Taintor soil type is described by the USDA as a nearly level, poorly drained soil found on broad flats in the loess-covered uplands. The Mahaska soil type is described as nearly level, somewhat poorly drained soil found on narrow flats and the outward edges of moderately broad to broad flats in the loess-covered uplands. The Mahaska-Taintor soil association, which formed in loess under native vegetation, is nearly level or gently sloping. This soil association has low permeability and thus a relatively high runoff volume (Tetra Tech 2001).

4.4.2 Soil and Air Targets

American Bottling, Al-Jon, and NAP are the major employers at the Ottumwa Industrial Airport (Tetra Tech 2006b). Approximately 300 to 400 people work at the airport, with about 200 of those working multiple shifts at the bottling plant and 100 working at Al-Jon. No official residences are located at the airport; however, during the PA it appeared that an auto repair business might be serving as a residence for a family with small children. As described in Section 4.2.2, the total population within the 4-mile target distance limit is approximately 2,137 persons (Mable/Geocorr Geographic Correspondence Engine Output 2006). Of those, over half are located between 3 and 4 miles from the site, roughly corresponding to the outskirts of the City of Ottumwa, which has a population of 24,998 (U.S. Census Bureau 2006). Census information indicated no residents within 0.25 mile of the site center and 10 residents between 0.25 and 0.5 mile from the site center. The 2000 census data indicate that 37 persons reside between 0.5 and 1 mile;

G9004/06.0002.006.007

232 persons are located between 1 and 2 miles; and 261 people are between 2 and 3 miles of the site. The population between 3 and 4 miles of the site is 1,597.

4.4.3 Soil Exposure and Air Pathway Conclusions

Analytical results for the shallow surface soil samples indicate extractable TPH was detected in 10 of the 12 surface soil samples (including a duplicate sample) at concentrations of 9,900 µg/kg to 180,000 µg/kg. No health-based benchmarks have been developed for comparison to TPH concentrations. Low concentrations of a common laboratory contaminant, acetone, were reportedly detected in two soil samples, and carbon disulfide was reported at 15 µg/kg in one sample. No VOCs exceeded any applicable benchmark concentrations. Metals concentrations in the samples did not exceed three times the concentrations detected in the background sample. Arsenic concentrations exceeded benchmark levels in all samples where it was detected, including the background sample. Iron concentrations do not exceed three times the concentrations reported in the background sample, they are considered to represent naturally occurring levels.

No air pathway samples were collected because actual or potential contamination to the air migration pathway was not considered significant.

5.0 EMERGENCY RESPONSE CONSIDERATIONS

The National Contingency Plan [40 Code of Federal Regulations 300.415 (b) (2)] authorizes the EPA to consider emergency response actions at those sites that pose an imminent threat to human health or the environment, For the following reasons, a referral to EPA's Emergency Response Office does not appear to be necessary:

- Groundwater is not used for a drinking water supply in the area. On-site workers are supplied with potable water by the Ottumwa Water Works, which has a surface water intake from the Des Moines River. Nearby residents are supplied by the Wapello Rural Water Association, which purchases water from the City of Ottumwa.
- No significant release of contaminants has been documented at the Ottumwa (ex) NAS site. Although concentrations of mercury, lead, manganese, selenium, and zinc detected in a sediment sample and its duplicate were significantly elevated relative to background, these metals were not elevated in soil samples collected at or downgradient of potential source areas. Soil samples contained arsenic and iron concentrations exceeding health-based benchmarks; however, these concentrations were similar to those in the background sample and are therefore considered to be naturally occurring. Extractable and purgeable TPH were detected in numerous samples, but no

federal health-based benchmarks are available for comparison. Additionally, TPH releases are generally excluded from response actions under CERCLA.

6.0 SUMMARY

The Ottumwa (ex) NAS site is located about 5 miles north of the City of Ottumwa in Wapello County, Iowa. The former Ottumwa NAS was commissioned in March 1943. In June 1945, the site included 76 buildings, an aircraft landing field with two concrete runways, asphalt landing mats, and a concrete aircraft parking area. A rifle range, skeet range, and ammunition storage were also on site. In 1947, the property was leased to the City of Ottumwa for use as a public airport. In 1957, title to the land—not the improvements—reverted to the City. From about 1959 to 1964, the facility was used by the Air Force as the Ottumwa Tracking and Data Acquisition Annex. In 1964, the facility improvements were sold to the City; however, the USAR requested space for a Motor Repair Shop and Reserve Center. The USAR used an existing building until 1981, when a new building was constructed. The site currently currently serves as the Ottumwa Industrial Airport. Much of the northern portion of the site is owned by IHCC, which formerly used buildings in the area for its campus. Much of this area is now farmed or mowed for hay. Much of the southern part of the property is a business park. Main employers on site are the American Bottling Company, Al-Jon, Inc., and Norris Asphalt and Paving.

Because no records were available regarding hazardous substances used at the facility, a variety of contaminants associated with typical operation and maintenance at DoD facilities—including fuels, solvents, VOCs, metals, and PCBs—were considered as possibly released. This investigation was performed to evaluate the presence and extent of site-related contaminants and to determine the impact on human health and the environment. During the PA, the potential source areas, groundwater migration, surface water migration, soil exposure, and air migration pathways were assessed.

Soil samples were collected from one background location and 10 soil borings at or downgradient of potential source areas. No contaminants other than iron and arsenic exceeded health-based benchmarks. Because the iron and arsenic concentrations did not exceed three times the concentrations reported in the background sample, they are considered to represent-naturally occurring levels. Groundwater was not encountered at the site, and no active drinking water wells were identified in the area. Consequently, no groundwater samples were collected during this investigation. Drinking water for the site facilities and nearby residents is supplied by surface water intakes from the Des Moines River.

The site is situated on a flat to gently sloping topographic high with drainage generally to the north, south, and west. The western surface water pathway was not evaluated because it receives drainage only from the G9004/06.0002.006.007 22

undeveloped (other than runways) western portion of the facility. Drainage from the developed portion of the site is southward to Little Cedar Creek. This creek flows southeast from the site, then turns to the northeast to discharge into Cedar Creek. Cedar Creek flows southeast paralleling the Des Moines River through neighboring Jefferson County and discharges into the Skunk River in Henry County. Drainage from the northern portion of the site is into unnamed tributaries of Cedar Creek. Both of these drainages contained surface water during the investigation. The surface water sample from the northern drainage contained aluminum and iron concentrations in excess of ecological benchmarks; however, these concentrations are believed related to the high sediment content of the sample. Concentrations of mercury, lead, manganese, selenium, and zinc detected in a sediment sample and its duplicate were significantly elevated relative to background; however, these metals were not elevated in soil samples collected at or downgradient of potential source areas. Consequently, it is uncertain whether the source for these elevated metals is related to former DoD operations or to current industrial operations at the site.

Extractable TPH was detected in the southern drainage sediment sample, in both the northern and southern drainage surface water samples, and in 15 of the 19 soil samples. Purgeable TPH was detected at an estimated 1,600 µg/kg in the sample 3047-15, collected from SB-9 at 10 to 12 feet bgs. This sample was collected downgradient of the former motor repair facility (now Al-Jon) and was noted to have a fuel odor and elevated PID reading (56.6 parts per million) during sampling. No federal health-based benchmark levels are available for TPH. Further, TPH releases are generally excluded from response actions under CERCLA.

7.0 **REFERENCES**

- Chemical Waste Management. 1990. Letter report concerning underground storage tank investigation. From Vara Prasad, Project Manager. To Everco Corporation. February 14.
- U. S. Environmental Protection Agency (EPA). 1990. "Hazardous Ranking System Final Rule," 40 CFR Part 300. December.
- EPA. 1991. Guidance for Performing Preliminary Assessments Under CERCLA. OSWER 9345.0-01A. September.
- EPA. 1992. Guidance for Performing Site Inspections Under CERCLA. OSWER 9345.1-05. September.
- EPA. 2004a. Preliminary Remediation Goals. Region 9 Waste Programs Table. October 1. On-line address: <u>http://www.epa.gov/region09/waste/sfund/prg/index.htm</u>
- EPA. 2004b. Superfund Chemical Data Matrix (SCDM) Table. Washington, D.C. January.
- EPA. 2006a. Comprehensive Environmental Response, Compensation, and Liability Information-System (CERCLIS) Database. Accessed on July 6, 2006. On-line address: http://cfpub.epa.gov/supercpad/cursites/srchsites.cfm
- EPA. 2006b. Safe Drinking Water Website. Accessed on August 1, 2006. On-line address: http://www.epa.gov/safewater/dwinfo/ia.htm
- Indian Hills Community College (IHCC). 2006. IHCC Airport Campus Website. Accessed on February 15, 2006. On-line address: <u>http://www.ihcc.cc.ia.us/ihcc/Geninfo/airport-campus.asp</u>
- Iowa Department of Natural Resources (IDNR). 1997. Letter with attached "No Further Action" certificate for tank closure for leaking underground storage tank (LUST) site number 9LTC 98.
- IDNR. 2004. Bedrock Geology of Southeast Iowa. Digital Geologic Map of Iowa. Iowa Geological Survey Open File Map 04-1. On-line address: <u>http://www.igsb.uiowa.edu/gsbpubs/pdf/ofm-2004-1.pdf</u>. September.
- IDNR. 2006a. Geological Survey. Accessed on February 16, 2006. On-line address: http://gsbdata.igsb.uiowa.edu/geosam/
- IDNR. 2006b. Underground Storage Tank System Database. Accessed on July 28, 2006. On-line address: <u>http://csbweb.igsb.uiowa.edu/ustweb/SiteInfo.asp?Registrati=197910063</u>
- Mable/Geocorr Geographic Correspondence Engine Output. 2006. Accessed July 10, 2006. On-line address: <u>http://mcdc2.missouri.edu/websas/geocorr2k.html</u>
- Moog Temperature and Control Division (Moog). 1993. Letter regarding Everco's initial response to Supplemental 3007 Request. From Paul Hartman, Moog. To Ken Herstowski, Resource Conservation and Recovery Act (RCRA) Branch, EPA. October 4.
- Naval Construction Battalion Center. 1974. Letter and attachment regarding real estate history of the formal Naval Air Station, Ottumwa, Iowa. From Leslie W. Walker, Command Historian, Naval

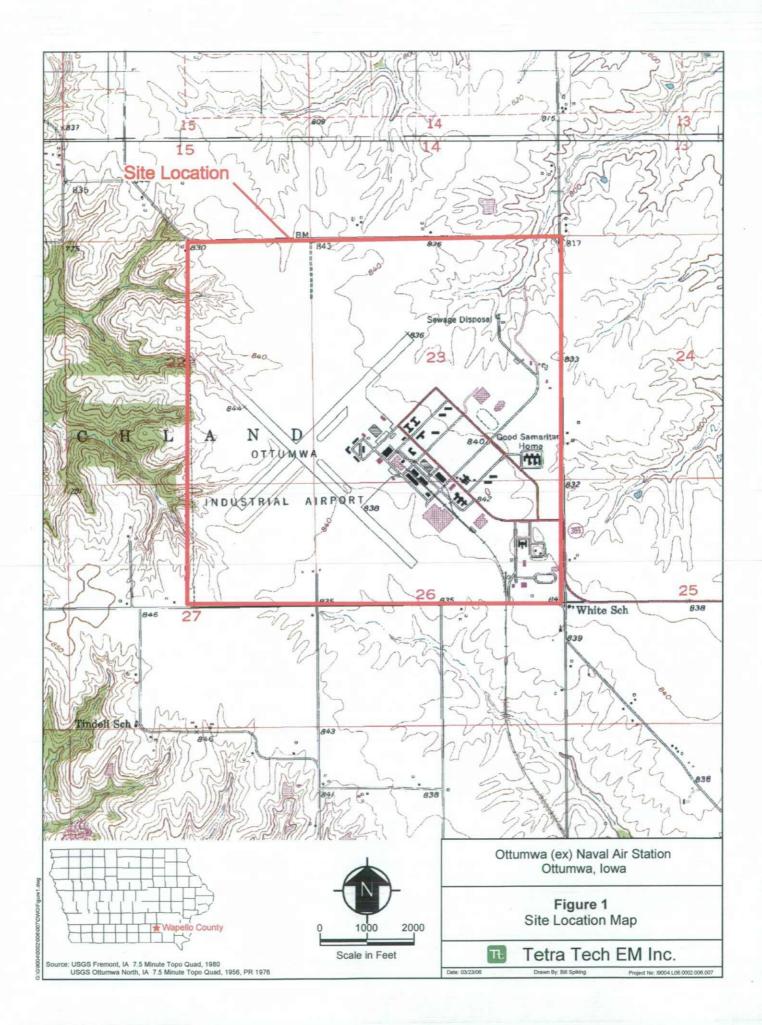
G9004/06.0002.006.007

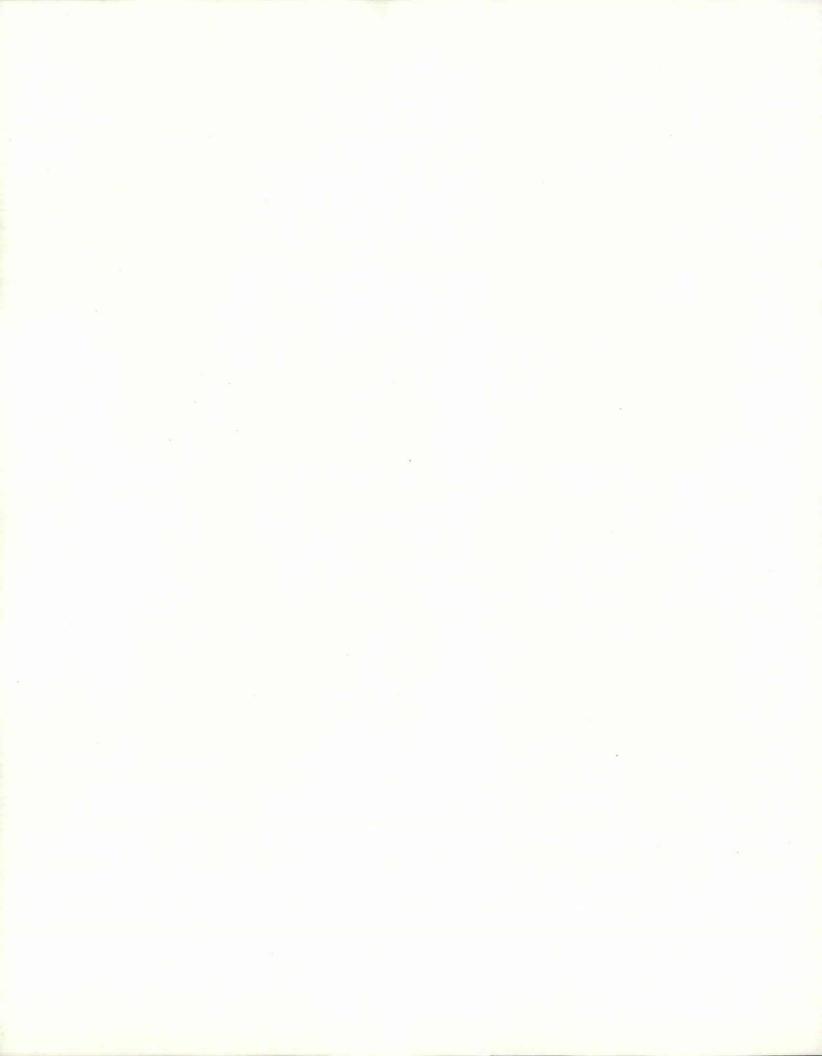
7.0 **REFERENCES** (Continued)

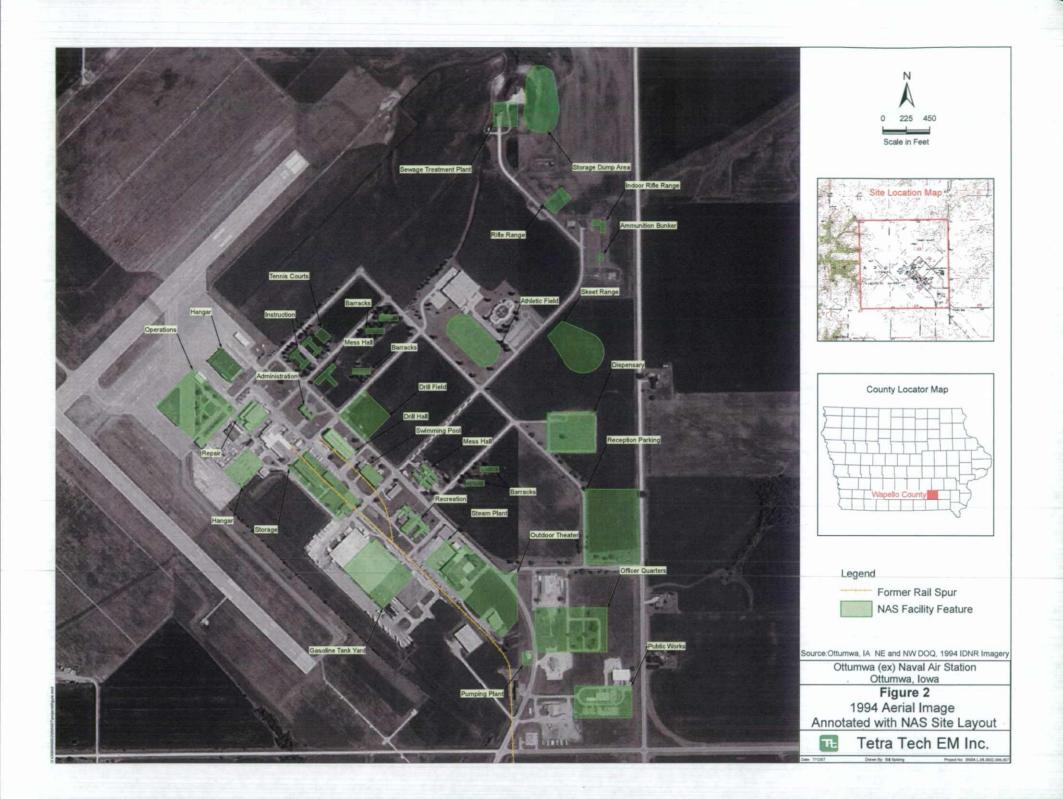
Facilities Engineering Command. To Mr. Robert E. Kramer, College of Business and Behavioral Sciences, University of Northern Iowa. September 25.

Prior, J.C., J.L. Boekhoff, M.R. Howes, R.D. Libra, and P.E. VanDorpe. 2003. Iowa's Groundwater Basics. Iowa Department of Natural Resources, Iowa Geological Survey Educational Series 6.

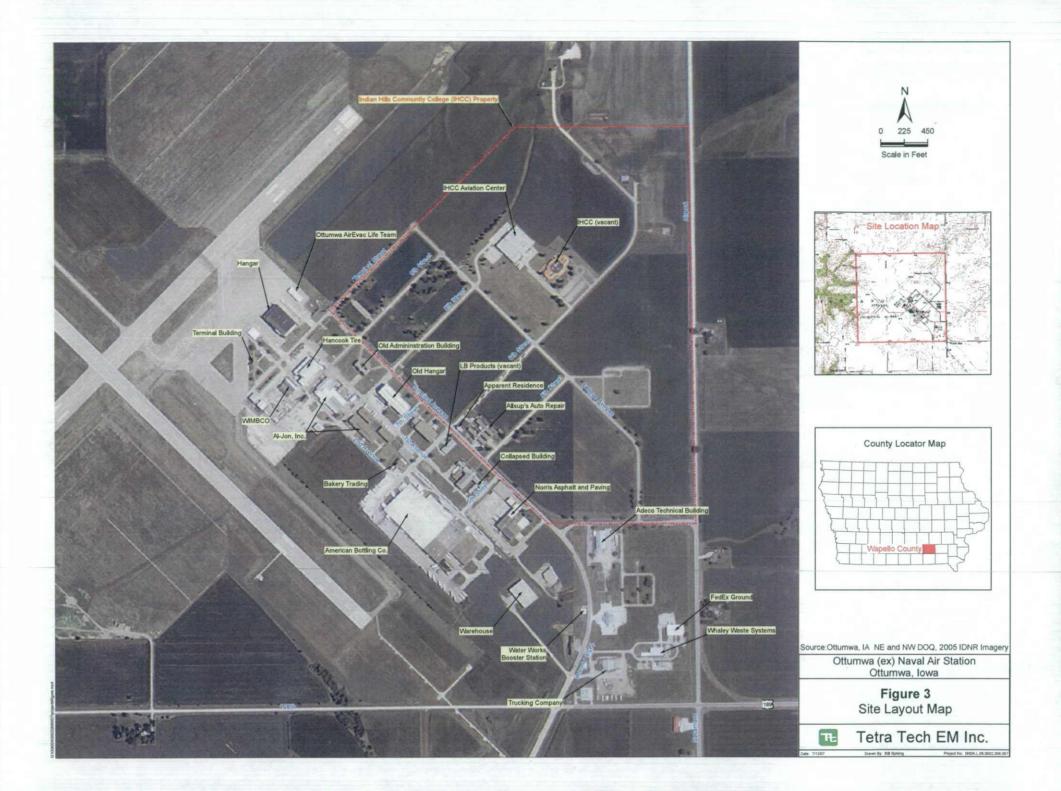
Tetra Tech EM, Inc. (Tetra Tech). 2001. Pre-CERCLIS Site Screening Assessment. May 18.

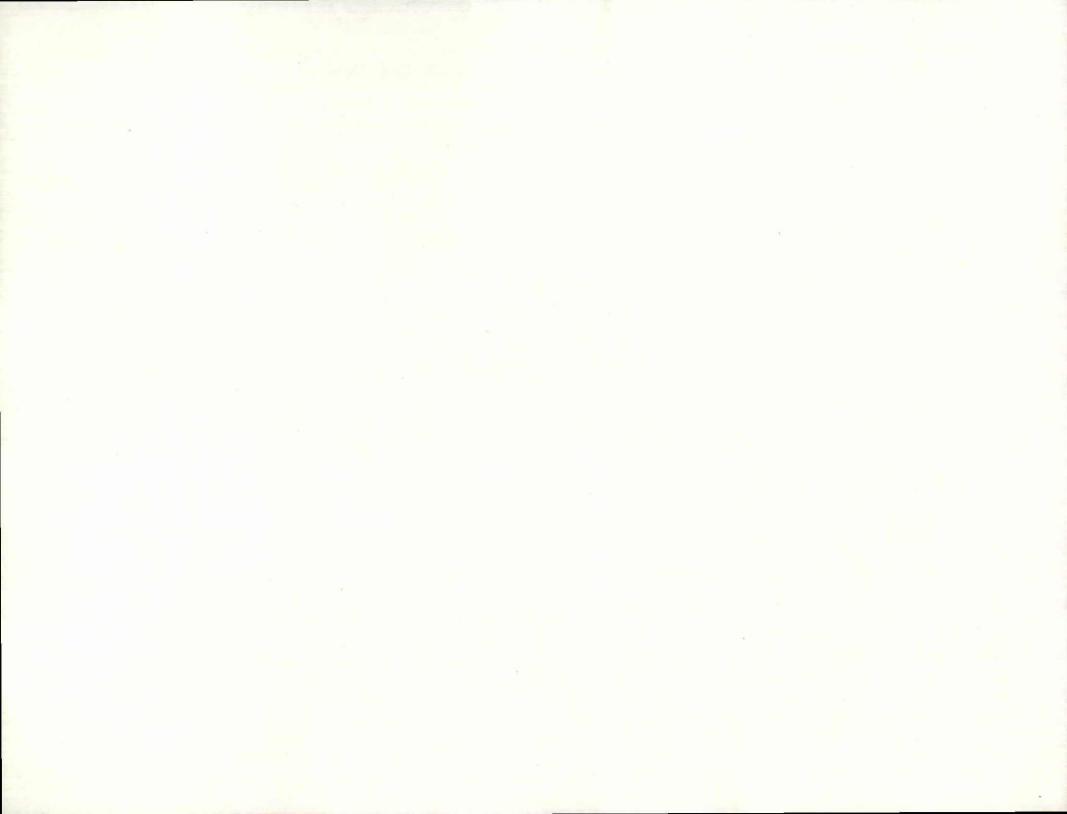

Tetra Tech. 2006a. Quality Assurance Project Plan. March 30.

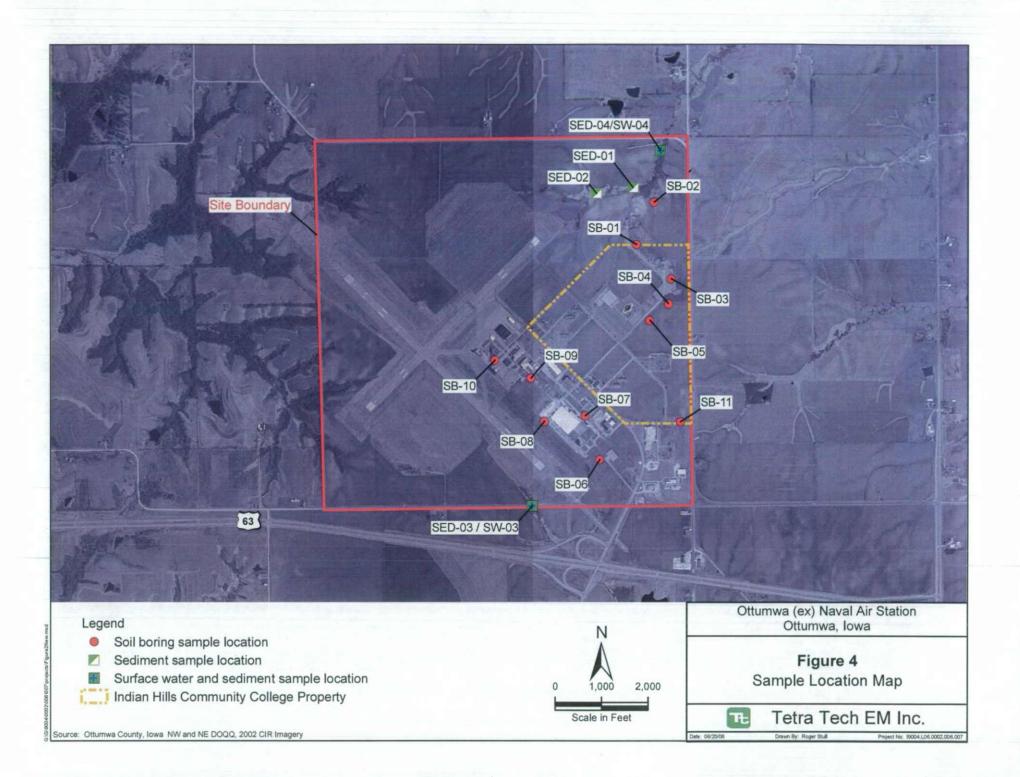

- Tetra Tech. 2006b. Personal communication regarding current and past site conditions and water supply. Between Jenna Mead, Project Manager, Tetra Tech, and Tom Francis, Ottumwa Industrial Airport.
- United States Army Corps of Engineers (USACE). 1991a. Findings and Determination of Eligibility, Ottumwa Naval Air Station, Iowa, Site DERP-FUDS No. B07IA012200 & B07IA012201. June 11.
- USACE. 1991b.-Project-Summary Sheet-for-Ottumwa-Tracking Acquisition-Annex, Ottumwa Naval Air Station, U.S. Army Reserve Motor Repair Shop, Ottumwa, Iowa, Site. May.
- USACE. 1991c. Site Survey Summary Sheet. Ottumwa Naval Air Station, Iowa, Site DERP-FUDS No. B07IA012200 & B07IA012201. May.
- USACE. 1993. Letter regarding contamination at the Everco/Moog facility. From Robert Roumph, Deputy District Engineer, USACE. To Mr. Verne K. Schrunck, Environmental Specialist, IDNR. March 8.
- USACE. 1992. Memorandum regarding review of contaminants based on analytical data from Chemical Waste Management December 1989 study and Environmental Resources Management studies of December 1990 and June 1992. From Linda Wagner, CEMRO-ED-EC. To Helen Mead, CEMRO-ED-EH, and John Sartore, CEMRO-ED-EG. August 17.
- USACE. 1997. Letter regarding underground storage tank project at Ottumwa Industrial Airport with attached memorandum. From Department of the Army. To State of Iowa, Department of Natural Resources, Underground Storage Tank Section. June 3.
- U.S. Census Bureau. 2006. Quickfacts. Accessed on July 6, 2006. On-line address: <u>http://quickfacts.census.gov/qfd/</u>
- U.S. Department of Agriculture (USDA). 1976. Soil Survey of Wapello County, Iowa.
- U.S. Geological Survey (USGS). 1956. Ottumwa North, Iowa, 7.5-minute topographic quadrangle. Photorevised 1976.
- USGS. 2006. National Map Viewer. Accessed on July 7, 2006. On-line address: http://nmviewogc.cr.usgs.gov/viewer.htm

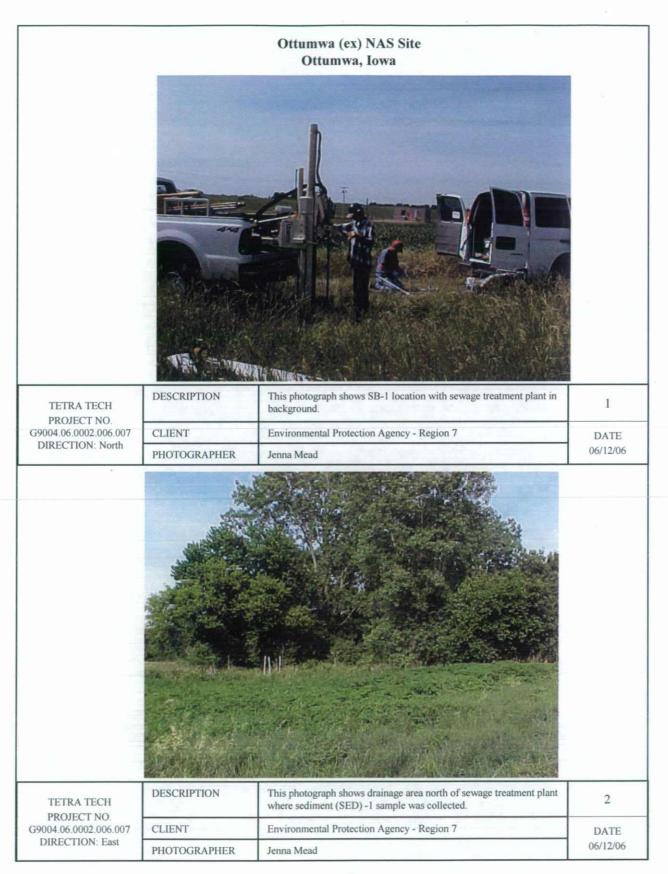

APPENDIX A

FIGURES

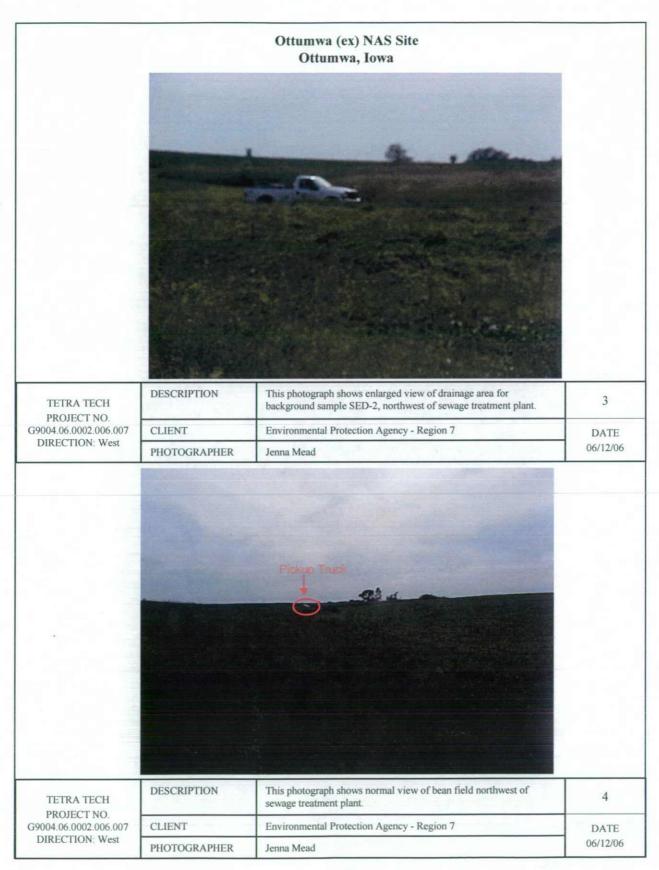

.

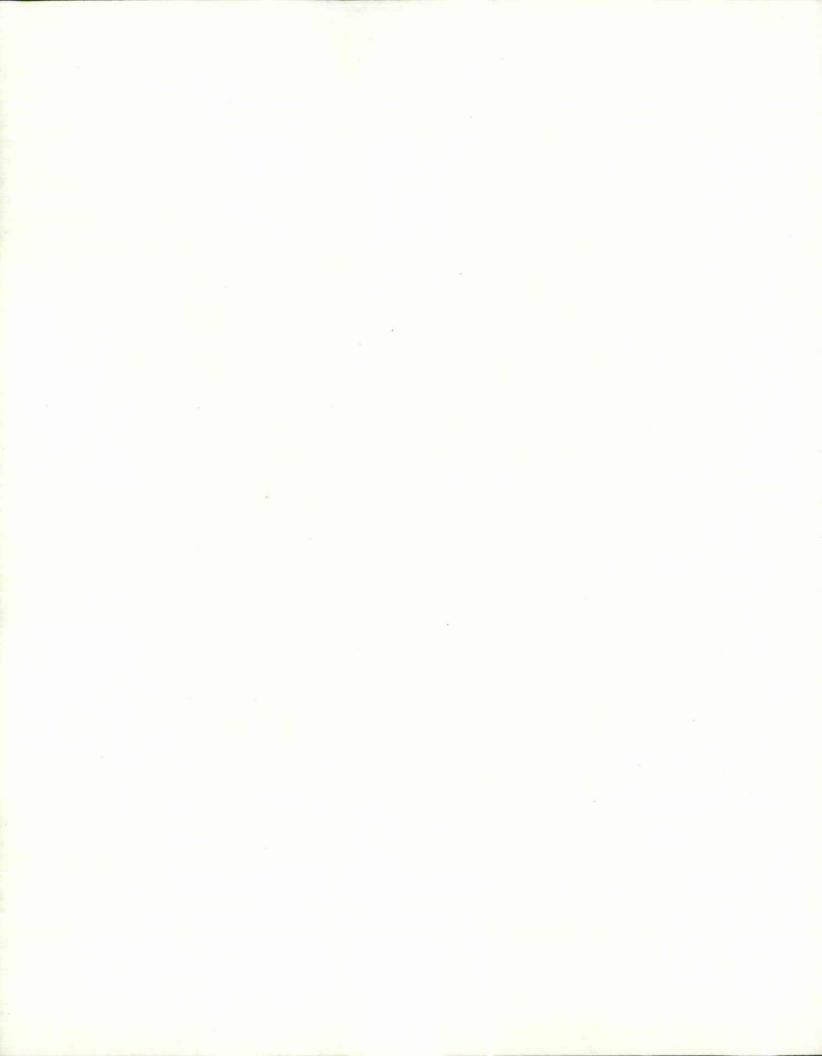




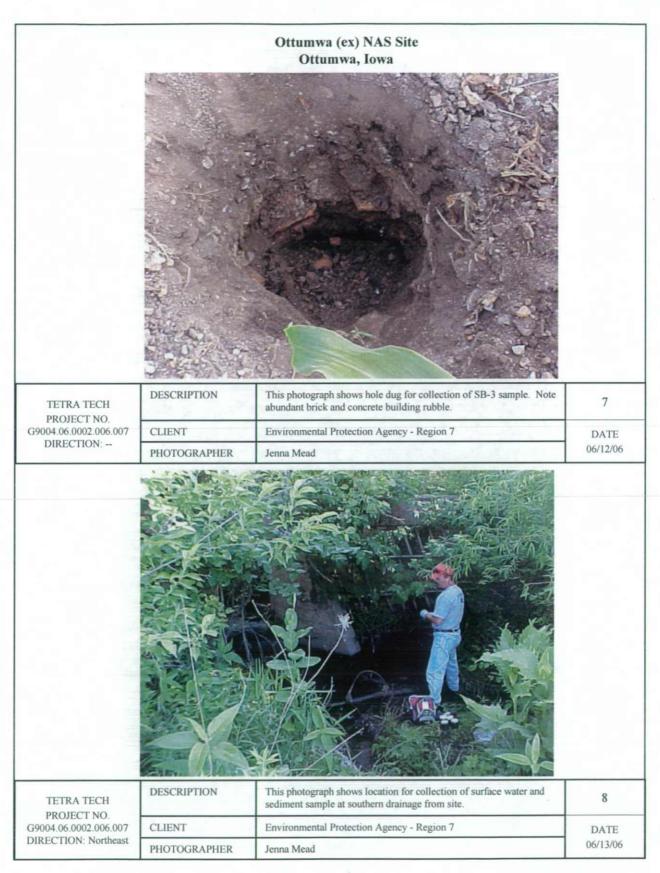

APPENDIX B

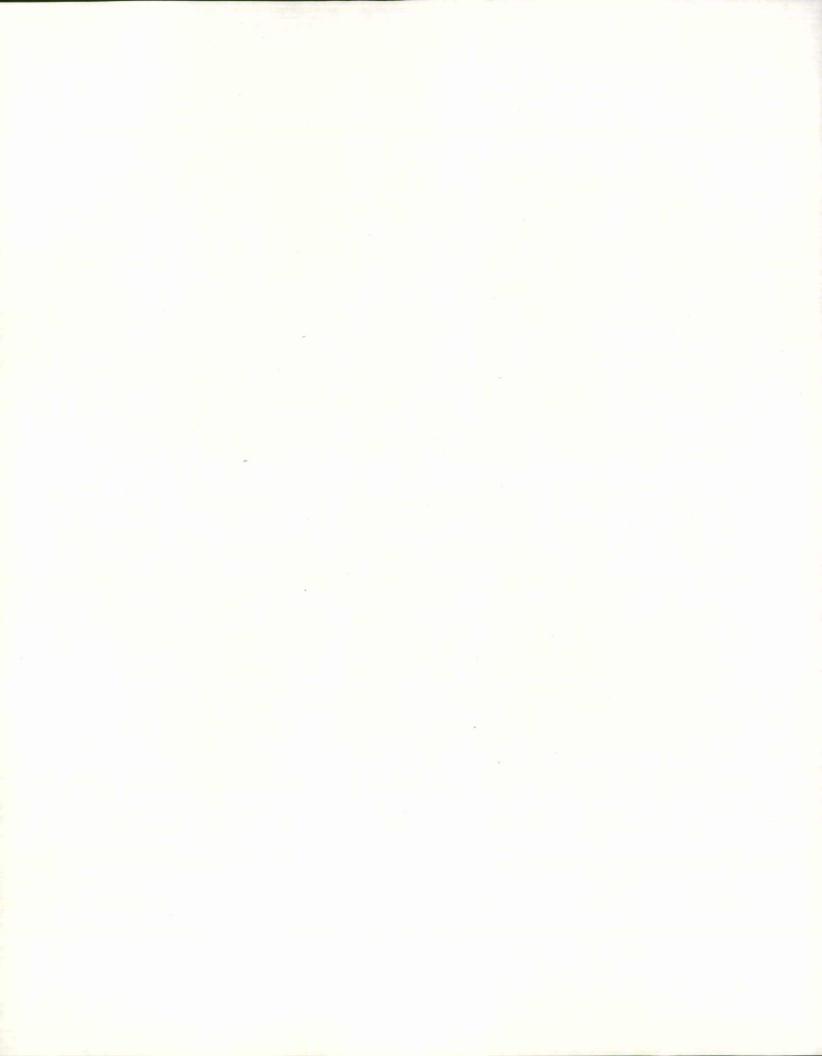
.

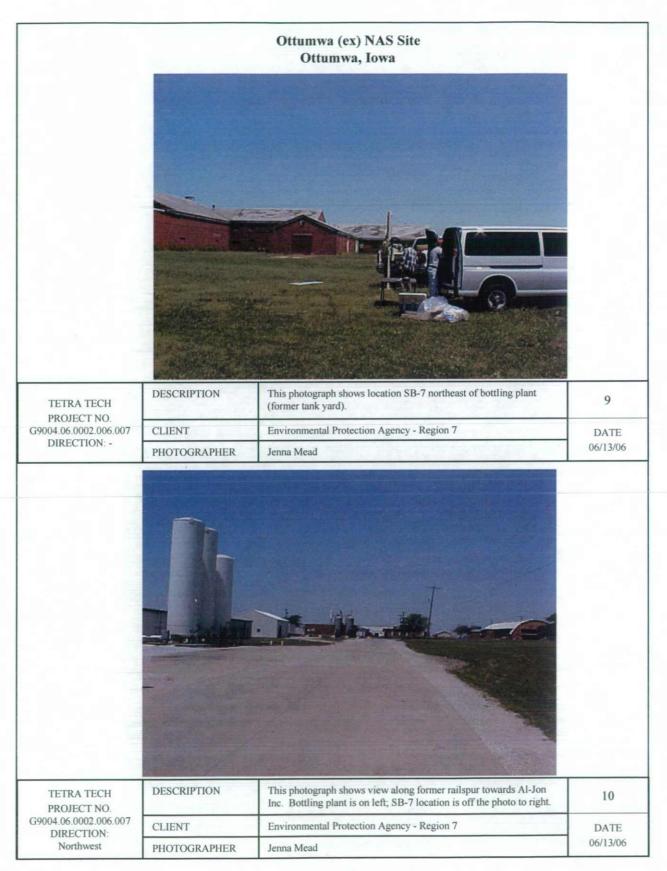

,

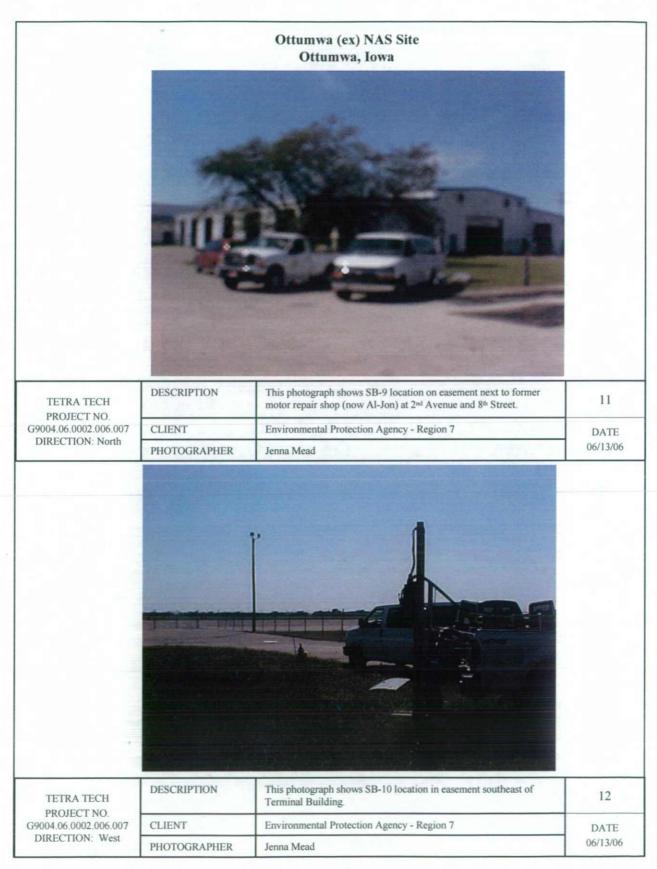

_


PHOTOGRAPHIC LOG

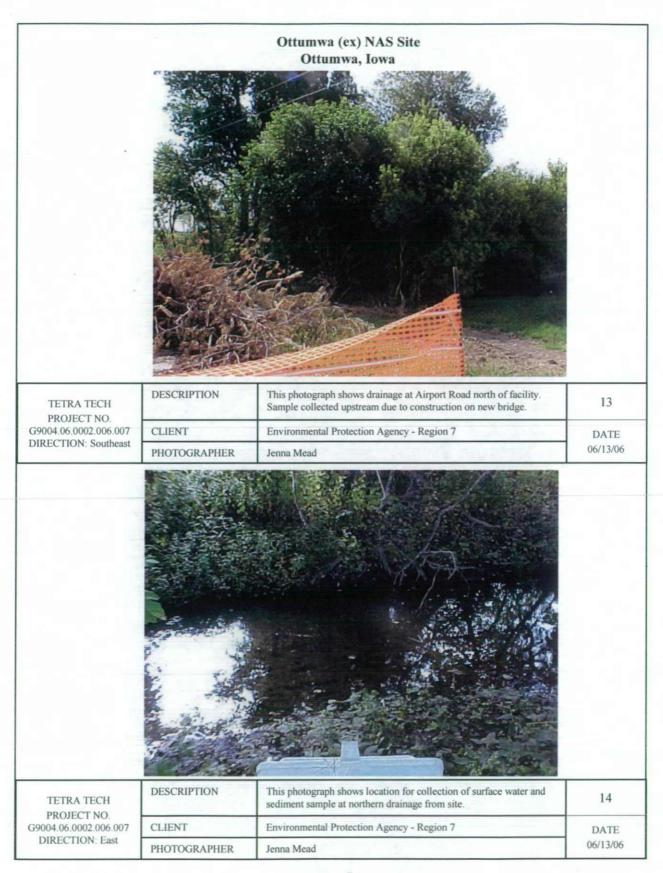












APPENDIX C

FIELD LOGBOOK

"Outdoor writing products for outdoor writing people." ALL-WEATHER WRITING PAPER LEVEL All-Weather Notebook No. 311 RECYCLABLE OMWARK "Rite in the Rain" - A unique All-Weather Writing paper created to shed water and enhance the Ioula written image. It is widely used throughout the world for recording critical field data in all kinds of weather. Available in a variety of standard and custom printed 02.006.007 case-bound field books, loose leaf, spiral and stapled notebooks, multi-copy sets and copier paper, For best results, use a pencil or an all-weather pen. a product of 4 5/8" x 7" - 48 Numbered Pages J. L. DARLING CORPORATION Tacoma, WA 98424-1017 USA (253) 922-5000 · FAX (253) 922-5300 www.RiteintheRain.com NSN: 7530-01-433-5654 The second s A DE LES AND A DE LES AND A SHARE A SHARE A SHARE AND A SHARE A S

6-12-06 1320 arrive @ Othemua (ex) hAS stop @ aerport entrance to mark location & call Tone Frances (Geirport) + Rick Fesder FIndran Hills CC. Noanwer@ Tom Jancis Rick pending Maentonarice que out with Map showing their property note weather Ocor 182° 1340 Met up with FACC quy & got neap starf marking locations -14:20 net Tom Frasices. Have lum Showin ber allbarrare 1430 Stakes 10 cation for a 2ft boring at burral area. Cant get is back here 14 45 Go at Tom to Mark /ocations + meit utilitées. Have Derrich Tones + Quan De Start boging at north near Treatmentplan 1600 Beturn to North and of all post Dennich v Quanfénishing SB-1, Nowater @ 30ft TD. SB-10.5-2 ft OPID Collected

6-12-06 at 1515 (3047-1) SBI 12-14 ft OPID coelected @1550 (3047-2) Collect 58-2 0.5-24 hand augened at debres area, modify OAPPto and this durpace soil / ocal on as confine drive back there without Too much crop damage. SB-1 10 cation lower Devation vas prove felily & encounter water at < 30'70 note ! Runal water guy here for utility next said clovest non-rural water Accept he could think of is located 2 miles northeast of site up airport RQ (east rede No of sete bound sparent questace water noted Sar at site. HS colecte 3047-3 from debrisque @ 0.5 2 ft 120 advised Tonde/airport that

-12-06 6-13-06 former upset the 0740 asseve @ site to do hand SB & @ South side be sampling boint of former bracking anousfritte + having to grou Dia 1 mla 0750 Collect 3047-5 5B-4 65-2 event 4 "Allert Sod I in drainage a forme de location frit 0810 5B 2 +3047-6 5B-5 05-2 Nalla sheet varie Mainaguares shere gorne by way Bas query Jotth- hottle Tratme mathe Com crop + coll collect about right 0900 Collect Surface Water bampa a background (upstream) Balcon NNW of Calment plant SCU-3 No SW (+ SWZ) at Statinge along 150th Rd Sou 1730 COLOR SED-1 3047-Jairport 1745 Collecte SED -) (BKG) 3047-23 1825 Coleret SB-3 (3047-B-4) from 1007 2 Sampling / aboling northend of anna I refle ange aven SW3/5433 Concrete asplatt + of brick. sas quy called + 0/2@3/ocation clayppedettism area will have other 3 marked by 1825 Color Plactos showing dreines) hundtine builden materials (brides 10 25 Collect SB-16 0.5-2 # 3047-7 1840 Departing ofte @ alfalfa field Stor bottom & Abrais Asphaet Plante , Boing to 30ft here 6-12-06

· .

19 Million and 19 Million

6-13-06 6 6-13-06 0.5-24 1520 Collect SB-9 to check for water I no water (again) will not Try 300 loater Smell + fresh asphalt patch Coelect 3047 - 8 +12-14 ft 1040 Saturated Clay, soft/plaster Odos in aken 1540 Collect SB-9 Water @ ~ 12 pr with some per 10 - 12Water @ 16-20 the no-run Champed from useral 12-14 (170 No water @ 20 ft. Was justa because more pelinte saturated clay holding aloce 10-12 H interval water trapped and clay laups Trapping water ttwater for feeld trapped at 1615 move to Termin drief SB-10 1630 Collect SB-10 (0,5-2 Can layer 1250 Collect 3047-9 + 3047-9FD 3047-16 (also as MS/MSD) from SB-7 1655 Water @ a 14/6/A. Near Water 0.5-2ft line (8" levie @ 5.5 ft per 1315 Collect 3047-11 from markingby tetility. Aobal more water Trapped by chaig 12-14 ft@ SB-7, Le cation a between RR grade (now a road) 4000 try to get VOCS + 1 & to NW of stuge 1700 Callet 12-14 in saturated Day 3047-17, Willty to 1400 Done @ SB-7 movet SB8 1420 Collect 5B 8 0,5 2 H adlect water 12-16 to 1710 no water @ 12-16 ft 3047-12 1727 Finite @ \$B-10 move to 1440 Cold & SB8 12-14 3B11 by de entrance to 3047-13

.

10-13-06 1-14-06 Below - background SB 11 0700 Pack cales : Secretlapoproli A Quanto take to Tab- Their 745 Collect SB11 0.5-241 Iones dorrie to composit to Encounder aries 3047-18. Male map + to drive around concrete @ 1st attempt / ~ 3 ft when for printe wells to Same north of SBII) Paspinein 0730 Depart listel for desport ~ 10 ft month of location apen 0805 House south of airport weep not to reautator north of br 20-25yran + no pump @ entrance brush somewhere Desit 1750 Jen going to score arou know on your on corel privale well /ifan poketo man Swof auport has been 1807 Back@ SB 11. Ded not see on Runal water years Doesn't wells for about 2 miles from know anyone on week around north of Terminal to, Sample SB-11, 12-14 (collected 0850 Drive behind alipont all a 1805 la nation 1835 Collect To 1d Blank Paching 7 Coole Niscel 1905 Departme sete hat undered roceive VISTOR 0855 100 king for creek accura North end of a iport - cut up stream fact m vorleng putting in pren stillige roch for place to sample

· •.

: .

.

6-18-06 ·10 11 0920 Collect SW-0930 Collect SED ocation Conth of whe beering worked on North of aurgory Tuesia Charmage from SED 1 + SED 2 But water here 1030 Stopal house. use I well up til about 2 years ago. Farmer said his uncle told him airstaft 1045 Bace to auport, Nowells forma, house above was on road just north of where airport boad time to west at boy day. 1100 Returning to Leneva. 00 06

APPENDIX D

FIELD SHEETS AND CHAIN-OF-CUSTODY RECORDS

CHAIN OF CUSTODY RECORD ENVIRONMENTAL PROTECTION AGENCY REGION VII

•

ACTIVITY LEADER (Print) NAME OF SURVEY OR ACTIVITY DATE OF COLLECTION SHEET OF COLLECTION OF SHEET OF SHEE											
CONTENTS OF SHIPMENT											
SAMPLE	T	<u>тү</u>		ERS 100 m Set	VOA SET	5			A other	RECEIVING LABORATORY REMARKS/OTHER INFORMATION	
NUMBER		BOTTLE	BOTTLE	BOTALE 7	(2 VIALS EA)	water	soil sediment	dust		(condition of samples upon receipt. other sample numbers, etc.)	
3047-1			3	I I I I I I I I I I I I I I I I I I I	7	<u> </u>	X	\uparrow			
	1		3		,		X	╋			
3			3	1 ~	1		X				
-4			.3	1	1		X				
-5			3	i	1		X				
-4			3								
-7			ر ع	<u> </u>	· /		X				
-8			3	1.	1		X				
-9	· ·		3	1 sit of	1 set of		X			msmsp	
-9F	Þ		3	l	/		\times			· · · · · · · · · · · · · · · · · · ·	
-11			3	1			X				
-12			3				X	\downarrow			
-13			3				X				
-14			3		/		X	╞╌╎╴			
-15	Ţ		3	/`			X_				
-16			3	(/						
-17			3				×				
-18	· · ·		3	/	/		4	$\left \right $			
-19							X	\downarrow			
-22			3					1			
-23	ļ		3	/_	/		- atriangle	1			
- 24	ļ		3				X	1.			
J F 24 FD			3	/			_ <u>×</u>		_		
V-27F1					1		X				
DESCRIPTION OF S	HIPMENT			M(DE OF SHI	PME	NT				
PIECE(S) (CONSISTING OF		BOX(ES)				L CAR	RIER:_			
	(S): OTHER			$- \overline{2}$	COURIER		ONVEYE	ED		(SHIPPING DOCUMENT NUMBER)	
PERSONNEL CUSTODY RECORD											
RELINGUISHED BY (SAMPLER) DATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY											
SEALED	UNSEALE			RECEN	VED BY		UNSE	ALED	X	REASON FOR CHANGE OF CUSTODY	
		2)									
SEALED RELINQUISHED BY	UNSEALE			RECEI	LED VED BY		UNSE	ALED	Д	REASON FOR CHANGE OF CUSTODY	
SEALED	UNSEAL			SEA	LED		UNSE	ALEC	2	11 S. CB0: 2002 755 017/0022	

...

CHAIN OF CUSTODY RECORD ENVIRONMENTAL PROTECTION AGENCY REGION VII

ACTIVITY LEADER P	Print)		NAME	OF SUR	VEY C	R ACTIVITY	<u></u>	_				DATE OF C	OLLECTION	26		IEET	
Kon Kin			Ottum wa (ev) NAS									DAY	MONTH YE	AR	2	of 7	<u></u>
CONTENTS OF SHIP		TYP		ERS			l s	AMP	LED	MED	IA	г	RECEIVING L	PODAT			
SAMPLE NUMBER	CUBITAINER	128 BOTTLE	BOTTLE	PER SAMPLE NUMBER					nent	dust	other		REMARKS/OTHER (condition of samp other sample n	l INFOR	MATION n receipt,		
3047-107FB				·	\mathbb{X}												
-301	2	3		iset of iset of													
301FD	2	2														_	
1-207FB	2	2	· ·	1			X										
V-208 FB							\times										
										_					/		
·													\leq				\square
										$ \rightarrow$							\square
					$\overline{}$	<		4	1	_							\square
				2			$\left - \right $										_
			-1		6				_				·				_
			l'	Brl.)¥				-								
		γ	-6	V					-							<u></u>	4
			£							-							
	N	hler							-				· · ·				-
(F)	X	AV-											ii				-
	60"								_	-		<u> </u>	<u> </u>	·			
///	$\forall \mathcal{H}$				_			-1					<u> </u>				-
					-1				-†	- 1		Clr	Jemp	r R	امريح		-1
/ 9								-+				b	1.2-	30	<u>, , , , , , , , , , , , , , , , , , , </u>		1
							·								~	-	7
											·						
DESCRIPTION OF SH	IIPMENT				мс	DE OF SHI	PME	NT	_								
PIECE(S) CO	NSISTING OF		_ BOX(ES)	:				LCA	ARR	IER:					_ 		-
	S): OTHER					COURIER		DNVI	EYE)				NT NI		-	
PERSONNEL CUSTO	ICE CHEST(S): 0THER									-							
ELINQUISHED BY (SAMPLER) DATE TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY																	
- TXUAN	SERLED UNSEALED 14.06 11:55 Mich Colling Analysis																
RELINQUISHED BY									-								
SEALED	UNSEALE		E TIME RECEIVED BY REASON FOR CHANGE OF CUSTODY								TODY						
																	ł
SEALED	UNSEALE			<u> </u>	SEAL	ED .		UN	SEA	LE	٥Ц						

CHAIN OF CUSTODY RECORD ENVIRONMENTAL PROTECTION AGENCY REGION VII

CONTENTS OF SHIP	······································	TV	E OF CONTAIN	EBS		1 6	AMPL			DECEMPTO LADOR TODA
SAMPLE NUMBER		BOTTLE	BOTTLE TAINERS PER S	VD4-Se BOTTLE	4 (2 VIALS EA)	water		Sediment		RECEIVING LABORATORY REMARKS/OTHER INFORMATION (condition of samples upon recept, other sample numbers, etc.)
30417-20			3	1	2		X	X		
3047-303	.2	2			i	X				
				 		$\left \right $		_		·····,
						$\left \cdot \right $	-+	+-		
· · · · ·	<u> </u>				\rightarrow	Η	+	+-		
				\checkmark		┼┤	+	┿	+-+	
· ·			/	[\uparrow	╈	+		
			./		I Ko	\uparrow	1	7	1	· · · · · · · · · · · · · · · · · · ·
			$/\Gamma$				7			
										·
			-+-			┝┤	_+	+-	$\left \right $	
				\mathcal{N}	¥	┝╌┤		+	<u> </u>	
			-			┝╶┤	-+-	+-	$\left \right $	
						+	-+-	+	┼╌┤	
							-			
	أنزكم	1						╈		
^	N							T		Clr. Jene Reca.
	land .							\bot		bet.1-2°c
				 		┝╌╽				· · · · · · · · · · · · · · · · · · ·
						┝╌┟	-	+-	┼─┤	
						┠╌╂	+	+	┼╌┤	· ··· <u> </u>
DESCRIPTION OF SH	IPMENT				MODE OF SHI	PME	NT		<u>L</u>	
PIECE(S) CO			BOX(ES)	+	COMME	RCIA	L CAF	RIE	R:	······································
)NVE	(ED		(SHIPPING DOCUMENT NUMBER)
PERSONNEL CUSTOD										
RELINGUISHED BY	SAMPLER)	DATE 6 Î		: is	EIVED BY	Re	sli	le	-1	REASON FOR CHANGE OF CUSTO
SEALED RELINQUISHED BY	UNSEALE		E TIME		EALED	· 〔	JNSE	AL		REASON FOR CHANGE OF CUSTO
SEALED	UNSEALE			the second se	EALED		UNSE	AL		REASON FOR CHANGE OF CUST

.

~

-

ASR Number: 304	7 Sample Number:	1	QC Co	de: Matrix: Sol	id Tag	ID: 3047-1
City: Ot Program: Su	tumwa (EX) NAS - PA s tumwa perfund	ampling		ject Manager: Ron K State: Iowa	-	6.4 0 1 00
Site Name: ML	ılti-Site - General			Site	ID: 0/22	Site OU: 00
Location Desc: S	oil sample					
	•	Externa	il Samj	le Number: \underline{SB} -	- 1	0.5-2
Expected Conc:	(or Circle One;	Low)	Medium	High) Dat	te	Time(24 hr)
Latitude:	· · · · · · · · · · · · · · · · · · ·	Samo	ole Coll	ection: Start: <u>6/</u>	206	15-15- 04-00 m
Longitude:				End:/_		_:_
Laboratory Analy Container	'Ses: Preservative	Holding	Time	Analysis		
2 - 40mL VOA vial	4 Deg C	14	Days	1 TPH Volatiles in Soil by	GC/MS	
2 - 40mL VOA vial (preserved/tared) 1 - 8 oz glass	4 Deg C, H2O + sodium bisulfate (in vial) 4 Deg C	14 180	Days	1 VOC's in Soil at Low Le Purge-and-Trap 1 Mercury in Soil or Sedir	vels by GC/N	1S Closed-System
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solids by ICP		
1 - 8 oz glass	4 Deg C	28	Days	1 Perchlorate in Soil by I	C .	
1 - 8 oz glass	4 Deg C	14	Days	1 PCBs in Soil by GC/EC		
1 - 8 oz glass	4 Deg C	14	Days	1 TPH Semi-Volatile in Sc	oil by GC/FIE)
1 - 8 oz glass	4 Deg C	14	Days	1 Explosives in Soil by G	C/ECD	
0 -	4 Deg C	0	Days	1 Percent Solid	•	
Sample Comments	 S: ,		<u> </u>	· · · · · · · · · · · · · · · · · · ·		
(N/A)	Lab prepa	nez	- Ang	that sem		
Cety of Other 14802 Term Otherward	OPID wa- auport inal St. IA 52501	2				
•	. •					,

Sample Collected By: JM

÷.,

.

ASR Number:	3047 Sample Number	: 2	QC Co	de: Mat	trix: Solid 1	ag ID: 3047-2
•	RKOTTEXNAS			oject Manage	r: Ron King	
Project Desc: City: Program:	Ottumwa (EX) NAS - PA Ottumwa Superfund	sampling	g	State	e: Iowa	
-	Multi-Site - General				Site ID: 0	7ZZ Site OU: 00
Location Desc:	Soil sample					
		Externa	al Sam	ple Number:	SR-1	12-14
Expected Conc	: (or Circle One				Date	Time(24 hr)
Latitude:		Sam	ole Coli	ection: Start:	6/12/06	15:50
Longitude:		-	•	End		·•
Laboratory An	•					· · · · · · · · · · · · · · · · · · ·
Container	Preservative	Holding	-	Analysis	in Call her CC/MC	
2 - 40mL VOA vial 2 - 40mL VOA vial	4 Deg C 4 Deg C, H2O + sodium	14 14	Daýs		in Soil by GC/MS	GC/MS Closed-System
(preserved/tared) 1 - 8 oz glass	bisulfate (in vial) 4 Deg C	14 180.	Days Days	Purge-and-Tr 1 Mercury in So	ар	GC/MS Closed-System
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Soli	ds by ICP	
1 - 8 oz glass	4 Deg C	28	Days	1 Perchlorate in	n Soil by IC	
1 - 8 oz glass	4 Deg C	14	Days	1 PCBs in Soil t	by GC/EC	
1 - 8 oz glass	4 Deg C	14	Days	1 TPH Semi-Vo	latile in Soil by G	C/FID
1 - 8 oz glass	4 Deg C	14	Days	1 Explosives in	Soil by GC/ECD	
0 -	4 Deg C	0	Days	1 Percent Solid		
Sample Comme	ents:					
(N/A)	QPID					
City of Oth	ents: OPID Emwa - Airport					
10m Fran 14802 Te	(nutual St,					
Other wa,	JA 52501			·		

ASR Number: 30	47 Sample Number:	3	QC Co	de:	Matrix: Solid	Tag ID: 3047-3
-	ttumwa (EX) NAS - PA s ttumwa	amplin			i ger: Ron King t ate: Iowa	
-	ulti-Site - General				Site ID:	07ZZ Site OU: 00
Location Desc: S	Soil sample			<u></u> ,, "	· ·	
	I	Extern	al Samı	ple Numbe	r: <u>5B2</u>	0,5-2
Expected Conc:	(or Circle One	Low	Medium	High)	Date	Time(24 hr)
Latitude: _	\	Sam	pie Coli	ection: St	art: <u>12</u> 0	<u>4 16.45</u>
Longitude: _				E	nd://	
Laboratory Anal Container	yses: Preservative	Holding	a Time	Analysis		
2 - 40mL VOA vial	4 Deg C	14	Days		tiles in Soil by GC/	/MS
2 - 40mL VOA vial (preserved/tared) 1 - 8 oz glass	4 Deg C, H2O + sodium bisulfate (in vial) 4 Deg C	14 180	Days Days	1 VOC's in Purge-an	Soil at Low Levels	by GC/MS Closed-System
1 - 8 oz glass	4 Deg C	180	Days	•	Solids by ICP	-
1 - 8 oz glass	4 Deg C	28	Days	1 Perchlora	ite in Soil by IC	
1 - 8 oz glass	4 Deg C	14	Days		Soil by GC/EC	
1 - 8 oz glass	4 Deg C	14	Days	1 TPH Sem	i-Volatile in Soil by	y GC/FID
1 - 8 oz glass	4 Deg C	14	Days	1 Explosive	es in Soil by GC/EC	D
0 -	4 Deg C	0	Days	1 Percent S	Solid	
Sample Comment (N/A)	toriwa Respor	e/b	ern	an	Ø I	PID
	toriwa Ripor	t				
OTTOMWO	IA52501					
		-				
•.						

ASR Number: 30	047 Sample Number	: 4	QC Co	de: Ma	atrix: Solid	Tag ID: 3047-4
City: 0 Program: S	Ottumwa (EX) NAS - PA s Ottumwa	sampling		-	er: Ron King te: Iowa Site ID:	07ZZ Site OU: 00
Location Desc:	Soil sample					
		Externa	al Samj	ole Number:	<u>SB-3</u>	
Expected Conc:	(or Circle One:	Low	Medium	High)	Date	Time(24 hr)
Latitude:		Sam	ole Coll	ection: Star	t: <u>6/20</u>	6 18:25
Longitude:		-		s Ene		
Laboratory Ana Container	lyses: Preservative	Holding	J Time	Analysis		······································
2 - 40mL VOA vial	4 Deg C	14	Days	-	es in Soil by GC/I	MS
2 - 40mL VOA vial (preserved/tared) 1 - 8 oz glass	4 Deg C, H2O + sodium bisulfate (in vial) 4 Deg C	14 180	Days Days	Purge-and-		by GC/MS Closed-System
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in S	olids by ICP	
1 - 8 oz glass	4 Deg C	28	Days	1 Perchlorate	in Soil by IC	
1 - 8 oz glass	4 Deg C	- 14	Days	1 PCBs in Soi	by GC/EC	
1 - 8 oz glass	4 Deg C	14	Days		olatile in Soil by	
1 - 8 oz glass	4 Deg C	- 14	Days	-	in Soil by GC/ECI)
0 -	4 Deg C	0	Days	1 Percent Sol		
Indean Keity Sus 5252 Gr	Hills Communite	yn Colle		ann	ο/ριγτο / ς	ifle range

Sample Collected By: JM

1 of 1

ASR Number: 3	047 Sample Number:	5	QC Co	de:	Matrix: S	olid Ta	ig ID: 3047-5
-	RKOTTEXNAS Dttumwa (EX) NAS - PA s Dttumwa	ampling		oject Mana Sl	ger: Ron	-	
Program: S Site Name: N	Superfund Multi-Site - General				Site	e ID: 072	ZZ Site OU: 00
Location Desc:	•	<u> </u>					
	I	Externa	al Sam	ple Numbe	r: <u>SB</u>	-4 (0.5-2.0
Expected Conc:		\sim				ate	Time(24 hr)
Latitude:		Samı	ole Coll	ection: St	art: <u>6</u> /	<u>13/06</u>	07.50
Longitude:	· · · · · · · · · · · · · · · · · · ·			E	nd:/	/	;
Laboratory Ana Container	lyses: Preservative	Holding	ı Time	Analysis			
2 - 40mL VOA vial	4 Deg C	14	Days	•	tiles in Soil l	oy GC/MS	• • •
2 - 40mL VOA vial (preserved/tared) 1 - 8 oz glass	4 Deg C, H2O + sodium bisulfate (in vial) 4 Deg C	14 180	Days Days	1 VOC's in Purge-an	Soil at Low I	Levels by G	GC/MS Closed-System
1 - 8 oz glass	4 Deg C	180	Days		Solids by IC		
1 - 8 oz glass	4 Deg C	28	Days		ite in Soil by		
1 - 8 oz glass	4-Deg C	14	Days	1 PCBs in S	Soil by GC/E	5 .	
1 - 8 oz glass	4 Deg C	14	Days	1 TPH Sem	i-Volatile in	Soil by GC/	/FID
1 - 8 oz glass	4 Deg C	14	Days	1 Explosive	es in Soil by	GC/ECD	
0 -	4 Deg C	0	Days	1 Percent S	Solid		
Sample Commer (N/A) Indian Hill	Is Community Con	han. lege	0 dec	З			
Keith Sass 5252 Gra-	een Noview, Bldg. 1						
Othenwa	IA 52501						
			•				
· · · ·		`					

ASR Number: 30	47 Sample Number:	: 6	QC Co	de:	Matr	ix: Solid	Tag ID: 3047-6
Project ID: R				oject Mai	nager:	Ron King	
•	ttumwa (EX) NAS - PA s	sampling	J		Statos	Iowa	
City: Of	uperfund				State:	IOWA	
-	ulti-Site - General					Site ID:	07ZZ Site OU: 00
Location Desc: S	inil sample						
	·						(
		Externa	ıl Samp	ole Numl	per:	SB-5	(0.5-2')
Expected Conc:	(or Circle One:	Low I	Medium	High)		Date	Time(24 h
Latitude: _		Samp	ole Coll	ection: S	Start:	6/13/	0810
Longitude: _			•		End:	//	:
Laboratory Analy	yses:			•			
Container	Preservative	Holding	Time	Analys	is		
2 - 40mL VOA vial	4 Deg C	14	Days	1 TPH Vo	olatiles ir	n Soil by GC/M	İS
2 - 40mL VOA vial	4 Deg C, H2O + sodium	14	Days				by GC/MS Closed-System
(preserved/tared) 1 - 8 oz glass	bisulfate (in vial) 4 Deg C	180	Days		and-Traj y in Soil	or Sediment	·
1 - 8 oz glass	4 Deg C	180	Days	1 Metals			
1 - 8 oz glass	4 Deg C	28	Days	1 Perchie	orate in S	Soil by IC	· ·
1 - 8 oz glass	4 Deg C	14	Days	1 PCBs₀i	n-Soil by	GC/EC	· ,
1 - 8 oz glass	4 Deg C	14	Days	1 TPH Se	emi-Vola	tile in Soil by	GC/FID
1 - 8 oz glass	4 Deg C	14	Days	1 Explos	ives in S	oil by GC/ECD)
0 -	4 Deg C	0	Days	1 Percen	t Solid		
Sample Comment		OP	<u> </u>		<u> </u>		
(N/A)	Hand burg		シ				
Indian Hills	Comm College						
Heitu Sassee	24	·					
5252 Grande	riew, Blog, 1						
Othinia, I,	A 52501						
		·					
							-

ASR Number: 3047	Sample Number:	: 7	QC Co	de: <u>Mat</u>	rix: Solid	Tag ID: 3047-7
Project ID: RKOT Project Desc: Ottum City: Ottum	nwa (EX) NAS - PA s	ampling		oject Manage State	: Ron King	
Program: Super						
Site Name: Multi-					Site ID:	07ZZ Site OU: 00
Location Desc: Soil s	-					
	I	Externa	l Samp	ole Number: ²	513-6	(0.5 - 2)
Expected Conc:	(or Circle Ope:	Low	*edium	High)	Date	Time(24 hr)
Latitude:	`	Samp	le Coll	ection: Start:	61310	10:25
Longitude:				End	//	;
Laboratory Analyses Container	S: Preservative	Holding	Time	Analysis		
2 - 40mL VOA vial	4 Deg C	14	Days	1 TPH Volatiles	in Soil by GC	/MS
(preserved/tared)	4 Deg C, H2O + sodium bisulfate (in vial) 4 Deg C	14 180	Days Days	1 VOC's in Soil Purge-and-Tr 1 Mercury in So	ар	by GC/MS Closed-System t
5	4 Deg C	180	Days	1 Metals in Soli		-
2	4 Deg C	28	Days	1 Perchlorate in		
-	4 Deg C	14	Days	1 PCBs in Soil-I		- -
-	4 Deg C	14	Days	1 TPH Semi-Vo	latile in Soil b	y GC/FID
1 - 8 oz glass	4 Deg C	14	Days	1 Explosives in	Soil by GC/EC	D
	4 Deg C	0	Days	1 Percent Solid		
Sample Comments: (N/A) City of G	alfalfa fie Homan - air	ild E port	ast-	Southeas	t of Bi	Atten Plant
Tom Fra	Incis DIMINAL ST	,				
Othmwa	a, IA 529				. <i>·</i>	
						"

ASR Number:	3047 Sample Number	r: 8	QC Co	de: Mat	trix: Solid	Tag ID: 3047-8
-	RKOTTEXNAS			oject Manage	r: Ron King	
Project Desc: City:	Ottumwa (EX) NAS - PA Ottumwa	samplin	g	State	e: Iowa	
Program: Site Name:	Superfund Multi-Site - General				Site ID:	07ZZ Site OU: 00
Location Desc:	Soil sample	Extern	al Sam	ple Number:	SB. (e (12-14')
Expected Conc	: (or Circle One	: Low	Medium	High)	Date	Time(24 hr)
Latitude:	· · ·	Sam	ple Coli	ection: Start	6/13/0	<u>6 jo:40</u>
Longitude:	· · · ·			End	: _/_/_	
Laboratory An Container	alyses: Preservative	Holding	a Time	Analysis		
2 - 40mL VOA vial	4 Deg C	14	Days	1 TPH Volatiles	in Soil by GC/	MS
2 - 40mL VOA vial (preserved/tared) 1 - 8 oz glass	4 Deg C, H2O + sodium bisulfate (in vial) 4 Deg C	14 180	Days Days		at Low Levels	by GC/MS Closed-System
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Soli	ids by ICP	
1 - 8 oz glass	4 Deg C	28	Days	1 Perchlorate ir	n Soil by IC	
1 - 8 oz glass	4_Deg C	14	Days	1 PCBs in Soil 1	by GC/EC	-
1 - 8 oz glass	4 Deg C	14	Days	1 TPH Semi-Vo	latile in Soil by	GC/FID
1 - 8 oz glass	4 Deg C	14	Days	1 Explosives in	Soil by GC/EC	D
0	4 Deg C	0	Days	1 Percent Solid		
14000	4 Deg C 4 Deg C ents: Alfalfa Fie Ottomwa-Airp Francis Riminal St Wa, IA 52501		Ear	+-souther	Aof 2	Bottling Plant

ASR Number: 304	7 Sample Number:	9	QC Co	de: M	atrix: Solid	Tag ID: 3047-9
•	OTTEXNAS tumwa (EX) NAS - PA s tumwa	ampling		-	er: Ron King te: Iowa	
-	perfund					
-	ilti-Site - General				Site ID:	07ZZ Site OU: 00
Location Desc: So						
		Externa	al Samp	ole Number:	<u>SB-7</u>	(0.5-2)
Expected Conc:	(or Circle One	\sim			Date	Time(24 hr)
Latitude:		Samj	ole Coll	ection: Sta	rt: <u>6/3/0</u>	6 12:5D
Longitude:				En	d://	
Laboratory Analy	'Ses:		<u>. </u>		······································	
Container	Preservative .	Holding		Analysis		
2 - 40mL VOA vial	4 Deg C	14	Days		es in Soil by GC/	
 40mL VOA vial (preserved/tared) 1 - 8 oz glass 	4 Deg C, H2O + sodium bisulfate (in vial) 4 Deg C	14 180	Days Days	Purge-and-		by GC/MS Closed-System
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in S	olids by ICP	
1 - 8 oz glass	4 Deg C	28	Days	1 Perchlorate	e in Soil by IC	
1 - 8 oz glass	4 Deg C	14	Days	1 PCBs in So	il by GC/EC	
1 - 8 oz glass	4 Deg C	14	Days	1 TPH Semi-	Volatile in Soil by	/ GC/FID
1 - 8 oz glass	4 Deg C	14	Days	1 Explosives	in Soil by GC/EC	D
0 -	4 Deg C	0	Days	1 Percent So	lid	
Sample Comments (N/A)	s: Between form	er RK	? grade	and 1	St Av jus	NW of 5th Sk
City of Other ma	ua - Airport					
Tom Franc	is .					
14802 Te	rminal St					
Ottum wa,	IA 52501					
	•					
OPID						
MS/MSC	>					
Sample Collected	Bv: JM					

	San	່ບຣ	EPA F	ion Field Sheet Region 7 City, KS
ASR Number: 30	47 Sample Number		~ 2C Co	de:Matrix: Solid Tag ID: 3047- 10-
Project ID: R	KOTTEXNAS		Pro	pject Manager: Ron King
•	ttumwa (EX) NAS - PA s	ampling		
City: Of	ttumwa			State: Iowa
Program: Si	•			
Site Name: M	ulti-Site - General			Site ID: 07ZZ Site OU: 00
Location Desc: S	Soil sample		<u></u>	
		External	Samr	ple Number: $\underline{SB-7}(0.5-2')$
Expected Conc:	(or Circle One!	\sim		· ·
-		<u> </u>		1 12
Latitude: _		Sample	e con	
Longitude:				End://:
Laboratory Analy		<u> </u>		
Container	Preservative	Holding T		Analysis
2 - 40mL VOA vial	4 Deg C		Days	1 TPH Volatiles in Soil by GC/MS
2 - 40mL VOA vial (preserved/tared)	4 Deg C, H2O + sodium bisulfate (in vial)	14	Days	1 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap
1 - 8 oz glass	4 Deg C	180	Days	1 Mercury in Soil or Sediment
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solids by ICP
1 - 8 oz glass	4 Deg C	28	Days	1 Perchlorate in Soil by IC
1 - 8 oz glass	4 Deg C	14	Days	1 PCBs in Soil by GC/EC
1 - 8 oz glass	4 Deg C	14	Days	1 TPH Semi-Volatile in Soil by GC/FID
1 - 8 oz glass	4 Deg C		Days	1 Explosives in Soil by GC/ECD
0 -	4 Deg C	0	Days	1 Percent Solid
Sample Comment (N/A) Cety of O Tom	S: Between Ford Humwa - A po Francis	rre: RI F	e qr	ade & 1 St Av Just NW of 5 Th St
14802	Terminal St W=, IA 525	,		
	SB-7 (0.5		Ø.	
OPI				

1

.

Project ID:	RKOTTEXNAS		Pro	oject Manager: Ron King	
Project Desc:	Ottumwa (EX) NAS - PA	sampling	3		
-	Ottumwa			State: Iowa	
Program:	•				
Site Name:	Multi-Site - General			Site ID: 07ZZ Site OU:	00
Location Desc:	•				
		Externa	al Samı	ple Number: $SB-7$ (12-14)	<u>t</u>
Expected Conc	or Circle One;	Low	dium	n High) Date Time(24	4 hr]
Latitude:		Samp	ole Coll	lection: Start: 6/13/06 13.15	Ţ.a.
Longitude:	<u> </u>			End://:	
Laboratory An	-				
Container 2 - 40mL VOA vial	Preservative 4 Deg C	Holding 14	Days	Analysis 1 TPH Volatiles in Soil by GC/MS	
2 - 40mL VOA vial	4 Deg C, H2O + sodium	14	Days	1 VOC's in Soil at Low Levels by GC/MS Closed-Sys	tem
preserved/tared) - 8 oz głass	bisulfate (in vial) 4 Deg C	180	Days	Purge-and-Trap 1 Mercury in Soil or Sediment	
L - 8 oz glass.	4 Deg C	180	Days	1 Metals in Solids by ICP	
- 8 oz glass	4 Deg C	28	Days	1 Perchlorate in Soil by IC	
- 8 oz glass	4 Deg C	14	Days	1 PCBs in Soil by GC/EC	
- 8 oz glass	4 Deg C	14	Days	1 TPH Semi-Volatile in Soil by GC/FID	
- 8 oz glass	4 Deg C	14	Days	1 Explosives in Soil by GC/ECD	
) -	4 Deg C	0	Days	1 Percent Solid	
Sample Comme	ents:			D PID	
N/A) (Telino)	Ottomwa- Ripp	ont		$\varphi \cap \varphi$	
14802	Otherminal Cerp. Terminal St.				
atting	- Terminal St, wa, IA 5252 Frances	21	-		
Cloth	•				

ASR Number: 3	3047 Sample Number	: 12 🤇	QC Code: _	Matr	ix: Solid	Tag ID:	3047-12
City: Program:	RKOTTEXNAS Ottumwa (EX) NAS - PA Ottumwa Superfund Multi-Site - General	sampling	Project	Manager: State:		07ZZ Si	te OU: 00
Location Desc:	Soil sample						
		\land	Sample Ni		SB 8	(0,	5-2')
Expected Conc:	(or Circle One	Low M	edium High))	Date		īme(24 hr)
Latitude:	\	Sampl	e Collectio	n: Start:	6,13,0	G 1	14:20
Longitude:		•		End:			_:
Laboratory Ana Container	alyses: Preservative	Holding 1	rime Ana	alysis			
2 - 40mL VOA vial	4 Deg C	14	Days 1 TP	PH Volatiles i	n Soil by GC/	MS	
2 - 40mL VOA vial (preserved/tared) 1 - 8 oz glass	4 Deg C, H2O + sodium bisulfate (in vial) 4 Deg C		Pu	irge-and-Tra	t Low Levels p I or Sedíment		osed-System
1 - 8 oz glass	4 Deg C	180	Days 1 Me	etals in Solid	s by ICP		
1 - 8 oz glass	4 Deg C	28	Days 1 Pe	rchlorate in	Soil by IC		
1 - 8 oz glass	4 Deg C	14	Days 1 PC	Bs in Soil by	/ GC/EC		
1 - 8 oz glass	4 Deg C	14	-		itile in Soil by		
1 - 8 oz glass	4 Deg C	14			Soil by GC/EC	D	
0 -	4 Deg C	0	Days 1 Pe	rcent Solid			
Sample Comme	nts: PPID S	Pouty (y Bott	Ting PI	lant o	n City	Property
Cetty of	Ottomwa - Air	nort					
) 1000	wa, IA 5250	\mathcal{D}					
Aftn: T	om Francis	·					
						•	
	•				. •		

ITEXNAS mwa (EX) NAS - PA s	amplind		oject Manager:	Ron King	
mwa		5	State:	Iowa	
erfund					
-Site - General				Site ID: 0	7ZZ Site OU: 00
sample					- <u></u>
1	Externa	al Samp	ole Number: _	SB8	12-14
(or Circle One:	Low .	Medium	High)	Date	Time(24 hr)
·	Sam	ple Coll	ection: Start:	<u>61300</u>	, <u>14:4</u> 0
· · · · · · · · · · · · · · · · · · ·	-		End:		:
25:					
Preservative	Holding	-	Analysis	n Sail by CC/M	C
4 Deg C	14 14	Days Days	1 TPH Volatiles in 1 VOC's in Soil a		s y GC/MS Closed-System
4 Deg C, H2O + sodium bisulfate (in vial) 4 Deg C	14	Days	Purge-and-Tra	P	GC/M3 Closed-System
4 Deg C	180	Days	1 Metals in Solid	s by ICP	
4 Deg C	28	Days	1 Perchlorate in	Soil by IC	
4 Deg C	- 14	Days	1 PCBs in Soil by	GC/EC	
4 Deg C	14	Days	1 TPH Semi-Vola	tile in Soil by C	GC/FID
4 Deg C	14	Days	1 Explosives in S	soil by GC/ECD	
4 Deg C	0	Days	1 Percent Solid		
City of Ottern weis minal St IA 52501	wa	-A; 87	0017	Cety pro Botting	P South of Plant
	4 Deg C 4 Deg C 4 Deg C 4 Deg C 4 Deg C 4 Deg C	4 Deg C 180 4 Deg C 28 4 Deg C 14 4 Deg C 14 4 Deg C 14 4 Deg C 14 4 Deg C 14	4 Deg C180Days4 Deg C28Days4 Deg C14Days4 Deg C14Days4 Deg C14Days4 Deg C14Days4 Deg C14Days	4 Deg C180Days1 Metals in Solid4 Deg C28Days1 Perchlorate in4 Deg C14Days1 PCBs in Soil by4 Deg C14Days1 TPH Semi-Vola4 Deg C14Days1 Explosives in Soil by	4 Deg C180Days1 Metals in Solids by ICP4 Deg C28Days1 Perchlorate in Soil by IC4 Deg C14Days1 PCBs in Soil by GC/EC4 Deg C14Days1 TPH Semi-Volatile in Soil by C4 Deg C14Days1 TPH Semi-Volatile in Soil by GC/EC4 Deg C14Days1 Explosives in Soil by GC/ECD4 Deg C0Days1 Percent Solid

ASR Number: 3	047 Sample Number:	14	QC Co	ode: Matr	ix: Solid T	ag ID: 3047-14
City:	Ottumwa (EX) NAS - PA s Ottumwa	ampling		oject Manager: State:	· •	
Program: Site Name:	Superfund Multi-Site - General				Site ID: 07	ZZ Site OU: 00
Location Desc:	Soil sample	Externa	al Sam	ple Number: _	5B9 (8	0,5-2#)
Expected Conc:	(or Circle One:				Date	Time(24 hr)
Latitude:		Samp	ole Col	lection: Start:	61306	15:20
Longitude:				End:	//	·:
Laboratory Ana	-		<u> </u>			
Container	Preservative	Holding		Analysis		
2 ~ 40mL VOA vial	4 Deg C	14	Days	1 TPH Volatiles in		
2 ~ 40mL VOA vial (preserved/tared) 1 ~ 8 oz glass	4 Deg C, H2O + sodium bisulfate (in vial) 4 Deg C	· 14 180	Days Days	Purge-and-Tra 1 Mercury in Soil	p .	GC/MS Closed-System
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid		
1 - 8 oz glass	4 Deg C	28	Days	1 Perchlorate in		
1 - 8 oz glass	4 Deg C	14	Days	- 1 PCBs in-Soil-by	GC/EC	
1 - 8 oz glass	4 Deg C	14	Days	1 TPH Semi-Vola	itile in Soil by GO	/FID
1 - 8 oz glass	4 Deg C	14	Days	1 Explosives in S	oil by GC/ECD	
0 -	4 Deg C	0	Days	1 Percent Solid		
Sample Commer (N/A) Cety of	Air, Othen wa - Air, ent at Noge	DON		The of 2	ndAV T	8 Str 58
64 AL	. Jon.		secc			
City of Other Tom Fo	mwa-Airport ancis	~		J	n Knee	Chairman.
14802	Terminal St a, IA 5250	1			Al-Jon !!	luc.
OPID						copy of data this property. 2 held A. A. IA 52501
Sample Collecte	ed By: JM					

-

ASR Number: 304	7 Sample Number:	15 QC Cod	le: Matrix: Solid Tag ID: 3047-15
Project ID: RK	OTTEXNAS	Proj	ject Manager: Ron King
City: Ott	umwa (EX) NAS - PA s umwa	ampling	State: Iowa
Program: Sup Site Name: Mul			Site ID: 07ZZ Site OU: 00
Location Desc: So	il sample	<u>, , , , , , , , , , , , , , , , , , , </u>	10-12
	I	External Samp	le Number: $\underline{SB9}$ ($\underline{12}$ $\underline{14}'$ $\underline{14}'$
Expected Conc:	(or Circle One:	Low Medium	High) Date Time(24 hr)
Latitude:		Sample Colle	ection: Start: 6/306 15:40
Longitude:			End://:
Laboratory Analys			
Container	Preservative	Holding Time	Analysis
2 - 40mL VOA vial	4 Deg C	14 Days	1 TPH Volatiles in Soil by GC/MS
! - 40mL VOA vial preserved/tared) 8 oz glass	4 Deg C, H2O + sodium bisulfate (in vial) 4 Deg C	14 Days 180 Days	1 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap 1 Mercury in Soil or Sediment
- 8 oz glass	4 Deg C	180 Days	1 Metals in Solids by ICP
-	4 Deg C	28 Days	1 Perchlorate in Soil by IC
- 8 oz glass	4 Deg C	14 -Days	1 PCBs in Soil by GC/EC
L - 8 oz glass	4 Deg C	14 Days	1 TPH Semi-Volatile in Soil by GC/FID
L - 8 oz glass	4 Deg C	14 Days	1 Explosives in Soil by GC/ECD
) -	4 Deg C	0 Days	1 Percent Solid
Sample Comments (N/A) Cetyol O	Humwa -Airpe	,H	2 nd 8 Th St casement south of former Motor Vehicle Bl
tom France	us .		south of former Motor Vehicle Bl
14802 Terr	ninal SC.	· .	
OTTOMWA F	1452501		Kneen
			Jon Keens Chairman
O	P = 0 $D = E$		Al-Jon, Duc
APHD new	or; PID=56	eppm	14599 240 Av Ottumwa, IA 52501-928
	•		requested copy of date easement next to his
Sample Collected	By: JM		comparing
		1 of 1	·

ASR Number: 304	47 Sample Number:	16	QC Co	ode:	Matr	ix: Solid	Tag IC): 3047-16
•	tumwa (EX) NAS - PA s	ampling			-	Ron King		
	tumwa				State:	Iowa		
Program: Su Site Name: Ma	iperfund ulti-Site - General					Site ID:	07ZZ 3	Site OU: 00
Location Desc: S						2.0		
		Externa	al Sam	ple Numl	per:	3B10	(0,5	-2f
Expected Conc:	(or Circle One	Low	Medium	n High)		Date		Time(24 hr)
Latitude: _		Samp	ole Col	lection: S	Start:	<u>6/3/0</u>	6	<u>16:30</u>
Longitude: _					End:	//		_:
Laboratory Analy Container	/Ses: Preservative	Holding	Time	Analys	is			
2 - 40mL VOA vial	4 Deg C	14	Days	-		n Soil by GC/	'MS	
2 - 40mL VOA vial (preserved/tared)	4 Deg C, H2O + sodium bisulfate (in vial)	14	Days	Purge-	and-Trap	D .	-	Closed-System
1 - 8 oz glass	4 Deg C	180	Days		•	or Sediment	C	
1 - 8 oz glass	4 Deg C	180	Days	1 Metals		Soil by ICP		· ·
1 - 8 oz glass 1 - 8 oz glass	4 Deg C 4 Deg C	28 14	Days Days	1-PCBs i		-		
1 - 8 oz glass	4 Deg C	14	Days		-	tile in Soil by		
1 - 8 oz glass	4 Deg C	14	Days			oil by GC/EC		
0 -	4 Deg C	0	Days	1 Percen			.0	
Sample Comment	s: OPID			(P. P. AL	Ann.	(SE) P	1 Te:W	inal St.
(N/A)				thon	1	COL	kon	inal St.
City of Othemw	a -Airport			8. II	- 770	1-011	/ - •	
Tom France 14802 Term	\$							
Ottomwa:	TA 52501							
•								•
							۰.	

ASR Number:	3047 Sample Number	r: 17	QC Co	de: Matrix: Solid Tag ID: 3047-17
Project ID:	RKOTTEXNAS		Pro	oject Manager: Ron King
•	Ottumwa (EX) NAS - PA Ottumwa Superfund	samplin	g	State: Iowa
Site Name:	Multi-Site - General			Site ID: 07ZZ Site OU: 00
Location Desc:	Soil sample			
		Extern	al Sam	ple Number: $\underline{SB10}(12-14)$
Expected Conc:	(or Circle One			
Latitude:		Sam	ple Coll	lection: Start: <u>6//3/06</u> <u>17:00</u>
Longitude:	, 			End:// :
Laboratory An	alyses:			
Container	Preservative	Holdin	g Time	Analysis
2 - 40mL VOA vial	4 Deg C	14	Days	1 TPH Volatiles in Soil by GC/MS
2 - 40mL VOA vial (preserved/tared) 1 - 8 oz glass	4 Deg C, H2O + sodium bisulfate (in vial) 4 Deg C	14 180	Days Days	 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap Mercury in Soil or Sediment
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solids by ICP
1 - 8 oz glass	4 Deg C	28	Days	1 Perchlorate in Soil by IC
1 - 8 oz glass	4 Deg C	14	•	1 PCBs in Soil by GC/EC
1 - 8 oz glass	4 Deg C	14	Days	1 TPH Semi-Volatile in Soil by GC/FID
1 - 8 oz glass	4 Deg C	14	Days	1 Explosives in Soil by GC/ECD
0 -	4 Deg C	0	Days	1 Percent Solid
Sample Comme (N/A) City of	nts: 10ttern wa - Clerp Irancis	port		Actors Terminal St from Terminal Bldg.

14802 Terminal St Ottumwa, IA 52501

 $PID = \emptyset$

ASR Number: 3	3047 Sample Number:	18 QC Co	de: Matrix: Solid Tag	ID: 3047-18
-	Ottumwa (EX) NAS - PA sa		oject Manager: Ron King State: Iowa	
-	Ottumwa Superfund		State: Iowa	
-	Multi-Site - General		Site ID: 0722	Site OU: 00
Location Desc:	Soil sample			
	E	xternal Sam	ple Number: $SB11$ (C	0,5-2)
Expected Conc:	(or Circle One:	Low Medium	n High) Date	Time(24 hr)
Latitude:		Sample Col	lection: Start: <u>6 /13/06</u>	17:45
Longitude:			End://	:
Laboratory Ana	-			
Container	•	Holding Time		
2 - 40mL VOA vial	4 Deg C	14 Days	1 TPH Volatiles in Soil by GC/MS	MC Classed Custom
2 - 40mL VOA vial (preserved/tared) 1 - 8 oz glass	4 Deg C, H2O + sodium bisulfate (in vial) 4 Deg C	14 Days 180 Days	 VOC's in Soil at Low Levels by GC, Purge-and-Trap Mercury in Soil or Sediment 	MS Closed-System
1 - 8 oz glass	4 Deg C	180 Days	1 Metals in Solids by ICP	
1 - 8 oz glass	4 Deg C	28 Days	1 Perchlorate in Soil by IC	
1 8 oz glass	4 Deg C	14 Days	1 PCBs in Soil by-GC/EC	
1 - 8 oz glass	4 Deg C	14 Days	1 TPH Semi-Volatile in Soil by GC/F	[D
1 - 8 oz glass	4 Deg C	14 Days	1 Explosives in Soil by GC/ECD	
0 -	4 Deg C	0 Days	1 Percent Solid	
Sample Comme (N/A) West	of auport Re	-	Nof Terminal An o' west of sign 7	brauppont.
City of C	Henda - Airp ancés	Dart		
14802	Terminal St, Wa, IA 5250			
Q P			· ·	· .
Sample Collect	ed Bv: 1M			·

ASR Number: 3	047 Sample Number:	19	QC Cod	le: Mati	rix: Solid Tag	JID: 3047-19
City: (Program: S	Ottumwa (EX) NAS - PA s Ottumwa	ampling		ject Manager State	: Iowa	Z Site OU: 00
Location Desc:	Soil sample			<u> </u>		
	· .	Externa	l Samp	le Number:	·	
Expected Conc:	(or Circle One:	Low	Medium	High)	Date	Time(24 hr)
Latitude:	· ·	Same	ole Colle	ection: Start:	61306	18:05
Longitude:		,		End:	//	:
Laboratory Ana	lyses:			<u> </u>		
Container	Preservative	Holding	Time	Analysis		
2 - 40mL VOA vial	4 Deg C	14	Days	1 TPH Volatiles i		
2 - 40mL VOA vial (preserved/tared)	4 Deg C, H2O + sodium bisulfate (in vial)	14	Days	1 VOC's in Soil a Purge-and-Tra	•	/MS Closed-System
1 - 8 oz glass	4 Deg C	180	Days	1 Mercury in Soi		
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solic	•	
1 - 8 oz glass	4 Deg C	28	Days	1 Perchlorate in	•	
1 - 8 oz glass	4 Deg C	14	Days	1 PCBs in Soil by		-
1 - 8 oz glass	4 Deg C	14	Days		atile in Soil by GC/F	10
1 - 8 oz glass 0 -	4 Deg C 4 Deg C	14 0	Days Days	1 Explosives in S 1 Percent Solid	SOIL DY GC/ECD	_
	-				· · · · · · · · · · · · · · · · · · ·	
Sample Commer (N/A)	Brekground Loc W of Airport				ial Av~ f of sign	- 12-14 ft for mirport
City	of Offumwa Fon Francis 14802 Terminal Oftumwa, IA N PID	- A; 51: 5250	rport I	•		
	Q PID					
Sample Collecte	ed By: JM					

.

ASR Number:	3047 Sample Number	: 20	QC Co	de:	Matr	ix: Solid	Tag I	D: 3047-20
Project ID:	RKOTTEXNAS		Pro	oject Ma	anager:	Ron King		
, -	Ottumwa (EX) NAS - PA s	sampling	9		Chata	Terre		
-	Ottumwa				State:	Iowa		
Program: Site Name:	Superfund Multi-Site - General					Site ID:	0777	Site OU: 00
Site Name.	Half Site General					0.00 10.	0722	
Location Desc:	-					CED	_4	
		Externa	al Sam	ple Nun	iber: _	SE P	- /	
Expected Conc	or Circle One	(Low?	Medium	High)	· ·	Date	:	Time(24 hr)
Latitude:		Sám	ple Coll	lection:	Start:	6/14/0	Q	09:30
Longitude:					End:	//	_	;
Laboratom/ An					- <u>-</u>			<u> </u>
Laboratory An Container	Preservative	Holding	Time	Analy	sis			
2 - 40mL VOA vial	4 Deg C	14	Days	•		n Soil by GC/	MS ;	COLMS
2 - 40mL VOA vial	4 Deg C, H2O ⊲≢ sodium	14	Days	1 VOC') مح a in Soil a	t Low Levels	by GC/M	Closed-System y
(preserved/tared)		180	Days		e-anu-ma	p or Sediment		
1 - 8 oz glass	4 Deg C	180	Days		ls in Solid		-	
1 - 8 oz glass	4 Deg C	28	Days		•	Soil by IC		
1 - 8 oz glass	4 Deg C	14	Days	1 PCBs	in Soil by	GC/EC		
1 - 8 oz glass	4 Deg C	14	Days	1 TPH	Semi-Vola	tile in Soil by	GC/FID	
1 - 8 oz glass	4 Deg C	14	Days	1 Explo	osives in S	oil by GC/EC	D _.	
0 -	4 Deg C	0	Days		ent Solid			
Sample Comme	ents: Downstream	of S	EDI	* SE	DZ			
(N/A)	- - -	\mathcal{D} .						·
Con of Oth	mua-Airport		•					
Ton I	rancis							
14902	Terminal St.							
OTTOMU	Ja, IA 52501							
	•						-	
							-	
Sample Collect	ed By: JM							

ASR Number:	3047	Sample Number:	21	QC Cod	le: FB M	latri	x: Solid	Tag 1	(D: 3047-21-FB
Project ID: Project Desc:		EXNAS wa (EX) NAS - PA s	amolin	-	ject Manag	jer:	Ron King		
City: Program:	Ottum	wa		9	Sta	ate:	Iowa		
-	-	Site - General					Site ID:	07ZZ	Site OU: 00
Location Desc:	Soil 5	035 VOA/TPH (OA-	1) Trip	Blank sa	mple			· ·	· · · · · · · · · · · · · · · · · · ·
		I	Externa	al Samp	le Number	•			<u></u>
Expected Conc	:	(or Circle One:	Low	Medium	High)		Date		Time(24 hr)
Latitude:			Sam	pie Colle	ection: Sta	rt:	6/12/0	Ĺ:	0 <u>8:00</u>
Longitude:					Er	nd:		_	;
Laboratory An Container	-	: reservative	Holding	g Time	Analysis				
2 - 40mL VOA vial	4	Deg C	14	Days	1 TPH Volati	iles in	Soil by GC/	MS	
2 - 40mL VOA vial (preserved/tared)		Deg C, H2O + sodium isulfate (in vial)	14	Days	1 VOC's in S Purge-and			by GC/M	IS Closed-System
Sample Comme	ents:	Tel monar	1 -1-	hha	ni ka				
(N/A)		Lab-prepase	-4 / 7	17)					

Sample Collected By: JM

0

ASR Number:	3047 Sample Numb	er: 22	QC Co	de: Matr	ix: Solid T	ag ID: 3047-22
Project Desc: City: Program:	RKOTTEXNAS Ottumwa (EX) NAS - P Ottumwa Superfund Multi-Site - General	A samplin		oject Manager: State:	Iowa	ZZ Site OU: 00
Location Desc:	Sediment sample	<u>.</u>				
		Extern	al Samr	ole Number: _	SED-	1
Expected Conc	or Circle Or				Date	Time(24 hr)
Latitude:	<u> </u>	Sam	ple Coll	ection: Start:	6,006	1730
Longitude:			•	End:	/	
Laboratory An Container	alyses: Preservative	Holdin	g Time	Analysis	<u> </u>	<u> </u>
2 - 40mL VOA vial	4 Deg C	14	Days	1 VOCs in Solid N	atrices by GC/M	1S
2 - 40mL VOA vial	4 Deg C	14	Days	1 TPH Volatiles ir	n Soil by GC/MS	
1 - 8 oz glass	4 Deg C	180	Days	1 Mercury in Soil	or Sediment	
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid	s by ICP	
1 - 8 oz glass	4 Deg C	28	Days	1 Perchlorate in S	Soil by IC	· ·
1 - 8 oz glass	4 Deg C	14	Days	1 PCBs in Soil by	GC/EC	
1 - 8 oz glass	4 Deg C	14	Days	1 TPH Semi-Vola		C/FID
1 - 8 oz glass	4 Deg C	14	Days	1 Explosives in S	oil by GC/ECD	
0 -	4 Deg C	0	Days	1 Percent Solid		
Sample Comme (N/A)	ents: Sed loca plant	tionof	om a	rainage,	NNEOP	Treatment
Cety of Oth	muc auport	. .				
Tom France				· · ·		
14802 Ten	minal St.					
Othenwa IA	- 52 501	· ·				
	•					
						·

Sample Collected By: JM

.

.

٠

ASR Number:	3047	Sample Ni	umber: 23	•	QC Co	de: Ma	trix: So	olid Ta	ag I	D: 3047-23
Project ID:			·			oject Manage	r: Ron	King		
Project Desc:		• •	5 - PA samp	oling	J .	C1 - 1				
•	Ottumv					Stat	e: Iowa			
Program: Site Name:	•		-1				Sito	TD: 07	77	Site OU: 00
Site Name.	Mulu-3	ite - Genera					Site	ID. 07.		
Location Desc:	Sedim	ent sample	-						_	
			Exte	erna	al Samı	ole Number:	SE	D-2		
Expected Conc	:	(or Circ	le One:	w)) Medium	High)	Da	ate		Time(24 hr)
Latitude:	·		Si	amj	ple Coll	ection: Start	: 6,	12,06		17.45
Longitude:						End	:/_	/ ·		:
Laboratory An	alyses:	- <u></u>								<u> </u>
Container	Pr	eservative	Hol	ding	g Time	Analysis				
2 - 40mL VOA vial	• 4[Deg C		14	Days	1 VOCs in Soli	d Matrice	s by GC/M	s	
2 - 40mL VOA vial	4 [Deg C		14	Days	1 TPH Volatiles		•		
1 - 8 oz glass	4 [Deg C	1	180	Days	1 Mercury in S	oil or Sed	liment		·
1 - 8 oz glass		Deg C	1	180	Days	1 Metals in Sol	•			
1 - 8 oz glass		Deg C	•	28	Days	1 Perchlorate i	•			
1 - 8 oz glass		Deg C		14	Days	1 PCBs in Soil	· ·			
1 - 8 oz glass	4 [Deg C		14	Days	1 TPH Semi-Vo	platile in S	Soil by GC,	/FID	
1 - 8 oz glass		Deg C		14	Days	1 Explosives in				
0 -	4 [Deg C		0	Days	1 Percent Solic	1			
Sample Comme	ents:	Back	aton		2 N	NW of to	eatr	wit	<i>g</i>	· · · ·
(N/A) Celyof Tom 1480 Ott	Often Fran DZ Te Smus	rwa-(nces (minal (, IA s	St, 52 501	-		1 Percent Solic				

Sample Collected By: JM

1

ASR Number: 30	47 Sample Numbe	er: 24	QC Co	de:	Matr	ix: Solid Ta	ag ID: 3047-24
Project ID: R	KOTTEXNAS ttumwa (EX) NAS - P/	A samolin		oject Ma	nager	Ron King	
City: 0	• •	s sampin	ig		State	Lowa	
Program: S	•						
-	ulti-Site - General					Site ID: 07	ZZ Site OU: 00
Location Desc: S	Sediment sample					0	· ·
•.		Extern	al Sam	ple Num	ber: _	SED-3	
Expected Conc:	(or Circle On	e: Low)Medium	High)		Date	Time(24 hr)
Latitude: _		Sam	ple Coll	ection:	Start:	6/1306	09:10
Longitude:			-		End:		:
Laboratory Anal	-		<u>.</u>			· ·	
Container	Preservative		ıg Time	Anaiys			
2 - 40mL VOA vial	4 Deg C	14	•			Matrices by GC/M	S
2 - 40mL VOA vial	4 Deg C	14	•			n Soil by GC/MS	
1 - 8 oz glass	4 Deg C	180	•		•	l or Sediment	
1 - 8 oz glass	4 Deg C	180	•		s in Solid	-	
1 - 8 oz glass	4 Deg C	28	•			Soil by IC	
1 - 8 oz glass	4 Deg C	14		¹	in Soil by	tile in Soil by GC	
1 - 8 oz glass 1 - 8 oz glass	4 Deg C 4 Deg C	14 14				Soil by GC/ECD	
0 -	4 Deg C 4 Deg C	0		1 Percer			
Sample Comment (N/A) Cetty of C Tom Fra 1480 i O Hom	ts: Offerminal - air ncis 2 Terminal St, wa IA 52501	port	Ð		J	South of	1 aerport

	Sa	US EF	ection Field Sh PA Region 7 as City, KS	eet	
ASR Number: 30	47 Sample Numbe	er: 25 QC	Code: Matr	ix: Solid Tag	24FD 10: 3047-25
Project ID: R	KOTTEXNAS	<i>y</i>	Project Manager		······································
-	ttumwa (EX) NAS - PA	A sampling	State		
City: 0 Program: S	uperfund		State		
-	ulti-Site - General			Site ID: 07Z	Z Site OU: 00
Location Desc: S	Sediment sample				
		External Sa	ample Number: 🚽	SED-3	
Expected Conc:	(or Circle On	e: Low Med	ium High)	Date	Time(24 hr)
Latitude:		Sample	Collection: Start:	6/13/06	09:10
· Longitude: _			End:	//	; ·
Laboratory Anal	-				
Container 2 - 40mL VOA vial	Preservative 4 Deg C	Holding Tim 14 Da		Matrices by GC/MS	
2 - 40mL VOA vial	4 Deg C	14 Da			
1 - 8 oz glass	4 Deg C	180 Da		-	
1 - 8 oz glass	4 Deg C	180 Da	· · · · · · · · · · · · · · · · · · ·		. •
1 - 8 oz glass	4 Deg C	28 Da	ys 1 Perchlorate in	Soil by IC	
1 - 8 oz glass	4 Deg C	14 Da	ys 1 PCBs in Soil by	GC/EC	
1 - 8 oz glass	4 Deg C	•14 Da	ys 1 TPH Semi-Vola	atile in Soil by GC/F	ID
1 - 8 oz glass	4 Deg C	14 Da	ys 1 Explosives in S	Soil by GC/ECD	
0 -	4 Deg C	0 Da	•		
Sample Comment (N/A)	IS: SED 3-D	sup t	Same South	th of all po	ort
	mwa Airport	A			• •
Tom Fran	icis				
-	menal St				
Ottomwa.	IA. 52501				
	. •		·		

Project ID:	RKOTTEXNAS	Project Manager		
-	Ottumwa (EX) NAS - PA sa			
•	Ottumwa	State	: Iowa	
Program:	Superfund			
Site Name:	Multi-Site - General		Site ID: 07ZZ	Site OU: 00
Location Desci	Sediment VOA/TPH (OA-1			
	E	xternal Sample Number:		
Expected Conc	: (or Circle One:	www.Medium High)	Date	Time(24 hr)
Latitude:	<u> </u>	Sample Collection: Start:	6 DJO 4	08:15
Longitude:	·	End:	/ `	:
Laboratory An	alyses:	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Container	Preservative	Holding Time Analysis		Mosquer one
2 - 40mL VOA vial	4 Deg C	•	Matrices by GC/MS	A V
2-40mL VOA vial	4-Deg C	14 Days 1 TP <u>H</u> Volatiles-i	in-Soil by GC/MS	Onder had one
Sample Comme	ents: Lad prepared tr.	who he	······································	
(N/A)	Wall preperred	pharma		

Project ID: RKOTTEXNAS Project Desc: Ottumwa (EX) NAS - PA sampl	_	ect Manager:	Ron King	
City: Ottumwa Program: Superfund		State:	Iowa	
Site Name: Multi-Site - General			Site ID: 07ZZ	Site OU: 00
Location Desc: Temp. Well GW LDL VOA/TPH	(OA-1) Trip	Blank sample		
Exter	rnal Sample	Number:		
Expected Conc: (or Circle One: Low	Medium 'H	ligh)	Date	Time(24 hr)
Latitude: Sa	mple Collec	tion: Start:	618106	06.30
Longitude:		End:		:
Laboratory Analyses: Container Preservative Hold	ling Time	Analysis		
-	•		water by GC/MS by GC/MS for Low D	etection Limits
Sample Comments: Lab prepased (N/A)	Trips	blank	· .	• •
· · · · · · · · · · · · · · · · · · ·				-
		·		
	·			
· · ·			· .	
Sample Collected By: JM				

ASR Number: 30	47 Sample Number:	207	QC Co	de: FB	Matrix: Water	Tag ID: 304	7-207-FB
Project ID: R				oject Mana	ger: Ron King		
-	ttumwa (EX) NAS - PA s ttumwa uperfund	amplin	g	S	tate: Iowa		
-	ulti-Site - General				Site ID:	07ZZ Site O	U: 00
Location Desc: [OW Field Blank sample					0	· ·
	I	Extern	al Samj	ple Numbe	r: Jield	Blank	
Expected Conc:	(or Circle One:	Low	Medium	High)	Date	Time	e(24 hr)
Latitude:		Sam	ple Coll	ection: St	art: '6/ <u>13</u> /2	6 18:3	5
Longitude: _				E	nd://	:_	-
Laboratory Anal	yses:	·			<u> </u>	······	<u> </u>
Container	Preservative	Holdin	g Time	Analysis			
1 - 1 Liter Cubitainer	4 Deg C	28	Days	1 Perchlora	ite in Water by IC		
1 - 1 Liter Cubitainer	5 mL of HNO3/L to pH<2	28	Days	1 Mercury	in Water		
1 - 1 Liter Cubitainer	HNO3 acidify, 4 Deg C	180	Days	1 Metals in	Water by ICP		
1 - 128oz amber glass	4 Deg C	7	Days	1 Pesticide	s in Water by GC/E	С	
1 - 128oz amber glass	4 Deg C	7	Days	1 TPH Sem	i-volatile in Water	by GC/FID	
1 ~ 128oz amber glass	4 Deg C	7	Days	1 Explosive	es in Water by GC/I	CD	
2 - 40mL VOA vial	4 Deg C	14	Days	1 TPH Vola	tiles in water by G	./мs	•
4 - 40mL VOA vial	4 Deg C, HCL to pH<2	14	Days	1 VOCs in	Drinking Water by (GC/MS	
Sample Commen	ts: 1:11 /30	Fich	/ :	· <u>·</u>		<u> </u>	
(N/A)	TICIO EM	(x-1) -	1. Sec. 1. Sec				

•	RKOTTEXNAS	-	nager: Ron King	
-	Ottumwa (EX) NAS - PA s Ottumwa	sampling	State: Iowa	
Program:			otate, iona	
-	Multi-Site - General		Site ID: 07ZZ	Site OU: 00
Location Desc:	DW VOA/TPH (OA-1) Tri	p Blank sample		
		External Sample Num	ber:	
Expected Conc	(or Circle One:	Low Medium High)	Date	Time(24 hr)
Latitude:		Sample Collection:	Start: <u>6/8 0/6</u>	06:40
Longitude:		•	End://	_:_
Laboratory An	alyses:			
Container	Preservative	Holding Time Analys		
2 - 40mL VOA vial	4 Deg C		olatiles in water by GC/MS	
4 - 40mL VOA vial	4 Deg C, HCL to pH<2	14 Days 1 VOCs	in Drinking Water by GC/MS	
Sample Comme	ints: JAppepare	2 trip blank	······································	•
(N/A)				
				•

ASR Number: 304	7 Sample Number:	301	QC Co	de:	Matr	ix: Water Tag	g ID: 3047-301
Project ID: RK Project Desc: Ott	OTTEXNAS cumwa (EX) NAS - PA si	amplin		oject Mar	nager:	Ron King	
City: Ott	tumwa			:	State:	Iowa	
Program: Su	perfund						
Site Name: Mu	lti-Site - General					Site ID: 07Z	Z Site OU: 00
Location Desc: Su							
	E	Externa	al Samı	ole Numb	er: 🕓	SW-3	
Expected Conc:	(or Circle One:	Low	Medium	High)	·	Date	Time(24 hr)
Latitude:		Sam	ple Coll	ection: S	start:	6/13/06	09:00
Longitude:					End:	//	_:_
Laboratory Analy							
Container	Preservative	Holding		Analysi		Nahar bu IC	
1 - 1 Liter Cubitainer	4 Deg C	28	Days			Water by IC	
	5 mL of HNO3/L to pH<2 HNO3 acidify, 4 Deg C	28 180	•	1 Mercur 1 Metals			
(1 - 128oz amber glass	4 Deg C	7	Days Days			ater by GC/EC	
1 - 128oz amber glass	4 Deg C	, 7	Days			tile in Water by GC	/FID
1 - 128oz amber glass	4 Deg C	7	Days			ater by GC/ECD	
2 - 40mL VOA vial	4 Deg C	14	Days	· · ·		water by GC/MS	
✓- 40mL VOA vial	4 Deg C, HCL to pH<2	14	Days			by GC/MS for Low	Detection Limits
Sample Comments	: MS/MSD		0-			Southd	rainage fro
(N/A) Coty of	Othemwa-1	45 r p	ort			betport	
Ton -	1 Ottomwa - 1 trancis Tecminal St						
Othum use	A, IA 52501				•		
U U U U U	· ·						

•	Sam	US EPA I	ion Field She Region 7 City, KS	eet	
ASR Number: 304	7 Sample Number:	1p , 202 QC CO	de: W Matr	ix: Water Tag	301FD
Project ID: RKG			oject Manager:		
Project Desc: Ott	umwa (EX) NAS - PA s umwa		State:		
Program: Sup Site Name: Mul				Site ID: 07ZZ	Site OU: 00
Location Desc: Su	rface water sample	·			
	· I	External Sam	ple Number: _	SW-3	Dup
Expected Conc:	(or Circle One:	Low Medium	ı High)	Date	Time(24 hr)
Latitude:		Sample Coll	lection: Start:	613106	0 <u>9:0</u> 0
Longitude:			End:	//	:
Tom Franci 14802 Tem Ottomwa, IA	Preservative 4 Deg C 5 mL of HNO3/L to pH<2 HNO3 acidify, 4 Deg C 4 Deg C 4 Deg C 4 Deg C 4 Deg C 4 Deg C 4 Deg C, HCL to pH<2 DUP MWA - Quy 5 MWA ST		1 Explosives in W 1 TPH Volatiles in 1 VOCs in Water	ter r by ICP /ater by GC/EC tile in Water by GC/ Vater by GC/ECD n water by GC/MS by GC/MS for Low E	fon a port

ASR Number: 3047	7 Sample Number:	303	QC Co	de: Matr	ix: Water Tag	ID: 3047-303
City: Ott	DTTEXNAS umwa (EX) NAS - PA s umwa perfund	ampling		oject Manager: State:	-	
Site Name: Mul					Site ID: 0722	Z Site OU: 00
Location Desc: Su	·	Externa	al Samı	ple Number: _	$S\omega - \varphi$	
Expected Conc:	(or Circle One:/	Low	Medium	ˈHigh)	Date	Time(24 hr)
Latitude:		Samp	oie Coll	ection: Start:	6/14/06	07:20
Longitude:				End:	/ /	:
Laboratory Analys Container 1 - 1 Liter Cubitainer 1 - 1 Liter Cubitainer 1 - 1 Liter Cubitainer 1 - 1 Liter Cubitainer 1 - 1280z amber glass 1 - 1280z amber glass 1 - 1280z amber glass 2 - 40mL VOA vial 4 - 40mL VOA vial 4 - 40mL VOA vial Sample Comments (N/A) of SED Outy of OHM Tom Jrance 14802 Ter Ottomma, Second	Preservative 4 Deg C 5 mL of HNO3/L to $pH<2$ HNO3 acidify, 4 Deg C 4 Deg C 4 Deg C 4 Deg C 4 Deg C 4 Deg C 4 Deg C, HCL to $pH<2$ Stream drawiege $I \neq SED 2$ on MWA - Airport	180 7 7 14 14	Days Days Days Days Days Days Days Days	1 Explosives in V 1 TPH Volatiles in 1 VOCs in Water	er r by ICP ater by GC/EC tile in Water by GC/ Vater by GC/ECD n water by GC/MS by GC/MS for Low	Detection Limits
	· · · ·					

APPENDIX E

ANALYTICAL RESULTS

United States Environmental Protection Agency Region 7 901 N. 5th Street Kansas City, KS 66101

Date: 1 9 JUL 2006

Subject: Transmittal of Sample Analysis Results for ASR #: 3047

Project ID: RKOTTEXNAS

Project Description: Ottumwa (EX) NAS - PA sampling

From: Dale I. Bates, Director

Regional Laboratory, Environmental Services Division

To: Ron King SUPR/EFLR

Enclosed are the analytical data for the above-referenced Analytical Services Request (ASR) and Project. The Regional Laboratory has reviewed and verified the results in accordance with procedures described in our Quality Manual (QM). In addition to all of the analytical results, this transmittal contains pertinent information that may have influenced the reported results and documents any deviations from the established requirements of the QM.

Please contact us within 14 days of receipt of this package if you determine there is a need for any changes. Please complete the enclosed Customer Satisfaction Survey and Data Disposition/Sample Release memo for this ASR as soon as possible. The process of disposing of the samples for this ASR will be initiated 30 days from the date of this transmittal unless an alternate release date is specified on the Data Disposition/Sample Release memo.

If you have any questions or concerns relating to this data package, contact our customer service line at 913-551-5295.

Enclosures

cc: Analytical Data File.

07/19/2006

Project Manager:	Ron King	Org: SUPR/EFLR	Phone: 913-551-7568
Project ID:	RKOTTEXNAS		
Project Desc:	Ottumwa (EX) NAS - PA sampl	ling	
Location:	Ottumwa	State: Iowa	Program: Superfund
Site Name:	Multi-Site - General		Site ID: 07ZZ Site OU: 00
Purpose:	Site Characterization		
	CERCLIS ID: IAN000703254		
	Explanation of Codes, Units a QC Codes identify the type of sample for quality control purp	Units: Specific u	n this report nits in which results are
	= Field Sample	% =	Percent
	FB = Field Blank	mg/L =	Milligrams per Liter
	FD = Field Duplicate		Milligrams per Kilogram
		-	Micrograms per Liter
		ug/kg =	Micrograms per Kilogram
Data Qualifiers: So	ecific codes used in conjuncti	on with data values t	o provide additional information
	the quality of reported results		

(Blank) = Values have been reviewed and found acceptable for use.

- J = The identification of the analyte is acceptable; the reported value is an estimate.
- U = The analyte was not detected at or above the reporting limit.
- UJ = The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.

Sample Information Summary

07/19/2006

Project ID: RKOTTEXNAS Project Desc: Ottumwa (EX) NAS - PA sampling

Sample Q No Co	C de Matrix	Location Description	External Sample No	Start Date	Start Time	End Date	End Time	Receipt Date
1	Solid	Soil sample (SB-1, 0.5-2')		06/12/2006	15:15			06/14/2006
· 2	Solid	Soil sample (SB-1, 12-14')		06/12/2006	15:50			06/14/2006
3	Solid	Soil sample (SB-2, 0.5-2')		06/12/2006	16:45			06/14/2006
4	Solid	Soil sample (SB-3)		06/12/2006	18:25			06/14/2006
5	Solid	Soil sample (SB-4, 0.5-2.0')		06/13/2006	07:50			06/14/2006
6	Solid	Soil sample (SB-5, 0.5-2')		06/13/2006	08:10			06/14/2006
7	Solid	Soil sample (SB-6, 0.5-2')		06/13/2006	10:25			06/14/2006
8	Solid	Soil sample (SB-6, 12-14')		06/13/2006	10:40			06/14/2006
9	Solid	Soil sample (SB-7, 0.5-2')		06/13/2006	12:50			06/14/2006
9 - FD		Soil sample (SB-7, 0.5-2')/Field Duplicate of sample 9	-	06/13/2006	12:50			06/14/2006
11		Soil sample (SB-7, 12-14')		06/13/2006				06/14/2006
12		Soil sample (SB-8, 0.5-2')		06/13/2006	14:20			06/14/2006
13	Solid	Soil sample (SB-8, 12-14')		06/13/2006	14:40	-	•	06/14/2006
14		Soil sample (SB-9, 0.5-2')	-	06/13/2006	15:20			06/14/2006
15		Soil sample (SB-9, 10-12')		06/13/2006	15:40 16:30			06/14/2006
16		Soil sample (SB-10, 0.5-2') Soil sample (SB-10, 12-14')		06/13/2006 06/13/2006	17:00			06/14/2006
17 18	Solid	Soil sample (SB-11, 0.5-2')		06/13/2006	17:45			06/14/2006 06/14/2006
		Soil background sample (North of		06/13/2006	17:45			06/14/2006
19 20		Terminal Ave., 12-14') Sediment sample (SED-		06/14/2006	09:30			06/15/2006
21 - FB		4)/Downstream of Sed 1 and 2 Soil 5035 VOA/TPH (OA-1) Trip		06/12/2006	08:00			06/14/2006
22	Solid	Blank sample Sediment sample - 1 (from drainage NNE of treatment plant)		06/12/2006	17:30			06/14/2006
23	Solid	Sediment sample - 2, background NNW of treatment		06/12/2006	17:45			06/14/2006
24	Solid	Sediment sample - 3, Drainage South of airport		06/13/2006	09:10			06/14/2006
24 - FD	Solid	Duplicate of sample 24		06/13/2006	09:10			06/14/2006
27 - FB	Solid	Sediment VOA Trip Blank sample		06/12/2006	08:15			06/14/2006
107 - FB		Temp. Well GW LDL VOA/TPH (OA-1) Trip Blank sample		06/08/2006	06:30			06/14/2006
207 - FB		DW Field Blank sample		06/13/2006	18:35			06/14/2006
208 - FB		DW VOA/TPH (OA-1) Trip Blank sample		06/08/2006	06:40			06/14/2006
301	water	Surface water sample - 3 (South drainage from airport)		06/13/2006	09:00			06/14/2006
301 - FD		Surface water sample - 3/Field Duplicate of sample 301		06/13/2006	09:00			06/14/2006
303	Water	Surface water sample - 4 (Stream drainage from North of airport)		06/14/2006	09:20			06/15/2006

RLAB Approved Analysis Comments

07/19/2006

Project ID: RKOTTEXNA Project Desc: Ottumwa (EX) NAS - PA sampling S

Analysis Comments About Results For This Analysis

1 Explosives in Soil by GC/ECD

Lab: REAP Contract Lab (Out-Source)

Method: Similar to EPA SW846 Method 8095 (see comments)

Samples:	1	2	3	4	5	6	7
	8	9	9-FD	11	12	13	14
	15	16	17	18	19	20	22
	23	24	24-FD				

Comments:

(N/A)

1 Mercury in Soil or Sediment

Lab: Region 7 EPA Laboratory - Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3121.23A

Samples:	1	2	3	4	5	6	7
	8	9	9-FD	11	12	13	14
	15	16	17	18	19	20	22
	23	24	24-FD				

Comments:

Metals in Solids by ICP

1

Lab: Region 7 EPA Laboratory - Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3122.3B

Samples:	1	2	3	4	5	6	7
	8	9	9-FD	11	•12	13	14
	15	16	17	18	19	20	22
	23	24	24-FD				

Comments:

Slight Antimony contamination was found in the laboratory method blank. Only samples containing this analyte at a level greater than ten times the contamination level of the blank are reported without being qualified. All samples that contained this analyte but at a level less than ten times the contamination in the blank have the result U-coded indicating that the reporting limit has been raised to the level found in the sample. Samples affected were: 22 & 24.

Potassium was J-coded in samples 1-9, 9FD and 11-19. Although the analyte in question has been positively identified in the samples, the quantitation is an estimate (J-coded) due to high recovery of this analyte in the laboratory control sample. The actual concentration for this analyte may be lower than the reported value.

Chromium was J-coded in samples 20, 22-24 and 24FD. Although the analyte in question has been positively identified in the samples, the quantitation is an estimate (J-coded) due to low

RLAB Approved Analysis Comments

07/19/2006

Project ID: RKOTTEXNA Project Desc: Ottumwa (EX) NAS - PA sampling S

Analysis Comments About Results For This Analysis

recovery of this analyte in the laboratory control sample. The actual concentration for this analyte may be higher than the reported value.

Aluminum, Iron, Manganese and Zinc were J-coded in sample 1. Although the analytes in question have been positively identified in the sample, the quantitations are estimates (J-coded) due to poor precision obtained for these analytes in the laboratory matrix spike and matrix spike duplicate.

Thallium was UJ-coded in sample 1. This analyte was not found in the sample at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to poor precision obtained for this analyte in the laboratory matrix spike and matrix spike duplicate. The actual reporting limit for this analyte may be higher than the reported value.

Iron, Magnesium, Potassium and Sodium were J-coded in sample 20. Although the analytes in question have been positively identified in the sample, the quantitations are estimates (J-coded) due to high recovery of these analytes in the laboratory matrix spike. The actual concentrations for these analytes may be lower than the reported values.

PCBs in Soil by GC/EC

1

Lab: Region 7 EPA Laboratory - Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3240.2F with Acid Cleanup

Samples:	1	2	3	4	5	6	7
	8	9	9-FD	11	12	13	14
	15	16	17		19	20	22
	23	24	24-FD				

Comments:

All Aroclors were UJ-coded in samples 1, 4, 18, 19, 20, 24 and 24FD. These analytes were not found in the samples at or above the reporting limits, however, the reporting limits are an estimate (UJ-coded) due to low recovery of the surrogate analyte. The actual reporting limits for these analytes may be higher than the reported values.

1 Percent Solid

Lab: Region 7 EPA Laboratory - Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3142.9D

Samples:	1	2	3	4	5	6	7
	8	9	9-FD	11	12	13	14
	15	16	17	18	19- <u>. </u>	20	21-FB
	22	23	24	24-FD	27-FB		

Comments:

(N/A)

1 Perchlorate in Soil by IC

RLAB Approved Analysis Comments

Project ID: RKOTTEXNA Project Desc: Ottumwa (EX) NAS - PA sampling S

Analysis Comments About Results For This Analysis

Lab: Region 7 EPA Laboratory - Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3135.9B

Samples:	1	2	3	4	5	6	7
	8	9	9-FD	11	12	13	14
	15	16	17	18	19	20	22
	23	24	24-FD				

Comments:

(N/A)

1 TPH Semi-Volatile in Soil by GC/FID

Lab: Region 7 EPA Laboratory - Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3270.1C

Samples:	1	2	3	4	5	6	7
	8	9	9-FD	11	12	13	14
	15	16	17	18	19	20	22
	23	24	24-FD				

Comments:

The extracts of the following samples were so darkly colored that the analyst diluted them prior to analysis in order to avoid damaging the instrument: 4, 18, 19, 20, 22, and 23. This increased the reporting limits by a factor of ten for these samples.

However, sample 1 was positive and showed a pattern somewhat indicative of diesel and motor oil. When preparing this sample, it was noted that it contained visible chunks of what appeared to be charcoal or tar.

Sample 2 also was positive and showed a pattern somewhat indicative of diesel and motor oil. Samples 24 and 24FD gave positive results, and although diesel fuel was used to quantitate the results, the chromatogram more closely resembled motor oil.

The other samples (3, 5 - 9, 9FD, 11 - 17) that were quantitated as positive did not show any characteristic pattern of any fuel that was available to the laboratory such as diesel, gasoline, motor oil, kerosene or jet fuel. It is more likely that the contamination is typical organic matter found in soil.

1 TPH Volatiles in Soil by GC/MS

Lab: Region 7 ESAT Contract Lab (In-House)

Method: EPA Region 7 RLAB Method 3230.19A

RLAB Approved Analysis Comments

07/19/2006

Project ID: RKOTTEXNA Project Desc: Ottumwa (EX) NAS - PA sampling S

Comments About Results For This Analysis Analysis

Comments:

The reporting limits were raised slightly due to sample weight and percent moisture.

TPH was UJ-coded in sample 9. These analytes were not found in the sample at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to poor precision obtained for these analytes in the laboratory matrix spike and matrix spike duplicate. The actual reporting limit for these analytes may be higher than the reported value.

In Sample 15, Ethyl Benzene was extremely high in comparison to the other TPH analytes. Sample 15 also contained interferring peaks. Sample 15 was J-coded. The elevated levels of the analytes are present but the results do not match the gasoline calibration pattern.

1 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap Lab: Region 7 EPA Laboratory - Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3230.16B

6-___ Samples: 1-___ 3-____ 4-___ 5-___ 9-FD 11-___ 12-___ 2-___ 7-. 8-____ 9-___ 9-FD 11-___ 12-__ 15-___ 16-___ 17-___ 18-___ 19-__ 14-13-___ 21-FB

Comments:

A large dilution was necessary in order to obtain valid results due to matrix interferences for sample 15. This increased the reporting limits by a factor of 100 for this sample. The reporting limits for all samples were adjusted for sample weight and percent moisture.

Slight Acetone, Cyclohexane, and Methylcyclohexane contaminations were found in the laboratory method blanks. Only samples containing these analytes at a level greater than ten times the contamination level of the blank are reported without being qualified. All samples that contained these analytes but at a level less than ten times the contamination in the blank have the result U-coded indicating that the reporting limit has been raised to the level found in the sample. Samples affected for Acetone were: 1, 2, 7, 9, 9-fd, 16-19, and 21-fb. Samples affected for Methylcyclohexane were: 15, 16, 19, and 21-fb. Sample 15 was affected for Cyclohexane.

Naphthalene, 1,2,3-Trichlorobenzene, and 1,2,4-Trichlorobenzene were UJ-coded in samples 9 and 9-fd. These analytes were not found in the samples at or above the reporting limits, however, the reporting limits are estimates (UJ-coded) due to low recovery of these analytes in the laboratory matrix spike. The actual reporting limits for these analytes may be higher than the reported values.

1 VOCs in Solid Matrices by GC/MS

Lab: Region 7 EPA Laboratory - Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3230.15B

Samples: 20-___ 22-__ 23-__ 24-__ 24-FD 27-FB

Page 7 of 41

RLAB Approved Analysis Comments

07/19/2006

Project ID: RKOTTEXNA Project Desc: Ottumwa (EX) NAS - PA sampling S

Analysis Comments About Results For This Analysis

Comments:

2-Butanone was J-coded in sample 27-fb. Although the analyte in question has beer positively identified in the sample, the quantitation is an estimate (J-coded) due to the continuing calibration check not meeting accuracy specifications. The actual concentration for this analyte may be lower than the reported value.

Naphthalene, 1,2,3-Trichlorobenzene and 1,2,4-Trichlorobenzene were UJ-coded in samples 24 and 24-fd. These analytes were not found in the samples at or above the reporting limits, however, the reporting limits are estimates (UJ-coded) due to low recovery of these analytes in the laboratory matrix spike. The actual reporting limits for these analytes may be higher than the reported values.

1,3-Dichlorobenzene, Methyl Acetate, and Styrene were UJ-coded in samples 24 and 24-fd. These analytes were not found in the samples at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to poor precision obtained for these analytes in the laboratory matrix spike and matrix spike duplicate. The actual reporting limit for these analytes may be higher than the reported value.

1 Explosives in Water by GC/ECD

Lab: REAP Contract Lab (Out-Source)

Method: Similar to EPA SW846 Method 8095 (see comments)

Samples: 207-FB 301-___ 301-FD 303-___

Comments:

Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) was UJ-coded in samples 3047-301, -301FD, 207FB, & -303. This analyte was not found in the sample at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to low recovery of this analyte in the laboratory MS and MSD. The actual reporting limit for this analyte may be higher than the reported value.

1 Mercury in Water

Lab: Region 7 EPA Laboratory - Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3121.23A

Samples: 207-FB 301-___ 301-FD 303-___

Comments:

(N/A)

Metals in Water by ICP

1

Lab: Region 7 EPA Laboratory - Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3122.3B

Samples: 207-FB 301-___ 301-FD 303-___

Comments:

Selenium was UJ-coded in samples 301, 301FD and 303. This analyte was not found in the

RLAB Approved Analysis Comments

07/19/2006

Project ID: RKOTTEXNA Project Desc: Ottumwa (EX) NAS - PA sampling S

Analysis Comments About Results For This Analysis

samples at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to low recovery of this analyte in the laboratory fortified blank. The actual reporting limit for this analyte may be higher than the reported value.

1 Perchlorate in Water by IC

Lab: Region 7 EPA Laboratory - Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3135.9B

Samples: 207-FB 301-___ 301-FD 303-___

Comments:

(N/A)

1 Pesticides in Water by GC/EC

Lab: Region 7 EPA Laboratory - Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3240.2F

Samples: 207-FB 301-___ 301-FD 303-___

Comments:

(N/A)

1 TPH Semi-volatile in Water by GC/FID

Lab: Region 7 EPA Laboratory - Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3270.1C

Samples: 207-FB 301-___ 301-FD 303-___

Comments:

1

No sample exhibited a characteristic pattern of any standard maintained in the laboratory, including motor oil, gasoline, kerosene, jet fuel, diesel and mineral spirits. The positive hits are most likely organic content.

TPH Volatiles in water by GC/MS

Lab: Region 7 ESAT Contract Lab (In-House)

Method: EPA Region 7 RLAB Method 3230.19A

Samples: 107-FB 207-FB 208-FB 301-___ 301-FD 303-___

Comments:

1 VOCs in Drinking Water by GC/MS

Lab: Region 7 EPA Laboratory - Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3230.9C

Samples: 207-FB 208-FB

Comments:

1

RLAB Approved Analysis Comments

07/19/2006

Project ID: RKOTTEXNA Project Desc: Ottumwa (EX) NAS - PA sampling S

Analysis Comments About Results For This Analysis

Chloromethane and 1,2-Dibromo-3-chloropropane were UJ-coded in samples 207-fb and 208fb. These analytes was not found in the samples at or above the reporting limits, however, the reporting limits are estimates (UJ-coded) due to poor precision obtained for these analytes in the laboratory matrix spike and matrix spike duplicate. The actual reporting limits for these analytes may be higher than the reported values.

VOCs in Water by GC/MS for Low Detection Limits

Lab: Region 7 EPA Laboratory ~ Kansas City, Ks.

Method: EPA Region 7 RLAB Method 3230.13C

Samples: 107-FB 301-___ 301-FD 303-___

Comments:

Page 10 of 41

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Project Desc: Ottumwa (EX) NAS - PA sampling

Analysis/ Analyte	Units	1	2	3	4
1 Explosives in Soil by GC/ECD					
2-Amino-4,6-dinitrotoluene	ug/kg	64 U	64 U	64 U	64 U
4-Amino-2,6-dinitrotoluene	ug/kg	107 U	107 U	107 U	107 U
3,5-Dinitroaniline	ug/kg	500 U	500 U	500 U	500 U
1,3-Dinitrobenzene	ug/kg	69 U	69 U	69 U	69 U
2,4-Dinitrotoluene	ug/kg	, 146 U	146 U	146 U	146 U
2,6-Dinitrotoluene	ug/kg	199 U	199 U	199 U	199 U
Hexahydro-1,3,5-trinitro-1,3,5-triazine	ug/kg	102 U	102 U	102 U	102 U
Nitrobenzene	ug/kg	42 U	42 U	42 U	42 U
Nitroglycerine	ug/kg	500 U	500 U	500 U	500 U
2-Nitrotoluene	ug/kg	102 U	102 U	102 U	102 U
3-Nitrotoluene	ug/kg	89 U	89 U	89 U	89 U
4-Nitrotoluene	ug/kg	162 U	162 U	162 U	162 U
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine	ug/kg	394 U	394 U	394 U	394 U
Pentaerythritoltetranitrate	. ug/kg	545 U	545 U	545 U	545 U
1,3,5-Trinitrobenzene	ug/kg	92 U	92 U	92 U	92 U
2,4,6-Trinitrophenylmethylnitramine	ug/kg	134 U	134 U	134 U	134 U
2,4,6-Trinitrotoluene	ug/kg	100 U	100 U	100 U	100 U
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.059	0.047	0.053	0.022
1 Metals in Solids by ICP					
Aluminum	mg/kg	11100 J	9560	14700	4970
Antimony	mg/kg	2 U	2 U	2 U	2 U
Arsenic	mg/kg ⁻	5 U	· 5 U	. 5 U	5 U
Barium	mg/kg -	205	189	216	217
Beryllium	mg/kg	1 U	1 U	1 U	1 U
Cadmium	mg/kg	1 U	1 U	1 U	1 U
Calcium	mg/kg	2860	3660	3220	76600
Chromium	mg/kg	. 13.3	13.5	17.2	5.31
Cobalt	mg/kg	4.69	2.59	3.09	2.71
Copper	mg/kg	15.0	13.5	15.6	8.94
Iron	mg/kg	16300 J	8520	20200	13200
Lead	mg/kg	14.0	8.87	8.53	12.2
Magnesium	mg/kg	2360	3080	3610	13700
Manganese	mg/kg	181 J	51.8	132	372
Molybdenum	mg/kg	2 U	2 U	2 U	2 U
Nickel	mg/kg	11.1	9.94	17.5	9.58
Potassium	mg/kg	686 3	789 J	763 J	789 J
Selenium	mg/kg	10 U	10 U	11.2	10 U
Silver	mg/kg	2 U	2 U	2 U	2 U
Sodium	mg/kg	89.6	111	68.2	110
Thallium	mg/kg	10 UJ	10 U	10 U	10 U
Vanadium	mg/kg	28.9	11.5	29.5	13.7
Zinc	mg/kg	28.8 J	42.8	35.3	137
1 PCBs in Soil by GC/EC					
Aroclor 1016	ug/kg	23 UJ	22 U	25 U	22 UJ

Page 11 of 41

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Project Desc: Ottumwa (EX) NAS - PA sampling

Analysis/ Analyte	Units	1	2	3	4
	ug/kg	23 UJ	22 U	25 U	22 UJ
Aroclor 1221	ug/kg ug/kg	23 UJ	22 U ·	25 U	22 UJ
Aroclor 1232	ug/kg ug/kg	23 UJ	22 U	25 U	22 UJ
Aroclor 1242	ug/kg ug/kg	23 UJ	22 U	25 U	22 UJ
Aroclor 1248	ug/kg ug/kg	12 UJ	11 U	12 U	11 UJ
Aroclor 1254	ug/kg ug/kg	12 UJ	11 U	12 U	11 UJ
Aroclor 1260	ug/kg	12 05	11.0	14 0	
1 Percent Solid	%	82.9	81.7	80.4	91.0
Solids, percent	70	02.9	01.7		
1 Perchlorate in Soil by IC	mg/kg	0.020 U	0.020 U	0.020 U	0.020 U
Perchlorate	ilig/kg	0.020 0	0.010 0		
1 TPH Semi-Volatile in Soil by GC/FID	mg/kg	180	32	20	43 U
Extractable TPH	ing/kg				
1 TPH Volatiles in Soil by GC/MS	ug/kg	58 U	60 U	63 U	54 U
Purgeable TPH					
1 VOC's in Soil at Low Levels by GC/MS Closed Acetone	ug/kg	31 U	6.7 U	35	55
	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
Benzene	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
Bromodichloromethane Bromoform	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
Bromonethane	ug/kg	2.7 U	2.8 U	5.9 U	4.8 Ų
•	ug/kg	· 2.7 U	2.8 U	5.9 U	4.8 U
2-Butanone Carbon Disulfide	ug/kg	2.7 U	2.8 U	5.9 U	15
Carbon Disunde Carbon Tetrachloride	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
Chlorobenzene	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
Chloroethane	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
Chloroform	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
Chloromethane	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
Cyclohexane	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
1,2-Dibromo-3-Chloropropane	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
Dibromochloromethane	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
1,2-Dibromoethane	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
1,2-Dichlorobenzene	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
1,3-Dichlorobenzene	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
1,4-Dichlorobenzene	ug/kg	2.7 ป	2.8 U	5.9 U	4.8 U
Dichlorodifluoromethane	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
1,1-Dichloroethane	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
1,2-Dichloroethane	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
1,1-Dichloroethene	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
cis-1,2-Dichloroethene	ug/kg	2.7 U	2.8 U	5.9 U	4:8 U
trans-1,2-Dichloroethene	ug/kg	^{2.7} U	2.8 U	5.9 U	4.8 U
 1,2-Dichloropropane 	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
cis-1,3-Dichloropropene	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
trans-1,3-Dichloropropene	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
Ethyl Benzene	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
. 2-Hexanone	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
· Z-HUXUHUHU	ن - بی -				

Page 12 of 41

RLAB Approved Sample Analysis Results

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	1	2	3	4
Isopropylbenzene	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
Methyl Acetate	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
Methyl tert-butyl ether	ug/kg	5.4 U	5.6 U	12 U	9.6 U
Methylcyclohexane	ug/kg	· 2.7 U	2.8 U	5.9 U	4.8 U
Methylene Chloride	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
4-Methyl-2-Pentanone	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
Naphthalene	ug/kg	5.4 U	5.6 U	12 U	9.6 U
Styrene	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
1,1,2,2-Tetrachloroethane	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
Tetrachloroethene	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
Toluene ·	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
1,2,3-Trichlorobenzene	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
1,2,4-Trichlorobenzene	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
1,1,1-Trichloroethane	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
1,1,2-Trichloroethane	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
Trichloroethene	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
Trichlorofluoromethane	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
1,1,2-Trichlorotrifluoroethane	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
Vinyl Chloride	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
m and/or p-Xylene	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U
o-Xylene	ug/kg	2.7 U	2.8 U	5.9 U	4.8 U

RLAB Approved Sample Analysis Results

•

07/19/2006

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	5	6	7	8
1 Explosives in Soil by GC/ECD					
2-Amino-4,6-dinitrotoluene	ug/kg	64 U	64 U	64 U	64 U
4-Amino-2,6-dinitrotoluene	ug/kg	107 [°] U	107 U	107 U	107 U
3,5-Dinitroaniline	ug/kg	500 U	500 U	500 Ü	500 U
1,3-Dinitrobenzene	ug/kg	69 U	69 U	69 U	69 U
2,4-Dinitrotoluene	ug/kg	146 U	146 U	146 U	146 U
2,6-Dinitrotoluene	ug/kg	199 U	199 U	199 U	199 U
Hexahydro-1,3,5-trinitro-1,3,5-triazine	. ug/kg	102 U	102 U	102 U	102 U
Nitrobenzene	ug/kg	42 U	42 U	42 U	42 U
Nitroglycerine	ug/kg	500 U	500 U	500 U	500 U
2-Nitrotoluene	ug/kg	102 U	102 U	102 U	102 U
3-Nitrotoluene	ug/kg	89 U	89 U	89 U	89 U
4-Nitrotoluene	ug/kg	162 U	162 U	162 U	162 U
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine	ug/kg	394 U	394 U	394 U	394 U
Pentaerythritoltetranitrate	ug/kg	545 U	545 U	545 U	545 U
1,3,5-Trinitrobenzene	ug/kg	92 U	92 U	92 U	92 U
2,4,6-Trinitrophenylmethylnitramine	ug/kg	134 U	134 U	134 U	134 U
2,4,6-Trinitrotoluene	ug/kg	100 U	100 U	. 100 U	100 U
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.041	0.029	0.069	0.045
1 Metals in Solids by ICP					
Aluminum	mg/kg	12100	12800	16500	10300
Antimony	mg/kg	2 U	2 U	2 U	2.01
Arsenic	mg/kg	7.64	5.84	5 U	· 5 U
Barium	mg/kg	296	217	215	262
Beryllium	mg/kg	1.02	1 U	1 U	1 U
Cadmium	mg/kg	1 U	1 U	ູ 1 U	1 U
Calcium	mg/kg	5200	4040	4180	4770
Chromium	mg/kg	13.2	14.4	18.0	15.6
Cobalt	mg/kg	8.96	8.53	4.41	12.6
Copper	mg/kg	14.2	12.6	16.5	20.5
Iron	mg/kg	18800	16800	19600	21900
Lead	mg/kg	22.2	17.8	11.7	19.1
Magnesium	mg/kg	2850	2720	4190	3990
Manganese	mg/kg	998	. 709	253	1260
Molybdenum	_ mg/kg	2 U	2 U	2 U	2 U
Nickel	mg/kg	13.6	13.4	13.8	30.8
Potassium	mg/kg	1020 J	1120 ⁷ J	1020 J	683 J
Selenium	mg/kg	10 U	10 U	10 U	10 U
Silver	mg/kg	2 U	2 U	· 2 U	2 U
Sodium	mg/kg	53.3	73.9	63.0	120
Thallium	mg/kg	10 U	10 U	10 U	10 U
Vanadium	mg/kg	30.8	34.4	29.4	33.1
Zinc	mg/kg	42.9	37.2	46.5	46.1
1 PCBs in Soil by GC/EC					
Aroclor 1016	ug/kg	23 U	22 U	24 U	23 U

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	5	6	7	8
Aroclor 1221	ug/kg	23 U ·	22 U	24 U	23 U
Aroclor 1232	ug/kg	23 U	22 U	24 U	23 U
Aroclor 1242	ug/kg	23 U	22 U	24 U	23 U
Aroclor 1248	ug/kg	23 U	22 U	24 U	23 U
Aroclor 1254	ug/kg	12 U	11 U	12 U	11 U
Aroclor 1260	ug/kg	12 U	. 11 U	12 U	11 U
1 Percent Solid	2. 2				
Solids, percent	%	83.1	81.9	80.5	75.2
1 Perchlorate in Soil by IC					
Perchlorate	mg/kg	0.020 U	0.020 U	0.020 U	0.020 U
1 TPH Semi-Volatile in Soil by GC/FID			•		
Extractable TPH	mg/kg	21	. 37	25	11
1 TPH Volatiles in Soil by GC/MS		· . ·			
Purgeable TPH	ug/kg	62 U	61 U	62 U	68 U
1 VOC's in Soil at Low Levels by GC/MS Close	d-System Purg	e-and-Trap			
Acetone	ug/kg	93	85	27 U	38
Benzene	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
Bromodichloromethane	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
Bromoform	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
Bromomethane	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
2-Butanone	ug/kg	6.8	5.6 U	5.7 U	6.4 U
Carbon Disulfide	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
Carbon Tetrachloride	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
Chlorobenzene	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
Chloroethane	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
Chloroform	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
Chloromethane	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
Cyclohexane	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
1,2-Dibromo-3-Chloropropane Dibromochloromethane	ug/kg	5.2 U 5.2 U	5.6 U 5.6 U	5.7 U 5.7 U	6.4 U
1,2-Dibromoethane	ug/kg ug/kg	5.2 U	5.6 U	5.7 U	6.4 U 6.4 U
1,2-Dichlorobenzene	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
1,3-Dichlorobenzene	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
1,4-Dichlorobenzene	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
Dichlorodifluoromethane	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
1,1-Dichloroethane	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
1,2-Dichloroethane	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
1,1-Dichloroethene	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
cis-1,2-Dichloroethene	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
trans-1,2-Dichloroethene	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
1,2-Dichloropropane	ug/kg	• 5.2 U	5.6 U	5.7 U	6.4 U
cis-1,3-Dichloropropene	ug/kg	5.2 U	5.6 U	5.7.U	6.4 U
trans-1,3-Dichloropropene	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
Ethyl Benzene	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
2-Hexanone	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U

RLAB Approved Sample Analysis Results

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	5	6	7	8
Isopropylbenzene	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
Methyl Acetate	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
Methyl tert-butyl ether	_ ug/kg	10 U	11 U	11 U	13 U
Methylcyclohexane	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
Methylene Chloride	ug/kg	· 5.2 U	5.6 Ų	5.7 U	6.4 U
4-Methyl-2-Pentanone	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
Naphthalene	ug/kg	10 U	11 U	11 U	13 U
Styrene	ug/kg	5.2 _. U	5.6 U	5.7 U	6.4 U
1,1,2,2-Tetrachloroethane	ug/kg	5.2 U	5.6 U	5.7 ป	6.4 U
Tetrachloroethene	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
Toluene	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
1,2,3-Trichlorobenzene	ug/kg	5.2 U	5.6 U	5.7 U	6.4 Ů
1,2,4-Trichlorobenzene	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
1,1,1-Trichloroethane	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
1,1,2-Trichloroethane	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
Trichloroethene	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
Trichlorofluoromethane	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
1,1,2-Trichlorotrifluoroethane	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
Vinyl Chloride	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
m and/or p-Xylene	ug/kg	5.2 U	5.6 U	5.7 U	6.4 U
o-Xylene	ug/kg	5.2 U	5.6 [°] U	5.7 U	6.4 U

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	9	9-FD	11	12
1 Explosives in Soil by GC/ECD					
2-Amino-4,6-dinitrotoluene	ug/kg	64 U	64 U	64 U	64 U
4-Amino-2,6-dinitrotoluene	ug/kg	107 U	107 U	107 U	. 107 U
3,5-Dinitroaniline	ug/kg	500 U	500 U	500 U	500 U
1,3-Dinitrobenzene	ug/kg	69 U	69 U	69 U	69 U
2,4-Dinitrotoluene	ug/kg	146 U	146 U	146 U	146 U
2,6-Dinitrotoluene	ug/kg	199 U	199 U	199 U	199 U
Hexahydro-1,3,5-trinitro-1,3,5-triazine	ug/kg	102 U	102 U	102 U	102 U
Nitrobenzene	ug/kg	42 U	42 U	42 U	42 U
Nitroglycerine	ug/kg	500 U	500 U	500 U	500 U
2-Nitrotoluene	ug/kg	102 U	102 U	102 U	102 U
3-Nitrotoluene	ug/kg	89 U	89 U	89 U	89 U
4-Nitrotoluene	ug/kg	162 U	162 U	·162 U	162 U
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine	ug/kg	394 U	394 U	394 U	394 U
Pentaerythritoltetranitrate	ug/kg	545 U	545 U	- 545 U	545 U
1,3,5-Trinitrobenzene	ug/kg ·	92 U	92 U	92 U	92 U
2,4,6-Trinitrophenylmethylnitramine	ug/kg	134 U	134 U	134 U	134 U
2,4,6-Trinitrotoluene	ug/kg	100 U	100 U	100 U	100 U
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.106	0.047	0.034	0.040
1 Metals in Solids by ICP					
Aluminum	mg/kg	17800	12500	18600	12200
Antimony	mg/kg	2 U	2 U	2 U	2 U
Arsenic	mg/kg	5 U	· 5 U	5 U	5 U
Barium	mg/kg	311	206	159	231
Beryllium	mg/kg	1.26	1 U	1 U	1 U
Cadmium	mg/kg	1 U	1 U	1 U	1 U
Calcium	mg/kg	4380	4080	3780	5490
Chromium	mg/kg	17.4	13.8	16.6	14.1
Cobalt	mg/kg	14.7	5.89	2.68	4.94
Copper	mg/kg	21.1	13.7	8.45	12.5
Iron	mg/kg	25100	16400	16500	12700
Lead ·	mg/kg	17.8	11.1	14.8	12.1
Magnesium	mg/kg	4350	3190	2710	2690
Manganese	mg/kg	808	361	36.2	142
Molybdenum	mg/kg	2 U	2 U	2 U	2 U
Nickel	mg/kg	27.8	12.3	6.30	11.7
Potassium	mg/kg	879 J	800 J	511 J	583 J
Selenium	mg/kg	10 U	10 U	10 U	10 U
Silver	mg/kg	2 U	2 U	2 U	2 U
Sodium	mg/kg	65.7	59.0	68.1	186
Thallium	mg/kg	10 U	10 U	10 U	10 U .
Vanadium	mg/kg	33.8	29.5	46.7	22.6
Zinc	mg/kg	54.0	40.2	10.7	27.2
1 PCBs in Soil by GC/EC •					
Aroclor 1016	ug/kg	24 U	24 U	21 U	22 U

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Aradic 1221 ug/kg 24 U 24 U 21 U 22 U Aradic 1232 ug/kg 24 U 24 U 21 U 22 U Aradic 1242 ug/kg 24 U 24 U 21 U 22 U Aradic 1248 ug/kg 12 U 10 U 11 U Aradic 1260 ug/kg 12 U 10 U 11 U Aradic 1260 ug/kg 12 U 10 U 11 U Aradic 1260 ug/kg 0.02 U 0.020 U 0.020 U 0.020 U Perchlorate in Soli by IC mg/kg 0.1 11 10 14 TPH Volatile in Soli by GC/MS mg/kg 60 U 62 U 62 U 1 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap 4 56 U 5.0 U 6.1 U Bernzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bernamichhoromethane ug/kg 5.6 U 5.0 U 6.1 U Bernamichhoromethane ug/kg 5.6 U 5.0 U 6.1 U	Analysis/ Analyte	Units	9	9-FD	11	12
Aractor 1232 ug/kg 24 U 24 U 24 U 21 U 22 U Aractor 1242 ug/kg 24 U 24 U 24 U 21 U 22 U Aractor 1254 ug/kg 12 U 12 U 10 U 11 U Aractor 1250 ug/kg 12 U 12 U 10 U 11 U Solids, percent % 79.8 79.8 79.2 81.5 Perchlorate mg/kg 0.020 U 0.020 U 0.020 U 0.020 U 0.020 U 1 PH Semi-Volatile in Soil by GC/FID mg/kg 63 U 66 U 62 U 14 1 TPU Volatiles in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap 62 U 10 U 16 U Bernene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bernene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromodichloromethane ug/kg 5.6 U 5.0 U 6.1 U Bromodichloromethane ug/kg 5.6 U 5.0 U 6.1 U <	Araclar 1221	uo/ka	24 U	24 U	21 U	22 U
Aradar 1242 ug/kg 24 U 24 U 24 U 22 U Aradar 1248 ug/kg 12 U 12 U 10 U 11 U Aradar 1260 ug/kg 12 U 12 U 10 U 11 U Aradar 1260 ug/kg 12 U 12 U 10 U 11 U Aradar 1260 ug/kg 0.020 U 14 1 PPErchlorate in Soil by GC/FID mg/kg 63 U 66 U 62 U 62 U 62 U 1 TPH Semi-Volatile in Soil by GC/MS ug/kg 63 U 66 U 50 U 61 U Purgeable TPH ug/kg 56 U 54 U 50 U 61 U Bromodichioromethane ug/kg 56 U 56 U 50 U 61 U Bromodichioromethane ug/kg 56 U 56 U 50 U 61 U Carbon Disulide ug/kg 56 U 56 U 50 U 61 U Carbon Disulide ug/kg		-				
Aractor 1248 ug/kg 24 U 24 U 21 U 21 U 21 U 21 U 10 U Aractor 1254 ug/kg 12 U 12 U 10 U 11 U Aractor 1256 ug/kg 12 U 12 U 10 U 11 U Solids, percent % 79.8 78.8 79.2 81.5 1 Perchlorate in Solil by IC mg/kg 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U 1 TPH Semi-Volatile in Solil by GC/MS mg/kg 63 U 66 U 62 U 62 U 1 TPH Volatiles in Soli at Low Levels by GC/MS Closed-System Purge-and-Trap 16 U Berzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Berzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromodichloromethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Disulifie ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Disulifie ug/kg 5.6 U </td <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>		_				
Aradar 1254 ug/kg 12 U 12 U 10 U 11 U Aradar 1260 ug/kg 12 U 10 U 11 U I Percentor Solid 12 U 10 U 10 U 11 U Solids, percent % 79.8 78.8 79.2 81.5 I Perchlorate in Soil by IC mg/kg 0.020 U 0.020 U 0.020 U 0.020 U 0.020 U 1 TPH Volatiles in Soil by GC/FID mg/kg 63 U 66 U 62 U 62 U 1 TPH Volatiles in Soil by GC/MS ug/kg 63 U 24 U 12 U 16 U Bernene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromofichloromethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromofichloromethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Disulfide ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Choroethane ug/kg 5.6 U 5.6 U 5.0 U						•
Aradior 1260 ug/kg 12 U 12 U 12 U 10 U 1 Percent Solid Solids, percent % 79.8 78.8 79.2 81.5 1 Perchlorate in Soil by IC mg/kg 0.020 U 0.020 U 0.020 U 0.020 U 0.020 U 1 TPH Semi-Volatile in Soil by GC/FID mg/kg 63 U 66 U 62 U 52 U 1 VOC's in Soil at Low Levels by GC/MS ug/kg 63 U 24 U 12 U 16 U Benzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Benzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromodichoromethane ug/kg 5.6 U 5.6 U 6.1 U Bromodorm ug/kg 5.6 U 5.0 U 6.1 U Carbon Disufide ug/kg 5.6 U 5.6 U 6.1 U Carbon Disufide ug/kg 5.6 U 5.0 U 6.1 U Carbon Disufide ug/kg 5.6 U 5.0 U 6.1 U Chorobenzene ug/kg <td< td=""><td></td><td></td><td>12 U</td><td></td><td></td><td></td></td<>			12 U			
1 Percent Solid solids, percent % 78.8 79.2 81.5 1 Perchlorate in Solib y IC mg/kg 0.020 U 0.020 U 0.020 U 0.020 U 0.020 U 1 TPH Semi-Volatile in Soli by GC/ID mg/kg 0.120 U 1 10 14 1 TPH Volatiles in Soli by GC/MS mg/kg 63 U 66 U 62 U 62 U 1 TPH Volatiles in Soli by GC/MS Closed-System Purge-and-Trar U VCC Sin Soli at Low Levels by GC/MS Closed-System Purge-and-Trar U 16 U 16 U Benzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromoform ug/kg 5.6 U 5.0 U 6.1 U Bromoform ug/kg 5.6 U 5.0 U 6.1 U Carbon Disulfide ug/kg 5.6 U 5.0 U 6.1 U Carbon Textholride ug/kg 5.6 U 5.0 U 6.1 U Carbon Textholride ug/kg 5.6 U 5.0 U 6.1 U Carbon Textholride ug/kg 5.6 U						
Solids, percent % 79.8 78.8 79.2 81.5 1 Perchlorate mg/kg 0.020 U 0.020 U		<u> </u>				
1 Perchlorate in Soil by IC/ Perchlorate in Soil by GC/FID ITH Semi-Volatille in Soil by GC/MS 1 TPH Volatilles in Soil by GC/MS Purgeable TPH mg/kg 63 U 66 U 62 U 62 U 1 TPH Volatilles in Soil by GC/MS mg/kg 63 U 66 U 62 U 62 U 1 TOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap Acctone ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromodichhoromethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromodichhoromethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 2-Butanone ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Disulfide ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chloroethane ug/kg 5.6 U 5.0 U 6.1 U Chloroethane ug/kg 5.6 U 5.0 U 6.1 U Chloroethane ug/kg 5.6 U 5.0 U 6.1 U Chloroethane		%	79.8	78.8	79.2	81.5
Perchlorate mg/kg 0.020 U 0.020 U 0.020 U 0.020 U 1 TPH Semi-Volatille in Soil by GC/FID Extractable TPH mg/kg 63 U 66 U 62 U 62 U 1 TPH Volatiles in Soil by GC/MS mg/kg 63 U 66 U 62 U 62 U 1 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap Acetone ug/kg 5.6 U 5.0 U 6.1 U Bernodichloromethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromodichloromethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromodichloromethane ug/kg 5.6 U 5.0 U 6.1 U Carbon Tetrachloride ug/kg 5.6 U 5.0 U 6.1 U Carbon Tetrachloride ug/kg 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.0 U 6.1 U Chloroform ug/kg 5.6 U 5.0 U 6.1 U Chloroform ug/kg 5.6 U 5.0 U 6.1 U Ch						
Extractable TPH mg/kg 21 31 10 14 1 TPH Volatiles in Soil by GC/MS ug/kg 63 UJ 66 U 62 U 62 U 1 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap ug/kg 26 U 24 U 12 U 16 U Benzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromodichloromethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromoform ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 2-Butanone ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Disulfide ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chiorothane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chiorothane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chiorothane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chiorothane ug/kg 5.6 U 5.0 U 6.1 U	•	mg/kg	0.020 U	0.020 U	0.020 U	0.020 U
Extractable TPH mg/kg 21 31 10 14 1 TPH Volatiles in Soil by GC/MS ug/kg 63 UJ 66 U 62 U 62 U 1 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap ug/kg 26 U 24 U 12 U 16 U Benzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromodichloromethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromoform ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 2-Butanone ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Disulfide ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chiorothane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chiorothane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chiorothane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chiorothane ug/kg 5.6 U 5.0 U 6.1 U	1 TPH Semi-Volatile in Soil by GC/FID					
Purgeable TPH ug/kg 63 UJ 66 U 62 U 62 U 1 VCC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap 7		mg/kg	21	31	10	14
1 VOC's in Soil at Low Levels by GC/MS Closed-System Purge-and-Trap Acetone ug/kg 26 U 24 U 12 U 16 U Benzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromodichtormethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromorrm ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromorethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Disulfide ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Disulfide ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Tetrachloride ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Dichorofrm ug/kg 5.6 U <	1 TPH Volatiles in Soil by GC/MS					
Acetone ug/kg 26 U 24 U 12 U 16 U Benzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromodichiormethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromoform ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromomethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Disulfide ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Derechane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dibromo-3-Chloropropane ug/kg </td <td>Purgeable TPH</td> <td>ug/kg</td> <td>63 UJ</td> <td>66 U</td> <td>62 U ·</td> <td>62 U</td>	Purgeable TPH	ug/kg	63 UJ	66 U	62 U ·	62 U
Benzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromodichloromethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromoform ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromomethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 2-Butanone ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Disulfide ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Disulfide ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chrorotenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorotethane ug/kg 5.6 U 5.0 U 6.1 U Chlorotethane ug/kg 5.6 U 5.0 U 6.1 U Cyclohexane ug/kg 5.6 U 5.0 U 6.1 U 1,2-Dibromo-3-Chloropropane ug/kg 5.6 U 5.0 U 6.1 U 1,2-Dibromo-3-Chloropropane ug/kg 5.6 U 5.0 U 6.1 U	1 VOC's in Soil at Low Levels by GC/MS Close					
Bromodichloromethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromorform ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromomethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 2-Butanone ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Disulfide ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Disulfide ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Tetrachloride ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chloroberthane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chloroberthane ug/kg 5.6 U 5.0 U 6.1 U 1/2-Dibromo-3-Chloropropane ug/kg 5.6 U 5.0 U 6.1 U 1/2-Dibromoethane ug/kg 5.6 U 5.0 U 6.1 U 1/2-Dichlorobenzene ug/kg 5.6 U	Acetone					
Bromoform ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Bromomethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 2-Butanone ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Disulfide ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Tetrachloride ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.0 U 6.1 U Cyclohexane ug/kg 5.6 U 5.0 U 6.1 U 1,2-Dibromo-3-Chloropropane ug/kg 5.6 U 5.0 U 6.1 U 1,2-Dibromoethane ug/kg 5.6 U 5.0 U 6.1 U </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Brownethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 2-Butanone ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Disulfide ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Tetrachloride ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorothane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorothane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorothane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Cyclohexane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dibromo-3-Chloropropane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dibromothane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dichlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dichlorobenzene <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2-Butanone ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Disulfide ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Tetrachloride ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chloroform ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chloroform ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chloroform ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Cyclohexane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dibromo-3-Chloropropane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dibromoethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dibromoethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dibromoethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dichlorobenzene </td <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>		_				
Carbon Disulfide ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Carbon Tetrachloride ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chloroberthane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chloroberthane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Cyclohexane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dibromo-3-Chloropropane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dibromo-3-Chloropropane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dibromo-3-Chloropropane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dibromoethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U				•		
Carbon Tetrachloride ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chlorobethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chloroform ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chloroform ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Cyclohexane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Cyclohexane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Dibromo-3-Chloropropane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dibromo-3-Chloropropane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dibromo-sthane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dibromoethane ug/kg 5.6 U 5.0 U 6.1 U 1,2-Dichlorobenzene ug/kg 5.6 U 5.0 U 6.1 U 1,4-Dichlorodifluoromethane ug/kg <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Chlorobenzene ug/kg 5.6 U 5.0 U 6.1 U Chloroethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chloroethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chloroethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chloromethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Cyclohexane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dibromo-3-Chloropropane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dibromoethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dichlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dichlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,3-Dichlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,1-Dichloroethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dichloroethane		-				
Chloroethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chloroform ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Chloromethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Cyclohexane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dibromo-3-Chloropropane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dibromo-3-Chloropropane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dibromo-3-Chloropropane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dibromo-shloromethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,2-Dichlorobenzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,3-Dichloroethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,4-Dichloroethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U 1,1-Dichloroethane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U <	•					
Chloroformug/kg5.6 U5.6 U5.0 U6.1 UChloromethaneug/kg5.6 U5.6 U5.0 U6.1 UCyclohexaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dibromo-3-Chloropropaneug/kg5.6 U5.6 U5.0 U6.1 UDibromochloromethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dibromoethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dibromoethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,3-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,4-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichlorodifluoromethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroeth			~ .	•		
Chloromethaneug/kg5.6 U5.6 U5.0 U6.1 UCyclohexaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dibromo-3-Chloropropaneug/kg5.6 U5.6 U5.0 U6.1 UDibromochloromethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dibromoethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dibromoethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,3-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,4-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,4-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloropropane.ug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichlor		-				
Cyclohexaneug/kg5.6 U.5.6 U.5.0 U6.1 U1,2-Dibromo-3-Chloropropaneug/kg5.6 U5.6 U5.0 U6.1 UDibromochloromethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dibromoethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dibromoethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,3-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,4-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,4-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloropropaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Di						
1,2-Dibromo-3-Chloropropaneug/kg5.6 U5.6 U5.0 U6.1 UDibromochloromethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dibromoethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,3-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,4-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,4-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 UDichlorodifluoromethaneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloropropaneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,3-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,3-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,3-Dichloropropeneug/kg5.6 U5.0 U6.1 U<		-				
Dibromochloromethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dibromoethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,3-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,4-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,4-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 UDichlorodifluoromethaneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.0 U6.1 U1,1-Dichloroetheneug/kg5.6 U5.0 U6.1 U1,1-Dichloroetheneug/kg5.6 U5.0 U6.1 U1,2-Dichloroetheneug/kg5.6 U5.0 U6.1 U1,2-Dichloroetheneug/kg5.6 U5.0 U6.1 U1,2-Dichloroetheneug/kg5.6 U5.0 U6.1 U1,2-Dichloropropaneug/kg5.6 U5.0 U6.1 U1,2-Dichloropropaneug/kg5.6 U5.0 U6.1 U1,2-Dichloropropeneug/kg5.6 U5.0 U6.1 U1,2-Dichloropropeneug/kg5.6 U5.0 U6.1 U1,2-Dichloropropeneug/kg5.6 U5.0 U6.1 U1,2-Dichloropropeneug/kg5.6 U </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1,2-Dibromoethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,3-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,4-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,4-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,4-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloropropaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloropropaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloropropaneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,3-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,3-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 UEthyl Benzeneug/kg5.6 U5.6 U5.0 U6.1 U		_				
1,2-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,3-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,4-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 UDichlorodifluoromethaneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloropropaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloropropaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,3-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 UEthyl Benzeneug/kg5.6 U5.6 U5.0 U6.1 U		-				
1,3-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 U1,4-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 UDichlorodifluoromethaneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,2-Dichloroetheneug/kg5.6 U5.0 U6.1 U1,2-Dichloropropaneug/kg5.6 U5.0 U5.0 U6.1 Utrans-1,3-Dichloropropeneug/kg5.6 U5.0 U5.0 U6.1 Utrans-1,3-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,3-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 UEthyl Benzeneug/kg5.6 U5.6 U5.0 U6.1 U	•					
1,4-Dichlorobenzeneug/kg5.6 U5.6 U5.0 U6.1 UDichlorodifluoromethaneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 Ucis-1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloropropaneug/kg5.6 U5.6 U5.0 U6.1 Ucis-1,3-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,3-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 UEthyl Benzeneug/kg5.6 U5.6 U5.0 U6.1 U	· .					
Dichlorodifluoromethaneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 Ucis-1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloropropaneug/kg5.6 U5.6 U5.0 U6.1 Ucis-1,3-Dichloropropaneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,3-Dichloropropaneug/kg5.6 U5.6 U5.0 U6.1 UEthyl Benzeneug/kg5.6 U5.6 U5.0 U6.1 U						
1,1-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroethaneug/kg5.6 U5.6 U5.0 U6.1 U1,1-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 Ucis-1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloroptopaneug/kg5.6 U5.6 U5.0 U6.1 Ucis-1,3-Dichloropropaneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,3-Dichloropropeneug/kg5.6 U5.0 U6.1 Utrans-1,3-Dichloropropeneug/kg5.6 U5.0 U6.1 Utrans-1,3-Dichloropropeneug/kg5.6 U5.0 U5.0 U6.1 Utrans-1,3-Dichloropropeneug/kg5.6 U <td>-</td> <td></td> <td>5.6 U</td> <td>5.6 U</td> <td>5.0 U</td> <td></td>	-		5.6 U	5.6 U	5.0 U	
1,1-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 Ucis-1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloropropaneug/kg5.6 U5.6 U5.0 U6.1 Ucis-1,3-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,3-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 UEthyl Benzeneug/kg5.6 U5.6 U5.0 U6.1 U	1,1-Dichloroethane		5.6 U	5.6 U	5.0 U	6.1 U
cis-1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloropropaneug/kg5.6 U5.6 U5.0 U6.1 Ucis-1,3-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,3-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,3-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 UEthyl Benzeneug/kg5.6 U5.6 U5.0 U6.1 U	1,2-Dichloroethane	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U
trans-1,2-Dichloroetheneug/kg5.6 U5.6 U5.0 U6.1 U1,2-Dichloropropaneug/kg5.6 U5.6 U5.0 U6.1 Ucis-1,3-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,3-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 UEthyl Benzeneug/kg5.6 U5.6 U5.0 U6.1 U	1,1-Dichloroethene	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U
1,2-Dichloropropane ug/kg 5.6 U 5.6 U 5.0 U 6.1 U cis-1,3-Dichloropropene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U trans-1,3-Dichloropropene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U trans-1,3-Dichloropropene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Ethyl Benzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U	cis-1,2-Dichloroethene	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U
cis-1,3-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 Utrans-1,3-Dichloropropeneug/kg5.6 U5.6 U5.0 U6.1 UEthyl Benzeneug/kg5.6 U5.6 U5.0 U6.1 U	trans-1,2-Dichloroethene	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U
trans-1,3-Dichloropropene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U Ethyl Benzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U	1,2-Dichloropropane	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U
Ethyl Benzene ug/kg 5.6 U 5.6 U 5.0 U 6.1 U	cis-1,3-Dichloropropene	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U
	trans-1,3-Dichloropropene	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U
2-Hexanone ug/kg 5.6 U 5.6 U 5.0 U 6.1 U	Ethyl Benzene	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U
	2-Hexanone	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U

RLAB Approved Sample Analysis Results

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	9	9-FD	11	12
			•		
Isopropylbenzene	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U
Methyl Acetate	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U
Methyl tert-butyl ether	ug/kg	11 U	11 U	10 U	12 U
Methylcyclohexane	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U
Methylene Chloride	ug/kg	5.6 U	5.6 U	5.0 U	. 6.1 U
4-Methyl-2-Pentanone	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U
Naphthalene	ug/kg	11 UJ	11 UJ	10 U	12 U
Styrene	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U
1,1,2,2-Tetrachloroethane	ug/kg	_ 5.6 U	5.6 U	5.0 U	· 6.1 U
Tetrachloroethene	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U
Toluene	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U
1,2,3-Trichlorobenzene	ug/kg	5.6 UJ	5.6 U	5.0 U	6.1 U
1,2,4-Trichlorobenzene	ug/kg	5.6 UJ	5.6 UJ	5.0 U	6.1 U
1,1,1-Trichloroethane	ug/kg	5.6 U	5.6 UJ	5.0 U	6.1 U
1,1,2-Trichloroethane	ug/kg	5.6 U	. 5.6 U	5.0 U	6.1 U
Trichloroethene	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U
Trichlorofluoromethane	ug/kg	5.6 U	5.6 U	5.0 [°] U	6.1 U
1,1,2-Trichlorotrifluoroethane	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U
Vinyl Chloride	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U
m and/or p-Xylene	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U
o-Xylene	ug/kg	5.6 U	5.6 U	5.0 U	6.1 U

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	13	14	15	16
1 Explosives in Soil by GC/ECD					
2-Amino-4,6-dinitrotoluene	ug/kg	64 U		64 U	64 U
4-Amino-2,6-dinitrotoluene	ug/kg	107 U	107 U	107 U	107 U
3,5-Dinitroaniline	ug/kg	500 U	500 U	500 U	500 U
1,3-Dinitrobenzene	ug/kg	69 U	69 U	69 U	69 U
2,4-Dinitrotoluene	ug/kg	146 U	146 U	146 U	146 U
2,6-Dinitrotoluene	ug/kg	199 U	199 U	199 U	199 U
Hexahydro-1,3,5-trinitro-1,3,5-triazine	ug/kg	102 U	102 U	102 U	102 U
Nitrobenzene	ug/kg	42 U	42 U	42 U	42 U
Nitroglycerine	ug/kg	500 U	500 U	500 U	500 U
2-Nitrotoluene	ug/kg	102 U	102 U	102 U	102 U
3-Nitrotoluene	ug/kg	89 U	89 U	89 U	89 U
4-Nitrotoluene	ug/kg	162 U	162 U	162 U	162 U
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine	ug/kg	394 U	394 U	394 U	394 U
Pentaerythritoltetranitrate	ug/kg	545 U	545 U	545 U	545 U
1,3,5-Trinitrobenzene	ug/kg	92 U	92 U	92 U	92 U
2,4,6-Trinitrophenylmethylnitramine	ug/kg	134 U	134 U	134 U	134 U
2,4,6-Trinitrotoluene	ug/kg	100 U	100 U	100 U	100 U
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.017	0.044	0.022	0.052
1 Metals in Solids by ICP					
Aluminum	mg/kg	12500	15500	13600	13200
Antimony	mg/kg	2 U	2 U	2 U	2 U
Arsenic	mg/kg	5 U	10.3	5 U	11.3
Barium	mg/kg	159	273	_259	235
Beryllium	mg/kg	1.06	1.26	1.05	1.26
Cadmium	mg/kg	1 U	1 U	1 U	· 1U
Calcium	mg/kg	4590	9220	3740	6120
Chromium	mg/kg	11.1	18.6	11.1	16.2
Cobalt	mg/kg	8.29	12.8	8.68	18.8
Copper	mg/kg	9.98	26.0	7.18	27.7
Iron	mg/kg	9700	25200	36400	21200
Lead	mg/kg	31.3	23.3	13.7	23.0
Magnesium	mg/kg	2260	5020	2230	4600
Manganese	mg/kg	292	1140	1250	697
Molybdenum	mg/kg	2 U	2 U	2 U	2 U
Nickel	mg/kg	7.39	30.3	9.14	35.7
Potassium	mg/kg	471 J	870]	354 J	659 J
Selenium	mg/kg	10 U	10 U	10.4	10 U
Silver	mg/kg	2 U	2 U	2 U	2 U
Sodium	mg/kg	73.9	108	59.2	87.8
Thallium	mg/kg	10 U	10 U	10 U	10 U
Vanadium	mg/kg	30.5	40.6	53.3	37.3
Zinc	mg/kg	10.5	49.4	. 5 U	50.3
1 PCBs in Soil by GC/EC Aroclor 1016	ug/kg	22 U	22 U	21 U	21 U

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	13	14	15	16
Aroclor 1221	ug/kg	22 U	22 U	21 U	21 U
Aroclor 1232	ug/kg	22 U	22 U	21 U	21 U
Aroclor 1242	ug/kg	22 U	22 U	21 U	21 U
Aroclor 1248	ug/kg	22 U	22 U	21 U	21 U
Aroclor 1254	ug/kg	11 U	11 U	11 U	11 U
Aroclor 1260	ug/kg	11 U	11 U	11 U	11 U
1 Percent Solid			4		
Solids, percent	%	79.5	80.9	78.5	82.7
1 Perchlorate in Soil by IC					
Perchlorate	mg/kg	0.020 U	0.020 U	0.020 U	0.020 U
1 TPH Semi-Volatile in Soil by GC/FID					
Extractable TPH	· mg/kg	15	9.9	14	13
1 TPH Volatiles in Soil by GC/MS					
Purgeable TPH	ug/kg	64 U	63 U	1600 J	61 U
1 VOC's in Soil at Low Levels by GC/MS Close		•			
Acetone	ug/kg	10 U	29 U	1700	16 U
Benzene	ug/kg	5.2 U	5.1 U	580 U	5.8 U
Bromodichloromethane	ug/kg	5.2 U	5.1 U	580 U	5.8 U
Bromoform	ug/kg	5.2 U	5.1 U	580 U	5.8 U
Bromomethane	ug/kg	5.2 U	5.1 U	580 U	5.8 U
2-Butanone	ug/kg	5.2 U	5.1 U	5800	5.8 U
Carbon Disulfide	ug/kg	5.2 U	5.1 U	580 [.] Ú	5.8 U
Carbon Tetrachloride	ug/kg	5.2 U	5.1 U	580 U	5.8 U
Chlorobenzene	ug/kg	5.2 U	5.1 U	580 U	5.8 U
Chloroethane	ug/kg	5.2 U	5.1 U	580 U	5.8 U
Chloroform	ug/kg	5.2 U	5.1 U	580 U	5.8 U
Chloromethane	ug/kg	5.2 U	5.1 U	580 U	5.8 U
Cyclohexane	ug/kg	5.2 U	5.1 U	1300 U	5.8 U
1,2-Dibromo-3-Chioropropane	ug/kg	5.2 U	5.1 U	580 U	5.8 U
Dibromochloromethane	ug/kg	5.2 U	5.1 U	580 U	5.8 U
1,2-Dibromoethane	ug/kg "	5.2 U	5.1 U	580 U	໌ 5.8 U
1,2-Dichlorobenzene	ug/kg	5.2 U	5.1 U	580 U	5.8 U
1,3-Dichlorobenzene	ug/kg	5.2 U	5.1 U	580 U	5.8 U
1,4-Dichlorobenzene	ug/kg	5.2 U	5.1 Ü	580 U	5.8 U
Dichlorodifluoromethane	ug/kg	5.2 U	5.1 U	580 U	5.8 U
1,1-Dichloroethane	ug/kg	5.2 U	5.1 U	580 U	5.8 U
1,2-Dichloroethane	ug/kg	5.2 U	5.1 U	580 U	5.8 U
1,1-Dichloroethene	ug/kg	5.2 U	5.1 U	580 U	5.8 U
cis-1,2-Dichloroethene	ug/kg	5.2 U	5.1 U	580 U	5.8 U
trans-1,2-Dichloroethene	ug/kg	5.2 U	5.1 U	580 U	5.8 U
1,2-Dichloropropane	ug/kg	5.2 U	5.1 U	580 U	5.8 U
cis-1,3-Dichloropropene	ug/kg	5.2 U	5.1 U	580 U	5.8 U
trans-1,3-Dichloropropene	ug/kg	5.2 U	5.1 U	580 U	5.8 U
Ethyl Benzene	ug/kg	5.2 U	5.1 U	580 U	5.8 U
2-Hexanone	ug/kg	5.2 U	5.1 U	580 U	5.8 U

RLAB Approved Sample Analysis Results

07/19/2006

ASR Number: 3047

Project ID: RKOTTEXNAS Project

Analysis/ Analyte	Units	13	14	15	16
Isopropylbenzene	· ug/kg	5.2 U	5.1 U	580 U	5.8 U
Methyl Acetate	ug/kg	5.2 U	5.1 U	580 U	5.8 U
Methyl tert-butyl ether	ug/kg	10 U	10 U	1200 U	12 U
Methylcyclohexane	ug/kg	5.2 U	~ 5.1 U	2900 U	6.7 U
Methylene Chloride	ug/kg	5.2 U	5.1 U	·580 U	5.8 U
4-Methyl-2-Pentanone	ug/kg	5.2 U	5.1 U	580 U	5.8 U
Naphthalene	ug/kg	10 U	10 U	1200 U	12 U
Styrene	ug/kg	5.2 [°] U	5.1 U	580 U	5.8 U
1,1,2,2-Tetrachloroethane	ug/kg	5.2 U	5.1 U	580 U	5.8 U
Tetrachloroethene	ug/kg	5.2 U	5.1 U	580 U	5.8 U
Toluene	ug/kg	5.2 U	5.1 U	580 U	5.8 U
1,2,3-Trichlorobenzene	ug/kg	5.2 U	5.1 U	580 U	5.8 U
1,2,4-Trichlorobenzene	ug/kg	5.2 U	5.1 U	580 U	5.8 U
1,1,1-Trichloroethane	ug/kg	5.2 U	5.1 U	580 U	5.8 U
1,1,2-Trichloroethane	ug/kg	5.2 U	5.1 U	580 U	5.8 U
Trichloroethene	ug/kg	5.2 U	. 5.1 U	580 U	5.8 U
Trichlorofluoromethane	ug/kg	[.] 5.2 ປ	5.1 U	580 U	5.8 U
1,1,2-Trichlorotrifluoroethane	ug/kg	5.2 U	5.1 U	580 U	5.8 U
Vinyl Chloride	ug/kg	5.2 U	5.1 U	580 U	5.8 U
m and/or p-Xylene	ug/kg	5.2 U	5.1 U	580 U	5.8 U
o-Xylene	ug/kg	5.2 U	5.1 U	580 U	5.8 U

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	17	18	19	20
1 Explosives in Soil by GC/ECD					
2-Amino-4,6-dinitrotoluene	ug/kg	64 U	64 U	64 U	
4-Amino-2,6-dinitrotoluene	ug/kg	107 U	107 U	107 U	107 U
3,5-Dinitroaniline	ug/kg	500 U	500 U	500 U	500 U
1,3-Dinitrobenzene	ug/kg	69 U	69 U	69 U	69 U
2,4-Dinitrotoluene	ug/kg	146 U 🕓	146 U	146 U	146 U
2,6-Dinitrotoluene	ug/kg	199 U	199 U	199 U	199 U
Hexahydro-1,3,5-trinitro-1,3,5-triazine	ug/kg	102 U	102 U	102 U	102 U
Nitrobenzene	ug/kg	42 U	- 42 U	42 U	42 U
Nitroglycerine	ug/kg	500 U	500 U	500 U	500 U
2-Nitrotoluene	ug/kg	102 U	102 U	102 U	102 U
3-Nitrotoluene	ug/kg	89 U	89 U	89 U	89 U
4-Nitrotoluene	ug/kg	162 U	162 U	162 U	162 U
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine	ug/kg	394 U	394 U	394 U	394 U
Pentaerythritoltetranitrate	ug/kg	545 U	545 U	545 U	545 U
1,3,5-Trinitrobenzene	ug/kg	92 U	92 U	92 U	92 U
2,4,6-Trinitrophenylmethylnitramine	ug/kg	134 U	134 U	134 U	134 U
2,4,6-Trinitrotoluene	ug/kg	100 U	100 U	100 U	100 U
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.028	0.033	0.031	0.027
1 Metals in Solids by ICP					
Aluminum	mg/kg	13000	14100	10500	10700
Antimony	mg/kg	2 U	2 U	2 U	2 U
Arsenic	mg/kg	6.96	9.90	5 U	· 5 U
Barium	mg/kg	215	247	211	188
Beryllium	mg/kg	1.07	1.12	1 U	1 U
Cadmium	mg/kg	1 U	1 U	1 U	1 U
Calcium	mg/kg	10500	10100	4110	9840
Chromium	mg/kg	12.7	15.6	10.9	11.5 J
Cobalt	mg/kg	12.6	19.5	23.1	7.25
Copper	mg/kg	11.1	19.4	12.3	12.9
Iron	mg/kg	22900	21100	16300	14000 J
Lead	mg/kg	15.7	37.9	12.7	16.5
Magnesium	mg/kg	4920	3270	2550	2980 J
Manganese	mg/kg	904	1380	1450	749
Molybdenum	mg/kg	2 U	2 U	2 U	2 U
Nickel	mg/kg	14.3	22.3	15.3	13.5
Potassium	mg/kg	591 J	1380 J	461 J	874 J
Selenium	mg/kg	10.4	10 U	10 U	10 U
Silver	mg/kg	2 U	2 U	2 U	2 U
Sodium	mg/kg	89.4	77.9	132	136 ງ
Thallium	mg/kg	10 U	10 U	10 U	. 10 U
Vanadium	mg/kg	62.1	38.6	36.5	29.6
Zinc	mg/kg	18.7	77.3	22.1	38.9
1 PCBs in Soil by GC/EC	-	-			
Aroclor 1016	ug/kg	21 U	נט 22	21 UJ	נט 21

Project ID: RKOTTEXNAS

RLAB Approved Sample Analysis Results

07/19/2006

Analysis/ Analyte	Units	17	18	19	20
Aroclor 1221	ug/kg	21 U	22 UJ	21 UJ	21 UJ
Aroclor 1232	ug/kg	21 U	22 UJ	21 UJ	21 UJ
Aroclor 1242	ug/kg	21 U	22 UJ	21 UJ	21 UJ
Aroclor 1248	ug/kg	21 U	22 UJ	21 UJ	21 UJ
Aroclor 1254	ug/kg	11 U	11 UJ	10 UJ	10 UJ
Aroclor 1260	ug/kg	11 U	11 UJ	10 UJ	10 UJ
1 Percent Solid					
Solids, percent	%	76.0	86.6	77.7	67.9
1 Perchlorate in Soil by IC			•		
Perchlorate	mg/kg	0.020 U	0.020 U	0.020 U	0.020 U
1 TPH Semi-Volatile in Soil by GC/FID					
Extractable TPH	mg/kg	4.8	44 U	· 42 U	. 41 U
1 TPH Volatiles in Soil by GC/MS					
Purgeable TPH	ug/kg	65 U	57 U	65 U	72 U
1 VOC's in Soil at Low Levels by GC/MS Clos	ed-System Purg	e-and-Trap			
Acetone	ug/kg	5.4 U	160	9.4 U	
Велzепе	ug/kg	4.8 U	5.5 U	5.9 U	
Bromodichloromethane	ug/kg	. 4.8 U	5.5 U	5.9 U	
Bromoform	ug/kg	4.8 U ´	5.5 U	5.9 U	
Bromomethane	ug/kg	4.8 U	5.5 U	5.9 U	
2-Butanone	, ug/kg	4.8 U	14	5.9 U	
Carbon Disulfide	ug/kg	4.8 U	5.5 U	5.9 U	
Carbon Tetrachloride	ug/kg	4.8 U	5.5 U	5:9 U	
Chlorobenzene	ug/kg	4.8 U	5.5 U	5.9 U	
Chloroethane	ug/kg	4.8 U	[.] 5.5 ປ	· 5.9 U	
Chloroform	ug/kg	4.8 U	5.5 U	5.9 U	
Chloromethane	ug/kg	4.8 U	5.5 U	5.9 U	
Cyclohexane	ug/kg	4.8 U	5.5 U	5.9 U	
1,2-Dibromo-3-Chloropropane	ug/kg	4.8 U	5.5 U	5.9 U	
Dibromochloromethane	ug/kg	4.8 U	5.5 U	5.9 U	
1,2-Dibromoethane	ug/kg	4.8 U	5.5 U	5.9 U	
1,2-Dichlorobenzene	ug/kg	4.8 U	5.5 U	5.9 U	
1,3-Dichlorobenzene	ug/kg	4.8 U	5.5 U	5.9 U	
1,4-Dichlorobenzene	ug/kg	4.8 U	. 5.5 U	5.9 U	
Dichlorodifluoromethane	ug/kg	4.8 U	5.5 U	5.9 U	
1,1-Dichloroethane	ug/kg	4.8 U	5.5 U	5.9 U	•
1,2-Dichloroethane	ug/kg	4.8 U	5.5 U	5.9 U	
1,1-Dichloroethene	ug/kg	4.8 U	5.5 U	5.9 U	
cis-1,2-Dichloroethene	ug/kg	. 4.8 U	5.5 U	5.9 U	
trans-1,2-Dichloroethene	ug/kg	4.8 U	5.5 U	5.9 U	
1,2-Dichloropropane	ug/kg	4.8 U	5.5 U	5.9 U	
cis-1,3-Dichloropropene	ug/kg	4.8 U	5.5 U	5.9 U	_
trans-1,3-Dichloropropene	ug/kg	4.8U.	5.5 U	5.9 U	-
Ethyl Benzene	ug/kg	4.8 U	5.5 U	5.9 U	
2-Hexanone	ug/kg	4.8 U	. 5.5 U	5.9 U	

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Project Desc: Ottumwa (EX) NAS - PA sampling

Analysis/ Analyte	Units	17	18	19	20
Isopropylbenzene	ug/kg	.4.8 U	5.5 U	5.9 U	
Methyl Acetate	ug/kg	4.8 U	5.5 U	5.9 U	
Methyl tert-butyl ether	ug/kg	9.6 U	11 U	12 U	
Methylcyclohexane	ug/kg	4.8 U	5.5 U	6.7 U	
Methylene Chloride	ug/kg	4.8 U	5.5 U	5.9 U	
4-Methyl-2-Pentanone	ug/kg	4.8 U	5.5 U	5.9 U	
Naphthalene	ug/kg	9.6 U	11 U	12 U	· .
Styrene	ug/kg	. 4.8 U	5.5 U	5.9 U	
1,1,2,2-Tetrachloroethane	ug/kg	4.8 U	5.5 U	5.9 U	
Tetrachloroethene	ug/kg	4.8 U	5.5 U	5.9 U	
Toluene	ug/kg	4.8 U	5.5 U	5.9 U	
1,2,3-Trichlorobenzene	ug/kg	4.8 U	5.5 U	5.9 U	
1,2,4-Trichlorobenzene	ug/kg	4.8 U	5.5 U	5.9 U	
1,1,1-Trichloroethane	ug/kg	4.8 U	5.5 U	5.9 U	
1,1,2-Trichloroethane	ug/kg	4.8 U	5.5 U	5.9 U	
Trichloroethene	ug/kg	4.8 U	5.5 U	5.9 U	
Trichlorofluoromethane	ug/kg	4.8 U	5.5 U	5.9 U	
1,1,2-Trichlorotrifluoroethane	ug/kg	[`] 4.8 U	5.5 U	5.9 U	
Vinyl Chloride	ug/kg	4.8 U	5.5 U	5.9 U	
m and/or p-Xylene	ug/kg	4.8 U	5.5 U	.5.9 U	
o-Xylene	ug/kg	4.8 U	5.5 U	5.9 U	
1 VOCs in Solid Matrices by GC/MS					,
Acetone	ug/kg				6.4 U
Benzene	ug/kg			•	6.4 U
Bromodichloromethane	ug/kg				6.4 U
Bromoform	ug/kg				6.4 U
Bromomethane	ug/kg				6.4 U
2-Butanone	ug/kg			. -	6.4 U
Carbon Disulfide	ug/kg				6.4 U
Carbon Tetrachloride	ug/kg				6.4 U
Chlorobenzene	ug/kg				6.4 U
Chloroethane	ug/kg				6.4 U
Chloroform	ug/kg				6.4 U
Chloromethane	ug/kg				6.4 U
Cyclohexane	ug/kg			,	6.4 U
1,2-Dibromo-3-Chloropropane	ug/kg				6.4 U
Dibromochloromethane	ug/kg				6.4 U
1,2-Dibromoethane	ug/kg				6.4 U
1,2-Dichlorobenzene	ug/kg				6.4 U
1,3-Dichlorobenzene	ug/kg				6.4 U
1,4-Dichlorobenzene	ug/kg				6.4 U
Dichlorodifluoromethane	ug/kg				6.4 U
1,1-Dichloroethane	ug/kg				6.4.U
1,2-Dichloroethane	ug/kg				6.4 U
1,1-Dichloroethene	ug/kg				6.4 U

Page 25 of 41

RLAB Approved Sample Analysis Results

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	17	18	- 19	20
cis-1,2-Dichloroethene	ug/kg				6.4 U
trans-1,2-Dichloroethene	ug/kg				6.4 U
1,2-Dichloropropane	ug/kg				6.4 U
cis-1,3-Dichloropropene	ug/kg ug/kg				6.4 U
trans-1,3-Dichloropropene	ug/kg				6.4 U
	ug/kg				· 6.4 U
Ethyl Benzene 2-Hexanone	ug/kg				6.4 U
Isopropylbenzene	ug/kg				6.4 U
Methyl Acetate	ug/kg				6.4 U
Methyl tert-butyl ether	ug/kg				13 U
Methylcyclohexane	ug/kg				6.4 U
Methylene Chloride	ug/kg	•			6.4 U
4-Methyl-2-Pentanone	ug/kg				6.4 U
Naphthalene	ug/kg				13 U
Styrene	ug/kg				6.4 U
1,1,2,2-Tetrachloroethane	ug/kg				6.4 U
Tetrachloroethene	ug/kg	•			6.4 U
Toluene	ug/kg				.6.4 U
1,2,3-Trichlorobenzene	ug/kg				6.4 U
1,2,4-Trichlorobenzene	ug/kg				6.4 U
1,1,1-Trichloroethane	ug/kg				6.4 U
1,1,2-Trichloroethane	ug/kg				6.4 U
Trichloroethene	ug/kg				· 6.4 U
Trichlorofluoromethane	_ug/kg				6.4 U
1,1,2-Trichlorotrifluoroethane	ug/kg		· · · ·		6.4 U
Vinyl Chloride	ug/kg				6.4 U
m and/or p-Xylene	ug/kg				6.4 U
o-Xylene	ug/kg				6.4 U [°]

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	21-FB	22	23	24
1 Explosives in Soil by GC/ECD			•		
2-Amino-4,6-dinitrotoluene	ug/kg		64 U	64 U	64 U
4-Amino-2,6-dinitrotoluene	ug/kg		107 U	107 U	107 U
3,5-Dinitroaniline	ug/kg		500 U	500 U	500 U
1,3-Dinitrobenzene	ug/kg		69 U	69 U	69 U
2,4-Dinitrotoluene	ug/kg		146 U	146 U	146 U
2,6-Dinitrotoluene	ug/kg		199 U	199 U	199 U
Hexahydro-1,3,5-trinitro-1,3,5-triazine	ug/kg		102 Ú	102 U	102 U
Nitrobenzene	ug/kg		42 U	42 U	42 U
Nitroglycerine	ug/kg		500 U	500 U	500 U
2-Nitrotoluene	ug/kg		102 U	102 U	102 U
3-Nitrotoluene	ug/kg		89 U	89 U	89 U
4-Nitrotoluene	ug/kg		162 U	162 U	162 U
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine	ug/kg		394 U	394 U	394 U
Pentaerythritoltetranitrate	ug/kg		545 U	545 U	· 545 U
1,3,5-Trinitrobenzene	ug/kg		92 U	92 U	92 U
2,4,6-Trinitrophenylmethylnitramine	ug/kg		134 U	134 U	134 U
2,4,6-Trinitrotoluene	ug/kg		100 U	100 U	100 U
1 Mercury in Soil or Sediment					
Mercury	mg/kg		0.028	0.027	0.078
1 Metals in Solids by ICP					
Aluminum	mg/kg		13200	10800	, 7210
Antimony	mg/kg		2.37 U	2 U	2.25 U
Arsenic	mg/kg		5 U	[.] 5 U	5 U
Barium	mg/kg		180	173	168
Beryllium	mg/kg		1 U	1 U	1 U
Cadmium	_mg/kg		1 U	1 U	1 U
Calcium	mg/kg		7510	4610	31400
Chromium	mg/kg		14.7 J	12.9 J	18.5 J
Cobalt	mg/kg		6.52	3.06	11.6
Соррег	mg/kg		14.2	12.6	29.6
Iron	mg/kg		17800	13100	15700
Lead	mg/kg		17.4	12.4	165
Magnesium	mg/kg		2880	2600	3840
Manganese	mg/kg		580	253	1000
Molybdenum	mg/kg		2 U	2 U	2 U
Nickel	mg/kg		14.8	12.4	18.3
Potassium	mg/kg		1190	862	606
Selenium	mg/kg		10 U	10 U	16.5
Silver	mg/kg		2 U	2 U	2 U
Sodium	mg/kg		85.9	104	145
Thallium	mg/kg		10 U	10 U	10 U
Vanadium	mg/kg		32.0	24.1	21.3
Zinc	mg/kg		53.2	39.1	162
1 PCBs in Soil by GC/EC					
Aroclor 1016	ug/kg		24 U	24 U	22 UJ

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	21-FB	22	23	24
Aroclor 1221	ug/kg		24 U	24 U	22 UJ
Aroclor 1232	ug/kg		24 U	24 U	22 UJ
Aroclor 1242	ug/kg		24 U	24 U	22 UJ
Aroclor 1248	ug/kg		24 U	24 U	22 UJ
Aroclor 1254	ug/kg		12 U	12 U	11 UJ
Aroclor 1260	ug/kg		12 U	12 U	11 UJ
1 Percent Solid					
Solids, percent	%	96.3	80.1	80.8	71.1
1 Perchlorate in Soil by IC Perchlorate	mg/kg		0.020 U	. 0.020 U	0.020 U
	119/ 49		0.020 0	0.020 0	0.020 0
1 TPH Semi-Volatile in Soil by GC/FID Extractable TPH	mg/kg		48 U	49 U	100
1 TPH Volatiles in Soil by GC/MS	1119/149				100
Purgeable TPH	ug/kg	52 U	62 U	62 U	70 U
1 VOC's in Soil at Low Levels by GC/MS Clo					
Acetone	ug/kg	19 U			
Benzene	ug/kg	5.4 U			
Bromodichloromethane	ug/kg	5.4 U			•
Bromoform	ug/kg	5.4 U			
Bromomethane	ug/kg	5.4 U			
2-Butanone	ug/kg	5.4 U			,
Carbon Disulfide	ug/kg	° 5.4 U			
Carbon Tetrachloride	ug/kg	5.4 U	· · ·	•	•
Chlorobenzene	ug/kg	5.4 U			
Chloroethane	ug/kg	5,4 U			
Chloroform	ug/kg	5.4 U			
Chloromethane	ug/kg	5.4 U			
Cyclohexane	ug/kg	5.4 U			
1,2-Dibromo-3-Chloropropane	ug/kg	. 5.4 U			
Dibromochloromethane	ug/kg	5.4 U	,		
1,2-Dibromoethane	ug/kg	5.4 U			
1,2-Dichlorobenzene	ug/kg	5.4 U			
1,3-Dichlorobenzene	ug/kg	5.4 U			
1,4-Dichlorobenzene	ug/kg	5.4 U			
Dichlorodifluoromethane	ug/kg	5.4 U			
1,1-Dichloroethane	ug/kg	5.4 U			
1,2-Dichloroethane	ug/kg 	5.4 U			
1,1-Dichloroethene	ug/kg	5.4 U			
cis-1,2-Dichloroethene	ug/kg	5.4 U			
trans-1,2-Dichloroethene	ug/kg	5.4 U			
1,2-Dichloropropane	ug/kg	5.4 U			
cis-1,3-Dichloropropene	ug/kg	5.4 U			
trans-1,3-Dichloropropene	ug/kg	5.4 U			
Ethyl Benzene	ug/kg	· 5.4 U			
2-Hexanone	ug/kg	5.4 U			

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Isopropylbenzene ug/kg 5.4 U Methyl Actate ug/kg 5.4 U Methyl tert-butyl ether ug/kg 11 U Methyl cohokxane ug/kg 5.4 U Methylcyclohexane ug/kg 5.4 U 4. Methyl-2-Pentanone ug/kg 5.4 U Naphthalene ug/kg 5.4 U 1,1,2,2-Tetrachloroethane ug/kg 5.4 U Toluene ug/kg 5.4 U 1,2,3-Trichloroethane ug/kg 5.4 U 1,2,3-Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.1 U 5.0 U 0 S.0 U S.5 U	Analysis/ Analyte	Units	21-FB	22	23	24
Methyl Acetate ug/kg 5.4 U Methyl tert-butyl teher ug/kg 5.3 U Methyl tert-butyl ether ug/kg 5.3 U Methyl echloride ug/kg 5.4 U Methyl echloride ug/kg 5.4 U Methyl Acetate ug/kg 5.4 U Maphthalene ug/kg 5.4 U 1,1,2,2-Tetrachloroethane ug/kg 5.4 U Toluene ug/kg 5.4 U 1,2,3-Trichloroethane ug/kg 5.4 U 1,2,3-Trichloroethane ug/kg 5.4 U 1,2,3-Trichloroethane ug/kg 5.4 U 1,1,1-Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.1 U 1,0004 0.0 U 5.5 U <t< td=""><td>Isopropylbenzene</td><td>ug/kg</td><td>5.4 U</td><td></td><td></td><td></td></t<>	Isopropylbenzene	ug/kg	5.4 U			
Methylcyclohexane ug/kg 6.3 U Methylcyclohexane ug/kg 5.4 U Methylcyclohexane ug/kg 5.4 U Naphthalene ug/kg 5.4 U Naphthalene ug/kg 5.4 U 1,1,2,2-Tetrachloroethane ug/kg 5.4 U Tetrachloroethane ug/kg 5.4 U 1,2,3-Trichlorobenzene ug/kg 5.4 U 1,2,3-Trichlorobenzene ug/kg 5.4 U 1,2,3-Trichloroethane ug/kg 5.4 U 1,1,1-Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.1 U 5.0 U 1 VOCS in Solid Matrices by GC/MS <td></td> <td>ug/kg</td> <td>5.4 U</td> <td></td> <td></td> <td></td>		ug/kg	5.4 U			
Methylene Chloride ug/kg 5.4 U 4. Methyl-2-Pentanone ug/kg 5.4 U Naphthalene ug/kg 5.4 U Naphthalene ug/kg 5.4 U 1,1,2,2-Tetrachloroethane ug/kg 5.4 U Tetrachloroethane ug/kg 5.4 U 1,2,3-Trichlorobenzene ug/kg 5.4 U 1,2,4-Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U 1,1,1-Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U vinyl Chloride ug/kg 5.1 U 5.0 U 5.5 U Borzon S.1 U 5.0	-	ug/kg	11 U			
4-Methyl-2-Pentanone ug/kg 5.4 U Naphthalene ug/kg 11 U Styrene ug/kg 5.4 U Toluene ug/kg 5.4 U Tetrachloroethane ug/kg 5.4 U 1,2,2-Tetrichloroethane ug/kg 5.4 U 1,2,3-Trichlorobenzene ug/kg 5.4 U 1,2,4-Trichlorobenzene ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U Vinyl Chloride ug/kg 5.4 U mand/or p-Xylene ug/kg 5.4 U o-Xylene ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U Bromomethane	Methylcyclohexane	ug/kg	6.3 U			
Naphthalene ug/kg 11 U Styrene ug/kg 5.4 U 1,1,2,2-Tetrachloroethane ug/kg 5.4 U Totuene ug/kg 5.4 U 1,2,3-Trichlorobethane ug/kg 5.4 U 1,2,3-Trichlorobethane ug/kg 5.4 U 1,2,3-Trichlorobethane ug/kg 5.4 U 1,2,3-Trichlorobethane ug/kg 5.4 U 1,1,1-Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U man(or p-Xylene ug/kg 5.4 U vilyt Choride ug/kg 5.4 U Vinyt Choride ug/kg 5.4 U Vilyt Choride ug/kg 5.4 U Vilyt Choride ug/kg 5.4 U Vilyt Choride ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane u	Methylene Chloride	ug/kg	5.4 U			
Styrene ug/kg 5.4 U 1,1,2,2-Tetrachloroethane ug/kg 5.4 U Tetrachloroethane ug/kg 5.4 U 1,2,3-Trichlorobenzene ug/kg 5.4 U 1,2,4-Trichlorobenzene ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U Vinyl Choirde ug/kg 5.4 U m and/or p-Xylene ug/kg 5.4 U VOCS in Solid Matrices by GC/MS 5.1 U 5.0 U 8.8 Benzene ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U <td>4-Methyl-2-Pentanone</td> <td>ug/kg</td> <td>5.4 U</td> <td></td> <td>· .</td> <td></td>	4-Methyl-2-Pentanone	ug/kg	5.4 U		· .	
1,1,2,2-Tetrachloroethane ug/kg 5.4 U Tetrachloroethene ug/kg 5.4 U Toluene ug/kg 5.4 U 1,2,3-Trichlorobenzene ug/kg 5.4 U 1,2,3-Trichlorobenzene ug/kg 5.4 U 1,2,3-Trichlorobenzene ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U Ninyl Choirde ug/kg 5.4 U m and/or p-Xylene ug/kg 5.1 U 5.0 U 5.5 U Nordene ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U Bromomethane ug/kg 5.1	Naphthalene	ug/kg	11 U			
Tetrachloroethene ug/kg 5.4 U Toluene ug/kg 5.4 U 1,2,3-Trichlorobenzene ug/kg 5.4 U 1,2,3-Trichlorobenzene ug/kg 5.4 U 1,1,1-Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U Trichlorofluoromethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U Trichlorofluoromethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U vinyl Chloride ug/kg 5.4 U mand/or p-Xylene ug/kg 5.4 U o-Xytene ug/kg 5.1 U 5.0 U 8.8 Benzene ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane ug/kg 5.1 U <td< td=""><td>Styrene</td><td>ug/kg</td><td>5.4 U</td><td></td><td></td><td>-</td></td<>	Styrene	ug/kg	5.4 U			-
Toluane ug/kg 5.4 U 1,2,3-Trichlorobenzene ug/kg 5.4 U 1,2,4-Trichlorobenzene ug/kg 5.4 U 1,1,1-Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U Trichloroethane ug/kg 5.4 U Trichloroethane ug/kg 5.4 U Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U nad/or p-Xylene ug/kg 5.4 U o-Xylene ug/kg 5.1 U 5.0 U 8.8 Benzene ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U Bromoform ug/kg 5.1 U 5.0 U 5.5 U Bromoform ug/kg 5.1 U 5.0 U 5.5 U Carbon Disulfide ug/kg 5.1 U 5.0 U 5.5 U <td>1,1,2,2-Tetrachloroethane</td> <td>ug/kg</td> <td>5.4 U</td> <td></td> <td></td> <td></td>	1,1,2,2-Tetrachloroethane	ug/kg	5.4 U			
1,2,3-Trichlorobenzene ug/kg 5.4 U 1,2,4-Trichlorobenzene ug/kg 5.4 U 1,1,1-Trichlorobenzene ug/kg 5.4 U 1,1,2-Trichlorobenzene ug/kg 5.4 U 1,1,2-Trichlorobethane ug/kg 5.4 U Trichlorobethane ug/kg 5.4 U Trichlorobethane ug/kg 5.4 U 1,1,2-Trichlorobethane ug/kg 5.4 U 1,1,2-Trichlorobethane ug/kg 5.4 U 1,1,2-Trichlorobethane ug/kg 5.4 U 1,1,2-Trichlorobethane ug/kg 5.4 U nand/or p-Xylene ug/kg 5.4 U o-Xylene ug/kg 5.1 U 5.0 U 8.8 Benzene ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U Bromoform ug/kg 5.1 U 5.0 U 5.5 U Bromoform ug/kg 5.1 U 5.0 U 5.5 U Bromoform ug/kg 5.1 U 5.0 U 5.5 U Carbon Disulfide ug/kg 5.1 U <	Tetrachloroethene	ug/kg	5.4 U			
1,2,4-Trichlorobenzene ug/kg 5.4 U 1,1,1-Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U Trichloroethane ug/kg 5.4 U Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U nand/or p-Xylene ug/kg 5.4 U o-Xylene ug/kg 5.4 U o-Xylene ug/kg 5.4 U VOCS in Solid Matrices by GC/MS 5.1 U 5.0 U 8.8 Benzene ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U 2-Butanone ug/kg 5.1 U 5.0 U 5.5 U Carbon Tetrachloride ug/kg	Toluene	ug/kg	5.4 U			
1,1,1-Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U Trichloroethane ug/kg 5.4 U Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U vinyl Choride ug/kg 5.4 U m and/or p-Xylene ug/kg 5.4 U o-Xylene ug/kg 5.1 U 5.0 U 8.8 Benzene ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U Bromoform ug/kg 5.1 U 5.0 U 5.5 U Carbon Disulfide ug/kg 5.1 U 5.0 U 5.5 U Chlorobenzene ug/kg 5.1 U 5.0 U 5.5 U	1,2,3-Trichlorobenzene	ug/kg	5.4 U			
1,1,2-Trichloroethane ug/kg 5.4 U Trichloroethane ug/kg 5.4 U Trichloroftuoromethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U 1,1,2-Trichloroethane ug/kg 5.4 U m and/or p-Xylene ug/kg 5.4 U o-Xylene ug/kg 5.1 U 5.0 U 8.8 Benzene ug/kg 5.1 U 5.0 U 8.8 Benzene ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U Bromoform ug/kg 5.1 U 5.0 U 5.5 U Bromoform ug/kg 5.1 U 5.0 U 5.5 U 2-Butanone ug/kg 5.1 U 5.0 U 5.5 U Carbon Disulfide ug/kg 5.1 U 5.0 U 5.5 U Chloroethane ug/kg 5.1 U 5.0 U 5.5 U Chloroethane ug/kg 5.1 U 5.0 U	1,2,4-Trichlorobenzene	ug/kg	5.4 U			
Trichloroethene ug/kg 5.4 U Trichlorofluoromethane ug/kg 5.4 U 1,1,2-Trichlorotrifluoroethane ug/kg 5.4 U Vinyl Chloride ug/kg 5.4 U m and/or p-Xylene ug/kg 5.4 U o-Xylene ug/kg 5.1 U 5.0 U 8.8 Benzene ug/kg 5.1 U 5.0 U 5.5 U Bromoform ug/kg 5.1 U 5.0 U 5.5 U Carbon Disulfide ug/kg 5.1 U 5.0 U 5.5 U Chlorobenzene ug/kg 5.1 U 5.0 U	1,1,1-Trichloroethane	ug/kg	5.4 U			
Trichlorofiluoromethane ug/kg 5.4 U 1,1,2-Trichlorotrifiluoroethane ug/kg 5.4 U Vinyl Chloride ug/kg 5.4 U m and/or p-Xylene ug/kg 5.4 U o-Xylene ug/kg 5.4 U o-Xylene ug/kg 5.4 U o-Xylene ug/kg 5.4 U o-Xylene ug/kg 5.1 U 1 VOCS in Solid Matrices by GC/MS 5.1 U 5.0 U 8.8 Benzene ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U Bromomethane ug/kg 5.1 U 5.0 U 5.5 U Bromomethane ug/kg 5.1 U 5.0 U 5.5 U Carbon Disulfide ug/kg 5.1 U 5.0 U 5.5 U Carbon Tetrachloride ug/kg 5.1 U 5.0 U 5.5 U Chlorobenzene ug/kg 5.1 U 5.0 U 5.5 U Chloroform ug/kg 5.1 U 5.0 U	1,1,2-Trichloroethane	ug/kg	5.4 U			
1,1,2-Trichlorotrifluoroethane ug/kg 5.4 U Vinyl Chloride ug/kg 5.4 U m and/or p-Xylene ug/kg 5.4 U o-Xylene ug/kg 5.4 U 1 VOCs in Solid Matrices by GC/MS 5.1 U 5.0 U 8.8 Acetone ug/kg 5.1 U 5.0 U 8.8 Benzene ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U Bromoform ug/kg 5.1 U 5.0 U 5.5 U Bromoform ug/kg 5.1 U 5.0 U 5.5 U Bromoform ug/kg 5.1 U 5.0 U 5.5 U Carbon Disulfide ug/kg 5.1 U 5.0 U 5.5 U Carbon Tetrachloride ug/kg 5.1 U 5.0 U 5.5 U Chlorobenzene ug/kg 5.1 U 5.0 U 5.5 U Chloroform ug/kg 5.1 U 5.0 U 5.5 U Chloroformethane ug/kg 5.1 U 5.0 U 5.5 U Chloroformethane ug/kg 5.1 U	Trichloroethene	ug/kg	5.4 U			
Vinyl Chloride ug/kg 5.4 U m and/or p-Xylene ug/kg 5.4 U o-Xylene ug/kg 5.4 U 1 VOCs in Solid Matrices by GC/MS 8.8 Acetone ug/kg 5.1 U 5.0 U 8.8 Benzene ug/kg 5.1 U 5.0 U 8.8 Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U Bromoderthane ug/kg 5.1 U 5.0 U 5.5 U Carbon Disulfide ug/kg 5.1 U 5.0 U 5.5 U Chlorobenzene ug/kg 5.1 U 5.0 U 5.5 U Chloroform ug/kg 5.1 U 5.0 U 5.5 U Chloroform ug/kg	Trichlorofluoromethane	ug/kg	5.4 U			
m and/or p-Xylene ug/kg 5.4 U o-Xylene ug/kg 5.4 U 1 VOCs in Solid Matrices by GC/MS 5.1 U 5.0 U 8.8 Benzene ug/kg 5.1 U 5.0 U 8.8 Benzene ug/kg 5.1 U 5.0 U 8.5 Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U Bromomethane ug/kg 5.1 U 5.0 U 5.5 U Carbon Disulfide ug/kg 5.1 U 5.0 U 5.5 U Carbon Tetrachloride ug/kg 5.1 U 5.0 U 5.5 U Chlorobenzene ug/kg 5.1 U 5.0 U 5.5 U Chloroform ug/kg 5.1 U 5.0 U 5.5 U <td>1,1,2-Trichlorotrifluoroethane</td> <td>ug/kg</td> <td>5.4 U</td> <td></td> <td></td> <td></td>	1,1,2-Trichlorotrifluoroethane	ug/kg	5.4 U			
o-Xylene ug/kg 5.4 U 1 VOCs in Solid Matrices by GC/MS	Vinyl Chloride	ug/kg	5.4 U			
1 VOCs in Solid Matrices by GC/MS Acetone ug/kg 5.1 U 5.0 U 8.8 Benzene ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U Bromoform ug/kg 5.1 U 5.0 U 5.5 U Bromomethane ug/kg 5.1 U 5.0 U 5.5 U 2-Butanone ug/kg 5.1 U 5.0 U 5.5 U Carbon Disulfide ug/kg 5.1 U 5.0 U 5.5 U Carbon Tetrachloride ug/kg 5.1 U 5.0 U 5.5 U Chlorobenzene ug/kg 5.1 U 5.0 U 5.5 U Chloroform ug/kg 5.1 U 5.0 U 5.5 U Chloromethane ug/kg 5.1 U 5.0 U 5.5 U Chloroform ug/kg 5.1 U 5.0 U 5.5 U Cyclohexane ug/kg 5.1 U 5.0 U	m and/or p-Xylene	ug/kg	5.4 U			
Acetone ug/kg 5.1 U 5.0 U 8.8 Benzene ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U Bromoform ug/kg 5.1 U 5.0 U 5.5 U Bromoform ug/kg 5.1 U 5.0 U 5.5 U Bromomethane ug/kg 5.1 U 5.0 U 5.5 U 2-Butanone ug/kg 5.1 U 5.0 U 5.5 U Carbon Disulfide ug/kg 5.1 U 5.0 U 5.5 U Carbon Tetrachloride ug/kg 5.1 U 5.0 U 5.5 U Chlorobenzene ug/kg 5.1 U 5.0 U 5.5 U Chloroform ug/kg 5.1 U 5.0 U 5.5 U Chloromethane ug/kg 5.1 U 5.0 U 5.5 U Chloromethane ug/kg 5.1 U 5.0 U 5.5 U Cyclohexane ug/kg 5.1 U 5.0 U 5.5 U J.2-Dibromo-3-Chloropropane ug/k	o-Xylene	ug/kg	5.4 U			
Benzene ug/kg 5.1 U 5.0 U 5.5 U Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U Bromoform ug/kg 5.1 U 5.0 U 5.5 U Bromomethane ug/kg 5.1 U 5.0 U 5.5 U Bromomethane ug/kg 5.1 U 5.0 U 5.5 U 2-Butanone ug/kg 5.1 U 5.0 U 5.5 U Carbon Disulfide ug/kg 5.1 U 5.0 U 5.5 U Carbon Tetrachloride ug/kg 5.1 U 5.0 U 5.5 U Chlorobenzene ug/kg 5.1 U 5.0 U 5.5 U Chloroform ug/kg 5.1 U 5.0 U 5.5 U Chloromethane ug/kg 5.1 U 5.0 U 5.5 U Chloromethane ug/kg 5.1 U 5.0 U 5.5 U Cyclohexane ug/kg 5.1 U 5.0 U 5.5 U J.2-Dibromo-3-Chloropropane ug/kg 5.1 U 5.0 U 5.5 U Dibromochloromethane <td>1 VOCs in Solid Matrices by GC/MS</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1 VOCs in Solid Matrices by GC/MS					
Bromodichloromethane ug/kg 5.1 U 5.0 U 5.5 U Bromoform ug/kg 5.1 U 5.0 U 5.5 U Bromomethane ug/kg 5.1 U 5.0 U 5.5 U 2-Butanone ug/kg 5.1 U 5.0 U 5.5 U 2-Butanone ug/kg 5.1 U 5.0 U 5.5 U Carbon Disulfide ug/kg 5.1 U 5.0 U 5.5 U Carbon Tetrachloride ug/kg 5.1 U 5.0 U 5.5 U Chlorobenzene ug/kg 5.1 U 5.0 U 5.5 U Chloroform ug/kg 5.1 U 5.0 U 5.5 U Chloroform ug/kg 5.1 U 5.0 U 5.5 U Chloromethane ug/kg 5.1 U 5.0 U 5.5 U Cyclohexane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromo-3-Chloropropane ug/kg 5.1 U 5.0 U 5.5 U Dibromochloromethane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromoethan	Acetone	ug/kg		5.1 U	5.0 U	8.8
Bromoform ug/kg 5.1 U 5.0 U 5.5 U Bromomethane ug/kg 5.1 U 5.0 U 5.5 U 2-Butanone ug/kg 5.1 U 5.0 U 5.5 U 2-Butanone ug/kg 5.1 U 5.0 U 5.5 U Carbon Disulfide ug/kg 5.1 U 5.0 U 5.5 U Carbon Tetrachloride ug/kg 5.1 U 5.0 U 5.5 U Chlorobenzene ug/kg 5.1 U 5.0 U 5.5 U Chloroform ug/kg 5.1 U 5.0 U 5.5 U Cyclohexane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromo-3-Chloropropane ug/kg 5.1 U 5.0 U 5.5 U Dibromochloromethane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromoethane	Benzene	ug/kg		5.1 U	5.0U.	5.5 U
Bromomethane ug/kg 5.1 U 5.0 U 5.5 U 2-Butanone ug/kg 5.1 U 5.0 U 5.5 U Carbon Disulfide ug/kg 5.1 U 5.0 U 5.5 U Carbon Disulfide ug/kg 5.1 U 5.0 U 5.5 U Carbon Tetrachloride ug/kg 5.1 U 5.0 U 5.5 U Carbon Tetrachloride ug/kg 5.1 U 5.0 U 5.5 U Chlorobenzene ug/kg 5.1 U 5.0 U 5.5 U Chloroethane ug/kg 5.1 U 5.0 U 5.5 U Chloroform ug/kg 5.1 U 5.0 U 5.5 U Chloromethane ug/kg 5.1 U 5.0 U 5.5 U Cyclohexane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromo-3-Chloropropane ug/kg 5.1 U 5.0 U 5.5 U Dibromochloromethane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromoethane ug/kg 5.1 U 5.0 U 5.5 U	Bromodichloromethane	ug/kg		5.1 U	5.0 U	5.5 U
2-Butanone ug/kg 5.1 U 5.0 U 5.5 U Carbon Disulfide ug/kg 5.1 U 5.0 U 5.5 U Carbon Tetrachloride ug/kg 5.1 U 5.0 U 5.5 U Carbon Tetrachloride ug/kg 5.1 U 5.0 U 5.5 U Chlorobenzene ug/kg 5.1 U 5.0 U 5.5 U Chloroethane ug/kg 5.1 U 5.0 U 5.5 U Chloroform ug/kg 5.1 U 5.0 U 5.5 U Chloromethane ug/kg 5.1 U 5.0 U 5.5 U Cyclohexane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromo-3-Chloropropane ug/kg 5.1 U 5.0 U 5.5 U Dibromochloromethane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromoethane ug/kg 5.1 U 5.0 U 5.5 U	Bromoform	ug/kg		5.1 U	5.0 U	5.5 U
Carbon Disulfide ug/kg 5.1 U 5.0 U 5.5 U Carbon Tetrachloride ug/kg 5.1 U 5.0 U 5.5 U Chlorobenzene ug/kg 5.1 U 5.0 U 5.5 U Chloroethane ug/kg 5.1 U 5.0 U 5.5 U Chloroform ug/kg 5.1 U 5.0 U 5.5 U Chloromethane ug/kg 5.1 U 5.0 U 5.5 U Chloromethane ug/kg 5.1 U 5.0 U 5.5 U Cyclohexane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromo-3-Chloropropane ug/kg 5.1 U 5.0 U 5.5 U Dibromochloromethane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromoethane ug/kg 5.1 U 5.0 U 5.5 U	Bromomethane	ug/kg		5.1 U	5.0 U	5.5 U
Carbon Tetrachloride ug/kg 5.1 U 5.0 U 5.5 U Chlorobenzene ug/kg 5.1 U 5.0 U 5.5 U Chloroethane ug/kg 5.1 U 5.0 U 5.5 U Chloroethane ug/kg 5.1 U 5.0 U 5.5 U Chloroform ug/kg 5.1 U 5.0 U 5.5 U Chloromethane ug/kg 5.1 U 5.0 U 5.5 U Chloromethane ug/kg 5.1 U 5.0 U 5.5 U Cyclohexane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromo-3-Chloropropane ug/kg 5.1 U 5.0 U 5.5 U Dibromochloromethane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromoethane ug/kg 5.1 U 5.0 U 5.5 U	2-Butanone	ug/kg		5.1 U	5.0 U	. 5.5 U
Chlorobenzene ug/kg 5.1 U 5.0 U 5.5 U Chloroethane ug/kg 5.1 U 5.0 U 5.5 U Chloroform ug/kg 5.1 U 5.0 U 5.5 U Chloromethane ug/kg 5.1 U 5.0 U 5.5 U Chloromethane ug/kg 5.1 U 5.0 U 5.5 U Cyclohexane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromo-3-Chloropropane ug/kg 5.1 U 5.0 U 5.5 U Dibromochloromethane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromoethane ug/kg 5.1 U 5.0 U 5.5 U Jibromochloromethane ug/kg 5.1 U 5.0 U 5.5 U	Carbon Disulfide	ug/kg				5.5 U
Chloroethane ug/kg 5.1 U 5.0 U 5.5 U Chloroform ug/kg 5.1 U 5.0 U 5.5 U Chloromethane ug/kg 5.1 U 5.0 U 5.5 U Cyclohexane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromo-3-Chloropropane ug/kg 5.1 U 5.0 U 5.5 U Dibromochloromethane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromoethane ug/kg 5.1 U 5.0 U 5.5 U	Carbon Tetrachloride	ug/kg				
Chloroform ug/kg 5.1 U 5.0 U 5.5 U Chloromethane ug/kg 5.1 U 5.0 U 5.5 U Cyclohexane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromo-3-Chloropropane ug/kg 5.1 U 5.0 U 5.5 U Dibromochloromethane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromochloromethane ug/kg 5.1 U 5.0 U 5.5 U	Chlorobenzene					
Chloromethane ug/kg 5.1 U 5.0 U 5.5 U Cyclohexane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromo-3-Chloropropane ug/kg 5.1 U 5.0 U 5.5 U Dibromochloromethane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromoethane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromoethane ug/kg 5.1 U 5.0 U 5.5 U	Chloroethane					
Cyclohexane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromo-3-Chloropropane ug/kg 5.1 U 5.0 U 5.5 U Dibromochloromethane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromoethane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromoethane ug/kg 5.1 U 5.0 U 5.5 U	Chloroform					
1,2-Dibromo-3-Chloropropane ug/kg 5.1 U 5.0 U 5.5 U Dibromochloromethane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromochloromethane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromoethane ug/kg 5.1 U 5.0 U 5.5 U	Chloromethane					
Dibromochloromethane ug/kg 5.1 U 5.0 U 5.5 U 1,2-Dibromoethane ug/kg 5.1 U 5.0 U 5.5 U	Cyclohexane					
1,2-Dibromoethane ug/kg 5.1 U 5.0 U 5.5 U	1,2-Dibromo-3-Chloropropane					•
	Dibromochloromethane					
1,2-Dichlorobenzene ug/kg 5.1 U 5.0 U 5.5 U	•					
1,3-Dichlorobenzene ug/kg 5.1 U 5.0 U 5.5 U3	1,3-Dichlorobenzene					
1,4-Dichlorobenzene ug/kg 5.1 U 5.0 U 5.5 U						
Dichlorodifluoromethane ug/kg 5.1 U 5.0 U 5.5 U	Dichlorodifluoromethane					
1,1-Dichloroethane ug/kg 5.1 U 5.0 U 5.5 U						
1,2-Dichloroethane ug/kg 5.1 U 5.0 U 5.5 U						
1,1-Dichloroethene ug/kg 5.1 U 5.0 U 5.5 U	1,1-Dichloroethene	ug/kg		5.1 U	5.0 U	5.5 U

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	21-FB	22	23	24
cis-1,2-Dichloroethene	ug/kg		5.1 U	5.0 U	5.5 U
trans-1,2-Dichloroethene	ug/kg		5.1 U	5.0 U	5.5 U
1,2-Dichloropropane	ug/kg		5.1 U	5.0 U	5.5 U
cis-1,3-Dichloropropene	ug/kg		5.1 U	5.0 U	5.5 U
trans-1,3-Dichloropropene	ug/kg		5.1 U	5.0 U	5.5 U
Ethyl Benzene	ug/kg		5.1 U	5.0 U	5.5 U
2-Hexanone	ug/kg		5.1 U	5.0 U	5.5 U
Isopropylbenzene	ug/kg		5.1 U	5.0 U	5.5 U
Methyl Acetate	ug/kg		5.1 U	5.0 U	5.5 UJ
Methyl tert-butyl ether	ug/kg		10 U	10 U	11 U
Methylcyclohexane	ug/kg		5.1 U	5.0 U	5.5 U
Methylene Chloride	ug/kg		5.1 U	5.0 U	5.5 U
4-Methyl-2-Pentanone	ug/kg		5.1 U	5.0 U	5.5 U
Naphthalene	ug/kg		10 U	10 U	11 UJ
Styrene	ug/kg	•	5.1 U	5.0 U	5.5 UJ
1,1,2,2-Tetrachloroethane	ug/kg		5.1 U	5.0 U	5.5 U
Tetrachloroethene	ug/kg		5.1 U	5.0 U	5.5 Ù
Toluene	ug/kg		5.1 U	5.0 U	5.5 U
1,2,3-Trichlorobenzene	ug/kg		5.1 U	5.0 U	5.5 UJ
1,2,4-Trichlorobenzene	ug/kg		5.1 U	5.0 U	5.5 UJ
1,1,1-Trichloroethane	ug/kg		5.1 U	5.0 U	5.5 U
1,1,2-Trichloroethane	ug/kg		5.1 U	5.0 U	5.5 U
Trichloroethene	ug/kg		5.1 U	5.0 U	5.5 U
Trichlorofluoromethane	ug/kg		5.1 U	5.0 U	5.5 U
1,1,2-Trichlorotrifluoroethane	ug/kg		5.1 U	5.0 U	5.5 U
Vinyl Chloride	ug/kg		5.1 U	5.0 U	5.5 U
m and/or p-Xylene	ug/kg	•	5.1 U	5.0 U	5.5 U
o-Xylene	ug/kg		⁻ 5.1 U	5.0 U	5.5 U

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	24-FD	27-FB	107-FB	207-FB
1 Explosives in Soil by GC/ECD					
2-Amino-4,6-dinitrotoluene	ug/kg	64 U			
4-Amino-2,6-dinitrotoluene	ug/kg	107 U			
3,5-Dinitroaniline	ug/kg	500 U			
1,3-Dinitrobenzene	ug/kg	69 U			
2,4-Dinitrotoluene	ug/kg	146 U			
2,6-Dinitrotoluene	ug/kġ	199 U			
Hexahydro-1,3,5-trinitro-1,3,5-triazine	ug/kg	102 U		-	,
Nitrobenzene	ug/kg	42 U			
Nitroglycerine	ug/kg	500 U			
2-Nitrotoluene	ug/kg	102 U			
3-Nitrotoluene	ug/kg	89 U			
4-Nitrotoluene	ug/kg	162 U			
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine	ug/kg	394 U			
Pentaerythritoltetranitrate	ug/kg	545 U			
1,3,5-Trinitrobenzene	ug/kg	92 U			
2,4,6-Trinitrophenylmethylnitramine	ug/kg	134 U			
2,4,6-Trinitrotoluene	ug/kg	100 U			
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.086			
1 Metals in Solids by ICP	-				
Aluminum	mg/kg	5250			
Antimony	mg/kg	2 U	·		
Arsenic	mg/kg	5 U			
Barium	mg/kg	96.6	•		
Beryllium	mg/kg	1 U		•	
Cadmium	mg/kg	2.32			
Calcium	mg/kg	50400			
Chromium	mg/kg	13.2 J			
Cobalt	mg/kg	6.47			
Copper	mg/kg	31.5			
Iron	. mg/kg	19200			
Lead	mg/kg	51.8			
Magnesium	mg/kg	3820			
Manganese	mg/kg	450			
Molybdenum	mg/kg	2 U			
Nickel	mg/kg	13.1			
Potassium	mg/kg	496	•		
Selenium	mg/kg	13.0			
Silver	mg/kg	2 U			
Sodium	mg/kg	87.9			
Thallium	mg/kg	- 10 U			
Vanadium	mg/kg	13.9			
Zinc	mg/kg	188			
1 PCBs in Soil by GC/EC					
Aroclor 1016	ug/kg	נט 20			
•					

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	24-FD	27-FB	107-FB	207-FB
Aroclor 1221	ug/kg	20 UJ			
Aroclor 1232	ug/kg	20 UJ			-
Aroclor 1242	ug/kg	20 UJ			
Aroclor 1248	ug/kg	20 UJ			
Aroclor 1254	ug/kg	10 UJ		•	
Aroclor 1260	ug/kg	10 UJ			
1 Percent Solid	2. 2				
Solids, percent	%	78.0	96.6		
1 Perchlorate in Soil by IC					
Perchlorate	mg/kg	0.020 U			
1 TPH Semi-Volatile in Soil by GC/FID		•			
Extractable TPH	mg/kg	72			
1 TPH Volatiles in Soil by GC/MS				·	
Purgeable TPH	ug/kg	65 U 1			
1 VOCs in Solid Matrices by GC/MS					
Acetone	ug/kg	6.3	28		
Benzene	ug/kg	4.4 U	4.8 U		
Bromodichloromethane	ug/kg	4.4 U	4.8 U		
Bromoform	ug/kg	4.4 U	4.8 U		
Bromomethane	ug/kg	4.4 U	4.8 U		
2-Butanone	ug/kg	4.4 U	. 5.5 J		
Carbon Disulfide	ug/kg	4.4 U	4.8 U		
Carbon Tetrachloride	· ug/kg	4.4 U	4.8 U		
Chlorobenzene	ug/kg	4.4 U	4.8 U		
Chloroethane	· ug/kg	4.4 U	4.8 U		
Chloroform	ug/kg	4.4 U	4.8 U		
Chloromethane	· ug/kg	4.4 U	4.8 U		٩
Cyclohexane	ug/kg	4.4 U	4.8 U		
1,2-Dibromo-3-Chloropropane	ug/kg	4.4 U	4.8 U		
Dibromochloromethane	ug/kg	4.4 U	4.8 U		
1,2-Dibromoethane	ug/kg 	4.4 U	4.8 U		
1,2-Dichlorobenzene	ug/kg	4.4 U	4.8 U	- ·	
1,3-Dichlorobenzene	ug/kg	4.4 UJ	4.8 U		
1,4-Dichlorobenzene	ug/kg	4.4 U	4.8 U	•	
Dichlorodifluoromethane	ug/kg	4.4 U	4.8 U 4.8 U		-
1,1-Dichloroethane	ug/kg	4.4 U	4.8 U 4.8 U		
1,2-Dichloroethane	ug/kg	4.4 U 4.4 U	4.8 U 4.8 U		
1,1-Dichloroethene cis-1,2-Dichloroethene	ug/kg ug/kg	4.4 U	4.8 U 4.8 U		
trans-1,2-Dichloroethene	ug/kg	4.4 U	4.8 U		
		4.4 U	4.8 U		
1,2-Dichloropropane	ug/kg ug/kg	4.4 U 4.4 U	4.8 U 4.8 U	•	
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ug/kg	4.4 U	4.8 U		
Ethyl Benzene	ug/kg ug/kg	4.4 U	4.8 U		•
2-Hexanone	ug/kg ug/kg	4.4 U	4.8 U		
	49/59	ч.ч U	1.0 0		

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

· · ·				,	
Analysis/ Analyte	Units	24-FD	27-FB	107-FB	207-FB
			•		
Isopropylbenzene	ug/kg	4.4 U	4.8 U		
Methyl Acetate	ug/kg	4.4 UJ	4.8 U	<u>.</u>	
Methyl tert-butyl ether	ug/kg	· 8.8 U	9.5 U		
Methylcyclohexane	ug/kg	4.4 U	4.8 U		
Methylene Chloride	ug/kg	4.4 U	4.8 U		
4-Methyl-2-Pentanone	ug/kg	4.4 U	4.8 U		
Naphthalene	ug/kg	8.8 UJ	9.5 U		
Styrene	ug/kg	4.4 UJ	4.8 U	•	
1,1,2,2-Tetrachloroethane	ug/kg	4.4 U	4.8 U		
Tetrachloroethene	ug/kg	4.4 U	4.8 U		
Toluene	ug/kg	4.4 U	4.8 U	-	
1,2,3-Trichlorobenzene	ug/kg	4.4 UJ	4.8 U		
1,2,4-Trichlorobenzene	ug/kg	4.4 UJ	4.8 U		
1,1,1-Trichloroethane	ug/kg	4.4 U	4.8 U		
1,1,2-Trichloroethane	ug/kg	4.4 U	4.8 U		
Trichloroethene	ug/kg	4.4 U	4.8 U		
Trichlorofluoromethane	ug/kg	4.4 U	4.8 Ú		
1,1,2-Trichlorotrifluoroethane	ug/kg	4.4 U	4.8 U	•	
Vinyl Chloride	ug/kg	4.4 U	4.8 U		
m and/or p-Xylene	ug/kg	4.4 U	4.8 U		
o-Xylene	ug/kg	4.4 U	4.8 U		
1 Explosives in Water by GC/ECD					
2-Amino-4,6-dinitrotoluene	ug/L				0.49 U
4-Amino-2,6-dinitrotoluene	ug/L				0.48 U
3,5-Dinitroaniline	ug/L				0.65 U
1,3-Dinitrobenzene	ug/L				0.42 U
2,4-Dinitrotoluene	ug/L				0.48 U
2,6-Dinitrotoluene	ug/L				0.53 U
Hexahydro-1,3,5-trinitro-1,3,5-triazine	ug/L				0.45 U
Nitrobenzene	ug/L				1.2
Nitroglycerine	ug/L				0.65 U
2-Nitrotoluene	ug/L				0.5 U
3-Nitrotoluene	ug/L				0.41 U ·
4-Nitrotoluene	ug/L				0.52 U
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine	ug/L				0.47 UJ
Pentaerythritoltetranitrate	ug/L				1.2 U
1,3,5-Trinitrobenzene	ug/L				0.53 U
2,4,6-Trinitrophenylmethylnitramine	ug/L				0.48 U
2,4,6-Trinitrotoluene	ug/L				0.61 U
1 Mercury in Water					
Mercury	ug/L				0.20 U
1 Metals in Water by ICP					
Aluminum	ug/L				50 U
Antimony	ug/L				50 U
Arsenic	ug/L				25 U

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	24-FD	27-FB	107-FB	207-FB
Barium	ug/L				5 U
Beryllium	ug/L				3 U
Cadmium	ug/L				3 U .
Calcium	mg/L				2 U
Chromium	ug/L				15 U
Cobalt	ug/L				10 U
Copper	ug/L				5 U
Iron	ug/L				50 U
Lead	ug/L				50 U
Magnesium	mg/L				2 U
Manganese	· ug/L				5 U
Molybdenum	ug/L				15 U
Nickel	ug/L				20 U
Potassium	mg/L				. 2 U
Selenium	ug/L				50 UJ
Silver	ug/L				25 U
Sodium	mg/L				5 U
Thallium	ug/L				50 U
Titanium	ug/L				20 U
Vanadium	ug/L				10 U
Zinc	ug/L				25 U
1 Perchlorate in Water by IC Perchlorate	ug/L		•		2.00 U [.]
1 Pesticides in Water by GC/EC					
Aroclor 1016	ug/L				· 1 U
Aroclor 1221	ug/L	•			1 U
Aroclor 1232	ug/L				1 U
Aroclor 1242	ug/L				0.8 U
Aroclor 1248	ug/L				0.8 U
Aroclor 1254	ug/L				0.6 U
Aroclor 1260	ug/L				0.4 U
1 TPH Semi-volatile in Water by GC/FID Extractable TPH	mg/L				0.10 U
1 TPH Volatiles in water by GC/MS					
Purgeable TPH	ug/L			50 U	50 U
1 VOCs in Drinking Water by GC/MS					
Acetone	ug/L				10 U
Benzene	. ug/L			·	0.50 U
Bromobenzene	ug/L				0.50 U
Bromochloromethane	ug/L				0.69
Bromodichloromethane	ug/L				0.50 U
Bromoform	ug/L				0.50 U
Bromomethane	ug/L	-			1.0 U
2-Butanone	ug/L				5.0 U
n-Butylbenzene	ug/L				0.50 U

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	24-FD	27-FB	107-FB	207-FB
sec-Butylbenzene	ug/I				0.50 U
tert-Butylbenzene	ug/L ug/L				0.50 U
Carbon Disulfide	ug/L				0.50 U 0.50 U
Carbon Tetrachloride	ug/L				0.50 U 0.50 U
Chlorobenzene					0.50 U 0.50 U
Chloroethane	ug/L ug/L				0.50 U 0.50 U
Chloroform	ug/L ug/L				1.2
Chloromethane	ug/L ug/L	· .			1.2 1.0 UJ
2-Chlorotoluene	ug/L				0.50 U
4-Chlorotoluene	ug/L				0.50 U
1,2-Dibromo-3-Chloropropane	ug/L				1.0 UJ
Dibromochloromethane	ug/L				0.50 U
1,2-Dibromoethane	ug/L ug/L				0.50 U
Dibromomethane	ug/L				0.50 U
1,2-Dichlorobenzene	ug/L				0.50 U
1,3-Dichlorobenzene	ug/L				0.50 U
1,4-Dichlorobenzene	ug/L				0.50 U
Dichlorodifluoromethane	ug/L				0.50 U
1,1-Dichloroethane	ug/L		•		0.50 U
1,2-Dichloroethane	ug/L				0.50 U
1,1-Dichloroethene	ug/L				0.50 U
cis-1,2-Dichloroethene	ug/L			• .	0.50 U
trans-1,2-Dichloroethene	ug/L				0.50 U
1,2-Dichloropropane	ug/L				0.50 U
1,3-Dichloropropane	ug/L				1.0 U
2,2-Dichloropropane	ug/L				0.50 U
1,1-Dichloropropene	ug/L				0.50 U
cis-1,3-Dichloropropene	ug/L				0.50 U
trans-1,3-Dichloropropene	ug/L				0.50 U
Ethyl Benzene	ug/L		,		0.50 U
Hexachlorobutadiene	ug/L				0.50 U
2-Hexanone	ug/⊾ .				5.0 U
Isopropylbenzene	ug/L	,			0.50 U
p-Isopropyltoluene	ug/L				0.50 U
Methylene Chloride	ug/L				1.6
4-Methyl-2-Pentanone	ug/L				5.0 U
Naphthalene	ug/L				1.0 U
n-Propylbenzene	ug/L				0.50 U
Styrene	ug/Ľ				0.50 U
1,1,1,2-Tetrachloroethane	ug/L				0.50 U
1,1,2,2-Tetrachloroethane	ug/L				1.0 U
Tetrachloroethene	ug/L				0.50 U
Toluene	ug/L				0.50 U
1,2,3-Trichlorobenzene	ug/L				0.50 U
1,2,4-Trichlorobenzene	ug/L				0.50 U

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	24-FD	27-FB	107-FB	207-FB
1,1,1-Trichloroethane	ug/L				0.50 U
1,1,2-Trichloroethane	ug/L				0.50 U
Trichloroethene	ug/L				0.50 U
Trichlorofluoromethane	ug/L				1.0 U
1,2,3-Trichloropropane	ug/L				0.50 U
1,2,4-Trimethylbenzene	ug/L			•	0.50 U
1,3,5-Trimethylbenzene	ug/L				0.50 U
Vinyl Chloride	ug/L				0.50 U
m and/or p-Xylene	ug/L				0.50 U
o-Xylene	ug/L				0.50 U
1 VOCs in Water by GC/MS for Low Detection	Limits				
Acetone	ug/L			5.0 U	
Benzene	ug/L			1.0 U	
Bromodichloromethane	ug/L			1.0 U	
Bromoform	ug/L			1.0 U	
Bromomethane	ug/L			1.0 U	
2-Butanone	ug/L			5.0 U	
Carbon Disulfide	ug/L			1.0 U	
Carbon Tetrachloride	ug/L			1.0 U	
Chlorobenzene	ug/L			1.0 U	
Chloroethane	ug/L			1.0 U	
Chloroform	ug/L			1.0 U	
Chloromethane	ug/L			· 1.0 U	
Cyclohexane	ug/L	· •		1.0 U	
1,2-Dibromo-3-Chloropropane	ug/L			5.0 U	
Dibromochloromethane	ug/L	•		1.0 U	
1,2-Dibromoethane	ug/L			1.0 U	
1,2-Dichlorobenzene	ug/L			1.0 U	
1,3-Dichlorobenzene	ug/L			1.0 U	
1,4-Dichlorobenzene	ug/L		•	1.0 U	
Dichlorodifluoromethane	ug/L			1.0 U	
1,1-Dichloroethane	ug/L			1.0 U	
1,2-Dichloroethane	ug/L			1.0 U	
1,1-Dichloroethene	ug/L			1.0 U	
cis-1,2-Dichloroethene	ug/L			1.0 U	•
trans-1,2-Dichloroethene	ug/Ļ			1.0 U	
1,2-Dichloropropane	ug/L			1.0 U	
cis-1,3-Dichloropropene	ug/L			1.0 U	
trans-1,3-Dichloropropene	ug/L			. 1.0 U	
Ethyl Benzene	ug/L			1.0 U	
2-Hexanone	ug/L			2.0 U	
Isopropylbenzene	ug/L			1.0 U	
Methyl Acetate	ug/L			5.0 U	
Methyl tert-butyl ether	ug/L			1.0 U	
Methylcyclohexane	ug/L			1.0 U	

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	24-FD	27-FB	107-FB	207-FB
Methylene Chloride	ug/L			1.0 U	
4-Methyl-2-Pentanone	ug/L			1.0 U	
Naphthalene	ug/L			2.0 U	
Styrene	ug/L			1.0 U	
1,1,2,2-Tetrachloroethane	ug/L			5.0 U	
Tetrachloroethene	ug/L			1.0 U	
Toluene	ug/L			1.0 U	
1,2,3-Trichlorobenzene	ug/L			1.0 U	
1,2,4-Trichlorobenzene	_ ug/L			1.0 U	
1,1,1-Trichloroethane	ug/L			1.0 U	
1,1,2-Trichloroethane	ug/L			1.0 U	
Trichloroethene	ug/L			1.0 U	
Trichlorofluoromethane	ug/L			1.0 U	
1,1,2-Trichlorotrifluoroethane	ug/L			1.0 U	
Vinyl Chloride	ug/L			1.0 U	
m and/or p-Xylene	ug/L			1.0 U	
o-Xylene	ug/L			1.0 U	

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Project Desc: Ottumwa (EX) NAS - PA sampling

Analysis/ Analyte	Units	208-FB	301	301-FD	303
1 Explosives in Water by GC/ECD					
2-Amino-4,6-dinitrotoluene	ug/L		0.49 U	0.49 U	0.49 U
4-Amino-2,6-dinitrotoluene	ug/L		0.48 U	0.48 U	0.48 U
3,5-Dinitroaniline	ug/L		0.65 U	0.65 U	0.65 U
1,3-Dinitrobenzene	ug/L		0.42 U	- 0.42 U	0.42 U
2,4-Dinitrotoluene	ug/L		0.48 U	0.48 U	0.48 U
2,6-Dinitrotoluene	ug/L		0.53 U	0.53 U	0.53 U
Hexahydro-1,3,5-trinitro-1,3,5-triazine	ug/L		0.45 U	0.45 U	0.45 U
Nitrobenzene	ug/L		0.26 U	0.26 U	0.26 U
Nitroglycerine	ug/L		0.65 U	0.65 U	0.65 U
2-Nitrotoluene	ug/L	•	0.5 U	0.5 U	0.5 U
3-Nitrotoluene	ug/L		0.41 U	0.41 U	0.41 U
4-Nitrotoluene	ug/L		0.52 U	0.52 U	0.52 U
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine	ug/L		0.47 UJ	0.47 UJ	0.47 UJ
Pentaerythritoltetranitrate	ug/L		1.2 U	1.2 U	1.2 U
1,3,5-Trinitrobenzene	ug/L		0.53 U	0.53 U	0.53 U
2,4,6-Trinitrophenylmethylnitramine	ug/L		0.48 U	0.48 U	0.48 U
2,4,6-Trinitrotoluene	ug/L		0.61 U	0.61 U	0.61 U
	09/2			0.01 0	
1 Mercury in Water	ug/L		0.20 U	0.20 U	0.20 U
Mercury	Ug/L		0.20 0	0.20 0	0.20 0
1 Metals in Water by ICP	ug/I		156	160	7410
Aluminum	ug/L		. 150 50 U	50 U	. 50 U
Antimony	ug/L		25 U	25 U	25 U
Arsenic	ug/L		178	175	299
Barium	ug/L			1/ <u>5</u> 3 U	299 3 U
Beryllium	ug/L		3 U.		
Cadmium	ug/L		3 U	3 U	3 U 06 7
Calcium	mg/L		96.1	94.3	86.7
Chromium	ug/L		15 U	15 U	15 U
Cobalt	ug/L		10 U	10 U	10 U
Copper	ug/L		5 U	5 U	5.25
Iron	ug/L		296	292	7410
Lead	ug/L		50 U	50 U	50 U
Magnesium	mg/L		31.7	31.1	28.6
Manganese	ug/L		90.3	88.8	649
Molybdenum	ug/L		15 U	15 U	15 U
Nickel	ug/L		20 U	20 U	20 U
Potassium	mg/L		2 U	2 U	2 U
Selenium	ug/Ļ		50 UJ	50 UJ	50 UJ
Silver	ug/L		25 U	25 U	25 U
Sodium	mg/L		17.1	16.7	15.1
Thallium	ug/L		50 U	50 U	50 U
Titanium	ug/L		20 U	20 U	107
Vanadium	ug/L		10 U	. 10 U	20.6
Zinc	ug/L		25 U	25 U	30.5

.

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	208-FB	301	301-FD	303
1 Perchlorate in Water by IC					
Perchlorate	ug/L		2.00 U	2.00 U	2.00 U
1 Pesticides in Water by GC/EC					
Aroclor 1016	ug/L		1 U	1 U	1 U
Aroclor 1221	ug/L		1 U	1 <u>U</u>	1 U
Aroclor 1232	ug/L		1 U	1 U	1 U
Aroclor 1242	ug/L		0.8 U	0.8 U	0.8 U
Aroclor 1248	ug/L		0.8 U	0.8 U	0.8 U
Aroclor 1254	ug/L		0.6 U	0.6 U	0.6 U
Aroclor 1260	ug/L		0.4 U	0.4 U	0.4 U
1 TPH Semi-volatile in Water by GC/FID			·		
Extractable TPH	mg/L		0.12	0.11	0.12
1 TPH Volatiles in water by GC/MS					
Purgeable TPH	ug/L	50 U	50 U (50 U	50 U
1 VOCs in Drinking Water by GC/MS					
Acetone	ug/L	10 U			
Benzene	ug/L	0.50 U		:	
Bromobenzene	ug/L	0.50 U			
Bromochloromethane	ug/L	0.50 U			
Bromodichloromethane	ug/L	0.50 U			
Bromoform	ug/L	0.50 U			
Bromomethane	ug/L	1.0 U			
2-Butanone	ug/L	5.0 U			
n-Butylbenzene	ug/L	0.50 U		• .	
sec-Butylbenzene	ug/L	0.50 U			
tert-Butylbenzene	ug/L	0.50 U			
Carbon Disulfide	ug/L	0.50 U			
Carbon Tetrachloride	ug/L	0.50 U			
Chlorobenzene	ug/L	0.50 U			
Chloroethane	ug/L	0.50 U			
Chloroform	ug/L	0.50 U			
Chloromethane	ug/L	1.0 UJ			
2-Chlorotoluene	ug/L	0.50 U			
4-Chlorotoluene	ug/L	0.50 U			
1,2-Dibromo-3-Chloropropane	ug/L	1.0 UJ			
Dibromochloromethane	ug/L	0.50 U			
1,2-Dibromoethane	ug/L	0.50 U			
Dibromomethane	ug/L	0.50 U			
1,2-Dichlorobenzene	ug/L	0.50 U			
1,3-Dichlorobenzene	ug/L	0.50 U			
1,4-Dichlorobenzene	ug/L	0.50 U			
Dichlorodifluoromethane	ug/L	0.50 U			
1,1-Dichloroethane	ug/L	0.50 U			
1,2-Dichloroethane	ug/L	0.50 U			
1,1-Dichloroethene	ug/L	0.50 U		·	
cis-1,2-Dichloroethene	ug/L	0.50 U			

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	208-FB	301	301-FD	303
trans-1,2-Dichloroethene	ug/L	0.50 U			
1,2-Dichloropropane	ug/L	0.50 U			
1,3-Dichloropropane	ug/L	1.0 U			
2,2-Dichloropropane	ug/L	∝ 0.50 U			
1,1-Dichloropropene	ug/L	0.50 U	· .		
cis-1,3-Dichloropropene	ug/L	0.50 U			
trans-1,3-Dichloropropene	ug/L	0.50 U			
Ethyl Benzene	ug/L	0.50 U			
Hexachlorobutadiene	ug/L	0.50 U			
2-Hexanone	ug/L	5.0 U			
Isopropylbenzene	ug/L	0.50 U			
p-Isopropyltoluene	ug/L	0.50 U			
Methylene Chloride	ug/L	0.50 U			
4-Methyl-2-Pentanone	ug/L	5.0 U			
Naphthalene	ug/L	1.0 U		-	•
n-Propylbenzene	ug/L	0.50 U			
Styrene	ug/L	0.50 U			
1,1,1,2-Tetrachloroethane	ug/L	0.50 U			
1,1,2,2-Tetrachloroethane	ug/L	1.0 U			
Tetrachloroethene	ug/L	0.50 U			
Toluene	ug/L	0.50 U			
1,2,3-Trichlorobenzene	ug/L	. 0.50 U			
1,2,4-Trichlorobenzene	ug/L	0.50 U	•		
1,1,1-Trichloroethane	ug/L	0.50 U			
1,1,2-Trichloroethane	ug/L	0.50 U			-
Trichloroethene	ug/L	0.50 U			
Trichlorofluoromethane	ug/L	1.0 U 0.50 ປ			
1,2,3-Trichloropropane	ug/L	0.50 U			
1,2,4-Trimethylbenzene	ug/L	0.50 U			
1,3,5-Trimethylbenzene	ug/L	0.50 U			
Vinyl Chloride	ug/L ug/L	0.50 U		•	•
m and/or p-Xylene	ug/L	0.50 U			
o-Xylene		0.50 0			
1 VOCs in Water by GC/MS for Low Detection Acetone	ug/L		. 5.0 U	5.0 U	5.0 U
Benzene	ug/L		1.0 U	1.0 U	1.0 U
Bromodichloromethane	ug/L		1.0 U	1.0 U	1.0 U
Bromotorm	ug/L		1.0 U	1.0 U	1.0 Ú
Bromomethane	ug/L		1.0 U	1.0 U	1.0 U
2-Butanone	ug/L		5.0 U	5.0 U	5.0 U
Carbon Disulfide	ug/L		1.0 U	1.0 U	1.0 U
Carbon Tetrachloride	ug/L		1.0 U	1.0 U	1.0 U
Chlorobenzene	ug/L		1.0 U	1.0 U	1.0 U
Chloroethane	ug/L		1.0 U	1.0 U	1.0 U
Chloroform	ug/L		1.0 U	1.0 U	1.0 U
	-				

RLAB Approved Sample Analysis Results

07/19/2006

Project ID: RKOTTEXNAS

Analysis/ Analyte	Units	208-FB	301	301-FD	303
· · · ·					
Chloromethane	ug/L		1.0 U	1.0 U	1.0 U
Cyclohexane	ug/L		1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-Chloropropane	ug/L		5.0 U	5.0 U	5.0 U
Dibromochloromethane	ug/L		1.0 U	1.0 U	1.0 U
1,2-Dibromoethane	ug/L		1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	ug/L		1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	ug/L		1.0 U	. 1.0 U	1.0 U
1,4-Dichlorobenzene	ug/L		1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane	ug/L		1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	ug/L		1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	ug/L		1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	ug/L	ŧ	. 1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	ug/L		1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	ug/L		1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	ug/L		1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	ug/L		1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	ug/L	•	1.0 U	1.0 U	1.0 U
Ethyl Benzene	ug/L		1.0 U	1.0 U	1.0 U
2-Hexanone	ug/L		2.0 U	2.0 [,] U	2.0 U
Isopropylbenzene	ug/L	. •	1.0 U	1.0 U	1.0 U
Methyl Acetate	ug/L		5.0 U	5.0 U	5.0 U
Methyl tert-butyl ether	ug/L		1.0 U	1.0 U	1.0 U
Methylcyclohexane	· ug/L		1.0 U	1.0 U	1.0 U
Methylene Chloride	ug/L		1.0 U	1.0 U	1.0 U
4-Methyl-2-Pentanone	· ug/L		1.0 U	1.0 U	1.0 U
Naphthalene	ug/L		2.0 U	2.0 U	2.0 U
Styrene 🔹	ug/L		1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	ug/L		5.0 U	5.0 U	5.0 U
Tetrachloroethene	ug/L		1.0 U	1.0 U	1.0 U
Toluene	ug/L		1.0 U	1.0 U	1.0 U
1,2,3-Trichlorobenzene	ug/L		1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	ug/L		1.0 U	1.0 U	1.0 U
1,1,1-Trichloroethane	ug/L		1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	ug/L		1.0 U	1.0 U	1.0 U
Trichloroethene	ug/L		1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	ug/L		1.0 U	1.0 U	1.0 U
1,1,2-Trichlorotrifluoroethane	ug/L		1.0 U	1.0 U	1.0 U
Vinyl Chloride	ug/L		1.0 U	1.0 U	1.0 U
m and/or p-Xylene	ug/L		1.0 U	1.0 U	1.0 U
o-Xylene	ug/L		1.0 U	1.0 U	1.0 U

APPENDIX F

REGISTERED WELLS WITHIN 4-MILES OF OTTUMWA (EX) NAVAL AIR STATION

Registered Wells Within 4-Miles of Ottumwa (ex) NAS Site

Township and Range Location	Section		Irrigation or Livestock	Mineral Expl.	Depth to Bedrock	Total Depth (Feet)	Static Water Level (Feet)
Township 73	3 North, R		est			<u></u>	
	1	0					
	2	1			135	168	
	3	0					
	4	1			72	190	80
	5	0					
1 (6	1		1	30	114-258	55
	7	0					
	8	1			35	137	87
	9	1			25	297	124
	10	2			40	52-333	15-110
	11	0					
	12	0		-			
	13	0	_				
1	14	0					
	15	0		-			
	16	0					
	17	0					
	18	1		1	40	140-210	140
	19	0					
	20	1			15	150	70
	21	0					
	22	0					
)) [23	0					
	24	1			42	209	22
	25	0	11			339	
<u> </u> [26	1				34	
] [27	0					
)) [28	0					
	29	0					
	30	0					
l [31	0					
° (32	0					
∦ [33	1			70	181	67
	34	1			40	208	130
() [35	4				30-39	30
<u> </u> [36	3				34-134	67

Registered Wells Within 4-Miles of Ottumwa (ex) NAS Site

Township and Range	Section	•	or	Mineral Expl.	Depth to Bedrock	Total Depth (Feet)	Static Water Level		
Location			Livestock				(Feet)		
Township 7	Township 73 North, Range 13 West								
	5	1			67	155	82		
	6	0							
	7	0		1	L	222			
	8	0							
	9	0			L				
	16	0							
	17	0							
	18	0							
L	19	0			·				
	20	3			86-175	163-400	55-80		
	21	1			15	168	18		
	28	1			47	230	65		
	29	0							
	30	1				278			
	31	2		1		39-239	23		
	32	0							
	33	0		2	40-65	200-1120			
Township 72	<u>2 North, R</u>	ange 13 We	est						
	5	2			45	34-51			
	6	2			29-33				
	7	6			33-103	100-362	57-350		
	8	3				38-43	5.5-8		
Township 72	North, R	ange 14 We	est						
	1	0							
	2	4			10-25	21-293	15-125		
	3	2			20-24	106-155	18-100		
[4	2			44-61	130-175	42-75		
· [5	2			25-50	165-200	35-90		
[6	1			95	183	106.5		
[[8	1			13	16			
[9	0							
[10	2			46-70	155-200	13-29		
[[11	2			30-40	90-185	10-100		
ļ	12	0							
	13	0							
1 1	14	1			27		5		
	15	1	1		20	21-112	5-27		
Total	s	60	2	6	13-175	16-1120	5-350		

Notes:

Reference: Iowa Department of Natural Resources, Geological Survey On-line address: http://gsbdata.igsb.uiowa.edu/geosam/. Accessed July 11, 2006